WO2016080433A1 - 熱交換器用アルミニウム合金クラッド材 - Google Patents

熱交換器用アルミニウム合金クラッド材 Download PDF

Info

Publication number
WO2016080433A1
WO2016080433A1 PCT/JP2015/082374 JP2015082374W WO2016080433A1 WO 2016080433 A1 WO2016080433 A1 WO 2016080433A1 JP 2015082374 W JP2015082374 W JP 2015082374W WO 2016080433 A1 WO2016080433 A1 WO 2016080433A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum alloy
brazing
clad
test
skin
Prior art date
Application number
PCT/JP2015/082374
Other languages
English (en)
French (fr)
Inventor
周佑 大槻
手島 聖英
佑輔 鬼頭
淳 安部井
知浩 小路
尚希 山下
寿和 田中
田中 宏和
Original Assignee
株式会社デンソー
株式会社Uacj
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=56013968&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2016080433(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 株式会社デンソー, 株式会社Uacj filed Critical 株式会社デンソー
Priority to CN201580063187.2A priority Critical patent/CN107075621B/zh
Priority to BR112017010323-0A priority patent/BR112017010323B1/pt
Priority to US15/528,256 priority patent/US10788275B2/en
Priority to EP15860205.2A priority patent/EP3222738B1/en
Publication of WO2016080433A1 publication Critical patent/WO2016080433A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/089Coatings, claddings or bonding layers made from metals or metal alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0233Sheets, foils
    • B23K35/0238Sheets, foils layered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/28Selection of soldering or welding materials proper with the principal constituent melting at less than 950 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/28Selection of soldering or welding materials proper with the principal constituent melting at less than 950 degrees C
    • B23K35/286Al as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/28Selection of soldering or welding materials proper with the principal constituent melting at less than 950 degrees C
    • B23K35/286Al as the principal constituent
    • B23K35/288Al as the principal constituent with Sn or Zn
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • C22C21/04Modified aluminium-silicon alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/10Alloys based on aluminium with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F13/00Inhibiting corrosion of metals by anodic or cathodic protection
    • C23F13/02Inhibiting corrosion of metals by anodic or cathodic protection cathodic; Selection of conditions, parameters or procedures for cathodic protection, e.g. of electrical conditions
    • C23F13/06Constructional parts, or assemblies of cathodic-protection apparatus
    • C23F13/08Electrodes specially adapted for inhibiting corrosion by cathodic protection; Manufacture thereof; Conducting electric current thereto
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F13/00Inhibiting corrosion of metals by anodic or cathodic protection
    • C23F13/02Inhibiting corrosion of metals by anodic or cathodic protection cathodic; Selection of conditions, parameters or procedures for cathodic protection, e.g. of electrical conditions
    • C23F13/06Constructional parts, or assemblies of cathodic-protection apparatus
    • C23F13/08Electrodes specially adapted for inhibiting corrosion by cathodic protection; Manufacture thereof; Conducting electric current thereto
    • C23F13/12Electrodes characterised by the material
    • C23F13/14Material for sacrificial anodes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/084Heat exchange elements made from metals or metal alloys from aluminium or aluminium alloys
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F2201/00Type of materials to be protected by cathodic protection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12736Al-base component
    • Y10T428/12764Next to Al-base component

Definitions

  • the present invention relates to an aluminum alloy clad material for a heat exchanger excellent in brazing jointability and outer surface corrosion resistance suitable for use as a tube material, tank, or header material of an aluminum alloy heat exchanger manufactured by brazing.
  • aluminum alloys having good lightness and thermal conductivity are used for automotive heat exchangers such as evaporators and condensers.
  • These heat exchangers are manufactured by, for example, forming a passage pipe for a refrigerant that is a working fluid by bending a plate material or by laminating plate materials molded by press working, and assembling members such as fin materials to a predetermined structure. And brazing using a fluoride flux in an inert gas atmosphere.
  • heat exchanger materials are also required to be thinner, and it has become a challenge to increase the strength of plate materials for refrigerant passage tubes and to ensure formability, brazing and corrosion resistance with thin materials. ing.
  • the outer surface is exposed to a corrosive environment due to condensed water generated by condensation during use, and in the capacitor, the outer surface is similarly exposed to a corrosive environment by a road splash containing snow melting salt during driving. . If the coolant passage pipe is penetrated early due to corrosion, the refrigerant leaks and does not function as a heat exchanger. Therefore, it is common practice to extend the life of the heat exchanger by applying anticorrosion treatment to the outer surface of the refrigerant passage pipe. It has been broken.
  • a corrosion prevention method for the outer surface (air side) of the refrigerant passage tube conventionally, as a sacrificial anode material, a method in which a plate material clad with an Al—Zn alloy is clad on the outer surface is formed into a flat tubular shape, or formed by pressing and laminated.
  • a method of forming a refrigerant passage tube there is a method of forming a refrigerant passage tube.
  • most heat exchangers have a structure in which fins are joined to the outer surface of the refrigerant passage tube. In this method, no brazing material is present on the outer surface of the refrigerant passage tube.
  • the heat corrosion resistance of the fin material decreases due to the influence of the brazing material remaining on the surface of the fin, and the manufacturing cost of the clad fin material is higher than that of the bare fin. There is a problem of inviting.
  • the self-corrosion resistance of the fin can be improved, and the performance of the heat exchanger can be improved by using the high conductivity material. Furthermore, the cost can be reduced compared to the clad fin material. In this case, however, it is necessary to apply a brazing material to the outer surface of the refrigerant passage tube. It is necessary to use a sheet material that is coated with a material or clad on the outer surface with Zn added to an Al-Si alloy brazing material. In the former case, the cost of the powder brazing material is high.
  • the Al—Zn-based sacrificial anode material clad on the outer surface of the refrigerant passage tube is made to contain a lower concentration of Si than the Si concentration of a general Al—Si-based alloy brazing material.
  • a method has been proposed in which the sacrificial anode effect is obtained by suppressing the flow and leaving a sufficient amount of Zn on the outer surface of the refrigerant passage tube after brazing.
  • the amount of Si to be added is not appropriate, so that a sufficient liquid phase amount for joining the bare fin material cannot be obtained, or since the additive elements other than Si are not appropriate, the self-corrosion resistance is lowered, or Even if the amount of Si added is appropriate and the additive element is appropriate, the solidification structure after brazing caused by melting becomes two phases of primary and eutectic, and the potential of the eutectic is lower than that of the primary. There is a problem that preferential corrosion of the eutectic part occurs, and the primary crystal part that should act as a sacrificial anode material falls off early, resulting in a decrease in corrosion resistance.
  • the primary crystal is coarsened to prevent the primary crystal from dropping even if preferential corrosion of the eutectic occurs, and to form a low potential portion in the primary crystal.
  • Mn Mn
  • the primary crystal is coarsened, the primary crystal is prevented from falling off, and the Al—Mn—Si based compound is formed in the primary crystal.
  • a method has been proposed in which the Mn and Si deficient layers formed around the compound serve as a base portion of the potential to relatively suppress preferential corrosion of the eutectic portion.
  • an Al—Si—Zn-based alloy is clad on the outer surface and Al is coated on the inner surface in order to form a brazed joint for blocking the refrigerant passage side and the atmosphere side, such as a drone cup heat exchanger.
  • a plate material clad with a Si-based alloy by making the amount of Si on the inner surface higher than the amount of Si on the outer surface, the molten solder on the inner surface flows to the joint during brazing, and the outer surface containing Zn
  • JP 2004-225061 A Japanese Patent Laying-Open No. 2005-16937 JP 2005-307251 A JP 2005-314719 A JP 2007-178062 A JP 2010-255012 A JP 2010-255013 A Japanese Patent No. 4698416
  • the present invention solves the above-mentioned conventional problems, and in order to achieve both outer brazing jointability and outer surface corrosion resistance, the outer clad material, the core material, the inner clad material, and the outer clad material and the outer clad material. It was made as a result of repeated testing and examination of the relationship between the brazing performance of the bare fin material to be brazed and the sacrificial anode characteristics of the outer clad material.
  • An object of the present invention is to provide an aluminum alloy clad material for a heat exchanger which is excellent in brazing and outer surface corrosion resistance suitable for use as a tube material, tank or header material of an exchanger.
  • the aluminum alloy clad material for heat exchanger according to claim 1 includes Mn: 0.5 to 1.8%, limits Cu to 0.05% or less, the remaining Al and unavoidable A skin 1 made of an aluminum alloy containing Si: 3 to 10%, Zn: 1 to 10% and the balance Al and unavoidable impurities on one surface of a core material made of an aluminum alloy made of impurities.
  • the other surface of the core material was clad, and the skin material 2 composed of an aluminum alloy containing Si: 3 to 13%, limiting Cu to 0.05% or less, and the balance Al and inevitable impurities was clad.
  • the aluminum alloy clad material for heat exchanger according to claim 2 is characterized in that, in claim 1, the core material further contains Mg: 0.5% or less.
  • the aluminum alloy clad material for heat exchanger according to claim 3 is characterized in that, in claim 1 or 2, the skin material 1 further contains Mn: 0.3 to 1.8%.
  • the aluminum alloy clad material for a heat exchanger according to claim 4 is characterized in that in any one of claims 1 to 3, the skin material 1 further contains Sr: 0.005 to 0.05%.
  • the aluminum alloy clad material for a heat exchanger according to claim 5 is the aluminum alloy clad material for heat exchanger according to any one of claims 1 to 4, wherein the skin material 1 further comprises In: 0.001 to 0.10%, Sn: 0.001 to 0.10. % 1 type or 2 types.
  • the aluminum alloy clad material for heat exchanger according to claim 6 is characterized in that, in any one of claims 1 to 5, the skin material 1 limits Ni to less than 0.05%.
  • the aluminum alloy clad material for a heat exchanger according to claim 7 is characterized in that in any one of claims 1 to 6, the skin material 2 further contains Sr: 0.005 to 0.05%.
  • an aluminum alloy clad material for a heat exchanger excellent in brazing jointability and outer surface corrosion resistance suitable for use as a tube material, a tank, or a header material of an aluminum alloy heat exchanger manufactured by brazing.
  • the three-layer aluminum alloy clad material of the present invention is a material in which a skin material 1 is clad on one surface of a core material 3 and a skin material 2 is clad on the other surface.
  • the first mode for producing a refrigerant passage tube from the above is to form the clad material so that the skin material 1 side is convex and the skin material 2 side is concave, so that the concave sides face each other.
  • a refrigerant passage tube having a plurality of refrigerant passages 4 is obtained.
  • FIG. 2 shows a refrigerant passage pipe having a plurality of refrigerant passages 4, a refrigerant passage pipe having a single refrigerant passage 4 can also be formed.
  • the clad material is molded so that the skin material 1 side is a convex surface and the skin material 2 side is a concave surface, and is combined and brazed so that the concave sides face each other.
  • a refrigerant passage pipe is formed.
  • the skin 1 side comes into contact with air
  • the skin 2 side comes into contact with the refrigerant, thereby exchanging heat between the refrigerant and the air.
  • corrugated bare fins 5 can be disposed in the refrigerant passage 4.
  • the overlapping end portion formed by combining the concave sides to face each other, for example, the end portion of the lower clad material is bent into a U shape.
  • the end portion of the refrigerant passage pipe is formed by being fitted and caulked so as to be wound around the horizontal end portion of the upper clad material, and brazed.
  • Mn functions to improve the strength of the core material.
  • the preferable content of Mn is in the range of 0.5 to 1.8%. If it is less than 0.5%, the effect of improving the strength is not sufficient, and if it exceeds 1.8%, the rolling processability is lowered. A more preferable range of Mn content is 1.0 to 1.7%.
  • the amount of Cu in the core material is limited to 0.05% or less.
  • the sacrificial anode material such as an Al—Zn alloy or Al—Si—Zn alloy
  • a large sacrificial anode effect can be obtained after brazing.
  • the Cu content of the core material exceeds 0.05%, the sacrificial anode effect is reduced because the outer clad material becomes potential noble due to diffusion of Cu in the direction of the outer clad material during brazing.
  • a more preferable Cu content range is 0.03% or less.
  • Mg functions to improve the strength of the core material, but Mg diffuses from the core material to the brazing material direction during brazing, reacts with the fluoride flux applied to the surface to form a high melting point compound, and the activity of the flux Lowers brazeability. If the content exceeds 0.5%, the effect becomes significant, so the Mg content is 0.5% or less. A more preferable content range of Mg is 0.3% or less.
  • the core material usually contains about 0.1 to 0.2% Fe as an inevitable impurity.
  • the Fe content may be 0.1% or less in order to further improve the corrosion resistance, and 1.0% or less Fe may be added in order to improve the strength.
  • the effect of the present invention is not impaired.
  • 0.1% or less of Sr can be added. Even if Si of about 0.4% or less is included as an inevitable impurity, the effect of the present invention is not affected.
  • Skin 1 (outer cladding) Si By adding an appropriate amount of Si to the outer surface clad material, a small amount of liquid phase is generated in the outer surface clad material, and it becomes possible to join a bare fin material or an aluminum plate material to the outer surface.
  • a preferable content of Si is in the range of 3 to 10%. If it is less than 3%, a sufficient liquid phase is not generated, and a healthy fillet is not formed at the joint portion with the bare fin material or the aluminum plate material. When the content exceeds 10%, most of the outer surface clad material is melted, and Zn added during the brazing also flows, so that the outer surface clad material does not act as a sacrificial anode material.
  • a more preferable content range of Si is 3.5 to 8.5%.
  • Zn The addition of Zn to the outer clad material functions so that Zn diffuses into the core material during brazing and forms a Zn concentration gradient in the thickness direction of the core material.
  • the outer clad material becomes lower in potential than the core material and acts as a sacrificial anode material, so that the progress of corrosion in the plate thickness direction can be suppressed.
  • Si is contained in the outer clad material, and Si dissolves so as to make the potential noble, thereby canceling the potential lowering effect of Zn.
  • Zn is contained in the liquid phase generated by the inclusion of Si, part of it flows and the amount of remaining Zn decreases.
  • the preferable content of Zn is in the range of 1 to 10%.
  • a more preferable content range of Zn is 2 to 9%.
  • the outer clad material contains Si, a part thereof is melted during brazing and becomes a solidified structure after brazing. For this reason, the outer surface cladding material has two phases of primary crystal and eutectic, and the eutectic part has a lower potential than the primary crystal part, and therefore corrodes preferentially over the primary crystal part. If the eutectic part is corroded, the periphery of the primary crystal part is lost, and the eutectic part falls off in a granular form. When the primary crystal part having the sacrificial anode effect falls off, the sacrificial anode material disappears without exhibiting the effect, so that the core material corrodes early and leads to penetration.
  • Mn can coarsen the primary crystal and suppress the drop of the primary crystal, and forms an Al—Mn—Si compound in the primary crystal and forms around the Al—Mn—Si compound.
  • the deficient layer of Mn and Si becomes a base portion of the potential and functions to suppress the preferential corrosion of the eutectic portion relatively.
  • the preferable content of Mn is in the range of 0.3 to 1.8%.
  • the content is less than 0.3%, the effect is small, and if it exceeds 1.8%, the formation of the Al—Mn—Si compound causes formation of the outer cladding material.
  • the decrease in Si concentration becomes significant, and the amount of liquid phase produced decreases.
  • a more preferable content range of Mn is 0.3 to 1.3%.
  • Sr functions to finely disperse the Si particles in the outer clad material and to easily bond the liquid phase of the molten braze generated during brazing, thereby improving the fluidity of the liquid phase and improving the brazing property. It becomes good.
  • the preferable content of Sr is in the range of 0.005 to 0.05%. If the content is less than 0.005%, the effect is small, and if it exceeds 0.05%, an Al—Si—Sr compound is formed and the effect is reduced. To do.
  • In, Sn Since a potential base effect is obtained by adding a small amount of In and Sn, the potential of the outer clad material is made base by the addition of In and Sn and the sacrificial anode effect can be obtained.
  • the preferred contents of In and Sn are each in the range of 0.001 to 0.10%. If the content is less than 0.001%, the effect is small, and if it exceeds 0.10%, the self-corrosion resistance decreases. A more preferable range of containing In and Sn is 0.01 to 0.04%, respectively.
  • Ni forms an Al—Ni-based compound, and the Al—Ni-based compound acts as a cathode. Therefore, the self-corrosion resistance of the outer surface clad material as the sacrificial anode material is reduced to accelerate the corrosion consumption, leading to early penetration of corrosion. Since this becomes remarkable when the content is 0.05% or more, the Ni content is preferably limited to less than 0.05%.
  • the outer cladding material contains about 0.1 to 0.2% Fe as an inevitable impurity.
  • the Fe content may be 0.1% or less in order to further improve the corrosion resistance, and 1.0% or less Fe may be added in order to improve the strength.
  • V, Mo, and 0.1% or less of Pb, Li, Ca, and Na are contained, the effects of the present invention are not impaired.
  • 0.1% or less of B can be added.
  • Skin 2 (inner clad material) Si When the clad material of the present invention is used as a refrigerant passage tube, it is necessary to combine the molded clad materials face to face as shown in FIGS. 2 to 3, or join with other members to form a refrigerant passage. . For this reason, it is necessary to add Si to the inner cladding material in order to obtain a normal Al—Si alloy brazing material.
  • the preferable content of Si is in the range of 3 to 13%. If it is less than 3%, the amount of the molten solder is insufficient and the action as a brazing material is insufficient, and if it exceeds 13%, primary Si is crystallized and is healthy. Manufacturing becomes difficult.
  • the molten brazing from the outer clad material containing Zn flows into the joint during brazing, leading to preferential corrosion of the joint.
  • the molten solder from the inner cladding material flows to the joint during brazing, and the outer cladding material containing Zn is concentrated in the molten solder joint.
  • the value of (Y ⁇ X) is ⁇ 1.5. It has been found that by setting the content to ⁇ 9%, the preferential corrosion of the joint can be suppressed and the sacrificial anode effect in the vicinity of the joint can be obtained.
  • the value of (YX) is smaller than ⁇ 1.5%, Zn of the brazing material of the outer surface clad material is concentrated at the joint, leading to preferential corrosion.
  • the value of (YX) is ⁇ 1.5 to 0%, Zn of the brazing material of the outer surface cladding material flows into the joint, but the Zn concentration of the joint is lower than the Zn concentration of the outer surface, Preferential corrosion does not occur.
  • the value of (YX) is more preferably 0 to 8.5%, further preferably 0.2 to 7.5%, and most preferably 0.5 to 6. 5%.
  • Sr finely disperses the Si particles of the inner cladding material and functions to facilitate mutual bonding of the liquid phase of the molten braze produced during brazing, thereby improving the fluidity of the liquid phase and good brazing properties. It becomes.
  • the preferable content of Sr is in the range of 0.005 to 0.05%. If the content is less than 0.005%, the effect is small, and if it exceeds 0.05%, an Al—Si—Sr compound is formed and the effect is reduced. To do.
  • Cu When Cu is contained in the inner clad material, as shown in the second or third embodiment shown in FIG. 3, the inner clad material and the outer clad material are close to each other at the inner surface during brazing. There is a possibility that Cu in the brazing material of the inner surface clad material moves to the outer surface due to the flow of the molten brazing material from the clad material and is scattered on the outer surface. Becomes a cathode and promotes surrounding corrosion. When the Cu content exceeds 0.05%, the effect is increased. Therefore, the Cu content is limited to 0.05% or less, more preferably 0.03% or less.
  • the inner clad material usually contains about 0.1 to 0.2% Fe as an inevitable impurity.
  • the Fe content may be 0.1% or less in order to further improve the corrosion resistance, and 1.0% or less Fe may be added in order to improve the strength. Further, even if 0.3% or less of V, Mo, Ni and 0.1% or less of Pb, Li, Ca, Na are contained, the effect of the present invention is not impaired. To prevent oxidation, 0.1% or less of B can be added.
  • the clad material of the present invention is obtained by continuously ingot-making an aluminum alloy for core material, an aluminum alloy for skin material 1 (outer surface clad material), and an aluminum alloy for skin material 2 (inner surface clad material).
  • the aluminum alloy for skin material 1 and the aluminum alloy for skin material 2 are further hot-rolled and then clad on the ingot of the core-material aluminum alloy, hot-clad rolling, if necessary It is manufactured by intermediate annealing, cold rolling, and final annealing.
  • Example 1 The ingot obtained by ingot-making aluminum alloy for outer clad material (skin material 1), aluminum alloy for core material and aluminum alloy for inner clad material (skin material 2) having the composition shown in Table 1 by continuous casting.
  • the aluminum alloy for the skin material 1 and the aluminum alloy for the skin material 2 are further hot-rolled and then combined with the ingots of the aluminum alloy for the core material as shown in Table 1.
  • 1 is 10%
  • the core material is 80%
  • the skin material 2 is overlapped at a thickness ratio of 10%, followed by hot clad rolling, followed by cold rolling (intermediate annealing is performed in some cases), and final annealing is performed.
  • a three-layer clad material (O material) having a thickness of 0.30 mm was manufactured.
  • Test 1 Tensile test
  • the clad material is cut into 100 ⁇ 250 mm, fluoride flux is applied on both sides of the clad material at a coating amount of about 5 g / m 2 and dried, and then the temperature rise rate is an average of 50 ° C./min in a nitrogen gas atmosphere. Brazing heating was performed at 600 ° C. (attainable temperature). Then, in order to measure the tensile strength, it was processed into a JIS Z 2201 No. 5 test piece, a tensile test based on JIS Z 2241 was performed at room temperature, and those having a tensile strength exceeding 70 MPa were good ( ⁇ ), 70 MPa The following were evaluated as bad (x).
  • Test 2 Reverse T-shaped test
  • the joined sample was embedded in resin, and the cross-sectional area of the fillet formed on the joint surface with the vertical plate was measured, and the ratio of brazing flow (cross-sectional area of fillet after brazing / skin material 2 before brazing) The cross-sectional area) was calculated, and this was used as a flow coefficient by an inverted T-shaped test.
  • a flow coefficient value of 0.15 or more was evaluated as good ( ⁇ ) and a value less than 0.15 was evaluated as poor (x) by an inverted T-shaped test.
  • the clad material is cut into 25 ⁇ 100 mm, and a corrugated 3003 alloy (plate thickness 0.07 mm, tempered H14) bare fin material (fin height 10 mm, fin pitch 4 mm) is placed between the two clad materials Then, the clad material 1 is restrained with a jig so that it is positioned on the side to be joined with the fin material, and a fluoride-based flux is spray-applied to the joint at a coating amount of about 5 g / m 2. After drying, brazing heating was performed in a nitrogen gas atmosphere at a rate of temperature increase of 50 ° C./min to 600 ° C. (reached temperature).
  • the sample joined in the mini-core shape after brazing is embedded in the resin, the cross-sectional area of the fillet formed on the joint surface with the fin is measured, and the rate of brazing flow (cross-sectional area of the fillet after brazing / brazing)
  • the cross-sectional area of the previous skin material 1) was calculated and used as the flow coefficient by the mini-core test.
  • a brazing property was evaluated as good ( ⁇ ), and a value less than 0.05 was evaluated as a poor brazing property ( ⁇ ).
  • Test 4 Corrosion test A
  • the clad material is cut into 50 ⁇ 50 mm, and the two clad materials are restrained with a jig so that the skin material 1 and the skin material 2 overlap each other by 10 mm as shown in FIG.
  • brazing heating is performed in a nitrogen gas atmosphere at a rate of temperature increase of 50 ° C./min to 600 ° C. (final temperature). It was.
  • the corrosion-exfoliation of the overlapped joint portion was evaluated as good ( ⁇ ), and the overlapped corrosion portion of the overlap-bonded portion was evaluated as poor corrosion resistance (x).
  • all of the test materials 1 to 44 according to the present invention have a tensile strength after brazing exceeding 70 MPa, and the flow coefficient of the skin material 2 in the reverse T-shaped test is 0.15 or more.
  • the flow coefficient of the skin material 2 in the mini-core test is 0.05 or more, and in the SWAAT test, there is no penetration in the test period of 8 weeks or no peeling in the lap joint. It is easy to wear and corrosion resistant.
  • the test materials 45, 46, 50, 51, 52, and 53 have a large difference (YX) between the Si amount of the skin material 1 and the Si amount of the skin material 2;
  • corrosion test B the liquid phase wax of the skin material 2 flows toward the skin material 1, the surface Zn concentration of the skin material 1 decreases, and sufficient corrosion resistance cannot be obtained, and penetration corrosion occurs in 8 weeks of the SWAAT test. It was. Since the test materials 47, 48, and 49 have a small YX value, Zn was concentrated in the joint in Test 5 (corrosion test B), and an overlapped joint (hereinafter simply referred to as “joint”) was formed in the SWAAT test for 8 weeks. It peeled.
  • the flow coefficient in the mini-core test is less than 0.05, and since the Si concentration in the skin material 2 is low, the reverse T-shaped flow coefficient is 0.15. It was not satisfied.
  • the Si concentration of the skin material 2 was high, primary crystal Si was crystallized and the ear cracks were severe during rolling, and a clad material could not be produced.
  • the test material 56 did not have sufficient corrosion resistance because the Zn concentration of the skin material 1 was low, and penetration corrosion occurred in the SWAAT test for 8 weeks. Moreover, since the Si concentration of the skin material 2 was low, the flow coefficient in the reverse T-shaped test was less than 0.15. Furthermore, since the Sr concentration of the skin material 2 was high, the refinement of Si particles after brazing of the skin material 2 was not recognized. Since the test material 57 has a high Zn concentration in the skin material 1, in Test 4 (corrosion test A), Zn was concentrated in the fillet, and peeling occurred at the joint in the SWAAT test for 8 weeks.
  • the test material 58 had a low flow coefficient because the Mn concentration of the skin material 1 was high, and the flow coefficient in the mini-core test was less than 0.05. Since the test material 59 had a high Cu concentration in the core material, sufficient corrosion resistance was not obtained by Cu diffusion into the skin material 1, and penetration corrosion occurred in the SWAAT test for 8 weeks. In the test material 60, since the In concentration of the skin material 1 was high, the corrosion rate of the skin material 1 was high, and penetration corrosion occurred in the SWAAT test for 8 weeks. Also, the joint was severely corroded and peeled off in 8 weeks of SWAAT.
  • the test material 61 had a tensile strength of 70 MPa or less because the Mn concentration of the core material was low. Since the test material 62 had a high Sn concentration in the skin material 1, the corrosion rate of the skin material 1 was high, and penetration corrosion occurred in the SWAAT test for 8 weeks. Further, the joint was severely corroded and peeled off after 8 weeks in the SWAAT test. Since the test material 63 had a high Ni concentration in the skin material 1, the corrosion rate of the skin material 1 was fast, and penetration corrosion occurred in the SWAAT test for 8 weeks. Since the test material 64 had a high Mn concentration in the core material, the ear cracks were severe during rolling and a clad material could not be produced.
  • the test material 65 could not be brazed because the Mg concentration of the core material was high, and the flow coefficient in the mini-core test was less than 0.05. Moreover, the flow coefficient in the reverse T-shaped test was less than 0.15. Furthermore, the joint could not be brazed and the SWAAT test could not be performed. Since the test material 66 had a high Si concentration in the skin material 1, Zn flowed during brazing and could not function as a sacrificial anode material, and penetration corrosion occurred in the SWAAT test for 8 weeks. Further, since Zn was concentrated in the joint part, the joint part was peeled off in 8 weeks in the SWAAT test in Test 5 (corrosion test B). Since the test material 67 had a high Cu concentration in the skin material 2, Cu flowed out to the surface of the skin material 1 and sufficient corrosion resistance was not obtained, and penetration corrosion occurred in the SWAAT test for 8 weeks.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Laminated Bodies (AREA)
  • Prevention Of Electric Corrosion (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Coating With Molten Metal (AREA)

Abstract

 ろう付けにより製造されるアルミニウム合金製熱交換器のチューブ材やタンク、ヘッダ材として使用するのに適したろう付け接合性、外面耐食性に優れた熱交換器用アルミニウム合金クラッド材を提供するものであり、Mn:0.5~1.8%を含み、Cuを0.05%以下に制限し、残部Alおよび不可避的不純物からなるアルミニウム合金で構成される心材の一方の面に、Si:3~10%、Zn:1~10%を含み、残部Alおよび不可避的不純物からなるアルミニウム合金で構成される皮材1をクラッドし、心材の他方の面に、Si:3~13%を含み、Cuを0.05%以下に制限し、残部Alおよび不可避的不純物からなるアルミニウム合金で構成される皮材2をクラッドした3層クラッド材で、皮材1のSi量をX(%)、皮材2のSi量をY(%)としたとき、(Y-X)の値が-1.5~9%であり、皮材1を空気側にして使用することを特徴とする。

Description

熱交換器用アルミニウム合金クラッド材
 本発明は、ろう付けにより製造されるアルミニウム合金製熱交換器のチューブ材やタンク、ヘッダ材として使用するのに適したろう付け接合性、外面耐食性に優れた熱交換器用アルミニウム合金クラッド材に関する。
 エバポレータ、コンデンサ等の自動車用熱交換器には、一般に軽量性と熱伝導性が良好なアルミニウム合金が使用されている。これらの熱交換器の製造は、例えば板材を曲成したり、プレス加工により成型した板材を積層することにより作動流体である冷媒の通路管を形成し、フィン材等の部材を組み付けて所定構造とし、不活性ガス雰囲気中でフッ化物フラックスを用いてろう付け接合することにより行われている。
 近年の自動車の軽量化に伴って熱交換器用材料も薄肉化が要求されており、冷媒通路管用板材の高強度化や、薄肉材での成形性、ろう付け性および耐食性確保が課題となってきている。
 耐食性に関しては、例えばエバポレータでは、使用中に凝縮により生じる結露水によって外面が腐食環境に曝され、コンデンサでは、走行中に融雪塩を含んだロードスプラッシュ等によって同様に外面が腐食環境に曝される。腐食により冷媒通路管に早期に貫通が生じた場合、冷媒が漏洩し熱交換器としては機能しなくなるため、冷媒通路管の外面には防食処理を施し熱交換器寿命を伸長させることが一般に行われている。
 冷媒通路管の外面(空気側)防食法としては、従来、犠牲陽極材としてAl-Zn系合金を外面にクラッドした板材を偏平管状に成形して用いる方法や、プレス加工により成型し、積層することにより冷媒通路管を形成する方法がある。しかしながら、熱交換器はその多くが冷媒通路管の外面にフィンを接合させる構造であり、この方法では冷媒通路管の外面にろう材が存在しないため、ろう材をクラッドしたフィン材を用いなければならず、この場合、フィンの表面に残留するろう材の影響でフィン材の自己耐食性が低下したり、クラッドフィン材の製造コストがベアフィンに比べて高いために、熱交換器製造コストの上昇を招くという問題がある。
 冷媒通路管の外面に接合するフィンにベア材を用いた場合は、フィンの自己耐食性を向上させることができ、かつ高伝導材を用いることにより熱交換器の性能も向上させることができる。さらにクラッドフィン材に比べてコストも低く抑えることが可能であるが、この場合は冷媒通路管の外面にろう材を付与する必要があるため、前記Al-Zn系合金の表面に粉末状のろう材を塗布したり、またAl-Si系合金ろう材にZnを添加したものを外面にクラッドした板材を使用することになり、前者の場合は粉末ろう材のコストが高いため、熱交換器製造コストの上昇を招き、後者の場合はろう付け中にZnを含有した溶融ろうが流動してしまうため、ろう付け後に犠牲陽極材として必要な量のZnが冷媒通路管外表面に残存せず冷媒通路管の十分な防食効果が得られなかったり、またZnを含有した溶融ろうが接合部に流動することにより接合部の優先腐食を招くなどの難点がある。
 これらの問題を解決するために、冷媒通路管の外面にクラッドされるAl-Zn系犠牲陽極材に一般的なAl-Si系合金ろう材のSi濃度よりも低濃度のSiを含有させ、犠牲陽極材の一部を溶融させることによりベアフィン材を接合し、かつ溶融する液相量を従来のAl-Si系合金ろう材よりも低減させることにより、ろう付け中に犠牲陽極材中のZnが流動することを抑制して、ろう付け後に冷媒通路管外表面に十分な量のZnを残存させ犠牲陽極効果を得る方法が提案されている。
 しかし、この方法においては、添加するSi量が適正でないためベアフィン材を接合するのに十分な液相量が得られなかったり、Si以外の添加元素が適切でないため自己耐食性が低下したり、またSi添加量が適正でかつ添加元素が適切であっても、溶融により生じるろう付け後の凝固組織が初晶と共晶の2相となり、共晶の電位が初晶に比べて卑となるために共晶部の優先腐食が生じ、犠牲陽極材として作用するべき初晶部の早期脱落が生じて耐食性が低下するという問題がある。
 この問題を解決するため、初晶を粗大化し、共晶の優先腐食が生じても初晶が脱落するのを抑制するとともに、初晶中にも電位の卑な部分を形成させることを目的として、外面クラッド材にMnを添加して初晶を粗大化するとともに初晶の脱落を抑制し、かつ初晶中にAl-Mn-Si系化合物を形成させることにより、このAl-Mn-Si系化合物の周囲に形成されるMn、Siの欠乏層が電位の卑な部分となって、相対的に共晶部の優先腐食を抑制する手法が提案されている。
 一方、例えばドロンカップ型熱交換器のように、冷媒通路側と大気側を遮断するためのろう付け接合部を形成するために、外面にAl-Si-Zn系合金をクラッドし、内面にAl-Si系合金をクラッドした板材を使用する場合においては、内面のSi量を外面のSi量より高くすることにより、ろう付け中に内面の溶融ろうが接合部へ流動し、Znを含有した外面の溶融ろうの接合部への濃縮を緩和し、接合部の優先腐食を抑制する方法が提案されている。
 しかしながら、内面のSi濃度が外面のSi量より極端に高い場合には、内面の溶融ろうが接合部から外面側へ流出し、これにより外面側のろう中のZn濃度が希釈され、結果としてろう付け後の接合部近傍のZn濃度が極端に低下し十分な犠牲陽極効果が得られないという問題が生じる。
特開2004-225061号公報 特開2005-16937号公報 特開2005-307251号公報 特開2005-314719号公報 特開2007-178062号公報 特開2010-255012号公報 特開2010-255013号公報 特許第4698416号公報
 本発明は、上記従来の諸問題を解消して、外面ろう付け接合性と外面耐食性を両立させるために、外面クラッド材、心材、内面クラッド材の組成と、外面クラッド材と外面クラッド材にろう付けされるベアフィン材とのろう付け性および外面クラッド材の犠牲陽極特性との関係について試験、検討を重ねた結果としてなされたものであり、その目的は、ろう付けにより製造されるアルミニウム合金製熱交換器のチューブ材やタンク、ヘッダ材として使用するのに適したろう付け接合性、外面耐食性に優れた熱交換器用アルミニウム合金クラッド材を提供することにある。
 上記の目的を達成するための請求項1による熱交換器用アルミニウム合金クラッド材は、Mn:0.5~1.8%を含み、Cuを0.05%以下に制限し、残部Alおよび不可避的不純物からなるアルミニウム合金で構成される心材の一方の面に、Si:3~10%、Zn:1~10%を含み、残部Alおよび不可避的不純物からなるアルミニウム合金で構成される皮材1をクラッドし、心材の他方の面に、Si:3~13%を含み、Cuを0.05%以下に制限し、残部Alおよび不可避的不純物からなるアルミニウム合金で構成される皮材2をクラッドした3層クラッド材で、皮材1のSi量をX(%)、皮材2のSi量をY(%)としたとき、(Y-X)の値が-1.5~9%であり、皮材1を空気側にして使用することを特徴とする。なお、以下の説明において、合金成分はすべて質量%として示す。
 請求項2による熱交換器用アルミニウム合金クラッド材は、請求項1において、前記心材が、さらにMg:0.5%以下を含むことを特徴とする。
 請求項3による熱交換器用アルミニウム合金クラッド材は、請求項1または2において、前記皮材1が、さらにMn:0.3~1.8%を含むことを特徴とする。
 請求項4による熱交換器用アルミニウム合金クラッド材は、請求項1~3のいずれかにおいて、前記皮材1が、さらにSr:0.005~0.05%を含むことを特徴とする。
 請求項5による熱交換器用アルミニウム合金クラッド材は、請求項1~4のいずれかにおいて、前記皮材1が、さらにIn:0.001~0.10%、Sn:0.001~0.10%の1種または2種を含むことを特徴とする。
 請求項6による熱交換器用アルミニウム合金クラッド材は、請求項1~5のいずれかにおいて、前記皮材1が、Niを0.05%未満に制限することを特徴とする。
 請求項7による熱交換器用アルミニウム合金クラッド材は、請求項1~6のいずれかにおいて、前記皮材2が、さらにSr:0.005~0.05%を含むことを特徴とする。
 本発明によれば、ろう付けにより製造されるアルミニウム合金製熱交換器のチューブ材やタンク、ヘッダ材として使用するのに適したろう付け接合性、外面耐食性に優れた熱交換器用アルミニウム合金クラッド材が提供される。
本発明による3層クラッド材の模式図である。 3層クラッド材により成形された冷媒通路管材の模式図である。 3層クラッド材により成形された他の冷媒通路管材の模式図である。 ろう付け試験において用いる逆T字試験片のろう付け前の状態を示す図である。 ろう付け試験において用いる逆T字試験片のろう付け後の状態を示す図である。 腐食試験Aに用いる腐食試験片のろう付け前の状態を示す図である。 腐食試験Bに用いる腐食試験片のろう付け前の状態を示す図である。
 本発明の3層アルミニウム合金クラッド材は、図1に示すように、心材3の一方の面に皮材1をクラッドし、他方の面に皮材2をクラッドした材料で、例えば、このクラッド材から冷媒通路管を作製する第一の形態は、図2に示すように、クラッド材を皮材1側が凸面、皮材2側が凹面となるように成形加工を行い、凹側同士を向かい合わせるように組み合わせ、ろう付けすることにより複数の冷媒通路4を有する冷媒通路管とするものである。冷媒通路管として完成した場合、皮材1側が空気と接触し、皮材2側が冷媒と接触することにより、冷媒と空気との間で熱交換を行う。なお、図2には、複数の冷媒通路4を有する冷媒通路管を示しているが、単一の冷媒通路4を有する冷媒通路管を形成することもできる。
 第二の形態は、図3に示すように、クラッド材を皮材1側が凸面、皮材2側が凹面となるように成形加工を行い、凹側同士を向かい合わせるように組み合わせ、ろう付けすることにより冷媒通路管とするものである。冷媒通路管として完成した場合、皮材1側が空気と接触し、皮材2側が冷媒と接触することにより、冷媒と空気との間で熱交換を行う。図3に示すように、冷媒通路4内にはコルゲート加工したベアフィン5を配置することもできる。
 第三の形態として、図2に示す第一の形態において、凹側同士を向かい合わせるよう組み合わせて形成された重合端部を、例えば下方のクラッド材の端部をU字状に曲成して上方のクラッド材の水平端部に巻き付けるよう嵌着してかしめ、ろう付けすることにより冷媒通路管の端部を形成する形態もある。
 本発明に係るアルミニウム合金クラッド材の合金成分の意義および限定理由について説明する。
(心材)
Mn:
 Mnは心材の強度を向上させるよう機能する。Mnの好ましい含有量は0.5~1.8%の範囲であり、0.5%より少ないと強度向上効果が十分でなく、1.8%を超えると圧延加工性が低下する。さらに好ましいMnの含有範囲は1.0~1.7%である。
Cu:
 心材のCu量は0.05%以下に制限する。Cu量の低減によって、心材にAl-Zn系合金やAl-Si-Zn系合金のような犠牲陽極材をクラッドした場合、ろう付け後に大きな犠牲陽極効果が得られる。心材のCu量が0.05%を超えるとろう付け中に外面クラッド材方向へのCuの拡散により、外面クラッド材が電位的に貴化するため、犠牲陽極効果が小さくなる。さらに好ましいCuの含有範囲は0.03%以下である。
Mg:
 Mgは心材の強度を向上させるよう機能するが、Mgはろう付け時に心材からろう材方向に拡散し、表面に塗布されたフッ化物フラックスと反応して高融点の化合物を形成し、フラックスの活性を低下させろう付け性を低下させる。含有量が0.5%を超えるとその影響が顕著となるので、Mgの含有量は0.5%以下とする。Mgのさらに好ましい含有範囲は0.3%以下である。
 心材には、通常、不可避不純物として0.1~0.2%程度のFeが含まれている。本発明においては、耐食性をさらに向上するためFeの含有量が0.1%以下になるようにしてもよく、強度向上のため1.0%以下のFeを添加してもよい。また、それぞれ0.3%以下のV、Mo、Ni、0.1%以下のPb、Li、Ca、Naが含有されていても本発明の効果が害されることはない。鋳造組織の微細化のために0.3%以下のTi、酸化防止のために0.1%以下のBを添加することもできる。ろう材に拡散してろう材凝固組織の微細化効果を助長するために0.1%以下のSrを添加することもできる。不可避不純物として0.4%以下程度のSiが含まれていても本発明の効果に影響しない。
皮材1(外面クラッド材)
Si:
 外面クラッド材に適量のSiを添加することにより、外面クラッド材中に少量の液相を生じ、外面にベアフィン材あるいはアルミニウム板材を接合することが可能となる。Siの好ましい含有量は3~10%の範囲であり、3%未満では十分な液相が生じず、ベアフィン材あるいはアルミニウム板材との接合部に健全なフィレットが形成されない。含有量が10%を超えると外面クラッド材の大部分が溶融してしまい、ろう付け時に、添加しているZnも流動してしまうため外面クラッド材が犠牲陽極材として作用しなくなる。Siのさらに好ましい含有範囲は3.5~8.5%である。
Zn:
 外面クラッド材へのZn添加は、ろう付け時にZnが心材に拡散し心材の板厚方向にZnの濃度勾配を形成するよう機能する。これにより外面クラッド材が心材より電位的に卑化し犠牲陽極材として作用するため、板厚方向への腐食の進展を抑制することができる。本発明においては、外面クラッド材にSiが含有されており、Siは固溶することにより電位を貴化させるためZnの電位卑化効果を相殺する。さらに、Siの含有により生じた液相にZnが含有されるため、一部が流動し残存Zn量が低下する。Znの好ましい含有量は1~10%の範囲であり、1%未満ではZnの電位卑化効果が十分でなく、10%を超えると、上記の効果は十分に得られるが相手材との接合部に形成されたフィレットの早期腐食を招くようになる。Znのさらに好ましい含有範囲は2~9%である。
Mn:
 本発明においては、外面クラッド材にSiが含まれているため、ろう付け時に一部が溶融しろう付け後は凝固組織となる。このため、外面クラッド材は初晶と共晶の2相となり、共晶部は初晶部に比べて電位が卑であるため初晶部より優先的に腐食することとなる。共晶部が腐食してしまうと初晶部の周囲が無くなってしまうため、粒状のまま脱落してしまう。犠牲陽極効果を有する初晶部が脱落することは、犠牲陽極材が効果を発揮することなく消失してしまうことになるため、心材が早期に腐食して貫通に至る。これを抑制するには初晶を粗大化し、共晶の優先腐食が生じても初晶が脱落するのを困難にするとともに、初晶中にも電位の卑な部分を形成させる必要がある。Mnの添加は、初晶を粗大化して、初晶の脱落を抑制することができ、かつ初晶中にAl-Mn-Si系化合物を形成し、Al-Mn-Si系化合物の周囲に形成されるMn、Siの欠乏層が電位の卑な部分となり、相対的に共晶部の優先腐食を抑制するよう機能する。Mnの好ましい含有量は0.3~1.8%の範囲であり、0.3%未満ではその効果が小さく、1.8%を超えると、Al-Mn-Si化合物形成によって外面クラッド材のSi濃度低下が顕著になり、生じる液相量が低下する。Mnのさらに好ましい含有範囲は0.3~1.3%である。
Sr:
 Srは、外面クラッド材中のSi粒子を微細分散させ、ろう付け時に生成する溶融ろうの液相を相互に結合し易くするよう機能し、これにより液相の流動性が向上しろう付け性が良好となる。Srの好ましい含有量は0.005~0.05%の範囲であり、0.005%未満ではその効果が小さく、0.05%を超えるとAl-Si-Sr系化合物が生成し効果が低下する。
In、Sn:
 In、Snは少量添加で電位卑化効果が得られるため、In、Snの添加により外面クラッド材の電位が心材より卑化し、犠牲陽極効果を得ることができる。In、Snの好ましい含有量はそれぞれ0.001~0.10%の範囲であり、0.001%未満ではその効果が小さく、0.10%を超えると自己耐食性が低下する。In、Snのさらに好ましい含有範囲はそれぞれ0.01~0.04%である。
Ni:
 NiはAl-Ni系化合物を形成し、Al-Ni系化合物はカソードとして作用するため、犠牲陽極材としての外面クラッド材の自己耐食性を低下させ腐食消耗を促進し、早期に腐食貫通に至る。含有量が0.05%以上の場合これが顕著となるので、Niの含有量は0.05%未満に制限するのが好ましい。
 外面クラッド材には、不可避不純物として0.1~0.2%程度のFeが含まれている。本発明においては、耐食性をさらに向上するためFeの含有量が0.1%以下になるようにしてもよく、強度向上のため1.0%以下のFeを添加してもよい。また、それぞれ0.3%以下のV、Mo、0.1%以下のPb、Li、Ca、Naが含有されていても本発明の効果が害されることはない。酸化防止のために0.1%以下のBを添加することもできる。
皮材2(内面クラッド材)
Si:
 本発明のクラッド材を冷媒通路管として使用する場合、成形したクラッド材を図2~3に示すように向かい合わせにして組み合わせるか、あるいは他の部材と接合して冷媒通路を形成する必要がある。このため、内面クラッド材には通常のAl-Si系合金ろう材とするためSiを添加する必要がある。Siの好ましい含有量は3~13%の範囲であり、3%未満では溶融するろう量が不足してろう材としての作用が不十分となり、13%を超えると初晶Siが晶出し健全な製造が困難になる。
 また、成形したクラッド材を向い合せにして組み合わせて冷媒通路を形成する場合、ろう付け中にZnを含有した外面クラッド材からの溶融ろうが接合部に流動することにより接合部の優先腐食を招く。この場合、内面クラッド材のSi量を高くすることにより、ろう付け中に内面クラッド材からの溶融ろうが接合部へ流動し、Znを含有した外面クラッド材の溶融ろうの接合部への濃縮を緩和し、接合部の優先腐食を抑制することができるが、内面クラッド材のSi濃度が極端に高い場合には内面クラッド材からの溶融ろうが接合部から外面側へ流出し、これにより外面側ろう中のZn濃度が希釈され、ろう付け後の接合部近傍のZn濃度が極端に低下し十分な犠牲陽極効果が得られなくなる。
 本発明においては、外面クラッド材のろう材のSi量をX(%)、内面クラッド材のろう材のSi量をY(%)としたとき、(Y-X)の値を-1.5~9%とすることにより、接合部の優先腐食を抑制するとともに、接合部近傍の犠牲陽極効果を得ることができることを見出した。(Y-X)の値が-1.5%より小さい場合には、接合部に外面クラッド材のろう材のZnが濃縮し優先腐食を招く。(Y-X)の値が-1.5~0%の場合には、接合部に外面クラッド材のろう材のZnが流入するが、接合部のZn濃度は外面のZn濃度よりも低く、優先腐食は生じることはない。ただし、Znの流入自体を避けるため、(Y-X)の値は、より好ましくは0~8.5%、さらに好ましくは0.2~7.5%、最も好ましくは0.5~6.5%とする。
Sr:
 Srは、内面クラッド材のSi粒子を微細分散させ、ろう付け時に生成する溶融ろうの液相を相互に結合し易くするよう機能し、これにより液相の流動性が向上しろう付け性が良好となる。Srの好ましい含有量は0.005~0.05%の範囲であり、0.005%未満ではその効果が小さく、0.05%を超えるとAl-Si-Sr系化合物が生成し効果が低下する。
Cu:
 内面クラッド材にCuが含有されている場合、前記図3に示す第二の形態、あるいは第三の形態のように、内面クラッド材と外面クラッド材とが接近する部位では、ろう付け中に内面クラッド材からの溶融ろうの流動により内面クラッド材のろう材中のCuが外表面に移動して外表面に点在する可能性があり、この場合、電位貴化効果のあるCuの含有部がカソードとなり周囲の腐食を促進してしまう。Cuの含有量が0.05%を超えるとその効果が大きくなるから、Cuの含有量は0.05%以下、さらに好ましくは0.03%以下に制限する。
 内面クラッド材には、通常、不可避不純物として0.1~0.2%程度のFeが含まれている。本発明においては、耐食性をさらに向上するためFeの含有量が0.1%以下になるようにしてもよく、強度向上のため1.0%以下のFeを添加してもよい。また、それぞれ0.3%以下のV、Mo、Ni、0.1%以下のPb、Li、Ca、Naが含有されていても本発明の効果が害されることはない。酸化防止のために0.1%以下のBを添加することもできる。
 本発明のクラッド材は、心材用アルミニウム合金、皮材1(外面クラッド材)用アルミニウム合金、皮材2(内面クラッド材)用アルミニウム合金を連続鋳造により造塊し、得られた鋳塊を常法に従って均質化処理し、皮材1用アルミニウム合金、皮材2用アルミニウム合金についてはさらに熱間圧延した後、心材用アルミニウム合金の鋳塊にクラッドして、熱間クラッド圧延、必要に応じて中間焼鈍し、冷間圧延した後、最終焼鈍することにより製造される。
 以下、本発明の実施例を比較例と対比して説明し、その効果を実証する。なお、これらの実施例は本発明の一実施態様を示すものであり、本発明はこれに限定されない。
実施例1
 連続鋳造により、表1に示す組成を有する外面クラッド材(皮材1)用のアルミニウム合金、心材用アルミニウム合金および内面クラッド材(皮材2)用アルミニウム合金を造塊し、得られた鋳塊を常法に従って均質化処理し、皮材1用のアルミニウム合金および皮材2用のアルミニウム合金についてはさらに熱間圧延した後、心材用アルミニウム合金の鋳塊に表1に示す組合せで、皮材1を10%、心材を80%、皮材2を10%の厚さの比率で重ね合わせた後、熱間クラッド圧延、次いで冷間圧延(場合により中間焼鈍を実施)を行い、最終焼鈍を経て、厚さ0.30mmの3層のクラッド材(O材)を製造した。
 得られたクラッド材について、以下の試験1~5を行った。試験結果を表2に示す。
(試験1:引張試験)
 クラッド材を100×250mmに切断し、クラッド材の両面にフッ化物系フラックスを約5g/mの塗布量で塗布して乾燥した後、窒素ガス雰囲気中、平均50℃/minの昇温速度で600℃(到達温度)まで加熱するろう付け加熱を行った。その後、引張り強さを測定するためにJIS Z 2201の5号試験片に加工し、常温でJIS Z 2241に準拠した引張り試験を行い、引張り強さが70MPaを超えるものを良好(○)、70MPa以下のものを不良(×)と評価した。
(試験2:逆T字試験)
 クラッド材を25×50mmに切断し、皮材2を水平板の試験面とし、25×50mmの3003合金板(1.0mm厚さ、O材)を垂直板として、ろう付け性を評価するために逆T字試験を行った(図4~5)。接合されたサンプルは、樹脂に埋め込み、垂直板との接合面に形成されたフィレットの断面積を測定し、ろうが流動した割合(ろう付け後のフィレットの断面積/ろう付け前の皮材2の断面積)を算出し、これを逆T字試験による流動係数とした。逆T字試験による流動係数の値が0.15以上を良好(○)、0.15未満を不良(×)と評価した。
(試験3:ミニコア試験)
 クラッド材を25×100mmに切断し、2枚のクラッド材の間にコルゲート加工された3003合金(板厚0.07mm、調質H14)のベアフィン材(フィン高さ10mm、フィンピッチ4mm)を配置し、クラッド材の皮材1がフィン材と接合される側に位置するようにして治具で拘束し、接合部にフッ化物系のフラックスを約5g/mの塗布量でスプレー塗布して乾燥した後、窒素ガス雰囲気中、平均50℃/minの昇温速度で600℃(到達温度)まで加熱するろう付け加熱を行った。ろう付け後のミニコア状に接合されたサンプルを樹脂に埋め込み、フィンとの接合面に形成されたフィレットの断面積を測定し、ろうが流動した割合(ろう付け後のフィレットの断面積/ろう付け前の皮材1の断面積)を算出し、これをミニコア試験による流動係数とした。ミニコア試験による流動係数の値が0.05以上をろう付け性良好(○)、0.05未満をろう付け性不良(×)と評価した。
(試験4:腐食試験A)
 クラッド材を50×50mmに切断し、2枚のクラッド材を、図6に示すように、皮材1と皮材2とが互いに10mm重なるように治具で拘束し、クラッド材の両面に、フッ化物系フラックスを約5g/mの塗布量で塗布して乾燥した後、窒素ガス雰囲気中、平均50℃/minの昇温速度で600℃(到達温度)まで加熱するろう付け加熱を行った。皮材2側を端面も含めてマスキングし、耐食性を評価するためにSWAAT試験(ASTM-G85-A3)を8週間行い、皮材1からの貫通が無いものを耐食性良好(○)、貫通しているものを耐食性不良(×)と評価した。また、試験期間8週間で、重ね合わせ接合部が腐食剥離しなかったものを耐食性良好(○)とし、重ね合わせ接合部が腐食して剥離したものを耐食性不良(×)と評価した。
(試験5:腐食試験B)
 クラッド材を25×50mmに切断し、これをプレス成形した後、プレス成形したクラッド材の両面にフッ化物系フラックスを約5g/mの塗布量で塗布して乾燥した後、図7に示すように、非プレス成形部の皮材2同士を2mm重ね、プレス成形部の皮材1側に3003合金板(板厚1.00mm、O材)を接触させて治具で拘束し、窒素ガス雰囲気中、平均50℃/minの昇温速度で600℃(到達温度)まで加熱するろう付け加熱を行った。3003合金板と皮材1の接合部、3003合金板、皮材2を端面も含めてマスキング(皮材2と皮材2の接合部、皮材1のみが露出)して、耐食性を評価するためにSWAAT試験(ASTM-G85-A3)を8週間行った。皮材1からの貫通が無いものを耐食性良好(○)、貫通しているものを耐食性不良(×)と評価した。また、SWAAT試験期間8週間で、重ね合わせ接合部が腐食剥離しなかったもので、接合部断面積の10%未満が腐食していたものを優秀(5)、10~20%が腐食していたものを優良(4)、20~30%が腐食していたものを良好(3)、30~50%が腐食していたものを概ね良好(2)、50~100%が腐食していたものをほぼ剥離(1)とし、重ね合わせ接合部が腐食して剥離したものを不良(×)と評価した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、本発明に従う試験材1~44はいずれも、ろう付け後の引張強さは70MPaを超えており、逆T字試験における皮材2の流動係数は0.15以上、ミニコア試験における皮材2の流動係数は0.05以上であり、また、SWAAT試験において、試験期間8週間で貫通が生じているものや、重ね接合部が剥離しているものは無く、優れたろう付け性および耐食性をそなえている。
比較例1
 連続鋳造により、表3に示す組成を有する外面クラッド材(皮材1)用のアルミニウム合金、心材用アルミニウム合金および内面クラッド材(皮材2)用アルミニウム合金を造塊して、実施例1と同様にして厚さ0.30mmの3層のクラッド材(O材)を製造し、得られたクラッド材について、実施例1と同様に試験1~5を行い、ろう付け性および耐食性を評価した。試験結果を表4に示す。表3において、本発明の条件を外れたものには下線を付した。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表4に示すように、試験材45、46、50、51、52、53は、皮材1のSi量と皮材2のSi量の差(Y-X)の値が大きいため、試験5(腐食試験B)において皮材2の液相ろうが皮材1の方へ流動して、皮材1の表面Zn濃度が下がり、十分な耐食性が得られずSWAAT試験8週間で貫通腐食が生じた。試験材47、48、49はY-Xの値が小さいため、試験5(腐食試験B)において接合部にZnが濃縮し、SWAAT試験8週間で重ね合わせ接合部(以下、単に接合部)が剥離した。
 試験材54は、皮材1のSi濃度が低いためミニコア試験での流動係数が0.05未満であり、また、皮材2のSi濃度が低いため逆T字の流動係数が0.15に満たなかった。試験材55は、皮材2のSi濃度が高いため初晶Siが晶出して圧延時に耳割れが激しくクラッド材を製造することができなかった。
 試験材56は、皮材1のZn濃度が低いため十分な耐食性が得られず、SWAAT試験8週間で貫通腐食が生じた。また皮材2のSi濃度が低いため逆T字試験における流動係数が0.15に満たなかった。さらに、皮材2のSr濃度が高いため皮材2のろう付け後のSi粒子の微細化は認められなかった。試験材57は皮材1のZn濃度が高いため、試験4(腐食試験A)において、フィレットにZnが濃縮してSWAAT試験8週間で接合部に剥離が生じた。
 試験材58は、皮材1のMn濃度が高いため流動係数が低く、ミニコア試験での流動係数が0.05に満たなかった。試験材59は、心材のCu濃度が高いため皮材1へのCu拡散により十分な耐食性が得られずSWAAT試験8週間で貫通腐食が生じた。試験材60は、皮材1のIn濃度が高いため皮材1の腐食速度が速く、SWAAT試験8週間で貫通腐食が生じた。また接合部の腐食が激しくSWAAT8週間で剥離した。
 試験材61は、心材のMn濃度が低いため引張り強さが70MPa以下であった。試験材62は、皮材1のSn濃度が高いため皮材1の腐食速度が速く、SWAAT試験8週間で貫通腐食が生じた。また接合部の腐食が激しくSWAAT試験8週間で剥離した。試験材63は、皮材1のNi濃度が高いため皮材1の腐食速度が速く、SWAAT試験8週間で貫通腐食が生じた。試験材64は、心材のMn濃度が高いため圧延時に耳割れが激しくクラッド材を製造することができなかった。
 試験材65は、心材のMg濃度が高いためろう付け接合ができず、ミニコア試験での流動係数が0.05未満であった。また逆T字試験での流動係数が0.15に満たなかった。さらに、接合部がろう付け接合できず、SWAAT試験を行うことができなかった。試験材66は皮材1のSi濃度が高いため、ろう付け時にZnが流動して犠牲陽極材としての機能を果たすことができず、SWAAT試験8週間で貫通腐食が生じた。また、接合部にZnが濃縮したため、試験5(腐食試験B)においてSWAAT試験8週間で接合部が剥離した。試験材67は、皮材2のCu濃度が高いため皮材1表面にCuが流出して十分な耐食性が得られず、SWAAT試験8週間で貫通腐食が生じた。
1 皮材1
2 皮材2
3 心材
4 冷媒通路
5 ベアフィン

Claims (7)

  1. Mn:0.5~1.8%(質量%、以下同じ)を含み、Cuを0.05%以下に制限し、残部Alおよび不可避的不純物からなるアルミニウム合金で構成される心材の一方の面に、Si:3~10%、Zn:1~10%を含み、残部Alおよび不可避的不純物からなるアルミニウム合金で構成される皮材1をクラッドし、心材の他方の面に、Si:3~13%を含み、Cuを0.05%以下に制限し、残部Alおよび不可避的不純物からなるアルミニウム合金で構成される皮材2をクラッドした3層クラッド材で、皮材1のSi量をX(%)、皮材2のSi量をY(%)としたとき、(Y-X)の値が-1.5~9%であり、皮材1を空気側にして使用することを特徴とする熱交換器用アルミニウム合金クラッド材。
  2. 前記心材が、さらにMg:0.5%以下を含むことを特徴とする請求項1記載の熱交換器用アルミニウム合金クラッド材。
  3. 前記皮材1が、さらにMn:0.3~1.8%を含むことを特徴とする請求項1または2記載の熱交換器用アルミニウム合金クラッド材。
  4. 前記皮材1が、さらにSr:0.005~0.05%を含むことを特徴とする請求項1~3のいずれかに記載の熱交換器用アルミニウム合金クラッド材。
  5. 前記皮材1が、さらにIn:0.001~0.10%、Sn:0.001~0.10%の1種または2種を含むことを特徴とする請求項1~4のいずれかに記載の熱交換器用アルミニウム合金クラッド材。
  6. 前記皮材1が、Niを0.05%未満に制限することを特徴とする請求項1~5のいずれかに記載の熱交換器用アルミニウム合金クラッド材。
  7. 前記皮材2が、さらにSr:0.005~0.05%を含むことを特徴とする請求項1~6のいずれかに記載の熱交換器用アルミニウム合金クラッド材。
PCT/JP2015/082374 2014-11-21 2015-11-18 熱交換器用アルミニウム合金クラッド材 WO2016080433A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201580063187.2A CN107075621B (zh) 2014-11-21 2015-11-18 换热器用铝合金包层材料
BR112017010323-0A BR112017010323B1 (pt) 2014-11-21 2015-11-18 material revestido de liga de alumínio
US15/528,256 US10788275B2 (en) 2014-11-21 2015-11-18 Aluminum alloy cladding material for heat exchanger
EP15860205.2A EP3222738B1 (en) 2014-11-21 2015-11-18 Aluminum alloy cladding material for heat exchanger

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-236439 2014-11-21
JP2014236439A JP6483412B2 (ja) 2014-11-21 2014-11-21 熱交換器用アルミニウム合金クラッド材

Publications (1)

Publication Number Publication Date
WO2016080433A1 true WO2016080433A1 (ja) 2016-05-26

Family

ID=56013968

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/082374 WO2016080433A1 (ja) 2014-11-21 2015-11-18 熱交換器用アルミニウム合金クラッド材

Country Status (6)

Country Link
US (1) US10788275B2 (ja)
EP (1) EP3222738B1 (ja)
JP (1) JP6483412B2 (ja)
CN (1) CN107075621B (ja)
BR (1) BR112017010323B1 (ja)
WO (1) WO2016080433A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017007019A1 (ja) * 2015-07-08 2017-01-12 株式会社Uacj アルミニウム合金クラッド材及びその製造方法、ならびに、当該アルミニウム合金クラッド材を用いた熱交換器
JP2017020108A (ja) * 2015-07-08 2017-01-26 株式会社デンソー アルミニウム合金クラッド材及びその製造方法、ならびに、当該アルミニウム合金クラッド材を用いた熱交換器

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6483412B2 (ja) 2014-11-21 2019-03-13 株式会社デンソー 熱交換器用アルミニウム合金クラッド材
JP6474589B2 (ja) * 2014-11-21 2019-02-27 株式会社Uacj 熱交換器用アルミニウム合金クラッド材
WO2016143119A1 (ja) * 2015-03-12 2016-09-15 三菱アルミニウム株式会社 ろう付け後の耐食性に優れるブレージングシート
JP2017029989A (ja) * 2015-07-29 2017-02-09 株式会社Uacj アルミニウム構造体の製造方法
JP2018132247A (ja) * 2017-02-15 2018-08-23 富士電機株式会社 自動販売機
JP7102647B2 (ja) 2018-09-11 2022-07-20 Maアルミニウム株式会社 アルミニウム合金ブレージングシート
CN109595972A (zh) * 2018-11-01 2019-04-09 广西瑞祺丰新材料有限公司 一种铝合金冷却管
CN110779375B (zh) * 2019-11-01 2021-04-30 郑州机械研究所有限公司 一种用于散热器制造的铝合金复合管及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06182581A (ja) * 1992-12-21 1994-07-05 Mitsubishi Alum Co Ltd 熱交換器ろう付用アルミニウム合金ろう材および熱交換器用アルミニウム合金ブレージングシート
JPH09138093A (ja) * 1995-11-16 1997-05-27 Showa Alum Corp ドロンカップ型熱交換器
JP2003027165A (ja) * 2001-07-17 2003-01-29 Kobe Steel Ltd 耐エロージョン性、成形性に優れた熱交換器用アルミニウム合金クラッド材
JP2007178062A (ja) * 2005-12-28 2007-07-12 Denso Corp 熱交換器の製造方法、アルミニウムクラッド板材および熱交換器
JP2010197002A (ja) * 2009-02-26 2010-09-09 Furukawa-Sky Aluminum Corp 板折り曲げ式のアルミニウム製熱交換器用チューブ、アルミニウム製熱交換器及び板折り曲げ式のアルミニウム製熱交換器用チューブの製造方法
JP2013133517A (ja) * 2011-12-27 2013-07-08 Mitsubishi Alum Co Ltd 耐高温3層ブレージングシート

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09302432A (ja) * 1996-05-15 1997-11-25 Furukawa Electric Co Ltd:The 熱交換器のフイン用ブレージングシート
NO20012206D0 (no) * 2001-05-03 2001-05-03 Norsk Hydro As Aluminiumsplate
NO20016355D0 (no) * 2001-12-21 2001-12-21 Norsk Hydro As Aluminium kjöleribbe med forbedret styrke og bestandighet
JP4190295B2 (ja) 2003-01-20 2008-12-03 株式会社デンソー 耐食性に優れたアルミニウム合金クラッドチューブ材および該クラッドチューブ材を組付けた熱交換器
JP2005016937A (ja) 2003-06-06 2005-01-20 Denso Corp 耐食性に優れたアルミニウム製熱交換器
JP4236183B2 (ja) 2004-04-20 2009-03-11 住友軽金属工業株式会社 自動車熱交換器用アルミニウム合金クラッド材
JP4236185B2 (ja) 2004-04-27 2009-03-11 住友軽金属工業株式会社 自動車熱交換器用アルミニウム合金クラッド材
JP4804901B2 (ja) 2005-01-26 2011-11-02 古河スカイ株式会社 熱交換器及び当該熱交換器用フィン材
JP5049488B2 (ja) * 2005-12-08 2012-10-17 古河スカイ株式会社 アルミニウム合金ブレージングシートの製造方法
JP5279277B2 (ja) * 2008-01-09 2013-09-04 住友軽金属工業株式会社 熱交換器のチューブ材用ブレージングシート並びに熱交換器及びその製造方法
ES2381166T3 (es) * 2008-07-02 2012-05-23 Aleris Aluminum Koblenz Gmbh Material laminar de cobresoldadura de aluminio
JP5302751B2 (ja) * 2009-04-21 2013-10-02 株式会社デンソー 熱交換器用アルミニウム合金クラッド材
JP5429858B2 (ja) 2009-04-21 2014-02-26 株式会社Uacj 熱交換器用アルミニウム合金クラッド材およびその製造方法
JP5793336B2 (ja) 2010-09-21 2015-10-14 株式会社Uacj 高強度アルミニウム合金ブレージングシート及びその製造方法
PL2670559T3 (pl) 2011-01-31 2015-12-31 Aleris Rolled Prod Germany Gmbh Aluminiowy materiał arkusza lutowniczego do lutowania beztopnikowego
CN103502768B (zh) 2011-04-25 2016-08-17 马勒国际有限公司 制造具有增强材料系统的换热器的方法
JP6216964B2 (ja) 2011-08-09 2017-10-25 三菱アルミニウム株式会社 冷却器用クラッド材および発熱素子用冷却器
JP6115892B2 (ja) 2012-10-26 2017-04-19 株式会社Uacj フィン用アルミニウム合金製ブレージングシート、熱交換器及び熱交換器の製造方法
JP6236290B2 (ja) * 2012-11-13 2017-11-22 株式会社デンソー アルミニウム合金クラッド材および該クラッド材を成形したチューブを組み付けた熱交換器
JP6132330B2 (ja) * 2013-01-23 2017-05-24 株式会社Uacj アルミニウム合金クラッド材および該クラッド材を成形したチューブを組み付けた熱交換器
JP6483412B2 (ja) 2014-11-21 2019-03-13 株式会社デンソー 熱交換器用アルミニウム合金クラッド材

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06182581A (ja) * 1992-12-21 1994-07-05 Mitsubishi Alum Co Ltd 熱交換器ろう付用アルミニウム合金ろう材および熱交換器用アルミニウム合金ブレージングシート
JPH09138093A (ja) * 1995-11-16 1997-05-27 Showa Alum Corp ドロンカップ型熱交換器
JP2003027165A (ja) * 2001-07-17 2003-01-29 Kobe Steel Ltd 耐エロージョン性、成形性に優れた熱交換器用アルミニウム合金クラッド材
JP2007178062A (ja) * 2005-12-28 2007-07-12 Denso Corp 熱交換器の製造方法、アルミニウムクラッド板材および熱交換器
JP2010197002A (ja) * 2009-02-26 2010-09-09 Furukawa-Sky Aluminum Corp 板折り曲げ式のアルミニウム製熱交換器用チューブ、アルミニウム製熱交換器及び板折り曲げ式のアルミニウム製熱交換器用チューブの製造方法
JP2013133517A (ja) * 2011-12-27 2013-07-08 Mitsubishi Alum Co Ltd 耐高温3層ブレージングシート

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"JIS Handbook 3 Hitetsu", JAPANESE STANDARDS ASSOCIATION, 19 January 2007 (2007-01-19), pages 776 - 779, XP009502953 *
See also references of EP3222738A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017007019A1 (ja) * 2015-07-08 2017-01-12 株式会社Uacj アルミニウム合金クラッド材及びその製造方法、ならびに、当該アルミニウム合金クラッド材を用いた熱交換器
JP2017020108A (ja) * 2015-07-08 2017-01-26 株式会社デンソー アルミニウム合金クラッド材及びその製造方法、ならびに、当該アルミニウム合金クラッド材を用いた熱交換器
US10625379B2 (en) 2015-07-08 2020-04-21 Uacj Corporation Aluminum alloy cladding material, manufacturing method therefor, and heat exchanger using said aluminum alloy cladding material

Also Published As

Publication number Publication date
US20170321974A1 (en) 2017-11-09
JP6483412B2 (ja) 2019-03-13
BR112017010323A2 (ja) 2018-01-02
JP2016098404A (ja) 2016-05-30
CN107075621B (zh) 2019-04-09
CN107075621A (zh) 2017-08-18
EP3222738A1 (en) 2017-09-27
BR112017010323B1 (pt) 2021-05-04
US10788275B2 (en) 2020-09-29
EP3222738A4 (en) 2018-04-25
EP3222738B1 (en) 2019-12-25

Similar Documents

Publication Publication Date Title
JP5302751B2 (ja) 熱交換器用アルミニウム合金クラッド材
JP6483412B2 (ja) 熱交換器用アルミニウム合金クラッド材
JP5429858B2 (ja) 熱交換器用アルミニウム合金クラッド材およびその製造方法
JP5610714B2 (ja) アルミニウム合金製熱交換器
JP6236290B2 (ja) アルミニウム合金クラッド材および該クラッド材を成形したチューブを組み付けた熱交換器
EP2155431A1 (en) Aluminium alloy brazing sheet product
WO2017141921A1 (ja) アルミニウム合金ブレージングシート及びその製造方法、ならびに、当該ブレージングシートを用いた自動車用熱交換器の製造方法
WO2014115651A1 (ja) アルミニウム合金クラッド材および該クラッド材を成形したチューブを組み付けた熱交換器
WO2016080434A1 (ja) 熱交換器用アルミニウム合金クラッド材
JP5180565B2 (ja) 熱交換器用アルミニウム合金ブレージングシート
JP5498213B2 (ja) ろう付け性に優れた高強度熱交換器用アルミニウム合金クラッド材
JP2012057183A (ja) アルミニウム合金製クラッド材およびそれを用いた熱交換器
WO2010150728A1 (ja) アルミニウム合金製熱交換器および該熱交換器に使用する冷媒通路管の製造方法
JP5632175B2 (ja) ろう付け性に優れた高強度熱交換器用アルミニウム合金クラッド材および熱交換器
JP5190079B2 (ja) アルミニウム合金製ブレージングシートの製造方法、アルミニウム合金製ブレージングシートのろう付け方法、熱交換器の製造方法、熱交換器
JP3876180B2 (ja) アルミニウム合金三層クラッド材
JP5498214B2 (ja) ろう付け性に優れた高強度熱交換器用アルミニウム合金クラッド材
JP3876179B2 (ja) アルミニウム合金三層構造クラッド材
WO2023063065A1 (ja) 熱交換器用アルミニウム合金クラッド材
JP5498215B2 (ja) ろう付け性に優れた高強度熱交換器用アルミニウム合金クラッド材
JP2002038231A (ja) 耐食性が優れたアルミニウム合金製部材及びそれを使用したろう付け方法
JP2009127995A (ja) 熱交換器用チューブ及びこれと外部フィンとを結合した熱交換器
JP2012061523A (ja) アルミニウムのろう付け方法および該ろう付け方法により製造されるアルミニウム熱交換器用偏平チューブ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15860205

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015860205

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15528256

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017010323

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112017010323

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170517