WO2016076615A1 - 마이크로 니들 패치 - Google Patents
마이크로 니들 패치 Download PDFInfo
- Publication number
- WO2016076615A1 WO2016076615A1 PCT/KR2015/012079 KR2015012079W WO2016076615A1 WO 2016076615 A1 WO2016076615 A1 WO 2016076615A1 KR 2015012079 W KR2015012079 W KR 2015012079W WO 2016076615 A1 WO2016076615 A1 WO 2016076615A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- microneedle
- flexible liner
- porous flexible
- acid
- porous
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M37/00—Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
- A61M37/0015—Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M37/00—Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M37/00—Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
- A61M37/0015—Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
- A61M2037/0046—Solid microneedles
Definitions
- the present invention relates to patches for pharmaceutical, medical or cosmetic use, and more particularly, to microneedle patches.
- Microneedle devices form a large number of microchannels at once by the microneedle through the stratum corneum layer of the skin, which is the main barrier layer of transdermal drug delivery. Through the microchannels, a sufficient amount of drug can reach the epidermis layer or dermis layer, after which the drug is absorbed through blood vessels and lymph nodes and introduced into the human circulatory system.
- the microneedles may also be used for cosmetic purposes. For example, after the bioactive material is applied onto the skin or on the microneedles, the microneedles form microchannels in the skin for transdermal delivery. As another example, the microneedles may contain a bioactive material for cosmetic so that the microneedles are inserted into the skin and at the same time the bioactive material is supplied into the human skin or circulatory system.
- the present invention has been made in an effort to provide a microneedle patch which is easy to use, susceptible to moisture in the outside air, and can produce microneedles having low mechanical strength in high yield.
- Microneedle patch for solving the technical problem, a porous flexible liner including a plurality of through parts; And a microneedle layer including a common base portion in contact with the porous flexible liner, and microneedles arranged integrally with the common base portion.
- the microneedles may comprise a biocompatible material.
- a pharmaceutical, medical or cosmetic active material may be dispersed or chemically bound in the biocompatible material or the active material may be coated in the surface of the microneedles.
- the biocompatible material is chitosan, collagen, gelatin, hyaluronic acid (HA), alginic acid, pectin, carrageenan, chondroitin (sulfate), dextran (sulfate) ), A bio-derived soluble substance that is at least one of polylysine, carboxymethyl titine, fibrin, agarose, pullulan and cellulose; Polyvinylpyrrolidone (PVP); Polyethylene glycol (PEG), polyvinyl alcohol (PVA), hydroxypropyl cellulose (HPC), hydroxyethyl cellulose (HEC), hydroxypropyl methylcellulose (HPMC), sodium carboxymethyl cellulose, polyalcohol, gum arabic, algin Nate, Cyclodextrin, Dextrin, Glucose, Fructose, Starch, Trehalose, Glucose, Maltose, Lactose, Lactulose, Fructose, Turanose,
- the area ratio (through part area / closed part area) of the plurality of through parts and the closure parts between the plurality of through parts is in the range of 1% to 80%.
- the plurality of penetrations may have a pattern that is circular, elliptical, polygonal or slit, or a combination thereof.
- the porous flexible liner is polyethylene, polypropylene, polyvinyl chloride, PET, nylon, epoxy, polyimide, polyester, urethane, acrylic, polycarbonate, urea, melanin, rubber chloride, polyvinyl alcohol, polyvinyl ester, vinyl Lidenfluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinylidenefluoride (PVDF), polyacrylonitrile, polymethylmethacrylate, polytetrafluoroethylene (polytetrafluoroethylene: PTFE), styrenebutadiene rubber (SBR), or ethylene-propylene-diene copolymer (EPDM).
- the porous flexible liner may have a light transparency in the range of 30% to 99%.
- the thickness of the porous flexible liner may be in the range of 0.01 mm to 1.5 mm.
- the common base portion may be bonded on the porous flexible liner through physical adsorption or adhesion, chemical adsorption or adhesion, or hydrogen bonding.
- the biocompatibility material has a flexible characteristic Microneedle patches can be provided that can be easily and can produce microneedle patches in high yield and large area by reinforcing the moisture or mechanical strength of the outside air.
- FIG. 1 is a plan view of a porous flexible liner of a microneedle patch according to an embodiment of the present invention.
- FIG. 2A and 2B are respectively a perspective view and a cross-sectional view showing a microneedle patch according to an embodiment of the present invention
- FIG. 2C is a cross-sectional view showing a commercialized microneedle patch according to an embodiment of the present invention.
- 3A and 3B are a perspective view and a cross-sectional view, respectively, showing a microneedle patch according to another embodiment of the present invention.
- FIGS. 4A and 4B illustrate a mold and a laminate in a manufacturing process for explaining a method of manufacturing a microneedle patch according to an embodiment of the present invention.
- first, second, etc. are used herein to describe various members, parts, regions, layers, and / or parts, these members, parts, regions, layers, and / or parts are defined by these terms. It is obvious that not. These terms are only used to distinguish one member, part, region, layer or portion from another region, layer or portion. Thus, the first member, part, region, layer or portion, which will be discussed below, may refer to the second member, component, region, layer or portion without departing from the teachings of the present invention.
- FIG. 1 is a plan view of a porous flexible liner 10 of a microneedle patch in accordance with one embodiment of the present invention.
- the porous flexible liner 10 is a planar body having a predetermined thickness, and includes a plurality of through portions 10H penetrating the planar body through a front surface and a rear surface thereof.
- the thickness of the porous flexible liner 10 may have a size in the range of 0.01 mm to 1.5 mm to ensure flexibility.
- the plurality of through portions 10H may be circular through holes as shown in FIG. 1, but this is exemplary and the present invention is not limited thereto.
- the plurality of through portions 10H may have a polygon or an ellipse such as a triangle or a quadrangle.
- the plurality of through parts 10H may have a slit-like straight line, a meander pattern, or a wave pattern and a linear structure or a composite pattern in which these patterns cross each other.
- the area ratio or opening ratio (through area / closed area) of the through portions and the closed portions of the porous flexible liner may be in the range of 1% to 80%.
- the area ratio is less than 1%, it is difficult to discharge water or other solvent vapors generated during the drying process in the formation of microneedles as described below, and when the area ratio exceeds 80%, the porous flexible liner 10 and It is difficult to secure the bonding force with the base of the microneedles to be described later, and it is difficult to secure sufficient support for skin insertion of the microneedle.
- the size of the through hole 10R may be in a range of 0.01 mm to 1 mm.
- the width of the slit may be in the range of 0.01 mm to 1 mm.
- the spacing 10D between the plurality of through portions 10H may be in the range of 0.1 mm to 2 mm.
- the closing portion 10S of the porous flexible liner 10 may be defined by the gap 10D.
- the closure 10S serves as a barrier layer for chemical or moisture in subsequent processes during the manufacture of chemically and mechanically vulnerable microneedles, and from reinforcement and external contamination which enhances the mechanical strength of the patch during actual use of the patch after manufacture. It functions as a protective layer for protecting the microneedle layer.
- the porous flexible liner 10 may include an antimicrobial treatment or an antimicrobial drug on the surface of the porous flexible liner 10 to prevent contamination by microneedles described below and bacteria of the common base portion.
- the porous flexible liner 10 may be a film or sheet structure formed of a resin-based material.
- the resin material is polyethylene, polypropylene, polyvinyl chloride resin, polyethylene terephthalate, nylon, epoxy, polyimide, polyester, urethane, acrylic, polycarbonate, urea, melanin, rubber, polyvinyl alcohol, polyvinyl ester , Vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinylidene fluoride (PVDF), polyacrylonitrile, polymethylmethacrylate, polytetra Resin-based materials such as polytetrafluoroethylene (PTFE), styrenebutadiene rubber (SBR), or ethylene-propylene-diene copolymer (EPDM); these are exemplary only, and the present invention Not limited to this, other curable or plastic resin-based materials may be applied.
- PTFE polytetrafluoroethylene
- the resin-based material may have a light transparency having transparency to infrared rays or ultraviolet rays for the transfer of energy such as thermal energy or ultraviolet rays in the manufacturing process of the microneedle.
- the light transparency is not limited to the transmittance of 99% or more, it is sufficient to be in the range of 30% to 99%.
- the transparent resin-based material may include, for example, epoxy, polyimide, unsaturated polyester, urethane, acrylic, polycarbonate, urea, melanin, rubber chloride, polyvinyl alcohol, polyvinyl ester or a mixture thereof.
- the porous flexible liner 10 may be coated with a metal layer as a moisture proof layer.
- the metal layer may be, for example, aluminum, gold, silver, copper, titanium or manganese, and these materials may be coated by a wet method in a manner such as physical deposition such as sputtering or electroless plating.
- FIGS. 2A and 2B are a perspective view and a cross-sectional view, respectively, showing a microneedle patch 100A according to one embodiment of the present invention
- FIG. 2C shows a commercialized microneedle patch 100B according to one embodiment of the present invention. It is a cross section.
- the microneedle patch 100A includes the porous flexible liner 10 and the microneedle layer 20 on the porous flexible liner 10 described above.
- the microneedle layer 20 includes the microneedle 20N which is integrally arranged to the common base portion 20B and the common base portion 20B in interview with the porous flexible liner 10.
- the common base portion 20B may be bonded through physical adsorption or adhesion, chemical adsorption or adhesion, or hydrogen bonding on the porous flexible liner 10, and preferably, these bonding may be achieved through a low temperature process.
- the structures of the integrated common base portion 20B and the microneedles 20N may be obtained through a casting process using the same material as described below.
- the height of the microneedles 20N may be in the range of 50 ⁇ m to 1,500 ⁇ m, and the diameter of the base of the microneedles 20N may be in the range of 10 ⁇ m to 1,000 ⁇ m.
- the material for forming the microneedle layer 20 may include a biocompatible material capable of minimizing human side effects and effective drug delivery when the microneedle 20N is inserted into the skin.
- the biocompatible material may be, for example, chitosan, collagen, gelatin, hyaluronic acid (HA), alginic acid, pectin, carrageenan, chondroitin (sulfate), dextran (sulfate).
- Biologically derived soluble substance which is at least one of polylysine, carboxymethyl titine, fibrin, agarose, pullulan and cellulose; Polyvinylpyrrolidone (PVP); Polyethylene glycol (PEG), polyvinyl alcohol (PVA), hydroxypropyl cellulose (HPC), hydroxyethyl cellulose (HEC), hydroxypropyl methylcellulose (HPMC), sodium carboxymethyl cellulose, polyalcohol, gum arabic, algin Nate, Cyclodextrin, Dextrin, Glucose, Fructose, Starch, Trehalose, Glucose, Maltose, Lactose, Lactulose, Fructose, Turanose, Melitose, Melegitose, Dextran, Sorbitol, Xylitol, Pallatinite
- a biocompatible material which is at least one of polylactic acid, polyglycolic acid, polyethylene oxide, polyacrylic acid, poly
- the microneedle layer 20 is a bio-derived soluble material of chitosan (collagen), gelatin (gelatin), hyaluronic acid (HA), alginic acid, pectin, carrageenan of biocompatible materials , Chondroitin (sulfate), dextran (sulfate), polylysine (polylysine), carboxymethyl titin, fibrin, agarose, pullulan and cellulose.
- chitosan collagen
- gelatin gelatin
- alginic acid pectin
- carrageenan of biocompatible materials
- dextran sulfate
- polylysine polylysine
- carboxymethyl titin fibrin
- fibrin agarose
- pullulan and cellulose cellulose
- the aforementioned biocompatible materials are substantially solid, they are decomposable or meltable by moisture in raw vegetables, so that their shape and / or components may deteriorate rapidly when not properly dried during manufacture or exposed to moisture in actual use.
- the microneedle layer 20 is interviewed in order to prevent deterioration of the microneedle layer 20 made of biocompatible materials from moisture after the manufacture while inducing the drying time during production.
- a porous flexible liner 10 is provided, in the manufacturing stage, cooling and / or drying through rapid release of moisture as indicated by arrow A of FIG. 2B through the plurality of through portions 10H of the porous flexible liner 10. After the manufacture, exposure to the outside air of the common base portion 20B is reduced and eliminated by the blocking portion 10S.
- porous flexible liner 10 reinforces the strength of the microneedle layer 10 and improves dimensional stability, such as prevention of warpage, which occurs during the molding step during manufacture, thereby increasing yield and large area in the manufacturing process. There is an advantage of improving productivity.
- the microneedle patch 100A is cut and molded into any size and shape that can be stably attached to the application site such as the eyes, the perimeter, the arms, the shoulders, the abdomen, and as shown in FIG.
- An adhesive layer 30a may be provided to be maintained.
- the microneedle patch 100B is cut to have a suitable size and shape using the microneedle patch 100A of FIG. 2A as a fabric, and then expanded beyond the edge of the microneedle patch 100B for skin attachment.
- An attachment pad 30 providing the adhesive layer 30a may be manufactured by attaching to the bottom of the porous flexible liner 10. The attachment pad 30 and the porous flexible liner 10 may be joined to each other by an adhesive layer disposed therebetween.
- porous particles At least a portion of the inside of the microneedle 20N is provided with porous particles.
- the average size of the porous particles is in the range of 0.01 ⁇ m to 100 ⁇ m, preferably in the range of 1 ⁇ m to 50 ⁇ m.
- the porous particles may be provided not only inside the microneedles 20N but also inside the common base portion 20B. In other embodiments, the porous particles may be provided only in the attachment region of the microneedles 20N, or in the front end region of the microneedle layer 20, including the attachment. In yet another embodiment, the porous particles may be provided dispersed only within the microneedles 20N except for the common base portion 20B.
- porous particles may be provided on the surface of the microneedle 20N.
- the porous particles may be coated on the surface of the microneedle 20N in the form of a layer structure. Coating of the porous particles may be achieved through physical adsorption or adhesion, chemical adsorption or adhesion, biocompatible binder or mechanical embedding to the surface of the microneedles 20N, the present invention is not limited thereto.
- the porous particles may be coated onto the microneedle 20N through dip coating or spray coating.
- the porous particles are also injected into the biological tissue.
- the porous particles may be particles that themselves have a pharmaceutical, medical or cosmetic effect in living tissue.
- the pores of the porous particles can have open or closed pores, and the pores in living tissue can have an effective pharmaceutical, medical or cosmetic effect due to the increased surface area.
- the porous particles can have the cosmetic efficacy of a filler for wrinkle removal.
- the filler in the form of porous particles increases the contact area with the biological tissue due to the increased surface area of the pores in the surface of the porous particles in the biological tissue, for example, by more efficiently stimulating the production of collagen attached thereto. Not only can a fast wrinkle removal effect be obtained, but also the fixing force in the living tissue can be improved due to the increased roughness of the filler surface.
- the filler in the form of porous particles has the advantage of minimizing foreign matters when applied in vivo due to the reduced weight to volume, mechanically improve the flexibility and provide a soft feeling.
- porous particles have closed pores, when the porous particles are formed of a biodegradable or biosoluble material, the porous pores are gradually degraded in the biological tissue and the closed pores are opened over time to secure the efficacy of the above-mentioned pores. can do.
- the filler in the form of porous particles is polyparadioxanone (PPDX, poly (p-dioxanone)), polylactide-co-glycolide (PLGA, poly (lactide-co-glycolide)), polycaprolactone , Polylatic acid, polyanhydride, polyorthoester, polyetherester, polyesteramide, polybutyric acid or a mixture of two or more It may include. These materials are exemplary and the filler in the form of porous particles may include other biocompatible materials.
- Porous particles may also be applied as drug carriers with, or independently of, the function as the filler described above.
- a pharmaceutical, medical or cosmetically active substance may be additionally contained in the porous particles to deliver the active substance to the biological tissue along with the porous particles upon skin insertion of the microneedles.
- active substances may be, but are not limited to, cosmetic ingredients such as proteins, peptides, genes, antibodies, anesthetics, insulin, vaccines, polysaccharides, synthetic organic compounds, synthetic inorganic compounds, or whitening or antioxidants, Or any other active substance which is cosmetically permitted for use.
- the active material may be trapped in the pores of the porous particles or dispersed in the microneedles 20N of the porous particles and transferred into the biological tissue.
- the porosity of the porous particles can be, for example, 5 to 90%.
- the porosity may be appropriately selected according to the loading amount of the cosmetically or pharmaceutically effective substance.
- the porous particles when used as the filler, it can be appropriately selected by combining with the biological tissue to adjust the filling effect according to the refresh rate of the biological tissue.
- 3A and 3B are a perspective view and a cross-sectional view, respectively, showing a microneedle patch 100C according to another embodiment of the present invention.
- the microneedle patch 100C is also disposed on the other surface 10b opposite to one surface 10u of the porous flexible liner 10 to which the common base portion 20a is interviewed. It may further include a base layer 20b including the same material as).
- the microneedle layer 20a and the underlayer 20b may be integrated.
- the porous flexible liner 10 may be embedded between the microneedle layer 20a and the base layer 20b.
- an attachment pad providing an attachment surface that extends beyond the edge of the microneedle patch 100C for skin attachment is provided with an underlayer ( It may be attached to the bottom of 20b).
- FIGS. 4A and 4B illustrate a mold and a laminate in a manufacturing process for explaining a method of manufacturing a microneedle patch according to an embodiment of the present invention.
- the microneedle patch described above may be manufactured through a molding process using the mold 1.
- the mold 1 comprises an array of negatively shaped cavities MC for molding microneedles.
- the mold 1 may be formed of a metal, ceramic, glass, thermoplastic or thermosetting resin-based material, but the present invention is not limited thereto.
- a solution obtained by dissolving or dispersing the above-described biocompatible material or biodegradable material or precursor thereof (collectively referred to as raw material of the microneedle layer; 20L) as a material of the microneedle layer in a suitable solvent is obtained.
- the cavity MC of the mold 1 can be filled to overflow.
- the raw material 20L may be filled in powder, melt, or gel form into the cavity MC of the mold 10.
- the porous flexible liner 10 After filling the cavity MC of the mold 10 to flood the raw material 20L, the porous flexible liner 10 is laminated.
- a melting step may be performed by heating before laminating the porous flexible liner 10. have.
- a constant pressure may be applied onto the porous flexible liner 10 when the porous flexible liner 10 is stacked.
- the raw material 20L may be further applied onto the porous flexible liner 10 for the manufacture of the microneedle patch 100C described with reference to FIG. 3A.
- the microneedle layer 20 is solidified through cooling and / or reduced pressure, freezing, or a heat drying process at a temperature within a range of 50 ° C. to 100 ° C.
- Microneedles using biodegradable materials have sufficient strength for skin incorporation and, if necessary, fast drying is required to maintain mechanical strength for a period of time for drug delivery and then decompose. This fast drying is also important in terms of productivity.
- vapor discharge or heat release of an organic solvent, such as water or alcohol is indicated as indicated by arrow A during the drying or cooling process through a plurality of through portions 10H of the porous flexible liner 10. By doing so quickly, firm microneedles can be formed in the cavity. In general, when the drying is performed within 0.1 hours to 2 hours, the microneedles which are firm and maintained in shape are obtained. However, when the drying time exceeds 2 hours, the yield may be reduced due to deterioration or deterioration of raw materials.
- the porous flexible liner 10 After a sufficient cooling or drying process, as indicated by arrow B, separating the porous flexible liner 10 from the mold 1 makes the microneedle layer 20L bonded to the porous flexible liner 10 stable from the mold 1. Separated by. In the absence of the porous flexible liner 10, the microneedle layer 20L may be cracked or dusted when separating the microneedle layer 20L from the mold 1. However, according to the embodiment of the present invention, the porous flexible liner 10 reinforces the microneedle layer 20L, so that a stable separation process of the microneedle layer 20L from the mold 1 is ensured so that the microneedle layer 20L Large area formation process is possible.
- Table 1 below shows the drying time, yield, and maximum molding area measured on the manufacturing process of the microneedle patch to which the porous flexible liner is applied according to an embodiment of the present invention.
- a solution obtained by dissolving hyaluronic acid, which is a biocompatible material, in distilled water at a concentration of 30% was filled into a mold, and a porous flexible liner was laminated thereon, followed by drying at 50 ° C. Thereafter, the dried microneedle layer is separated from the mold to prepare a microneedle patch.
- Example 1 the diameter of the circular through portion of the porous flexible liner is 10 ⁇ m, and the spacing is 1 mm, and in Example 2, the diameter of the circular through portion of the porous flexible liner is 100 ⁇ m, the spacing is 1 mm.
- the comparative example is a case where the microneedle patch was manufactured by the same method as Example 1 and 2, and it is a measurement result when a porous flexible liner is not applied.
- the drying time is the time required for the moisture content to be less than 5%, at which time the yield obtained and the maximum available molding area of the microneedle patch were measured.
- the microneedle has excellent molding stability without distortion by the closure without a substantial increase in the drying time by the penetrations.
- a large area molding process was achieved by achieving a yield of 100% at a manufacturing area of 150 cm 2 for microneedles using bio-derived soluble materials susceptible to moisture.
- the above embodiment relates to hyaluronic acid, a bioderived soluble polymer material, which, by way of example, also exhibits the same behavior and advantages with porous flexible liners, as described above with other biocompatible materials that are susceptible to moisture or chemicals.
- microneedle patch of the present invention can be used for pharmaceutical, medical or cosmetic use.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Anesthesiology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Hematology (AREA)
- Dermatology (AREA)
- Medical Informatics (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Materials For Medical Uses (AREA)
- Media Introduction/Drainage Providing Device (AREA)
- Medicinal Preparation (AREA)
Abstract
본 발명은 의료용 또는 미용 목적의 마이크로 니들 패치에 관한 것이다. 본 발명의 일 실시예에 따른 마이크로 니들 패치는, 복수의 관통부들을 포함하는 다공성 플렉시블 라이너; 및 상기 다공성 플렉시블 라이너와 면접하는 공통 베이스부, 및 상기 공통 베이스부에 일체화되어 배열된 마이크로 니들들을 포함하는 마이크로 니들층을 갖는다.
Description
본 발명은 약학적, 의료학적 또는 미용학적 용도의 패치에 관한 것으로서, 더욱 상세하게는, 마이크로 니들 패치에 관한 것이다.
인체에 적용되는 의약들의 효과적인 약물 전달을 위한 방법으로서, 피하 주사 바늘을 통해 의약을 액상 형태로 주입하는 방식이 널리 적용되고 있다. 그러나, 수 mm 내외의 직경을 갖는 피하 주사 바늘은 피부에 존재하는 다수의 통점을 자극하여 환자에게 통증을 줄 수 있으며, 이의 사용을 위해서는 고도의 숙련을 요구하는 문제점이 있다.
최근에는, 피하 주사 바늘이 갖는 상기 단점들을 극복하기 위해 직경과 높이가 수십 또는 수백 ㎛에 불과한 마이크로 니들 장치를 이용한 약물의 경피 전달 방법이 활발하게 연구되고 있다. 마이크로 니들 장치는 마이크로 니들들에 의해 경피 약물 전달의 주요 장벽층인 피부의 각질층(stratum corneum layer)을 뚫는 수많은 마이크로 채널들을 한꺼번에 형성한다. 상기 마이크로 채널들을 통하여, 충분한 양의 약물이 표피층(epidermis layer) 또는 진피층(dermis layer)에 도달될 수 있으며, 이후, 약물은 혈관과 임파선을 통해 흡수되어 인체의 순환 시스템 내로 인입된다.
또 다른 응용으로서, 상기 마이크로 니들들은 미용 목적으로 사용되기도 한다. 예를 들면, 피부 상에 또는 마이크로 니들 상에 상기 생리 활성 물질을 도포한 후, 상기 마이크로 니들들에 의해 피부 내에 마이크로 채널들을 형성하여 경피 전달하는 방식이 있다. 다른 예로서, 상기 마이크로 니들들에 미용을 위한 생리 활성 물질을 함유시켜, 상기 마이크로 니들이 피부 내 자입되는 것과 동시에 상기 생리 활성 물질이 인체의 피부 또는 순환 시스템 내로 공급되는 방식이 있을 수 있다.
전술한 마이크로 니들들을 이용한 유효 물질의 경피 전달 방식이 유용하지만, 이의 적용을 위해서는, 종래의 복잡한 구조의 마이크로 니들 장치를 단순화한 패치 타입의 마이크로 니들 장치가 바람직하다. 이 경우 미세 구조인 마이크로 니들들의 제조 공정을 고려하여 수율을 향상시킬 수 있는 공정 정합성을 갖는 구조의 마이크로 니들 패치가 필요하다.
본 발명이 해결하고자 하는 기술적 과제는, 사용하기 쉽고, 외기의 수분에 취약하고, 기계적 강도가 약한 마이크로 니들들을 고수율로 제조할 수 있는 마이크로 니들 패치를 제공하는 것이다.
상기 기술적 과제를 해결하기 위한 본 발명의 일 실시예에 따른 마이크로 니들 패치는, 복수의 관통부들을 포함하는 다공성 플렉시블 라이너; 및 상기 다공성 플렉시블 라이너와 면접하는 공통 베이스부, 및 상기 공통 베이스부에 일체화되어 배열된 마이크로 니들들을 포함하는 마이크로 니들층을 포함한다.
상기 마이크로 니들들은 생체 적합성 재료를 포함할 수 있다. 상기 생체 적합성 재료 내에 약학적, 의학적 또는 화장학적인 유효 물질이 분산 또는 화학결합되거나 상기 마이크로 니들들의 표면 내에 상기 유효 물질이 코팅될 수도 있다.
일 실시예에서, 상기 생체 적합성 재료는, 키토산(chitosan), 콜라겐(collagen), 젤라틴(gelatin), 히알루론산(hyaluronic acid; HA), 알긴산, 펙틴, 카라기난, 콘드로이틴(설페이트), 덱스트란(설페이트), 폴리라이신(polylysine), 카르복시메틸 티틴, 피브린, 아가로스, 풀루란 및 셀룰로오스 중 적어도 어느 하나인 생체 유래 가용성 물질; 폴리비닐피롤리돈(PVP); 폴리에틸렌 글리콜(PEG), 폴리비닐알콜(PVA), 히드록시프로필 셀룰로스(HPC), 히드록시에틸셀룰로스(HEC), 히드록시프로필 메틸셀룰로스(HPMC), 나트륨 카르복시메틸 셀룰로스, 폴리알콜, 아라비아검, 알기네이트, 시클로덱스트린, 덱스트린, 포도당, 과당, 녹말, 트레할로스, 글루코스, 말토스, 락토스, 락툴로스, 프럭토스, 투라노스, 멜리토스, 멜레지토스, 덱스트란, 소르비톨, 크실리톨, 팔라티니트, 폴리락트산(polylactic acid), 폴리글리콜산(polyglycolic acid), 폴리에틸렌옥사이드, 폴리아크릴산, 폴리아크릴아마이드, 폴리메타아크릴산, 및 폴리말레인산 중 적어도 어느 하나인 생체 적합 물질; 전술한 물질의 유도체; 또는 이들의 혼합물을 포함할 수 있다.
또한, 상기 복수의 관통부들 및 상기 복수의 관통부들 사이의 패쇄부들의 면적비(관통부 면적/폐쇄부 면적)은 1 % 내지 80 %의 범위 내이다. 상기 복수의 관통부들은, 원형, 타원형, 다각형 또는 슬릿 또는 이들의 조합인 패턴을 가질 수 있다.
상기 다공성 플렉시블 라이너는, 폴리에틸렌, 폴리프로필렌, 폴리염화비닐, PET, 나일론, 에폭시, 폴리이미드, 폴리에스테르, 우레탄, 아크릴, 폴리카보네이트, 요소, 멜라닌, 염화고무, 폴리비닐알콜, 폴리비닐에스테르, 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐리덴플루오라이드(polyvinylidenefluoride: PVDF), 폴리아크릴로니트릴 (polyacrylonitrile), 폴리메틸메타크릴레이트 (polymethylmethacrylate), 폴리테트라불화에틸렌(polytetrafluoroethylene: PTFE), 스틸렌부타디엔 고무(styrenebutadiene rubber: SBR), 또는 에틸렌프로필렌디엔 공중합체(ethylene-propylene-diene copolymer: EPDM)를 포함할 수 있다. 또한, 상기 다공성 플렉시블 라이너는 30 % 내지 99 % 범위 내의 광 투명도를 가질 수 있다. 상기 다공성 플렉시블 라이너의 두께는, 0.01 mm 내지 1.5 mm의 범위 내일 수 있다.
일 실시예에서, 상기 공통 베이스부는 상기 다공성 플렉시블 라이너 상에 물리적 흡착 또는 접착, 화학적 흡착 또는 접착, 또는 수소 결합을 통해 결합될 수 있다.
본 발명의 실시예에 따르면, 생체 적합성 재료를 이용하여 마이크로 니들들의 어레이를 형성함으로써 피부 자입시 부러짐에 의한 부작용을 방지하고, 유효한 활성 성분으로 작용함으로써 의학 또는 미용적 효과를 달성할 수 있을 뿐만 아니라, 상기 생체 적합성 재료가 갖는 내수성, 내화학학성 및 저강도의 재료적 취약점을 복수의 관통부들을 갖는 다공성 플렉시블 라이너를 이용하여 제조 시 또는 제조 후에도 마이크로 니들들을 보호함으로써, 플렉시블 특성을 부여하여 사용하기 쉽고, 외기의 수분 또는 기계적 강도를 보강함으로써 고수율 및 대면적으로 마이크로 니들 패치를 제조할 수 있는 마이크로 니들 패치가 제공될 수 있다.
도 1은 본 발명의 일 실시예에 따른 마이크로 니들 패치의 다공성 플렉시블 라이너의 평면도이다.
도 2a 및 도 2b는 각각 본 발명의 일 실시예에 따른 마이크로 니들 패치를 도시하는 사시도 및 단면도이며, 도 2c는 본 발명의 일 실시예에 따른 제품화된 마이크로 니들 패치를 도시하는 단면도이다.
도 3a 및 도 3b는 각각 본 발명의 다른 실시예에 따른 마이크로 니들 패치를 도시하는 사시도 및 단면도이다.
도 4a 및 도 4b는 본 발명의 일 실시예에 따른 마이크로 니들 패치의 제조 방법을 설명하기 위한 주형과 제조 공정 중의 적층체를 도시한다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다.
본 발명의 실시예들은 당해 기술 분야에서 통상의 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위하여 제공되는 것이며, 하기 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 오히려, 이들 실시예는 본 개시를 더욱 충실하고 완전하게 하고, 당업자에게 본 발명의 사상을 완전하게 전달하기 위하여 제공되는 것이다.
또한, 이하의 도면에서 각 층의 두께나 크기는 설명의 편의 및 명확성을 위하여 과장된 것이며, 도면상에서 동일 부호는 동일한 요소를 지칭한다. 본 명세서에서 사용된 바와 같이, 용어 "및/또는" 는 해당 열거된 항목 중 어느 하나 및 하나 이상의 모든 조합을 포함한다.
본 명세서에서 사용된 용어는 특정 실시예를 설명하기 위하여 사용되며, 본 발명을 제한하기 위한 것이 아니다. 본 명세서에서 사용된 바와 같이, 단수 형태는 문맥상 다른 경우를 분명히 지적하는 것이 아니라면, 복수의 형태를 포함할 수 있다. 또한, 본 명세서에서 사용되는 경우 "포함한다(comprise)" 및/또는 "포함하는(comprising)"은 언급한 형상들, 숫자, 단계, 동작, 부재, 요소 및/또는 이들 그룹의 존재를 특정하는 것이며, 하나 이상의 다른 형상, 숫자, 동작, 부재, 요소 및/또는 그룹들의 존재 또는 부가를 배제하는 것이 아니다.
본 명세서에서 제 1, 제 2 등의 용어가 다양한 부재, 부품, 영역, 층들 및/또는 부분들을 설명하기 위하여 사용되지만, 이들 부재, 부품, 영역, 층들 및/또는 부분들은 이들 용어에 의해 한정되어서는 안됨은 자명하다. 이들 용어는 하나의 부재, 부품, 영역, 층 또는 부분을 다른 영역, 층 또는 부분과 구별하기 위하여만 사용된다. 따라서, 이하 상술할 제 1 부재, 부품, 영역, 층 또는 부분은 본 발명의 가르침으로부터 벗어나지 않고서도 제 2 부재, 부품, 영역, 층 또는 부분을 지칭할 수 있다.
도 1은 본 발명의 일 실시예에 따른 마이크로 니들 패치의 다공성 플렉시블 라이너(10)의 평면도이다.
도 1을 참조하면, 다공성 플렉시블 라이너(10)는 소정 두께를 갖는 면상체이며, 상기 면상체를 전면과 배면을 관통하는 복수의 관통부들(10H)을 포함한다. 다공성 플렉시블 라이너(10)의 두께는 가요성(flexibility)의 확보를 위해 0.01 mm 내지 1.5 mm의 범위내의 크기를 가질 수 있다. 복수의 관통부들(10H)은 도 1에 도시된 바와 같이 원형의 관통 홀일 수 있지만, 이는 예시적이며, 본 발명이 이에 제한되는 것은 아니다. 예를 들면, 복수의 관통부들(10H)은 삼각형, 또는 사각형과 같은 다각형이나 타원형을 가질 수도 있다. 일부 실시예에서는, 복수의 관통부들(10H)은 슬릿 형태의 직선 라인, 미언더 패턴, 또는 물결 패턴과 선형 구조 또는 이들 패턴들이 서로 교차하는 복합 패턴을 가질 수도 있다.
다공성 플렉시블 라이너의 관통부들과 폐쇄부들의 면적비 또는 개구율(관통부 면적/폐쇄부 면적)은 1 % 내지 80 %의 범위 내일 수 있다. 상기 면적비가 1 % 미만인 경우에는 후술하는 바와 같이 마이크로 니들들의 형성 공정에서 건조 과정에서 발생하는 물 또는 다른 용매 증기의 배출이 어려우며, 상기 면적비가 80 %를 초과하는 경우에는 다공성 플렉시블 라이너(10)와 후술하는 마이크로 니들들의 베이스와의 결합력을 확보하기 어렵고 마이크로 니들들의 피부 자입을 위한 충분한 지지력의 확보가 어렵다.
일 실시예에서, 도 1에서와 같이, 복수의 관통부들(10H)이 관통 홀의 형상을 갖는 경우, 상기 관통 홀의 크기(10R)는 0.01 mm 내지 1 mm의 범위 내일 수 있다. 복수의 관통부들(10H)이 슬릿 형태를 갖는 경우, 슬릿의 폭은 0.01 mm 내지 1 mm의 범위 내일 수 있다. 복수의 관통부들(10H) 사이의 간격(10D)은 0.1 mm 내지 2 mm의 범위 내일 수 있다. 상기 간격(10D)에 의해 다공성 플렉시블 라이너(10)의 폐쇄부(10S)가 정의될 수 있다.
폐쇄부(10S)는 화학적 및 기계적으로 취약한 마이크로 니들들의 제조 동안 후속 공정의 케미컬 또는 수분에 대한 장벽층으로 기능하며, 제조 후 패치의 실제 사용시에는 상기 패치의 기계적 강도를 향상시키는 보강재와 외부 오염으로부터 마이크로 니들층의 보호하기 위한 보호층으로서 기능한다. 일부 실시예에서, 다공성 플렉시블 라이너(10)는 후술하는 마이크로 니들들과 공통 베이스부의 세균에 의한 오염을 방지할 수 있도록 다공성 플렉시블 라이너(10)의 표면에 항균처리되거나 항균성 약물을 포함할 수도 있다.
다공성 플렉시블 라이너(10)는 수지계 재료로 형성된 필름 또는 시트 구조체일 수 있다. 상기 수지계 재료는, 폴리에틸렌, 폴리프로필렌, 폴리염화비닐수지, 폴리에틸렌테레프탈레이트, 나일론, 에폭시, 폴리이미드, 폴리에스테르, 우레탄, 아크릴, 폴리카보네이트, 요소, 멜라닌, 염화고무, 폴리비닐알콜, 폴리비닐에스테르, 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐리덴플루오라이드(polyvinylidenefluoride: PVDF), 폴리아크릴로니트릴 (polyacrylonitrile), 폴리메틸메타크릴레이트 (polymethylmethacrylate), 폴리테트라불화에틸렌(polytetrafluoroethylene: PTFE), 스틸렌부타디엔 고무(styrenebutadiene rubber: SBR), 또는 에틸렌프로필렌디엔 공중합체(ethylene-propylene-diene copolymer: EPDM)와 같은 수지계 재료일 수 있으며, 이들은 예시적일 뿐, 본 발명이 이에 한정되는 것은 아니며, 다른 경화성 또는 가소성 수지계 재료가 적용될 수도 있다. 바람직하게는, 상기 수지계 재료는 마이크로 니들들의 제조 공정에서 열 에너지 또는 자외선과 같은 에너지의 전달을 위해 적외선 또는 자외선에 투과도를 갖는 광 투명도를 가질 수 있다. 상기 광 투명도는 99 % 이상의 투과도에 한정되는 것은 아니며, 30 % 내지 99 % 범위 내이면 충분하다. 상기 투명 수지계 재료는, 예를 들면, 에폭시, 폴리이미드, 불포화 폴리에스테르, 우레탄, 아크릴, 폴리카보네이트, 요소, 멜라닌, 염화고무, 폴리비닐알콜, 폴리비닐에스테르 또는 이들의 혼합물을 포함할 수도 있다.
일 실시예에서, 다공성 플렉시블 라이너(10)는 방습층으로서 금속층이 코팅될 수도 있다. 상기 금속층은, 예를 들면, 알루미늄, 금, 은, 구리, 티타늄 또는 망간일 수 있으며, 이들 재료들은 스퍼터링과 같은 물리적 증착 또는 무전해 도금과 같은 방식으로 습식 방법에 의해 코팅될 수 있다.
도 2a 및 도 2b는 각각 본 발명의 일 실시예에 따른 마이크로 니들 패치(100A)를 도시하는 사시도 및 단면도이며, 도 2c는 본 발명의 일 실시예에 따른 제품화된 마이크로 니들 패치(100B)를 도시하는 단면도이다.
도 2a를 참조하면, 마이크로 니들 패치(100A)는 전술한 다공성 플렉시블 라이너(10) 및 다공성 플렉시블 라이너(10) 상의 마이크로 니들층(20)을 포함한다. 마이크로 니들층(20)은 다공성 플렉시블 라이너(10)와 면접하여 공통 베이스부(20B)와 공통 베이스부(20B)에 일체화되어 배열된 마이크로 니들들(20N)을 포함한다.
공통 베이스부(20B)는 다공성 플렉시블 라이너(10) 상에 물리적 흡착 또는 접착, 화학적 흡착 또는 접착, 또는 수소 결합을 통해 결합될 수 있으며, 바람직하게는, 이들 결합은 저온 공정을 통해 달성될 수 있다. 일체화된 공통 베이스부(20B)와 마이크로 니들들(20N)의 구조는 후술하는 바와 같이 동일 재료를 이용한 주조 공정을 통해 얻어질 수 있다. 마이크로 니들들(20N)의 높이는 비제한적 예로서, 50 ㎛ 내지 1,500 ㎛의 범위 내일 수 있으며, 마이크로 니들들(20N)의 기저부의 직경은 10 ㎛ 내지 1,000 ㎛의 범위 내일 수 있다.
마이크로 니들층(20)의 형성을 위한 재료는, 마이크로 니들들(20N)의 피부 자입시 인체 부작용을 최소화하고 효과적 약물 전달이 가능한 생체 적합성 재료를 포함할 수 있다. 상기 생체 적합성 재료는, 예를 들면, 키토산(chitosan), 콜라겐(collagen), 젤라틴(gelatin), 히알루론산(hyaluronic acid; HA), 알긴산, 펙틴, 카라기난, 콘드로이틴(설페이트), 덱스트란(설페이트), 폴리라이신(polylysine), 카르복시메틸 티틴, 피브린, 아가로스, 풀루란 및 셀룰로오스 중 적어도 어느 하나인 생체 유래 가용성 물질; 폴리비닐피롤리돈(PVP); 폴리에틸렌 글리콜(PEG), 폴리비닐알콜(PVA), 히드록시프로필 셀룰로스(HPC), 히드록시에틸셀룰로스(HEC), 히드록시프로필 메틸셀룰로스(HPMC), 나트륨 카르복시메틸 셀룰로스, 폴리알콜, 아라비아검, 알기네이트, 시클로덱스트린, 덱스트린, 포도당, 과당, 녹말, 트레할로스, 글루코스, 말토스, 락토스, 락툴로스, 프럭토스, 투라노스, 멜리토스, 멜레지토스, 덱스트란, 소르비톨, 크실리톨, 팔라티니트, 폴리락트산(polylactic acid), 폴리글리콜산(polyglycolic acid), 폴리에틸렌옥사이드, 폴리아크릴산, 폴리아크릴아마이드, 폴리메타아크릴산, 및 폴리말레인산 중 적어도 어느 하나인 생체 적합 물질; 전술한 물질의 유도체; 또는 이들의 혼합물일 수 있다. 바람직하게는, 마이크로 니들층(20)은 생체 적합성 물질들 중 생체 유래 가용성 물질인 키토산(chitosan), 콜라겐(collagen), 젤라틴(gelatin), 히알루론산(hyaluronic acid; HA), 알긴산, 펙틴, 카라기난, 콘드로이틴(설페이트), 덱스트란(설페이트), 폴리라이신(polylysine), 카르복시메틸 티틴, 피브린, 아가로스, 풀루란 및 셀룰로오스 중 적어도 어느 하나를 포함할 수 있다. 전술한 재료들은 예시적으며, 상기 생체 적합성 재료는 다른 생체 가용성 고분자들일 수도 있다.
전술한 생체 적합성 재료들은 실질적으로 고체이지만, 생채 내 수분에 의해 분해 또는 용융 가능한 것이어서, 제조 중 적절히 건조가 이루어지지 않거나 실제 사용시에 수분에 노출되는 경우 그 형상 및/또는 성분의 열화가 급속히 일어나는 취약점을 갖는다. 본 발명의 실시예에 따르면, 제조 중 건조 시간이 최소화도록 유도하면서 제조 후 습기로부터 생체 적합성 재료들로 이루어진 마이크로 니들층(20)이 열화되는 것을 방지하기 위하여, 마이크로 니들층(20)에 면접하는 다공성 플렉시블 라이너(10)가 제공되며, 제조 단계에서는, 다공성 플렉시블 라이너(10)의 복수의 관통부들(10H)를 통해 도 2b의 화살표 A로 나타낸 바와 같이 수분의 빠른 배출을 통한 냉각 및/또는 건조가 가능하고, 제조 이후에는 패쇄부(10S)에 의해 공통 베이스부(20B)의 외기 노출이 감소 및 배제된다. 또한, 다공성 플렉시블 라이너(10)는, 마이크로 니들층(10)의 강도를 보강하고, 제조 중 성형 단계에서 나타나는 뒤틀림 방지와 같은 형상 안정성(Dimensional stability)을 향상시켜 제조 공정 상의 수율과 대면적화에 의한 생산성을 향상시키는 이점이 있다.
마이크로 니들 패치(100A)는 눈밑, 입주위, 팔, 어깨, 복부와 같이 그 적용 부위에 안정적으로 부착될 수 있는 임의의 크기와 형상으로 절단 성형되어 도 2c에 도시된 바와 같이 의해 피부 부착이 장시간 유지될 수 있도록 접착층(30a)이 제공될 수도 있다. 예를 들면, 마이크로 니들 패치(100B)는 도 2a의 마이크로 니들 패치(100A)를 원단으로 하여 이를 적합한 크기와 형상을 갖도록 절단된 후, 피부 부착을 위해 마이크로 니들 패치(100B)의 가장자리 너머로 확장된 접착층(30a)을 제공하는 부착 패드(30)가 다공성 플렉시블 라이너(10)의 저면에 부착하여 제조될 수 있다. 부착 패드(30)와 다공성 플렉시블 라이너(10)는 이들 사이에 배치되는 접착층에 의해 서로 결합될 수 있다.
마이크로 니들들(20N) 내부의 적어도 일부에는 다공성 입자들이 제공된다. 다공성 입자들의 평균 크기는 0.01 ㎛ 내지 100 ㎛의 범위 내이며, 바람직하게는 1 ㎛ 내지 50 ㎛의 범위 내일 수 있다. 다공성 입자들은 마이크로 니들들(20N) 내부뿐만 아니라, 공통 베이스부(20B) 내부에도 제공될 수 있다. 다른 실시예에서, 다공성 입자들은 마이크로 니들들(20N)의 첨부, 또는 첨부를 포함한 마이크로 니들층(20)의 전단부 영역에만 제공될 수 있다. 또 다른 실시예에서, 다공성 입자들은 공통 베이스부(20B)을 제외한 마이크로 니들들(20N) 내에만 분산 제공될 수도 있다.
또한, 다공성 입자들은 마이크로 니들들(20N)의 표면 상에 제공될 수 있다. 예를 들면, 다공성 입자들은 층 구조의 형태로 마이크로 니들들(20N)의 표면 상에 코팅될 수 있다. 다공성 입자들의 코팅은 마이크로 니들들(20N)의 표면에 물리적 흡착 또는 접착, 화학적 흡착 또는 접착, 생체 적합성 바인더 또는 기계적 매립을 통해서 달성될 수 있으며, 본 발명이 이에 제한되는 것은 아니다. 예를 들면, 다공성 입자들은 딥 코팅 또는 스프레이 코팅을 통해 마이크로 니들들(20N) 상에 코팅될 수 있다.
마이크로 니들들(20N)이 피부 자입시 팽윤되거나 생체 조직 내로 용해되면, 다공성 입자들도 함께 생체 조직 내로 주입된다. 일 실시예에서, 다공성 입자들은 생체 조직 내에서 그 자체가 약학적, 의학적 또는 미용적 효과를 갖는 입자일 수 있다. 다공성 입자들의 기공은 개방형 또는 폐쇄형 기공을 가질 수 있으며, 생체 조직 내에서 기공은 증대된 표면적으로 인한 유효한 약학적, 의학적 또는 미용적 효능을 가질 수 있다.
일 실시예에서, 다공성 입자들은 주름 제거를 위한 필러의 미용적 효능을 가질 수 있다. 다공성 입자 형태의 상기 필러는 생체 조직 내에서 다공성 입자들 표면이 갖는 기공에 의한 증대된 표면적으로 인하여 생체 조직과의 접촉 면적을 증가시켜, 예를 들면 이에 부착되는 콜라겐의 생성을 더욱 효율적으로 자극함으로써 빠른 주름 제거 효과를 얻을 수 있을 뿐만 아니라, 필러 표면의 증가된 거칠기로 인하여 생체 조직 내의 고정력이 향상될 수 있다. 또한, 다공성 입자 형태의 상기 필러는 부피 대비 감소된 중량으로 인하여 생체 적용시 이물감을 최소화하며, 기계적으로도 유연성을 향상시키고 부드러운 느낌을 제공할 수 있는 이점을 갖는다. 다공성 입자들이 폐쇄형 기공을 갖는다 하더라도, 생분해성 또는 생체 용해성 재료로 다공성 입자들을 형성하면, 생체 조직 내에서 다공성 입자들이 서서히 열화되면서 경시적으로 폐쇄형 기공이 개방되어 전술한 기공이 갖는 효능을 확보할 수 있다.
상기 다공성 입자 형태의 필러는, 폴리파라디옥사논(PPDX, poly(p-dioxanone)), 폴리락티드-코-글리콜리드(PLGA, poly(lactide-co-glycolide)), 폴리카프로락톤(polycaprolactone), 폴리락틱산 (Polylatic acid), 폴리안하이드라이드(polyanhydride), 폴리오쏘에스터(polyorthoester), 폴리에테르에스터(polyetherester), 폴리에스테르아마이드(polyesteramide), 폴리뷰티릭산(polybutyric acid) 또는 2 이상의 혼합물을 포함할 수 있다. 이들 재료들은 예시적이며, 상기 다공성 입자 형태의 필러는 다른 생체 적합성 재료를 포함할 수도 있다.
다공성 입자들은 전술한 필러로서의 기능과 함께, 또는 이와 독립적으로 약물 캐리어로서 응용될 수도 있다. 예를 들면, 다공성 입자들 내에 약학적, 의학적 또는 미용적 유효 물질을 추가적으로 함유시켜, 마이크로 니들의 피부 자입시 다공성 입자들과 함께 상기 유효 물질을 생체 조직으로 전달할 수 있다. 이들 유효 물질은, 비제한적 예로서 단백질, 펩티드, 유전자, 항체, 마취제, 인슐린, 백신, 다당류, 합성 유기 화합물, 합성 무기 화합물, 또는 미백 또는 항산화제와 같은 미용 성분일 수 있으며, 약학적, 의학적 또는 화장학적으로 사용이 허용된 여하의 다른 유효 물질일 수 있다. 상기 유효 물질은 다공성 입자들의 기공 내에 트랩되거나, 다공성 입자들의 마이크로 니들들(20N) 내에 분산되어 생체 조직 내로 전달될 수 있다. 다공성 입자의 기공률은 예를 들어, 5 내지 90% 일 수 있다. 상기 기공률은 미용적 또는 약학적 유효 물질의 로딩 양에 따라 적절하게 선택될 수 있다. 또한, 다공성 입자가 필러로써 사용되는 경우, 생체조직과 결합하여 생체조직의 재생률에 따른 필링(filling) 효과를 조절하여 적절하게 선택될 수 있다.
도 3a 및 도 3b는 각각 본 발명의 다른 실시예에 따른 마이크로 니들 패치(100C)를 도시하는 사시도 및 단면도이다.
도 3a 및 도 3b를 참조하면, 마이크로 니들 패치(100C)는 공통 베이스부(20a)가 면접하는 다공성 플렉시블 라이너(10)의 일면(10u)과 반대되는 타면(10b) 상에도 마이크로 니들층(20a)과 동일한 재료를 포함하는 하지층(20b)을 더 포함할 수 있다.
일 실시예에서, 다공성 프렉시블 라이너(10)의 복수의 관통부들(10H)을 마이크로 니들층(20a)과 동일한 재료가 채움으로써, 마이크로 니들층(20a)과 하지층(20b)은 일체화될 수 있으며, 마이크로 니들층(20a)과 하지층(20b) 사이에 다공성 플렉시블 라이너(10)가 매립될 수도 있다. 도시하지는 아니하였지만, 하지층(20b)의 저면 상에 도 2c를 참조하여 전술한 바와 같이, 피부 부착을 위해 마이크로 니들 패치(100C)의 가장자리 너머로 확장된 부착면을 제공하는 부착 패드가 하지층(20b)의 저면에 부착될 수도 있다.
도 4a 및 도 4b는 본 발명의 일 실시예에 따른 마이크로 니들 패치의 제조 방법을 설명하기 위한 주형과 제조 공정 중의 적층체를 도시한다.
도 4a를 참조하면, 전술한 마이크로 니들 패치는 주형(1)을 이용한 성형 공정을 통해 제조될 수 있다. 주형(1)은 마이크로 니들들을 성형하기 위한 음각 형상의 캐비티(MC)의 어레이를 포함한다. 주형(1)은 금속, 세라믹, 유리, 열가소성 또는 열경화성 수지계 재료로 형성될 수 있으며, 본 발명이 이에 한정되는 것은 아니다.
도 4b를 참조하면, 마이크로 니들층의 재료가 되는 전술한 생체 적합성 재료, 또는 생분해성 재료 또는 이의 전구체(이를 마이크로 니들층의 원재료로 통칭함; 20L)를 적합한 용매에 용해 또는 분산시켜 얻어진 용액을 주형(1)의 캐비티(MC)가 범람하도록 충전할 수 있다. 다른 실시예에서는, 원재료(20L)를 주형(10)의 캐비티(MC) 내에 파우더, 용융물, 또는 겔 형태로 충전될 수도 있을 것이다.
주형(10)의 캐비티(MC)에 원재료(20L)를 범람하도록 충전한 후, 다공성 플렉시블 라이너(10)를 적층한다. 일부 실시예에서는, 원재료(20L)의 화학적 또는 물리적 특성에 따라, 예를 들면, 원재료(20L)가 파우더 성상인 경우, 다공성 플렉시블 라이너(10)를 적층하기 이전에 가열하여 용융 단계가 수행될 수도 있다. 또한, 다공성 플렉시블 라이너(10)의 적층시 다공성 프렉시블 라이너(10) 상에 일정한 압력이 인가될 수도 있다. 일부 실시예에서는, 도 3a를 참조하여 설명한 마이크로 니들 패치(100C)의 제조를 위해 원재료(20L)를 다공성 플렉시블 라이너(10) 상에 추가 도포할 수도 있다.
다공성 플렉시블 라이너(10)를 적층한 후, 냉각, 및/또는 감압, 냉동 또는 50 ℃ 내지 100 ℃ 범위 내의 온도에서 가열 건조 공정을 통하여 마이크로 니들층(20)을 고형화한다. 생분해성 재료를 이용한 마이크로 니들들은 피부 자입을 위해 충분한 강도를 갖고, 필요에 따라 약물 전달을 위한 일정 시간 동안 기계적 강도를 유지한 후 분해되도록 하기 위해서는 빠른 건조가 요구된다. 이러한 빠른 건조는 생산성의 측면에서도 중요하다. 본 발명의 실시예에 따르면, 다공성 플렉시블 라이너(10)의 복수의 관통부들(10H)을 통해 건조 또는 냉각 공정 동안 화살표 A로 나타낸 바와 같이 상기 물 또는 알코올과 같은 유기 용매의 증기 배출 또는 열방출이 신속히 이루어짐으로써 견고한 마이크로 니들들이 캐비티 내에 형성될 수 있다. 통상적으로 0.1 시간 내지 2 시간 이내로 건조가 이루어지는 경우, 견고하고 형상이 유지된 마이크로 니들들이 얻어지지만, 2 시간을 초과하는 경우는 원료의 열화 또는 변질에 의해 수율이 감소될 수 있다.
충분한 냉각 또는 건조 공정 이후, 화살표 B로 나타낸 바와 같이, 다공성 플렉시블 라이너(10)를 주형(1)으로부터 분리하면 다공성 플렉시블 라이너(10)에 결합된 마이크로 니들층(20L)이 주형(1)으로부터 안정적으로 분리된다. 다공성 플렉시블 라이너(10)가 없는 경우, 주형(1)으로부터 마이크로 니들층(20L)을 분리할 때 마이크로 니들층(20L)이 크랙 또는 분진화될 수 있다. 그러나, 본 발명의 실시예에 따르면, 다공성 플렉시블 라이너(10)가 마이크로 니들층(20L)을 보강하여, 주형(1)으로부터 마이크로 니들층(20L)의 안정적 분리 공정이 확보됨으로써 마이크로 니들층(20L)의 대면적 형성 공정이 가능하다.
실험예
아래 표 1은 본 발명의 실시예에 따라 다공성 플렉시블 라이너가 적용된 마이크로 니들 패치의 제조 공정 상에서 측정된 건조 시간, 수율, 및 최대 성형 면적을 나타낸다. 실시예 1 및 2는 각각 생체 적합성 재료인 히아루론산을 30 % 농도로 증류수에 용해하여 얻어진 용액을 주형에 충전하고, 그 위에 다공성 플렉시블 라이너를 적층한 후 50 ℃에서 건조 공정을 수행한다. 이후, 건조된 마이크로 니들층을 주형으로부터 분리하여 마이크로 니들 패치를 제조한 경우이다. 실시예 1에서, 다공성 플렉시블 라이너의 원형 관통부의 직경은 10 ㎛ 이고, 그 간격은 1 mm이고, 실시예 2에서, 다공성 플렉시블 라이너의 원형 관통부의 직경은 100 ㎛이고, 그 간격은 1 mm이다. 비교예는 실시예 1과 2와 동일한 방법으로 마이크로 니들 패치를 제조한 경우로서 다공성 플렉시블 라이너를 적용하지 않은 경우의 측정 결과이다. 건조 시간은 수분 함량이 5 % 미만이 될 때까지의 소요 시간이며, 이때 얻어지는 수율과 마이크로 니들 패치의 최대 가용 성형 면적이 측정되었다.
표 1을 참조하면, 본 발명의 실시예 1 및 2에 따라 다공성 플렉시블 라이너가 적용된 경우, 관통부들에 의해 건조 시간의 실질적인 증가가 없으면서도 폐쇄부에 의해 뒤틀림이 없는 우수한 성형 안정성을 갖는 마이크로 니들을 얻었으며, 수분에 취약한 생체 유래 가용성 재료를 이용한 마이크로 니들에 대하여 150 cm2 의 제조 면적에서 100 %의 수율을 달성함으로써 대면적의 성형 공정이 구현되었다. 전술한 실시예는 생체 유래성 가용 고분자 물질인 히아루론산에 관한 것이지만, 이는 예시적이면, 습기 또는 케미컬에 대해 취약한 다른 전술한 생체 적합성 재료들도 다공성 플렉시블 라이너에 의해 동일한 거동과 이점을 보인다.
이상에서 설명한 본 발명이 전술한 실시예 및 첨부된 도면에 한정되지 않으며, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하다는 것은, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어 명백할 것이다.
본 발명의 마이크로 니들 패치는 약학적, 의료학적 또는 미용학적 용도로 이용될 수 있다.
Claims (10)
- 복수의 관통부들을 포함하는 다공성 플렉시블 라이너; 및상기 다공성 플렉시블 라이너와 면접하는 공통 베이스부, 및 상기 공통 베이스부에 일체화되어 배열된 마이크로 니들들을 포함하는 마이크로 니들층을 포함하는 마이크로 니들 패치.
- 제 1 항에 있어서,상기 마이크로 니들들은 생체 적합성 재료를 포함하는 마이크로 니들 패치.
- 제 2 항에 있어서,상기 생체 적합성 재료 내에 약학적, 의학적 또는 화장학적인 유효 물질이 분산 또는 화학결합되거나 상기 마이크로 니들들의 표면 내에 상기 유효 물질이 코팅된 마이크로 니들 패치.
- 제 1 항에 있어서,상기 생체 적합성 재료는, 키토산(chitosan), 콜라겐(collagen), 젤라틴(gelatin), 히알루론산(hyaluronic acid; HA), 알긴산, 펙틴, 카라기난, 콘드로이틴(설페이트), 덱스트란(설페이트), 폴리라이신(polylysine), 카르복시메틸 티틴, 피브린, 아가로스, 풀루란 및 셀룰로오스 중 적어도 어느 하나인 생체 유래 가용성 물질; 폴리비닐피롤리돈(PVP); 폴리에틸렌 글리콜(PEG), 폴리비닐알콜(PVA), 히드록시프로필 셀룰로스(HPC), 히드록시에틸셀룰로스(HEC), 히드록시프로필 메틸셀룰로스(HPMC), 나트륨 카르복시메틸 셀룰로스, 폴리알콜, 아라비아검, 알기네이트, 시클로덱스트린, 덱스트린, 포도당, 과당, 녹말, 트레할로스, 글루코스, 말토스, 락토스, 락툴로스, 프럭토스, 투라노스, 멜리토스, 멜레지토스, 덱스트란, 소르비톨, 크실리톨, 팔라티니트, 폴리락트산(polylactic acid), 폴리글리콜산(polyglycolic acid), 폴리에틸렌옥사이드, 폴리아크릴산, 폴리아크릴아마이드, 폴리메타아크릴산, 및 폴리말레인산 중 적어도 어느 하나인 생체 적합 물질; 전술한 물질의 유도체; 또는 이들의 혼합물을 포함하는 마이크로 니들 패치.
- 제 1 항에 있어서,상기 복수의 관통부들 및 상기 복수의 관통부들 사이의 패쇄부들의 면적비(관통부 면적/폐쇄부 면적)은 1 % 내지 80 %의 범위 내인 마이크로 니들 패치.
- 제 1 항에 있어서,상기 복수의 관통부들은, 원형, 타원형, 다각형 또는 슬릿 또는 이들의 조합인 패턴을 갖는 마이크로 니들 패치.
- 제 1 항에 있어서,상기 다공성 플렉시블 라이너는, 폴리에틸렌, 폴리프로필렌, 폴리염화비닐, PET, 나일론, 에폭시, 폴리이미드, 폴리에스테르, 우레탄, 아크릴, 폴리카보네이트, 요소, 멜라닌, 염화고무, 폴리비닐알콜, 폴리비닐에스테르, 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐리덴플루오라이드(polyvinylidenefluoride: PVDF), 폴리아크릴로니트릴 (polyacrylonitrile), 폴리메틸메타크릴레이트 (polymethylmethacrylate), 폴리테트라불화에틸렌(polytetrafluoroethylene: PTFE), 스틸렌부타디엔 고무(styrenebutadiene rubber: SBR), 또는 에틸렌프로필렌디엔 공중합체(ethylene-propylene-diene copolymer: EPDM)를 포함하는 마이크로 니들 패치.
- 제 1 항에 있어서,상기 다공성 플렉시블 라이너는 30 % 내지 99 % 범위 내의 광 투명도를 갖는 마이크로 니들 패치.
- 제 1 항에 있어서,상기 다공성 플렉시블 라이너의 두께는, 0.01 mm 내지 1.5 mm의 범위 내인 마이크로 니들 패치.
- 제 1 항에 있어서,상기 공통 베이스부는 상기 다공성 플렉시블 라이너 상에 물리적 흡착 또는 접착, 화학적 흡착 또는 접착, 또는 수소 결합을 통해 결합되는 마이크로 니들 패치.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20-2014-0008222 | 2014-11-10 | ||
KR2020140008222U KR200479627Y1 (ko) | 2014-11-10 | 2014-11-10 | 마이크로 니들 패치 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016076615A1 true WO2016076615A1 (ko) | 2016-05-19 |
Family
ID=55446393
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2015/012079 WO2016076615A1 (ko) | 2014-11-10 | 2015-11-10 | 마이크로 니들 패치 |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR200479627Y1 (ko) |
WO (1) | WO2016076615A1 (ko) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101760869B1 (ko) * | 2016-11-29 | 2017-07-24 | 주식회사 동방메디컬 | 니들 패치 제조용 조성물 및 이로 제조된 니들 패치 |
CN107375008A (zh) * | 2017-07-19 | 2017-11-24 | 广州新济药业科技有限公司 | 用于美白的可溶性微针贴片及其制备方法 |
WO2018098343A1 (en) * | 2016-11-23 | 2018-05-31 | University Medical Pharmaceuticals Corp. | Microneedle delivery system and method |
WO2020004666A1 (en) * | 2018-06-29 | 2020-01-02 | L'oreal | Cosmetic process using microneedle sheet |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102198478B1 (ko) * | 2016-05-09 | 2021-01-05 | 주식회사 주빅 | 방수성 박막을 이용한 마이크로구조체 및 이의 제조방법 |
KR101987412B1 (ko) * | 2017-07-28 | 2019-06-12 | 주식회사 코스칼드바이오 | 마이크로니들 어레이 및 그 제조방법 |
KR102042900B1 (ko) * | 2017-11-21 | 2019-12-02 | 주식회사 에스엔비아 | 밴딩 구조체를 포함하는 마이크로니들 패치 |
KR20230111805A (ko) | 2022-01-19 | 2023-07-26 | 에스엔텔 주식회사 | 복합형 마이크로니들 패치 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20110005767A (ko) * | 2009-06-03 | 2011-01-19 | 가부시키가이샤 바이오세렌택 | 다공성 기반을 이용한 마이크로 니들 어레이와 그 제조방법 |
WO2011105496A1 (ja) * | 2010-02-24 | 2011-09-01 | 久光製薬株式会社 | マイクロニードルデバイス |
KR20120138180A (ko) * | 2011-06-14 | 2012-12-24 | 가천대학교 산학협력단 | 약물 전달을 위한 리포좀-마이크로 구조체 및 이의 제조방법 |
KR20130025158A (ko) * | 2011-09-01 | 2013-03-11 | 닛토덴코 가부시키가이샤 | 접착제 패치 및 접착제 제제 |
KR101251927B1 (ko) * | 2010-01-22 | 2013-04-08 | 오형훈 | 마이크로니들의 제조방법 |
-
2014
- 2014-11-10 KR KR2020140008222U patent/KR200479627Y1/ko active IP Right Grant
-
2015
- 2015-11-10 WO PCT/KR2015/012079 patent/WO2016076615A1/ko active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20110005767A (ko) * | 2009-06-03 | 2011-01-19 | 가부시키가이샤 바이오세렌택 | 다공성 기반을 이용한 마이크로 니들 어레이와 그 제조방법 |
KR101251927B1 (ko) * | 2010-01-22 | 2013-04-08 | 오형훈 | 마이크로니들의 제조방법 |
WO2011105496A1 (ja) * | 2010-02-24 | 2011-09-01 | 久光製薬株式会社 | マイクロニードルデバイス |
KR20120138180A (ko) * | 2011-06-14 | 2012-12-24 | 가천대학교 산학협력단 | 약물 전달을 위한 리포좀-마이크로 구조체 및 이의 제조방법 |
KR20130025158A (ko) * | 2011-09-01 | 2013-03-11 | 닛토덴코 가부시키가이샤 | 접착제 패치 및 접착제 제제 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018098343A1 (en) * | 2016-11-23 | 2018-05-31 | University Medical Pharmaceuticals Corp. | Microneedle delivery system and method |
KR101760869B1 (ko) * | 2016-11-29 | 2017-07-24 | 주식회사 동방메디컬 | 니들 패치 제조용 조성물 및 이로 제조된 니들 패치 |
CN107375008A (zh) * | 2017-07-19 | 2017-11-24 | 广州新济药业科技有限公司 | 用于美白的可溶性微针贴片及其制备方法 |
CN107375008B (zh) * | 2017-07-19 | 2020-07-10 | 广州新济药业科技有限公司 | 用于美白的可溶性微针贴片及其制备方法 |
WO2020004666A1 (en) * | 2018-06-29 | 2020-01-02 | L'oreal | Cosmetic process using microneedle sheet |
Also Published As
Publication number | Publication date |
---|---|
KR200479627Y1 (ko) | 2016-02-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016076615A1 (ko) | 마이크로 니들 패치 | |
EP3017841B1 (en) | Micro-needle, micro-needle patch and methods of fabrication thereof | |
KR101747099B1 (ko) | 생체적합성 고분자를 이용한 마이크로니들의 제조방법 | |
WO2020043167A1 (zh) | 一种可快速植入型缓释微针贴片及其制备方法 | |
KR101136738B1 (ko) | 송풍에 의한 솔리드 마이크로구조체의 제조방법 및 이로부터 제조된 솔리드 마이크로구조체 | |
KR101618523B1 (ko) | 마이크로 니들 및 마이크로 니들 패치 | |
KR101724655B1 (ko) | 마이크로 니들 패치 및 그의 제조 방법 | |
WO2012081933A2 (ko) | 마이크로구조체 제조방법 | |
CN106853271B (zh) | 微结构体的制造方法 | |
US20180326195A1 (en) | Microneedle array and microneedle sheet | |
CN102202720A (zh) | 相转化聚合物微针 | |
US9974936B2 (en) | Method for manufacturing microstructure using negative pressure and microstructure manufactured therefor | |
WO2017003238A1 (ko) | 약물 투여량 및 투여 깊이 조절이 가능한 미세바늘 구조체 및 제조방법 | |
TW201634073A (zh) | 微針貼布 | |
WO2017204418A1 (ko) | 사마귀 치료를 위한 블레오마이신을 함유하는 마이크로니들 패치 및 이의 제작방법 | |
KR102167464B1 (ko) | 마이크로 니들 시트 및 경피 투여용 첩부제 | |
KR102227989B1 (ko) | 미세 구조체 기반 약물 주입장치 및 이의 제조 방법 | |
KR102372815B1 (ko) | 피부 부착 박막의 제조를 위한 성형몰드 및 이를 이용한 피부 부착 박막 제조 방법 | |
KR102635939B1 (ko) | 마이크로니들 패치 | |
KR20230116266A (ko) | 아세틸헥사펩타이드-8을 함유하는 마이크로니들 및 마이크로니들 패치 | |
KR20170067637A (ko) | 마이크로구조체 제조방법 | |
KR20220118019A (ko) | 경피 약물 전달을 위한 마이크로니들 패치 시스템 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15859934 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15859934 Country of ref document: EP Kind code of ref document: A1 |