WO2016080062A1 - 空気調和機 - Google Patents

空気調和機 Download PDF

Info

Publication number
WO2016080062A1
WO2016080062A1 PCT/JP2015/076251 JP2015076251W WO2016080062A1 WO 2016080062 A1 WO2016080062 A1 WO 2016080062A1 JP 2015076251 W JP2015076251 W JP 2015076251W WO 2016080062 A1 WO2016080062 A1 WO 2016080062A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication
communication means
communication speed
control information
air conditioner
Prior art date
Application number
PCT/JP2015/076251
Other languages
English (en)
French (fr)
Inventor
祐紀 中津
浩一 徳重
成悟 岡村
Original Assignee
日立アプライアンス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立アプライアンス株式会社 filed Critical 日立アプライアンス株式会社
Priority to CN201580061367.7A priority Critical patent/CN107208918B/zh
Priority to EP15860354.8A priority patent/EP3222926B1/en
Priority to US15/518,002 priority patent/US10317106B2/en
Publication of WO2016080062A1 publication Critical patent/WO2016080062A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/00075Indoor units, e.g. fan coil units receiving air from a central station
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/49Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring ensuring correct operation, e.g. by trial operation or configuration checks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/88Electrical aspects, e.g. circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2600/00Control issues
    • F25D2600/02Timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • F25D2700/12Sensors measuring the inside temperature

Definitions

  • the present invention relates to an air conditioner that controls the temperature and humidity of a living space and the like, and more particularly, to a separation type air conditioner composed of an outdoor unit and an indoor unit.
  • the rotational speed of the refrigerant compressor of the outdoor unit, the failure information of the outdoor unit, outdoor temperature information, and the like are transmitted from the outdoor unit control unit to the indoor unit control unit.
  • Each of these control devices is controlled so as to operate integrally by exchanging control information signals such as operating conditions and set temperatures.
  • Such an air conditioner has been proposed in, for example, Japanese Patent Application Laid-Open No. 2005-61676 (Patent Document 1) and the like, but has been proposed in many other patent documents.
  • a method for transmitting the control information signal as described above there is known a method of transmitting a signal pulse as a transmission signal at a predetermined frequency by connecting an outdoor unit and a control device for the indoor unit through a dedicated signal line.
  • At least two communication means having different communication speeds are mainly used as communication means for the control devices of the outdoor unit and the indoor unit of the air conditioner.
  • manual switching has been used as a communication speed switching method. It was switched using a switch.
  • an outdoor unit control device, an indoor unit control device, or an outdoor unit and indoor unit control device is provided with a manual switching switch, and each manual switching is performed according to the communication speed selected by the contractor of the air conditioner.
  • the communication means was selected by switching the switch.
  • an indoor unit control device including a microcomputer as a main component determines the communication speed of the control information signal by reading the setting information of the manual changeover switch.
  • An object of the present invention is to provide a novel air conditioner that can recognize the communication speed of a control information signal without providing a manual changeover switch.
  • the feature of the present invention is that the indoor unit control device recognizes from the communication speed of the control information signal which communication means having different communication speeds and which communication means the communication line from the outdoor unit is connected to. There is provided a recognition means and a communication means determining means for determining a communication means for performing subsequent communication based on the recognized communication speed.
  • the communication speed of the input signal can be recognized without providing a manual changeover switch. For this reason, it is possible to solve at least one of the problems that the construction work is complicated, the changeover switch setting error is likely to occur, and the product price is high.
  • reference numeral 10 is an outdoor unit that constitutes an air conditioner, and the refrigerant whose temperature and flow rate are controlled by the outdoor unit 10 is also connected to the indoor unit 11 that constitutes the air conditioner by piping (not shown). Have been supplied.
  • the indoor unit 11 heat is exchanged between the refrigerant and the room air by an air blower installed therein, and air whose temperature and humidity are controlled is supplied to the room. Since the configuration and operation of such an air conditioner are well known, further explanation is omitted.
  • the indoor unit 11 includes a control device 12.
  • the control device 12 is for operating the air conditioner as is well known, and since this configuration and operation are well known, description thereof is omitted where it is not related to the present embodiment.
  • the control device 12 includes a microcomputer 13 as a main component.
  • the microcomputer 13 includes a calculation unit that executes calculation processing according to a control program, and a ROM area that stores a control program, constants used for calculation, and the like. And a RAM area as a work area for temporarily storing data necessary for the program execution process. Furthermore, an I / O LSI or the like is provided that takes in sensor signals and button signals and supplies drive signals to the drive actuators.
  • the microcomputer 13 performs various arithmetic processes according to the control program. The calculation is for executing a predetermined control function, and in this embodiment, the process executed by the calculation is regarded as a function. .
  • the control device 12 includes a plurality of communication means 14a, 14b, and 14c having different communication speeds.
  • three communication means 14a, 14b, and 14c are illustrated, but at least two or more communication means are provided. Since the communication speed is determined in advance at the design stage of the air conditioner, communication means 14a, 14b, 14c corresponding to this communication speed is prepared in the control device 12.
  • Each communication means 14a, 14b, 14c is provided with connection terminals 16a, 16b, 16c connected to the control device of the outdoor unit 10 via the communication line 15, and the communication line 15 is connected to any one of the terminals 16a, 16b, 16c.
  • the communication line 15 is configured as a dedicated communication line dedicated for communication.
  • Each communication means 14a, 14b, 14c is connected to a common output port 17a and a common input port 17b of the microcomputer 13 by a bus line. Therefore, a control information signal having a certain communication speed is input to the input port 17b, and an acknowledgment signal for determining the communication means 14a, 14b, 14c is output from the output port 17a. If the communication means is determined, subsequent communication is executed by the determined communication means.
  • the communication means 14a, 14b, and 14c can be connected to the corresponding output ports 17a, 17c, and 17d.
  • the input / output ports 17a and 17b are shared as in the present embodiment shown in FIG. 1, the input / output ports of the microcomputer 13 can be saved, and the shortage of ports of the microcomputer 13 can be solved.
  • a communication speed recognition function unit 18 is constructed in the microcomputer 13, and a control information signal having a certain communication speed is input to the communication speed recognition function unit 18 from the input port 17b.
  • the communication speed recognition function unit 18 has a function of recognizing from the communication speed which of the communication terminals 14a, 14b, and 14c the connection terminals 16a, 16b, and 16c are connected to the communication line 15.
  • the communication speed recognition function unit 18 recognizes the communication speed of the control information signal according to the control flow shown in FIG. Hereinafter, the operation of the control flow will be described with reference to FIG.
  • Step S10 the reading timing corresponding to the fastest first communication speed among the communication units 14a, 14b, and 14c is set and waited.
  • the setting of a plurality of communication speeds is determined in advance at the design stage of the air conditioner, and the communication speeds are stored in the ROM area portion of the microcomputer 13. In this embodiment, three communication speeds are set, and a relationship of first communication speed> second communication speed> third communication speed is given.
  • step S11 it is determined whether or not the control information signal sent from the outdoor unit 10 via the communication line 15 can be read at the read timing WT1 corresponding to the first communication speed set in step S10.
  • FIG. 4 shows a case where the fastest first communication speed is set and waiting. Since the control information signal SF having a high communication speed is read at the read timing WT1 corresponding to the first communication speed with respect to the read timing WT1 set in step S10, the communication speed of the current control information signal is high. It can be recognized as a control information signal SF.
  • control information signal SL having a low communication speed is read with different information with respect to the reading timing, the current control information signal is not recognized as the control information signal SF having a high communication speed.
  • step S11 If it is determined in step S11 that the control information signal SF has a high communication speed, the process proceeds to step S12. If it is determined that the control information signal SF does not have a high communication speed, the process proceeds to step S14.
  • ⁇ Step S12 Since the control information signal SF with a high communication speed is recognized in step S11, the first communication speed is determined in step S12. Therefore, the control information signal sent from the outdoor unit 10 can be recognized as the control information signal SF having a high communication speed.
  • step S13 In step S13, the communication means corresponding to the recognized first communication speed is determined as a regular communication means and a confirmation response signal is sent, and the subsequent communication with the outdoor unit 10 is executed at this first communication speed. Will be. When the transmission of the confirmation response signal is finished, the control flow is finished by exiting to the end.
  • step S14 If it is recognized in step S11 that the current control information signal is not a control information signal having a high communication speed, a read timing corresponding to a second communication speed slower than the current first communication speed is set in step S14. And wait.
  • step S15 Next, in step S15, it is determined whether or not the control information signal sent from the outdoor unit 10 via the communication line 15 can be read at the read timing WT2 corresponding to the second communication speed set in step S14.
  • FIG. 5 shows a case where the communication speed is set to be slow and the apparatus is on standby.
  • control information signal SL having a slow communication speed with respect to the read timing WT2 set in step S14 is read at the read timing WT2 corresponding to the second communication speed, the communication speed of the current control information signal is It can be recognized as a control information signal SL of the second communication speed.
  • control information signal SF of the first communication speed having a high communication speed or the control information signal of the third communication speed slower than the reading timing set in step S14 different information with respect to this reading timing. Therefore, the current control information signal is not recognized as the control information signal of the second communication speed.
  • step S15 If it is determined in step S15 that the communication speed is the control information signal of the second communication speed, the process proceeds to step S16. If it is determined that the communication information is not the control information signal of the second communication speed, the process proceeds to step S18. .
  • Step S16 Since the communication speed is recognized as the control information signal SL of the second communication speed in step S15, this communication speed is determined in step S16. Therefore, the control information signal sent from the outdoor unit 10 can be recognized as the control information signal SL of the second communication speed.
  • step S17 >> In step S17, the communication means corresponding to the recognized communication speed is determined as a regular communication means and an acknowledgment signal is sent, and the subsequent communication with the outdoor unit 10 is executed at this communication speed. When the transmission of the confirmation response signal is finished, the control flow is finished by exiting to the end.
  • step S18 When it is recognized in step S15 that the current control information signal is not the control information signal of the second communication speed, in step S18, the read timing corresponding to the third communication speed slower than the current second communication speed is set. Set and wait.
  • step S19 Next, in step S19, it is determined whether or not the control information signal sent from the outdoor unit 10 via the communication line 15 can be read at the read timing corresponding to the third communication speed set in step S18. This determination is performed by the same method as that shown in FIGS.
  • the control information signal communicated at the third communication speed is read at this read timing WT3. Therefore, the communication speed of the current control information signal can be recognized as the control information signal of the third communication speed. On the contrary, in the control information signals of the first communication speed and the second communication speed that are faster than the third communication speed, different information is read with respect to the reading timing, so that the current control information signal is the third control information signal. It is not recognized as a control information signal of the communication speed.
  • step S19 If it is determined in step S19 that the communication speed is the control information signal for the third communication speed, the process proceeds to step S20. If it is determined that the communication information is not the control information signal for the third communication speed, the process proceeds to step S22. .
  • ⁇ Step S20 Since the communication speed is recognized as the control information signal of the third communication speed in step S19, this communication speed is determined in step S20. Therefore, the control information signal sent from the outdoor unit 10 can be recognized as the control information signal of the third communication speed.
  • step S21 In step S21, the communication means corresponding to the recognized communication speed is determined as a regular communication means and an acknowledgment signal is sent, and the subsequent communication with the outdoor unit 10 is executed at this communication speed. When the transmission of the confirmation response signal is finished, the control flow is finished by exiting to the end.
  • step S22 it is determined whether or not the flow of passing step S11 ⁇ step S15 ⁇ step S19 ⁇ step S22 has repeated a predetermined specified number of times. If the specified number of times is repeated, the process proceeds to step S23. If the specified number of times is not reached, the process returns to step S10 to repeat the same operation.
  • the prescribed number is arbitrary, but if the prescribed number is large, the probability that the communication speed can be recognized even if the communication state is bad can be improved. If it is not necessary to repeat the specified number of times, the process may proceed to step S23 based on the first determination in step S19 as indicated by a broken line. ⁇ Step S23 >> In step S11, since the control information signal sent from the outdoor unit 10 could not be read despite the repetition of the specified number of times, it is determined that the communication is abnormal and an alarm is issued. After that, the control flow is terminated by exiting to the end.
  • control steps S14 to S17 may be provided corresponding to the type of communication speed.
  • the control device 12 of the indoor unit 11 that communicates with the outdoor unit 10 includes a dedicated line communication in which a power line communication unit 20 using a power line and a dedicated communication line having a communication speed different from the power line communication unit 20 are connected.
  • Means 21 are included.
  • the dedicated line communication means 21 includes a dedicated communication circuit.
  • Each of the communication means 20 and 21 includes connection terminals 22a and 22b for connecting the communication line 15 with the outdoor unit 10, and the communication line 15 is connected to one of the connection terminals 22a and 22b.
  • the power line communication means 20 using the power line is provided with a signal conversion unit 20a using a photocoupler (PHT CUP), which converts a high power signal into a weak power signal and converts it into a signal level that can be handled by the microcomputer 13. Yes.
  • PHT CUP photocoupler
  • the communication means 20 and 21 are connected to the common output port 17a and the common input port 17b of the microcomputer 13 by bus lines. Therefore, the control information signal having the communication speed of either of the communication means 20 and 21 is input to the input port 17b, and the confirmation response signal for determining any of the communication means 20 and 21 is output from the output port. . If the communication means is determined, subsequent communication is executed by the determined communication means.
  • a power line communication means 20 using a power line and a dedicated line communication means 21 using a dedicated circuit are connected to a common input port 17b, and an output port 17e is connected between the power line communication means 20 and the input port 17b.
  • an open / close transistor 24 (hereinafter referred to as transistor 24) that can be turned on / off by a control signal from the output port 17f is provided between the dedicated line communication means 21 and the input port 17b.
  • the functions of the transistors 23 and 24 are not affected by an unintended or unintended communication signal from the unused power line communication unit 20 or the dedicated line communication unit 21 after the communication speed is recognized. Because.
  • a communication speed recognition function unit 25 is constructed in the microcomputer 13 as in the first embodiment.
  • a control information signal having a certain communication speed is input to the communication speed recognition function unit 25 from the input port 17b. Yes.
  • the communication speed recognition function unit 25 has a function of recognizing from the communication speed whether the communication line 15 is connected to any one of the connection terminals 22a and 22b of the communication means 20 and 21.
  • the communication speed recognition function unit 25 recognizes the communication speed of the control information signal according to the control flow shown in FIG. Hereinafter, the operation of the control flow will be described with reference to FIG.
  • Step S30 a control signal for turning on the transistors 23 and 24 is sent from the output ports 17e and 17f of the microcomputer 13, thereby turning on the transistors 23 and 24. Therefore, both the power line communication means 20 using the power line and the dedicated line communication means 21 using the dedicated circuit are connected to the input port 17b of the microcomputer 13. For this reason, a control information signal is input from the power line communication means 20 or the dedicated line communication means 21.
  • Step S31 In step S31, it is assumed that the communication line 15 is connected to the connection terminal 22b of the dedicated line communication means 21, and the apparatus waits at a read timing that allows communication at the communication speed of the dedicated line communication means 21.
  • the dedicated line communication means 21 has a higher communication speed than the power line communication means 20 using the power line, and is more likely to be used.
  • step S32 if the control information signal sent from the outdoor unit 10 can be read at the communication speed of the dedicated line communication means 21 set in step S31, the process proceeds to step S33. On the other hand, if it cannot be read, the process proceeds to step S36.
  • the communication speed recognition function unit 25 stands by at the communication speed of the dedicated line communication means 21, so that it is the same as in the first embodiment.
  • the control information signal of the communication speed of the dedicated line communication means 21 can be read.
  • Step S33 Since the current control information signal is recognized as the control information signal from the leased line communication means 21 in step S32, the communication speed at this time is determined in step S33. Therefore, the control information signal sent from the outdoor unit 10 can be recognized as the control information signal of the dedicated line communication means 21.
  • the process proceeds to step S34.
  • Step S34 since the current communication speed is determined by the communication speed of the dedicated line communication unit 21, an OFF signal is output from the output port 17e to the transistor 23 disposed between the power line communication unit 20 and the input port 17b. 23 is turned OFF, and the connection between the power line communication means 20 and the input port 17b is cut off. Thereby, since an unintended or unintended communication signal from the power line communication means 20 is not transmitted to the input port 17b, the reliability of communication can be improved. When the OFF control of the transistor 23 is completed, the process proceeds to step S35.
  • Step S35 a confirmation response signal is sent using the recognized dedicated line communication means 21 as a normal communication means, and the subsequent communication with the outdoor unit 10 is executed at the communication speed of the dedicated line communication means 21.
  • the control flow is finished by exiting to the end.
  • step S36 If it is recognized in step S32 that the current control information signal is not a control information signal from the dedicated line communication means 21, in step S36, the read timing corresponding to the power line communication means 20 using the power line is set. stand by.
  • step S37 if the control information signal sent from the outdoor unit 10 can be read at the communication speed of the power line communication means 20 set in step S36, the process proceeds to step S38. On the other hand, if it cannot be read, the process proceeds to step S41.
  • the communication speed recognition function unit 25 waits at the communication speed of the power line communication unit 20. Therefore, the control information signal of the communication speed of the power line communication means 20 can be read as in the first embodiment.
  • the communication speed recognition function unit 25 stands by at the communication speed of the power line communication hand 20, so that it is the same as in the first embodiment. In addition, the control information signal of the communication speed of the dedicated line communication means 21 cannot be read.
  • Step S38 Since the current control information signal is recognized as the control information signal from the power line communication means 20 in step S37, the communication speed at this time is determined in step S38. Therefore, the control information signal sent from the outdoor unit 10 can be recognized as the control information signal of the power line communication means 20.
  • the process proceeds to step S39.
  • ⁇ Step S39 >> In step S39, since the current communication speed is determined by the communication speed of the power line communication means 20, the transistor 24 is output by outputting an OFF signal from the output port 17e to the transistor 24 disposed between the dedicated line communication means 21 and the input port 17b. 24 is turned off, and the connection between the dedicated line communication means 21 and the input port 17b is cut off.
  • Step S40 a confirmation response signal is sent with the recognized power line communication means 20 as a regular communication means, and the subsequent communication with the outdoor unit 10 is executed at the communication speed of the power line communication means 20.
  • the control flow is finished by exiting to the end.
  • step S41 it is determined whether or not the flow from step S32 to step S37 to step S41 has repeated a predetermined specified number of times. If the specified number of times is repeated, the process proceeds to step S42. If the specified number of times is not reached as in the first embodiment, the process returns to step S31 and the same operation is repeated. If the number of repetitions is large, the probability that the communication speed can be recognized even if the communication state is bad can be improved.
  • Step S42 If it is not necessary to repeat the specified number of times, the process may proceed to step S42 by the first determination in step S19 as indicated by a broken line.
  • Step S42 the control information signal sent from the outdoor unit 10 could not be read even though the specified number of times was repeated, so it was determined that there was a communication error, an alarm was issued, and then the control flow exited to the end. Exit.
  • the control unit of the indoor unit is connected to the power line communication unit and the dedicated line communication unit having different communication speeds
  • the communication line from the outdoor unit is the communication unit of either the power line communication unit or the dedicated line communication unit.
  • connection opening / closing transistor is provided between each communication means and the input port, the connection with the input port is blocked except for the recognized communication means. As a result, after the recognition of the communication speed is completed, it is not affected by an unintended or unexpected communication signal from a communication means that is not used.
  • the control device 12 of the indoor unit 11 that performs communication with the outdoor unit 10 includes a dedicated line communication in which a power line communication unit 20 using a power line and a dedicated communication line having a communication speed different from that are connected.
  • Means 21 are included.
  • the dedicated line communication means 21 includes a dedicated communication circuit.
  • Each of the communication means 20 and 21 includes connection terminals 22a and 22b for connecting the communication line 15 with the outdoor unit 10, and the communication line 15 is connected to one of the connection terminals 22a and 22b.
  • the power line communication means 20 using a power line includes a signal conversion unit 20a using a photocoupler (PHT CUP), which converts a high power signal into a weak power signal and converts it into a signal level that can be handled by the microcomputer 13.
  • PHT CUP photocoupler
  • each communication means 20, 21 is connected to a common input port 17b of the microcomputer 13 by a bus line, and either one of the power line communication means 20 and the dedicated line communication means 21 is connected to the input port 17b.
  • the control information signal is input.
  • the output port is individually connected to each communication means 20, 21, the power line communication means 20 is connected to the output port 17a, and the dedicated line communication means 21 is connected to the output port 17g.
  • Signals for determining the power line communication means 20 and 21 are individually output from 17a and 17g. This point is different from the second embodiment. Thus, by separating the output ports, it is possible to reliably determine the communication means.
  • the power line communication means 20 and the dedicated line communication means 21 are connected to a common input port 17b, and a control signal from the output port 17e is provided between the power line communication means 20 using the power line and the input port 17b.
  • a transistor 23 that can be turned ON / OFF is provided.
  • the transistor 24 in the second embodiment is omitted between the dedicated line communication means 21 using a dedicated circuit and the input port 17b. This point is also different from the second embodiment.
  • the function of the transistor 23 is the same as that of the second embodiment. Since the transistor 24 is omitted in this way, the circuit configuration of the control device 13 can be simplified and the control flow can be simplified. Since the transistor 24 is omitted, in the flowchart shown in FIG. 7, the instruction for the ON operation of the transistor 24 in step S30 and the instruction for the OFF operation of the transistor 24 in step S39 can be omitted. Since other configurations are the same as those in the second embodiment, further description is omitted.
  • the present invention recognizes from a communication speed of a control information signal a plurality of communication means with different communication speeds in an indoor unit control device and which communication means is connected to a communication line from an outdoor unit. And a communication means determining means for determining communication means for performing subsequent communication based on the recognized communication speed.
  • the communication speed of the input signal can be recognized without providing a manual changeover switch. Therefore, it is possible to solve at least one of the problems that the construction work is complicated, the changeover switch setting error is likely to occur, and the product price is high.
  • this invention is not limited to the above-mentioned Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Air Conditioning Control Device (AREA)
  • Selective Calling Equipment (AREA)

Abstract

 手動切り換えスイッチを設けなくも入力信号の通信速度を認識することができる新規な空気調和機を提供することにある。 室内機11の制御装置12に通信速度が異なる複数の通信手段14a~14cと、室外機10からの通信線15がいずれの通信手段に接続されたかを制御情報信号の通信速度から認識する通信速度認識手段18と、認識された通信速度に基づいて以後の通信を行う通信手段を確定する通信手段確定手段18を設けた。これによれば、手動切り換えスイッチを設けなくも入力信号の通信速度を認識することができる。このため、施工作業が煩雑である、切り換えスイッチの設定誤りが生じやすい、製品価格が高くなるという課題の少なくとも1つ以上の課題を解決することができる。

Description

空気調和機
 本発明は居住空間等の温度や湿度を制御する空気調和機に係り、特に、室外機と室内機とで構成された分離型の空気調和機に関するものである。
 このような分離型の空気調和機においては、空気調和機全体として最適な動作をさせるために、室内機の制御装置と室外機の制御装置との間で双方向通信を行って情報を伝達することが必要である。例えば、室内機の制御装置から室外機の制御装置へは、リモコンを介した使用者による運転要求、設定温度の変更、タイマ、運転モードの変更、停止要求等の指令や、温度検出回路等から出力される室内温度や、室外機の冷媒圧縮機のON/OFF指令等を送信する。
 また、室外機の制御装置から室内機の制御装置へは、室外機の冷媒圧縮機の回転数や、室外機の故障情報や、室外の温度情報等を送信する。そして、これらの制御装置の夫々は運転状況や設定温度などの制御情報信号をやりとりして一体的に動作するように制御されている。
 このような空気調和機は、例えば特開2005-61676号公報(特許文献1)等で提案されているが、この他にも多くの特許文献等で提案されている。ところで、上述したような制御情報信号の伝送方法として、室外機と室内機の制御装置を専用信号線で接続して伝送信号である信号パルスを所定の周波数で伝送する方式が知られている。また、これに加えて室外機と室内機の制御装置に電力を供給する電力線の交流電流を利用して情報を伝送する方式を併用するものも知られている。
 一般的に、空気調和機の室外機と室内機の夫々の制御装置の通信手段として、通信速度の異なる少なくとも2つの通信手段が主に使用されており、従来は通信速度の切り換え方法として手動切り換えスイッチを用いて切り換えていた。例えば、室外機の制御装置或いは室内機の制御装置、或いは室外機及び室内機の制御装置に手動切り換えスイッチを設け、空気調和機の施工業者等によって選択された通信速度に合わせて夫々の手動切換えスイッチを切り換えて通信手段を選択していた。
特開2014-27710号公報
 したがって、空気調和機の室外機と室内機の制御装置間の通信手段として、通信速度の異なる少なくとも2つの通信手段の内の一方が使用される空気調和機においては、通信速度が異なるいずれかの制御情報信号の入力が想定されることになる。このため、マイクロコンピュータを主たる構成要素とする室内機の制御装置は、手動切り換えスイッチの設定情報を読み込むことで制御情報信号の通信速度を決定していた。
 このように、空気調和機の施工業者等は通信速度を選択する切り換えスイッチの切り換え作業を行う必要があり、施工作業が煩雑であるという課題や、切り換えスイッチの設定誤りが生じやすく、空気調和機の正常な稼働が確保できないという課題があった。また、手動切り換えスイッチやこの切り換えスイッチに関連する電気回路を室外機や室内機の制御装置に設ける必要があることから製品価格が高くなり、製品競争力が低くなるという課題もあった。
 本発明の目的は、手動切り換えスイッチを設けなくも制御情報信号の通信速度を認識することができる新規な空気調和機を提供することにある。
 本発明の特徴は、室内機の制御装置に、通信速度が異なる複数の通信手段と、室外機からの通信線がいずれの通信手段に接続されたかを制御情報信号の通信速度から認識する通信速度認識手段と、認識された通信速度に基づいて以後の通信を行う通信手段を確定する通信手段確定手段を設けた、ところにある。
 本発明によれば、手動切り換えスイッチを設けなくも入力信号の通信速度を認識することができる。このため、施工作業が煩雑である、切り換えスイッチの設定誤りが生じやすい、製品価格が高くなるという課題の少なくとも1つ以上の課題を解決することができる。
本発明の第1の実施形態になる空気調和機の構成図である。 第1の実施形態の変形例になる空気調和機の構成図である。 第1の実施形態で実行される通信速度を認定する制御フローを示すフローチャート図である。 図2に示す制御フローにおける通信速度の第1の認定の方法を説明する説明図である。 図2に示す制御フローにおける通信速度の第2の認定の方法を説明する説明図である。 本発明の第2の実施形態になる空気調和機の構成図である。 第2の実施形態で実行される通信速度を認定する制御フローを示すフローチャート図である。 本発明の第3の実施形態になる空気調和機の構成図である。
 以下、本発明の実施形態について図面を用いて詳細に説明するが、本発明は以下の実施形態に限定されることなく、本発明の技術的な概念の中で種々の変形例や応用例をもその範囲に含むものである。
 本発明の第1の実施形態について図1乃至図5に基づき詳細に説明する。図1において、参照番号10は空気調和機を構成する室外機であり、この室外機10で温度や流量を制御された冷媒は、これも空気調和機を構成する室内機11に図示しない配管によって供給されている。室内機11では内装された送風機によって冷媒と室内空気とを熱交換して、温度や湿度が制御された空気を室内に供給するようにしている。このような空気調和機の構成やその動作は良く知られているので、これ以上の説明は省略する。
 そして、図1にある通り、室内機11には制御装置12が内装されている。制御装置12は周知の通り空調和機を稼働させるためのものであり、この構成、動作も良く知られているので、本実施例に関係しないところはその説明を省略する。
 制御装置12はマイクロコンピュータ13を主たる構成要素とするものであり、このマイクロコンピュータ13は、制御プログラムにしたがって演算処理を実行する演算部と、制御プログラムや演算に使用する定数等を記憶したROM領域部と、プログラムの実行過程で必要なデータを一時的に記憶するワークエリアとしてのRAM領域部を備えている。更にセンサ信号やボタン信号を取り込むと共に駆動アクチュエータに駆動信号を供給するI/OLSI等を備えている。マイクロコンピュータ13は制御プログラムによって種々の演算処理を行っているが、その演算は所定の制御機能を実行するためのものであり、本実施例では演算によって実行される処理を機能として捉えるものとする。
 制御装置12には、通信速度が異なる複数の通信手段14a、14b、14cが備えられている。本実施例では3つの通信手段14a、14b、14cを例示しているが、少なくとも2つ以上の通信手段を備えているものである。尚、通信速度は空気調和機の設計段階で予め決めてあるので、この通信速度に対応した通信手段14a、14b、14cが制御装置12に準備されるものである。各通信手段14a、14b、14cには、室外機10の制御装置と通信線15を介して接続する接続端子16a、16b、16cを備え、通信線15はいずれかの端子16a、16b、16cに接続されるものである。尚、本実施例では通信線15は通信専用の専用通信線として構成されている。
 ここで、本実施例では従来のような手動切り換えスイッチを設けていないため、手動切り換えスイッチによる設定情報が室内機11側の制御装置12に入力されないものである。このため、通信線15によって通信される制御情報信号の通信速度は制御装置12にとって不知である。
 手動切り換えスイッチを設けないことによって、[発明が解決しようとする課題]で述べた、施工作業が煩雑である、切り換えスイッチの設定誤りが生じやすい、製品価格が高くなるといった課題の少なくとも1つ以上の課題を解決することができる。しかしながら、制御情報信号の通信速度は制御装置12にとって不知であるので、この制御情報信号の通信速度を判断することが必要となる。本実施例はこの通信速度を制御装置12で認識することを特徴とするものであり、これについての認識方法は図3乃至図5に基づき説明する。
 各通信手段14a、14b、14cは、マイクロコンピュータ13の共通の出力ポート17aと、共通の入力ポート17bにバスラインによって接続されている。したがって、入力ポート17bには、或る通信速度を有した制御情報信号が入力され、出力ポート17aから通信手段14a、14b、14cを確定する確認応答信号が出力される。通信手段が確定されれば、以後の通信はこの確定された通信手段によって実行されることになる。
 尚、図2に示すように、通信手段14a、14b、14cを夫々に対応した出力ポート17a、17c、17dに接続することもできる。ただ、図1に示す本実施例のように入出力ポート17a、17bを共通化したことによって、マイクロコンピュータ13の入出力ポートを節約でき、マイクロコンピュータ13のポート不足を解消できる効果がある。
 マイクロコンピュータ13には通信速度認識機能部18が構築されており、この通信速度認識機能部18に入力ポート17bから、或る通信速度を有した制御情報信号が入力されている。この通信速度認識機能部18は、通信線15が各通信手段14a、14b、14cのいずれの接続端子16a、16b、16cに接続されたかを通信速度から認識する機能を備えている。通信速度認識機能部18は図3に示す制御フローによって制御情報信号の通信速度を認識するものである。以下、制御フローの動作を図3に基づき説明する。
 図3において、この制御フローは電源投入に応じた起動タイミングで実行されるか、電源投入後の所定の起動タイミングが到来すると実行されるものである。本実施例では電源投入による起動タイミングに対応して図3のフローチャートが起動されている。
≪ステップS10≫
 ステップS10では、通信手段14a、14b、14cのなかで最も速い第1の通信速度に対応した読み込みタイミングを設定して待機する。複数の通信速度の設定は空気調和機の設計段階で予め決められており、この通信速度はマイクロコンピュータ13のROM領域部に記憶されている。本実施例では、3つの通信速度が設定されており、第1の通信速度>第2の通信速度>第3の通信速度の関係を与えられている。そして、最初に待機する通信速度を最も速く設定すると、通信速度認識の処理が早く終了する効果がある。本実施例では、第1の通信速度⇒第2の通信速度⇒第3の通信速度の順で認識を行うようにしている。
≪ステップS11≫
 次にステップS11では、室外機10から通信線15を介して送られてきた制御情報信号を、ステップS10で設定した第1の通信速度に対応した読み込みタイミングWT1で読み取れるかどうかを判断する。図4は最も速い第1の通信速度を設定して待機している場合を示している。ステップS10によって設定された読み込みタイミングWT1に対して、通信速度が速い制御情報信号SFはこの第1の通信速度に対応した読み込みタイミングWT1で読みこまれるので、現在の制御情報信号の通信速度は速い制御情報信号SFと認識することができる。
 一方、通信速度が遅い制御情報信号SLは、この読み込みタイミングに対して異なった情報が読み込まれるので、現在の制御情報信号が通信速度の速い制御情報信号SFと認識しないことになる。
 このステップS11で、通信速度が速い制御情報信号SFと判断されるとステップS12に進み、通信速度が速い制御情報信号SFではないと判断されるとステップS14に進むことになる。
≪ステップS12≫
 ステップS11で通信速度が速い制御情報信号SFと認識されたため、ステップS12ではこの第1の通信速度を確定する。したがって、室外機10から送られてくる制御情報信号を通信速度が速い制御情報信号SFと認識することができる。
≪ステップS13≫
 ステップS13では、認識された第1の通信速度に対応した通信手段を正規の通信手段として確定して確認応答信号を送り、以後の室外機10との通信はこの第1の通信速度で実行されることになる。確認応答信号の送出が終了するとエンドに抜けてこの制御フローを終了する。
 一方、ステップS11で現在の制御情報信号が通信速度の速い制御情報信号SFと認識しないとステップS14に進むことになる。
≪ステップS14≫
 ステップS11で現在の制御情報信号が通信速度の速い制御情報信号ではないと認識されると、ステップS14では、現在の第1の通信速度より遅い第2の通信速度に対応した読み込みタイミングを設定して待機する。
≪ステップS15≫
 次にステップS15では、室外機10から通信線15を介して送られてきた制御情報信号を、ステップS14で設定した第2の通信速度に対応した読み込みタイミングWT2で読み取れるかどうかを判断する。図5は通信速度を遅く設定して待機している場合を示している。ステップS14によって設定された読み込みタイミングWT2に対して、通信速度が遅い制御情報信号SLはこの第2の通信速度に対応した読み込みタイミングWT2で読みこまれるので、現在の制御情報信号の通信速度は、第2の通信速度の制御情報信号SLと認識することができる。
 逆に、通信速度が速い第1の通信速度の制御情報信号SF、或いはステップS14で設定された読み込みタイミングより更に遅い第3の通信速度の制御情報信号では、この読み込みタイミングに対して異なった情報が読みこまれるので、現在の制御情報信号が第2の通信速度の制御情報信号と認識しないことになる。
 このステップS15で、通信速度が第2の通信速度の制御情報信号と判断されるとステップS16に進み、第2の通信速度の制御情報信号ではないと判断されるとステップS18に進むことになる。
≪ステップS16≫
 ステップS15で通信速度が第2の通信速度の制御情報信号SLと認識されたため、ステップS16ではこの通信速度を確定する。したがって、室外機10から送られてくる制御情報信号を第2の通信速度の制御情報信号SLと認識することができる。
≪ステップS17≫
 ステップS17では、認識された通信速度に対応した通信手段を正規の通信手段として確定して確認応答信号を送り、以後の室外機10との通信はこの通信速度で実行されることになる。確認応答信号の送出が終了するとエンドに抜けてこの制御フローを終了する。
 一方、ステップS15で現在の制御情報信号が第2の通信速度の制御情報信号と認識しないとステップS18に進むことになる。
≪ステップS18≫
 ステップS15で現在の制御情報信号が第2の通信速度の制御情報信号ではないと認識されると、ステップS18では、現在の第2の通信速度より遅い第3の通信速度に対応した読み込みタイミングを設定して待機する。
≪ステップS19≫
 次にステップS19では、室外機10から通信線15を介して送られてきた制御情報信号を、ステップS18で設定した第3の通信速度に対応した読み込みタイミングで読み取れるかどうかを判断する。この判断は図4や図5に示した方法と同じ方法で行うものである。ステップS18によって読み込みタイミングWT3(図示せず)が設定されているので、第3の通信速度で通信される制御情報信号はこの読み込みタイミングWT3で読みこまれる。したがって、現在の制御情報信号の通信速度は、第3の通信速度の制御情報信号と認識することができる。逆に、第3の通信速度より早い第1の通信速度と第2の通信速度の制御情報信号では、この読み込みタイミングに対して異なった情報が読みこまれるので、現在の制御情報信号が第3の通信速度の制御情報信号と認識しないことになる。
 このステップS19で、通信速度が第3の通信速度の制御情報信号と判断されるとステップS20に進み、第3の通信速度の制御情報信号ではないと判断されるとステップS22に進むことになる。
≪ステップS20≫
 ステップS19で通信速度が第3の通信速度の制御情報信号と認識されたため、ステップS20ではこの通信速度を確定する。したがって、室外機10から送られてくる制御情報信号を第3の通信速度の制御情報信号と認識することができる。
≪ステップS21≫
 ステップS21では、認識された通信速度に対応した通信手段を正規の通信手段として確定して確認応答信号を送り、以後の室外機10との通信はこの通信速度で実行されることになる。確認応答信号の送出が終了するとエンドに抜けてこの制御フローを終了する。
 一方、ステップS19で現在の制御情報信号が第3の通信速度の制御情報信号と認識しないとステップS22に進むことになる。つまり、このステップS22まで進むと現在の通信線15から送られてくる制御情報は誤った通信速度の情報と見做されるものである。
≪ステップS22≫
 ステップS22では、ステップS11⇒ステップS15⇒ステップS19⇒ステップS22を経過する流れが所定の規定回数を繰り返したかどうかが判断される。規定回数の繰り返しがあるとステップS23に進み、規定回数の繰り返しに満たない場合はステップS10に戻り、同じ動作を繰り返すものである。この規定回数は任意であるが、規定回数が多ければ、通信状態が悪くても通信速度の認識ができる確率を向上することができるものである。尚、規定回数だけ繰り返す必要がない場合は、破線で示すように1度目のステップS19の判断でステップS23に進めても良いものである。
≪ステップS23≫
 ステップS11では、規定回数の繰り返したにも関わらず室外機10から送られてきた制御情報信号を読み取れなかったため、通信異常であると判断してアラームを発報する。その後エンドに抜けて制御フローを終了する。
 ここで、本実施例では3種類の通信速度を例にして説明しているが、これ以上の通信速度の種類がある場合は、ステップS15とステップS18の間に、他の通信速度を認識する制御ステップS14~S17を、通信速度の種類に対応して設けてやれば良いものである。
 本実施例によれば、室内機の制御装置に通信速度が異なる複数の通信手段と、室外機からの通信線がいずれの通信手段に接続されたかを制御情報信号の通信速度から認識する通信速度認識手段と、認識された通信速度に基づいて以後の通信を行う通信手段を確定する通信手段確定手段を設けたことによって、手動切り換えスイッチを設けなくも入力信号の通信速度を認識することができるようになる。このため、施工作業が煩雑である、手動切り換えスイッチの設定誤りが生じやすい、製品価格が高くなるという課題を解決することができる。
 次に、本発明の第2の実施形態を図6及び図7を用いて説明する。図6において、室外機10との通信を行う室内機11の制御装置12は、電源線を利用した電源線通信手段20と、これとは通信速度が異なる専用通信線が接続される専用線通信手段21を有している。ここで、専用線通信手段21は専用の通信回路を備えている。各通信手段20、21は室外機10との通信線15を接続する接続端子22a、22bを備えており、通信線15はいずれかの接続端子22a、22bに接続されるものである。
 ここで、電源線を利用した電源線通信手段20はフォトカプラ(PHT CUP)による信号変換部20aを備えており、強電信号を弱電信号に変換してマイクロコンピュータ13で取り扱える信号レベルに変換している。
 各通信手段20、21は図1と同様に、マイクロコンピュータ13の共通の出力ポート17aと、共通の入力ポート17bにバスラインによって接続されている。したがって、入力ポート17bには、通信手段20、21のいずれかの通信速度を有した制御情報信号が入力され、出力ポートから通信手段20、21のいずれかを確定する確認応答信号が出力される。通信手段が確定されれば、以後の通信はこの確定された通信手段によって実行されることになる。
 そして、電源線を利用した電源線通信手段20と専用回路を用いた専用線通信手段21は共通の入力ポート17bに接続され、電源線通信手段20と入力ポート17bの間には、出力ポート17eからの制御信号によりON/OFFできる開閉トランジスタ23(以下トランジスタ23と表記する)が設けられている。同様に、専用線通信手段21と入力ポート17bの間には、出力ポート17fからの制御信号によりON/OFFできる開閉トランジスタ24(以下トランジスタ24と表記する)が設けられている。
 これらのトランジスタ23、24の機能は、通信速度の認識が完了した後に、使用しない電源線通信手段20或いは専用線通信手段21からの意図しない、或いは想定されない通信信号の影響を受けないようにするためである。
 マイクロコンピュータ13には実施例1と同様に通信速度認識機能部25が構築されており、この通信速度認識機能部25に入力ポート17bから、或る通信速度を有した制御情報信号が入力されている。この通信速度認識機能部25は、通信線15が各通信手段20、21の何れかの接続端子22a、22bに接続されたかを通信速度から認識する機能を備えている。通信速度認識機能部25は図7に示す制御フローによって制御情報信号の通信速度を認識するものである。以下、制御フローの動作を図7に基づき説明する。
 図7において、この制御フローも実施例1と同様に電源投入に応じた起動タイミングで実行されるか、電源投入後の所定の起動タイミングが到来すると実行されるものである。本実施例では電源投入による起動タイミングに対応して図7のフローチャートが起動されている。
≪ステップS30≫
 ステップS30では、マイクロコンピュータ13の出力ポート17e、17fからトランジスタ23、24をONするための制御信号を送り、これによってトランジスタ23、24をONする。したがって、電源線を利用した電源線通信手段20と、専用回路を用いた専用線通信手段21の両方がマイクロコンピュータ13の入力ポート17bと接続される。このため、電源線通信手段20、或いは専用線通信手段21から制御情報信号が入力されることになる。
≪ステップS31≫
 ステップS31では、専用線通信手段21が有している接続端子22bに通信線15が接続されていると仮定し、専用線通信手段21の通信速度で通信できる読み込みタイミングで待機する。ここで、専用線通信手段21の方が電源線を利用した電源線通信手段20よりも通信速度が速く、使用する可能性も高いため、通信速度認識の処理が早く終了する効果がある。
≪ステップS32≫
 次にステップS32では、室外機10から送られてきた制御情報信号を、ステップS31で設定した専用線通信手段21の通信速度で読み取れた場合にはステップS33へ進む。一方、読み取れなかった場合にはステップS36へ進むことになる。入力ポート17bに専用線通信手段21の通信速度の制御情報信号が入力されると、通信速度認識機能部25は専用線通信手段21の通信速度で待機しているため、実施例1と同様に専用線通信手段21の通信速度の制御情報信号を読み取ることができる。
 これに対して、電源線を利用した電源線通信手段20の通信速度の制御情報信号が入力されると、通信速度認識機能部25は専用通信手21の通信速度で待機しているため、実施例1と同様に電源線通信手段20の通信速度の制御情報信号を読み取れないものとなる。
≪ステップS33≫
 ステップS32で現在の制御情報信号が専用線通信手段21からの制御情報信号と認識されたため、ステップS33ではこの時の通信速度を確定する。したがって、室外機10から送られてくる制御情報信号を専用線通信手段21の制御情報信号と認識することができる。この通信速度の確定が完了するとステップS34に進む。
≪ステップS34≫
 ステップS34では、現在の通信速度が専用線通信手段21の通信速度で確定したため、電源線通信手段20と入力ポート17bの間に配置したトランジスタ23に出力ポート17eからOFF信号を出力することによってトランジスタ23をOFFし、電源線通信手段20と入力ポート17bの接続を遮断する。これにより、電源線通信手段20からの意図しない、或いは想定されない通信信号が入力ポート17bへ伝達されないため通信の信頼性を向上することができる。このトランジスタ23のOFF制御が完了するとステップS35に進む。
≪ステップS35≫
 ステップS35では、認識された専用線通信手段21を正規の通信手段として確認応答信号を送り、以後の室外機10との通信はこの専用線通信手段21の通信速度で実行されることになる。確認応答信号の送出が終了するとエンドに抜けてこの制御フローを終了する。
 一方、ステップS32で現在の制御情報信号が専用線通信手段21の制御情報信号と認識しないとステップS36に進むことになる。
≪ステップS36≫
 ステップS32で現在の制御情報信号が専用線通信手段21からの制御情報信号ではないと認識されると、ステップS36では、電源線を利用した電源線通信手段20に対応した読み込みタイミングを設定して待機する。
≪ステップS37≫
 次にステップS37では、室外機10から送られてきた制御情報信号を、ステップS36で設定した電源線通信手段20の通信速度で読み取れた場合にはステップS38へ進む。一方、読み取れなかった場合にはステップS41へ進むことになる。このステップS37も実施例1と同様に、入力ポート17bに電源線通信手段20の通信速度の制御情報信号が入力されると、通信速度認識機能部25は電源線通信手段20の通信速度で待機しているため、実施例1と同様に電源線通信手段20の通信速度の制御情報信号を読み取ることができる。これに対して、専用線通信手段21の通信速度の制御情報信号が入力されると、通信速度認識機能部25は電源線通信手20の通信速度で待機しているため、実施例1と同様に専用線通信手段21の通信速度の制御情報信号を読み取れないものとなる。
≪ステップS38≫
 ステップS37で現在の制御情報信号が電源線通信手段20からの制御情報信号と認識されたため、ステップS38ではこの時の通信速度を確定する。したがって、室外機10から送られてくる制御情報信号を電源線通信手段20の制御情報信号と認識することができる。この通信速度の確定が完了するとステップS39に進む。
≪ステップS39≫
 ステップS39では、現在の通信速度が電源線通信手段20の通信速度で確定したため、専用線通信手段21と入力ポート17bの間に配置したトランジスタ24に出力ポート17eからOFF信号を出力することによってトランジスタ24をOFFし、専用線通信手段21と入力ポート17bの接続を遮断する。これにより、専用線通信手段21からの意図しない、或いは想定されない通信信号が入力ポート17bへ伝達されないため通信の信頼性を向上することができる。このトランジスタ24のOFF制御が完了するとステップS40に進む。
≪ステップS40≫
 ステップS40では、認識された電源線通信手段20を正規の通信手段として確認応答信号を送り、以後の室外機10との通信はこの電源線通信手段20の通信速度で実行されることになる。確認応答信号の送出が終了するとエンドに抜けてこの制御フローを終了する。
 一方、ステップS37で現在の制御情報信号が電源線通信手段20からの制御情報信号と認識しないとステップS41に進むことになる。つまり、このステップS41まで進むと現在の通信線15から送られてくる制御情報は誤った通信速度の情報と見做されるものである。
≪ステップS41≫
 ステップS41では、ステップS32⇒ステップS37⇒ステップS41を経過する流れが所定の規定回数を繰り返したかどうかが判断される。規定回数の繰り返しがあるとステップS42に進み、実施例1と同様に規定回数の繰り返しに満たない場合はステップS31に戻り、同じ動作を繰り返すものである。この繰り返し回数が多ければ、通信状態が悪くても通信速度の認識ができる確率を向上することができるものである。尚、規定回数だけ繰り返す必要がない場合は、破線で示すように1度目のステップS19の判断でステップS42に進めても良いものである。
≪ステップS42≫
 ステップS42では、規定回数を繰り返したにも関わらず室外機10から送られてきた制御情報信号を読み取れなかったため、通信異常であると判断してアラームを発報し、その後エンドに抜けて制御フローを終了する。
 本実施例によれば、室内機の制御装置に通信速度が異なる電源線通信手段と専用線通信手段と、室外機からの通信線が電源線通信手段と専用線通信手段のいずれの通信手段に接続されたかを制御情報信号の通信速度から認識する通信速度認識手段と、認識された通信速度に基づいて以後の通信手段を確定する通信手段確定手段を設けたことによって、手動切り換えスイッチを設けなくも入力信号の通信速度を認識することができるようになる。このため、施工作業が煩雑である、切り換えスイッチの設定誤りが生じやすい、製品価格が高くなるという課題を解決することができる。
 更に、各通信手段と入力ポートの間には接続開閉用のトランジスタが設けられているので、認識された通信手段以外は入力ポートとの接続が遮断される。これによって、通信速度の認識が完了した後に、使用しない通信手段からの意図しない、或いは想定されない通信信号の影響を受けることがなくなるものである。
 次に、本発明の第3の実施形態を図8を用いて説明するが、基本的には実施例2と類似の構成である。図8において、室外機10との通信を行う室内機11の制御装置12は、電源線を利用した電源線通信手段20と、これとは通信速度が異なる専用通信線が接続される専用線通信手段21を有している。ここで、専用線通信手段21は専用の通信回路を備えている。各通信手段20、21は室外機10との通信線15を接続する接続端子22a、22bを備えており、通信線15はいずれかの接続端子22a、22bに接続されるものである。
 電源線を利用した電源線通信手段20はフォトカプラ(PHT CUP)による信号変換部20aを備えており、強電信号を弱電信号に変換してマイクロコンピュータ13で取り扱える信号レベルに変換している。
 各通信手段20、21は図2と同様に、マイクロコンピュータ13の共通の入力ポート17bにバスラインによって接続されており、入力ポート17bには電源線通信手段20、専用線通信手段21のいずれかの制御情報信号が入力される。
 一方、出力ポートは各通信手段20、21と個別に接続されており、電源線通信手段20は出力ポート17aと接続され、専用線通信手段21は出力ポート17gと接続されており、各出力ポート17a、17gから電源線通信手段20、21を確定する信号が個別に出力される。この点が実施例2と異なっているところである。このように出力ポートを分離することによって確実に通信手段を確定することが可能となる。
 また、電源線通信手段20と専用線通信手段21は共通の入力ポート17bに接続され、電源線を利用した電源線通信手段20と入力ポート17bの間には、出力ポート17eからの制御信号によりON/OFFできるトランジスタ23が設けられている。一方、専用回路を用いた専用線通信手段21と入力ポート17bの間には実施例2にあるトランジスタ24が省略されている。この点も実施例2と異なっているところである。そして、このトランジスタ23の機能は実施例2と同様のものである。このようにトランジスタ24を省略したので制御装置13の回路構成を簡単にできるほか、制御フローを簡略化することができる。トランジスタ24を省略しているので、図7に示すフローチャートにおいては、ステップS30のトランジスタ24のON動作の指示と、ステップS39のトランジスタ24のOFF動作の指示を省略することができる。尚、これ以外の構成は実施例2と同様の構成なのでこれ以上の説明は省略する。
 以上に述べた通り、本発明は、室内機の制御装置に通信速度が異なる複数の通信手段と、室外機からの通信線がいずれの通信手段に接続されたかを制御情報信号の通信速度から認識する通信速度認識手段と、認識された通信速度に基づいて以後の通信を行う通信手段を確定する通信手段確定手段を設けた構成としている。
 これによれば、手動切り換えスイッチを設けなくても入力信号の通信速度を認識することができるようになる。このため、施工作業が煩雑である、切り換えスイッチの設定誤りが生じやすい、製品価格が高くなるという課題の少なくとも1つ以上の課題を解決することができるものである。
 尚、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 10…室外機、11…室内機、12…制御装置、13…マイクロコンピュータ、14a、14b、14c…通信手段、15…通信線、16a、16b、16c…接続端子、17a、176b、17c、17d、17e、17f…入出力ポート、18…通信速度認識機能部、20、21…通信手段、20a…信号変換部、22a、22b、…接続端子、23、24…トランジスタ。

Claims (9)

  1.  室外機と室内機を有し、前記室外機の制御装置と前記室内機の制御装置とが通信線を介して接続されると共に、前記室内機の制御装置に、前記通信線で送られる複数の通信速度のうちの1つ通信速度の制御情報信号を受信する通信手段を備えている空気調和機において、
     前記室内機の前記制御装置に、通信速度が異なる複数の通信手段と、前記室外機からの前記通信線が前記複数の通信手段のいずれの通信手段に接続されたかを前記制御情報信号の通信速度から認識する通信速度認識手段と、認識された通信速度に基づいて以後の制御情報信号の通信を行う前記通信手段を確定する通信手段確定手段を設けたことを特徴とする空気調和機。
  2.  請求項1に記載の空気調和機において、
     前記制御装置は、前記複数の通信手段をバスラインで接続したマイクロコンピュータを備えており、前記マイクロコンピュータは制御プログラムによって構築される、前記通信速度認識手段としての通信速度認識機能と、前記通信手段確定手段としての通信手段確定機能を備え、前記マイクロコンピュータは前記通信速度認識機能と前記通信手段確定機能を実行することによって、前記通信線が前記複数の通信手段のいずれの通信手段に接続されたかを前記制御情報信号の通信速度から認識し、認識された前記通信手段を正規の通信手段として確定することを特徴とする空気調和機。
  3.  請求項2に記載の空気調和機において、
     前記通信速度認識機能は、複数の通信速度の制御情報信号の内で通信速度が速い制御情報信号の順で認識を実行することを特徴とする空気調和機。
  4.  請求項2に記載の空気調和機において、
     前記マイクロコンピュータは、前記通信速度認識機能を規定の回数に亘って実行する規定回数実行機能部を備えていることを特徴とする空気調和機。
  5.  請求項4に記載の空気調和機において、
     前記マイクロコンピュータは、前記通信速度認識機能を所定回数に亘って実行し、所定回数の実行によっても通信速度を認識できない場合にアラームを発報するアラーム発報機能を備えていることを特徴とする空気調和機。
  6.  請求項2に記載の空気調和機において、
     複数の前記通信手段は、前記マイクロコンピュータの共通の入力ポートにバスラインによって接続されており、前記共通の入力ポートに複数の前記通信手段の内の1つの前記通信手段からの制御情報信号が入力されることを特徴とする空気調和機。
  7.  請求項6に記載の空気調和機において、
     前記共通の入力ポートと複数の前記通信手段の間の前記バスラインには、開閉トランジスタが配置されており、通信速度が確定された前記通信手段以外は前記開閉トランジスタによって前記バスラインが遮断されることを特徴とする空気調和機。
  8.  請求項2に記載の空気調和機において、
     複数の前記通信手段は、電源線を利用した電源線通信手段及び通信専用の専用線を用いた専用線通信手段であり、
     前記通信速度認識機能部は、前記室外機からの通信線が前記電源線通信手段或いは前記専用線通信手段のいずれに接続されたかを前記制御情報信号の通信速度から認識し、
     前記通信手段確定機能部は、認識された通信速度に基づいて以後の前記制御情報信号の通信を、前記電源線通信手段或いは前記専用線通信手段で行うかを確定する
    ことを特徴とする空気調和機。
  9.  請求項8に記載の空気調和機において、
     前記電源線通信手段及び前記専用線通信手段は、前記マイクロコンピュータの共通の入力ポートにバスラインによって接続され、前記共通の入力ポートに前記電源線通信手段或いは前記専用線通信手段からの制御情報信号が入力され、
     前記共通の入力ポートと前記電源線通信手段の間のバスラインには開閉トランジスタが配置されており、前記専用線通信手段が確定されると前記開閉トランジスタによって前記電源線通信手段と前記共通の入力ポートの間の前記バスラインが遮断されることを特徴とする空気調和機。
PCT/JP2015/076251 2014-11-19 2015-09-16 空気調和機 WO2016080062A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580061367.7A CN107208918B (zh) 2014-11-19 2015-09-16 空调机
EP15860354.8A EP3222926B1 (en) 2014-11-19 2015-09-16 Air conditioner
US15/518,002 US10317106B2 (en) 2014-11-19 2015-09-16 Air conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-234101 2014-11-19
JP2014234101A JP6345090B2 (ja) 2014-11-19 2014-11-19 空気調和機

Publications (1)

Publication Number Publication Date
WO2016080062A1 true WO2016080062A1 (ja) 2016-05-26

Family

ID=56013622

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/076251 WO2016080062A1 (ja) 2014-11-19 2015-09-16 空気調和機

Country Status (5)

Country Link
US (1) US10317106B2 (ja)
EP (1) EP3222926B1 (ja)
JP (1) JP6345090B2 (ja)
CN (1) CN107208918B (ja)
WO (1) WO2016080062A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102346642B1 (ko) * 2017-11-28 2022-01-04 엘지전자 주식회사 공기조화시스템 및 그 제어방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0634190A (ja) * 1992-07-15 1994-02-08 Daikin Ind Ltd 空気調和装置の運転制御装置
JPH1068546A (ja) * 1996-08-27 1998-03-10 Yanmar Diesel Engine Co Ltd エンジンヒートポンプの制御機構
JP2012149801A (ja) * 2011-01-18 2012-08-09 Daikin Industries Ltd 空気調和機の全体制御基板

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1278084C (zh) * 2002-03-08 2006-10-04 乐金电子(天津)电器有限公司 一种空调器室内、室外机的通讯装置及其方法
EP1429083B1 (en) * 2002-12-10 2007-01-24 Lg Electronics Inc. Multi-air conditioner system with integrated control system
JP4129594B2 (ja) * 2003-04-15 2008-08-06 株式会社日立製作所 空調システム
JP4323256B2 (ja) 2003-08-08 2009-09-02 東芝キヤリア株式会社 空気調和機
KR100700536B1 (ko) * 2004-10-29 2007-03-28 엘지전자 주식회사 멀티형 공기조화기의 통신 시스템
US7814756B2 (en) * 2006-09-20 2010-10-19 Mitsubishi Electric Corporation Air-conditioning system
JP5125330B2 (ja) * 2007-08-31 2013-01-23 ダイキン工業株式会社 空気調和システム
KR20090066828A (ko) * 2007-12-20 2009-06-24 삼성전자주식회사 시스템 에어컨의 통신방법
WO2012101808A1 (ja) * 2011-01-27 2012-08-02 三菱電機株式会社 通信インターフェイス装置
JP5528618B2 (ja) * 2011-02-21 2014-06-25 三菱電機株式会社 空調機器及び空調システム
KR102085831B1 (ko) * 2013-03-14 2020-04-14 엘지전자 주식회사 공기조화기 및 그 동작방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0634190A (ja) * 1992-07-15 1994-02-08 Daikin Ind Ltd 空気調和装置の運転制御装置
JPH1068546A (ja) * 1996-08-27 1998-03-10 Yanmar Diesel Engine Co Ltd エンジンヒートポンプの制御機構
JP2012149801A (ja) * 2011-01-18 2012-08-09 Daikin Industries Ltd 空気調和機の全体制御基板

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3222926A4 *

Also Published As

Publication number Publication date
CN107208918A (zh) 2017-09-26
EP3222926B1 (en) 2020-01-01
EP3222926A4 (en) 2018-06-20
JP6345090B2 (ja) 2018-06-20
JP2016099020A (ja) 2016-05-30
US10317106B2 (en) 2019-06-11
EP3222926A1 (en) 2017-09-27
US20170307238A1 (en) 2017-10-26
CN107208918B (zh) 2020-04-07

Similar Documents

Publication Publication Date Title
US20170082309A1 (en) Air-conditioning system
JP6509512B2 (ja) 制御装置及びシステム並びにその制御方法
JP6115556B2 (ja) 空気調和装置
JP6345090B2 (ja) 空気調和機
JP5675250B2 (ja) マルチ型空気調和システムおよびその集中制御方法
JP7018520B2 (ja) 気体圧縮機
US9948757B2 (en) Field device
JP4042790B2 (ja) 電気機器および電気機器における通信機能正常判定方法
EP3421896B1 (en) Air conditioner indoor unit
JP4467607B2 (ja) 空気調和機
JP6340578B2 (ja) 遠隔制御装置
JP4303081B2 (ja) 空気調和機
JP4670607B2 (ja) 空気調和機
JP6941432B2 (ja) 空気調和機
KR100657807B1 (ko) 멀티에어컨의 어드레스 설정방법
KR20150043879A (ko) 공기조화기 및 그 동작방법
JP2013204975A (ja) 空気調和機のリモコン装置
JP2008057869A (ja) 空気調和機の配線処理方法
WO2018179276A1 (ja) 空調制御中継機器
JP7134352B2 (ja) リモートコントローラおよび空気調和システム
JP4749021B2 (ja) 監視制御装置
JP2013160480A (ja) 空気調和機の遠隔操作装置
JP2012007823A (ja) 空気調和機
JP2009257678A (ja) 空気調和機の遠隔操作装置
JP2006162156A (ja) 空調システム及びそれに用いられるコントローラ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15860354

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15518002

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015860354

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE