WO2016080469A1 - リグニン樹脂組成物、硬化物および成形物 - Google Patents
リグニン樹脂組成物、硬化物および成形物 Download PDFInfo
- Publication number
- WO2016080469A1 WO2016080469A1 PCT/JP2015/082467 JP2015082467W WO2016080469A1 WO 2016080469 A1 WO2016080469 A1 WO 2016080469A1 JP 2015082467 W JP2015082467 W JP 2015082467W WO 2016080469 A1 WO2016080469 A1 WO 2016080469A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lignin
- resin
- resin composition
- type phenol
- phenol resin
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D197/00—Coating compositions based on lignin-containing materials
- C09D197/005—Lignin
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G8/00—Condensation polymers of aldehydes or ketones with phenols only
- C08G8/04—Condensation polymers of aldehydes or ketones with phenols only of aldehydes
- C08G8/08—Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ
- C08G8/24—Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ with mixtures of two or more phenols which are not covered by only one of the groups C08G8/10 - C08G8/20
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07G—COMPOUNDS OF UNKNOWN CONSTITUTION
- C07G1/00—Lignin; Lignin derivatives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L97/00—Compositions of lignin-containing materials
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L97/00—Compositions of lignin-containing materials
- C08L97/005—Lignin
Definitions
- the present invention relates to a lignin resin composition and a method for producing the same, a cured product of the lignin resin composition, and a molded product using the cured product.
- Plant-derived resins include lignin derivatives obtained from pulp by-product lignin, lignin derivatives obtained from subcritical water treatment from biomass, so-called organosolv type lignin derivatives obtained by digesting biomass using organic solvents, bio Lignin produced as a by-product from the ethanol production process has attracted attention.
- the obtained lignin derivative can be cured by adding and heating hexamethylenetetramine, which is known as a curing agent for novolak-type phenolic resins, to obtain a cured lignin resin (see Patent Document 1).
- a cured product obtained by adding hexamethylenetetramine to a lignin derivative alone has a problem that its bending strength is lower than that of a molded product of a novolac type phenol resin.
- An object of the present invention is to provide a method capable of obtaining a lignin resin composition having a higher bending strength than a 100% novolak phenol resin molded product.
- the lignin resin composition characterized by the following.
- a molded product comprising the cured product according to (7).
- the present invention by setting the weight average molecular weight and content of the lignin derivative and novolak-type phenol resin contained in the lignin resin composition within a predetermined range, a cured product using the lignin resin composition, and The bending strength of a molded product using such a cured product can be improved.
- the lignin resin composition of the present invention contains a lignin derivative and a novolac type phenol resin.
- a relatively low molecular weight lignin derived from a relatively high molecular weight lignin contained in biomass is referred to as a “lignin derivative”.
- the lignin derivative used for this invention will not be specifically limited if it is a lignin derivative whose weight average molecular weight is 500-4000.
- a lignin derivative obtained by decomposing biomass and extracting with a solvent as necessary, or a so-called organosolv type lignin derivative obtained by digesting biomass with an organic solvent is preferable.
- a lignin derivative can be obtained by the method described in US Patent US2010 / 0305241 A1 or JP2011-042806.
- Such a lignin derivative having a weight average molecular weight has good reactivity (curability) with a novolac-type phenol resin, and the strength of a molded product obtained by molding using such a lignin resin composition is improved.
- the weight average molecular weight of the lignin derivative used in the present invention is preferably 800 or more and 3800 or less, and more preferably 1000 or more and 3500 or less. If the weight average molecular weight of the lignin derivative is within the above range, the reactivity of the lignin derivative to the novolak-type phenol resin can be further improved, and the bending strength of the molded product obtained using the lignin resin composition can be further improved.
- a solvent-soluble lignin derivative can be preferably used.
- the strength of the obtained lignin resin composition is improved.
- the size of the lignin derivative (lignin derivative particles) used is made as small as possible, the composition of the entire lignin resin composition becomes uniform, so that the bending strength of the lignin resin composition can be stabilized. Since the lignin derivative soluble in the solvent melts even when heated, the lignin derivative can be uniformly dispersed in the novolac type phenol resin as micron-sized particles by an operation such as melt mixing.
- the solvent used here is not specifically limited, A polar solvent is preferable and especially the solution containing tetrahydrofuran and acetone can be used conveniently.
- Kraft lignin is a lignin derivative whose molecular structure has been modified after extracting carbohydrates such as cellulose from wood in the pulp and paper industry, for example.
- Lignin sulfonic acid is a polymer electrolyte having a functional group such as a sulfone group, a carboxy group, and a phenolic hydroxyl group, and the molecular weight, production method, and the like are not particularly limited.
- Lignophenol can be obtained, for example, by treating lignin in a lignocellulosic material with a phenol derivative.
- Phenolized lignin is a lignin in a state where a phenol derivative is chemically bonded to a molecular chain in the lignin and stabilized when the lignin and cellulose are separated by acid treatment of the woody material.
- a lignin derivative used for this invention a commercially available lignin derivative can also be used as a lignin derivative used for this invention.
- the novolac type phenol resin used in the present invention is not particularly limited as long as it has a weight average molecular weight of 1000 or more and 3000 or less.
- the weight average molecular weight is a polystyrene equivalent value.
- the weight average molecular weight of the novolac type phenol resin exceeds 3000, the mixing property between the novolac type phenol resin and the lignin derivative is deteriorated. Therefore, a molded product obtained using such a novolak type phenol resin is not preferable because it does not have high strength because it is cracked starting from the poor mixing and dispersion during the bending test. Moreover, when a weight average molecular weight is less than 1000, when mixing a novolak-type phenol resin and a lignin derivative, shearing force is not easily applied to these mixtures.
- the weight average molecular weight of the novolac type phenol resin is preferably 1200 or more and 2500 or less, and more preferably 1400 or more and 2000 or less. If the weight average molecular weight of the novolak-type phenol resin is within the above range, the mixing property of the novolak-type phenol resin and the lignin derivative and the dispersibility of the lignin derivative in the novolak-type phenol resin are improved, and the lignin resin composition is improved. The bending strength of the molded product obtained by use can be further improved.
- the weight average molecular weight can be measured by gel permeation chromatography (GPC), and a value converted to standard polystyrene can be used.
- the softening temperature of a novolak-type phenol resin is 60 degreeC or more and 95 degrees C or less. If the softening temperature of the novolac type phenol resin is within the above range, the novolac type phenol resin and the lignin derivative can be mixed (melt-mixed) at a relatively low temperature (about 60 to 250 ° C.). In addition, since the novolac-type phenol resin and the lignin derivative can be mixed at a relatively low temperature, it is possible to suppress the viscosity of these mixtures from becoming too low during mixing and to impart sufficient shearing force to the mixture. it can.
- the lignin derivative can be more uniformly dispersed in the novolac type phenol resin.
- the method of measuring a softening point can be measured based on JISK2207 using the ring-and-ball type softening point tester by a Meitec company.
- the content of the lignin derivative is not more than the content of the novolac type phenol resin. More specifically, the weight ratio of the lignin derivative to the novolac type phenol resin is preferably 5:95 to 50:50, more preferably 5:95 to 40:60, and still more preferably 10:90 to 30:70.
- the weight ratio of the novolak type phenolic resin is less than 50%, depending on the value of the weight average molecular weight of the novolak type phenolic resin, the number of breaks in the bending test of the resulting molded product may increase and the bending strength may be lowered.
- the weight ratio of the novolak type phenol resin exceeds 95%, depending on the value of the weight average molecular weight of the novolak type phenol resin, the rigid function of the lignin derivative is fully exhibited due to the high ratio of the novolak type phenol resin. It may not be possible. In this case, there is a possibility that the bending strength is the same as that of a molded product made of a novolac type phenolic resin, that is, a molded product made of a resin composition in which the weight ratio of the novolac type phenolic resin is 100%.
- the lignin derivative and the novolak type It is preferable to melt and mix the mixture with the phenol resin in advance. By previously melt-mixing these mixtures, the lignin derivative can be more uniformly dispersed in the novolac type phenol resin.
- the temperature of the hot plate is preferably 60 ° C. or higher which is higher than the softening temperature of the novolak type phenol resin.
- the softening temperature of the novolak type phenolic resin can be measured in accordance with JIS K2207 using a ring and ball automatic softening point tester manufactured by Meitec as described above.
- the hot platen temperature is less than 60 ° C., the novolac type phenol resin is not melted and melt mixing is not preferable. If the hot platen temperature exceeds 250 ° C., the viscosity of the novolac type phenol resin becomes too low, and the dispersion of the lignin derivative into the novolac type phenol resin becomes worse, which is also not preferable.
- a curing agent may be added to the lignin resin composition.
- the curing agent it is preferable to use hexamethylenetetramine because it is easily available and highly versatile.
- a lignin resin composition can be obtained as a cured product by adding a curing agent.
- a molding material can be obtained by adding an inorganic filler such as silica or chopped glass, a coupling agent of inorganic filler, a pigment, a thickener and the like to the lignin resin composition described above and kneading with heating. Furthermore, the moldability of a lignin resin composition can be improved by further adding an epoxy resin to the lignin resin composition. Moreover, you may use raw materials other than an epoxy resin. Further, the obtained molded product may be post-cured at a temperature equal to or higher than the molding temperature.
- the lignin resin composition of the present invention is characterized by containing the lignin derivative and a novolac-type phenol resin, but may contain the curing agent, crosslinking agent, and the like in addition to these.
- the manufacturing method of this lignin resin composition includes the process of knead
- the order of kneading is not particularly limited in the case where a filler, a crosslinking agent, an anti-aging agent, and other additives are included.
- examples of the kneader include a Banbury mixer, a kneader, and rolls.
- an organic solvent may be used as necessary.
- the organic solvent is not particularly limited.
- the solid content concentration in the lignin resin composition is not particularly limited, but is, for example, about 60 to 98% by mass, and preferably about 70 to 95% by mass.
- modified novolak resin and lignin In order to mix the modified novolak resin and lignin, they may be kneaded as described above. However, the lignin may be charged into a reactor after reaction with the modified novolak resin and melt mixed. Further, when lignin is obtained by decomposing from biomass, a modified novolak resin may be introduced into the reactor after decomposition and melt-mixed.
- a lignin resin and a modified novolac can be mixed with a mixer such as a hot plate, a mixer, or a roll to obtain a mixed resin.
- the molding material obtained by using the lignin resin composition is applied to uses such as semiconductor parts, aircraft parts, automobile parts, industrial machine parts, electronic parts, electrical parts, mechanical parts, rubber products and the like.
- the molding method is not particularly limited, and the molding material of the present invention can be formed into a molded product using a known molding method such as an injection molding method, a compression molding method, an extrusion molding method, a cast molding method, or the like.
- the form of the molded product thus obtained may be any form, for example, an intermediate molded product before the molding material is made into a final molded product or a final molded product. .
- the lignin derivative (I) was prepared as follows. 4000 g of water and 700 g of cedar sawdust were placed in an autoclave and subjected to subcritical water treatment at 230 ° C. for 1 hour. Then, acetone was immersed in the solid substance obtained by filtering a processed material, and also filtered. By evaporating the acetone solution after filtration, 100 g of lignin derivative (I) was obtained. The weight average molecular weight of the obtained lignin derivative was 810 in terms of polystyrene. Next, a novolac type phenol resin (I) was prepared as follows.
- novolac-type phenol resin (I) 100 parts by mass of phenol, 45 parts by mass of paraformaldehyde and 1 part by mass of oxalic acid were added to a three-necked flask. These mixtures were reacted at 80 ° C. for 8 hours to obtain a novolac-type phenol resin (I).
- the composition of the obtained novolac type phenol resin (I) was 91% by mass of the phenol resin and 9% by mass of water.
- the novolak type phenol resin (I) had a weight average molecular weight of 1430 in terms of polystyrene and a softening temperature of 87 ° C.
- a resin composition (lignin resin composition) was obtained by kneading in a lab plast mill under conditions of kneading temperature: 90 ° C. and rotation speed: 50 rpm.
- the obtained resin composition was compression molded under the conditions of a molding temperature of 175 ° C. and a molding time of 3 min to obtain a test piece for bending strength, which is a resin molded body having a width of 10 mm, a length of 100 mm, and a height of 4 mm. .
- Example 2 100 parts by weight of a novolak type phenolic resin (I) and 11 parts by weight of HP-lignin (weight average molecular weight of 3300 in terms of polystyrene, hereinafter simply referred to as “lignin derivative (II)”) manufactured by Lignol as a lignin derivative Melting and mixing were performed for 10 minutes using a hot platen having a temperature of 200 ° C. The obtained mixture was cooled and then pulverized to obtain a resin component. Thereafter, in the same manner as in Example 1, a resin composition and a resin molded body were obtained, and a bending strength test was performed.
- lignin derivative (II) weight average molecular weight of 3300 in terms of polystyrene
- Example 3 100 parts by mass of novolac-type phenol resin (I) and 33 parts by mass of lignin derivative (II) were melt-mixed for 10 minutes using a hot plate at a temperature of 200 ° C. The obtained mixture was cooled and then pulverized to obtain a resin component. Thereafter, in the same manner as in Example 1, a resin composition and a resin molded body were obtained, and a bending strength test was performed.
- Example 4 100 parts by mass of novolac-type phenol resin (I) and 66 parts by mass of lignin derivative (II) were melt-mixed for 10 minutes using a hot plate at a temperature of 200 ° C. The obtained mixture was cooled and then pulverized to obtain a resin component. Thereafter, in the same manner as in Example 1, a resin composition and a resin molded body were obtained, and a bending strength test was performed.
- Example 5 100 parts by mass of phenol, 45 parts by mass of paraformaldehyde and 1 part by mass of oxalic acid were added to a three-necked flask. These mixtures were reacted at 80 ° C. for 7 hours and 30 minutes to obtain a novolac-type phenol resin (II).
- the composition of the obtained novolac type phenol resin (II) was 90% by mass of the phenol resin and 10% by mass of water.
- the novolak type phenol resin (II) had a weight average molecular weight of 1360 in terms of polystyrene and a softening temperature of 86 ° C.
- Example 6 100 parts by mass of phenol, 45 parts by mass of paraformaldehyde and 1 part by mass of oxalic acid were added to a three-necked flask. These mixtures were reacted at 80 ° C. for 7 hours to obtain a novolac-type phenol resin (III).
- the composition of the obtained novolac type phenol resin (III) was 89 mass% phenol resin and 11 mass% water.
- the novolak type phenol resin (III) had a weight average molecular weight of 1120 in terms of polystyrene, and a softening temperature of 84 ° C.
- Example 7 100 parts by mass of phenol, 45 parts by mass of paraformaldehyde and 1 part by mass of oxalic acid were added to a three-necked flask. These mixtures were reacted at 80 ° C. for 9 hours to obtain a novolac-type phenol resin (IV).
- the composition of the obtained novolak type phenol resin (IV) was 91 mass% phenol resin and 9 mass% water.
- the novolac type phenol resin (IV) had a weight average molecular weight of 2480 in terms of polystyrene and a softening temperature of 84 ° C.
- Example 8 100 parts by mass of phenol, 45 parts by mass of paraformaldehyde and 1 part by mass of oxalic acid were added to a three-necked flask. These mixtures were reacted at 80 ° C. for 10 hours to obtain a novolac type phenol resin (V).
- the composition of the obtained novolac type phenol resin (V) was 89 mass% phenol resin and 11 mass% water.
- the novolak type phenol resin (V) had a weight average molecular weight of 2900 in terms of polystyrene and a softening temperature of 99 ° C.
- Example 1 A resin composition and a resin molded body were obtained in the same manner as in Example 1 except that the lignin derivative (I) was not used as a constituent material of the resin component, and a bending strength test was performed.
- the composition of the obtained novolac type phenol resin (VI) was 86% by mass of the phenol resin and 14% by mass of water.
- the novolac type phenol resin (VI) had a weight average molecular weight of 7240 in terms of polystyrene and a softening temperature of 105 ° C.
- Test method 1. Bending strength
- the test pieces of Examples 1 to 8 and Comparative Examples 1 to 3 were measured for bending strength at room temperature (about 23 ⁇ 2 ° C.) and 170 ° C. in accordance with JIS K6911.
- the bending strength was measured using an autograph AG-X manufactured by Shimadzu Corporation and an environmental testing machine TCE-N300.
- the bending strength at 170 ° C. was measured after 10 minutes had passed after each test piece was set in the environmental testing machine TCE-N300 and the displayed temperature of TCE-N300 reached 170 ° C.
- Tables 1 and 2 show the results of bending strength tests performed on the test pieces of Examples and Comparative Examples.
- the bending strength characteristic of each Example and each comparative example was evaluated in accordance with the following criteria.
- C The bending strength at room temperature is 190 MPa or more and less than 200 MPa, and the bending strength at 170 ° C. is 150 MPa or more and less than 160 MPa.
- the bending strength at room temperature is 130 MPa or more and less than 190 MPa, and the bending strength at 170 ° C. is 90 MPa or more and less than 130 MPa.
- E The bending strength at room temperature is less than 130 MPa, and the bending strength at 170 ° C. is less than 90 MPa.
- Examples 1 to 8 all had high bending strength at room temperature and 170 ° C., and Comparative Example 1 in which the resin component was composed only of the novolac type phenol resin (I). It had a higher bending strength than the molded product.
- Comparative Example 2 using a novolak-type phenol resin having a weight average molecular weight of greater than 3000, and Comparative Example 3 in which the content of the lignin derivative is larger than the content of the novolac-type phenol resin, compared to Comparative Example 1, The bending strength at room temperature and 170 ° C. was low.
- the molded product formed using the lignin resin composition obtained by the present invention has a high bending strength at 170 ° C. as well as at room temperature. Therefore, the lignin resin composition can be used as a thermosetting resin instead of a phenol resin, and has industrial applicability.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Phenolic Resins Or Amino Resins (AREA)
Abstract
Description
しかしながら、リグニン誘導体単体にヘキサメチレンテトラミンを添加して、硬化させた硬化物は、ノボラック型フェノール樹脂の成形品に比べ曲げ強度が低い、という問題があった。
(1)重量平均分子量が500以上4000以下のリグニン誘導体と、重量平均分子量が1000以上3000以下のノボラック型フェノール樹脂とを含有し、前記リグニン誘導体の含有量が、前記ノボラック型フェノール樹脂の含有量以下であることを特徴とするリグニン樹脂組成物。
(2)前記リグニン誘導体と前記ノボラック型フェノール樹脂との重量比率が、5:95~50:50である上記(1)に記載のリグニン樹脂組成物。
(3)前記リグニン誘導体が、溶媒可溶性である(1)または(2)に記載のリグニン樹脂組成物。
(4)前記溶媒が、極性溶媒である(1)ないし(3)のいずれかに記載のリグニン樹脂組成物。
(5)前記ノボラック型フェノール樹脂の軟化温度が60℃以上95℃以下である(1)ないし(4)いずれかに記載のリグニン樹脂組成物。
(6)(1)ないし(5)のいずれかに記載のリグニン誘導体とノボラック型フェノール樹脂とを予め60℃以上250℃以下の温度にて溶融混合したリグニン樹脂組成物。
(7)(1)ないし(6)のいずれかに記載のリグニン樹脂組成物に、ヘキサメチレンテトラミンを添加し、硬化することによって得られることを特徴とする硬化物。
(8)(7)に記載の硬化物を有することを特徴とする成形物。
本発明のリグニン樹脂組成物は、リグニン誘導体と、ノボラック型フェノール樹脂とを含む。
なお、本明細書では、バイオマスに含まれる比較的高分子量のリグニンから誘導される相対的に低分子量のリグニンのことを「リグニン誘導体」という。
本発明に用いるリグニン誘導体は、重量平均分子量が500以上4000以下であるリグニン誘導体であれば、特に限定されない。このようなリグニン誘導体としては、バイオマスを分解して、必要に応じて溶媒抽出して得られたリグニン誘導体や、バイオマスを有機溶媒により蒸解して得られる所謂オルガノソルブタイプのリグニン誘導体が好ましい。例として、USパテントUS2010/0305241 A1や特開2011-042806号公報記載の方法によってリグニン誘導体を得ることができる。
このような重量平均分子量のリグニン誘導体は、ノボラック型フェノール樹脂との反応性(硬化性)が良く、かかるリグニン樹脂組成物を用いて成形して得られる成形物の強度が向上する。
なお、本発明に用いるリグニン誘導体の重量平均分子量は、800以上3800以下であるのが好ましく、1000以上3500以下であるのがより好ましい。リグニン誘導体の重量平均分子量が上記範囲内であれば、リグニン誘導体のノボラック型フェノール樹脂に対する反応性がより向上し、リグニン樹脂組成物を用いて得られる成形物の曲げ強度をより向上させることができる。
溶媒可溶なリグニン誘導体がノボラック型フェノール樹脂中に均一に分散することにより、得られるリグニン樹脂組成物の強度が向上する。使用するリグニン誘導体(リグニン誘導体の粒子)の大きさをできるだけ小さくすることにより、リグニン樹脂組成物全体の組成が均一となるため、リグニン樹脂組成物の曲げ強度を安定させることができる。溶媒に可溶なリグニン誘導体は加熱時も溶融するため、溶融混合等の操作でリグニン誘導体をミクロンサイズの粒子として、ノボラック型フェノール樹脂中に均一に分散させることができる。
ここで用いる溶媒は特に限定しないが、極性溶媒が好ましく、特にテトラヒドロフランやアセトンを含む溶液を好適に使用することができる。
クラフトリグニンは、例えば紙パルプ工業で、木材からセルロース等の炭水化物をとりだした後の、分子構造が変性したリグニン誘導体である。リグニンスルホン酸は、スルホン基・カルボキシ基・フェノール性水酸基等の官能基を有する高分子電解質であり、その分子量、製法等に特に制限はない。
リグノフェノールは、例えばリグノセルロース系材料中のリグニンをフェノール誘導体で処理することにより得ることができる。構造に特に制限はない。
フェノール化リグニンは、草木質材料を酸処理してリグニンとセルロースとが分離する際に、フェノール誘導体がリグニン中の分子鎖と化学結合して安定化した状態のリグニンである。
また、本発明に用いるリグニン誘導体としては、市販のリグニン誘導体を用いることもできる。
本発明に用いるノボラック型フェノール樹脂は重量平均分子量1000以上3000以下であれば特に限定しない。ここで重量平均分子量は、ポリスチレン換算値である。
なお、重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により測定し、標準ポリスチレン換算した値を使用することができる。
なお、軟化点を測定する方法は、メイテック社製の環球式軟化点試験機を用いて、JIS K 2207に準拠して測定することができる。
硬化剤を添加することによりリグニン樹脂組成物を硬化物として得ることが出来る。
また、かかるリグニン樹脂組成物の製造方法は、リグニン誘導体とノボラック型フェノール樹脂とを混練する工程を含む。なお、必要に応じて、任意成分を予備混合した後に混練してもよい。また、充填剤、架橋剤、老化防止剤、およびその他の添加剤を含む場合も、その混練の順番は、特に限定されない。
ここに、混練機としては、バンバリーミキサー、ニーダー、ロール類などを挙げることができる。
まず、以下のようにしてリグニン誘導体(I)を準備した。
水4000gと杉のオガ粉700gとをオートクレーブに入れ、230℃で1時間の亜臨界水処理を行った。その後、処理物をろ過して得た固形物にアセトンを浸漬して更にろ過を行った。ろ過後のアセトン溶液をエバポレーションすることにより、リグニン誘導体(I)100gを得た。得られたリグニン誘導体の重量平均分子量はポリスチレン換算値で810であった。
次に、以下のようにしてノボラック型フェノール樹脂(I)を準備した。
三ツ口フラスコにフェノール100質量部とパラホルムアルデヒド45質量部とシュウ酸1質量部とを加えた。これらの混合物を、80℃で8時間反応させ、ノボラック型フェノール樹脂(I)を得た。得られたノボラック型フェノール樹脂(I)の組成は、フェノール樹脂91質量%、水9質量%であった。また、ノボラック型フェノール樹脂(I)は、重量平均分子量がポリスチレン換算値で1430であり、軟化温度が87℃であった。
次に、ノボラック型フェノール樹脂(I)100質量部と、リグニン誘導体(I)5.5質量部とを温度200℃の熱盤を用いて10分間溶融混合を行った。得られた混合物を冷却した後、粉砕して樹脂成分を得た。
得られた樹脂成分100質量部に、ガラス繊維(ガラスミルドファイバー[日東紡績(株)製 基準繊維径10±1.5μm 平均繊維長90μm])50.5質量部とヘキサメチレンテトラミン15質量部とを添加した後、ラボプラストミルにて、混練温度:90℃、回転数:50rpmの条件で混練することにより樹脂組成物(リグニン樹脂組成物)を得た。得られた樹脂組成物を、成形温度:175℃、成形時間:3minの条件で圧縮成形を行い、幅10mm、長さ100mm、高さ4mmの樹脂成形体である曲げ強度用試験片を得た。
ノボラック型フェノール樹脂(I)100質量部と、リグニン誘導体として、リグノール社製HP-Lignin(重量平均分子量はポリスチレン換算値で3300。以下、単に「リグニン誘導体(II)」という)11質量部とを温度200℃の熱盤を用いて10分間溶融混合を行った。得られた混合物を冷却した後、粉砕して樹脂成分を得た。その後、実施例1と同様にして、樹脂組成物と樹脂成形体を得、曲げ強度試験をおこなった。
ノボラック型フェノール樹脂(I)100質量部と、リグニン誘導体(II)33質量部とを温度200℃の熱盤を用いて10分間溶融混合を行った。得られた混合物を冷却した後、粉砕して樹脂成分を得た。その後、実施例1と同様にして、樹脂組成物と樹脂成形体を得、曲げ強度試験をおこなった。
ノボラック型フェノール樹脂(I)100質量部と、リグニン誘導体(II)66質量部とを温度200℃の熱盤を用いて10分間溶融混合を行った。得られた混合物を冷却した後、粉砕して樹脂成分を得た。その後、実施例1と同様にして、樹脂組成物と樹脂成形体を得、曲げ強度試験をおこなった。
三ツ口フラスコにフェノール100質量部とパラホルムアルデヒド45質量部とシュウ酸1質量部とを加えた。これらの混合物を、80℃で7時間30分反応させ、ノボラック型フェノール樹脂(II)を得た。得られたノボラック型フェノール樹脂(II)の組成は、フェノール樹脂90質量%、水10質量%であった。また、ノボラック型フェノール樹脂(II)は、重量平均分子量がポリスチレン換算値で1360であり、軟化温度が86℃であった。
次に、ノボラック型フェノール樹脂(II)100質量部と、リグニン誘導体(II)33質量部とを温度200℃の熱盤を用いて10分間溶融混合を行った。得られた混合物を冷却した後、粉砕して樹脂成分を得た。その後、実施例1と同様にして、樹脂組成物と樹脂成形体を得、曲げ強度試験をおこなった。
三ツ口フラスコにフェノール100質量部とパラホルムアルデヒド45質量部とシュウ酸1質量部とを加えた。これらの混合物を、80℃で7時間反応させ、ノボラック型フェノール樹脂(III)を得た。得られたノボラック型フェノール樹脂(III)の組成は、フェノール樹脂89質量%、水11質量%であった。また、ノボラック型フェノール樹脂(III)は、重量平均分子量がポリスチレン換算値で1120であり、軟化温度が84℃であった。
次に、ノボラック型フェノール樹脂(III)100質量部と、リグニン誘導体(II)33質量部とを温度200℃の熱盤を用いて10分間溶融混合を行った。得られた混合物を冷却した後、粉砕して樹脂成分を得た。その後、実施例1と同様にして、樹脂組成物と樹脂成形体を得、曲げ強度試験をおこなった。
三ツ口フラスコにフェノール100質量部とパラホルムアルデヒド45質量部とシュウ酸1質量部とを加えた。これらの混合物を、80℃で9時間反応させ、ノボラック型フェノール樹脂(IV)を得た。得られたノボラック型フェノール樹脂(IV)の組成は、フェノール樹脂91質量%、水9質量%であった。また、ノボラック型フェノール樹脂(IV)は、重量平均分子量がポリスチレン換算値で2480であり、軟化温度が84℃であった。
次に、ノボラック型フェノール樹脂(IV)100質量部と、リグニン誘導体(II)33質量部とを温度200℃の熱盤を用いて10分間溶融混合を行った。得られた混合物を冷却した後、粉砕して樹脂成分を得た。その後、実施例1と同様にして、樹脂組成物と樹脂成形体を得、曲げ強度試験をおこなった。
三ツ口フラスコにフェノール100質量部とパラホルムアルデヒド45質量部とシュウ酸1質量部とを加えた。これらの混合物を、80℃で10時間反応させ、ノボラック型フェノール樹脂(V)を得た。得られたノボラック型フェノール樹脂(V)の組成は、フェノール樹脂89質量%、水11質量%であった。また、ノボラック型フェノール樹脂(V)は、重量平均分子量がポリスチレン換算値で2900であり、軟化温度が99℃であった。
次に、ノボラック型フェノール樹脂(V)100質量部と、リグニン誘導体(II)100質量部とを温度200℃の熱盤を用いて10分間溶融混合を行った。得られた混合物を冷却した後、粉砕して樹脂成分を得た。その後、実施例1と同様にして、樹脂組成物と樹脂成形体を得、曲げ強度試験をおこなった。
樹脂成分の構成材料として、リグニン誘導体(I)を用いないこと以外は実施例1と同様にして樹脂組成物と樹脂成形体を得、曲げ強度試験をおこなった。
三ツ口フラスコにフェノール100質量部とパラホルムアルデヒド45質量部とシュウ酸1質量部とを加えた。これらの混合物を、80℃で12時間反応させ、ノボラック型フェノール樹脂(VI)を得た。得られたノボラック型フェノール樹脂(VI)の組成は、フェノール樹脂86質量%、水14質量%であった。またノボラック型フェノール樹脂(VI)は、重量平均分子量がポリスチレン換算値で7240であり、軟化温度が105℃であった。
次に、ノボラック型フェノール樹脂(VI)100質量部と、リグニン誘導体(II)33質量部とを温度200℃の熱盤を用いて10分間溶融混合を行った。得られた混合物を冷却した後、粉砕して樹脂成分を得た。その後、実施例1と同様にして、樹脂組成物と樹脂成形体を得、曲げ強度試験をおこなった。
ノボラック型フェノール樹脂(I)100質量部と、リグニン誘導体(II)150質量部とを温度200℃の熱盤を用いて10分間溶融混合を行った。得られた混合物を冷却した後、粉砕して樹脂成分を得た。その後、実施例1と同様にして、樹脂組成物と樹脂成形体を得、曲げ強度試験をおこなった。
1.曲げ強度
実施例1~8および比較例1~3の試験片に対し、JIS K6911に準拠して室温(23±2℃程度)および170℃における曲げ強度の測定を行った。曲げ強度の測定は、島津製作所社製オートグラフAG-Xおよび環境試験機TCE-N300を用いて行った。なお、170℃における曲げ強度は、各試験片を環境試験機TCE-N300にセットし、TCE-N300の表示温度が170℃に達してから10分経過後に測定を開始した。
実施例及び比較例の試験片に対して行った曲げ強度の試験結果を表1、表2に示す。また、曲げ強度の試験結果に基づいて、各実施例および各比較例の曲げ強度特性を以下の基準にしたがって評価した。
A:室温における曲げ強度が218MPa以上であり、かつ、170℃における曲げ強度が182MPa以上。
B:室温における曲げ強度が200MPa以上218MPa未満であり、かつ、170℃における曲げ強度が160MPa以上182MPa未満。
C:室温における曲げ強度が190MPa以上200MPa未満であり、かつ、170℃における曲げ強度が150MPa以上160MPa未満。
D:室温における曲げ強度が130MPa以上190MPa未満であり、かつ、170℃における曲げ強度が90MPa以上130MPa未満。
E:室温における曲げ強度が130MPa未満であり、かつ、170℃における曲げ強度が90MPa未満。
Claims (8)
- 重量平均分子量が500以上4000以下のリグニン誘導体と、
重量平均分子量が1000以上3000以下のノボラック型フェノール樹脂とを含有し、
前記リグニン誘導体の含有量が、前記ノボラック型フェノール樹脂の含有量以下であることを特徴とするリグニン樹脂組成物。 - 前記リグニン誘導体と前記ノボラック型フェノール樹脂との重量比率が、5:95~50:50である請求項1に記載のリグニン樹脂組成物。
- 前記リグニン誘導体が、溶媒可溶性である請求項1または2に記載のリグニン樹脂組成物。
- 前記溶媒が、極性溶媒である請求項1ないし3のいずれか1項に記載のリグニン樹脂組成物。
- 前記ノボラック型フェノール樹脂の軟化温度が60℃以上95℃以下である請求項1ないし4のいずれか1項に記載のリグニン樹脂組成物。
- 前記リグニン誘導体と前記ノボラック型フェノール樹脂とを予め60℃以上250℃以下の温度にて溶融混合した請求項1ないし5のいずれか1項に記載のリグニン樹脂組成物。
- 請求項1ないし6のいずれか1項に記載のリグニン樹脂組成物に、ヘキサメチレンテトラミンを添加し硬化することによって得られることを特徴とする硬化物。
- 請求項7に記載の硬化物を有することを特徴とする成形物。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/524,349 US10059793B2 (en) | 2014-11-20 | 2015-11-18 | Lignin resin composition, cured product, and molded product |
EP15861710.0A EP3222665A4 (en) | 2014-11-20 | 2015-11-18 | Lignin resin composition, cured object, and molded object |
JP2016560277A JP6645440B2 (ja) | 2014-11-20 | 2015-11-18 | リグニン樹脂組成物、硬化物および成形物 |
CN201580062976.4A CN107001766B (zh) | 2014-11-20 | 2015-11-18 | 木质素树脂组合物、固化物和成型物 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014235142 | 2014-11-20 | ||
JP2014-235142 | 2014-11-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016080469A1 true WO2016080469A1 (ja) | 2016-05-26 |
Family
ID=56014002
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/082467 WO2016080469A1 (ja) | 2014-11-20 | 2015-11-18 | リグニン樹脂組成物、硬化物および成形物 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10059793B2 (ja) |
EP (1) | EP3222665A4 (ja) |
JP (1) | JP6645440B2 (ja) |
CN (1) | CN107001766B (ja) |
WO (1) | WO2016080469A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018047772A1 (ja) * | 2016-09-09 | 2018-03-15 | 出光興産株式会社 | リグニン含有樹脂組成物の製造方法及びリグニン含有樹脂成形品 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2935411B1 (en) * | 2012-12-18 | 2019-04-24 | Akzo Nobel Coatings International B.V. | Lignin based coating compositions |
CN113233868A (zh) * | 2021-05-31 | 2021-08-10 | 福建省德化新凯丰陶瓷有限公司 | 一种陶瓷摆件的抗菌坯体增强剂的制备工艺 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6256193B2 (ja) * | 1977-10-18 | 1987-11-24 | Metoseriiton Teorisusu Oy | |
JP2008156601A (ja) * | 2006-12-01 | 2008-07-10 | Toyota Auto Body Co Ltd | リグニン変性ノボラック型フェノール系樹脂、その製造方法及びフェノール系樹脂成形材料 |
JP2012082255A (ja) * | 2010-10-07 | 2012-04-26 | Harima Chemicals Inc | リグニン添加熱硬化性樹脂 |
JP2013053205A (ja) * | 2011-09-02 | 2013-03-21 | Harima Chemicals Inc | 変性リグニンおよびそれを含有するフェノール樹脂成形材料 |
JP2013173882A (ja) * | 2012-02-27 | 2013-09-05 | Akebono Brake Ind Co Ltd | 摩擦材 |
JP2013227470A (ja) * | 2012-03-30 | 2013-11-07 | Sumitomo Bakelite Co Ltd | リグニン樹脂組成物およびリグニン樹脂成形材料 |
JP2015048360A (ja) * | 2013-08-30 | 2015-03-16 | 住友ベークライト株式会社 | リグニン樹脂組成物、樹脂成形体および成形材料 |
JP2015174894A (ja) * | 2014-03-14 | 2015-10-05 | 住友ベークライト株式会社 | 熱硬化性樹脂組成物およびその製造方法 |
WO2015178103A1 (ja) * | 2014-05-23 | 2015-11-26 | ハリマ化成株式会社 | 樹脂組成物およびその製造方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB0310999D0 (en) | 2003-05-13 | 2003-06-18 | Microgen Energy Ltd | A domestic combined heat and power assembly |
JP5256813B2 (ja) | 2008-03-25 | 2013-08-07 | 住友ベークライト株式会社 | リグニン樹脂組成物及び成形材料 |
JP2014125595A (ja) | 2012-12-27 | 2014-07-07 | Hitachi Chemical Co Ltd | 樹脂組成物及びその成形体 |
JPWO2015046588A1 (ja) | 2013-09-30 | 2017-03-09 | 日立化成株式会社 | 樹脂組成物、成形体及び製造方法 |
-
2015
- 2015-11-18 CN CN201580062976.4A patent/CN107001766B/zh active Active
- 2015-11-18 WO PCT/JP2015/082467 patent/WO2016080469A1/ja active Application Filing
- 2015-11-18 US US15/524,349 patent/US10059793B2/en active Active
- 2015-11-18 EP EP15861710.0A patent/EP3222665A4/en not_active Withdrawn
- 2015-11-18 JP JP2016560277A patent/JP6645440B2/ja active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6256193B2 (ja) * | 1977-10-18 | 1987-11-24 | Metoseriiton Teorisusu Oy | |
JP2008156601A (ja) * | 2006-12-01 | 2008-07-10 | Toyota Auto Body Co Ltd | リグニン変性ノボラック型フェノール系樹脂、その製造方法及びフェノール系樹脂成形材料 |
JP2012082255A (ja) * | 2010-10-07 | 2012-04-26 | Harima Chemicals Inc | リグニン添加熱硬化性樹脂 |
JP2013053205A (ja) * | 2011-09-02 | 2013-03-21 | Harima Chemicals Inc | 変性リグニンおよびそれを含有するフェノール樹脂成形材料 |
JP2013173882A (ja) * | 2012-02-27 | 2013-09-05 | Akebono Brake Ind Co Ltd | 摩擦材 |
JP2013227470A (ja) * | 2012-03-30 | 2013-11-07 | Sumitomo Bakelite Co Ltd | リグニン樹脂組成物およびリグニン樹脂成形材料 |
JP2015048360A (ja) * | 2013-08-30 | 2015-03-16 | 住友ベークライト株式会社 | リグニン樹脂組成物、樹脂成形体および成形材料 |
JP2015174894A (ja) * | 2014-03-14 | 2015-10-05 | 住友ベークライト株式会社 | 熱硬化性樹脂組成物およびその製造方法 |
WO2015178103A1 (ja) * | 2014-05-23 | 2015-11-26 | ハリマ化成株式会社 | 樹脂組成物およびその製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3222665A4 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018047772A1 (ja) * | 2016-09-09 | 2018-03-15 | 出光興産株式会社 | リグニン含有樹脂組成物の製造方法及びリグニン含有樹脂成形品 |
CN109642081A (zh) * | 2016-09-09 | 2019-04-16 | 出光兴产株式会社 | 含木质素的树脂组合物的制造方法和含木质素的树脂成形品 |
US11193022B2 (en) | 2016-09-09 | 2021-12-07 | Idemitsu Kosan Co., Ltd. | Method for producing lignin-containing resin composition and lignin-containing resin molded article |
CN109642081B (zh) * | 2016-09-09 | 2022-04-26 | 出光兴产株式会社 | 含木质素的树脂组合物的制造方法和含木质素的树脂成形品 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2016080469A1 (ja) | 2017-08-31 |
EP3222665A4 (en) | 2018-05-30 |
CN107001766A (zh) | 2017-08-01 |
US10059793B2 (en) | 2018-08-28 |
JP6645440B2 (ja) | 2020-02-14 |
EP3222665A1 (en) | 2017-09-27 |
CN107001766B (zh) | 2019-07-02 |
US20170342188A1 (en) | 2017-11-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Huang et al. | Characterization of kraft lignin fractions obtained by sequential ultrafiltration and their potential application as a biobased component in blends with polyethylene | |
JP6733546B2 (ja) | ゴム組成物およびリグニン誘導体の製造方法 | |
JP6555531B2 (ja) | 樹脂組成物、およびゴム組成物 | |
Feldman | Lignin and its polyblends—a review | |
Sun et al. | Carboxylated lignin as an effective cohardener for enhancing strength and toughness of epoxy | |
CA2646535A1 (en) | Methods for producing modified aromatic renewable materials and compositions thereof | |
JP2009227890A (ja) | リグニン樹脂組成物及び成形材料 | |
Shibata et al. | Thermal and mechanical properties of sorbitol‐based epoxy resin cured with quercetin and the biocomposites with wood flour | |
JP6645440B2 (ja) | リグニン樹脂組成物、硬化物および成形物 | |
WO2019031609A1 (ja) | 改質リグニン及び改質ポリフェノールの製造方法、並びに改質リグニンを用いた樹脂組成材料 | |
TW201215643A (en) | Lignin-added thermosetting resin | |
TW201726769A (zh) | 純化木質素之製造方法、純化木質素、樹脂組成物及成形體 | |
WO2015056757A1 (ja) | 樹脂組成物、ゴム組成物、および硬化物 | |
Cardona et al. | Characterization of environmentally sustainable resole phenolic resins synthesized with plant-based bioresources | |
WO2016199923A1 (ja) | 熱可塑性樹脂組成物及び熱可塑性樹脂組成物の製造方法 | |
TW201546162A (zh) | 樹脂組成物及其製造方法 | |
Tejado et al. | Lignins for phenol replacement in novolac‐type phenolic formulations. II. Flexural and compressive mechanical properties | |
EP3922664A1 (en) | Stable lignin-phenol blend for use in lignin modified phenol-formaldehyde resins | |
JP5920069B2 (ja) | リグニン樹脂組成物およびリグニン樹脂成形材料 | |
JP2014065808A (ja) | 樹脂組成物および樹脂成形体 | |
JP2014136741A (ja) | 樹脂組成物および樹脂成形体 | |
JP2015048361A (ja) | リグニン樹脂組成物、樹脂成形体、プリプレグおよび成形材料 | |
KR101610236B1 (ko) | 페놀수지 성형재료 | |
JP2015224288A (ja) | 硬化性リグニン樹脂組成物および硬化物、成形物 | |
Liu et al. | A Biobased Vitrimer: Self-Healing, Shape Memory, and Recyclability Induced by Dynamic Covalent Bond Exchange |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15861710 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016560277 Country of ref document: JP Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2015861710 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015861710 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15524349 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |