WO2017088967A1 - Procédé de commande pour le démarrage d'un moteur à combustion comportant une phase de thermie et une phase de génération de couple - Google Patents

Procédé de commande pour le démarrage d'un moteur à combustion comportant une phase de thermie et une phase de génération de couple Download PDF

Info

Publication number
WO2017088967A1
WO2017088967A1 PCT/EP2016/001928 EP2016001928W WO2017088967A1 WO 2017088967 A1 WO2017088967 A1 WO 2017088967A1 EP 2016001928 W EP2016001928 W EP 2016001928W WO 2017088967 A1 WO2017088967 A1 WO 2017088967A1
Authority
WO
WIPO (PCT)
Prior art keywords
combustion
sensor
mode
cylinder
combustion cycle
Prior art date
Application number
PCT/EP2016/001928
Other languages
English (en)
Inventor
Claude COURTIEL
Loïc LE-BRUSTIEC
Philippe SERRECCHIA
Original Assignee
Continental Automotive France
Continental Automotive Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive France, Continental Automotive Gmbh filed Critical Continental Automotive France
Priority to CN201680069335.6A priority Critical patent/CN108350813B/zh
Priority to BR112018010512A priority patent/BR112018010512A8/pt
Publication of WO2017088967A1 publication Critical patent/WO2017088967A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • F02D41/064Introducing corrections for particular operating conditions for engine starting or warming up for starting at cold start
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N19/00Starting aids for combustion engines, not otherwise provided for
    • F02N19/02Aiding engine start by thermal means, e.g. using lighted wicks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/31Control of the fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/023Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining the cylinder pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/027Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions using knock sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D37/00Non-electrical conjoint control of two or more functions of engines, not otherwise provided for
    • F02D37/02Non-electrical conjoint control of two or more functions of engines, not otherwise provided for one of the functions being ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/009Electrical control of supply of combustible mixture or its constituents using means for generating position or synchronisation signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N19/00Starting aids for combustion engines, not otherwise provided for
    • F02N2019/002Aiding engine start by acting on fuel

Definitions

  • Control method for starting a combustion engine comprising a thermie phase and a torque generation phase
  • the present invention is directed to a control method for starting a combustion engine.
  • the present invention applies to gasoline engines, ethanol or using a gasoline and ethanol mixture.
  • the present invention finds a particularly advantageous application in combustion modes in the engine start phase for direct injection engines.
  • This specific combustion mode controls a set of parameters that differ from the operating parameters of the engine in normal operation.
  • a defect of this system is that it is necessary to calibrate the management of the transition from the specific combustion mode to the combustion mode dedicated to the normal operation of the vehicle based on the system considered worst case.
  • the combustion mode dedicated to starting a vehicle does not differ from one vehicle to another and does not compensate for the variability between vehicles due for example to the aging of the system, the production dispersion, or again to the characteristics of the fuel used.
  • the variability between vehicles can then cause lengthening of the starting time of the engine up to the starting fault.
  • None of the current systems can simultaneously meet all the required requirements, namely to ensure a start in a time just necessary and reliable, this despite the variability due to the vehicle and the fuel used.
  • the present invention aims to remedy all or part of these disadvantages.
  • the present invention provides a control method for starting a combustion engine comprising at least one cylinder, a combustion cycle sensor and a counter, which comprises:
  • a step of increasing the temperature by means of a second combustion mode which comprises at least one combustion cycle A step of detecting a successful combustion cycle by the combustion cycle sensor and recording by a counter,
  • a step of generating torque by means of a third mode of combustion is a step of generating torque by means of a third mode of combustion.
  • the starting sequence of an injection engine is divided into successive stages comprising at least three modes of combustion.
  • engine parameters such as ignition, throttle position, fuel injection number, and fuel injection frequency are controlled.
  • a combustion cycle sensor can detect successful combustion cycles.
  • Each successful burn cycle is recorded by a counter.
  • the passage of the second combustion mode configured to promote the increase of the temperature in the engine to the third combustion mode configured to promote the generation of engine torque is realized when the number of successful combustion cycles recorded by the meter is greater than one. predetermined value.
  • the method which is the subject of the invention brings robustness at startup, in particular for critical starts, for example at low temperatures.
  • the method which is the subject of the invention is particularly suitable for starting an ethanol engine at low temperatures and for starting an engine powered by gasoline fuels or mixed at very low temperatures.
  • the method which is the subject of the invention is distinguished in particular from the prior art in that it makes it possible to initiate the transition from a first mode of combustion to a second mode of combustion on the basis of a number of cycles of combustion achieved without generation of torque and thus of regime.
  • the method which is the subject of the invention comprises, after the step of generating torque:
  • the first mode of combustion does not include fuel injection.
  • the step of increasing the fuel pressure by means of a first combustion mode further comprises decreasing the pressure in the manifold by means of a butterfly closure.
  • the fuel pressure can be increased during the pressure increase step.
  • the characteristics of the first combustion mode can reduce the volume of air in the cylinder. The reduction of the air mass contained in the cylinder by means of the first mode of combustion allows the evaporation of a sufficient quantity of fuel to start the starting.
  • the parameters controlled in the second mode of combustion are the ignition, the position of the throttle valve, the number of fuel injections and the frequency of the fuel injections.
  • the second mode of combustion allows the increase of the temperature in at least one cylinder.
  • the parameters controlled in the third mode of combustion are the ignition, the position of the throttle valve, the number of fuel injections and the frequency of the fuel injections.
  • the third mode of combustion promoting torque generation is known from the prior art namely, it comprises in particular an opening of the throttle valve, an increase in injected fuel masses and an ignition advance allowing an optimal torque setting.
  • the third mode of combustion makes it possible to generate engine torque.
  • the combustion cycle sensor is a tooth signal sensor.
  • the sensor measures a signal representative of the angular position of the crankshaft.
  • a predetermined value of angular position of the crankshaft corresponds to the top dead center position.
  • the cylinder pressure sensor makes it possible to determine when the cylinder is at the top dead center and thus to detect the combustion cycles of the cylinder.
  • the tooth signal sensor allows an inexpensive introduction of the method of the invention.
  • the tooth signal sensor is installed in series on the majority of the models in circulation.
  • the combustion cycle sensor is a ping sensor.
  • the senor measures the vibrations emitted by the cylinder.
  • the vibration emitted by the cylinder is a datum representative of the position of the piston which makes it possible to determine when the cylinder is at the top dead center and thus to detect the combustion cycles of the cylinder.
  • the combustion cycle sensor is a cylinder pressure sensor.
  • the pressure is measured in at least one cylinder during the combustion cycles.
  • the pressure measured is a data representative of the position of the cylinder and which makes it possible to determine when a combustion cycle has been completed.
  • the cylinder pressure sensor makes it possible to determine when the cylinder is at the top dead center and thus to detect the combustion cycles of the cylinder.
  • the cylinder pressure sensor allows a precise and real-time measurement of the pressure allowing an accurate determination of the occurrence of a combustion cycle and qualify the resulting energy of this combustion.
  • the present invention is directed to a device for implementing the control method for starting a combustion engine which is the subject of the invention and which comprises at least one cylinder, a combustion cycle sensor and a counter.
  • FIG. 1 represents, in the form of a logic diagram, one embodiment of the method that is the subject of the present invention
  • FIG. 2 represents, in the form of a graph of the speed of rotation of the motor as a function of time, an embodiment of the method which is the subject of the present invention
  • FIG. 3 represents, in graphical form, the temperature variations in a cylinder, under absolute pressure of 1 bar, as a function of the angular position of the crankshaft,
  • FIG. 4 represents, in graphical form, the temperature variations in a cylinder, under absolute pressure of 0.3 bar, as a function of the angular position of the crankshaft, and
  • FIG. 5 shows schematically in sectional view, a particular embodiment of a device for implementing the method object of the invention. This description is given in a nonlimiting manner, each feature of an embodiment being able to be combined with any other feature of any other embodiment in an advantageous manner.
  • FIG. 1 shows a control method for starting a combustion engine comprising at least one cylinder, a combustion cycle sensor and a counter, which comprises:
  • steps 110 and 115 being repeated until the number of combustion cycles recorded by the counter is equal to a predetermined value
  • a step 120 of generating torque by means of a third mode of combustion is a step 120 of generating torque by means of a third mode of combustion.
  • the method which is the subject of the present invention breaks down the starting of an injection engine in distinct phases. Each of these phases is carried out by means of a specific combustion mode.
  • Combustion mode is the set of characteristics controlled during a phase of operation of the engine. Controlled features include ignition, throttle position, number of fuel injections, position of injections in the combustion cycle, amount of each injection and fuel pressure injected.
  • the fuel pressure is increased by means of a first combustion mode.
  • the step 105 of increasing the fuel pressure by means of a first combustion mode further includes decreasing the pressure in the manifold by means of a throttle closure.
  • Closing the butterfly allows obstruction of the air inlet and therefore a decrease in the amount of air in the cylinder.
  • the pressure is increased to about eighty bar.
  • the first mode of combustion does not include fuel injection.
  • step 105 the amount of air trapped in the cylinder is reduced, this arrangement facilitates the evaporation of the gasoline sprayed during step 110 of increasing the temperature.
  • the temperature is increased in at least one cylinder by means of a second mode of combustion.
  • the parameters controlled in this second mode of combustion are the ignition, the position of the throttle valve, the number of fuel injections and the frequency of the fuel injections.
  • the second combustion mode is configured to generate a temperature increase without generating engine torque.
  • a step 115 the combustion cycle sensor detects a successful combustion cycle.
  • Each successful combustion cycle is counted by a meter.
  • the steps 110 of increasing the temperature and 115 of detecting and recording a successful burn cycle are repeated as many times as necessary for the counter to reach a predetermined successful burn cycle number.
  • the combustion cycle sensor is a tooth signal sensor.
  • the tooth signal sensor measures a signal representative of the angular position of the crankshaft.
  • a predetermined value of angular position of the crankshaft corresponds to the top dead center position.
  • the combustion cycle sensor is a ping sensor.
  • the knock sensor is a piezoelectric sensor
  • the measured signal is a data representative of the position of the piston which makes it possible to determine when the cylinder is at the top dead center and thus to detect the combustion cycles of the cylinder.
  • the combustion cycle sensor is a cylinder pressure sensor.
  • the cylinder pressure sensor measures the pressure in at least one cylinder during combustion cycles.
  • the pressure measured is a datum representative of the position of the cylinder.
  • the cylinder pressure sensor makes it possible to determine when the cylinder is at the top dead center and thus to detect the combustion cycles of the cylinder.
  • the pressure value read by the cylinder pressure sensor is compared to a reference curve. Since the pressure value in the cylinder is known for a fuel combustion cycle and known for a cycle without combustion, comparing these reference values with the values measured by the cylinder pressure sensor makes it possible to determine when a cycle of cylinder was made with fuel combustion.
  • the temperature is measured by means of a temperature sensor. In embodiments, the transition from step 1 to step 115 is performed when the temperature measured in the cylinder is greater than or equal to a predetermined value.
  • the transition from step 115 to step 120 is performed when the temperature is greater than or equal to a predetermined threshold and the number of successful burn cycles recorded by the counter is greater than or equal to a value predetermined.
  • the temperature is measured in the cylinder.
  • the sensor set up in the method of the invention is a sensor capable of measuring the temperature and the pressure in the cylinder.
  • At least one temperature sensor is positioned on the wall of a cylinder. In other embodiments, the temperature sensor is disposed at the exhaust.
  • engine torque is generated by means of a third combustion mode.
  • the third mode of combustion is configured to generate engine torque and to increase the number of revolutions per minute of the engine.
  • the controlled characteristics include ignition, throttle position, number of fuel injection, position of injections in the combustion cycle, amount of each injection, and fuel pressure injected. .
  • the method 10 comprises, after the step 120 of generating torque:
  • Step 125 corresponds to the engine start phase output for normal engine operation.
  • FIG. 2 shows a curve representing a particular example of the unfolding of the control method for starting a combustion engine which is the subject of the invention in the form of a curve.
  • the curve shows the engine speed expressed as the number of rotations per minute as a function of time in units of time.
  • the speed of the motor is substantially stable.
  • the motor speed increases to a predetermined speed value.
  • the transition from step 120 of torque generation to step 125 of slowing down and normal starting of the engine is carried out when the speed of the motor is greater than or equal to a predetermined speed.
  • the transition from the step 120 of torque generation to the step 125 of slowing down and normal starting of the engine is performed when a steady-state value is exceeded.
  • FIGS. 3 and 4 show, in graphical form, the temperature variations in a cylinder, as a function of the angular position of the crankshaft in the method that is the subject of the invention.
  • Figures 3 and 4 show the temperature, expressed in degrees Kelvin and figured on the ordinate 160, as a function of the angular position of the crankshaft figured on abscissa 165.
  • the fuel used in the process illustrated in Figures 3 and 4 is pure ethanol, also called E100.
  • FIG. 3 and 4 show a curve A of evaporation temperature of the fuel.
  • curve B and C corresponding to the temperature in the cylinder are also observed during a combustion cycle in two distinct configurations.
  • the curve B corresponds to the temperature of the air contained in the cylinder when there is evaporation of the fuel and the curve C corresponds to the temperature of the air contained in the cylinder when there is no evaporation fuel.
  • the temperature of the cylinder illustrated by curves B and C must be higher than the evaporation temperature of the fuel used to allow evaporation of the fuel.
  • An angular range favorable to a fuel injection is defined as the interval in which the fuel evaporation temperature is lower than the cylinder temperature curve B.
  • the combustion cycle illustrated in FIG. 3 is under an absolute pressure of 0.3 bar.
  • the combustion cycle illustrated in FIG. 4 is under absolute pressure of 1 bar and has a butterfly in the closed position favoring increased pressure.
  • FIG. 5 shows a device 20 for implementing the control method 10 for starting a combustion engine, the method that is the subject of the invention, which comprises at least one cylinder 205, a cycle sensor 210 combustion and a meter 215.
  • the device 20 further comprises an injector 260, an air inlet 265 and an exhaust gas outlet 270.
  • the counter 215 is integrated with the processor 225.
  • the device 20 comprises at least one of the following sensors: tooth signal sensor 230, ping sensor 235, cylinder pressure sensor 240, and temperature sensor 250.
  • a processor 225 collects and processes the data measured by at least one sensor.
  • the data processing may comprise one or more mathematical calculations or the implementation of an algorithm.
  • the processor 225 may be called the engine control unit.
  • the processor 225 compares sensor-measured data with a predetermined value stored in a memory 220.
  • the processor 225 determines a secondary value from a primary value measured by a sensor. In embodiments, the position of a piston 255 in the cylinder 205 is determined by the processor from at least one piece of data measured by at least one sensor.
  • At least one data item recorded by at least one of the sensors 210, 230, 235, 240, 250 is stored in the memory 220.

Abstract

Procédé (10) de commande pour le démarrage d'un moteur à combustion comportant au moins un cylindre, un capteur de cycle de combustion et un compteur, comportant : - une étape (105) d'augmentation de la pression de carburant au moyen d'un premier mode de combustion, - une étape (110) d'augmentation de la température au moyen d'un deuxième mode de combustion et qui comporte au moins un cycle de combustion, - une étape (115) de détection d'un cycle de combustion réussi par le capteur de cycle de combustion et d'enregistrement par un compteur, les étapes (110) et (115) étant répétées jusqu'à ce que le nombre de cycle de combustion enregistré par le compteur soit égal à une valeur prédéterminée et - une étape (120) de génération de couple au moyen d'un troisième mode de combustion.

Description

Procédé de commande pour le démarrage d'un moteur à combustion comportant une phase de thermie et une phase de génération de couple
La présente invention vise un procédé de commande pour le démarrage d'un moteur à combustion. La présente invention s'applique aux moteurs à essence, à éthanol ou utilisant un mélange essence et éthanol.
La présente invention trouve une application particulièrement avantageuse dans les modes de combustion en phase de démarrage moteur pour les moteurs à injection directe.
Afin de démarrer un moteur à injection, il est connu de l'art antérieur d'utiliser un mode de combustion spécifique au démarrage. Ce mode de combustion spécifique contrôle un ensemble de paramètres qui diffèrent des paramètres de fonctionnement du moteur en marche normale.
Il est connu de l'art antérieur d'amorcer le passage d'un mode de combustion spécifique au démarrage à un mode de combustion dédié à la marche normale du moteur lorsqu'un seuil de régime moteur est atteint ou lorsqu'un laps de temps prédéterminé depuis le début du fonctionnement du moteur est atteint.
Un défaut de ce système est qu'il est nécessaire de calibrer la gestion du passage du mode de combustion spécifique au démarrage au mode de combustion dédié à la marche normale du véhicule en se basant sur le système considéré comme pire cas.
En effet, le mode de combustion dédié au démarrage d'un véhicule ne diffère pas d'un véhicule à l'autre et ne permet pas de compenser la variabilité entre véhicules due par exemple au vieillissement du système, à la dispersion de production, ou encore aux caractéristiques du carburant utilisé.
La variabilité entre véhicules peut alors causer des rallongements du temps de démarrage du moteur pouvant aller jusqu'au défaut de démarrage.
Aucun des systèmes actuels ne permet de répondre simultanément à tous les besoins requis, à savoir d'assurer un démarrage en un temps juste nécessaire et fiable, ceci malgré les variabilités dues au véhicule et au carburant utilisé.
La présente invention vise à remédier à tout ou partie de ces inconvénients. A cet effet, selon un premier aspect, la présente invention vise un procédé de commande pour le démarrage d'un moteur à combustion comportant au moins un cylindre, un capteur de cycle de combustion et un compteur, qui comporte :
• une étape d'augmentation de la pression carburant au moyen d'un premier mode de combustion,
• une étape d'augmentation de la température au moyen d'un deuxième mode de combustion qui comporte au moins un cycle de combustion, • une étape de détection d'un cycle de combustion réussi par le capteur de cycle de combustion et d'enregistrement par un compteur,
les étapes d'augmentation de la température et de détection d'un cycle de combustion étant répétées jusqu'à ce que le nombre de cycles de combustion enregistré par le compteur soit égal à une valeur prédéterminée et
• une étape de génération de couple au moyen d'un troisième mode de combustion.
Grâce à ces dispositions, la séquence de démarrage d'un moteur à injection est divisée en étapes successives comportant au moins trois modes de combustion. Dans chacun des modes de combustion, des paramètres du moteur tels que l'allumage, la position du papillon des gaz, le nombre d'injection de carburant et la fréquence des injections de carburant sont contrôlés. Un capteur de cycle de combustion permet de détecter les cycles de combustion réussis.
Chaque cycle de combustion réussi est enregistré par un compteur. Le passage du deuxième mode de combustion configuré pour favoriser l'augmentation de la température dans le moteur au troisième mode de combustion configuré pour favoriser la génération de couple moteur est réalisé lorsque le nombre de cycles de combustion réussis enregistré par le compteur est supérieur à une valeur prédéterminée.
Ces dispositions permettent que le moteur maintienne le deuxième mode de combustion le temps juste nécessaire sur chaque système. Ainsi, le procédé objet de l'invention permet de démarrer un moteur à combustion sans longueur excessive et avec un risque réduit de défaut de démarrage.
En d'autres termes, le procédé objet de l'invention amène de la robustesse au démarrage, en particulier pour les démarrages critiques, par exemple à basse température. Le procédé objet de l'invention est particulièrement adapté au démarrage d'un moteur à éthanol à basses températures et au démarrage d'un moteur alimenté par des carburants essences ou mixtes à très basses températures.
Le procédé objet de l'invention se distingue en particulier de l'art antérieur en ce qu'il permet d'initier le passage d'un premier mode de combustion à un second mode de combustion sur la base d'un nombre de cycle de combustion réalisé sans génération de couple et de donc de régime.
Dans des modes de réalisation, le procédé objet de l'invention comporte, après l'étape de génération de couple :
• une étape de ralentissement et de mise en marche normale du moteur au moyen d'un quatrième mode de combustion.
Dans des modes de réalisation, le premier mode de combustion ne comporte pas d'injection d'essence. Dans des modes de réalisation, l'étape d'augmentation de la pression carburant au moyen d'un premier mode de combustion comporte en outre une diminution de la pression dans le collecteur au moyen d'une fermeture du papillon.
Grâce à ces dispositions, la pression de carburant peut être augmentée lors de l'étape d'augmentation de pression. De plus, les caractéristiques du premier mode de combustion permettent de réduire le volume d'air contenu dans le cylindre. La réduction de la masse d'air contenue dans le cylindre au moyen du premier mode de combustion permet l'évaporation d'une quantité suffisante de carburant pour amorcer le démarrage.
Dans des modes de réalisation, les paramètres maîtrisés dans le deuxième mode de combustion sont l'allumage, la position du papillon des gaz, le nombre d'injections de carburant et la fréquence des injections de carburant.
Grâce à ces dispositions, le deuxième mode de combustion permet l'augmentation de la température dans au moins un cylindre.
Dans des modes de réalisation, les paramètres maîtrisés dans le troisième mode de combustion sont l'allumage, la position du papillon des gaz, le nombre d'injections de carburant et la fréquence des injections de carburant.
Le troisième mode de combustion favorisant la génération de couple est connu de l'art antérieur à savoir, il comporte notamment une ouverture du papillon, une augmentation des masses de carburant injectées et une avance allumage permettant une prise de couple optimale.
Grâce à ces dispositions, le troisième mode de combustion permet de générer du couple moteur.
Dans des modes de réalisation, le capteur de cycle de combustion est un capteur de signal dent.
Grâce à ces dispositions, la position angulaire du vilebrequin est déterminée.
Le capteur mesure un signal représentatif de la position angulaire du vilebrequin. Une valeur prédéterminée de position angulaire du vilebrequin correspond à la position de point mort haut. Le capteur de pression cylindre permet de déterminer quand le cylindre est au point mort haut et ainsi de détecter les cycles de combustion du cylindre.
Avantageusement le capteur signal dent permet une mise en place peu coûteuse du procédé de l'invention. En effet le capteur signal dent est installé en série sur la majorité des modèles en circulation.
Dans des modes de réalisation, le capteur de cycle de combustion est un capteur cliquetis.
Grâce à ces dispositions, le capteur mesure les vibrations émises par le cylindre. La vibration émise par le cylindre est une donnée représentative de la position du piston qui permet de déterminer quand le cylindre est au point mort haut et ainsi de détecter les cycles de combustion du cylindre.
Dans des modes de réalisation, le capteur de cycle de combustion est un capteur de pression cylindre.
Grâce à ces dispositions, la pression est mesurée dans au moins un cylindre lors des cycles de combustion. La pression mesurée est une donnée représentative de la position du cylindre et qui permet de déterminer lorsque qu'un cycle de combustion a été mené à bien. Le capteur de pression cylindre permet de déterminer quand le cylindre est au point mort haut et ainsi de détecter les cycles de combustion du cylindre.
Avantageusement, le capteur de pression cylindre permet une mesure précise et en temps réel de la pression permettant une détermination précise de l'occurrence d'un cycle de combustion et qualifier l'énergie résultante de cette combustion.
Selon un deuxième aspect, la présente invention vise un dispositif de mise en oeuvre du procédé de commande pour le démarrage d'un moteur à combustion objet de l'invention qui comporte au moins un cylindre, un capteur de cycle de combustion et un compteur.
Les buts, avantages et caractéristiques particulières de ce dispositif étant similaires à ceux du procédé objet de la présente invention, ils ne sont pas rappelés ici.
D'autres avantages, buts et caractéristiques particulières de la présente invention ressortiront de la description non limitative qui suit d'au moins un mode de réalisation particulier des dispositifs, procédés et systèmes objets de la présente invention, en regard des dessins annexés, dans lesquels :
- la figure 1 représente, sous forme de logigramme, un mode de réalisation du procédé objet de la présente invention,
- la figure 2 représente, sous forme de graphique de la vitesse de rotation du moteur en fonction du temps, un mode de réalisation du procédé objet de la présente invention,
- la figure 3 représente, sous forme de graphique, les variations de température dans un cylindre, sous pression absolu de 1 bar, en fonction de la position angulaire du vilebrequin,
- la figure 4 représente, sous forme de graphique, les variations de température dans un cylindre, sous pression absolu de 0,3 bar, en fonction de la position angulaire du vilebrequin, et
- la figure 5 représente, schématiquement en vue de coupe, un mode de réalisation particulier d'un dispositif de mise en œuvre du procédé objet de l'invention. La présente description est donnée à titre non limitatif, chaque caractéristique d'un mode de réalisation pouvant être combinée à toute autre caractéristique de tout autre mode de réalisation de manière avantageuse.
On note, dès à présent, que les figures ne sont pas à l'échelle.
On observe, en figure 1, un procédé 10 de commande pour le démarrage d'un moteur à combustion comportant au moins un cylindre, un capteur de cycle de combustion et un compteur, qui comporte :
• une étape 105 d'augmentation de la pression de carburant au moyen d'un premier mode de combustion,
· une étape 110 d'augmentation de la température au moyen d'un deuxième mode de combustion et qui comporte au moins un cycle de combustion,
• une étape 115 de détection d'un cycle de combustion réussi par le capteur de cycle de combustion et d'enregistrement par un compteur,
les étapes 110 et 115 étant répétées jusqu'à ce que le nombre de cycles de combustion enregistré par le compteur soit égal à une valeur prédéterminée et
• une étape 120 de génération de couple au moyen d'un troisième mode de combustion.
En d'autres termes, le procédé objet de la présente invention décompose le démarrage d'un moteur à injection en phases distinctes. Chacune de ces phases est réalisée au moyen d'un mode de combustion spécifique.
On appelle mode de combustion l'ensemble des caractéristiques contrôlées lors d'une phase de fonctionnement du moteur. Les caractéristiques contrôlées incluent l'allumage, la position du papillon des gaz, le nombre d'injections de carburant, la position des injections dans le cycle de combustion, la quantité de chaque injection et la pression du carburant injecté.
Lors d'une étape 105 d'augmentation de la pression, la pression de carburant est augmentée au moyen d'un premier mode de combustion.
Dans dés modes de réalisation, l'étape 105 d'augmentation de la pression carburant au moyen d'un premier mode de combustion comporte en outre une diminution de la pression dans le collecteur au moyen d'une fermeture du papillon.
La fermeture du papillon permet une obstruction de l'entrée d'air et donc une diminution de la quantité d'air dans le cylindre.
Dans des modes de réalisation, la pression est augmentée jusqu'à quatre- vingts bar environ.
Dans des modes de réalisation préférentiels, le premier mode de combustion ne comporte pas d'injection d'essence. Lors de l'étape 105 la quantité d'air piégée dans le cylindre est réduite, cette disposition permet de faciliter l'évaporation de l'essence pulvérisée lors de l'étape 110 d'augmentation de la température.
Lors d'une étape 1 10 d'augmentation de la température, la température est augmentée dans au moins un cylindre au moyen d'un deuxième mode de combustion.
Dans des modes de réalisation préférentiels, les paramètres maîtrisés dans ce deuxième mode de combustion sont l'allumage, la position du papillon des gaz, le nombre d'injections de carburant et la fréquence des injections de carburant.
Le deuxième mode de combustion est configuré pour générer une augmentation de température sans générer de couple moteur.
Lors d'une étape 115, le capteur de cycle de combustion détecte un cycle de combustion réussi. Chaque cycle de combustion réussi est comptabilisé par un compteur. Les étapes 110 d'augmentation de la température et 115 de détection et d'enregistrement d'un cycle de combustion réussi sont répétées autant de fois que nécessaire pour que le compteur atteigne un nombre de cycle de combustion réussi prédéterminé.
Dans des modes de réalisation, le capteur de cycle de combustion est un capteur de signal dent.
Le capteur de signal dent mesure un signal représentatif de la position angulaire du vilebrequin. Une valeur prédéterminée de position angulaire du vilebrequin correspond à la position de point mort haut.
Dans des modes de réalisation, le capteur de cycle de combustion est un capteur cliquetis. Dans des modes de réalisation le capteur de cliquetis est un capteur piézoélectrique, le signal mesuré est une donnée représentative de la position du piston qui permet de déterminer quand le cylindre est au point mort haut et ainsi de détecter les cycles de combustion du cylindre.
Dans des modes de réalisation préférentiels, le capteur de cycle de combustion est un capteur de pression cylindre. Le capteur de pression cylindre mesure la pression dans au moins un cylindre lors des cycles de combustion. La pression mesurée est une donnée représentative de la position du cylindre. Le capteur de pression cylindre permet de déterminer quand le cylindre est au point mort haut et ainsi de détecter les cycles de combustion du cylindre.
Dans des modes de réalisation la valeur de pression relevée par le capteur de pression du cylindre est comparée à une courbe de référence. La valeur de pression dans le cylindre étant connue pour un cycle avec combustion du carburant et connue pour un cycle sans combustion, la comparaison de ces valeurs de référence avec les valeurs mesurées par le capteur de pression cylindre permet de déterminer lorsque qu'un cycle du cylindre a été réalisé avec combustion du carburant. Dans des modes de réalisation, la température est mesurée au moyen d'un capteur de température. Dans des modes de réalisation, le passage de l'étape 1 10 à l'étape 115 est réalisé lorsque la température mesurée dans le cylindre est supérieure ou égale à une valeur prédéterminée.
Dans des modes de réalisation, le passage de l'étape 115 à l'étape 120 est réalisé lorsque la température est supérieure ou égale à un seuil prédéterminé et le nombre de cycles de combustion réussis enregistré par le compteur est supérieur ou égal à une valeur prédéterminée.
Dans des modes de réaljsation la température est mesurée dans le cylindre. Préférentiellement, le capteur mis en place dans le procédé de l'invention est un capteur apte à mesurer la température et la pression dans le cylindre.
Dans d'autres modes de réalisation au moins un capteur de température est positionné sur la paroi d'un cylindre. Dans d'autres moyens de réalisation le capteur de température est disposé au niveau de l'échappement.
Lors d'une étape 120 de génération de couple, du couple moteur est généré au moyen d'un troisième mode de combustion. Le troisième mode de combustion est configuré pour générer du couple moteur et pour augmenter le nombre de tours par minute du moteur.
Dans des modes de réalisation, Les caractéristiques contrôlées incluent l'allumage, la position du papillon des gaz, le nombre d'injection de carburant, la position des injections dans le cycle de combustion, la quantité de chaque injection et la pression du carburant injecté.
Dans des modes de réalisation, le procédé 10 comporte, après l'étape 120 de génération de couple :
· une étape 125 de ralentissement et de mise en marche normale du moteur au moyen d'un quatrième mode de combustion.
L'étape 125 correspond à la sortie de phase de démarrage du moteur pour un fonctionnement en marche normale du moteur.
On observe, en figure 2, une courbe représentant un exemple particulier de déroulement du procédé de commande pour le démarrage d'un moteur à combustion objet de l'invention sous forme de courbe. La courbe illustre la vitesse du moteur exprimée en nombre de rotations par minute en fonction du temps en unité de temps. Dans des modes de réalisation préférentiels, durant les étapes 105 et 110, respectivement d'augmentation de la pression et d'augmentation de la température, la vitesse du moteur est sensiblement stable.
Dans des modes de réalisation, lors de l'étape 120 de génération de couple, la vitesse du moteur augmente jusqu'à atteindre une valeur de vitesse prédéterminée. Le passage de l'étape 120 de génération de couple à l'étape 125 de ralentissement et de mise en marche normale du moteur est réalisé lorsque la vitesse du moteur est supérieure ou égale à une vitesse prédéterminée.
Dans d'autres modes de réalisation le passage de l'étape 120 de génération de couple à l'étape 125 de ralentissement et de mise en marche normale du moteur est réalisé lorsqu'une valeur absolue en régime est dépassée.
On observe, en figures 3 et 4, sous forme de graphique, les variations de température dans un cylindre, en fonction de la position angulaire du vilebrequin dans le procédé objet de l'invention.
Les figures 3 et 4 montrent la température, exprimée en degré Kelvin et figurée en ordonnée 160, en fonction de la position angulaire du vilebrequin figurée en abscisse 165.
Le carburant utilisé dans le procédé illustré aux figures 3 et 4 est de l'éthanol pur, également appelé E100. On observe en figures 3 et 4 une courbe A de température d'évaporation du carburant.
On observe également deux courbes B et C correspondant à la température dans le cylindre lors d'un cycle de combustion dans deux configurations distinctes. La courbe B correspond à la température de l'air contenu dans le cylindre lorsqu'il y a évaporation du carburant et la courbe C correspond à la température de l'air contenu dans le cylindre lorsqu'il n'y a pas d'évaporation du carburant.
La température du cylindre illustré par les courbes B et C doit être supérieure à la température d'évaporation du carburant utilisé pour permettre une évaporation du carburant. On définit une plage angulaire favorable à une injection de carburant comme l'intervalle dans lequel la température d'évaporation du carburant est inférieure à la courbe B de température du cylindre.
Le cycle de combustion illustré en figure 3 est sous pression absolue de 0,3 bar.
Le cycle de combustion illustré en figure 4 est sous pression absolue de 1 bar et comporte un papillon en position fermée favorisant une pression accrue.
On observe que les conditions mises en oeuvre en figure 4 avec un papillon en position fermée permettent l'émergence d'une plage angulaire favorable à une injection de carburant dont les bornes situées à des angles de -39° et 22° sont mis en valeur respectivement par les deux lignes verticales pointillées 180 et 85.
Ainsi les dispositions mises en places par le procédé de l'invention, illustrées en figure 5 favorisent une plage angulaire favorable à une injection de carburant plus large. On observe, en figure 5 un dispositif 20 de mise en œuvre du procédé 10 de commande pour le démarrage d'un moteur à combustion, le procédé objet de l'invention, qui comporte au moins un cylindre 205, un capteur 210 de cycle de combustion et un compteur 215.
Le dispositif 20 comporte en outre un injecteur 260, une arrivée d'air 265 et un départ des gaz d'échappement 270.
Dans des modes de réalisation préférentiels le compteur 215 est intégré au processeur 225.
Dans des modes de réalisation le dispositif 20 comporte au moins l'un des capteurs suivants : capteur de signal dent 230, capteur cliquetis 235, capteur de pression cylindre 240, et capteur de température 250.
Dans des modes de réalisation, un processeur 225 collecte et traite les données mesurées par au moins un capteur. Le traitement des données peut comporter un ou plusieurs calculs mathématiques ou la mise en œuvre d'un algorithme.
En d'autres termes le processeur 225 peut être appelé unité de contrôle moteur.
Dans des modes de réalisation, le processeur 225 compare une donnée mesurée par un capteur à une valeur prédéterminée stockée dans une mémoire 220.
Dans des modes de réalisation, le processeur 225 détermine une valeur secondaire à partir d'une valeur primaire mesurée par un capteur. Dans des modes de réalisation, la position d'un piston 255 dans le cylindre 205 est déterminée par le processeur à partir d'au moins une donnée mesurée par au moins un capteur.
Dans des modes de réalisation au moins une donnée enregistrée par au moins un des capteurs 210, 230, 235, 240, 250 est enregistré dans la mémoire 220.

Claims

REVENDICATIONS
1. Procédé (10) de commande pour le démarrage d'un moteur à combustion comportant au moins un cylindre, un capteur de cycle de combustion et un compteur, caractérisé en ce qu'il comporte :
• une étape (105) d'augmentation de la pression carburant au moyen d'un premier mode de combustion,
• une étape (110) d'augmentation de la température au moyen d'un deuxième mode de combustion et qui comporte au moins un cycle de combustion,
• une étape (115) de détection d'un cycle de combustion réussi par le capteur de cycle de combustion et d'enregistrement par un compteur,
les étapes (110) d'augmentation de la température et (1 15) de détection d'un cycle de combustion réussi étant répétées jusqu'à ce que le nombre de cycle de combustion enregistré par le compteur soit égal à une valeur prédéterminée, et
• une étape (120) de génération de couple au moyen d'un troisième mode de combustion.
2. Procédé (10) selon la revendication 1 , qui comporte, après l'étape (120) de génération de couple :
• une étape (125) de ralentissement et de mise en marche normale du moteur au moyen d'un quatrième mode de combustion.
3. Procédé (10) selon l'une des revendications 1 à 2, dans lequel le premier mode de combustion ne comporte pas d'injection d'essence.
4. Procédé (10) selon l'une quelconque des revendications 1 à 3, dans lequel l'étape (105) d'augmentation de la pression carburant au moyen d'un premier mode de combustion comporte en outre une diminution de la pression dans le collecteur au moyen d'une fermeture du papillon.
5. Procédé (1Ό) selon l'une quelconque des revendications 1 à 4, Les caractéristiques contrôlées dans le deuxième mode de combustion incluent l'allumage, la position du papillon des gaz, le nombre d'injection de carburant, la position des injections dans le cycle de combustion, la quantité de chaque injection et la pression du carburant injecté.
6. Procédé (10) selon l'une quelconque des revendications 1 à 5, Les caractéristiques contrôlées dans le troisième mode de combustion incluent l'allumage, la position du papillon des gaz, le nombre d'injection de carburant, la position des injections dans le cycle de combustion, la quantité de chaque injection et la pression du carburant injecté.
7. Procédé (10) selon l'une quelconque des revendications 1 à 6, dans lequel le capteur de cycle de combustion est un capteur de signal dent.
8. Procédé (10) selon l'une quelconque des revendications 1 à 6, dans lequel le capteur de cycle de combustion est un capteur cliquetis.
9. Procédé (10) selon l'une quelconque des revendications 1 à 6, dans lequel le capteur de cycle de combustion est un capteur de pression cylindre.
10. Dispositif (20) de mise en oeuvre du procédé (10) de commande pour le démarrage d'un moteur à combustion selon l'une quelconque des revendications 1 à 9 caractérisé en ce qu'il comporte au moins un cylindre (205), un capteur (210) de cycle de combustion et un compteur (215).
PCT/EP2016/001928 2015-11-26 2016-11-18 Procédé de commande pour le démarrage d'un moteur à combustion comportant une phase de thermie et une phase de génération de couple WO2017088967A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680069335.6A CN108350813B (zh) 2015-11-26 2016-11-18 包括预热阶段和转矩产生阶段的发动机起动的控制方法
BR112018010512A BR112018010512A8 (pt) 2015-11-26 2016-11-18 Método de controle para partida de um motor de combustão, compreendendo uma fase de aquecimento e uma fase de geração de torque

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1561397 2015-11-26
FR1561397A FR3044362B1 (fr) 2015-11-26 2015-11-26 Procede de commande pour le demarrage d’un moteur a combustion comportant une phase de thermie et une phase de generation de couple

Publications (1)

Publication Number Publication Date
WO2017088967A1 true WO2017088967A1 (fr) 2017-06-01

Family

ID=55451304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2016/001928 WO2017088967A1 (fr) 2015-11-26 2016-11-18 Procédé de commande pour le démarrage d'un moteur à combustion comportant une phase de thermie et une phase de génération de couple

Country Status (4)

Country Link
CN (1) CN108350813B (fr)
BR (1) BR112018010512A8 (fr)
FR (1) FR3044362B1 (fr)
WO (1) WO2017088967A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050252474A1 (en) * 2004-05-14 2005-11-17 Sah Jy-Jen F Multi-stage compression ignition engine start
FR2896014A1 (fr) * 2006-01-11 2007-07-13 Siemens Vdo Automotive Sas Procede d'adaptation d'un moteur a combustion interne a la qualite du carburant utilise
DE102007029478A1 (de) * 2007-06-26 2009-01-08 Daimler Ag Verfahren zum Starten einer Brennkraftmaschine
WO2014053243A1 (fr) * 2012-10-05 2014-04-10 Continental Automotive France Procede de gestion de la masse de combustible injectee dans un moteur

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011157822A (ja) * 2010-01-29 2011-08-18 Denso Corp 内燃機関の燃料噴射制御装置
US9145844B2 (en) * 2012-10-30 2015-09-29 GM Global Technology Operations LLC Fuel control systems and methods for cold starts of an engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050252474A1 (en) * 2004-05-14 2005-11-17 Sah Jy-Jen F Multi-stage compression ignition engine start
FR2896014A1 (fr) * 2006-01-11 2007-07-13 Siemens Vdo Automotive Sas Procede d'adaptation d'un moteur a combustion interne a la qualite du carburant utilise
DE102007029478A1 (de) * 2007-06-26 2009-01-08 Daimler Ag Verfahren zum Starten einer Brennkraftmaschine
WO2014053243A1 (fr) * 2012-10-05 2014-04-10 Continental Automotive France Procede de gestion de la masse de combustible injectee dans un moteur

Also Published As

Publication number Publication date
CN108350813B (zh) 2021-10-29
CN108350813A (zh) 2018-07-31
BR112018010512A2 (pt) 2018-11-13
FR3044362B1 (fr) 2017-11-17
FR3044362A1 (fr) 2017-06-02
BR112018010512A8 (pt) 2023-04-11

Similar Documents

Publication Publication Date Title
EP1815118B1 (fr) Dispositif et procede de determination de la quantite de nox emise par un moteur diesel de vehicule automobile et systemes de diagnostic et de controle du fonctionnement du moteur comprenant un tel dispositif.
EP2325462A1 (fr) Procédé de détection de combustion anormale pour moteurs à combustion interne à partir de plusieurs indicateurs de la combustion
FR2466633A1 (fr) Systeme de commande de synchronisation d'etincelles pour moteurs a combustion interne
FR2548274A1 (fr) Appareil de detection d'anomalies d'un dispositif de detection de parametres de fonctionnement d'un moteur a combustion interne
EP1954932A1 (fr) Procede et dispositif de commande d'une vanne de recirculation de gaz brules lors de la phase de demarrage du moteur
FR3038002A1 (fr) Procede de nettoyage d'injecteurs d'un moteur a allumage controle et a injection directe
FR2528909A1 (fr) Procede de commande du fonctionnement d'un moteur a combustion interne au demarrage
FR2904660A1 (fr) Determination d'un debut de combustion dans un moteur a combustion interne
FR2548272A1 (fr) Procede de commande d'injection de combustible a l'acceleration d'un moteur a combustion interne a plusieurs cylindres du type a injection sequentielle
EP3052781B1 (fr) Procédé de détection de la défaillance d'un refroidisseur d'air suralimenté et dispositif de motorisation associé
EP1920144A2 (fr) Dispositif pour la detection en temps reel du commencement de la phase de combustion et procede correspondant
WO2017088967A1 (fr) Procédé de commande pour le démarrage d'un moteur à combustion comportant une phase de thermie et une phase de génération de couple
WO2016012095A1 (fr) Procede de determination de la pression totale dans le cylindre d'un moteur
WO2009068770A1 (fr) Estimation des effets de l'evaporation du carburant dilue dans l'huile d'un moteur a combustion interne
FR2880656A1 (fr) Procede de gestion d'un moteur a combustion interne notamment d'un moteur diesel et installation pour sa mise en oeuvre
FR2978209A1 (fr) Procede de detection et de caracterisation de combustion anormale pour moteurs a combustion interne
FR2909413A1 (fr) Procede d'estimation et de reglage du debit de la combustion
FR2527691A1 (fr) Procede permettant de commander les dispositifs de commande de moteurs a combustion interne immediatement apres la fin d'une coupure de carburant
FR3064679A1 (fr) Procede de detection d'un pre-allumage d'un melange d'air frais et de carburant
WO2024083788A1 (fr) Procédé de gestion d'une phase de redémarrage d'un moteur à combustion interne en mode dégradé
FR3076862A1 (fr) Dispositif de controle d'injection de carburant et système de controle d'injection de carburant
FR2904044A1 (fr) Procede de commande d'un moteur comprenant une etape amelioree de detection du debut d'une combustion.
FR2793524A1 (fr) Procede pour la mise en oeuvre d'un systeme d'alimentation en carburant de moteur a combustion interne
FR3017654A1 (fr) Procede de determination du remplissage en air de reference pour le calcul de l'avance a l'allumage d'un moteur
FR3120921A1 (fr) Procédé de diagnostic d’un fonctionnement erroné d’un moteur de véhicule

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16801130

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018010512

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112018010512

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180523

122 Ep: pct application non-entry in european phase

Ref document number: 16801130

Country of ref document: EP

Kind code of ref document: A1