WO2016078754A1 - Procede de demarrage d'un moteur a combustion interne a injection directe par adaptation de la quantite de carburant injectee - Google Patents

Procede de demarrage d'un moteur a combustion interne a injection directe par adaptation de la quantite de carburant injectee Download PDF

Info

Publication number
WO2016078754A1
WO2016078754A1 PCT/EP2015/002285 EP2015002285W WO2016078754A1 WO 2016078754 A1 WO2016078754 A1 WO 2016078754A1 EP 2015002285 W EP2015002285 W EP 2015002285W WO 2016078754 A1 WO2016078754 A1 WO 2016078754A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
pressure
engine
pump
injection
Prior art date
Application number
PCT/EP2015/002285
Other languages
English (en)
Inventor
Claude COURTIEL
Philippe SERRECCHIA
Renaud ANDRE
Original Assignee
Continental Automotive France
Continental Automotive Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive France, Continental Automotive Gmbh filed Critical Continental Automotive France
Priority to BR112017010464A priority Critical patent/BR112017010464B8/pt
Priority to US15/527,828 priority patent/US10253719B2/en
Priority to CN201580074091.6A priority patent/CN107110038B/zh
Publication of WO2016078754A1 publication Critical patent/WO2016078754A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3845Controlling the fuel pressure by controlling the flow into the common rail, e.g. the amount of fuel pumped
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/08Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels
    • F02D19/082Premixed fuels, i.e. emulsions or blends
    • F02D19/084Blends of gasoline and alcohols, e.g. E85
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D2041/389Controlling fuel injection of the high pressure type for injecting directly into the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/021Engine temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0611Fuel type, fuel composition or fuel quality
    • F02D2200/0612Fuel type, fuel composition or fuel quality determined by estimation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the present invention relates to a method of starting a direct injection internal combustion engine of a vehicle, for accelerating the start-up phase by adjusting the quantity of fuel injected, during this start-up phase, before the established speed. of the engine, by means of an injection system comprising a high-pressure fuel injection pump.
  • the quantity of fuel to be injected during the starting phase of such an engine is dependent on the engine temperature, the number of high dead points passed by the crankshaft before the established speed, the engine speed during this starting phase, and also the quality and type of fuel used, present in the fuel tank, which may have been learned or recognized during a previous driving cycle of the vehicle.
  • Document DE102011077404 proposes a method of recognizing the type of fuel before starting the engine so as to adapt accordingly the dosage of the injected quantities of fuel before the injection.
  • Such a method has the advantage of optimizing the efficiency of the engine and to prevent the injection of an inappropriate fuel into the engine as a result of a fuel error, for example.
  • the method according to this document is to compare the curve of rise in pressure in the rail as a function of time (dP / dt) with curves recorded in the ECU (for "Engine Control Unit” in English), and thus to determine the type or quality of fuel present in the rail before injection.
  • the method uses the determination of Young's modulus of fuel. The amount of fuel injected can thus be adjusted according to the type or quality of fuel detected.
  • An advantage of this method is that it allows the determination of the type of fuel before combustion, thus improving the combustion efficiency.
  • the present invention proposes to increase the starting speed of a direct injection internal combustion engine, regardless of the fuel present in the tank.
  • the invention consists in a method of starting a direct injection internal combustion engine of a vehicle, for accelerating the start-up phase by adjusting the quantity of fuel injected during this start-up phase, before starting. established the engine, by means of an injection system comprising a fuel injection high pressure pump, means for measuring the pressure delivered by the latter, and an engine control unit or ECU, characterized in that said method comprises the following steps:
  • the invention consists in detecting a specific gradient of rise in pressure of the fuel delivered by the high pressure pump, based on the high dead points of compression of the pump operating in maximum flow mode, in order to optimize the accuracy as quickly as possible. of this specific gradient and the result obtained of the correct amount of fuel to be injected during the startup phase, by injection.
  • the pressure gradient is established relative to an angular reference system (high compression dead points of the pump characterized by their angular positions), which advantageously eliminates the rotation speed of the starter which can vary especially with temperature and battery voltage.
  • the predetermined one-to-one table provides directly from the pressure rise gradient the correct amount of fuel to be injected, for example for a given temperature range.
  • the amount of fuel to be injected can be adjusted with great accuracy before or as soon as the first combustions during the starting phase depending on the type of fuel present in the injection system.
  • An authorization of the first injection is given by the engine control unit for example as soon as the synchronization of the engine has been performed and as soon as the minimum injection pressure has been reached.
  • the means for measuring the pressure are example provided in known manner by a pressure sensor present in an injection system, for example in a high pressure rail type accumulator.
  • Said at least one one-to-one array respectively matching a plurality of fuel quantities to be injected and a plurality of pressure gradients is predetermined for a given range of engine temperatures
  • a plurality of said predetermined one-to-one arrays are implemented in the engine control unit, covering a plurality of engine temperature ranges, respectively, including at least one cold start temperature range,
  • Said method further comprising measuring the engine temperature prior to comparing said established gradient with said at least one predetermined one-to-one array.
  • predetermined one-to-one table for a given range of engine temperatures is meant here a given range of temperatures for which the one-to-one table applies.
  • This given temperature range can be reduced to a single temperature for which the one-to-one table has been defined, if it is desired to restrict to this single temperature the values of said one-to-one table.
  • Such a choice depends on the degree of precision that it is desired to achieve for the quantities of fuel to be injected as a function of the temperatures. So that, if the one-to-one table is valid for a given range of temperatures around said single temperature value for which it has been defined, given the accuracy to be achieved, the application of said table can be extended to this range. engine temperature data.
  • the position of said at least two successive high compression dead points of the fuel injection pump is determined by means of a crankshaft position sensor of the engine, a law of connection of the angular positions between the crankshaft and the high-pressure fuel injection pump, and the engine control unit.
  • the pressure gradient is established with respect to a variation of the angular position of the high-pressure injection pump, in the form dp / da with:
  • the pressure gradient of the fuel delivered by said high pressure injection pump is established with three high compression dead points of the high-pressure injection pump, or more.
  • the invention further relates to a starting device for a direct injection internal combustion engine for accelerating the starting phase by adjusting the quantity of fuel injected during this starting phase before the engine is set up by a system.
  • injection system comprising a high-pressure fuel injection pump, means for measuring the pressure delivered by the latter, an engine control unit, a starter, authorization means of the first injection given by the control unit motor, characterized in that it comprises means for implementing a method according to the invention.
  • FIG. 1 represents a diagram of the fuel pressure during the starting phase according to a first example of a method according to the invention for starting an internal combustion engine operating with a fuel of the gasoline type, at a temperature of -30. ° C;
  • FIG. 2 represents a diagram of the fuel pressure during the starting phase according to a second example of a method according to the invention for starting an internal combustion engine operating with a gasoline type fuel at a temperature of 20 °. VS ;
  • FIG. 3 represents a diagram of the fuel pressure during the starting phase according to a second example of a method according to the invention for starting an internal combustion engine operating with an ethanol fuel at a temperature of 20 °. VS ;
  • FIG. 4 represents, by way of example, a diagram giving the pressure gradient defined with respect to an angular reference of the crankshaft, as a function of the starting temperature for a given configuration, for three examples of different fuels;
  • FIG. 5 represents a diagram giving, for the three fuels of FIG. 4, the quantity of fuel to be injected during the first injection into each of the rolls in the starting phase as a function of the engine starting temperature
  • FIG. 6 represents a diagram giving the pressure gradient as a function of the quantity of fuel that must be injected by injection during the first injection into each of the rolls in the starting phase, corresponding to several given temperatures;
  • FIG. 7 represents in the form of a table of correction coefficients derived from FIG. 6, a fuel quantity correction coefficient to be applied for starting at a measured temperature, according to a point of measurement of the pressure gradient coming from the diagram of Figures 4 to 6.
  • FIG. 1 schematically represents a method of starting a direct injection internal combustion engine of a vehicle, making it possible to accelerate the starting phase by adjusting the quantity of fuel injected during this starting phase, before the established speed.
  • the engine by means of an injection system (not shown) comprising a high-pressure fuel injection pump, means for measuring the pressure delivered by the latter, for example a fuel pressure sensor placed in a rail high pressure supply of fuel injectors, an engine control unit ensuring the management of the injection.
  • the abscissa represents the angular position of the angular crankshaft Ang_CRK of the engine in degrees
  • the startup shown is a cold start.
  • the fuel used is gasoline without a basic mixture, for example E0 fuel (0% ethanol), the engine temperature for the starting phase is -30 ° C, which is also the fuel temperature.
  • the high-pressure injection pump used (not shown) is a conventional pump in which the fuel intake is controlled by a valve controlled by the engine control unit, and which delivers the pressurized fuel into a storage rail (not shown). ).
  • the maximum flow mode corresponds to the compression of the entire volume of fuel admitted into the chamber or chambers of the pump, this maximum volume of fuel admitted and compressed being constant for the high compression dead points of successive pressure measurement.
  • the engine control unit decides how to operate at the maximum flow rate of the pump, by controlling the pump inlet valve, which triggers the measurement of the pressure.
  • the engine control unit, or ECU, or engine ECU controls the pump in maximum flow mode by closing the fuel inlet valve in the pump as soon as the fuel is compressed, preventing any backflow to the tank part of the compressed fuel volume.
  • the mode of pump operation is a mode of operation in maximum flow.
  • the method according to the invention is dependent on the decisions of the engine computer to operate or not in the maximum flow mode. Indeed, the ECU manages the servocontrol (PID) of the pressure in the accumulator rail. When the pressure in the accumulator rail is far below its setpoint, the PID regulator decides to operate at maximum speed to reach the setpoint as quickly as possible. During the start-up phase, in particular when cold, the pressure in the accumulator rail is far below its set point, requiring a mode of operation of the pump at maximum flow rate.
  • the starter (not shown) is able to run the engine at a speed of about 200 rpm during the start-up phase.
  • Curve 1 shows the evolution of the pressure during the start-up phase. This evolution shows an increase in pressure as soon as the pump is put into rotation.
  • the pump operates in maximum flow mode.
  • the portions of the pressure curve 1 with a high pressure gradient represent the compression of a volume of fuel admitted into the pump, which is maximum by the value reached of pressure variation as a function of the rotation of the crankshaft.
  • the beginning of the flat parts corresponds to the top dead center of the pump, that is to say at the end of the compressions, themselves determining the beginning of the corresponding fuel intake phases in the pump.
  • the flat portions of curve 1 represent the admission of the fuel into the pump.
  • Curve 2 in FIG. 1 connects three high dead spots of the pump taken in its mode of operation at maximum flow. These top dead spots are located substantially at the top of the slopes with a high pressure gradient in FIG. 1, which represents the successive compression of three identical fuel volumes each corresponding to the maximum volume of fuel admitted and compressed in a chamber of the pump.
  • the process shown in FIG. 1 comprises the following steps:
  • the high-pressure injection pump is rotated by means of a starter, the position 0 ° on the abscissa representing the position of the crankshaft at the moment when the starter is engaged,
  • the pressure of the fuel delivered by the high-pressure injection pump is measured by verifying by the information coming from the ECU that it operates in maximum flow mode, as indicated above, at least in two high compression dead points. (or TDC for "Top Dead Center” in English) successive pump; this operation can be performed as soon as possible after the crankshaft is turned into rotation by the starter, and preferably before the synchronization of the engine, •
  • the pressure gradient of the fuel delivered by the high-pressure injection pump is set in the maximum flow mode, on the basis of the pressure measured at least at the two high compression dead points (TDC), for example three TDCs as shown on FIG. FIG. 1, successive of the high-pressure injection pump, preferably before the synchronization of the engine,
  • the synchronization is carried out according to any means well known to those skilled in the art, by means of the engine control unit and the signal sent to it by a crankshaft position sensor, and will therefore not be described in more detail here. .
  • the fuel pressure is measured at the first 3 top dead center of the pump at 270 ° from the rotational position of the crankshaft, in order to make sure that the pump is working well. at the maximum flow rate, then at the second top 4 compression point of the pump at 450 ° from the position of rotation of the crankshaft, then preferably furthermore at the third top dead center of the pump at 630 ° the position of rotation of the crankshaft, as shown in Figure 1.
  • crankshaft position sensor a law for connecting the angular positions between the crankshaft and the high-pressure fuel injection pump, and the engine control unit (ECU) which applies this law.
  • the law is given by the transmission ratio between the crankshaft rotation and the mechanically linked rotation of the injection pump, which establishes the position of the high compression dead points of the pump according to the angular positions of the crankshaft.
  • the pressure gradient is thus preferably established with respect to a variation of the angular position of the high-pressure injection pump, in the form dp / da with:
  • the use of the high dead points of compression makes it possible to use an angular reference system with which it is advantageous to overcome the rotational speed of the starter which can vary with the temperature and the battery voltage, and thus to offer a robustness of the gradient pressure in that it is always raised in the same configuration of the pump; accordingly, the correspondence table can more precisely match the quantities of fuel to be injected.
  • the injection pressure is reached at point 6 at an angular position of the crankshaft of 595 °, for a value of 10 MPa.
  • the choice of the number of reference points for the pressure should advantageously be two points 3 and 4 for calculating the pressure gradient. With this choice, an adjustment of the fuel quantity can be made before reaching the injection pressure, so before the first combustions.
  • the starting temperature T_start of the motor in degrees is represented on the abscissa, and the pressure gradient dp / da as described above in bars by 360 ° of rotation of the crankshaft is shown on the ordinate.
  • the curves 7, 8 and 9 represent, for three fuels, for example respectively a fuel E0, a fuel E26, and a fuel E100, the evolution of this pressure gradient as a function of the starting temperature, in the high rail. injector supply pressure when the high pressure pump is operating in the maximum flow mode.
  • the EO fuel is gasoline without ethanol
  • E26 is gasoline with an ethanol content of 26%
  • E100 ethanol without gasoline we will cover all the possible fuel EO fuel E100 fuel as detailed below.
  • the fuel in the tank can be a mixture of several different fuels, whose ethanol content may be unknown at the time of startup and therefore between 0% and 100%.
  • the ECU knows the fuel present in the vehicle before stopping the engine, including strategies implemented in this ECU.
  • At least one predetermined one-to-one table is made respectively matching a plurality of fuel quantities. to inject and a plurality of pressure gradients.
  • the one-to-one table corresponding respectively to a plurality of fuel quantities to be injected and a plurality of pressure gradients is predetermined for a given range of engine temperatures
  • a plurality of predetermined one-to-one arrays is implemented in the engine control unit, covering a plurality of engine temperature ranges, respectively, having at least one cold start temperature range,
  • the method further comprising measuring the engine temperature prior to comparing the established gradient with the predetermined one-shot table (s).
  • FIG. 4 shows by way of example a point 10 obtained for measuring the pressure gradient by a method as described above, for a starting temperature equal to 0 ° C.
  • this measuring point of the pressure gradient dp / da is equal to 39 bars per 360 ° of rotation of the crankshaft (360 ° crk in FIG. 4).
  • the previous fuel known to the ECU is E26 fuel.
  • the engine control unit therefore expects a theoretical dp / da pressure gradient equal to 38.35 bar at 0 ° C for the fuel E26, as shown in FIG. 4, these data having been previously implemented in FIG. ECU.
  • the one-to-one chart will allow the ECU to determine the amount of fuel MC to inject for a pressure gradient dp / da measured equal to 39 bar per 360 ° crankshaft rotation.
  • FIG. 5 there is shown on the abscissa the starting temperature T_start of the engine in degrees, and on the ordinate the quantity of fuel MC in mg which must be injected by injection from the first injection into each of the cylinders in the starting phase, c ' that is, to the engine's steady state.
  • the curves 20, 21, and 22 represent, for the three different fuels of FIG. 4, respectively a fuel E0, a fuel E26, and a fuel E100, this quantity of fuel MC to be injected as a function of the engine temperature.
  • the quantity of fuel MC to be injected for any fuel between the fuel E0 and the fuel E100 is thus determined, as a function of the starting temperature T_start.
  • the ECU is therefore preparing to inject conventionally a quantity of fuel equal to 70 mg of fuel during the first injection of each of the cylinders, according to the value of 70 mg read on the y-axis for E26 fuel known to the ECU prior to engine shutdown.
  • This amount of fuel does not correspond to that of the gradient measured for point 10 as shown, which should be higher. It should be noted that the point 10 has been shown in FIG. 5 only for information purposes, not being known before the application of FIG.
  • FIG. 6 there is shown on the abscissa the quantity of fuel MC in mg which must be injected by injection during the first injection into each of the cylinders in the starting phase, that is to say up to the engine's established speed. and on the ordinate the pressure gradient dp / da in bars per 360 ° of rotation of the crankshaft, applicable to the theoretical or measured pressure gradient.
  • Fig. 6 illustrates a curve 23 having a plurality of segments 23a, 23b, 23c, 23d matching a plurality of fuel quantities MC and a plurality of pressure gradients dp / da for different engine temperatures as shown in Fig. 6, i.e., a segment of the curve 23 corresponds to a given temperature or a given range of temperatures.
  • a predetermined one-to-one array is made, respectively matching a plurality of fuel quantities to be injected and a plurality of said pressure gradients dp / da.
  • Such a one-to-one array is directly implemented in the ECU because the ECU can not directly exploit Figure 6.
  • the curve 23 is thus composed of several distinct parts 23a, 23b, 23c, 23d assembled, in the example each linear and corresponding to a given temperature, ie the curve 23a corresponding to a motor temperature of 20 ° C. , the curve 23b corresponding to a motor temperature of 10 ° C, the curve 23c corresponding to a motor temperature of 0 ° C, and the curve 23d corresponding to a motor temperature of -10 ° C.
  • a plurality of preference values are determined distributed regularly along the abscissa axis and the corresponding plurality of values are selected on the ordinate axis, thereby defining a predetermined one-to-one array corresponding respectively to a plurality of fuel quantities to be injected and a plurality of said pressure gradients, for a given range of engine temperatures, in the example of -10 ° C, 0 ° C, 10 ° C, 20 ° C.
  • the curve 23 covers all the fuels E0 to E100 because it comes from Figures 4 and 5 as follows: to obtain the segment 23a corresponding to a temperature of 20 ° C, a vertical is drawn in Figure 4 at the abscissa 20 ° C, and the values of dp / da are recorded on the y-axis for each of the fuels E0, E26, and E100 shown. In FIG. 5, a vertical is also drawn at the abscissa 20 ° C. and the fuel quantity values MC are recorded on the ordinate axis for each of the same fuels E0, E26, and E100 shown. Then trace in Figure 6 the three points obtained for the temperature of 20 ° C illustrated by the segment 23a. The operation is similar for the selected temperatures of 10 ° C, 0 ° C, and -10 ° C to obtain the segments 23b, 23c, and 23d respectively.
  • a one-to-one table by given temperature, or by given temperature range as explained above, for example four four-by-one tables per given temperature respectively corresponding to segments 23a, 23b, 23c, 23d. It is possible to alternatively perform a single one-to-one array from FIG. 6 including the four segments 23a, 23b, 23c, 23d.
  • a given segment in FIG. 6, for example the segment 23a, 23b, 23c, or 23d is valid for a given range of temperatures extending around the single reference value, respectively around at 20 ° C, 10 ° C, 0 ° C, or -10 ° C.
  • the measured point of pressure gradient dp / da has been set. As we know from Figure 4, this point 10 is not on any curve fuel known to the ECU. Curve 23 allows the ECU to determine the correct amount of MC fuel to be injected for the measured value of the gradient dp / d. According to this measured point, for a pressure gradient of 39 bar per rotation of the crankshaft 360 °, at 0 ° C temperature, the amount of fuel to be injected at the first injection of each of the cylinders should be 77.2 mg. Whereas for the fuel E26 known before stopping the engine, the theoretical dp / doc pressure gradient is equal to 38.35 bar at 0 ° C. (see FIG. 4) and corresponds to a quantity of fuel MC equal to 70 mg. Therefore, the correct amount of MC fuel that should be injected has a theoretical increase of 1.03% compared to the amount of 70 mg originally predicted by the ECU for E26 fuel.
  • FIG. 7 represents an example of a table of factors for correcting the quantity of fuel to be injected, as a function of the gradient dp / da measured and with respect to the theoretical dp / da gradient as defined above.
  • the table of FIG. 7 corresponds to a digital exploitation of FIG. 6 by the ECU, for a range of gradients dp / da of between 35 and 40 bar / 360 ° crk given by way of example, relevant to the measurements expected pressure gradients dp / da and determined according to the method according to the invention.
  • the values of dp / da limits in the table of FIG. 7 are functions of what are given as temperature and sizing limits of the high-pressure injection pump and the high-pressure rail (rail volume and engine displacement). pump).
  • the gradient dp / da measured according to the method according to the invention is read on the vertical axis of the table, and the reference theoretical dp / da gradient is read on the horizontal axis of the table, which gives the point 10 in the table.
  • the point 10 corresponds to a value between two columns of the array, but corresponds to a value that is just one line of the array: a simple interpolation is therefore to be carried out by the 'ECU to obtain the correcting coefficient to be applied in the example.
  • the correction to be made by the ECU to the fuel quantity provided for the injection as explained above, that is to say 70 mg, is thus of the order of 1 1% (theoretical 1 1, 03%), to obtain an amount of 77.2 mg corresponding to the measured gradient of 39 bar / 360 ° crk.
  • a linear interpolation from the data gives a correction factor to be applied to the fuel quantity equal to 1.1 relative to the amount of fuel established on the basis of the theoretical pressure gradient of 38.35 bars per 360 ° of crankshaft rotation for fuel E26. This correction is calculated once before the first injection and then applied throughout the start up to idle speed established.
  • FIG. 2 For the example of FIG. 2, the same reference numerals as those used for FIG. 1 have been used for the same elements.
  • the example of FIG. 2 was carried out under conditions identical to those of the example of FIG. 1, with the exception of the engine temperature, which is now 20 ° C. This temperature represents a cold start according to a much higher ambient temperature than that of the example of FIG.
  • the injection pressure is reached at point 6 at an angular position of the crankshaft of 1093 °, for a value of 10 MPa.
  • the injection pressure is reached at point 6 at an angular position of the crankshaft of about 924 °, for a value of 10 MPa.
  • An example of a starting device for a direct injection internal combustion engine for accelerating the start-up phase by adjusting the amount of fuel injected during this start-up phase of the engine by an injection system comprising a fuel injection high pressure injection pump, means for measuring the pressure delivered by the latter, for example by means of a fuel pressure sensor FUP placed in a pressurized fuel accumulator rail, a motor control unit or ECU, a starter, authorization means of the first injection given by the engine control unit, further comprises according to the invention in the form of a software implemented in the engine control unit, means for putting implement a method as described in one or more examples above, which may advantageously be appropriate depending on the use and location in which the vehicle is used, for example depending on the temperatures of the place and the fuels used and / or a mixture thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

La présente invention a pour objet un procédé de démarrage d'un moteur à combustion interne à injection directe d'un véhicule, permettant d'accélérer la phase de démarrage en adaptant la quantité de carburant injectée pendant cette phase de démarrage, avant régime établi du moteur, comprenant les étapes suivantes : • Faire tourner la pompe à injection haute pression au moyen d'un démarreur, • Mesurer la pression du carburant délivré par la pompe, prise à deux points morts hauts de compression successifs de la pompe fonctionnant en mode de débit maximum, • Etablir le gradient de pression du carburant, sur un référentiel angulaire, sur la base de la pression mesurée aux deux points morts hauts de compression successifs de la pompe caractérisés par leurs positions angulaires, • Comparer le gradient établi avec un tableau biunivoque prédéterminé faisant correspondre respectivement une pluralité de quantités de carburant à injecter et une pluralité de gradients de pression, • Adapter la quantité de carburant injectée pendant la phase de démarrage avant régime établi du moteur, en fonction du résultat de la comparaison, afin d'injecter une quantité de carburant qui corresponde, dans le tableau biunivoque prédéterminé, au gradient de pression établi, dès une autorisation de la première injection donnée par l'unité de contrôle moteur.

Description

Procédé de démarrage d'un moteur à combustion interne à injection directe par adaptation de la quantité de carburant injectée
La présente invention se rapporte à un procédé de démarrage d'un moteur à combustion interne à injection directe d'un véhicule, permettant d'accélérer la phase de démarrage en adaptant la quantité de carburant injectée, pendant cette phase de démarrage, avant régime établi du moteur, au moyen d'un système d'injection comportant une pompe à injection haute pression du carburant.
La quantité de carburant à injecter pendant la phase de démarrage d'un tel moteur est dépendante de la température du moteur, du nombre de points morts hauts passés par le vilebrequin avant le régime établi, du régime du moteur pendant cette phase de démarrage, et également de la qualité et du type de carburant utilisé, présent dans le réservoir d'essence, qui peut avoir été appris ou reconnu lors d'un cycle de roulage précédent du véhicule.
Lors d'un démarrage suivant un remplissage du réservoir avec un carburant dont les caractéristiques ont évolué par rapport au carburant contenu avant ledit remplissage, le manque de précision de la quantité de carburant à injecter au démarrage peut générer des temps de départ plus long voire des non démarrages.
On connaît le document DE102011077404 qui propose un procédé de reconnaissance du type de carburant avant démarrage du moteur afin d'adapter en conséquence le dosage des quantités injectées de carburant avant l'injection. Un tel procédé a pour avantage d'optimiser le rendement du moteur et d'empêcher l'injection d'un carburant inapproprié dans le moteur à la suite d'une erreur de carburant par exemple. Le procédé selon ce document consiste à comparer la courbe de montée en pression dans le rail en fonction du temps (dP/dt) avec des courbes enregistrées dans l'ECU (pour « Engine Control Unit » en anglais), et à déterminer ainsi le type ou la qualité de carburant présent dans le rail avant l'injection. La méthode utilise la détermination du module de Young du carburant. La quantité de carburant injectée peut être ainsi ajustée en fonction du type ou de la qualité de carburant détecté. Un avantage de cette méthode est qu'elle permet la détermination du type de carburant avant combustion, donc améliore l'efficacité de combustion.
La présente invention propose d'accroître la rapidité de démarrage d'un moteur à combustion interne à injection directe, quel que soit le carburant présent dans le réservoir.
Plus précisément, l'invention consiste en un procédé de démarrage d'un moteur à combustion interne à injection directe d'un véhicule, permettant d'accélérer la phase de démarrage en adaptant la quantité de carburant injectée pendant cette phase de démarrage, avant régime établi du moteur, au moyen d'un système d'injection comportant une pompe à injection haute pression du carburant, des moyens de mesure de la pression délivrée par cette dernière, et une unité de contrôle moteur ou ECU, caractérisé en ce que ledit procédé comprend les étapes suivantes :
• Faire tourner la pompe à injection haute pression au moyen d'un démarreur, · Mesurer la pression du carburant délivré par ladite pompe à injection haute pression, prise au moins à deux points morts hauts de compression successifs de la pompe fonctionnant en mode de débit maximum,
• Etablir le gradient de pression, sur un référentiel angulaire, du carburant délivré par ladite pompe à injection haute pression, sur la base de la pression mesurée aux dits au moins deux points morts hauts de compression successifs de la pompe à injection haute pression caractérisés par leurs positions angulaires,
• Comparer ledit gradient établi avec au moins un tableau biunivoque prédéterminé faisant correspondre respectivement une pluralité de quantités de carburant à injecter et une pluralité de dits gradients de pression, ledit au moins un tableau étant implémenté dans l'unité de contrôle moteur,
• Adapter la quantité de carburant injectée pendant la phase de démarrage avant régime établi du moteur, en fonction du résultat de la comparaison, afin d'injecter une quantité de carburant qui corresponde, dans le tableau biunivoque prédéterminé, au gradient de pression établi, dès une autorisation de la première injection donnée par l'unité de contrôle moteur.
L'invention consiste à relever un gradient spécifique de montée en pression du carburant délivré par la pompe haute pression, basé sur les points morts hauts de compression de la pompe fonctionnant en mode de débit maximum, afin d'optimiser le plus rapidement possible la précision de ce gradient spécifique et le résultat obtenu de la quantité correcte de carburant à injecter pendant la phase de démarrage, par injection. Selon l'invention, le gradient de pression est établi par rapport à un référentiel angulaire (points morts hauts de compression de la pompe caractérisés par leurs positions angulaires), ce qui permet de s'affranchir avantageusement de la vitesse de rotation du démarreur qui peut varier notamment avec la température et la tension batterie. Le tableau biunivoque prédéterminé fournit directement à partir du gradient de montée en pression la quantité correcte de carburant à injecter, par exemple pour une plage de températures donnée. Ainsi, la quantité de carburant à injecter peut être ajustée avec grande précision avant ou dès les premières combustions pendant la phase de démarrage en fonction du type de carburant présent dans le système d'injection. Une autorisation de la première injection est donnée par l'unité de contrôle moteur par exemple dès que la synchronisation du moteur a été effectuée et dès que la pression minimale d'injection a été atteinte. Les moyens de mesure de la pression sont par exemple fournis de manière connue par un capteur de pression présent dans un système d'injection, par exemple dans un accumulateur de type rail haute pression.
Selon une caractéristique avantageuse :
• ledit au moins un tableau biunivoque faisant correspondre respectivement une pluralité de quantités de carburant à injecter et une pluralité de gradients de pression est prédéterminé pour une plage donnée de températures du moteur,
• une pluralité de dits tableaux biunivoques prédéterminés sont implémentés dans l'unité de contrôle moteur, couvrant une pluralité de plages de températures du moteur, respectivement, comportant au moins une plage de températures de démarrage à froid,
• ledit procédé consistant en outre à mesurer la température du moteur avant de comparer ledit gradient établi avec ledit au moins un tableau biunivoque prédéterminé.
Par l'expression « tableau biunivoque prédéterminé pour une plage donnée de températures du moteur » on entend ici une plage donnée de températures pour laquelle le tableau biunivoque s'applique. Cette plage donnée de température peut être réduite à une température unique pour laquelle le tableau biunivoque a été défini, si l'on souhaite restreindre à cette température unique les valeurs dudit tableau biunivoque. Un tel choix dépend du degré de précision que l'on souhaite atteindre pour les quantités de carburant à injecter en fonction des températures. De sorte que, si le tableau biunivoque est valable pour une plage donnée de températures étendue autour de ladite valeur de température unique pour laquelle il a été défini, compte tenu de la précision à atteindre, on peut étendre l'application dudit tableau à cette plage donnée de températures du moteur.
Selon une caractéristique avantageuse, la position desdits au moins deux points morts hauts de compression successifs de la pompe à injection du carburant, est déterminée au moyen d'un capteur de position du vilebrequin du moteur, d'une loi de liaison des positions angulaires entre le vilebrequin et la pompe à injection haute pression du carburant, et de l'unité de contrôle moteur.
Selon une caractéristique avantageuse, le gradient de pression est établi par rapport à une variation de la position angulaire de la pompe à injection haute pression, sous la forme dp/da avec :
• dp la variation de pression entre lesdits au moins deux points morts hauts de compression successifs de la pompe,
• da la variation angulaire du vilebrequin entre lesdits au moins deux points morts hauts de compression successifs de la pompe. Cette caractéristique illustre notamment le fait de s'affranchir avantageusement de la vitesse de rotation du démarreur dans le calcul du gradient de pression.
Selon une caractéristique avantageuse, le gradient de pression du carburant délivré par ladite pompe à injection haute pression est établi avec trois points morts hauts de compression de la pompe à injection haute pression, ou plus.
L'invention se rapporte en outre à un dispositif de démarrage d'un moteur à combustion interne à injection directe permettant d'accélérer la phase de démarrage en adaptant la quantité de carburant injectée pendant cette phase de démarrage avant régime établi du moteur par un système d'injection comportant une pompe à injection haute pression du carburant, des moyens de mesure de la pression délivrée par cette dernière, une unité de contrôle moteur, un démarreur, des moyens d'autorisation de la première injection donnée par l'unité de contrôle moteur, caractérisé en ce qu'il comprend des moyens pour mettre en œuvre un procédé selon l'invention.
D'autres caractéristiques apparaîtront à la lecture qui suit de la description d'exemples de modes de réalisation d'un procédé selon l'invention, accompagnée des dessins annexés, exemples donnés à titre illustratif non limitatif, dans lesquels :
- La figure 1 représente un diagramme de la pression du carburant pendant la phase de démarrage selon un premier exemple de procédé suivant l'invention de démarrage d'un moteur à combustion interne fonctionnant avec un carburant de type essence, à une température de -30 °C ;
- La figure 2 représente un diagramme de la pression du carburant pendant la phase de démarrage selon un deuxième exemple de procédé suivant l'invention de démarrage d'un moteur à combustion interne fonctionnant avec un carburant de type essence, à une température de 20 °C ;
- La figure 3 représente un diagramme de la pression du carburant pendant la phase de démarrage selon un deuxième exemple de procédé suivant l'invention de démarrage d'un moteur à combustion interne fonctionnant avec un carburant de type éthanol, à une température de 20 °C ;
- La figure 4 représente à titre d'exemple un diagramme donnant le gradient de pression défini par rapport à une référence angulaire du vilebrequin, en fonction de la température de départ pour une configuration donné, pour trois exemples de carburants différents ;
- La figure 5 représente un diagramme donnant pour les trois carburants de la figure 4, la quantité de carburant à injecter lors de la première injection dans chacun des cylindres en phase démarrage en fonction de la température de départ du moteur ; - La figure 6 représente un diagramme donnant le gradient de pression en fonction de la quantité de carburant qui doit être injectée par injection lors de la première injection dans chacun des cylindres en phase démarrage, correspondant à plusieurs températures données ;
- La figure 7 représente sous la forme d'un tableau de coefficients correcteurs issu de la figure 6, un coefficient de correction de quantité de carburant à appliquer pour un démarrage à une température mesurée, selon un point de mesure du gradient de pression issu du diagramme des figures 4 à 6.
La figure 1 représente de manière schématique un procédé de démarrage d'un moteur à combustion interne à injection directe d'un véhicule, permettant d'accélérer la phase de démarrage en adaptant la quantité de carburant injectée pendant cette phase de démarrage, avant régime établi du moteur, au moyen d'un système d'injection (non représenté) comportant une pompe à injection haute pression du carburant, des moyens de mesure de la pression délivrée par cette dernière, par exemple un capteur de pression du carburant placé dans un rail haute pression d'alimentation des injecteurs en carburant, une unité de contrôle moteur assurant la gestion de l'injection.
Sur la figure 1 , l'axe des abscisses représente la position angulaire du vilebrequin Ang_CRK du moteur en degrés, et l'axe des ordonnées la pression P en Mpa du carburant en sortie de la pompe haute pression à injection du carburant mesurée par le capteur de pression du carburant. Le démarrage représenté est un démarrage à froid. Le carburant utilisé est de l'essence sans mélange de base, par exemple du carburant E0 (0 % d'éthanol), la température moteur pour la phase de démarrage est de -30 °C, qui est aussi la température du carburant.
La pompe à injection haute pression utilisée (non représentée) est une pompe conventionnelle dans laquelle l'admission de carburant est pilotée par une soupape commandée par l'unité de contrôle moteur, et qui refoule le carburant sous pression dans un rail accumulateur (non représenté). Le mode débit maximum correspond à la compression de la totalité du volume de carburant admis dans la ou les chambres de la pompe, ce volume maximum de carburant admis et comprimé étant constant pour les points morts hauts de compression successifs de mesure de la pression. L'unité de contrôle moteur décide du mode de fonctionnement en débit maximum de la pompe, par pilotage de la soupape d'entrée de la pompe, qui permet de déclencher la prise de mesure de la pression. L'unité de contrôle moteur, ou ECU, ou calculateur moteur, pilote la pompe en mode de débit maximum en fermant la soupape d'entrée du carburant dans la pompe dès le début de la compression du carburant, empêchant ainsi tout refoulement vers la bâche d'une partie du volume du carburant comprimé. Selon le procédé, on vérifie auprès du calculateur moteur lors du prélèvement des points de pression que le mode de fonctionnement de la pompe est bien un mode de fonctionnement en débit maximum. Le procédé selon l'invention est tributaire des décisions du calculateur moteur de fonctionner ou non en mode de débit maxi. En effet, l'ECU gère l'asservissement (PID) de la pression dans le rail accumulateur. Lorsque la pression dans le rail accumulateur est très en dessous de sa consigne, le régulateur PID décide de fonctionner en débit maximum pour rejoindre la consigne le plus rapidement possible. Lors de la phase de démarrage, en particulier à froid, la pression dans le rail accumulateur est très en dessous de sa consigne, nécessitant un mode de fonctionnement de la pompe en débit maximum.
Le démarreur (non représenté) est apte à faire tourner le moteur à une vitesse de 200 tours par minute environ pendant la phase de démarrage. La courbe 1 montre l'évolution de la pression pendant la phase de démarrage. Cette évolution montre un accroissement de la pression dès la mise en rotation de la pompe.
Sur la figure 1 , la pompe fonctionne en mode de débit maximum. Les parties de la courbe 1 de pression à fort gradient de pression représentent la compression d'un volume de carburant admis dans la pompe, qui est maximum par la valeur atteinte de variation de pression en fonction de la rotation du vilebrequin. Le début des parties planes correspond aux points morts haut de la pompe, c'est-à-dire à la fin des compressions, elles-mêmes déterminant le début des phases d'admission du carburant correspondantes dans la pompe. Les parties planes de la courbe 1 représentent l'admission du carburant dans la pompe.
La courbe 2 sur la figure 1 relie trois points morts hauts de la pompe pris dans son mode de fonctionnement en débit maximal. Ces points morts haut sont situés sensiblement au sommet des pentes à fort gradient de pression sur la figure 1 qui représentent la compression successive de trois volumes de carburant identiques correspondant chacun au volume maximum de carburant admis et comprimé dans une chambre de la pompe.
Le procédé représenté sur la figure 1 comprend les étapes suivantes :
• On fait tourner la pompe à injection haute pression au moyen d'un démarreur, la position 0° sur l'axe des abscisses représentant la position du vilebrequin au moment où le démarreur est enclenché,
• On mesure la pression du carburant délivré par la pompe à injection haute pression en vérifiant par l'information venant de l'ECU qu'elle fonctionne en mode de débit maximum, comme indiqué plus haut, au moins en deux points morts hauts de compression (ou TDC pour « Top Dead Center » en anglais) successifs de la pompe ; cette opération pouvant être réalisée dès que possible après la mise en rotation du vilebrequin par le démarreur, et de préférence avant la synchronisation du moteur, • On établit le gradient de pression du carburant délivré par la pompe à injection haute pression en mode de débit maximum, sur la base de la pression mesurée au moins aux deux points morts hauts de compression (TDC), par exemple trois TDC comme représenté sur la figure 1 , successifs de la pompe à injection haute pression, de préférence avant la synchronisation du moteur,
• On compare le gradient établi avec au moins un tableau biunivoque prédéterminé faisant correspondre respectivement une pluralité de quantités de carburant à injecter et une pluralité de dits gradients de pression, ledit au moins un tableau étant implémenté dans l'unité de contrôle moteur, de préférence avant la synchronisation du moteur,
• On adapte en modifiant si nécessaire la quantité de carburant injectée pendant la phase de démarrage avant régime établi du moteur, pour chaque injection effectuée, en fonction du résultat de la comparaison, afin d'injecter une quantité de carburant qui corresponde, dans le tableau biunivoque prédéterminé, au gradient de pression établi, dès une autorisation de la première injection donnée par l'unité de contrôle moteur, ce qui intervient généralement après que la synchronisation du moteur ait été réalisée, soit dès le premier cycle moteur suivant la synchronisation.
La synchronisation est réalisée selon tout moyen bien connu de l'homme du métier, au moyen de l'unité de contrôle moteur et du signal qui lui est adressé par un capteur de position du vilebrequin, et ne sera donc pas décrite plus en détail ici.
Selon l'exemple représenté sur la figure 1 , la pression du carburant est mesurée au premier 3 point mort haut de compression de la pompe à 270° de la position de mise en rotation du vilebrequin, afin de s'assurer que la pompe fonctionne bien en régime de débit maximum, puis au deuxième 4 point mort haut de compression de la pompe à 450° de la position de mise en rotation du vilebrequin, puis de préférence en outre au troisième 5 point mort haut de compression de la pompe à 630° de la position de mise en rotation du vilebrequin, comme représenté sur la figure 1.
Ces positions sont avantageusement déterminées au moyen du capteur de position du vilebrequin, et d'une loi de liaison des positions angulaires entre le vilebrequin et la pompe à injection haute pression du carburant, et de l'unité de contrôle moteur (ECU) qui applique cette loi. La loi est donnée par le rapport de transmission entre la rotation du vilebrequin et la rotation mécaniquement liée de la pompe à injection, qui établit la position des points morts hauts de compression de la pompe en fonction des positions angulaires du vilebrequin. Le gradient de pression est ainsi de préférence établi par rapport à une variation de la position angulaire de la pompe à injection haute pression, sous la forme dp/da avec :
• dp la variation de pression entre les trois points morts hauts de compression ou TDC successifs de la pompe,
• da la variation angulaire du vilebrequin entre ces trois points morts hauts de compression ou TDC successifs de la pompe.
L'utilisation des points morts hauts de compression permet d'utiliser un référentiel angulaire avec lequel on s'affranchit avantageusement de la vitesse de rotation du démarreur qui peut varier avec la température et la tension batterie, et ainsi d'offrir une robustesse du gradient de pression en ce qu'il est relevé toujours dans une même configuration de la pompe ; en conséquence, le tableau de correspondance peut faire correspondre plus précisément des quantités de carburant à injecter.
Sur l'exemple de la figure 1 , on a ainsi relevé les valeurs suivantes, comme indiqué dans le tableau I ci-dessous :
Figure imgf000010_0001
Soit un gradient de pression de 4,482 MPa pour un déplacement angulaire du vilebrequin de 360°.
Dans l'exemple représenté sur la figure 1 , la pression d'injection est atteinte au point 6 à une position angulaire du vilebrequin de 595° environ, pour une valeur de 10 MPa. Dans ces conditions, le choix du nombre de points de référence pour la pression devrait avantageusement être de deux points 3 et 4 pour le calcul du gradient de pression. Avec ce choix, un ajustement de la quantité de carburant peut être opéré avant d'avoir atteint la pression d'injection, donc avant les premières combustions.
Sur la figure 4, on a représenté en abscisses la température de départ T_start du moteur en degrés, et en ordonnées le gradient de pression dp/da tel que décrit plus haut en bars par 360° de rotation du vilebrequin. Les courbes 7, 8, et 9, représentent pour trois carburants, par exemple respectivement un carburant E0, un carburant E26, et un carburant E100, l'évolution de ce gradient de pression en fonction de la température de démarrage, dans le rail haute pression d'alimentation des injecteurs en carburant lorsque la pompe haute pression fonctionne en mode de débit maximum. Rappelons que le carburant EO est de l'essence sans éthanol, E26 est de l'essence avec un taux d'éthanol de 26 %, et E100 de l'éthanol sans essence. Ainsi, on va couvrir l'ensemble des carburants possibles du carburant EO au carburant E100 comme détaillé plus loin. Rappelons en effet que le carburant présent dans le réservoir peut être un mélange de plusieurs carburants différents, dont le taux d'éthanol peut être inconnu au moment d'un démarrage et compris donc entre 0 % et 100 %. De manière connue, l'ECU connaît le carburant présent dans le véhicule avant l'arrêt du moteur, notamment par des stratégies implémentées dans cet ECU.
A partir d'un diagramme préétabli comme celui de la figure 4, qui peut comporter un plus grand nombre de courbes représentant un plus grand nombre de carburants différents, on réalise, au moins un tableau biunivoque prédéterminé faisant correspondre respectivement une pluralité de quantités de carburant à injecter et une pluralité de gradients de pression.
De préférence :
· Le tableau biunivoque faisant correspondre respectivement une pluralité de quantités de carburant à injecter et une pluralité de gradients de pression est prédéterminé pour une plage donnée de températures du moteur,
• Une pluralité de tableaux biunivoques prédéterminés est implémentée dans l'unité de contrôle moteur, couvrant une pluralité de plages de températures du moteur, respectivement, comportant au moins une plage de températures de démarrage à froid,
• Le procédé consistant en outre à mesurer la température du moteur avant de comparer le gradient établi avec le ou les tableaux biunivoques prédéterminés.
Sur la figure 4, on a représenté à titre d'exemple un point 10 obtenu de mesure du gradient de pression par un procédé comme décrit plus haut, pour une température de départ égale à 0 °C. Sur la figure 4 ce point de mesure du gradient de pression dp/da est égal à 39 bars par 360° de rotation du vilebrequin (360°crk sur la figure 4). Posons par exemple par hypothèse que le carburant précédent connu de l'ECU est du carburant E26. L'unité de contrôle moteur s'attend donc à un gradient de pression dp/da théorique égal à 38,35 bars à 0 °C pour le carburant E26, comme représenté sur la figure 4, ces données ayant été implémentées préalablement dans l'ECU. Le tableau biunivoque va permettre à l'ECU de déterminer la quantité de carburant MC à injecter pour un gradient de pression dp/da mesuré égal à 39 bars par 360° de rotation du vilebrequin.
L'élaboration d'un exemple de tableau biunivoque prédéterminé est détaillée ci-dessous avec l'aide des figures 5 et 6. Un tel tableau biunivoque prédéterminé est connu de l'ECU. Sur la figure 5, on a représenté en abscisses la température de départ T_start du moteur en degrés, et en ordonnées la quantité de carburant MC en mg qui doit être injectée par injection dès la première injection dans chacun des cylindres en phase démarrage, c'est-à-dire jusqu'au régime établi du moteur. Les courbes 20, 21 , et 22, représentent pour les trois carburants différents de la figure 4, respectivement un carburant E0, un carburant E26, et un carburant E100, cette quantité de carburant MC à injecter en fonction de la température moteur. Avec cette figure 5, on détermine donc la quantité de carburant MC à injecter pour tout carburant compris entre le carburant E0 et le carburant E100, en fonction de la température de départ T_start.
Selon la figure 5, l'ECU se prépare donc à injecter de manière conventionnelle une quantité de carburant égale à 70 mg de carburant lors de la première injection de chacun des cylindres, selon la valeur de 70 mg lue sur l'axe des ordonnées pour le carburant E26 connu de l'ECU avant l'arrêt moteur. Cette quantité de carburant ne correspond pas à celle du gradient mesuré pour le point 10 comme représenté, laquelle devrait être supérieure. Il est à noter que le point 10 a été représenté sur la figure 5 uniquement à titre d'information, n'étant pas connu avant l'application de la figure 6.
Sur la figure 6, on a représenté en abscisses la quantité de carburant MC en mg qui doit être injectée par injection lors de la première injection dans chacun des cylindres en phase démarrage, c'est-à-dire jusqu'au régime établi du moteur, et en ordonnées le gradient de pression dp/da en bars par 360° de rotation du vilebrequin, applicable au gradient de pression théorique ou mesuré. La figure 6 illustre une courbe 23 comportant une pluralité de segments 23a, 23b, 23c, 23d faisant correspondre une pluralité de quantités de carburant MC et une pluralité de gradients de pression dp/da pour différentes températures du moteur comme indiqué sur la figure 6, c'est-à-dire qu'un segment de la courbe 23 correspond à une température donnée ou une plage donnée de températures. A partir de la courbe 23 on réalise un tableau biunivoque prédéterminé faisant correspondre respectivement une pluralité de quantités de carburant à injecter et une pluralité de dits gradients de pression dp/da. Un tel tableau biunivoque est directement implémenté dans l'ECU car cette dernière ne peut exploiter directement la figure 6.
Sur la figure 6, la courbe 23 est donc composée de plusieurs parties 23a, 23b, 23c, 23d distinctes assemblées, dans l'exemple chacune linéaire et correspondant à une température donnée, soit la courbe 23a correspondant à une température moteur de 20 °C, la courbe 23b correspondant à une température moteur de 10 °C, la courbe 23c correspondant à une température moteur de 0 °C, et la courbe 23d correspondant à une température moteur de -10 °C. Pour la réalisation d'un exemple de tableau biunivoque, on détermine une pluralité de valeurs de préférence régulièrement réparties sur l'axe des abscisses et on sélectionne la pluralité de valeurs correspondante sur l'axe des ordonnées, définissant ainsi un tableau biunivoque prédéterminé faisant correspondre respectivement une pluralité de quantités de carburant à injecter et une pluralité de dits gradients de pression, pour une plage donnée de températures du moteur, dans l'exemple de -10 °C, 0 °C, 10 °C, 20 °C.
La courbe 23 couvre l'ensemble des carburants E0 à E100 car elle est issue des figures 4 et 5 comme suit : pour obtenir le segment 23a correspondant à une température de 20 °C, on trace une verticale sur la figure 4 à l'abscisse 20 °C, et on relève les valeurs de dp/da sur l'axe des ordonnées pour chacun des carburants E0, E26, et E100 représentés. Sur la figure 5, on trace également une verticale à l'abscisse 20 °C et on relève les valeurs de quantité de carburant MC sur l'axe des ordonnées pour chacun des mêmes carburants E0, E26, et E100 représentés. On trace ensuite sur la figure 6 les trois points obtenus pour la température de 20 °C illustré par le segment 23a. L'opération est similaire pour les températures choisies de 10 °C, 0 °C, et -10 °C permettant d'obtenir les segments 23b, 23c, et 23d respectivement.
Il est possible de réaliser un tableau biunivoque par température donnée, ou par plage donnée de températures comme expliqué plus haut, soit par exemple quatre tableaux biunivoques par température donnée correspondant respectivement aux segments 23a, 23b, 23c, 23d. Il est possible de réaliser de manière alternative un seul tableau biunivoque à partir de la figure 6 incluant les quatre segments 23a, 23b, 23c, 23d. Par définition, on peut décréter qu'un segment donné sur la figure 6, par exemple le segment 23a, 23b, 23c, ou 23d, est valable pour une plage donnée de températures s'étendant autour de la valeur unique de référence, respectivement autour de 20 °C, 10 °C, 0 °C, ou -10 °C. On remarque que pour certaines valeurs de gradient dp/da, par exemple 35 bars/360 crk, deux valeurs de quantités de carburant sont possibles, mais correspondent à deux températures différentes. On pourrait ainsi exploiter par interpolation plusieurs valeurs de quantité de carburant MC pour un gradient donné, correspondant à plusieurs températures comprises entre deux températures représentées par des segments sur la figure 6. Dans le tableau biunivoque, une seule quantité de carburant doit correspondre à un gradient donné pour une température ou une plage donnée de températures. Le choix des plages de chacun des segments 23a, 23b, 23c, 23d formant la courbe 23 de la figure 6 a été déterminé afin d'illustrer une réalité de valeurs rencontrée effectivement sur le terrain pour chacune des températures représentées.
Sur la figure 6, le point 10 mesuré de gradient de pression dp/da a été placé. Comme nous le savons à partir de la figure 4, ce point 10 ne se situe sur aucune courbe de carburant connue par l'ECU. La courbe 23 permet à l'ECU de déterminer la quantité correcte de carburant MC à injecter pour la valeur mesurée du gradient dp/dâ. Selon ce point 10 mesuré, pour un gradient de pression de 39 bars par rotation du vilebrequin de 360°, à 0° C de température, la quantité de carburant à injecter lors de la première injection de chacun des cylindres devrait être de 77,2 mg. Alors que pour le carburant E26 connu avant l'arrêt moteur, le gradient de pression dp/doc théorique est égal à 38,35 bars à 0 °C (voir figure 4) et correspond à une quantité de carburant MC égale à 70 mg. Donc la quantité correcte de carburant MC qui devrait être injectée présente une augmentation théorique de 1 ,03 % par rapport à la quantité de 70 mg initialement prévue par l'ECU pour le carburant E26.
L'ECU ne pouvant exploiter directement les courbes de la figure 6, elle devra de préférence procéder à une extrapolation numérique afin de déterminer la quantité correcte de carburant à injecter, à partir du tableau biunivoque, par exemple comme expliqué ci-dessous avec l'aide de la figure 7.
La figure 7 représente un exemple de tableau de facteurs de correction de la quantité de carburant à injecter, en fonction du gradient dp/da mesuré et par rapport au gradient dp/da théorique comme défini plus haut. Le tableau de la figure 7 correspond à une exploitation numérique de la figure 6 par l'ECU, pour une plage de gradients dp/da comprise entre 35 et 40 bars/360°crk donnée à titre d'exemple, pertinente au regard des mesures attendues des gradients de pression dp/da et déterminés selon le procédé selon l'invention. Les valeurs de dp/da limites dans le tableau de la figure 7 sont fonctions de ce qu'on se donne comme limites de température et de dimensionnements de la pompe à injection haute pression et du rail haute pression (volume du rail et cylindrée de la pompe). Le gradient dp/da mesuré selon le procédé selon l'invention est lu sur l'axe vertical du tableau, et le gradient dp/da théorique de référence est lu sur l'axe horizontal du tableau, ce qui donne le point 10 dans l'exemple décrit, qui a été positionné sur le tableau de la figure 7. Le point 10 correspond à une valeur entre deux colonnes du tableau, mais correspond à une valeur juste sur une ligne du tableau : une simple interpolation est donc à réaliser par l'ECU pour obtenir le coefficient correcteur à appliquer dans l'exemple.
Selon l'exemple du point 10 mesuré, la correction à apporter par l'ECU à la quantité de carburant prévue pour l'injection comme expliqué plus haut, c'est-à- dire 70 mg, est ainsi de l'ordre de 1 1 % (théorique de 1 1 ,03 %), afin d'obtenir une quantité de 77,2 mg correspondant au gradient mesuré de 39 bars/360°crk. Conformément au tableau de la figure 7, une interpolation linéaire à partir des données donne un facteur de correction à appliquer à la quantité de carburant égal à 1 , 1 10 par rapport à la quantité de carburant établie sur la base du gradient de pression théorique de 38,35 bars par 360° de rotation du vilebrequin pour le carburant E26. Cette correction est calculée une fois avant la première injection puis appliquée tout au long du démarrage jusqu'au régime ralenti établi.
Pour l'exemple de la figure 2, les mêmes références numériques que celles utilisées pour la figure 1 ont été reprises pour les mêmes éléments. L'exemple de la figure 2 a été réalisé dans des conditions identiques à celles de l'exemple de la figure 1 , à l'exception de la température moteur qui est maintenant de 20 °C. Cette température représente un démarrage à froid selon une température ambiante très supérieure à celle de l'exemple de la figure 1.
Sur l'exemple de la figure 2, on a relevé les valeurs suivantes, comme indiqué dans le tableau II ci-dessous :
Figure imgf000015_0001
Soit un gradient de pression de 3,105 MPa pour un déplacement angulaire du vilebrequin de 360°. Soit un gradient 30 % environ inférieur à celui de l'exemple de la figure 1.
Dans l'exemple représenté sur la figure 2, la pression d'injection est atteinte au point 6 à une position angulaire du vilebrequin de 1093° environ, pour une valeur de 10 MPa. Comme montré sur la figure, on peut utiliser trois points 3, 4, et 5 pour le calcul du gradient de pression, et obtenir un ajustement de la quantité de carburant à injecter avant d'avoir atteint la pression d'injection, donc avant les premières combustions.
Pour l'exemple de la figure 3, les mêmes références numériques que celles utilisées pour la figure 1 ont été reprises pour les mêmes éléments. Sur l'exemple de la figure 3, on a relevé les valeurs suivantes, comme indiqué dans le tableau III ci-dessous :
Carburant Ethanol Position angulaire Pression Température
du vilebrequin relevée moteur
1er point TDC 270° 46,9 bars 20 °C
2ème point TDC 450° 65,15 bars 20 °C
3ème point TDC 630° 82,01 bars 20 °C Soit un gradient de pression de 3,51 1 MPa pour un déplacement angulaire du vilebrequin de 360°. Soit un gradient 13 % environ supérieur à celui de l'exemple de la figure 2.
Dans l'exemple représenté sur la figure 3, la pression d'injection est atteinte au point 6 à une position angulaire du vilebrequin de 924° environ, pour une valeur de 10 MPa. Comme montré sur la figure, on peut utiliser trois points 3, 4, et 5 pour le calcul du gradient de pression, et obtenir un ajustement de la quantité de carburant à injecter avant d'avoir atteint la pression d'injection, donc avant les premières combustions.
De ces trois exemples ci-dessus, on remarque que les différences entre les gradients de pression sont suffisamment importantes pour bien distinguer les ajustements à apporter sur la masse de carburant à injecter.
Un exemple de dispositif de démarrage d'un moteur à combustion interne à injection directe permettant d'accélérer la phase de démarrage en adaptant la quantité de carburant injectée pendant cette phase de démarrage avant régime établi du moteur par un système d'injection comportant de manière connue une pompe à injection haute pression du carburant, des moyens de mesure de la pression délivrée par cette dernière par exemple au moyen d'un capteur de pression du carburant FUP placée dans un rail accumulateur de carburant sous pression, une unité de contrôle moteur ou ECU, un démarreur, des moyens d'autorisation de la première injection donnée par l'unité de contrôle moteur, comprend en outre selon l'invention sous la forme d'un logiciel implémenté dans l'unité de contrôle moteur, des moyens pour mettre en oeuvre un procédé tel que décrit dans un ou plusieurs exemples ci-dessus, qui peuvent avantageusement être appropriés en fonction de l'usage et du lieu géographique dans lequel est utilisé le véhicule, par exemple en fonction des températures du lieu et des carburants utilisés et/ou d'un mélange de ceux-ci.

Claims

REVENDICATIONS
1. Procédé de démarrage d'un moteur à combustion interne à injection directe d'un véhicule, permettant d'accélérer la phase de démarrage en adaptant la quantité de carburant injectée pendant cette phase de démarrage, avant régime établi du moteur, au moyen d'un système d'injection comportant une pompe à injection haute pression du carburant, des moyens de mesure de la pression délivrée par cette dernière, une unité de contrôle moteur, caractérisé en ce que ledit procédé comprend les étapes suivantes :
• Faire tourner la pompe à injection haute pression au moyen d'un démarreur,
• Mesurer la pression du carburant délivré par ladite pompe à injection haute pression, prise au moins à deux points morts hauts de compression successifs de la pompe fonctionnant en mode de débit maximum,
• Etablir le gradient de pression, sur un référentiel angulaire, du carburant délivré par ladite pompe à injection haute pression, sur la base de la pression mesurée aux dits au moins deux points morts hauts de compression successifs de la pompe à injection haute pression caractérisés par leurs positions angulaires, · Comparer ledit gradient établi avec au moins un tableau biunivoque prédéterminé faisant correspondre respectivement une pluralité de quantités de carburant à injecter et une pluralité de dits gradients de pression, ledit au moins un tableau étant implémenté dans l'unité de contrôle moteur,
• Adapter la quantité de carburant injectée pendant la phase de démarrage avant régime établi du moteur, en fonction du résultat de la comparaison, afin d'injecter une quantité de carburant qui corresponde, dans le tableau biunivoque prédéterminé, au gradient de pression établi, dès une autorisation de la première injection donnée par l'unité de contrôle moteur.
2. Procédé selon la revendication 1 , dans lequel :
· ledit au moins un tableau biunivoque faisant correspondre respectivement une pluralité de quantités de carburant à injecter et une pluralité de gradients de pression est prédéterminé pour une plage donnée de températures du moteur,
• une pluralité de dits tableaux biunivoques prédéterminés sont implémentés dans l'unité de contrôle moteur, couvrant une pluralité de plages de températures du moteur, respectivement, comportant au moins une plage de températures de démarrage à froid, • ledit procédé consistant en outre à mesurer la température du moteur avant de comparer ledit gradient établi avec ledit au moins un tableau biunivoque prédéterminé.
3. Procédé selon l'une quelconque des revendications 1 ou 2, dans lequel la position desdits au moins deux points morts hauts de compression successifs de la pompe à injection du carburant, est déterminée au moyen d'un capteur de position du vilebrequin du moteur, d'une loi de liaison des positions angulaires entre le vilebrequin et la pompe à injection haute pression du carburant, et de l'unité de contrôle moteur.
4. Procédé selon l'une quelconque des revendications 1 à 3, dans lequel le gradient de pression est établi par rapport à une variation de la position angulaire de la pompe à injection haute pression, sous la forme dp/da avec :
• dp la variation de pression entre lesdits au moins deux points morts hauts de compression successifs de la pompe,
• da la variation angulaire du vilebrequin entre lesdits au moins deux points morts hauts de compression successifs de la pompe.
5. Procédé selon l'une quelconque des revendications 1 à 4, dans lequel le gradient de pression du carburant délivré par ladite pompe à injection haute pression est établi avec trois points morts hauts de compression de la pompe à injection haute pression, ou plus.
6. Dispositif de démarrage d'un moteur à combustion interne à injection directe permettant d'accélérer la phase de démarrage en adaptant la quantité de carburant injectée pendant cette phase de démarrage avant régime établi du moteur par un système d'injection comportant une pompe à injection haute pression du carburant, des moyens de mesure de la pression délivrée par cette dernière, une unité de contrôle moteur, un démarreur, des moyens d'autorisation de la première injection donnée par l'unité de contrôle moteur, caractérisé en ce qu'il comprend des moyens pour mettre en œuvre un procédé selon l'une quelconque des revendications 1 à 5.
PCT/EP2015/002285 2014-11-21 2015-11-16 Procede de demarrage d'un moteur a combustion interne a injection directe par adaptation de la quantite de carburant injectee WO2016078754A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
BR112017010464A BR112017010464B8 (pt) 2014-11-21 2015-11-16 Método para a partida de um motor de combustão interna de injeção direta por adaptação da quantidade de combustível injetado e dispositivo para partida
US15/527,828 US10253719B2 (en) 2014-11-21 2015-11-16 Method for starting a direct-injection internal combustion engine by adapting the quantity of fuel injected
CN201580074091.6A CN107110038B (zh) 2014-11-21 2015-11-16 通过调节喷射的燃料量来起动直接喷射式内燃发动机的方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR1461294A FR3028890B1 (fr) 2014-11-21 2014-11-21 Procede de demarrage d'un moteur a combustion interne a injection directe par adaptation de la quantite de carburant injectee
FR1461294 2014-11-21
FR1560858A FR3028891B1 (fr) 2014-11-21 2015-11-13 Procede de demarrage d'un moteur a combustion interne a injection directe par adaptation de la quantite de carburant injectee
FR1560858 2015-11-13

Publications (1)

Publication Number Publication Date
WO2016078754A1 true WO2016078754A1 (fr) 2016-05-26

Family

ID=52273342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/002285 WO2016078754A1 (fr) 2014-11-21 2015-11-16 Procede de demarrage d'un moteur a combustion interne a injection directe par adaptation de la quantite de carburant injectee

Country Status (5)

Country Link
US (1) US10253719B2 (fr)
CN (1) CN107110038B (fr)
BR (1) BR112017010464B8 (fr)
FR (2) FR3028890B1 (fr)
WO (1) WO2016078754A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110121589A (zh) * 2016-12-19 2019-08-13 世倍特集团有限责任公司 具有燃料识别功能的用于运行内燃机的方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3043141B1 (fr) * 2015-10-29 2017-11-03 Continental Automotive France Procede de verification de la fonctionnalite d'un systeme d'alimentation en carburant haute pression d'un moteur a combustion interne
US10344703B2 (en) * 2017-06-29 2019-07-09 GM Global Technology Operations LLC Injector delivery measurement with leakage correction
US10711725B2 (en) * 2018-05-02 2020-07-14 Ford Global Technologies, Llc Systems and methods for a duel fuel system of a variable displacement engine
DE102019220482A1 (de) * 2019-01-10 2020-07-16 Bosch Limited Verfahren zum Identifizieren eines fehlerhaften Einspritzventils unter mehreren Einspritzventilen

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1975398A2 (fr) * 2007-03-26 2008-10-01 Hitachi, Ltd. Dispositif de contrôle pour système de carburant à haute pression
US20100268441A1 (en) * 2009-04-15 2010-10-21 Denso Corporation Controller for fuel pump
DE102010027675A1 (de) * 2010-07-20 2012-01-26 Continental Automotive Gmbh Verfahren zur Erkennung fehlerhafter Komponenten oder fehlerhafter Teilsysteme eines elektronisch geregelten Kraftstoffeinspritzsystems eines Verbrennungsmotors durch Evaluierung des Druckverhaltens
DE102011077404A1 (de) * 2011-06-10 2012-12-13 Continental Automotive Gmbh Verfahren zur Bestimmung des Kraftstofftyps in einer Hochdruck-Einspritzvorrichtung eines Verbrennungsmotors

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3653919B2 (ja) * 1997-03-04 2005-06-02 日産自動車株式会社 筒内直接噴射式火花点火内燃機関の燃料噴射制御装置
DE10211283A1 (de) * 2002-03-14 2003-09-25 Bosch Gmbh Robert Verfahren zum Betreiben eines Kraftstoffzumesssystems eines Kraftfahrzeugs, Computerprogramm, Steuergerät und Kraftstoffzumesssystem
DE102007005685B4 (de) * 2007-02-05 2009-04-23 Continental Automotive Gmbh Verfahren zur Bestimmung einer Regelgröße für eine Druckregelung eines Hochdruckspeichers in einem Einspritzsystem
JP5217514B2 (ja) * 2008-03-04 2013-06-19 日産自動車株式会社 エンジンの燃料供給装置
US7832375B2 (en) * 2008-11-06 2010-11-16 Ford Global Technologies, Llc Addressing fuel pressure uncertainty during startup of a direct injection engine
JP2010255478A (ja) 2009-04-23 2010-11-11 Denso Corp エンジンの燃料噴射量制御装置
JP5191983B2 (ja) * 2009-12-16 2013-05-08 日立オートモティブシステムズ株式会社 内燃機関の診断装置
KR20120059984A (ko) * 2010-12-01 2012-06-11 현대자동차주식회사 Gdi엔진의 연료분사 제어방법
JP6154487B2 (ja) * 2013-01-08 2017-06-28 ボルボトラックコーポレーション 燃料品質の判定方法及び装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1975398A2 (fr) * 2007-03-26 2008-10-01 Hitachi, Ltd. Dispositif de contrôle pour système de carburant à haute pression
US20100268441A1 (en) * 2009-04-15 2010-10-21 Denso Corporation Controller for fuel pump
DE102010027675A1 (de) * 2010-07-20 2012-01-26 Continental Automotive Gmbh Verfahren zur Erkennung fehlerhafter Komponenten oder fehlerhafter Teilsysteme eines elektronisch geregelten Kraftstoffeinspritzsystems eines Verbrennungsmotors durch Evaluierung des Druckverhaltens
DE102011077404A1 (de) * 2011-06-10 2012-12-13 Continental Automotive Gmbh Verfahren zur Bestimmung des Kraftstofftyps in einer Hochdruck-Einspritzvorrichtung eines Verbrennungsmotors

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110121589A (zh) * 2016-12-19 2019-08-13 世倍特集团有限责任公司 具有燃料识别功能的用于运行内燃机的方法
CN110121589B (zh) * 2016-12-19 2022-01-28 世倍特集团有限责任公司 具有燃料识别功能的用于运行内燃机的方法

Also Published As

Publication number Publication date
BR112017010464B1 (pt) 2022-09-06
FR3028891A1 (fr) 2016-05-27
CN107110038B (zh) 2020-07-03
FR3028890A1 (fr) 2016-05-27
US10253719B2 (en) 2019-04-09
FR3028891B1 (fr) 2019-08-16
CN107110038A (zh) 2017-08-29
BR112017010464A2 (pt) 2018-04-03
US20170350341A1 (en) 2017-12-07
FR3028890B1 (fr) 2019-08-23
BR112017010464B8 (pt) 2023-05-09

Similar Documents

Publication Publication Date Title
FR3028891B1 (fr) Procede de demarrage d'un moteur a combustion interne a injection directe par adaptation de la quantite de carburant injectee
FR2862712A1 (fr) Systeme de regulation du cognement et procede pour un moteur a combustion interne utilisant des carburants multiples
FR2658244A1 (fr) Dispositif de commande numerique de carburant pour un petit moteur thermique et procede de commande de carburant pour un moteur thermique.
FR2922598A1 (fr) Procede pour determiner l'inflammabilite du carburant de qualite inconnue.
FR2787511A1 (fr) Procede et dispositif d'egalisation des couples de chaque cylindre d'un moteur
FR2902144A1 (fr) Procede pour exploiter un systeme d'injection d'un moteur a combustion interne et moteur a combustion interne
FR2996600A1 (fr) Procede de gestion de la masse de combustible injectee dans un moteur
EP1936156B1 (fr) Procédé de régulation d'un moteur à combustion interne
EP2148979A2 (fr) Procede de controle de combustion d'un moteur diesel
EP3201443B1 (fr) Moteur à combustion de véhicule automobile à pilotage de richesse amélioré
EP2166216A1 (fr) Procédé de contrôle de la combustion d'un mélange carburé pour un moteur à combustion interne à allumage commandé
WO2016012095A1 (fr) Procede de determination de la pression totale dans le cylindre d'un moteur
FR2901848A1 (fr) Procede et dispositif de correction du debit de l'injection de carburant dit pilote dans un moteur diesel a injection directe du type a rampe commune, et moteur comprenant un tel dispositif
EP2221465A1 (fr) Méthode d'injection de carburant dans un moteur à combustion interne prenant en compte l'évolution des injecteurs au cours du temps
FR2835281A1 (fr) Procede d'estimation de la masse d'air admise dans une chambre de combustion d'un moteur, et vehicule de mise en oeuvre
FR2834000A1 (fr) Moteur a combustion interne avec une injection directe
WO2020048769A1 (fr) Procédé de distribution de carburant
FR2896014A1 (fr) Procede d'adaptation d'un moteur a combustion interne a la qualite du carburant utilise
WO2014095047A1 (fr) Procédé de détermination de la quantité de carburant injectée dans un moteur, notamment un moteur de type diesel
FR2935750A1 (fr) Procede et systeme de correction de la quantite cartographiee de carburant de l'injection tardive participant au couple d'un moteur a combustion interne
FR2927655A3 (fr) Systeme et procede de fonctionnement d'un systeme d'adaptation d'un dispositif de distribution variable pour la commande des soupapes d'un moteur sensible aux carburants
WO2017088967A1 (fr) Procédé de commande pour le démarrage d'un moteur à combustion comportant une phase de thermie et une phase de génération de couple
EP3215727A1 (fr) Procédé d'estimation d'une position d'un papillon d'arrivée des gaz pour le contrôle d'un moteur à combustion interne
EP4237673A1 (fr) Procede de determination d'un indicateur de stabilite d'une combustion dans un cylindre d'un moteur a combustion interne
FR3011279A1 (fr) Moteur a combustion de vehicule automobile a injection amelioree

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15794827

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15527828

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15794827

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017010464

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112017010464

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170518