WO2016080364A1 - ヒートパイプ - Google Patents

ヒートパイプ Download PDF

Info

Publication number
WO2016080364A1
WO2016080364A1 PCT/JP2015/082173 JP2015082173W WO2016080364A1 WO 2016080364 A1 WO2016080364 A1 WO 2016080364A1 JP 2015082173 W JP2015082173 W JP 2015082173W WO 2016080364 A1 WO2016080364 A1 WO 2016080364A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat pipe
heat
wick structure
bellows
container
Prior art date
Application number
PCT/JP2015/082173
Other languages
English (en)
French (fr)
Inventor
義勝 稲垣
川畑 賢也
達朗 三浦
智基 柳田
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to CN201590001035.5U priority Critical patent/CN207081357U/zh
Priority to KR1020177010531A priority patent/KR101957267B1/ko
Publication of WO2016080364A1 publication Critical patent/WO2016080364A1/ja
Priority to US15/586,419 priority patent/US10184729B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/046Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure characterised by the material or the construction of the capillary structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0233Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0241Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the tubes being flexible
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0275Arrangements for coupling heat-pipes together or with other structures, e.g. with base blocks; Heat pipe cores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/08Tubular elements crimped or corrugated in longitudinal section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0028Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for cooling heat generating elements, e.g. for cooling electronic components or electric devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2255/00Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes
    • F28F2255/18Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes sintered

Definitions

  • the present invention relates to a heat pipe that transports external heat input as latent heat of a working fluid, which has a property of being deformable and capable of maintaining the deformed shape.
  • the heating element When the heating element is mounted in a narrow space or when a plurality of heating elements are mounted at high density, it is necessary to bend the heat pipe and thermally connect to the heating element.
  • the conventional heat pipe since the conventional heat pipe has poor deformability such as bending, there is a problem that it cannot be sufficiently thermally connected to the heating element.
  • the present invention has been made in view of the above-described problems of the prior art, and an object thereof is to provide a heat pipe that is easy to be deformed such as bending and twisting and can maintain the deformed shape and has excellent heat transport capability. To do.
  • An aspect of the present invention includes a container in which a bellows-like uneven portion is formed and a cavity formed inside is sealed, and a steam flow that is provided on the inner peripheral surface of the cavity and penetrates in the longitudinal direction of the cavity.
  • a wick structure having a path and generating a capillary force; and a working fluid sealed in the cavity, wherein a gap is formed between the wick structure and the convex portion of the bellows-like uneven portion. It is a heat pipe.
  • the wall surface of the container is deformed to process the wall surface into an uneven shape, thereby forming a bellows-like uneven portion. Since the inner surface of the wall surface of the container processed into the irregular shape forms a hollow portion, the bellows-shaped irregular portion is also formed on the inner peripheral surface of the hollow portion.
  • the liquid-phase working fluid is vaporized at the heat input portion, and the heat source
  • the heat from is transferred to the working fluid as latent heat. Since the inside of the heat pipe, that is, the cavity is degassed, the vapor of the working fluid vaporized in the heat input section, that is, the gas phase working fluid, flows from the heat input section in the longitudinal direction of the cavity. It flows not only through the vapor flow path of the wick structure that penetrates, but also through the gap formed between the wick structure and the convex portion of the bellows-like uneven portion, to the heat radiating portion that is the other end of the heat pipe. .
  • the vapor of the working fluid that has flowed to the heat radiating portion is condensed in the heat radiating portion and releases the latent heat.
  • the latent heat released by the heat radiating part is released from the heat radiating part to the external environment of the heat pipe.
  • the working fluid condensed into a liquid state in the heat radiating portion is returned from the heat radiating portion to the heat input portion by the capillary force of the wick structure.
  • An aspect of the present invention includes a container in which a bellows-like uneven portion is formed and a cavity formed inside is sealed, and a steam flow that is provided on the inner peripheral surface of the cavity and penetrates in the longitudinal direction of the cavity.
  • a heat pipe including a wick structure that generates a capillary force and a working fluid sealed in the cavity, the wick structure projecting into a convex portion of the bellows-like uneven portion. is there.
  • part which protrudes seeing from the heat pipe exterior is a convex part
  • part recessed with respect to this convex part is a recessed part.
  • An aspect of the present invention is a heat pipe in which flattening is applied to a part or all of the container in the longitudinal direction.
  • the flat processing may be a site where the bellows-like uneven portion is formed, may be a site where the bellows-like uneven portion is not formed, or may be both sites.
  • An aspect of the present invention is a heat pipe in which the bellows-like uneven portion is formed on a part or all of the container in the longitudinal direction. Moreover, the aspect of this invention is a heat pipe whose said bellows-like uneven
  • An aspect of the present invention is a heat pipe in which the wick structure is a metal mesh.
  • An embodiment of the present invention is a heat pipe in which the wick structure is a fired body of a powdered metal material.
  • the heat pipe can be easily deformed such as bending or twisting and can maintain the deformed shape.
  • the heat pipe of the present invention is excellent in the above characteristics, even if the heating element is mounted in a narrow space or a plurality of heating elements are mounted at high density, the heat pipe is deformed such as bending. Thus, it can be surely thermally connected to the heating element that is the object to be cooled.
  • the bellows-like uneven portion can absorb vibrations and shocks applied to the heat pipe. Damage and dropout can be prevented.
  • the wick structure having a steam flow path penetrating in the longitudinal direction of the cavity portion is installed on the inner peripheral surface of the cavity portion, and further, the wick structure and the convex portion of the bellows-like uneven portion.
  • a gap is formed between the vapor flow path and the gap from the heat input section to the heat dissipation section, and a liquid phase working fluid flows from the heat dissipation section to the heat input section through the wick structure. Therefore, the flow path of the gas-phase working fluid and the flow path of the liquid-phase working fluid can be reliably separated, resulting in excellent heat transport efficiency.
  • the void formed between the wick structure and the convex portion of the bellows-like uneven portion is a gas-phase working fluid flow path, and a liquid phase operation is performed in the void. Since the fluid can be prevented from flowing in, the convex portion of the bellows-like uneven portion has an excellent heat dissipation capability, and the heat dissipation efficiency of the heat pipe is improved.
  • the wick structure is also provided in the region in the convex portion of the bellows-like uneven portion, the capillary force of the wick structure is further improved, and the smooth surface is provided by the bellows-like uneven portion. Since the surface area is increased as compared with the case of only the container, the heat dissipation effect is further improved. Further, according to the aspect of the present invention, there is a gap in the wick structure formed in the convex portion of the bellows-like uneven portion, that is, the wick structure formed in the convex portion or in the convex portion.
  • the wick structure in the convex portion improves the capillary force more, while the gap portion performs the same function as the gap portion. Since it demonstrates, the convex part of a bellows-like uneven part has the outstanding heat dissipation capability.
  • flattening is applied to a part or all of the longitudinal direction of the container, so that the thermal connectivity with the heating element is further improved and the cooling capacity of the heat pipe is further increased.
  • a heat pipe can be arrange
  • FIG. 5A is a partial side view of a heat pipe according to a third embodiment of the present invention
  • FIG. 5B is a cross-sectional view of the heat pipe taken along the line B-B ′ in FIG. It is a side view of the heat pipe which concerns on the example of 4th Embodiment of this invention.
  • the heat pipe 1 includes a container 2 formed of a sealed tube having a circular radial cross section, and an inside of a cavity 3 inside the container 2. It has the wick structure 4 which produces the capillary force installed in the state which contact
  • a helical bellows-shaped uneven portion 6 is formed in the central portion in the longitudinal direction of the container 2, parallel to the longitudinal direction of the container 2, with the major axis of the container 2 as the central axis. Is formed.
  • the wick structure 4 is provided with a steam flow path 5 that is a through-hole penetrating the inside of the wick structure 4 linearly in the longitudinal direction of the cavity 3.
  • the spiral bellows-like uneven portions 6 are not formed at both ends of the container 2, and both the inner peripheral surface and the outer peripheral surface of the container 2 are smooth.
  • one end portion is the heat input portion side end portion 7, and the other end portion is the heat radiating portion side end portion 8.
  • the heat input portion side end portion 7 is thermally connected to the heat generating body that is the object to be cooled, so that the heat input portion side end portion 7 receives heat from the heat generating body.
  • a heat exchange means such as a heat radiating fin or a heat sink is attached to the heat radiating portion side end portion 8 or the heat radiating portion side end portion 8 is directly exposed to the external environment.
  • the part 8 is cooled.
  • convex portions 10 and concave portions 11 are alternately and repeatedly formed in a direction parallel to the longitudinal direction of the container 2. Accordingly, both the convex portion 10 and the concave portion 11 extend spirally in the longitudinal direction of the container 2.
  • the convex portion 10 projects from the inner peripheral surface side to the outer peripheral surface side of the container 2 in a direction parallel to or substantially parallel to the radial direction of the container 2 with respect to the concave portion 11.
  • the container 2 protrudes from the outer peripheral surface side to the inner peripheral surface side in a direction parallel to or substantially parallel to the radial direction of the container 2.
  • the width of the convex portion 10 is not particularly limited, and may be a uniform width or a non-uniform width.
  • the width of the recess 11 is not particularly limited, and may be a uniform width or a non-uniform width.
  • the height of the convex part 10 and the depth of the concave part 11 are not particularly limited, and may be uniform or non-uniform.
  • a wick structure 4 is disposed in the cavity 3 from the heat input side end 7 to the heat dissipation side end 8.
  • the wick structure 4 is accommodated in the cavity 3 in a state in contact with the inner peripheral surface of the container 2, that is, the peripheral surface of the cavity 3. Since the heat pipe 1 is formed with a helical bellows-shaped uneven portion 6 in a direction parallel to the longitudinal direction of the container 2, the position corresponding to the recessed portion 11 on the peripheral surface of the cavity portion 3 and the wick structure
  • the wick structure 4 is accommodated in the cavity 3 in a state where the outer surface of the body 4 is in contact.
  • the shape of the wick structure 4 is cylindrical. Further, as described above, the outer surface of the wick structure 4 is in contact with the recess 11. Accordingly, a gap portion 12 is formed between the outer surface of the wick structure 4 and the convex portion 10 of the helical bellows-like irregular portion 6. That is, the internal space of the convex portion 10 is the gap portion 12. Corresponding to the fact that both the convex portion 10 and the concave portion 11 are formed in a spiral shape in the longitudinal direction of the container 2, the gap portion 12 also extends in a spiral shape in the longitudinal direction of the cavity portion 3.
  • the helical bellows-like uneven portion corresponding to the state in which the position corresponding to the recess 11 in the peripheral surface of the cavity portion 3 is in contact with the outer surface of the wick structure 4.
  • the peripheral surface of the cavity 3 and the outer surface of the wick structure 4 are not in contact with each other, and a space 13 is formed.
  • the space 13 is in communication with the gap 12.
  • cylindrical wick structure 4 is provided with a vapor channel 5 penetrating the wick structure 4 in a direction parallel to or approximately parallel to the longitudinal direction of the cavity 3.
  • the cross section of the steam flow path 5 in a direction parallel to the radial direction of the wick structure 4 is circular.
  • a gap 12 formed between the steam flow path 5 of the wick structure 4, the outer surface of the wick structure 4, and the convex portion 10 of the spiral bellows-like irregular portion 6 is formed at one end of the heat pipe 1.
  • the heat received from the heating element can be transported from the heat input side end 7 to the heat dissipation side end 8.
  • the vapor phase working fluid transported from the heat input side end 7 to the heat dissipation side end 8 releases latent heat at the heat dissipation side end 8 and condenses to become a liquid phase working fluid.
  • the wick structure 4 generates a predetermined capillary force. Therefore, the wick structure 4 causes the working fluid condensed at the heat radiating portion side end portion 8 to return from the heat radiating portion side end portion 8 to the heat input portion side end portion 7 by the capillary force.
  • the capillary force of the wick structure 4 adjusts, for example, the ratio of the volume of the space where the wick material of the wick structure 4 does not exist to the volume occupied by the wick structure 4, that is, the porosity of the wick structure 4. You can adjust it.
  • the vapor flow path 5 formed in the wick structure 4 and the gap portion 12 between the wick structure 4 and the convex portion 10 of the container 2 allow the gas-phase working fluid to flow into the heat input side.
  • the flow path flows from the end 7 to the heat radiating side 8 and the wick structure 4 causes the liquid-phase working fluid to flow back from the heat radiating side 8 to the heat input side 7. Therefore, in the heat pipe 1, since the flow paths of the gas-phase working fluid and the liquid-phase working fluid that are opposed to each other are clearly separated, good heat transport efficiency can be obtained.
  • the gap portion 12 between the wick structure 4 and the convex portion 10 of the container 2 is a flow path of the gas phase working fluid, and the inflow of the liquid phase working fluid into the gap portion 12 is This is prevented by the presence of the wick structure 4 that generates capillary force. Accordingly, since the inside of the convex portion 10, that is, the gap portion 12 is in a gas phase, heat radiation from the convex portion 10 to the external environment of the heat pipe 1 is also promoted, and as a result, the cooling effect of the heat pipe 1 is further improved. .
  • the material of the container 2 is not particularly limited, for example, copper, copper alloy, aluminum, aluminum alloy, stainless steel, or the like can be used.
  • the material of the wick structure 4 is not particularly limited, and examples thereof include metal mesh such as copper, copper alloy, aluminum, aluminum alloy and stainless steel, carbon fiber, and the like.
  • the working fluid to be sealed in the internal space of the container 2 can be appropriately selected according to the compatibility with the material of the container 2, and examples thereof include water, alternative chlorofluorocarbon, florina, and cyclopentane.
  • the heat pipe 1 can cool the electronic component (heat generating body) mounted on the board
  • the heat pipe 1 is subjected to deformation such as bending or twisting according to the space around the heating element and the position of the heating element at the helical bellows-like uneven part 6, and then heat input.
  • the electronic part on the board provided in the narrow space can be obtained by thermally connecting the part-side end part 7 with the electronic part on the board and cooling the heat-radiating part side end part 8 by the heat exchange means described above. Can be cooled.
  • the manufacturing method of the heat pipe 1 is not particularly limited.
  • the wick structure 4 is formed by inserting a sheet-shaped metal mesh into a cylindrical shape into a tube having a spiral bellows-like uneven portion 6. Then, after injecting the working fluid into the tube material, the tube material is sealed to form the container 2, whereby the heat pipe 1 can be manufactured.
  • the helical bellows-like uneven portion 6 can be formed, for example, by plastically deforming the wall surface of the tube material that becomes the material of the container 2 with a roller or the like after inserting the core rod into the tube material that becomes the material of the container 2.
  • the wick structure 34 that generates a capillary force is also formed in the region within the convex portion 10 of the helical bellows-like concave and convex portion 6. Is provided.
  • the region in the convex portion 10 is filled with the wick structure 34.
  • the wick structure 34 is in contact with the entire peripheral surface of the cavity 3. That is, not only the position of the concave portion 11 of the spiral-shaped bellows-like uneven portion 6 but also the position of the convex portion 10 and the end portion 7 on the heat input portion where the spiral-shaped bellows-like uneven portion 6 is not formed.
  • the wick structure 34 is accommodated in the cavity 3 in a state where the position of the heat radiating portion side end portion 8 where the helical bellows-like uneven portion 6 is not formed and the outer surface of the wick structure 34 are in contact with each other. ing. Therefore, in the heat pipe 30, portions corresponding to the gap portion 12 and the space portion 13 of the heat pipe 1 are not formed.
  • the wick structure 34 at the position of the convex portion 10, the position of the heat input portion side end portion 7 and the heat radiation portion side end portion 8 where the spiral bellows-like uneven portion 6 is not formed Is thicker by the dimension of the depth of the recess 11 than the thickness of the wick structure 34 at the position of the recess 11.
  • the wick structure 34 is provided with a steam channel 5 that linearly penetrates the wick structure 34 in a direction parallel to or approximately parallel to the longitudinal direction of the cavity 3. Moreover, the cross section of the steam flow path 5 in a direction parallel to the radial direction of the wick structure 34 is circular.
  • the wick structure 34 is also provided in the convex portion 10 of the helical bellows-like uneven portion 6 and is in contact with the entire peripheral surface of the cavity 3, the wick structure 34 is used in the heat pipe 30.
  • the helical accordion-like concavo-convex portion 6 increases the surface area as compared with a container having only a smooth surface, so that the heat dissipation effect is also improved.
  • the region in the convex portion 10 is filled with the wick structure 34, but the wick structure 34 located in the region in the convex portion 10 of the helical bellows-like uneven portion 6 has a gap portion. (Not shown in FIG. 4) may exist (that is, the gap is formed during manufacturing). The gap is formed inside the wick structure 34 or between the wick structure 34 and the inner surface of the protrusion 10. When the gap portion is formed, the wick structure 34 is also formed in the convex portion 10 so that the capillary force is further improved and the inside of the gap portion becomes a gas phase. The same function as the gap 12 of the pipe 1 is exhibited, and the convex portion 10 of the helical bellows-shaped concave / convex portion 6 has an excellent heat dissipation capability.
  • a wick structure 34 is provided along the top portion and one side portion of the convex portion 10, that is, the central portion of the internal space of the convex portion 10.
  • the other side portion of the convex portion 10 is not provided with the wick structure 34, and the inner void portion 32-1, which is a void portion, or the middle portion of the convex portion 10, as shown in FIG.
  • a wick structure 34 is provided from the bottom to the bottom, that is, there is a top gap portion 32-2 that is not provided with the wick structure 34 at the top of the convex portion 10 and is a gap portion.
  • the material of the wick structure 34 is not particularly limited.
  • a powdered material for example, nanoparticles
  • a fired body of a metal material such as copper, copper alloy, aluminum, aluminum alloy, stainless steel, carbon powder, or the like is used. Can be mentioned.
  • the manufacturing method of the heat pipe 30 is not particularly limited, for example, the core rod is inserted into the tube material provided with the helical bellows-shaped uneven portion 6 and formed between the inner wall surface of the tube material and the core rod. After filling the gap with a powdery metal material, heat treatment is performed to form a wick structure 34 which is a fired body of the metal material. After the heat treatment, the heat pipe 30 can be manufactured by drawing the core rod from the tube material, injecting the working fluid into the tube material, sealing the tube material, and forming the container 2.
  • the metal bellows-like irregularities After forming the bellows-like irregularities in the tube material in this way, filling the metal powder to form the fired body, the metal bellows-like irregularities are also filled with the metal powder, and the wick structure has the bellows-like irregularities. It becomes a heat pipe structure protruding into the convex part.
  • the bellows-like uneven part is formed after filling the metal powder and forming the fired body by first forming the bellows-like uneven part on the tube material and then filling the metal powder. It is possible to prevent cracking or peeling of the fired body.
  • heat pipe 1 ' which concerns on 3rd Embodiment, it replaces with the container 2 with a circular radial cross section of the heat pipe 1 which concerns on 1st Embodiment, and is a container. 22 is flattened. That is, the flat processing is performed on the circular pipe material, so that the cross section in the direction parallel to the radial direction of the container 22 has a shape having an opposing flat portion and an opposing curved portion.
  • a spiral bellows-like unevenness formed at the center in the longitudinal direction of the heat pipe 1 ′ from the heat input side end (not shown) to the heat dissipation side end (not shown).
  • Flattening is performed including the portion 26. Further, the wick structure 4 accommodated in the container 22 is also deformed flat according to the flattening process.
  • the helical bellows-like uneven portion 26 of the heat pipe 1 ' has a convex portion 20 and a concave portion 21 as in the case of the heat pipe 1 according to the first embodiment. It is alternately and repeatedly formed in a direction parallel to the longitudinal direction.
  • the wick structure 4 of the heat pipe 1 ' has a vapor which is a through-hole penetrating the wick structure 4 like the heat pipe 1 according to the first embodiment.
  • a flow path 5 is provided.
  • the cross section of the steam flow path 5 in the direction parallel to the radial direction of the wick structure 4 also includes an opposing substantially flat part and an opposing curved part. It has a shape to have.
  • the outer surface of the wick structure 4 is in contact with the recess 21 as in the heat pipe 1 according to the first embodiment. Therefore, a gap 12 is formed between the outer surface of the wick structure 4 and the convex portion 20 of the spiral bellows-like concave / convex portion 26.
  • the container 22 is flattened to form a flat portion, whereby the thermal connectivity with the heating element is further improved, and the cooling capacity of the heat pipe is further increased. Moreover, since the height of the heat pipe 1 ′ is reduced by the flattening, the heat pipe 1 ′ can be arranged in a narrow space such as a gap. Further, by flattening the heat input portion side end portion and the heat dissipation portion side end portion, the heat input portion can increase the contact area with the heating element, and the heat dissipation portion can reduce the pressure loss of the cooling air.
  • a bellows-like uneven portion 56 that is not a spiral shape is formed in the container.
  • a plurality of convex portions 50 of the bellows-like concave / convex portion 56 that are not spiral are formed, and each convex portion 50 is formed concentrically around the major axis of the container 2.
  • a plurality of recesses 51 are also formed, and each recess 51 is formed concentrically around the major axis of the container 2.
  • each convex part 50 of the bellows-like uneven part 56 which is not a spiral shape has a structure in which the top part is opposed to a parallel direction or a substantially parallel direction (parallel direction in FIG. 6) to the radial direction of the container 2.
  • grooved part 56 which is not helical shape has the structure where the bottom part was opposed to the parallel direction with respect to the radial direction of the container 2, or a substantially parallel direction (parallel direction in FIG. 6). .
  • the above-described bellows-like uneven portion 56 can also impart to the heat pipe 40 such characteristics that it can be easily deformed such as bending and twisting and can maintain the deformed shape.
  • the wick structure may be a metal mesh or a fired body of a metal material.
  • the spiral bellows-like uneven portion is formed in the center portion of the heat pipe, and no spiral bellows-like uneven portion is formed at the heat input portion side end portion and the heat radiation portion side end portion.
  • a spiral bellows-like uneven part may be formed not only at the center part of the heat pipe but also at the end part on the heat input part and / or the end part on the heat radiation part.
  • the shape of the accordion-shaped concavo-convex portion may be formed not only at one place but at a plurality of places at the center of the heat pipe.
  • a helical bellows-like uneven part may be formed on the entire surface of the heat pipe.
  • the entire surface of the heat pipe is flattened. Instead, the flattening is performed on the heat input portion side end and / or the heat radiating portion side end. It is also possible that the spiral bellows-like irregularities are not flattened.
  • the container of the heat pipe 1 according to the first embodiment is flattened, but instead, according to the second embodiment.
  • the container in which the heat pipe 30 is flattened may be used.
  • the shape of the bellows-shaped uneven portion is not particularly limited, and in addition to the above-described spiral shape and a shape in which a plurality of concave portions and convex portions are arranged concentrically, for example, a plurality of convex portions and concave portions are formed, and each convex portion
  • the top part of the part and the bottom part of each concave part may have a shape that is not opposed.
  • the cross-sectional shape of the wick structure in the radial direction of the container is a circular shape or a flat shape at both ends and the center portion of the container.
  • the cross-sectional shape of the wick structure may be a semicircular wick structure 4-3 in which two substantially semicircular shapes are in contact with each other at the top in the flattened container 22.
  • one end is a semicircular wick structure 4-3, and the center and the other end are in the container 2 having a circular cross-sectional shape in the radial direction.
  • one end is semicircular wick structure 4-3, and the center is flattened.
  • a flat wick structure 4-2 in which the cross-sectional shape of the wick structure in the container 22 is a flat shape, a circular wick structure 4-1 at the other end, as shown in FIG. Is a semicircular wick structure 4-3, the center is a circular wick structure 4-1, and as shown in FIG. 8 (d), both ends are semicircular wick structures 4-3 and the center is flat.
  • the cross-sectional shape of the wick structure at one end, the other end, and the center may be a site where the bellows-like irregularities are formed or a site where the bellows-like irregularities are not formed.
  • the flat wick structure 4-2 may be provided with a concave groove 67 as shown in FIG.
  • one concave groove 67-1 and one 67-2 are provided in each of the opposing flat portions.
  • the concave groove 67-1 on the gravitational direction side contributes to retention of the working fluid and prevents dryout
  • the concave groove 67-2 on the opposite side to the gravitational direction is the concave groove 67-2. Acts as an extension.
  • the wick structure generates the same capillary force in any part, but instead, it may be a wick structure that generates a different capillary force depending on the part.
  • a wick structure that generates different capillary forces in the concavo-convex portion and its vicinity and other parts may be used, or wick structures that generate different capillary forces may be stacked.
  • the strength of the helical bellows-like uneven portion 66 of the container 62 is improved as necessary, and the wick structure 64 is bent or twisted by the helical bellows-like uneven portion 66.
  • a bellows-like shape having a wall surface portion corresponding to the shape of the spiral bellows-like irregularities 66 between the inner surface of the spiral bellows-like irregularities 66 and the outer surface of the wick structure 64.
  • a reinforcing member 61 may be provided.
  • a spiral bellows-like shape is formed on the outer surface of the helical bellows-like uneven portion 66.
  • a cylindrical reinforcing member 63 having an inner wall surface corresponding to the shape of the uneven portion 66 may be provided. Examples of the material of the bellows-shaped reinforcing member 61 and the cylindrical reinforcing member 63 include copper, copper alloy, aluminum, aluminum alloy, and stainless steel.
  • the heat pipe 100 of the present invention (in FIG. 12, as an example, the first embodiment) is applied to the heat sink 100 having the heat receiving plate 101 and the plurality of heat radiating fins 102 erected on the surface of the heat receiving plate 101.
  • a heat dissipating portion side end portion 8 of the heat pipe 1 (however, the spiral bellows-like uneven portion 6 is provided at two locations in the center of each heat pipe 1) is thermally connected, and is not shown.
  • the heat pipe 1 can be thermally transported from the body to be cooled to the heat sink 100 thermally connected to the heat radiating portion side end portion 8 by thermally connecting the heat input portion side end portion 7 to the cooling body. .
  • the heat sink 100 having the heat receiving plate 101 and the plurality of radiating fins 102 erected on the surface of the heat receiving plate 101 is also heated at the heat input portion side end 7 in order to cool the object to be cooled more reliably.
  • a plurality of (three) heat pipes 1 are each thermally connected to the heat receiving plate 101 of the heat sink 100.
  • the heat connection method of the heat pipe 1 to the heat receiving plate 101 is not particularly limited.
  • a spiral bellows-like uneven portion is provided also at the heat radiating side end 8, and the heat receiving plate 101 has a side surface portion.
  • the heat pipe 1 is fixed to the heat receiving plate 101 by a screw action and thermally connected by providing a groove portion that can be screwed with the helical bellows-shaped uneven portion provided at the heat radiation portion side end portion 8. Can do.
  • the heat pipe of the present invention (in FIG. 13, as an example, the heat pipe 1 according to the third embodiment).
  • ' The heat pipe that has been flattened as a whole)
  • the heat-radiating-side end 8 is brought into contact with the heat-dissipating fins 102, so 8 may be thermally connected to the radiating fins 102, and the heat input portion side end portion 7 may be thermally connected to the heat receiving plate 101 thermally connected to the object to be cooled (not shown).
  • the heat pipe of the present invention (in FIG. 14, as an example, the heat pipe 1 according to the first embodiment). ) Is bent at the spiral bellows-like uneven portion 6 to form a U shape, and the heat sink of the heat pipe 1 among the heat sink 100 having the heat receiving plate 101 and the plurality of heat radiating fins 102 standing on the surface of the heat receiving plate 101.
  • the side end 8 may be thermally connected to the radiating fin 102 and the heat input side end 7 may be thermally connected to a heat receiving plate 101 thermally connected to a cooling target (not shown).
  • the heat pipe 1 thermally connected to the heat sink 100 has a circular cross section in the radial direction, that is, a cross section in the radial direction of the heat input portion side end 7 and the heat dissipation portion side end 8 is circular.
  • a heat pipe in which the cross section in the radial direction of the heat input portion side end 7 and / or the heat dissipation portion side end 8 is flattened may be used.
  • the heat pipe of the present invention is easily deformed such as bending and twisting and has a characteristic capable of maintaining the deformed shape and an excellent heat transport capability. For example, it is used in the field of cooling a heating element arranged in a narrow space. High value.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Geometry (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

 曲げやねじれ等の変形が容易で該変形形状が維持できる特性と熱輸送能力ともに優れたヒートパイプを提供する。 蛇腹状凹凸部が形成され、内部に形成された空洞部が密閉されたコンテナと、前記空洞部の内周面に設けられ、該空洞部の長手方向に貫通する蒸気流路を有する、毛細管力を生じるウィック構造体と、前記空洞部に封入された作動流体と、を備え、前記ウィック構造体と前記蛇腹状凹凸部の凸部との間に空隙部が形成されているヒートパイプ。

Description

ヒートパイプ
 本発明は、変形性を有し、且つ該変形形状が維持できる性質を備えた、外部からの入熱を作動流体の潜熱として輸送するヒートパイプに関する。
 電気・電子機器に搭載されている半導体素子等の電子部品は、高機能化に伴う高密度搭載等により、発熱量が増大し、近年、その冷却がより重要となっている。電子部品等の発熱体の冷却方法として、熱輸送性能に優れていることから、ヒートパイプが使用されることがある。
 発熱体が狭い空間に搭載されていたり、複数の発熱体が高密度に搭載されると、ヒートパイプを曲げて発熱体と熱的に接続する必要がある。しかし、従来のヒートパイプは屈曲等の変形性に乏しいので、上記発熱体と十分に熱的に接続することができないという問題があった。
 上記問題から、近年、曲げやねじれ等の特性に優れたヒートパイプが要求されている。そこで、密閉管に、外周面側で径方向に平行に切り立った深溝、内周面側で毛細管力を生じさせる細溝がそれぞれ形成された蛇腹状螺旋形凹凸溝を形成し、上記深溝により容易に屈曲変形して変形後、直ちに自然復元しないで変形態をそのまま保持すると共に、細溝による毛細管力によって作動流体を還流させる密閉管を形成したヒートパイプが提案されている(特許文献1)。
 しかし、特許文献1のヒートパイプは、蛇腹状螺旋形凹凸溝の細溝の毛細管力によって作動流体を還流させるので、作動流体の還流が十分ではなく、ヒートパイプの熱輸送能力が低下してしまうという問題があった。また、特許文献1のヒートパイプでは、液相の作動流体の流路と気相の作動流体の流路との区分が不十分なので、対向流となる液相の作動流体の流れと気相の作動流体の流れに抵抗がかかり、この点でも、ヒートパイプの熱輸送能力が低下してしまうという問題があった。このため、特許文献1のヒートパイプは、トップヒートモードでの使用は困難である。
特開平11-287577号公報
 本発明は上記した従来技術の問題に鑑みてなされたものであり、曲げやねじれ等の変形が容易で該変形形状が維持できる特性と熱輸送能力ともに優れたヒートパイプを提供することを目的とする。
 本発明の態様は、蛇腹状凹凸部が形成され、内部に形成された空洞部が密閉されたコンテナと、前記空洞部の内周面に設けられ、該空洞部の長手方向に貫通する蒸気流路を有する、毛細管力を生じるウィック構造体と、前記空洞部に封入された作動流体と、を備え、前記ウィック構造体と前記蛇腹状凹凸部の凸部との間に空隙部が形成されているヒートパイプである。
 上記本発明の態様では、コンテナの壁面を変形させることで該壁面を凹凸状に加工し、蛇腹状凹凸部が形成されている。凹凸状に加工されたコンテナの壁面の内面が空洞部を形成するので、空洞部の内周面にも蛇腹状凹凸部が形成されている。
 上記本発明の態様では、ヒートパイプの一方の端部である入熱部にて、外部の熱源(発熱体)から熱を受熱すると、入熱部にて液相の作動流体が気化し、熱源からの熱が潜熱として作動流体へ移動する。ヒートパイプの内部、すなわち、空洞部は、脱気されているので、入熱部にて気化した作動流体の蒸気、すなわち、気相の作動流体は、入熱部から、空洞部の長手方向に貫通するウィック構造体の蒸気流路だけでなく、ウィック構造体と蛇腹状凹凸部の凸部との間に形成された空隙部も介して、ヒートパイプの他方の端部である放熱部へ流れる。放熱部へ流れた作動流体の蒸気は、該放熱部にて凝縮し、前記潜熱を放出する。放熱部にて放出された潜熱は、放熱部からヒートパイプの外部環境へ放出される。放熱部にて凝縮し液体状となった作動流体は、放熱部からウィック構造体の毛細管力によって入熱部へ戻される。
 本発明の態様は、蛇腹状凹凸部が形成され、内部に形成された空洞部が密閉されたコンテナと、前記空洞部の内周面に設けられ、該空洞部の長手方向に貫通する蒸気流路を有する、毛細管力を生じるウィック構造体と、前記空洞部に封入された作動流体と、を備え、前記ウィック構造体が、前記蛇腹状凹凸部の凸部内へ突設されているヒートパイプである。
 なお、本明細書中、「蛇腹状凹凸部」の凹凸部について、ヒートパイプ外部から見て突出している部位が凸部、該凸部に対して窪んでいる部位が凹部である。
 本発明の態様は、前記コンテナの長手方向の一部または全部に、扁平加工が施されているヒートパイプである。扁平加工は、蛇腹状凹凸部が形成された部位でもよく、蛇腹状凹凸部が形成されていない部位でもよく、その両方の部位でもよい。
 本発明の態様は、前記蛇腹状凹凸部が、前記コンテナの長手方向の一部または全部に形成されているヒートパイプである。また、本発明の態様は、前記蛇腹状凹凸部が、螺旋形状であるヒートパイプである。
 本発明の態様は、前記ウィック構造体が、金属メッシュであるヒートパイプである。また、本発明の態様は、前記ウィック構造体が、粉末状の金属材料の焼成体であるヒートパイプである。
 本発明の態様によれば、コンテナに蛇腹状凹凸部が形成されているので、ヒートパイプの、曲げやねじれ等の変形が容易で該変形形状が維持できる特性を有する。このように、本発明のヒートパイプは上記特性に優れるので、発熱体が狭い空間に搭載されていたり、複数の発熱体が高密度に搭載されていても、ヒートパイプに曲げ等の変形を施すことにより、確実に、被冷却体である発熱体と熱的に接続することができる。また、本発明の態様によれば、蛇腹状凹凸部により、ヒートパイプに加えられる振動や衝撃を吸収することができるので、揺れや衝撃を受ける部位にヒートパイプを設置しても、ヒートパイプの損傷や脱落を防止できる。
 本発明の態様によれば、空洞部の内周面に空洞部の長手方向に貫通する蒸気流路を有するウィック構造体が設置され、さらに、ウィック構造体と蛇腹状凹凸部の凸部との間に空隙部が形成され、気相の作動流体が上記蒸気流路と上記空隙部を入熱部から放熱部へ流れ、液相の作動流体がウィック構造体を放熱部から入熱部へ流れるので、気相の作動流体の流路と液相の作動流体の流路を確実に分離でき、結果、熱輸送効率に優れる。
 また、本発明の態様によれば、ウィック構造体と蛇腹状凹凸部の凸部との間に形成された空隙部は気相の作動流体の流路であり、該空隙部に液相の作動流体が流入することを防止できるので、蛇腹状凹凸部の凸部も優れた放熱能力を有し、ヒートパイプの放熱効率が向上する。
 本発明の態様によれば、ウィック構造体が、蛇腹状凹凸部の凸部内の領域にも設けられているので、ウィック構造体の毛細管力がより向上しつつ、蛇腹状凹凸部により、平滑面のみのコンテナと比較して表面積が増大するので、放熱効果もより向上する。また、本発明の態様によれば、蛇腹状凹凸部の凸部内に形成されたウィック構造体に隙間部が存在する、すなわち、凸部内に形成されたウィック構造体内部や凸部内に形成されたウィック構造体と凸部の内面との間に隙間部が存在する場合には、前記凸部内のウィック構造体により、毛細管力がより向上しつつ、前記隙間部が前記空隙部と同様の作用を発揮するので、蛇腹状凹凸部の凸部が優れた放熱能力を有する。
 本発明の態様によれば、コンテナの長手方向の一部または全部に、扁平加工が施されていることにより、発熱体との熱的接続性がより向上し、ヒートパイプの冷却能力がより増大する。また、上記扁平加工により、より狭い空間にも、ヒートパイプを配置することができる。さらに、入熱部側端部と放熱部側端部を扁平加工することにより、入熱部では発熱体との接触面積が増大し、かつ放熱部では冷却風の圧損を低減できる。
本発明の第1実施形態例に係るヒートパイプの側面図である。 本発明の第1実施形態例に係るヒートパイプの側面断面図である。 図1におけるヒートパイプのA-A’断面図である。 本発明の第2実施形態例に係るヒートパイプの側面断面図である。 (a)図は、本発明の第3実施形態例に係るヒートパイプの部分側面図、(b)図は、図5(a)におけるヒートパイプのB-B’断面図である。 本発明の第4実施形態例に係るヒートパイプの側面図である。 本発明の第2実施形態例に係るヒートパイプのウィック構造体の隙間部の説明図である。 本発明の他の実施形態例に係るヒートパイプのウィック構造体の断面形状の説明図である。 本発明の他の実施形態例に係るヒートパイプのウィック構造体の断面形状の説明図である。 本発明の他の実施形態例に係るヒートパイプの蛇腹状凹凸部の補強部材の説明図である。 本発明の他の実施形態例に係るヒートパイプの蛇腹状凹凸部の補強部材の説明図である。 本発明のヒートパイプの第1の具体的な使用方法例の説明図である。 本発明のヒートパイプの第2の具体的な使用方法例の説明図である。 本発明のヒートパイプの第3の具体的な使用方法例の説明図である。
 以下に、本発明の第1実施形態例に係るヒートパイプについて、図面を用いながら説明する。図1、2に示すように、第1実施形態例に係るヒートパイプ1は、径方向の断面が円形である密閉された管から形成されたコンテナ2と、コンテナ2内部の空洞部3の内周面に接した状態で設置された、毛細管力を生じさせるウィック構造体4と、空洞部3に封入された作動流体(図示せず)と、を有する。コンテナ2の周方向の壁面には、コンテナ2の長手方向の中央部に、コンテナ2の長手方向に対して平行方向に、コンテナ2の長軸を中心軸として螺旋形状の蛇腹状凹凸部6が形成されている。また、ウィック構造体4には、ウィック構造体4内部を空洞部3の長手方向に直線状に貫通する貫通孔である、蒸気流路5が設けられている。
 ヒートパイプ1では、コンテナ2の両端部には、螺旋形状の蛇腹状凹凸部6は形成されておらず、コンテナ2の内周面及び外周面は、ともに平滑となっている。このコンテナ2の両端部のうち、一方の端部は入熱部側端部7であり、他方の端部は放熱部側端部8である。入熱部側端部7が被冷却体である発熱体と熱的に接続されることで、入熱部側端部7が発熱体からの熱を受熱する。また、放熱部側端部8に、放熱フィンやヒートシンク等の熱交換手段(図示せず)を取り付けたり、放熱部側端部8を、直接、外部環境に露出させることにより、放熱部側端部8を冷却する。放熱部側端部8を冷却することにより、入熱部側端部7から放熱部側端部8へ輸送された発熱体由来の熱を、放熱部側端部8からヒートパイプ1外へ放出する。
 螺旋形状の蛇腹状凹凸部6には、凸部10と凹部11が、コンテナ2の長手方向に対して平行方向に、交互に、繰り返し形成されている。従って、凸部10も、凹部11も、コンテナ2の長手方向に螺旋状に伸びている。凸部10は、凹部11に対して、コンテナ2の径方向に対して平行方向または略平行方向にコンテナ2の内周面側から外周面側へ突出し、凹部11は、凸部10に対して、コンテナ2の径方向に対して平行方向または略平行方向にコンテナ2の外周面側から内周面側へ突出している。
 螺旋形状の蛇腹状凹凸部6では、凸部10の幅は特に限定されず、均一な幅でもよく、不均一な幅でもよい。また、凹部11の幅も特に限定されず、均一な幅でもよく、不均一な幅でもよい。さらに、螺旋形状の蛇腹状凹凸部6では、凸部10の高さ、凹部11の深さ、ともに、特に限定されず、均一な寸法でも、不均一な寸法でもよい。
 図2、3に示すように、空洞部3には、入熱部側端部7から放熱部側端部8まで、ウィック構造体4が配置されている。ウィック構造体4は、コンテナ2の内周面、すなわち、空洞部3の周面に接した状態で空洞部3に収容されている。ヒートパイプ1には、コンテナ2の長手方向に対して平行方向に、螺旋形状の蛇腹状凹凸部6が形成されているので、空洞部3の周面のうち凹部11に相当する位置とウィック構造体4の外面とが接した状態で、ウィック構造体4が空洞部3に収容されている。
 ヒートパイプ1では、ウィック構造体4の形状は円筒形となっている。また、上記の通り、ウィック構造体4の外面が凹部11と接している。従って、ウィック構造体4の外面と螺旋形状の蛇腹状凹凸部6の凸部10との間には空隙部12が形成されている。すなわち、凸部10の内部空間が空隙部12となっている。凸部10も凹部11もコンテナ2の長手方向に螺旋状に形成されていることに対応して、空隙部12も空洞部3の長手方向に螺旋状に伸びている。
 また、図2に示すように、空洞部3の周面のうち凹部11に相当する位置とウィック構造体4の外面とが接した状態であることに対応して、螺旋形状の蛇腹状凹凸部6が形成されていないコンテナ2の両端部では、空洞部3の周面とウィック構造体4の外面とは接触しておらず、空間部13が形成されている。この空間部13は空隙部12と連通した状態となっている。
 さらに、円筒形であるウィック構造体4には、空洞部3の長手方向に対して平行方向または略平行方向にウィック構造体4内部を貫通する蒸気流路5が設けられている。図3に示すように、蒸気流路5の、ウィック構造体4の径方向に対して平行方向の断面は、円形状となっている。
 ウィック構造体4の蒸気流路5とウィック構造体4外面と螺旋形状の蛇腹状凹凸部6の凸部10との間に形成された空隙部12とが、ヒートパイプ1の一方の端部である入熱部側端部7にて気化した作動流体を、入熱部側端部7からヒートパイプ1の他方の端部である放熱部側端部8へ流す、気相の作動流体の流路となることで、発熱体から受熱した熱を入熱部側端部7から放熱部側端部8へ輸送することができる。入熱部側端部7から放熱部側端部8へ輸送された気相の作動流体は、放熱部側端部8にて潜熱を放出し、凝縮して液相の作動流体となる。
 ウィック構造体4は、所定の毛細管力を生じさせる。従って、ウィック構造体4が、その毛細管力によって、放熱部側端部8にて凝縮した作動流体を放熱部側端部8から入熱部側端部7へ還流させる。ウィック構造体4の毛細管力は、例えば、ウィック構造体4が占める体積に対する、ウィック構造体4のウィック材料が存在しない空間の体積の比率、すなわち、ウィック構造体4の空孔率を調節することで、調整できる。
 ヒートパイプ1では、ウィック構造体4に形成された蒸気流路5と、ウィック構造体4とコンテナ2の凸部10との間の空隙部12とが、気相の作動流体を入熱部側端部7から放熱部側端部8へ流す流路となり、ウィック構造体4が液相の作動流体を放熱部側端部8から入熱部側端部7へ還流させる。従って、ヒートパイプ1では、相互に対向流となる気相の作動流体と液相の作動流体について、その流通路が明確に区分されるので、良好な熱輸送効率が得られる。また、上記の通り、ウィック構造体4とコンテナ2の凸部10との間の空隙部12は、気相の作動流体の流路であり、液相の作動流体の空隙部12への流入は、毛細管力を生じさせるウィック構造体4の存在によって防止される。従って、凸部10内部、すなわち、空隙部12は気相となっているので、凸部10からヒートパイプ1の外部環境への放熱も促進され、結果、ヒートパイプ1の冷却効果がより向上する。
 コンテナ2の材質については、特に限定されないが、例えば、銅、銅合金、アルミニウム、アルミニウム合金、ステンレス鋼等を使用することができる。また、ウィック構造体4の材質は、特に限定されないが、例えば、銅、銅合金、アルミニウム、アルミニウム合金及びステンレス鋼等の金属メッシュ、カーボンファイバ等を挙げることができる。コンテナ2の内部空間に封入する作動流体としては、コンテナ2の材料との適合性に応じて、適宜選択可能であり、例えば、水、代替フロン、フロリーナ、シクロペンタン等を挙げることができる。
 次に、本発明の第1実施形態例に係るヒートパイプ1の使用方法例について説明する。ヒートパイプ1の使用方法は、特に限定されないが、ヒートパイプ1は、例えば、狭小空間に設置された基板上に実装されている電子部品(発熱体)を冷却することができる。この場合、螺旋形状の蛇腹状凹凸部6の部分で、ヒートパイプ1に、発熱体周辺の空間の状況や発熱体の位置に応じた必要な曲げやねじれ等の変形を施した後、入熱部側端部7を基板上の電子部品と熱的に接続し、放熱部側端部8を上記した熱交換手段等にて冷却することで、狭小空間に設けられた基板上の電子部品を冷却できる。
 次に、本発明の第1実施形態例に係るヒートパイプ1の製造方法例について説明する。ヒートパイプ1の製造方法は、特に限定されないが、例えば、螺旋形状の蛇腹状凹凸部6を備えた管材内に、シート状の金属メッシュを丸めて円筒状にしたもの挿入してウィック構造体4を形成した後、管材内に作動流体を注入後、管材を密閉してコンテナ2を形成することによりヒートパイプ1を製造できる。螺旋形状の蛇腹状凹凸部6は、例えば、コンテナ2の材料となる管材内に、芯棒を挿入した後、ローラー等でコンテナ2の材料となる管材の壁面を塑性変形することで形成できる。
 次に、本発明の第2実施形態例に係るヒートパイプについて、図面を用いながら説明する。なお、第1実施形態例に係るヒートパイプと同じ構成要素については、同じ符号を用いて説明する。
 図4に示すように、本発明の第2実施形態例に係るヒートパイプ30では、螺旋形状の蛇腹状凹凸部6の凸部10内の領域にも、毛細管力を生じさせるウィック構造体34が設けられている。図4では、凸部10内の領域はウィック構造体34で充填されている。また、ヒートパイプ30では、ウィック構造体34は空洞部3の周面全体と接した状態となっている。すなわち、空洞部3の、螺旋形状の蛇腹状凹凸部6の凹部11の位置だけではなく、凸部10の位置、螺旋形状の蛇腹状凹凸部6が形成されていない入熱部側端部7の位置及び螺旋形状の蛇腹状凹凸部6が形成されていない放熱部側端部8の位置と、ウィック構造体34の外面とが接した状態で、ウィック構造体34が空洞部3に収容されている。従って、ヒートパイプ30では、ヒートパイプ1の空隙部12及び空間部13に相当する部位は形成されない。
 上記から、図4に示すように、凸部10の位置、螺旋形状の蛇腹状凹凸部6が形成されていない入熱部側端部7及び放熱部側端部8の位置におけるウィック構造体34の厚さは、いずれも、凹部11の位置におけるウィック構造体34の厚さよりも、凹部11の深さの寸法分、厚くなっている。
 ウィック構造体34には、空洞部3の長手方向に対して平行方向または略平行方向にウィック構造体34内部を直線状に貫通する蒸気流路5が設けられている。また、蒸気流路5の、ウィック構造体34の径方向に対して平行方向の断面は、円形状となっている。
 ウィック構造体34が、螺旋形状の蛇腹状凹凸部6の凸部10内にも設けられ、空洞部3の周面全体と接した状態となっているので、ヒートパイプ30では、ウィック構造体34の毛細管力がより向上し、さらに、螺旋形状の蛇腹状凹凸部6により、平滑面のみのコンテナと比較して表面積が増大するので、放熱効果も向上する。
 ヒートパイプ30では、凸部10内の領域はウィック構造体34で充填されているが、螺旋形状の蛇腹状凹凸部6の凸部10内の領域に位置するウィック構造体34には、隙間部(図4では、図示せず)が存在する(すなわち、製造時に前記隙間部が形成される)場合もある。前記隙間部は、ウィック構造体34内部やウィック構造体34と凸部10の内面との間に形成される。前記隙間部が形成される場合、凸部10内にもウィック構造体34が形成されていることにより、毛細管力がより向上しつつ、前記隙間部内は気相となるので、前記隙間部はヒートパイプ1の空隙部12と同様の作用を発揮して、螺旋形状の蛇腹状凹凸部6の凸部10が優れた放熱能力を有する。
 ウィック構造体34内部やウィック構造体34と凸部10の内面との間に形成される上記隙間部の具体的な態様例について、図7を用いて以下に説明する。上記隙間部としては、図7(a)に示すように、凸部10の頂部と一方の側部とに沿ってウィック構造体34が設けられた、すなわち、凸部10の内部空間の中央部と凸部10の他方の側部にはウィック構造体34が設けられておらず空隙部となっている内部空隙部32-1や、図7(b)に示すように、凸部10の中腹から底部にかけてウィック構造体34が設けられた、すなわち、凸部10の頂部にウィック構造体34が設けられておらず空隙部となっている頂部空隙部32-2が挙げられる。
 ウィック構造体34の材質は、特に限定されないが、例えば、粉末状(例えば、ナノ粒子)である、銅、銅合金、アルミニウム、アルミニウム合金、ステンレス鋼等の金属材料の焼成体やカーボン粉等を挙げることができる。
 次に、本発明の第2実施形態例に係るヒートパイプ30の製造方法例について説明する。ヒートパイプ30の製造方法は、特に限定されないが、例えば、螺旋形状の蛇腹状凹凸部6を備えた管材内に、芯棒を挿入し、管材の内壁面と芯棒との間に形成された空隙に粉末状の金属材料を充填後、加熱処理して、金属材料の焼成体であるウィック構造体34を形成する。加熱処理後、芯棒を管材から引き抜き、管材内に作動流体を注入して、管材を密閉しコンテナ2を形成することによりヒートパイプ30を製造できる。このように管材に蛇腹状凹凸部を形成してから、金属粉末を充填して焼成体を形成することで、蛇腹状凸凹部にも金属粉末が充填し、ウィック構造体が蛇腹状凹凸部の凸部内へ突設されているヒートパイプ構造になる。また、先ず、管材に蛇腹状凹凸部を形成してから、金属粉末を充填して焼成体を形成することで、金属粉末を充填して焼成体を形成した後に蛇腹状凹凸部を形成した場合の焼成体の割れや剥がれを防止することができる。
 次に、本発明の第3実施形態例に係るヒートパイプについて、図面を用いながら説明する。なお、第1実施形態例に係るヒートパイプと同じ構成要素については、同じ符号を用いて説明する。
 図5(b)に示すように、第3実施形態例に係るヒートパイプ1’では、第1実施形態例に係るヒートパイプ1の、径方向の断面が円形であるコンテナ2に代えて、コンテナ22に扁平加工が施されている。すなわち、円形の管材に扁平加工が施されることで、コンテナ22の径方向に対して平行方向の断面が、対向する平坦部と対向する曲部とを有する形状となっている。ヒートパイプ1’では、入熱部側端部(図示せず)から放熱部側端部(図示せず)まで、ヒートパイプ1’の長手方向の中央部に形成された螺旋形状の蛇腹状凹凸部26の部分を含めて扁平加工が施されている。また、上記扁平加工に応じて、コンテナ22内部に収容されたウィック構造体4も、扁平に変形している。
 図5(a)に示すように、ヒートパイプ1’の螺旋形状の蛇腹状凹凸部26には、第1実施形態例に係るヒートパイプ1と同様に、凸部20と凹部21が、コンテナ22の長手方向に対して平行方向に、交互に、繰り返し形成されている。
 また、図5(b)に示すように、ヒートパイプ1’のウィック構造体4には、第1実施形態例に係るヒートパイプ1と同様に、ウィック構造体4を貫通する貫通孔である蒸気流路5が設けられている。ウィック構造体4が扁平に変形していることに応じて、蒸気流路5の、ウィック構造体4の径方向に対して平行方向の断面も、対向する略平坦部と対向する曲部とを有する形状となっている。
 さらに、ヒートパイプ1’では、第1実施形態例に係るヒートパイプ1と同様に、ウィック構造体4の外面が凹部21と接している。よって、ウィック構造体4の外面と螺旋形状の蛇腹状凹凸部26の凸部20との間には空隙部12が形成されている。
 ヒートパイプ1’では、コンテナ22に扁平加工が施されて平坦部が形成されていることにより、発熱体との熱的接続性がより向上し、ヒートパイプの冷却能力がより増大する。また、上記扁平加工により、ヒートパイプ1’の高さが低減されるので、隙間のような狭い空間にも、ヒートパイプ1’を配置することができる。さらに、入熱部側端部と放熱部側端部を扁平加工することにより、入熱部では発熱体との接触面積を増大させつつ、放熱部では冷却風の圧損を低減できる。
 次に、本発明の第4実施形態例に係るヒートパイプについて、図面を用いながら説明する。なお、上記実施形態例に係るヒートパイプと同じ構成要素については、同じ符号を用いて説明する。
 図6に示すように、第4実施形態例に係るヒートパイプ40では、螺旋形状の蛇腹状凹凸部6、26に代えて、コンテナに螺旋形状ではない蛇腹状凹凸部56が形成されている。第4実施形態例に係るヒートパイプ40では、螺旋形状ではない蛇腹状凹凸部56の凸部50が、複数形成され、それぞれの凸部50は、コンテナ2の長軸を中心に同心円状に形成されている。また、凹部51も、複数形成され、それぞれの凹部51は、コンテナ2の長軸を中心に同心円状に形成されている。つまり、螺旋形状ではない蛇腹状凹凸部56の各凸部50は、その頂部が、コンテナ2の径方向に対して平行方向または略平行方向(図6では平行方向)に対向した構造となっている。また、螺旋形状ではない蛇腹状凹凸部56の各凹部51は、その底部が、コンテナ2の径方向に対して平行方向または略平行方向(図6では平行方向)に対向した構造となっている。
 上記蛇腹状凹凸部56でも、ヒートパイプ40に、曲げやねじれ等の変形が容易で該変形形状が維持できる特性を付与できる。なお、ヒートパイプ40でも、ウィック構造体は、金属メッシュでもよく、金属材料の焼成体でもよい。
 次に、本発明のその他の実施形態例について説明する。上記各実施形態例では、螺旋形状の蛇腹状凹凸部はヒートパイプの中央部に形成され、入熱部側端部と放熱部側端部には螺旋形状の蛇腹状凹凸部が形成されていなかったが、これに代えて、ヒートパイプの中央部だけでなく、入熱部側端部及び/または放熱部側端部にも螺旋形状の蛇腹状凹凸部が形成されてもよく、また、螺旋形状の蛇腹状凹凸部は、ヒートパイプの中央部に、1箇所だけでなく複数箇所、形成されてもよい。また、ヒートパイプの全面に螺旋形状の蛇腹状凹凸部が形成されてもよい。また、第3実施形態例に係るヒートパイプでは、ヒートパイプの全面に扁平加工が施されていたが、これに代えて、入熱部側端部及び/または放熱部側端部に扁平加工が施され、螺旋形状の蛇腹状凹凸部には扁平加工が施されていない態様でもよい。
 第3実施形態例に係るヒートパイプ1’では、第1実施形態例に係るヒートパイプ1のコンテナに扁平加工が施された態様であったが、これに代えて、第2実施形態例に係るヒートパイプ30のコンテナに扁平加工が施された態様でもよい。また、蛇腹状凹凸部の形状は、特に限定されず、上記した螺旋形状や複数の凹部と凸部が同心円状に配置された形状のほか、例えば、凸部及び凹部が複数形成され、各凸部の頂部及び各凹部の底部が、対向していない形状でもよい。
 また、上記各実施形態例では、コンテナの径方向におけるウィック構造体の断面形状は、コンテナの両端部及び中央部ともに、円形状または扁平形状であったが、これに代えて、図8(e)に示すように、上記ウィック構造体の断面形状は、扁平加工されたコンテナ22において2つの略半円形が頂部で相互に接触した形状である、半円型ウィック構造体4-3としてもよい。また、図8(a)に示すように、一方の端部を半円型ウィック構造体4-3、中央部及び他方の端部を径方向の断面形状が円形であるコンテナ2において上記ウィック構造体の断面形状が円形状である円形型ウィック構造体4-1、図8(b)に示すように、一方の端部を半円型ウィック構造体4-3、中央部を扁平加工されたコンテナ22において上記ウィック構造体の断面形状が扁平形状である扁平型ウィック構造体4-2、他方の端部を円形型ウィック構造体4-1、図8(c)に示すように、両端部を半円型ウィック構造体4-3、中央部を円形型ウィック構造体4-1、図8(d)に示すように、両端部を半円型ウィック構造体4-3、中央部を扁平型ウィック構造体4-2、図8(f)に示すように、一方の端部を半円型ウィック構造体4-3、中央部を円形型ウィック構造体4-1、他方の端部を扁平型ウィック構造体4-2としてもよい。なお、一方の端部、他方の端部及び中央部における上記ウィック構造体の断面形状は、蛇腹状凹凸部の形成された部位でも、蛇腹状凹凸部の形成されていない部位でもよい。
 なお、扁平型ウィック構造体4-2は、図9に示すように、凹溝67が設けられてもよい。図9では、対向する平坦部に、それぞれ、凹溝67-1、67-2が1つずつ設けられている。2つの凹溝67のうち、重力方向側の凹溝67-1は作動流体の保持に寄与してドライアウトを防止し、重力方向とは反対側の凹溝67-2は蒸気流路5の拡張部として作用する。
 また、上記各実施形態例では、ウィック構造体はいずれの部位も同じ毛細管力を生じさせていたが、これに代えて、部位によって異なる毛細管力を生じさせるウィック構造体としてもよく、例えば、蛇腹状凹凸部及びその近傍とそれ以外の部位とで異なる毛細管力を生じさせるウィック構造体としてもよく、また、異なる毛細管力を生じさせるウィック構造体を積層させてもよい。
 また、図10に示すように、必要に応じて、コンテナ62の螺旋形状の蛇腹状凹凸部66の強度を向上させ、また螺旋形状の蛇腹状凹凸部66の曲げやねじれによるウィック構造体64の崩れを防止するために、螺旋形状の蛇腹状凹凸部66の内面とウィック構造体64の外面との間に、螺旋形状の蛇腹状凹凸部66の形状に対応した壁面の部位を有する蛇腹状の補強部材61を設けてもよい。また、図11に示すように、必要に応じて、コンテナ62の螺旋形状の蛇腹状凹凸部66の強度を向上させるために、螺旋形状の蛇腹状凹凸部66の外面に、螺旋形状の蛇腹状凹凸部66の形状に対応した内壁面を有する筒状の補強部材63を設けてもよい。蛇腹状の補強部材61及び筒状の補強部材63の材質としては、例えば、銅、銅合金、アルミニウム、アルミニウム合金、ステンレス鋼等を挙げることができる。
 次に、本発明のヒートパイプの具体的な使用方法例について説明する。まず、ヒートシンクに本発明のヒートパイプを使用する場合の例(第1の具体的な使用方法例)について説明する。図12に示すように、受熱プレート101と受熱プレート101表面に立設された複数の放熱フィン102を有するヒートシンク100に、本発明のヒートパイプ(図12では、例として、第1実施形態例に係るヒートパイプ1(但し、螺旋形状の蛇腹状凹凸部6は各ヒートパイプ1の中央部に2箇所設けられている。))の放熱部側端部8を熱的に接続し、図示しない被冷却体に入熱部側端部7を熱的に接続することによって、ヒートパイプ1は、被冷却体から放熱部側端部8と熱的に接続されたヒートシンク100へ熱輸送することができる。図12では、被冷却体をより確実に冷却させるために、入熱部側端部7にも、受熱プレート101と受熱プレート101表面に立設された複数の放熱フィン102を有するヒートシンク100が熱的に接続されている。図12では、複数本(3本)のヒートパイプ1が、それぞれ、ヒートシンク100の受熱プレート101と熱的に接続されている。なお、ヒートパイプ1の受熱プレート101への熱的接続方法としては、特に限定されないが、例えば、放熱部側端部8にも螺旋形状の蛇腹状凹凸部を設け、受熱プレート101の側面部に前記放熱部側端部8に設けられた螺旋形状の蛇腹状凹凸部と螺合可能な溝部を設けることにより、ヒートパイプ1を受熱プレート101へねじ作用で固定して、熱的に接続することができる。
 また、本発明のヒートパイプの第2の具体的な使用方法例としては、図13に示すように、本発明のヒートパイプ(図13では、例として、第3実施形態例に係るヒートパイプ1’(全体が扁平加工されたヒートパイプ))を螺旋形状の蛇腹状凹凸部26にて曲げてL字状とし、放熱部側端部8を放熱フィン102と接触させることで放熱部側端部8を放熱フィン102と熱的に接続し、被冷却体(図示せず)と熱的に接続された受熱プレート101に入熱部側端部7を熱的に接続してもよい。
 また、本発明のヒートパイプの第3の具体的な使用方法例としては、図14に示すように、本発明のヒートパイプ(図14では、例として、第1実施形態例に係るヒートパイプ1)を螺旋形状の蛇腹状凹凸部6にて曲げてU字状とし、受熱プレート101と受熱プレート101表面に立設された複数の放熱フィン102を有するヒートシンク100のうち、ヒートパイプ1の放熱部側端部8を放熱フィン102と熱的に接続し、図示しない被冷却体と熱的接続された受熱プレート101に入熱部側端部7を熱的に接続してもよい。
 このように、螺旋形状の蛇腹状凹凸部にて本発明のヒートパイプを曲げることにより、狭い空間に配置された被冷却体であっても本発明のヒートパイプを用いて冷却することができる。
 ヒートシンク100に熱的に接続されるヒートパイプ1は、径方向の断面が円形、すなわち、入熱部側端部7と放熱部側端部8の径方向の断面が円形であるが、これに代えて、入熱部側端部7及び/または放熱部側端部8の径方向の断面が扁平加工されているヒートパイプを用いてもよい。
 本発明のヒートパイプは、曲げやねじれ等の変形が容易で該変形形状が維持できる特性と優れた熱輸送能力とを有するので、例えば、狭い空間に配置された発熱体を冷却する分野で利用価値が高い。
1、1’、30、40     ヒートパイプ
2、22、62        コンテナ
3              空洞部
4、34、64        ウィック構造体
5              蒸気流路
6、26、66        螺旋形状の蛇腹状凹凸部
12             空隙部
56             螺旋形状ではない蛇腹状凹凸部

Claims (7)

  1.  蛇腹状凹凸部が形成され、内部に形成された空洞部が密閉されたコンテナと、前記空洞部の内周面に設けられ、該空洞部の長手方向に貫通する蒸気流路を有する、毛細管力を生じるウィック構造体と、前記空洞部に封入された作動流体と、を備え、
    前記ウィック構造体と前記蛇腹状凹凸部の凸部との間に空隙部が形成されているヒートパイプ。
  2.  蛇腹状凹凸部が形成され、内部に形成された空洞部が密閉されたコンテナと、前記空洞部の内周面に設けられ、該空洞部の長手方向に貫通する蒸気流路を有する、毛細管力を生じるウィック構造体と、前記空洞部に封入された作動流体と、を備え、
    前記ウィック構造体が、前記蛇腹状凹凸部の凸部内へ突設されているヒートパイプ。
  3.  前記コンテナの長手方向の一部または全部に、扁平加工が施されている請求項1または2に記載のヒートパイプ。
  4.  前記蛇腹状凹凸部が、前記コンテナの長手方向の一部または全部に形成されている請求項1乃至3のいずれか1項に記載のヒートパイプ。
  5.  前記蛇腹状凹凸部が、螺旋形状である請求項1乃至4のいずれか1項に記載のヒートパイプ。
  6.  前記ウィック構造体が、金属メッシュである請求項1に記載のヒートパイプ。
  7.  前記ウィック構造体が、粉末状の金属材料の焼成体である請求項2に記載のヒートパイプ。
PCT/JP2015/082173 2014-11-17 2015-11-17 ヒートパイプ WO2016080364A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201590001035.5U CN207081357U (zh) 2014-11-17 2015-11-17 热管
KR1020177010531A KR101957267B1 (ko) 2014-11-17 2015-11-17 히트 파이프
US15/586,419 US10184729B2 (en) 2014-11-17 2017-05-04 Heat pipe

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-232381 2014-11-17
JP2014232381A JP5788074B1 (ja) 2014-11-17 2014-11-17 ヒートパイプ

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/586,419 Continuation US10184729B2 (en) 2014-11-17 2017-05-04 Heat pipe

Publications (1)

Publication Number Publication Date
WO2016080364A1 true WO2016080364A1 (ja) 2016-05-26

Family

ID=54207192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/082173 WO2016080364A1 (ja) 2014-11-17 2015-11-17 ヒートパイプ

Country Status (6)

Country Link
US (1) US10184729B2 (ja)
JP (1) JP5788074B1 (ja)
KR (1) KR101957267B1 (ja)
CN (1) CN207081357U (ja)
TW (1) TWI593932B (ja)
WO (1) WO2016080364A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3301265A1 (en) * 2016-09-28 2018-04-04 United Technologies Corporation Graphene heat pipe for a gas turbine engine, corresponding gas turbine engine and method of cooling a compressor flow path of a gas turbine engine

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201401520D0 (en) * 2014-01-29 2014-03-12 Batmark Ltd Aerosol-forming member
US10995998B2 (en) * 2015-07-30 2021-05-04 Senior Uk Limited Finned coaxial cooler
US20170142863A1 (en) * 2015-11-16 2017-05-18 Erin Hurbi Insert molded heat pipe
JP6757613B2 (ja) * 2016-07-27 2020-09-23 古河電気工業株式会社 蓄熱システム、蓄熱容器、蓄熱容器を用いた蓄熱装置、及び蓄熱装置を用いた暖気装置
US10139137B1 (en) * 2017-06-20 2018-11-27 The United States Of America As Represented By The Secretary Of The Navy Heat exchanger reactive to internal and external temperatures
TWI633267B (zh) * 2017-10-25 2018-08-21 神基科技股份有限公司 可彎折式熱板
JP7011938B2 (ja) 2017-12-28 2022-01-27 新光電気工業株式会社 ループ型ヒートパイプ及びその製造方法
US11828536B2 (en) * 2020-04-08 2023-11-28 Lockheed Martin Corporation Heat transfer assemblies with compliant heat pipes
KR102179343B1 (ko) * 2020-05-11 2020-11-16 정춘식 히트파이프 고효율 냉각 시스템
KR102205094B1 (ko) * 2020-05-11 2021-01-19 정춘식 고효율 냉각용 히트파이프
US11815315B2 (en) * 2021-02-18 2023-11-14 Asia Vital Components (China) Co., Ltd. Flexible heat dissipation device
US11976884B2 (en) * 2021-02-18 2024-05-07 Asia Vital Components (China) Co., Ltd. Flexible two-phase conversion heat transfer device
KR102373637B1 (ko) * 2021-03-09 2022-03-14 (주)우주엘이디 Led 조명등용 히트싱크 모듈
US11892242B2 (en) * 2021-12-24 2024-02-06 Asia Vital Components (China) Co., Ltd. Multi-angle adjustable and transformable heat pipe

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57169598A (en) * 1981-04-14 1982-10-19 Fujikura Ltd Heat pipe
JPS5855687A (ja) * 1981-09-29 1983-04-02 Hisateru Akachi ヒ−トパイプのコンテナとその製造方法
JPS58110991A (ja) * 1981-12-23 1983-07-01 Fujikura Ltd 可撓性を有するヒ−トパイプ
JPS58110992A (ja) * 1981-12-23 1983-07-01 Fujikura Ltd 可撓性を有するヒ−トパイプ
JPS61181967U (ja) * 1985-04-25 1986-11-13
JPS6266097A (ja) * 1985-04-30 1987-03-25 Fujikura Ltd 熱サイホン装置
JPS63126778U (ja) * 1987-02-13 1988-08-18
JPH01273993A (ja) * 1988-04-27 1989-11-01 Fujikura Ltd ヒートパイプ
JP2002022381A (ja) * 2000-07-04 2002-01-23 Hitachi Cable Ltd ヒートパイプの加工方法
JP2004198096A (ja) * 2002-10-25 2004-07-15 Furukawa Electric Co Ltd:The 優れた毛細管力を有する扁平型ヒートパイプおよびそれを用いた冷却装置
JP2007056302A (ja) * 2005-08-24 2007-03-08 Fujikura Ltd ヒートパイプの焼結ウイック層の製造方法
JP2008241180A (ja) * 2007-03-28 2008-10-09 Kobelco & Materials Copper Tube Inc ヒートパイプ用伝熱管およびヒートパイプ

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3913665A (en) * 1973-10-01 1975-10-21 Boeing Co External tube artery flexible heat pipe
JPS6012371Y2 (ja) * 1981-01-30 1985-04-22 ソニー株式会社 トランシ−バ−
JPS5888593A (ja) * 1981-11-20 1983-05-26 Hisateru Akachi ヒ−トパイプ放熱器
JPS58110993A (ja) * 1981-12-23 1983-07-01 Fujikura Ltd ヒ−トパイプ
JPS59215592A (ja) * 1983-05-23 1984-12-05 Fujikura Ltd 発熱型ヒートパイプを使用した送電線懸吊支持体の融雪方法
JPH0612371Y2 (ja) * 1986-05-02 1994-03-30 株式会社フジクラ ヒートパイプ
KR930009932B1 (ko) * 1987-12-09 1993-10-13 후지 꾸라 덴센 가부시끼가이샤 히트파이프 및 그의 제조방법
JPH0322815A (ja) * 1990-01-29 1991-01-31 Fujikura Ltd 発熱型ヒートパイプを使用したケーブル冷却方法
JP3524286B2 (ja) 1996-09-13 2004-05-10 株式会社日立製作所 自動改札装置及び精算システム
JP2911441B1 (ja) * 1998-04-03 1999-06-23 伊藤 さとみ ヒートパイプ及びその製造方法とそれを用いた放熱構造
JP2000274972A (ja) * 1999-03-25 2000-10-06 Mitsubishi Heavy Ind Ltd フレキシブルヒートパイプ
WO2002044639A1 (en) * 2000-11-30 2002-06-06 Khpt Co., Ltd Sintered wick structure heat pipe with parallel pipe holes and manufature method thereof
KR100394309B1 (ko) * 2001-04-02 2003-08-09 주식회사 한국에치피티 금속판에 금속 분말을 피복 소결한 윅을 이용한히트파이프의 제조방법
WO2003087695A1 (fr) * 2002-04-16 2003-10-23 Yoshiro Miyazaki Conduit calorique vibratoire a auto-excitation et calculateur le contenant
JP3936308B2 (ja) * 2002-07-12 2007-06-27 古河電気工業株式会社 フィン一体型ヒートシンクおよびその製造方法
US7647961B2 (en) * 2004-10-25 2010-01-19 Thermal Corp. Heat pipe with axial and lateral flexibility
US8069907B2 (en) * 2007-09-13 2011-12-06 3M Innovative Properties Company Flexible heat pipe
TWM372460U (en) * 2009-09-17 2010-01-11 Celsia Technologies Taiwan Inc Heat pipe with flexible structure
JP2014052110A (ja) * 2012-09-06 2014-03-20 Hosei Nagano 熱交換器および電子機器
JP6012371B2 (ja) * 2012-09-27 2016-10-25 株式会社日本触媒 4−ヒドロキシ−2−ブタノンまたはブタノールの製造方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57169598A (en) * 1981-04-14 1982-10-19 Fujikura Ltd Heat pipe
JPS5855687A (ja) * 1981-09-29 1983-04-02 Hisateru Akachi ヒ−トパイプのコンテナとその製造方法
JPS58110991A (ja) * 1981-12-23 1983-07-01 Fujikura Ltd 可撓性を有するヒ−トパイプ
JPS58110992A (ja) * 1981-12-23 1983-07-01 Fujikura Ltd 可撓性を有するヒ−トパイプ
JPS61181967U (ja) * 1985-04-25 1986-11-13
JPS6266097A (ja) * 1985-04-30 1987-03-25 Fujikura Ltd 熱サイホン装置
JPS63126778U (ja) * 1987-02-13 1988-08-18
JPH01273993A (ja) * 1988-04-27 1989-11-01 Fujikura Ltd ヒートパイプ
JP2002022381A (ja) * 2000-07-04 2002-01-23 Hitachi Cable Ltd ヒートパイプの加工方法
JP2004198096A (ja) * 2002-10-25 2004-07-15 Furukawa Electric Co Ltd:The 優れた毛細管力を有する扁平型ヒートパイプおよびそれを用いた冷却装置
JP2007056302A (ja) * 2005-08-24 2007-03-08 Fujikura Ltd ヒートパイプの焼結ウイック層の製造方法
JP2008241180A (ja) * 2007-03-28 2008-10-09 Kobelco & Materials Copper Tube Inc ヒートパイプ用伝熱管およびヒートパイプ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3301265A1 (en) * 2016-09-28 2018-04-04 United Technologies Corporation Graphene heat pipe for a gas turbine engine, corresponding gas turbine engine and method of cooling a compressor flow path of a gas turbine engine
US10830094B2 (en) 2016-09-28 2020-11-10 Raytheon Technologies Corporation Gas turbine engine with graphene heat pipe

Also Published As

Publication number Publication date
US10184729B2 (en) 2019-01-22
KR20170084023A (ko) 2017-07-19
TW201623899A (zh) 2016-07-01
KR101957267B1 (ko) 2019-03-12
CN207081357U (zh) 2018-03-09
US20170234625A1 (en) 2017-08-17
TWI593932B (zh) 2017-08-01
JP2016095108A (ja) 2016-05-26
JP5788074B1 (ja) 2015-09-30

Similar Documents

Publication Publication Date Title
WO2016080364A1 (ja) ヒートパイプ
WO2011010395A1 (ja) 扁平型ヒートパイプおよびその製造方法
JP4653187B2 (ja) 薄型ヒートパイプおよびその製造方法
US20120227934A1 (en) Heat pipe having a composite wick structure and method for making the same
JP6542915B2 (ja) ヒートパイプ
JP2009068787A (ja) 薄型ヒートパイプおよびその製造方法
JP6406821B2 (ja) ヒートパイプ
US20200173731A1 (en) Heat sink
JP7189901B2 (ja) ヒートパイプ
JP6542914B2 (ja) ヒートパイプ
US11828539B2 (en) Heat pipe
JP6582114B1 (ja) ヒートシンク
JP2020076554A (ja) ヒートパイプ
US10247485B2 (en) Pipe member, heat pipe, and cooling device
JP2020176752A (ja) ヒートシンク
JP2011047593A (ja) ヒートパイプおよびその製造方法
JP5567059B2 (ja) 薄型ヒートパイプ
JP6605918B2 (ja) ヒートパイプ
JP2000074579A (ja) 扁平ヒートパイプとその製造方法
WO2018030478A1 (ja) ベーパーチャンバ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15861518

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177010531

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15861518

Country of ref document: EP

Kind code of ref document: A1