WO2016075761A1 - 加速度センサ - Google Patents

加速度センサ Download PDF

Info

Publication number
WO2016075761A1
WO2016075761A1 PCT/JP2014/079895 JP2014079895W WO2016075761A1 WO 2016075761 A1 WO2016075761 A1 WO 2016075761A1 JP 2014079895 W JP2014079895 W JP 2014079895W WO 2016075761 A1 WO2016075761 A1 WO 2016075761A1
Authority
WO
WIPO (PCT)
Prior art keywords
distance
electrode
acceleration sensor
movable
axis direction
Prior art date
Application number
PCT/JP2014/079895
Other languages
English (en)
French (fr)
Inventor
礒部 敦
佐久間 憲之
千咲紀 田窪
雄大 鎌田
貴支 塩田
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2016558480A priority Critical patent/JP6330055B2/ja
Priority to US15/511,444 priority patent/US10527642B2/en
Priority to PCT/JP2014/079895 priority patent/WO2016075761A1/ja
Publication of WO2016075761A1 publication Critical patent/WO2016075761A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/125Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by capacitive pick-up

Definitions

  • the present invention relates to an acceleration sensor, for example, an acceleration sensor that detects minute vibrational acceleration.
  • Reflection elastic wave exploration is a type of geophysical exploration. Artificial seismic waves are generated, reflected waves that bounce off the ground using a geophone installed on the ground surface, and the results are analyzed to analyze the underground structure. It is a method of elucidation.
  • an elastic wave is excited into the ground from a vibration source installed on the ground surface, and the elastic wave reflected at the boundary of the formation is sensed by a geophone installed on the ground surface.
  • the elastic wave excited in various directions propagates in the ground with large attenuation, is reflected by a plurality of formations, propagates again in the ground with large attenuation, diffuses over a wide area, and returns to the ground surface. Therefore, an acceleration sensor used for reflection acoustic wave exploration needs to detect an acceleration that is applied in the vertical direction, that is, in the same direction as the gravitational acceleration and is smaller than the gravitational acceleration. That is, it is necessary to improve the sensitivity of acceleration in the vertical direction in an acceleration sensor used for reflection method acoustic wave exploration.
  • Such an acceleration sensor includes a substrate, a fixed portion fixed to the substrate, a movable portion having one end connected to the fixed portion, and an electrode disposed opposite to the movable portion. Some devices detect acceleration based on the capacitance between the electrode and the electrode.
  • Patent Document 1 includes a substrate, a fixed portion fixed to the substrate, a movable portion provided with a gap from the substrate, and a support beam connecting the movable portion and the fixed portion.
  • An acceleration sensor as a MEMS (Micro Electro Mechanical Systems) element having the following is described.
  • Patent Document 2 includes two sets of movable electrodes and fixed electrodes, and differential type semiconductor acceleration that detects acceleration from the difference in capacitance generated between the two electrodes. Techniques for detection devices for sensors are described.
  • US Pat. No. 6,497,149 Patent Document 3 describes an accelerometer that has a pair of fixed electrodes and a movable electrode and uses a change in capacitance to detect mass movement. Has been.
  • the mass of the movable part is increased or the spring constant of the elastic deformation part connected to the fixed part is decreased. There are things to do.
  • the movable part whose one end is connected to the fixed part is inclined by its own weight.
  • the power consumption of the acceleration sensor increases or the acceleration sensor for the applied acceleration.
  • An object of the present invention is to provide an acceleration sensor with high sensitivity, low power consumption, and high output linearity with respect to applied acceleration.
  • An acceleration sensor includes a substrate, a fixed portion fixed on the main surface of the substrate, a movable portion arranged on the first side of the fixed portion in the first direction in plan view, A first electrode disposed opposite to the lower surface of the movable portion; and a second electrode disposed opposite to the upper surface of the movable portion.
  • the first end of the movable part on the fixed part side is connected to the fixed part, and the first electrostatic capacitance between the movable part and the first electrode and the second static electricity between the movable part and the second electrode. Based on the capacitance, acceleration is detected.
  • the distance in the first direction between the second end on the fixed part side of the first electrode and the fixed part is a first distance, and the third end on the opposite side of the fixed part side of the first electrode;
  • the distance in the first direction between the fixed part is the second distance.
  • a distance in the first direction between the fourth end portion on the fixed portion side of the second electrode and the fixed portion is defined as a third distance, and a fifth end portion on the side opposite to the fixed portion side of the second electrode.
  • the distance in the first direction between the fixed portion and the fixed portion is the fourth distance. In this case, the first distance is shorter than the third distance, and the second distance is shorter than the fourth distance.
  • the acceleration sensor includes a substrate, a fixed portion fixed on the main surface of the substrate, and a movable portion disposed on the first side of the fixed portion in the first direction in plan view. And a first electrode disposed to face the lower surface of the movable portion, and a second electrode disposed to face the upper surface of the movable portion.
  • the first end of the movable part on the fixed part side is connected to the fixed part, and the first electrostatic capacitance between the movable part and the first electrode and the second static electricity between the movable part and the second electrode. Based on the capacitance, acceleration is detected.
  • the first electrode includes a first region and a second region located on the opposite side of the fixed portion across the first region in plan view, and the second electrode includes the third region in plan view. And a fourth region located on the opposite side of the fixed portion across the third region.
  • the height of the upper surface of the first region is higher than the height of the upper surface of the second region, and the height of the lower surface of the third region is higher than the height of the lower surface of the fourth region.
  • the acceleration sensor includes a substrate, a fixed portion fixed on the main surface of the substrate, and a first disposed on the first side of the fixed portion in the first direction in plan view.
  • a movable part, and a second movable part disposed on the opposite side of the first movable part across the fixed part in plan view.
  • the acceleration sensor includes a first electrode disposed opposite to the upper surface of the first movable part, and a second electrode disposed opposite to the upper surface of the second movable part.
  • the first end portion of the first movable portion on the fixed portion side is connected to the fixed portion
  • the second end portion of the second movable portion on the fixed portion side is connected to the fixed portion, and the first movable portion and the second movable portion.
  • the portion can be integrally rotationally displaced with respect to the fixed portion around an axis along a second direction intersecting the first direction in plan view. Acceleration is detected based on the first capacitance between the first movable portion and the first electrode and the second capacitance between the second movable portion and the second electrode.
  • the distance in the first direction between the third end portion on the fixed portion side of the first electrode and the shaft is defined as a first distance, the fourth end portion on the opposite side of the fixed portion side of the first electrode, and the shaft
  • the distance in the first direction is defined as the second distance.
  • the distance in the first direction between the fifth end portion on the fixed portion side of the second electrode and the shaft is defined as a third distance
  • the sixth end portion on the opposite side to the fixed portion side of the second electrode The distance in the first direction from the axis is the fourth distance.
  • the first distance is shorter than the third distance
  • the second distance is shorter than the fourth distance.
  • an acceleration sensor with high sensitivity, low power consumption, and high output linearity with respect to applied acceleration.
  • FIG. 1 is a cross-sectional view of an acceleration sensor according to a first embodiment.
  • 1 is a cross-sectional view of an acceleration sensor according to a first embodiment.
  • FIG. 3 is a plan view of the acceleration sensor according to the first embodiment.
  • FIG. 3 is a plan view of the acceleration sensor according to the first embodiment.
  • FIG. 3 is a plan view of the acceleration sensor according to the first embodiment.
  • 1 is a cross-sectional view of an acceleration sensor according to a first embodiment.
  • 6 is a plan view of an acceleration sensor of Comparative Example 1.
  • FIG. 6 is a plan view of an acceleration sensor of Comparative Example 1.
  • FIG. 6 is a plan view of an acceleration sensor of Comparative Example 1.
  • FIG. It is sectional drawing of the acceleration sensor of the comparative example 1. It is a graph which shows the gap length dependence of the electrostatic capacitance between a movable electrode and a lower electrode in Comparative Example 1, and the electrostatic capacitance between a movable electrode and an upper electrode. It is sectional drawing of the acceleration sensor of the comparative example 2. It is a graph which shows the gap length dependence of the electrostatic capacitance between a movable electrode and a lower electrode in Comparative Example 2, and the electrostatic capacitance between a movable electrode and an upper electrode.
  • FIG. 4 is a graph showing the gap length dependence of the capacitance between the movable electrode and the lower electrode and the capacitance between the movable electrode and the upper electrode in the first embodiment.
  • 6 is a graph showing nonlinearity of output ⁇ C when acceleration is applied to the acceleration sensors of the first embodiment, comparative example 1, and comparative example 2.
  • 7 is a graph showing a relationship between an output ⁇ C and a difference between a distance LXts and a distance LXbs (LXts ⁇ LXbs).
  • 6 is a plan view of an acceleration sensor according to a modification of the first embodiment.
  • FIG. 6 is a plan view of an acceleration sensor according to a modification of the first embodiment.
  • FIG. It is sectional drawing of the acceleration sensor of Embodiment 2.
  • FIG. 6 is a plan view of an acceleration sensor according to Embodiment 2.
  • FIG. 6 is a plan view of an acceleration sensor according to Embodiment 2.
  • FIG. 6 is a plan view of an acceleration sensor according to a modification of the second embodiment.
  • FIG. 6 is a plan view of an acceleration sensor according to a modification of the second embodiment.
  • FIG. 6 is a sectional view of an acceleration sensor according to Embodiment 3.
  • FIG. 6 is a sectional view of an acceleration sensor according to Embodiment 3.
  • FIG. 6 is a plan view of an acceleration sensor according to Embodiment 3.
  • FIG. 6 is a plan view of an acceleration sensor according to Embodiment 3.
  • FIG. 6 is a plan view of an acceleration sensor according to Embodiment 3.
  • FIG. 6 is a plan view of an acceleration sensor according to Embodiment 3.
  • FIG. 6 is a sectional view of an acceleration sensor according to Embodiment 3.
  • FIG. 10 is a plan view of an acceleration sensor according to a modification of the third embodiment.
  • FIG. FIG. 6 is a cross-sectional view of an acceleration sensor according to a fourth embodiment.
  • 10 is a graph showing the gap length dependence of the capacitance between the movable electrode and the lower electrode and the capacitance between the movable electrode and the upper electrode in the fourth embodiment.
  • 14 is a graph showing nonlinearity of output ⁇ C when acceleration is applied to the acceleration sensor of the fourth embodiment.
  • FIG. 10 is a plan view of an acceleration sensor according to a fourth embodiment.
  • FIG. 10 is a plan view of an acceleration sensor according to a fourth embodiment.
  • FIG. 10 is a cross-sectional view of an acceleration sensor according to a third modification of the fourth embodiment.
  • FIG. 25 is a plan view of an acceleration sensor according to a third modification example of the fourth embodiment.
  • the constituent elements are not necessarily indispensable unless otherwise specified and apparently essential in principle. Needless to say.
  • hatching may be omitted even in a cross-sectional view for easy understanding of the drawings. Further, even a plan view may be hatched to make the drawing easy to see.
  • Reflection-based elastic wave exploration is a type of geophysical exploration. Artificial seismic waves are generated, and reflected waves bounced off the ground with a geophone installed on the ground surface are analyzed. It is a method to do.
  • Fig. 1 is a schematic cross-sectional view of the earth's surface showing an outline of the reflection elastic wave exploration.
  • an elastic wave (indicated by an arrow in FIG. 1) is excited from the excitation source G1 installed on the ground surface G3 into one of the geological boundaries G4a and G4b.
  • the reflected elastic wave is sensed by any of the geophones G2a, G2b, G2c, G2d, and G2e installed on the ground surface G3. Since a general excitation source G1 oscillates in a direction perpendicular to the ground surface, a P wave is efficiently excited in a direction close to vertical. For this reason, the P wave is used in the reflection method elastic wave exploration. Further, since the elastic wave returning to the ground surface is a P wave propagating from a direction close to the vertical direction, the geophone needs to detect the elastic vibration in the vertical direction.
  • the elastic wave excited in various directions propagates in the ground with large attenuation, reflects at the boundaries G4a and G4b of multiple formations, propagates again in the ground with large attenuation, diffuses over a wide area, and spreads to the ground surface. Come back.
  • FIG. 2 and 3 are cross-sectional views of the acceleration sensor of the first embodiment.
  • 4 to 6 are plan views of the acceleration sensor according to the first embodiment.
  • FIG. 7 is a cross-sectional view of the acceleration sensor of the first embodiment.
  • FIG. 2 is a cross-sectional view taken along the line AA in FIGS. 4 to 6, and FIGS. 3 and 7 are cross-sectional views taken along the line BB in FIGS. 2 and 3 show a state where the gravitational acceleration is not applied in the z-axis direction, and FIG. 7 shows a state where the gravitational acceleration GR is applied in the -z-axis direction. That is, FIG. 7 shows a state in which the movable electrode 31 is rotationally displaced about the rotational axis AX1 due to the gravitational acceleration GR.
  • FIG. 4 shows a state seen through the cap layer CL and the membrane layer ML, and shows the state of the upper surface of the base layer.
  • FIG. 5 shows the state of the lower surface of the cap layer.
  • FIG. 6 shows a state seen through the cap substrate 20 and shows the state of the membrane layer. 5 to 6, the illustration of the base substrate 10 is omitted.
  • the acceleration sensor 1 of the first embodiment includes a base layer BL, a membrane layer ML, and a cap layer CL.
  • the base layer BL has a base substrate 10 as a base, a lower electrode 11, gap adjusting films 12a and 12b, and a space 13.
  • the base substrate 10 is a region of the upper surface as the main surface of the base substrate 10 and is a region AR1 as a central region on the center side of the base substrate 10 and a region of the upper surface of the base substrate 10 and is higher than the region AR1. And an area AR2 as a peripheral area on the peripheral side of the base substrate 10.
  • two directions that intersect with each other, preferably perpendicularly, are an x-axis direction and a y-axis direction, and a direction perpendicular to the main surface of the base substrate 10 is a z-axis direction.
  • a direction perpendicular to the main surface of the base substrate 10 is a z-axis direction.
  • the term “when viewed from the z-axis direction that is a direction perpendicular to the upper surface as the main surface of the base substrate 10” is meant.
  • a gap adjusting film 12a is formed on the upper surface of the base substrate 10, that is, on the base substrate 10.
  • a gap adjustment film 12b is formed on the upper surface of the base substrate 10, that is, on the base substrate 10, in the same layer as the gap adjustment film 12a.
  • the gap adjusting film 12b is not formed on the upper surface of the base substrate 10, that is, on the base substrate 10, and the lower electrode 11 is not formed. Is formed.
  • the lower electrode 11 is disposed in the region AR1 on one side (right side in FIG. 4) of the gap adjusting film 12b in the x-axis direction in plan view.
  • the lower electrode 11 is disposed to face the lower surface of the movable electrode 31 as a movable part.
  • the thickness of the gap adjusting films 12 a and 12 b is thicker than the thickness of the lower electrode 11. Therefore, a space 13 is formed on the lower electrode 11 and the base substrate 10 in the region AR1. That is, the gap adjusting films 12 a and 12 b are for forming the space 13 on the lower electrode 11.
  • the space 13 is filled with a gas having a pressure sufficiently lower than the atmospheric pressure.
  • the base substrate 10 is formed of a single crystal silicon substrate and a silicon oxide film (not shown) formed on the surface of the single crystal silicon substrate.
  • the lower electrode 11 is electrically insulated from the single crystal silicon substrate of the base substrate 10 by this silicon oxide film.
  • the lower electrode 11 is electrically connected to, for example, a detection circuit via an electrical connection line (not shown).
  • the cap layer CL has a cap substrate 20 as a base, an upper electrode 21, gap adjusting films 22a and 22b, and a space 23. As shown in FIG.
  • the area AR ⁇ b> 1 is a lower surface area as a main surface of the cap substrate 20, and is also an area as a central region on the center side of the cap substrate 20.
  • the region AR2 is a region on the lower surface of the cap substrate 20, and is also a region as a peripheral region on the peripheral side of the cap substrate 20 relative to the region AR1.
  • the x-axis direction and the y-axis direction are also two directions that intersect each other, preferably orthogonal, within the lower surface as the main surface of the cap substrate 20, and the z-axis direction is perpendicular to the lower surface of the cap substrate 20. It is also a direction.
  • a gap adjusting film 22a is formed under the lower surface of the cap substrate 20, that is, under the cap substrate 20. Further, even in a part of the region AR1, a gap adjusting film 22b is formed in the same layer as the gap adjusting film 22a under the lower surface of the cap substrate 20, that is, under the cap substrate 20.
  • the gap adjusting film 22b is not formed under the lower surface of the cap substrate 20, that is, under the cap substrate 20, and the upper electrode 21 is not formed. Is formed.
  • the upper electrode 21 is arranged in the region AR1 on one side (right side in FIG. 5) of the gap adjusting film 22b in the x-axis direction in plan view. The upper electrode 21 is disposed to face the upper surface of the movable electrode 31 as a movable part.
  • the thickness of the gap adjusting films 22 a and 22 b is thicker than the thickness of the upper electrode 21. Therefore, in the region AR1, a space 23 is formed under the upper electrode 21 and under the cap substrate 20. That is, the gap adjusting films 22 a and 22 b are for forming the space 23 under the upper electrode 21.
  • the space 23 is filled with a gas having a pressure sufficiently lower than the atmospheric pressure.
  • the cap substrate 20 is formed of a single crystal silicon substrate and a silicon oxide film (not shown) formed on the surface of the single crystal silicon substrate.
  • the upper electrode 21 is electrically insulated from the single crystal silicon substrate of the cap substrate 20 by this silicon oxide film.
  • the upper electrode 21 is electrically connected to, for example, a detection circuit via an electrical connection line (not shown).
  • the membrane layer ML includes a movable electrode 31 as a movable portion, torsion springs 32 a and 32 b, a fixed portion 33, and a frame 34.
  • the movable electrode 31, the torsion springs 32 a and 32 b, the fixed portion 33, and the frame 34 are all made of a low-resistance single crystal silicon substrate, and the single crystal silicon substrate is DRIE (Deep) in the thickness direction (z-axis direction), for example.
  • Etching is performed by Reactive (Ion) Etching) to form a hole that penetrates the single crystal silicon substrate.
  • a space 35 is formed between the outer surface of the movable electrode 31 and the inner surface of the frame 34.
  • the fixing portion 33 is sandwiched between the gap adjusting film 12b and the gap adjusting film 22b.
  • the lower end of the fixed portion 33 is mechanically connected to the gap adjusting film 12b, and the upper end of the fixed portion 33 is mechanically connected to the gap adjusting film 22b. Since the gap adjustment film 12 b is mechanically connected to the base substrate 10, the fixing portion 33 is mechanically fixed to the base substrate 10 after all. That is, the fixing portion 33 is fixed on the upper surface as the main surface of the base substrate 10. Further, since the gap adjusting film 22b is mechanically connected to the cap substrate 20, the fixing portion 33 is mechanically fixed to the cap substrate 20 after all.
  • the fixing portion 33 is electrically connected to, for example, a detection circuit via an electrical connection line (not shown).
  • the torsion spring 32a extends in the y-axis direction, an end 36a on one side in the y-axis direction of the torsion spring 32a is connected to the fixed portion 33, and an end on the other side in the y-axis direction of the torsion spring 32a.
  • the part 37 a is connected to the end 61 of the movable electrode 31.
  • the torsion spring 32b extends in the y-axis direction, and one end 36b in the y-axis direction of the torsion spring 32b is connected to the fixed portion 33, and the other side in the y-axis direction of the torsion spring 32b.
  • the end portion 37 b of the movable electrode 31 is connected to the end portion 61 of the movable electrode 31.
  • the end portion 37a When the torsion spring 32a is elastically deformed and the end portion 37a is twisted with respect to the end portion 36a, the end portion 37a has a rotational axis AX1 along the y-axis direction with respect to the end portion 36a. It is provided so as to be capable of rotational displacement as the center. Further, the torsion spring 32b is elastically deformed by the torsion spring 32b and the end portion 37b is twisted with respect to the end portion 36b, so that the end portion 37b is in contact with the rotation axis AX1 of the torsion spring 32a with respect to the end portion 36b. It is provided so as to be capable of rotational displacement about the same rotational axis AX1. Therefore, each of the torsion springs 32a and 32b is an elastic deformation portion.
  • the thickness of the torsion spring 32a in the z-axis direction is larger than the width of the torsion spring 32a in the x-axis direction.
  • the edge part 37a can be easily twisted with respect to the edge part 36a.
  • the thickness of the torsion spring 32b in the z-axis direction is larger than the width of the torsion spring 32b in the x-axis direction.
  • the edge part 37b can be easily twisted with respect to the edge part 36b.
  • the movable electrode 31 is disposed on one side (right side in FIG. 6) of the fixed portion 33 in the x-axis direction in the area AR ⁇ b> 1 in plan view.
  • Two torsion springs 32a and 32b that can be rotationally displaced about the rotation axis AX1 extending in the y-axis direction are connected to the end 61 on the rotation axis AX1 side of the movable electrode 31 so as to be separated from each other in the y-axis direction.
  • the end 61 on the fixed portion 33 side of the movable electrode 31 is connected to the fixed portion 33 via torsion springs 32 a and 32 b.
  • the movable electrode 31 can be rotationally displaced with respect to the fixed portion 33 around the rotation axis AX1 of the torsion springs 32a and 32b.
  • the movable electrode 31 has, for example, a rectangular shape when viewed from the z-axis direction. That is, the movable electrode 31 has, for example, side surfaces SM1 and SM2 perpendicular to the x-axis direction, and side surfaces SM3 and SM4 perpendicular to the y-axis direction.
  • the side surface SM1 is an end portion 61 on the rotation axis AX1 side of the movable electrode 31
  • the side surface SM2 is an end portion 62 opposite to the rotation axis AX1 side of the movable electrode 31.
  • the side surface SM1 is the negative end 61 in the x-axis direction of the movable electrode 31, and the side SM2 is the positive end 62 in the x-axis direction of the movable electrode 31.
  • the side surface SM3 is a negative side end portion 63 of the movable electrode 31 in the y-axis direction
  • the side surface SM4 is a positive side end portion 64 of the movable electrode 31 in the y-axis direction.
  • the planar dimension of the movable electrode 31 when viewed from the z-axis direction can be 4.0 mm (x-axis direction) ⁇ 3.9 mm (y-axis direction). Further, the thickness of the movable electrode 31 in the z-axis direction can be set to 0.25 mm.
  • the distance in the x-axis direction between the end 61 (side surface SM1) on the rotation axis AX1 side of the movable electrode 31 and the rotation axis AX1 is defined as a distance LXms.
  • the distance in the x-axis direction between the end 62 (side surface SM2) opposite to the rotation axis AX1 side of the movable electrode 31 and the rotation axis AX1 is defined as a distance LXme.
  • the distance LXms can be set to 200 ⁇ m
  • the distance LXme can be set to 4200 ⁇ m.
  • the movable electrode 31 is connected to the end portion 37a of the torsion spring 32a via the connection portion 38a, and is connected to the end portion 37b of the torsion spring 32b via the connection portion 38b.
  • the lengths of the connecting portions 38a and 38b in the x-axis direction can be made as short as possible.
  • a very narrow slit in the x-axis direction is formed between the movable electrode 31 and the torsion springs 32a and 32b, or between the movable electrode 31 and the fixed portion 33. Therefore, the distance LXms can be regarded as approximately zero.
  • the movable electrode 31 can also be connected to the fixed portion 33 without using a torsion spring.
  • the rotation axis AX1 side of the movable electrode 31 corresponds to “the fixed portion 33 side of the movable electrode 31”
  • the side opposite to the rotation axis AX1 side of the movable electrode 31 This corresponds to “the side opposite to the fixed portion 33 side of the movable electrode 31”.
  • the distance in the x-axis direction between the end 61 (side surface SM1) of the movable electrode 31 on the rotation axis AX1 side and the rotation axis AX1 is “the end of the movable electrode 31 on the fixed portion 33 side”.
  • the gravitational acceleration GR (9.8 ms ⁇ 2 ) is applied to the upper surface of the base substrate 10 or the lower surface of the cap substrate 20, that is, the direction perpendicular to the xy plane ( ⁇ z axis direction).
  • minute vibration acceleration applied in the ⁇ z-axis direction can be detected with high accuracy.
  • FIG. 7 by installing the acceleration sensor 1 so that the z-axis direction is parallel to the vertical direction, that is, the ⁇ z-axis direction coincides with the direction in which the gravitational acceleration GR is applied, Vibrations in the ⁇ z-axis direction can be detected with the highest accuracy.
  • the mass of the movable electrode 31 and the spring constants of the torsion springs 32a and 32b are determined by the rotation of the movable electrode 31 in a state where the gravitational acceleration GR (see FIG. 7) is applied.
  • the end 62 on the side opposite to the axis AX1 side is adjusted so as to be displaced by 2 ⁇ m in the negative direction in the z-axis direction compared to the state where the gravitational acceleration GR is not applied.
  • the gap length GAPb is the thickness in the z-axis direction of the space 13 existing between the movable electrode 31 and the lower electrode 11, and is the distance in the z-axis direction between the movable electrode 31 and the lower electrode 11. Since the movable electrode 31 is inclined by being rotationally displaced about the rotation axis AX1, the thickness of the space 13 in the z-axis direction, that is, the distance in the z-axis direction between the movable electrode 31 and the lower electrode 11 is x-axis. It depends on each position in the direction.
  • the thickness of the space 13 in the z-axis direction at the center position of the lower electrode 11 in the x-axis direction is defined as the gap length GAPb. That is, the distance in the z-axis direction between the movable electrode 31 and the lower electrode 11 at the center position of the lower electrode 11 in the x-axis direction is defined as the gap length GAPb.
  • the gap length GAPt is the thickness in the z-axis direction of the space 23 existing between the movable electrode 31 and the upper electrode 21, and is the distance in the z-axis direction between the movable electrode 31 and the upper electrode 21. Since the movable electrode 31 is inclined by being rotationally displaced about the rotation axis AX1, the thickness of the space 23 in the z-axis direction, that is, the distance in the z-axis direction between the movable electrode 31 and the upper electrode 21 is x-axis. It depends on each position in the direction.
  • the thickness of the space 23 in the z-axis direction at the center position of the upper electrode 21 in the x-axis direction is defined as the gap length GAPt. That is, the distance in the z-axis direction between the movable electrode 31 and the upper electrode 21 at the center position of the upper electrode 21 in the x-axis direction is defined as the gap length GAPt.
  • the gap adjusting films 12a and 12b are thicker than the gap adjusting films 22a and 22b. That is, the distance LZb in the z-axis direction between the lower end of the end 61 on the rotation axis AX1 side of the movable electrode 31 and the upper surface of the lower electrode 11 is the upper end of the end 61 on the rotation axis AX1 side of the movable electrode 31. And the distance LZt in the z-axis direction between the upper electrode 21 and the lower surface of the upper electrode 21 is longer.
  • the difference between the gap length GAPb and the gap length GAPt when the gravitational acceleration is applied is compared with the case where the thickness of the gap adjustment films 12a and 12b is equal to the thickness of the gap adjustment films 22a and 22b. Can approach 0.
  • the thickness of the gap adjusting films 12a and 12b can be made 2 ⁇ m larger than the thickness of the gap adjusting films 22a and 22b, for example.
  • the distance LZb can be set to 6 ⁇ m
  • the distance LZt can be set to 4 ⁇ m
  • the gap length GAPt and the gap length GAPb when the gravitational acceleration GR is applied can be made equal.
  • the distance LZb can also be defined as the distance in the z-axis direction between the rotation axis AX1 and the upper surface of the lower electrode 11, and the distance LZt is defined between the rotation axis AX1 and the lower surface of the upper electrode 21.
  • the distance in the z-axis direction can also be defined. Even in such a case, the distance LZb is preferably longer than the distance LZt.
  • the distance LZb is displayed as a distance in the z-axis direction between the upper surface of the gap adjusting film 12a or 12b and the upper surface of the lower electrode 11 for easy understanding.
  • the distance LZt is displayed as the distance in the z-axis direction between the lower surface of the gap adjusting film 22a or 22b and the lower surface of the upper electrode 21 (the same applies to the following sectional views).
  • the lower electrode 11 and the upper electrode 21 are arranged so as to be parallel to each other as shown in FIGS. Further, as described above, the lower electrode 11 is disposed to face the lower surface of the movable electrode 31, and the upper electrode 21 is disposed to face the upper surface of the movable electrode 31.
  • the lower electrode 11 has a rectangular shape when viewed from the z-axis direction. That is, the lower electrode 11 has side surfaces SB1 and SB2 perpendicular to the x-axis direction, and side surfaces SB3 and SB4 perpendicular to the y-axis direction.
  • the side surface SB1 is an end portion 41 of the lower electrode 11 on the rotation axis AX1 side
  • the side surface SB2 is an end portion 42 of the lower electrode 11 opposite to the rotation axis AX1 side.
  • the side surface SB1 is the negative end portion 41 in the x-axis direction of the lower electrode 11
  • the side surface SB2 is the positive end portion 42 in the x-axis direction of the lower electrode 11.
  • the side surface SB3 is a negative end portion 43 in the y-axis direction of the lower electrode 11, and the side surface SB4 is a positive end portion 44 in the y-axis direction of the lower electrode 11.
  • the upper electrode 21 has a rectangular shape when viewed from the z-axis direction. That is, upper electrode 21 has side surface SC1 and side surface SC2 perpendicular to the x-axis direction, and side surface SC3 and side surface SC4 perpendicular to the y-axis direction.
  • the side surface SC1 is an end portion 51 on the rotation axis AX1 side of the upper electrode 21, and the side surface SC2 is an end portion 52 on the opposite side to the rotation axis AX1 side of the upper electrode 21.
  • the side surface SC1 is a negative end 51 in the x-axis direction of the upper electrode 21, and the side SC2 is a positive end 52 in the x-axis direction of the upper electrode 21.
  • the side surface SC3 is a negative end 53 in the y-axis direction of the upper electrode 21, and the side surface SC4 is a positive end 54 in the y-axis direction of the upper electrode 21.
  • the distance in the x-axis direction between the end 41 (side surface SB1) on the rotation axis AX1 side of the lower electrode 11 and the rotation axis AX1 is defined as a distance LXbs. Further, the distance in the x-axis direction between the end portion 42 (side surface SB2) opposite to the rotation axis AX1 side of the lower electrode 11 and the rotation axis AX1 is defined as a distance LXbe.
  • the distance LXbs can be set to 200 ⁇ m, and the distance LXbe can be set to 3810 ⁇ m. That is, the difference between the distance LXbe and the distance LXbs can be 3610 ⁇ m.
  • the distance in the x-axis direction between the end 51 (side surface SC1) on the rotation axis AX1 side of the upper electrode 21 and the rotation axis AX1 is a distance LXts.
  • the distance in the x-axis direction between the end 52 (side surface SC2) opposite to the rotation axis AX1 side of the upper electrode 21 and the rotation axis AX1 is defined as a distance LXte.
  • the distance LXts can be set to 590 ⁇ m, and the distance LXte can be set to 4200 ⁇ m. That is, the difference between the distance LXte and the distance LXts can be 3610 ⁇ m.
  • the movable electrode 31 is an acceleration that is applied separately from the gravitational acceleration GR when the gravitational acceleration GR is applied in the ⁇ z-axis direction. It is for detecting the acceleration which consists of highly accurately.
  • the movable electrode 31 has a sufficiently large mass so that the force applied to the movable electrode 31 by the acceleration becomes sufficiently large.
  • the force applied to the movable electrode 31 by the acceleration acts on the movable electrode 31 as a torque with the rotation axis AX1 as a fulcrum.
  • the movable electrode 31 is rotationally displaced about the axis AX1.
  • the non-parallel plate type capacitor is formed by sandwiching the space 13 by the movable electrode 31 and the lower electrode 11.
  • the capacitance between the movable electrode 31 and the lower electrode 11. Cb increases.
  • the capacitance Cb between the movable electrode 31 and the lower electrode 11 is small.
  • the non-parallel plate type capacitor is formed by the movable electrode 31 and the upper electrode 21 with the space 23 interposed therebetween.
  • the electrostatic capacitance between the movable electrode 31 and the upper electrode 21. Ct is smaller than the capacitance Cb between the movable electrode 31 and the lower electrode 11.
  • the capacitance Ct between the movable electrode 31 and the upper electrode 21 is movable.
  • the capacitance Cb between the electrode 31 and the lower electrode 11 increases.
  • FIG. 8 is a cross-sectional view of the acceleration sensor of Comparative Example 1.
  • 9 to 11 are plan views of the acceleration sensor of the first comparative example.
  • FIG. 12 is a cross-sectional view of the acceleration sensor of the first comparative example.
  • FIG. 8 and 12 are sectional views taken along the line BB in FIG.
  • FIG. 8 shows a state where the gravitational acceleration is not applied in the z-axis direction
  • FIG. 12 shows a state where the gravitational acceleration GR is applied in the ⁇ z-axis direction. That is, FIG. 12 shows a state in which the movable electrode 31 is rotationally displaced about the rotational axis AX1 due to the gravitational acceleration GR.
  • the acceleration sensor 101 of Comparative Example 1 includes a base layer BL, a membrane layer ML, and a cap layer CL, similarly to the acceleration sensor 1 of the first embodiment.
  • the base layer BL includes a base substrate 10, a lower electrode 11, gap adjusting films 12a and 12b, and a space 13.
  • the cap layer CL includes a cap substrate 20, an upper electrode 21, gap adjusting films 22 a and 22 b, and a space 23.
  • the membrane layer ML includes a movable electrode 31, torsion springs 32 a and 32 b, a fixed part 33, and a frame 34.
  • the movable electrode 31 included in the membrane layer ML is made of a low-resistance single crystal silicon substrate, as seen from the z-axis direction, like the movable electrode 31 of the acceleration sensor 1 of the first embodiment. Sometimes it has a rectangular shape, for example.
  • the planar dimension of the movable electrode 31 when viewed from the z-axis direction can be 4.0 mm (x-axis direction) ⁇ 3.5 mm (y-axis direction). Further, the thickness of the movable electrode 31 in the z-axis direction can be set to 0.25 mm.
  • the gap length GAPb is the thickness in the z-axis direction of the space 13 existing between the movable electrode 31 and the lower electrode 11, and is the distance in the z-axis direction between the movable electrode 31 and the lower electrode 11. Also in Comparative Example 1, as in the first embodiment, the thickness in the z-axis direction of the space 13 at the center position of the lower electrode 11 in the x-axis direction is defined as the gap length GAPb.
  • the gap length GAPt is the thickness in the z-axis direction of the space 23 existing between the movable electrode 31 and the upper electrode 21, and is the distance in the z-axis direction between the movable electrode 31 and the upper electrode 21. Also in Comparative Example 1, as in the first embodiment, the thickness in the z-axis direction of the space 23 at the center position of the upper electrode 21 in the x-axis direction is defined as the gap length GAPt.
  • the lower electrode 11 and the upper electrode 21 are arranged at positions facing each other with the movable electrode 31 in between, as shown in FIGS.
  • the distance in the x-axis direction between the end 41 (side surface SB1) on the rotation axis AX1 side of the lower electrode 11 and the rotation axis AX1 is defined as a distance LXbs. Further, the distance in the x-axis direction between the end portion 42 (side surface SB2) opposite to the rotation axis AX1 side of the lower electrode 11 and the rotation axis AX1 is defined as a distance LXbe. At this time, in Comparative Example 1, the distance LXbs can be set to 200 ⁇ m, and the distance LXbe can be set to 4200 ⁇ m.
  • the distance in the x-axis direction between the end 51 (side surface SC1) on the rotation axis AX1 side of the upper electrode 21 and the rotation axis AX1 is a distance LXts. Further, the distance in the x-axis direction between the end 52 (side surface SC2) opposite to the rotation axis AX1 side of the upper electrode 21 and the rotation axis AX1 is defined as a distance LXte. At this time, the distance LXts is set to 200 ⁇ m equal to the distance LXbs, and the distance LXte is set to 4200 ⁇ m equal to the distance LXbe.
  • the mass of the movable electrode 31 and the spring constants of the torsion springs 32a and 32b are compared with the case where no gravitational acceleration is applied.
  • the end 62 of the movable electrode 31 opposite to the fixed portion 33 side is set to move 2 ⁇ m to the negative side in the z-axis direction.
  • the thickness of the gap adjusting films 12a and 12b is equal to the thickness of the gap adjusting films 22a and 22b. Therefore, the distance LZb in the z-axis direction between the lower end of the end 61 on the rotation axis AX1 side of the movable electrode 31 and the upper surface of the lower electrode 11 is the upper end of the end 61 on the rotation axis AX1 side of the movable electrode 31. And the distance LZt in the z-axis direction between the upper electrode 21 and the lower surface of the upper electrode 21 is equal.
  • both the distance LZb and the distance LZt are 5 ⁇ m
  • the gap length GAPt is 6 ⁇ m
  • the gap length GAPb is 4 ⁇ m when gravitational acceleration is applied in the ⁇ z-axis direction.
  • FIG. 13 is a graph showing the gap length dependence of the capacitance between the movable electrode and the lower electrode and the capacitance between the movable electrode and the upper electrode in Comparative Example 1.
  • the horizontal axis in FIG. 13 is based on the gap length GAPb when the gravitational acceleration GR is applied in the ⁇ z-axis direction and the movable electrode 31 is not oscillating, that is, in the stationary state where the gravitational acceleration GR is applied.
  • the amount of change ⁇ GAPb in the gap length GAPb at this time is shown.
  • the change amount ⁇ GAPb is the amount of deviation of the gap length GAPb when the movable electrode 31 is rotationally displaced about the rotation axis AX1 from the stationary state where the gravitational acceleration GR is applied.
  • the change amount ⁇ GAPt is a deviation amount of the gap length GAPt when the movable electrode 31 is rotationally displaced about the rotation axis AX1 from the stationary state where the gravitational acceleration GR is applied.
  • the change amount ⁇ GAPb dependency of the capacitance Cb and the change amount ⁇ GAPt dependency of the capacitance Ct in a state where no gravitational acceleration is applied are indicated by broken lines (FIG. 13). Then, the electrostatic capacitance without gravity is expressed as Cb and Ct).
  • the movable electrode 31 stops at an intermediate position between the lower electrode 11 and the upper electrode 21, and therefore, the change amount ⁇ GAPb dependency of the capacitance Cb, The dependence on the change amount ⁇ GAPt of the capacitance Ct coincides.
  • the movable electrode 31 rotates counterclockwise when viewed from the negative side to the positive side in the y-axis direction.
  • the gap length GAPb decreases by about 1 ⁇ m
  • the acceleration sensor detects acceleration based on the capacitance difference between the capacitance value of the capacitance Cb and the capacitance value of the capacitance Ct. That is, the output ⁇ C of the acceleration sensor is a capacitance difference between the capacitance value of the capacitance Cb and the capacitance value of the capacitance Ct, and the acceleration is detected based on the output ⁇ C. Therefore, in the capacitance difference between the capacitance value of the capacitance Ct and the capacitance value of the capacitance Cb, the capacitance value of the capacitance Ct corresponding to the gravitational acceleration GR and the capacitance Cb corresponding to the gravitational acceleration GR.
  • the capacitance value is canceled. That is, when the gravitational acceleration GR is applied and no vertical vibration acceleration smaller than the gravitational acceleration GR is applied, the electrostatic force corresponding to the gravitational acceleration GR is obtained when the movable electrode 31 is stationary. It is desirable that the capacitance value of the capacitance Cb is equal to the capacitance value of the electrostatic capacitance Ct corresponding to the gravitational acceleration GR.
  • the capacitance value of the electrostatic capacitance Cb when the gravitational acceleration GR is applied and no vertical vibration acceleration smaller than the gravitational acceleration GR is applied, and the movable electrode 31 is in a stationary state, the capacitance value of the electrostatic capacitance Cb, If the capacitance value of the electrostatic capacitance Ct is not canceled, the accuracy of detecting the vibration acceleration in the vertical direction smaller than the gravitational acceleration GR is significantly lowered.
  • the capacitance value of the capacitance Ct When the gravitational acceleration GR is applied and no vertical vibration acceleration smaller than the gravitational acceleration GR is applied, and the movable electrode 31 is stationary, the capacitance value of the capacitance Ct Consider a case where the capacitance value of the capacitance Cb differs by a capacitance value corresponding to the gravitational acceleration GR.
  • the capacitance value of the capacitance Ct is Consider a case where the capacitance value of the capacitance Cb is equal. That is, consider a case where the capacitance value of the capacitance Ct and the capacitance value of the capacitance Cb are canceled.
  • the capacitance difference between the capacitance value of the capacitance Cb and the capacitance value of the capacitance Ct increases in a stationary state where gravitational acceleration is applied, it is necessary to increase the dynamic range of the acceleration sensor.
  • the power consumption of the sensor detection circuit may increase.
  • the dynamic range cannot be increased, the acceleration measurement accuracy in the acceleration sensor may decrease, or the acceleration sensitivity may decrease.
  • the rotation axis AX1 of the movable electrode 31 is set in the + z-axis direction as a method for solving the problem of the increase in power consumption or the decrease in measurement accuracy or sensitivity.
  • the method of moving to is conceivable.
  • the fact that such a method cannot solve the problem will be described below in comparison with Comparative Example 2.
  • FIG. 14 is a cross-sectional view of the acceleration sensor of Comparative Example 2.
  • the acceleration sensor 201 of Comparative Example 2 includes a base layer BL, a membrane layer ML, and a cap layer CL, similarly to the acceleration sensor 1 of the first embodiment.
  • the base layer BL includes a base substrate 10, a lower electrode 11, gap adjusting films 12a and 12b (see FIG. 2), and a space 13.
  • the cap layer CL includes a cap substrate 20, an upper electrode 21, gap adjusting films 22a and 22b (see FIG. 2), and a space 23.
  • the membrane layer ML includes a movable electrode 31, torsion springs 32a and 32b, a fixed portion 33 (see FIG. 2), and a frame 34.
  • the gap adjusting film 12a is thicker than the gap adjusting film 22a. Therefore, the distance LZb in the z-axis direction between the lower end of the end 61 on the rotation axis AX1 side of the movable electrode 31 and the upper surface of the lower electrode 11 is the upper end of the end 61 on the rotation axis AX1 side of the movable electrode 31. And the distance LZt in the z-axis direction between the upper electrode 21 and the lower surface of the upper electrode 21 is longer.
  • the distance in the z-axis direction between the movable electrode 31 and the lower electrode 11 at the center position of the lower electrode 11 in the x-axis direction is defined as the gap length GAPb.
  • the distance in the z-axis direction between the movable electrode 31 and the upper electrode 21 at the center position of the upper electrode 21 in the x-axis direction is defined as the gap length GAPt. ,Define.
  • the thickness of the gap adjusting film 12a is set to 2 ⁇ m, for example, larger than the thickness of the gap adjusting film 22a.
  • the distance LZb is 6 ⁇ m
  • the distance LZt is 4 ⁇ m
  • the gap length GAPt and the gap length GAPb when the gravitational acceleration GR is applied in the ⁇ z-axis direction are equal.
  • the inventors set the capacitance value of the capacitance Cb between the movable electrode 31 and the lower electrode 11 when the rotation angle of the movable electrode 31 is the rotation angle ⁇ , and The dependency of the capacitance value of the capacitance Ct between the movable electrode 31 and the upper electrode 21 on the rotation angle ⁇ was examined in detail. As a result, it was found that the capacitance value of the capacitance Ct and the capacitance value of the capacitance Cb satisfy the following formulas (1) to (5).
  • is the dielectric constant of the gas occupying the spaces 13 and 23
  • Sb is the effective electrode area corresponding to the capacitance Cb
  • Sc is the effective electrode area corresponding to the capacitance Ct.
  • the area of the lower electrode 11 is smaller than the area of the movable electrode 31, and the area of the upper electrode 21 is smaller than the area of the movable electrode 31. Therefore, the effective electrode area corresponding to the capacitance Cb is the area of the lower electrode 11, and the effective electrode area corresponding to the capacitance Ct is the area of the upper electrode 21.
  • Equation (1) to (5) when the rotation angle ⁇ is brought close to 0, the capacitance value of the capacitance Cb shown in the equation (1) and the capacitance Ct shown in the equation (2).
  • Equation (1) and Equation (2) in Patent Document 2 The values asymptotically approach Equation (1) and Equation (2) in Patent Document 2 above. Therefore, the equations (1) to (5) in this specification can be said to be equations that take into account that the movable electrode is inclined.
  • FIG. 15 is a graph showing the gap length dependence of the capacitance between the movable electrode and the lower electrode and the capacitance between the movable electrode and the upper electrode in Comparative Example 2.
  • the horizontal axis of FIG. 15 indicates the change amount ⁇ GAPb of the gap length GAPb and the change amount ⁇ GAPt of the gap length GAPt, similarly to the horizontal axis of FIG.
  • the acceleration sensor used for reflection elastic wave exploration needs to detect acceleration that is applied in the vertical direction, that is, in the same direction as gravitational acceleration, and is smaller than gravitational acceleration. is there. That is, it is necessary to improve the sensitivity of acceleration in the vertical direction in an acceleration sensor used for reflection method acoustic wave exploration. Therefore, in an acceleration sensor used for reflection acoustic wave exploration, in order to improve the sensitivity of acceleration, the mass of the movable part is increased, or the spring constant of the elastic deformation part that connects the movable part to the fixed part is decreased. There are things to do.
  • the movable electrode whose one end is connected to the fixed part is inclined by its own weight. Then, when detecting an acceleration smaller than the gravitational acceleration applied in the vertical direction in a state where the movable electrode is inclined by its own weight, the power consumption of the acceleration sensor is increased or the acceleration sensor is applied to the applied acceleration. The inventors have found that the linearity of the output is reduced.
  • the distance LXbs is smaller than the distance LXts, and the distance LXbe is smaller than the distance LXte.
  • FIG. 16 is a graph showing the gap length dependence of the capacitance between the movable electrode and the lower electrode and the capacitance between the movable electrode and the upper electrode in the first embodiment.
  • the horizontal axis of FIG. 16 indicates the change amount ⁇ GAPb of the gap length GAPb and the change amount ⁇ GAPt of the gap length GAPt, similarly to the horizontal axis of FIG.
  • FIG. 17 is a graph showing nonlinearity of the output ⁇ C when acceleration is applied to the acceleration sensors of the first embodiment, comparative example 1 and comparative example 2.
  • the horizontal axis in FIG. 17 indicates the applied acceleration normalized by the gravitational acceleration GR.
  • the vertical axis in FIG. 17 indicates that the gravitational acceleration is GR and the output ⁇ C in the range of ⁇ 0.95 GR centered on the stationary position is full scale (FS) (hereinafter, “full scale (FS) ⁇ 0 .95GR ”)) is shown.
  • the nonlinearity of the output ⁇ C in Comparative Example 2 is smaller than the nonlinearity of the output ⁇ C in Comparative Example 1, and the nonlinearity of the output ⁇ C in Embodiment 1 is It is smaller than the nonlinearity in the output ⁇ C in Example 2.
  • the non-linearity at full scale (FS) ⁇ 0.95GR is 14.2% FS in Comparative Example 1 and 4.5% FS in Comparative Example 2, which is the first embodiment. Is 2.2% FS, and in the first embodiment, since the non-linearity is smaller than both the comparative example 1 and the comparative example 2, the effect of the first embodiment is obvious.
  • FIG. 18 is a graph showing the relationship between the output ⁇ C and the difference (LXts ⁇ LXbs) between the distance LXts and the distance LXbs.
  • an output ⁇ C when ignoring that the movable electrode 31 is not parallel to either the lower electrode 11 or the upper electrode 21 is shown as Comparative Example 3.
  • Comparative Example 3 corresponds to the relationship shown in Equation (3) of Patent Document 2 above.
  • the distance LXbe is 3810 ⁇ m, and the distance LXte is 4200 ⁇ m.
  • the nonlinearity of the output ⁇ C can be adjusted by changing the difference (LXts ⁇ LXbs) between the distance LXts and the distance LXbs. That is, in the first embodiment, it is apparent that there is an effect of improving the linearity of the output ⁇ C by making the distance LXbs shorter than the distance LXts to some extent.
  • the nonlinearity of the output ⁇ C is minimized when the difference between the distance LXts and the distance LXbs (LXts ⁇ LXbs) is about 550 ⁇ m.
  • adjusting the non-linearity of the output ⁇ C by adjusting the difference between the distance LXts and the distance LXbs found by the present inventors is that the movable electrode 31 is both the lower electrode 11 and the upper electrode 21. It is a phenomenon that became apparent for the first time by considering that it is not parallel.
  • the magnitude of the contribution to the change in the capacitance Cb and the capacitance Ct when the movable electrode 31 is rotationally displaced about the rotation axis AX1 depends on the distance from the rotation axis AX1.
  • the movable electrode 31 on the side opposite to the rotation axis AX1 side and the lower electrode 11 on the side opposite to the rotation axis AX1 side are the movable electrode 31 on the rotation axis AX1 side and the rotation axis AX1 side.
  • the contribution to the capacitance Cb, the first derivative Cb ′ of the capacitance Cb, and the second derivative Cb ′′ of the capacitance Cb is large.
  • the movable electrode 31 on the side portion and the upper electrode 21 on the rotation axis AX1 side portion are the movable electrode 31 on the opposite side to the rotation axis AX1 side and the portion on the opposite side to the rotation axis AX1 side.
  • the contribution to the capacitance Ct, the first derivative Ct ′ of the capacitance Ct, and the second derivative Ct ′′ of the capacitance Ct is large.
  • the first derivative Ct ′ of the capacitance Ct is the first derivative of the capacitance Cb.
  • the second derivative Ct ′′ of the capacitance Ct is smaller than the function Cb ′, and is smaller than the second derivative Cb ′′ of the capacitance Cb.
  • the distance LXbs is made smaller than the distance LXts, and the distance LXbe is made smaller than the distance LXte.
  • the capacitance Cb, the first derivative Cb ′ of the capacitance Cb, and the second derivative Cb ′′ of the capacitance Cb of the movable electrode 31 on the side opposite to the rotation axis AX1 side.
  • the capacitance Ct, the first derivative Ct ′ of the capacitance Ct, and the second derivative Ct ′′ of the capacitance Ct of the movable electrode 31 on the side of the rotation axis AX1.
  • the contribution to is reduced. Therefore, in the first embodiment, compared to Comparative Example 2, the difference between the first derivative Ct ′ and the first derivative Cb ′ and the difference between the second derivative Ct ′′ and the second derivative Cb ′′. Can be reduced.
  • the linearity of the output ⁇ C corresponding to the capacitance difference between the capacitance Cb and the capacitance Ct of the acceleration sensor with respect to the change amounts ⁇ GAPb and ⁇ GAPt can be improved. Therefore, the dynamic range of the acceleration sensor can be reduced, and the power consumption of the detection circuit of the acceleration sensor can be reduced. Alternatively, the measurement accuracy of acceleration by the acceleration sensor can be improved, and the sensitivity of acceleration can be improved.
  • the distance LXbs is shorter than the distance LXts, and the distance LXbe is shorter than the distance LXte.
  • the first derivative Cb ′ of the capacitance Cb is made equal to the first derivative Ct ′ of the capacitance Ct
  • the second derivative Cb ′′ of the capacitance Cb can be made equal to the second derivative Ct ′′ of the capacitance Ct, and an output ⁇ C excellent in linearity can be output. Therefore, an acceleration sensor with high sensitivity, low power consumption, and high output linearity with respect to applied acceleration can be provided.
  • the distance LZt is smaller than the distance LZb, unlike the acceleration sensor 1b according to the second embodiment described later.
  • the gap length GAPb can be made equal to the gap length GAPt at the stationary position of the movable electrode 31 when the gravitational acceleration GR is applied.
  • the movable electrode 31 as the movable portion can be rotationally displaced with respect to the fixed portion 33 about the axis along the y-axis direction in plan view.
  • a part of the movable electrode 31 is displaceable at least in the z-axis direction.
  • the end 61 on the fixed part 33 side of the movable electrode 31 in the x-axis direction is directly connected to the fixed part 33.
  • the movable electrode 31 may be a so-called cantilever beam.
  • the distance LXbs is the distance in the x-axis direction between the end portion 41 of the lower electrode 11 on the fixed portion 33 side and the fixed portion 33
  • the distance LXbe is the fixed portion 33 of the lower electrode 11. This is the distance in the x-axis direction between the end 42 on the opposite side and the fixed portion 33
  • the distance LXts is the distance in the x-axis direction between the end 51 on the fixed portion 33 side of the upper electrode 21 and the fixed portion 33, and the distance LXte is opposite to the fixed portion 33 side of the upper electrode 21. This is the distance in the x-axis direction between the side end portion 52 and the fixed portion 33.
  • a servo control method As a method for measuring the acceleration in the vertical direction with high accuracy, a servo control method is conceivable in which a voltage is applied between the movable electrode and the fixed electrode, and the position of the movable electrode is controlled by the generated Coulomb force.
  • an acceleration sensor that detects acceleration using a servo control method will be described as a modification of the first embodiment.
  • 19 and 20 are plan views of an acceleration sensor according to a modification of the first embodiment.
  • the base layer BL includes a lower electrode 14 for servo control in addition to the lower electrode 11.
  • the servo control lower electrode 14 is a region on the upper surface of the base substrate 10, that is, on the base substrate 10, in a region other than the region where the gap adjusting film 12 b is formed. Is formed.
  • the servo control lower electrode 14 is disposed on one side of the lower electrode 11 in the y-axis direction in plan view.
  • the cap layer CL includes a servo control upper electrode 24 in addition to the upper electrode 21.
  • the servo control upper electrode 24 is in a region other than the region where the gap adjusting film 22 b is formed in the region AR ⁇ b> 1, below the lower surface of the cap substrate 20, that is, below the cap substrate 20. Is formed.
  • the servo control upper electrode 24 is disposed on one side of the upper electrode 21 in the y-axis direction in plan view.
  • the structure of the acceleration sensor 1a according to the modification of the first embodiment is the same as that of the acceleration sensor 1 in the first embodiment.
  • the lower electrode for servo control is also used as the lower electrode 11, and the upper electrode for servo control is used. May also be used as the upper electrode 21.
  • the acceleration sensor 1 a according to the modification of the first embodiment may include a servo control movable electrode in addition to the movable electrode 31.
  • the servo control lower electrode and the lower electrode 11 may be provided separately or integrally, and in either case, the same effect is obtained.
  • the servo control upper electrode and the upper electrode 21 may be provided separately or integrally, and in either case, the same effect is obtained.
  • the servo control movable electrode and the movable electrode 31 may be provided separately or integrally, and in either case, the same effect is obtained.
  • the Coulomb force used in servo control is proportional to the first derivative Cb ′ of the capacitance Cb and proportional to the first derivative Ct ′ of the capacitance Ct. Therefore, when the change ⁇ GAPt dependency of the first derivative Ct ′ and the change ⁇ GAPb dependency of the first derivative Cb ′ are different, the servo voltage applied to the servo control lower electrode and the servo control upper electrode Therefore, it is necessary to control the servo voltage to be applied to different values, and servo control becomes complicated. Further, since it is necessary to determine the maximum servo voltage in accordance with the smaller one of the first derivative Cb ′ and the first derivative Ct ′, the servo voltage may be increased. Along with this, there is a possibility that minute vibration acceleration applied in the vertical direction ( ⁇ z-axis direction) cannot be accurately detected, or the power consumption of the acceleration sensor increases.
  • the distance LXbs is smaller than the distance LXts and the distance LXbe is smaller than the distance LXte, similarly to the acceleration sensor 1 of the first embodiment.
  • the gap length dependence of the capacitance value of the capacitance Cb between the movable electrode 31 and the lower electrode 11 is shown in FIG. This can be the same as the gap length dependency of the capacitance value of the capacitance Cb between the electrode 11 and the electrode 11.
  • the gap length dependence of the capacitance value of the capacitance Ct between the movable electrode 31 and the upper electrode 21 is the movable electrode 31 in the first embodiment shown in FIG.
  • the gap length dependency of the capacitance value of the capacitance Ct between the upper electrode 21 and the upper electrode 21 can be made the same.
  • the servo control lower electrode and the servo control upper electrode formed on the comparative example 1 and the comparative example 2 are respectively compared with the comparative example 4 and This is referred to as Comparative Example 5.
  • the servo control lower electrode and servo control upper electrode of Comparative Example 4 and Comparative Example 5 have the same area as the lower electrode and upper electrode of Comparative Example 1 and Comparative Example 2.
  • the absolute value of the Coulomb force generated in the lower electrode 11 and the upper electrode 21 is the ratio between the capacitance value and the gap amount.
  • it is 2.9 ⁇ N for the lower electrode 11 and 2.3 ⁇ N for the upper electrode 21.
  • the first derivative Cb ′ of the capacitance Cb is expressed as the capacitance Ct at the stationary position of the movable electrode 31 when the gravitational acceleration GR is applied.
  • the second derivative Cb ′′ of the capacitance Cb can be made equal to the second derivative Ct ′′ of the capacitance Ct.
  • the acceleration sensor according to the second embodiment will be described.
  • the area of the lower electrode is smaller than the area of the upper electrode.
  • ⁇ Configuration of acceleration sensor> 21 and 22 are cross-sectional views of the acceleration sensor of the second embodiment.
  • 23 and 24 are plan views of the acceleration sensor according to the second embodiment.
  • FIGS. 21 and 22 are cross-sectional views taken along the line BB in FIGS. 23 and 24.
  • FIG. FIG. 21 shows a state where the gravitational acceleration is not applied in the z-axis direction
  • FIG. 22 shows a state where the gravitational acceleration GR is applied in the ⁇ z-axis direction. That is, FIG. 22 shows a state in which the movable electrode 31 is rotationally displaced about the rotational axis AX1 due to the gravitational acceleration GR.
  • the acceleration sensor 1b according to the second embodiment has a base layer BL, a membrane layer ML, and a cap layer CL.
  • the acceleration sensor 1b according to the second embodiment has the same structure as that of the acceleration sensor 101 of the comparative example 1 except for the planar shape of the lower electrode 11 and the upper electrode 21.
  • the acceleration sensor 1b in the second embodiment is also applied in the ⁇ z-axis direction in a state where the gravitational acceleration GR (see FIG. 22) is applied in the ⁇ z-axis direction.
  • the minute vibration acceleration can be detected with high accuracy.
  • the mass of the movable electrode 31 and the spring constants of the torsion springs 32a and 32b are the rotational axes of the movable electrode 31 in a state where the gravitational acceleration GR is applied.
  • the end 62 on the side opposite to the AX1 side is adjusted so as to move 2 ⁇ m to the negative side in the z-axis direction as compared with the state where the gravitational acceleration GR is not applied.
  • the gap length GAPb is the thickness in the z-axis direction of the space 13 existing between the movable electrode 31 and the lower electrode 11, and is the distance in the z-axis direction between the movable electrode 31 and the lower electrode 11. Also in the second embodiment, similarly to the first embodiment, the distance in the z-axis direction between the movable electrode 31 and the lower electrode 11 at the center position of the lower electrode 11 in the x-axis direction is set as the gap length GAPb. Define as
  • the gap length GAPt is the thickness of the space 23 existing between the movable electrode 31 and the upper electrode 21 in the z-axis direction. Also in the second embodiment, similarly to the first embodiment, the distance in the z-axis direction between the movable electrode 31 and the upper electrode 21 at the center position of the upper electrode 21 in the x-axis direction is expressed by the gap length GAPt. Define as
  • the thickness of the gap adjustment film 12a is equal to the thickness of the gap adjustment film 22a. Therefore, the distance LZb in the z-axis direction between the lower end of the end 61 on the rotation axis AX1 side of the movable electrode 31 and the upper surface of the lower electrode 11 is the upper end of the end 61 on the rotation axis AX1 side of the movable electrode 31. And the distance LZt in the z-axis direction between the upper electrode 21 and the lower surface of the upper electrode 21 is equal.
  • the distance LZb and the distance LZt are adjusted by ⁇ 20% from the average value of the distance LZb and the distance LZt, so that the gap length GAPb and GAPt in the state where the gravity GR is applied are matched.
  • the distance LZb being equal to the distance LZt means that each of the distance LZb and the distance LZt is 20% or less from the average value of the distance LZb and the distance LZt.
  • both the distance LZb and the distance LZt are 5 ⁇ m
  • the gap length GAPt is 6 ⁇ m
  • the gap length GAPb is 4 ⁇ m when gravitational acceleration is applied in the ⁇ z-axis direction. Can do.
  • the lower electrode 11 and the upper electrode 21 are arranged so as to be parallel to each other and perpendicular to the z-axis.
  • the lower electrode 11 and the upper electrode 21 are arranged so as to face each other in the z-axis direction.
  • the distance in the x-axis direction between the end 41 (side surface SB1) on the rotation axis AX1 side of the lower electrode 11 and the rotation axis AX1 is defined as a distance LXbs. Further, the distance in the x-axis direction between the end portion 42 (side surface SB2) opposite to the rotation axis AX1 side of the lower electrode 11 and the rotation axis AX1 is defined as a distance LXbe.
  • the distance LXbs can be set to 200 ⁇ m, and the distance LXbe can be set to 3810 ⁇ m. That is, the difference between the distance LXbe and the distance LXbs can be 3610 ⁇ m.
  • the distance in the x-axis direction between the end 51 (side surface SC1) on the rotation axis AX1 side of the upper electrode 21 and the rotation axis AX1 is a distance LXts.
  • the distance in the x-axis direction between the end 52 (side surface SC2) opposite to the rotation axis AX1 side of the upper electrode 21 and the rotation axis AX1 is defined as a distance LXte.
  • the distance LXts can be set to 590 ⁇ m, and the distance LXte can be set to 4200 ⁇ m. That is, the difference between the distance LXte and the distance LXts can be 3610 ⁇ m.
  • the length LYb of the lower electrode 11 in the y-axis direction is smaller than the length LYt of the upper electrode 21 in the y-axis direction. That is, the area of the lower electrode 11 is smaller than the area of the upper electrode 21.
  • the length LYb and the length LYt are expressed by the following formula (6). Meet. Thereby, the capacitance value of the electrostatic capacitance Cb shown by Formula (1) and the capacitance value of the electrostatic capacitance Ct shown by Formula (2) can be made equal.
  • the distance LXbs is shorter than the distance LXts and the distance LXbe is shorter than the distance LXte, similarly to the acceleration sensor 1 according to the first embodiment.
  • the distance LZb is equal to the distance LZt, but the length LYb is smaller than the length LYt. That is, the area of the lower electrode 11 is smaller than the area of the upper electrode 21.
  • the gap length GAPb is smaller than the gap length GAPt at the stationary position of the movable electrode 31 when the gravitational acceleration GR is applied.
  • the first derivative Ct ′ of the capacitance Ct is expressed as 1 of the capacitance Cb at the stationary position when the gravitational acceleration GR is applied.
  • the second derivative Cb ′′ of the capacitance Cb can be made equal to the second derivative Ct ′, and the second derivative Ct ′′ of the capacitance Ct can be made equal, and the output ⁇ C excellent in linearity can be obtained. Can be output. Therefore, the second embodiment can provide an acceleration sensor having the same effects as the first embodiment, high sensitivity, low power consumption, and high output linearity with respect to applied acceleration. .
  • the difference between the distance LXbe and the distance LXbs and the difference between the distance LXte and the distance LXts are both 3610 ⁇ m.
  • the distance LXbs is shorter than the distance LXts and the distance LXbe is shorter than the distance LXte, and the difference between the distance LXbe and the distance LXbs does not need to be equal to the difference between the distance LXte and the distance LXts.
  • FIGS. 25 and 26 are plan views of an acceleration sensor according to a modification of the second embodiment.
  • the difference between the distance LXbe and the distance LXbs (LXbe ⁇ LXbs) is smaller than the difference between the distance LXte and the distance LXts (LXte ⁇ LXts). .
  • the same effect as in the second embodiment is obtained. Is obtained.
  • the left side of the above formula (6) is not equal to 1, the same effect as in the first embodiment can be obtained.
  • the movable electrode 31 when viewed from the z-axis direction, the movable electrode 31 includes a movable right electrode 31R and a movable left electrode 31L disposed on both sides of the rotation axis AX1.
  • FIG. 31 is a cross-sectional view of the acceleration sensor according to the third embodiment.
  • FIG. 27 is a cross-sectional view taken along the line AA in FIGS. 29 and 30, and FIGS. 28 and 31 are cross-sectional views taken along the line BB in FIGS. 29 and 30.
  • 27 and 28 show a state where the gravitational acceleration is not applied in the z-axis direction
  • FIG. 31 shows a state where the gravitational acceleration GR is applied in the ⁇ z-axis direction. That is, FIG. 31 shows a state in which the movable electrode 31 is rotationally displaced about the rotational axis AX1 due to the gravitational acceleration GR.
  • the acceleration sensor 1d of the third embodiment includes a base layer BL, a membrane layer ML, and a cap layer CL.
  • the base layer BL includes a base substrate 10 as a base, gap adjusting films 12a and 12b, and a space 13.
  • the base substrate 10 is a region of the upper surface as the main surface of the base substrate 10 and is a region AR1 as a central region on the center side of the base substrate 10 and a region of the upper surface of the base substrate 10 and is higher than the region AR1. And an area AR2 as a peripheral area on the peripheral side of the base substrate 10.
  • two directions that intersect with each other, preferably perpendicularly, are an x-axis direction and a y-axis direction, and a direction perpendicular to the main surface of the base substrate 10 is a z-axis direction.
  • a gap adjusting film 12a is formed on the upper surface of the base substrate 10, that is, on the base substrate 10.
  • a gap adjustment film 12b is formed on the upper surface of the base substrate 10, that is, on the base substrate 10, in the same layer as the gap adjustment film 12a.
  • the gap adjusting film 12b is not formed on the upper surface of the base substrate 10, that is, on the base substrate 10.
  • the lower electrode 11 is not formed in the region AR1 other than the region where the gap adjusting film 12b is formed. Accordingly, a space 13 is formed on the base substrate 10 in the region AR1. That is, the gap adjusting film 12 b is for forming the space 13 on the base substrate 10. The space 13 is filled with a gas having a pressure sufficiently lower than the atmospheric pressure.
  • the cap layer CL includes a cap substrate 20 as a base, an upper left electrode 21L, an upper right electrode 21R, gap adjusting films 22a and 22b, a space 23, Have
  • the area AR ⁇ b> 1 is a lower surface area as a main surface of the cap substrate 20, and is also an area as a central region on the center side of the cap substrate 20.
  • the region AR2 is a region on the lower surface of the cap substrate 20, and is also a region as a peripheral region on the peripheral side of the cap substrate 20 relative to the region AR1.
  • the x-axis direction and the y-axis direction are also two directions that intersect each other, preferably orthogonal, within the lower surface as the main surface of the cap substrate 20, and the z-axis direction is perpendicular to the main surface of the cap substrate 20. It is also a direction.
  • a gap adjusting film 22a is formed under the lower surface of the cap substrate 20, that is, under the cap substrate 20. Further, even in a part of the region AR1, a gap adjusting film 22b is formed in the same layer as the gap adjusting film 22a under the lower surface of the cap substrate 20, that is, under the cap substrate 20.
  • the gap adjusting film 22b is formed in the region AR1
  • the adjustment film 22b is not formed, and the upper left electrode 21L is formed.
  • the upper left electrode 21L is disposed in the area AR1 on one side (left side in FIG. 27) of the gap adjusting film 22b in the x-axis direction in plan view.
  • the upper left electrode 21L is disposed to face the upper surface of the movable left electrode 31L as a movable part.
  • the upper right electrode 21R is formed.
  • the upper right electrode 21R is disposed on the side opposite to the upper left electrode 21L (right side in FIG. 27) across the gap adjusting film 22b in the area AR1 in plan view.
  • the upper right electrode 21R is disposed so as to face the upper surface of the movable right electrode 31R as a movable portion.
  • the thickness of the gap adjusting films 22a and 22b is larger than the thickness of the upper left electrode 21L and the upper right electrode 21R. Therefore, in the region AR1, a space 23 is formed below the upper left electrode 21L, the upper right electrode 21R, and the cap substrate 20. That is, the gap adjusting films 22a and 22b are for forming the space 23 under the upper left electrode 21L and the upper right electrode 21R.
  • the space 23 is filled with a gas having a pressure sufficiently lower than the atmospheric pressure.
  • the cap substrate 20 is formed of a single crystal silicon substrate and a silicon oxide film (not shown) formed on the surface of the single crystal silicon substrate.
  • the upper left electrode 21L and the upper right electrode 21R are electrically insulated from the single crystal silicon substrate of the cap substrate 20 by this silicon oxide film.
  • Each of the upper left electrode 21L and the upper right electrode 21R is electrically connected to, for example, a detection circuit via an electrical connection line (not shown).
  • the base substrate 10 is also formed of a single crystal silicon substrate.
  • the membrane layer ML includes a movable electrode 31 as a movable portion, torsion springs 32a and 32b, a fixed portion 33, and a frame 34.
  • the movable electrode 31, the torsion springs 32a and 32b, the fixed portion 33, and the frame 34 are all made of a low-resistance single crystal silicon substrate, and the single crystal silicon substrate is etched by DRIE in the thickness direction (z-axis direction), for example. And it forms by forming the hole which penetrates a single crystal silicon substrate.
  • a space 35 is formed between the outer surface of the movable electrode 31 and the inner surface of the frame 34.
  • the fixing portion 33 is sandwiched between the gap adjusting film 12b and the gap adjusting film 22b.
  • the lower end of the fixed portion 33 is mechanically connected to the gap adjusting film 12b, and the upper end of the fixed portion 33 is mechanically connected to the gap adjusting film 22b. Since the gap adjustment film 12 b is mechanically connected to the base substrate 10, the fixing portion 33 is mechanically fixed to the base substrate 10 after all. That is, the fixing portion 33 is fixed on the upper surface as the main surface of the base substrate 10. Further, since the gap adjusting film 22b is mechanically connected to the cap substrate 20, the fixing portion 33 is mechanically fixed to the cap substrate 20 after all.
  • the fixing portion 33 is electrically connected to, for example, a detection circuit via an electrical connection line (not shown).
  • the torsion spring 32a extends in the y-axis direction, an end 36a on one side in the y-axis direction of the torsion spring 32a is connected to the fixed portion 33, and an end on the other side in the y-axis direction of the torsion spring 32a.
  • the part 37 a is connected to the movable electrode 31.
  • the torsion spring 32b extends in the y-axis direction, and one end 36b in the y-axis direction of the torsion spring 32b is connected to the fixed portion 33, and the other side in the y-axis direction of the torsion spring 32b.
  • the end portion 37 b of this is connected to the movable electrode 31.
  • the end portion 37a When the torsion spring 32a is elastically deformed and the end portion 37a is twisted with respect to the end portion 36a, the end portion 37a has a rotational axis AX1 along the y-axis direction with respect to the end portion 36a. It is provided so as to be capable of rotational displacement as the center. Further, the torsion spring 32b is elastically deformed by the torsion spring 32b and the end portion 37b is twisted with respect to the end portion 36b, so that the end portion 37b is in contact with the rotation axis AX1 of the torsion spring 32a with respect to the end portion 36b. It is provided so as to be capable of rotational displacement about the same rotational axis AX1. Therefore, each of the torsion springs 32a and 32b is an elastic deformation portion.
  • the movable electrode 31 includes a movable left electrode 31L, a movable right electrode 31R, and connecting portions 38a and 38b.
  • the movable left electrode 31L is arranged on one side (left side in FIG. 27) of the fixed portion 33 in the x-axis direction in the area AR1 in a plan view.
  • the movable right electrode 31R is disposed on the other side (right side in FIG. 27) of the fixed portion 33 in the x-axis direction in the area AR1 in the plan view. That is, the movable right electrode 31R is disposed on the opposite side of the movable left electrode 31L with the fixed portion 33 interposed therebetween in plan view.
  • the end portion 61L on the rotation axis AX1 side of the movable left electrode 31L and the end portion 61R on the rotation axis AX1 side of the movable right electrode 31R are connected to each other by a connection portion 38a and a connection portion 38b provided away from each other in the y-axis direction. It is connected.
  • a torsion spring 32a that can be rotationally displaced about a rotation axis AX1 extending in the y-axis direction is connected to the connection part 38a, and a connection part 38b is connected to a rotation axis AX1 extending in the y-axis direction.
  • a torsion spring 32b capable of rotational displacement is connected.
  • the end portion 61L on the fixed portion 33 side of the movable left electrode 31L is connected to the fixed portion 33 via the connection portion 38a and the connection portion 38b
  • the end portion 61R on the fixed portion 33 side of the movable right electrode 31R is
  • the connection part 38a and the connection part 38b are connected to the fixing part 33.
  • the movable left electrode 31L and the movable right electrode 31R connected by the connection portion 38a and the connection portion 38b can be integrally rotated and displaced with respect to the fixed portion 33 around the rotation axis AX1 of the torsion springs 32a and 32b. It is.
  • Both the movable left electrode 31L and the movable right electrode 31R have, for example, a rectangular shape when viewed from the z-axis direction. That is, the movable left electrode 31L has, for example, the side surface SM1L and the side surface SM2L perpendicular to the x-axis direction, and the side surface SM3L and the side surface SM4L perpendicular to the y-axis direction, and the movable right electrode 31R has, for example, the x-axis direction Side surface SM1R and side surface SM2R, and side surface SM3R and side surface SM4R perpendicular to the y-axis direction.
  • the side surface SM1L is an end portion 61L on the rotation axis AX1 side of the movable left electrode 31L
  • the side surface SM2L is an end portion 62L on the opposite side to the rotation axis AX1 side of the movable left electrode 31L
  • the side surface SM3L is a negative end 63L in the y-axis direction of the movable left electrode 31L
  • the side surface SM4L is a positive end 64L in the y-axis direction of the movable left electrode 31L.
  • the side surface SM1R is an end portion 61R on the rotation axis AX1 side of the movable right electrode 31R
  • the side surface SM2R is an end portion 62R on the opposite side to the rotation axis AX1 side of the movable right electrode 31R
  • the side surface SM3R is a negative end 63R in the y-axis direction of the movable right electrode 31R
  • the side SM4R is a positive end 64R in the y-axis direction of the movable right electrode 31R.
  • the plane dimension of the movable left electrode 31L when viewed from the z-axis direction is 4.0 mm (x-axis direction) ⁇ 3.9 mm (y-axis direction), and the movable right electrode when viewed from the z-axis direction.
  • the planar dimension of 31R can be 4.0 mm (x-axis direction) ⁇ 3.9 mm (y-axis direction).
  • the movable left electrode 31L and the movable right electrode 31R are rotationally displaced like a seesaw around the rotation axis AX1. can do.
  • the distance in the x-axis direction between the end 61L (side surface SM1L) on the rotation axis AX1 side of the movable left electrode 31L and the rotation axis AX1 is the distance LXLms, and the opposite side of the rotation axis AX1 side of the movable left electrode 31L
  • the distance in the x-axis direction between the end portion 62L (side surface SM2L) and the rotation axis AX1 is defined as a distance LXLme.
  • the distance in the x-axis direction between the end 61R (side surface SM1R) on the rotation axis AX1 side of the movable right electrode 31R and the rotation axis AX1 is a distance LXRms
  • the rotation axis AX1 side of the movable right electrode 31R is A distance in the x-axis direction between the opposite end 62R (side surface SM2R) and the rotation axis AX1 is defined as a distance LXRme.
  • the distance LXLms can be set to 200 ⁇ m, and the distance LXLme can be set to 4200 ⁇ m. Further, the distance LXRms can be set to 200 ⁇ m, and the distance LXRme can be set to 4200 ⁇ m.
  • the movable left electrode 31L and the movable right electrode 31R have the same planar shape when viewed from the z-axis direction.
  • the thickness of the movable left electrode 31L in the z-axis direction is smaller than the thickness of the movable right electrode 31R in the z-axis direction.
  • mass MSL of movable left electrode 31L can be made smaller than mass MSR of movable right electrode 31R.
  • the thickness of the movable left electrode 31L in the z-axis direction can be easily made smaller than the thickness of the movable right electrode 31R in the z-axis direction by forming the membrane layer ML with, for example, an SOI (Silicon On Insulator) substrate. Can do.
  • SOI Silicon On Insulator
  • the thickness of the movable left electrode 31L in the z-axis direction is set to, for example, the thickness of the movable right electrode 31R in the z-axis direction.
  • the thickness of the movable left electrode 31L in the z-axis direction can be set to 125 ⁇ m, for example, and the thickness of the movable right electrode 31R in the z-axis direction can be set to 250 ⁇ m, for example.
  • the thickness of the movable left electrode 31L in the z-axis direction is, for example, 250 ⁇ m, and the thickness of the movable right electrode 31R in the z-axis direction is, for example, 125 ⁇ m. The same effect can be obtained.
  • the distance in the x-axis direction between the center of gravity GCL of the movable left electrode 31L and the rotation axis AX1 is defined as a distance LXL. Further, the distance in the x-axis direction between the center of gravity GCR of the movable right electrode 31R and the rotation axis AX1 is defined as a distance LXR.
  • the direction of gravity is the direction from the upper left electrode 21L toward the movable left electrode 31L ( ⁇ z-axis direction)
  • the product of the mass MSL and the distance LXL is the mass MSR and the distance LXR.
  • the acceleration sensor 1d according to the third embodiment is also applied in the ⁇ z-axis direction with the gravitational acceleration GR (see FIG. 31) being applied in the ⁇ z-axis direction.
  • the minute vibration acceleration can be detected with high accuracy.
  • the gravitational acceleration GR (see FIG. 31) is applied to the masses of the movable left electrode 31L and the movable right electrode 31R and the spring constants of the torsion springs 32a and 32b.
  • the end 62R of the movable right electrode 31R opposite to the rotation axis AX1 side is adjusted so as to move 2 ⁇ m to the negative side in the z-axis direction compared to the state where the gravitational acceleration GR is not applied.
  • the gap length GAPLt is the thickness in the z-axis direction of the space 23 existing between the movable left electrode 31L and the upper left electrode 21L, and the distance in the z-axis direction between the movable left electrode 31L and the upper left electrode 21L. It is. Since the movable left electrode 31L is tilted by rotational displacement about the rotation axis AX1, the thickness of the space 23 in the z-axis direction, that is, the distance in the z-axis direction between the movable left electrode 31L and the upper left electrode 21L is , Depending on each position in the x-axis direction.
  • the thickness in the z-axis direction of the space 23 at the center position of the upper left electrode 21L in the x-axis direction is defined as the gap length GAPLt. That is, the distance in the z-axis direction between the movable left electrode 31L and the upper left electrode 21L at the center position of the upper left electrode 21L in the x-axis direction is defined as the gap length GAPLt.
  • the gap length GAPRt is the thickness in the z-axis direction of the space 23 existing between the movable right electrode 31R and the upper right electrode 21R, and the distance in the z-axis direction between the movable right electrode 31R and the upper right electrode 21R. It is. Since the movable right electrode 31R is tilted by rotational displacement about the rotation axis AX1, the thickness of the space 23 in the z-axis direction, that is, the distance in the z-axis direction between the movable right electrode 31R and the upper right electrode 21R is , Depending on each position in the x-axis direction.
  • the thickness in the z-axis direction of the space 23 at the center position of the upper right electrode 21R in the x-axis direction is defined as the gap length GAPRt. That is, the distance in the z-axis direction between the movable right electrode 31R and the upper right electrode 21R at the center position of the upper right electrode 21R in the x-axis direction is defined as the gap length GAPRt.
  • the distance LZt, which is the distance in the z-axis direction, between the upper end of the end portion 61R on the rotation axis AX1 side of the movable right electrode 31R and the lower surface of the upper right electrode 21R is adjusted.
  • the distance LZt can be set to 5 ⁇ m
  • the gap length GAPLt can be set to 4 ⁇ m
  • the gap length GAPRt can be set to 6 ⁇ m when the gravitational acceleration GR is applied.
  • the upper left electrode 21L and the upper right electrode 21R are arranged in the same layer as shown in FIG. 27, FIG. 28, and FIG. Further, as described above, the upper left electrode 21L is disposed to face the upper surface of the movable left electrode 31L, and the upper right electrode 21R is disposed to face the upper surface of the movable right electrode 31R.
  • the distance in the x-axis direction between the end 51L (side surface SC1L) on the rotation axis AX1 side of the upper left electrode 21L and the rotation axis AX1 is defined as a distance LXLts.
  • the distance in the x-axis direction between the end 52L (side surface SC2L) opposite to the rotation axis AX1 side of the upper left electrode 21L and the rotation axis AX1 is defined as a distance LXLte.
  • the distance LXLts can be set to 200 ⁇ m
  • the distance LXLte can be set to 3810 ⁇ m. That is, the difference between the distance LXLte and the distance LXLts can be set to 3610 ⁇ m.
  • the side surface SC3L is the negative end 53L in the y-axis direction of the upper left electrode 21L
  • the side surface SC4L is the positive end 54L in the y-axis direction of the upper left electrode 21L.
  • the distance in the x-axis direction between the end 51R (side surface SC1R) on the rotation axis AX1 side of the upper right electrode 21R and the rotation axis AX1 is defined as a distance LXRts. Further, the distance in the x-axis direction between the end 52R (side surface SC2R) opposite to the rotation axis AX1 side of the upper right electrode 21R and the rotation axis AX1 is defined as a distance LXRte. At this time, the distance LXRts can be set to 590 ⁇ m, and the distance LXRte can be set to 4200 ⁇ m.
  • the side surface SC3R is a negative end 53R in the y-axis direction of the upper right electrode 21R, and the side surface SC4R is a positive end 54R in the y-axis direction of the upper right electrode 21R.
  • the length LYLt of the upper left electrode 21L in the y-axis direction is smaller than the length LYRt of the upper right electrode 21R in the y-axis direction. That is, the area of the upper left electrode 21L is smaller than the area of the upper right electrode 21R.
  • the length LYRt and the length LYLt are expressed by the following equation (7).
  • the movable electrode 31 including the movable left electrode 31L and the movable right electrode 31R is applied separately from the gravity acceleration GR when the gravity acceleration GR is applied in the ⁇ z-axis direction. This is to detect with high accuracy an acceleration composed of minute vibration components.
  • the mass of the movable left electrode 31L and the mass of the movable right electrode 31R are such that the difference between the force applied to the movable left electrode 31L by acceleration and the force applied to the movable right electrode 31R by acceleration is sufficiently large.
  • the mass difference has a sufficiently large value.
  • the force applied to the movable electrode 31 by the acceleration is the movable right electrode 31R and the movable left electrode as torques about the rotation axis AX1.
  • the movable right electrode 31R and the movable left electrode 31L are rotationally displaced integrally around the rotation axis AX1.
  • a non-parallel plate type capacitor is formed by sandwiching the space 23 by the movable left electrode 31L and the upper left electrode 21L, and a non-parallel plate type capacitor by sandwiching the space 23 by the movable right electrode 31R and the upper right electrode 21R. Is formed.
  • the distance LXLts is shorter than the distance LXRts and the distance LXLte is shorter than the distance LXRte.
  • the distance LXbs is shorter than the distance LXts. This is short and corresponds to the distance LXbe being shorter than the distance LXte. Therefore, the third embodiment also provides an acceleration sensor having effects equivalent to the effects of the first embodiment, high sensitivity, low power consumption, and high output linearity with respect to applied acceleration. Can do.
  • the base layer BL does not have an electrode corresponding to the lower electrode 11 (see FIG. 2) according to the first embodiment. Therefore, the number of acceleration sensor manufacturing processes can be reduced, and the manufacturing cost of the acceleration sensor can be reduced.
  • the thickness MSL of the movable left electrode 31L is movable by making the thickness of the movable left electrode 31L in the z-axis direction thinner than the thickness of the movable right electrode 31R in the z-axis direction.
  • the mass was made smaller than the mass MSR of the right electrode 31R.
  • the force applied to the movable electrode 31 due to acceleration becomes the movable electrode as a torque about the rotation axis AX1. 31 may be applied.
  • FIG. 32 is a plan view of an acceleration sensor according to a modification of the third embodiment.
  • the product of the mass MSL and the distance LXL is made smaller than the product of the mass MSR and the distance LXR by making the distance LXL smaller than the distance LXL. .
  • the same effect as the acceleration sensor 1d of Embodiment 3 is acquired.
  • the difference between the distance LXLte and the distance LXLts (LXLte ⁇ LXLts) and the difference between the distance LXRte and the distance LXRts (LXRte ⁇ LXRts) are both set to 3610 ⁇ m.
  • the distance LXLts is shorter than the distance LXLRts and the distance LXLte is shorter than the distance LXLRte, and the difference between the distance LXLte and the distance LXLts need not be equal to the difference between the distance LXRte and the distance LXLRts.
  • Gap length GAPLt and GAPRt in a stationary state to which gravitational acceleration GR is applied distances LXLts, LXLte, LXRts and LXRte, and lengths LYLt and LYRt are set to satisfy Expressions (7) to (10). By doing so, the same effect as in the third embodiment can be obtained.
  • the height of the upper surface of the lower electrode 11 in the portion on the rotation axis AX1 side is higher than the height of the upper surface of the lower electrode 11 in the portion opposite to the rotation axis AX1 side.
  • the height of the lower surface of the upper electrode 21 at the side portion is higher than the height of the lower surface of the upper electrode 21 at the portion opposite to the rotation axis AX1 side.
  • FIG. 33 is a cross-sectional view of the acceleration sensor according to the fourth embodiment. 33 is a cross-sectional view corresponding to the cross-sectional view of FIG. 7 in the first embodiment.
  • the acceleration sensor 1f according to the fourth embodiment includes a base layer BL, a membrane layer ML, and a cap layer CL. Further, the acceleration sensor 1f according to the fourth embodiment has the same structure as that of the acceleration sensor 201 of the comparative example 2 except for the shape of the spaces 13 and 23 and the length of the movable electrode 31 in the y-axis direction. .
  • the acceleration sensor 1f also includes one of the base substrate 10, the fixing portion 33 (see FIG. 6) fixed on the upper surface as the main surface of the base substrate 10, and the fixing portion 33 in the x-axis direction in plan view.
  • the movable electrode 31 is disposed on the side, the lower electrode 11 is disposed to face the lower surface of the movable electrode 31, and the upper electrode 21 is disposed to face the upper surface of the movable electrode 31.
  • An end 61 on the fixed portion 33 side of the movable electrode 31 is connected to the fixed portion 33.
  • the movable electrode 31 can be rotationally displaced about the rotation axis AX1 of the torsion springs 32a and 32b (see FIG. 6).
  • the length of the movable electrode 31 in the y-axis direction is set to 3.1 mm, and the capacitance value is set to be substantially the same as that of the acceleration sensor 1 according to the first embodiment.
  • the lower electrode 11 includes a region 11a and a region 11b.
  • the region 11a is a region on the rotation axis AX1 side of the lower electrode 11, that is, a region on the fixed portion 33 side.
  • the region 11b is a region of the lower electrode 11 opposite to the rotation axis AX1 side, that is, a region opposite to the fixed portion 33 side, and is located on the opposite side of the fixed portion 33 across the region 11a in plan view. To do.
  • the upper electrode 21 includes a region 21a and a region 21b.
  • the region 21a is a region on the rotation axis AX1 side of the upper electrode 21, that is, a region on the fixed portion 33 side.
  • the region 21b is a region of the upper electrode 21 opposite to the rotation axis AX1 side, that is, a region opposite to the fixed portion 33 side, and is located on the opposite side of the fixed portion 33 across the region 21a in plan view. To do.
  • the height of the upper surface of the region 11a is higher than the height of the upper surface of the region 11b
  • the height of the lower surface of the region 21a is higher than the height of the lower surface of the region 21b.
  • the distance in the z-axis direction between the lower end of the end portion 61 of the movable electrode 31 on the rotation axis AX1 side (left side in FIG. 33) and the upper surface of the region 11a is defined as a distance LZb1. Further, the distance in the z-axis direction between the upper end of the end 61 on the rotation axis AX1 side (left side in FIG. 33) of the movable electrode 31 and the upper surface of the region 11b is defined as a distance LZb2. At this time, the distance LZb1 is shorter than the distance LZb2.
  • the distance in the z-axis direction between the upper end of the end 61 on the rotation axis AX1 side (left side in FIG. 33) of the movable electrode 31 and the lower surface of the region 21a is defined as a distance LZt1.
  • the distance in the z-axis direction between the upper end of the end 61 on the rotation axis AX1 side (left side in FIG. 33) of the movable electrode 31 and the upper surface of the region 21b is defined as a distance LZt2.
  • the distance LZt1 is longer than the distance LZt2.
  • a step having a height of 1.2 ⁇ m is formed between the region 11a and the region 11b, and a step having a height of 1.2 ⁇ m is formed between the region 21a and the region 21b.
  • the distance LZb1 may be defined as the distance in the z-axis direction between the rotation axis AX1 and the upper surface of the region 11a
  • the distance LZb2 may be defined as the distance in the z-axis direction between the rotation axis AX1 and the upper surface of the region 11b.
  • the distance LZt1 may be defined as the distance in the z-axis direction between the rotation axis AX1 and the lower surface of the region 21a
  • the distance LZt2 may be defined as the distance in the z-axis direction between the rotation axis AX1 and the lower surface of the region 21b.
  • the fourth embodiment also has a difference between the first derivative Cb ′ and the first derivative Ct ′ and a difference between the second derivative Cb ′′ and the second derivative Ct ′′ as compared with the comparative example 2. Can be reduced.
  • the distance in the z-axis direction between the movable electrode 31 and the region 11a at the center position of the region 11a in the x-axis direction is defined as a gap length GAPb1, and the movable electrode at the center position of the region 11b in the x-axis direction.
  • a distance in the z-axis direction between the region 31 and the region 11b is defined as a gap length GAPb2.
  • the distance in the z-axis direction between the movable electrode 31 and the region 21a at the center position of the region 21a in the x-axis direction is defined as a gap length GAPt1
  • the movable electrode at the center position of the region 21b in the x-axis direction is defined.
  • a distance in the z-axis direction between the region 31 and the region 21b is defined as a gap length GAPt2.
  • FIG. 34 is a graph showing the electrostatic capacitance between the movable electrode and the lower electrode and the gap length dependency of the electrostatic capacitance between the movable electrode and the upper electrode in the fourth embodiment.
  • the horizontal axis of FIG. 34 shows the change amount ⁇ GAPb of the gap length GAPb and the change amount ⁇ GAPt of the gap length GAPt, similarly to the horizontal axis of FIG.
  • the gap length GAPb is defined as the larger one of the gap lengths GAPb1 and GAPb2
  • the gap length GAPt is defined as the larger one of the gap lengths GAPt1 and GAPt2.
  • the capacitance Cb is equal to the capacitance Ct in a wide range (less than ⁇ 1 ⁇ m) of the gap length GAPb variation ⁇ GAPb and the gap length GAPt variation ⁇ GAPt. Therefore, the acceleration sensor 1f according to the fourth embodiment has the same effect as the acceleration sensor 1 according to the first embodiment.
  • FIG. 35 is a graph showing nonlinearity of output ⁇ C when acceleration is applied to the acceleration sensor of the fourth embodiment.
  • the horizontal axis of FIG. 35 shows the applied acceleration normalized by the gravitational acceleration GR.
  • the vertical axis in FIG. 35 shows the nonlinearity of the output ⁇ C when the gravitational acceleration is GR and the output ⁇ C in the range of ⁇ 0.95 GR centered on the stationary position is full scale (FS).
  • the nonlinearity of the output ⁇ C in the fourth embodiment shown in FIG. 35 is smaller than the nonlinearity of the output ⁇ C in any of Comparative Example 1 and Comparative Example 2 shown in FIG.
  • the non-linearity at full scale (FS) ⁇ 0.95 GR is 2.4% FS in the fourth embodiment, and in the fourth embodiment, the first comparative example shown in FIG. Since the non-linearity is smaller than that of any of Comparative Example 2 and Comparative Example 2, the effect of Embodiment 4 is obvious.
  • the distance LZb1 is preferably longer than the distance LZt1.
  • each of the distance LZb1 and the distance LZb2 becomes longer than both the distance LZt1 and the distance LZt2, so that the electrostatic capacitance Cb and the electrostatic capacitance Ct become equal in a stationary state to which the gravitational acceleration GR is applied. It can be easily adjusted.
  • 36 and 37 are plan views of the acceleration sensor according to the fourth embodiment.
  • the length LYb of the lower electrode 11 in the y-axis direction may be shorter than the length LYt of the upper electrode 21 in the y-axis direction. That is, the area of the lower electrode 11 may be smaller than the area of the upper electrode 21.
  • the capacitance Cb is equal to the capacitance Ct, the first derivative Cb ′ of the capacitance Cb, and the first derivative of the capacitance Ct. It can be easily adjusted so that the function Ct ′ is equal and the second derivative Cb ′′ of the capacitance Cb is equal to the second derivative Ct ′′ of the capacitance Ct.
  • the distance LXbs can be made equal to the distance LXts, and the distance LXbe can be made equal to the distance LXte.
  • the length of the movable electrode 31 in the x-axis direction can be shortened, and the acceleration sensor can be miniaturized.
  • the distance LXbs being equal to the distance LXts means that the difference between the distance LXbs and the distance LXts from the average value of the distance LXbs and the distance LXts is 20% or less, respectively.
  • the distance LXbe being equal to the distance LXte means that the difference between the distance LXbe and the distance LXte from the average value of the distance LXbe and the distance LXte is 20% or less, respectively.
  • the height of the upper surface of the lower electrode 11 at the portion on the rotation axis AX1 side is higher than the height of the upper surface of the lower electrode 11 at the portion opposite to the rotation axis AX1 side.
  • the height of the lower surface of the upper electrode 21 in the portion on the axis AX1 side is higher than the height of the lower surface of the upper electrode 21 in the portion on the opposite side to the rotation axis AX1 side.
  • the first derivative Cb ′ of the capacitance Cb is made equal to the first derivative Ct ′ of the capacitance Ct
  • the second derivative Cb ′′ of the capacitance Cb can be made equal to the second derivative Ct ′′ of the capacitance Ct, and an output ⁇ C excellent in linearity can be output. Therefore, an acceleration sensor with high sensitivity, low power consumption, and high output linearity with respect to applied acceleration can be provided.
  • acceleration can be detected using a servo control method.
  • the acceleration sensor which detects an acceleration using the method by servo control is demonstrated as a 1st modification of Embodiment 4.
  • the lower electrode 11 is 2.9 ⁇ N.
  • the upper electrode 21 is 2.9 ⁇ N.
  • the first derivative Cb ′ of the capacitance Cb is expressed as the capacitance at the stationary position of the movable electrode 31 when the gravitational acceleration GR is applied.
  • the first derivative Ct ′ of Ct can be made equal, and the second derivative Cb ′′ of the capacitance Cb can be made equal to the second derivative Ct ′′ of the capacitance Ct.
  • Embodiment 4 by forming an insulating film having a relative dielectric constant higher than that of air on the region 11a, the effective distance when the distance LZb1 is converted into a vacuum dielectric constant is The distance LZb2 may be shorter than the effective distance when converted by the vacuum dielectric constant. Further, by forming an insulating film having a relative dielectric constant higher than that of air at least under the region 21b, the effective distance when the distance LZt1 is converted into the vacuum dielectric constant is the distance LZt2 is reduced to the vacuum. It may be shorter than the effective distance when converted by the dielectric constant.
  • FIG. 38 is a cross-sectional view of an acceleration sensor according to a second modification of the fourth embodiment. 38 is a cross-sectional view corresponding to the cross-sectional view of FIG.
  • the height of the upper surface of the region 11a is equal to the height of the upper surface of the region 11b, but the lower insulating film 15 is formed on the region 11a. Therefore, the height of the upper surface of the lower insulating film 15 formed on the region 11a is higher than the height of the upper surface of the region 11b.
  • the height of the lower surface of the region 21a is equal to the height of the lower surface of the region 21b, but the upper insulating film 25 is formed under the region 21b. Therefore, the height of the lower surface of the region 21a is higher than the height of the lower surface of the upper insulating film 25 formed under the region 21b.
  • the distance in the z-axis direction between the lower end of the end 61 of the movable electrode 31 on the rotation axis AX1 side and the upper surface of the region 11a is the distance LZb1, and the rotation axis AX1 of the movable electrode 31 is set.
  • a distance in the z-axis direction between the lower end of the side end portion 61 and the upper surface of the region 11b is defined as a distance LZb2.
  • the distance in the z-axis direction between the upper end of the end portion 61 on the rotation axis AX1 side of the movable electrode 31 and the lower surface of the region 21a is the distance LZt1, and the end portion 61 on the rotation axis AX1 side of the movable electrode 31 is used.
  • the distance in the z-axis direction between the upper end of each and the lower surface of the region 21b is defined as a distance LZt2.
  • Each of the lower insulating film 15 and the upper insulating film 25 is an insulating film having a relative dielectric constant higher than that of air.
  • the height of the upper surface of the region 11a is equal to the height of the upper surface of the region 11b.
  • the height of the upper surface of the region 11a and the height of the upper surface of the region 11b are the same as the height of the upper surface of the region 11b. It means that the difference from the average value with the height of the upper surface of each is 20% or less.
  • the height of the lower surface of the region 21a is equal to the height of the lower surface of the region 21b.
  • the height of the lower surface of the region 21a and the height of the lower surface of the region 21b are the same as the height of the lower surface of the region 21b. It means that the difference from the average value with the height of the lower surface of each is 20% or less.
  • a lower insulating film 15 made of silicon oxide having a thickness of 1.6 ⁇ m is formed on the region 11a, and an upper insulating film 25 made of silicon oxide having a thickness of 1.6 ⁇ m is formed below the region 21b.
  • FIG. 39 is a graph illustrating the capacitance between the movable electrode and the lower electrode and the gap length dependency of the capacitance between the movable electrode and the upper electrode in the second modification of the fourth embodiment. It is.
  • the horizontal axis of FIG. 39 indicates the change amount ⁇ GAPb of the gap length GAPb and the change amount ⁇ GAPt of the gap length GAPt, similarly to the horizontal axis of FIG. Note that the definitions of the gap lengths GAPb and GAPt can be the same as in the first embodiment.
  • the acceleration sensor 1g according to the second modification of the fourth embodiment has the same effect as the acceleration sensor 1f according to the fourth embodiment.
  • FIG. 40 is a graph showing nonlinearity of the output ⁇ C when acceleration is applied to the acceleration sensor of the second modified example of the fourth embodiment.
  • the horizontal axis in FIG. 40 indicates the applied acceleration normalized by the gravitational acceleration GR.
  • the vertical axis in FIG. 40 indicates that the gravitational acceleration is the gravitational acceleration GR, and the output ⁇ C in the range of ⁇ 0.95 GR with the stationary position as the center is the full scale (FS) (hereinafter, “full scale ( FS) ⁇ 0.95GR ”))).
  • the nonlinearity of the output ⁇ C in the second modified example shown in FIG. 40 is any of the comparative example 1 and the comparative example 2 shown in FIG. Is smaller than the non-linearity in the output ⁇ C. For this reason, the effect of the second modification is also apparent, as is the case with the effect of the fourth embodiment.
  • the lower insulating film 15 may be formed on the region 11a and the region 11b, and in this case, the portion of the lower insulating film 15 formed on the region 11a. Is thicker than the thickness of the portion of the lower insulating film 15 formed on the region 11b.
  • the upper insulating film 25 may be formed under the region 21a and the region 21b. In this case, the thickness of the portion of the upper insulating film 25 formed under the region 21a is formed under the region 21b. What is necessary is just to be thinner than the thickness of the upper insulating film 25 of the part.
  • the effective distance when the distance LZb1 is converted by the vacuum dielectric constant becomes shorter than the effective distance when the distance LZb2 is converted by the vacuum dielectric constant.
  • the effective distance when the distance LZt1 is converted by the vacuum dielectric constant is larger than the effective distance when the distance LZt2 is converted by the vacuum dielectric constant. become longer.
  • an insulating film having a relative dielectric constant higher than that of air is formed between the electrode and the movable electrode, so that the movable film is movable as compared with the case where the insulating film is not formed.
  • the effective distance when the distance between the electrodes is converted into the vacuum dielectric constant is shortened.
  • the height of the lower surface of the upper left electrode 21L of the portion on the rotation axis AX1 side is the upper portion of the portion opposite to the rotation axis AX1 side. It may be lower than the height of the lower surface of the left electrode 21L. Further, the height of the lower surface of the upper right electrode 21R in the portion on the rotation axis AX1 side may be higher than the height of the lower surface of the upper right electrode 21R in the portion on the opposite side to the rotation axis AX1 side.
  • FIGS. 41 and 42 Such an example is shown in FIGS. 41 and 42 as a third modification of the fourth embodiment.
  • FIG. 41 is a cross-sectional view of an acceleration sensor according to a third modification of the fourth embodiment.
  • FIG. 42 is a plan view of an acceleration sensor according to a third modification of the fourth embodiment.
  • FIG. 41 is a cross-sectional view taken along the line BB in FIG.
  • FIG. 41 shows a state where the gravitational acceleration GR is applied in the ⁇ z axis direction. That is, FIG. 41 shows a state in which the movable electrode 31 is rotationally displaced about the rotational axis AX1 due to the gravitational acceleration GR.
  • the upper left electrode 21L includes a region 21La and a region 21Lb.
  • the region 21La is a region on the rotation axis AX1 side of the upper left electrode 21L, that is, a region on the fixed portion 33 (see FIG. 27) side.
  • the region 21Lb is a region on the opposite side to the rotation axis AX1 side of the upper left electrode 21L, that is, a region on the opposite side to the fixed portion 33 side, and on the opposite side to the fixed portion 33 across the region 21La in plan view. To position.
  • the upper right electrode 21R includes a region 21Ra and a region 21Rb.
  • the region 21Ra is a region on the rotation axis AX1 side of the upper right electrode 21R, that is, a region on the fixed portion 33 side.
  • the region 21Rb is a region on the opposite side to the rotation axis AX1 side of the upper right electrode 21R, that is, a region on the opposite side to the fixed portion 33 side, and on the opposite side to the fixed portion 33 across the region 21Ra in plan view. To position.
  • the height of the lower surface of the region 21La is lower than the height of the lower surface of the region 21Lb, and the height of the lower surface of the region 21Ra is higher than the height of the lower surface of the region 21Rb.
  • the distance in the z-axis direction between the upper end of the end 61L (see FIG. 30) of the movable left electrode 31L on the rotation axis AX1 side and the lower surface of the region 21La is defined as a distance LZLt1. Further, the distance in the z-axis direction between the upper end of the end portion 61L (see FIG. 30) of the movable left electrode 31L on the rotation axis AX1 side and the lower surface of the region 21Lb is defined as a distance LZLt2. At this time, the distance LZLt1 is shorter than the distance LZLt2.
  • the distance in the z-axis direction between the upper end of the end 61R (see FIG. 30) of the movable right electrode 31R on the rotation axis AX1 side and the lower surface of the region 21Ra is defined as a distance LZRt1.
  • the distance in the z-axis direction between the upper end of the end portion 61R (see FIG. 30) of the movable right electrode 31R on the rotation axis AX1 side and the lower surface of the region 21Rb is defined as a distance LZRt2.
  • the distance LZRt1 is longer than the distance LZRt2.
  • the distance LZLt1 may be defined as the distance in the z-axis direction between the rotation axis AX1 and the lower surface of the region 21La, and the distance LZLt2 may be defined as the distance in the z-axis direction between the rotation axis AX1 and the lower surface of the region 21Lb.
  • the distance LZRt1 may be defined as the distance in the z-axis direction between the rotation axis AX1 and the lower surface of the region 21Ra
  • the distance LZRt2 may be defined as the distance in the z-axis direction between the rotation axis AX1 and the lower surface of the region 21Rb.
  • the contribution of the region 21Lb to the first derivative Cb ′ of the capacitance Cb and the second derivative Cb ′′ of the capacitance Cb is smaller than that of the region 21La.
  • the contribution of the region 21Rb to the first derivative Ct ′ of the capacitance Ct and the second derivative Ct ′′ of the capacitance Ct increases.
  • the first derivative Cb ′ of the capacitance Cb is equal to the first derivative Ct ′ of the capacitance Ct
  • the second derivative Cb ′′ of the capacitance Cb can be made equal to the second derivative Ct ′′ of the capacitance Ct, and ⁇ C excellent in linearity can be output. Therefore, it is possible to provide an acceleration sensor with high sensitivity, low power consumption, and high output linearity with respect to applied acceleration.
  • the height of the lower surface of the region 21La is made equal to the height of the lower surface of the region 21Lb, and at least below the region 21La.
  • An insulating film having a dielectric constant higher than that of air may be formed.
  • the lower surface of the region 21Ra may have the same height as the lower surface of the region 21Rb, and an insulating film having a relative dielectric constant higher than that of air may be formed below the region 21Rb.
  • the present invention is effective when applied to an acceleration sensor.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Pressure Sensors (AREA)

Abstract

 加速度センサ(1)は、固定部(33)と、固定部(33)に接続された可動部(31)と、可動部(31)の下面と対向配置された下部電極(11)と、可動部(31)の上面と対向配置された上部電極(21)と、を有する。下部電極(11)の端部(41)と固定部(33)との間のx軸方向の距離は、上部電極(21)の端部(51)と固定部(33)との間のx軸方向の距離よりも短い。また、下部電極(11)の端部(42)と固定部(33)との間のx軸方向の距離は、上部電極(21)の端部(52)と固定部(33)との間のx軸方向の距離よりも短い。

Description

加速度センサ
 本発明は加速度センサに関し、例えば、微小な振動加速度を検出する加速度センサに関する。
 地下資源探査の分野において、加速度センサを用いた反射法弾性波探査が行われる。反射法弾性波探査とは、物理探査の一種であり、人工的に地震波を発生させ、地表に設置された受振器により地下から跳ね返ってくる反射波を捉え、その結果を解析して地下構造を解明する方法である。
 反射法弾性波探査では、地表に設置された起振源から地中に弾性波を励振し、地層の境界で反射した弾性波を、地表に設置された受振器でセンシングする。さまざまな方向に励振された弾性波は、減衰の大きい地中を伝搬し、複数の地層で反射し、再び減衰の大きい地中を伝搬し、広い領域に拡散して地表に戻ってくる。したがって、反射法弾性波探査に用いられる加速度センサは、鉛直方向、すなわち重力加速度と同じ方向に印加され、かつ、重力加速度より小さい加速度を、検出する必要がある。すなわち、反射法弾性波探査に用いられる加速度センサでは、鉛直方向の加速度の感度を向上させる必要がある。
 このような加速度センサとして、基板と、基板に固定された固定部と、固定部に一方の端部が接続された可動部と、可動部と対向配置された電極と、を有し、可動部と電極との間の静電容量に基づいて、加速度を検出するものがある。
 国際公開第2010/122953号(特許文献1)には、基板と、基板に固定された固定部と、基板と隙間をもって設けられた可動部と、可動部と固定部とを連結する支持梁とを有するMEMS(Micro Electro Mechanical Systems)素子としての加速度センサについての技術が記載されている。特開2001-272415号公報(特許文献2)には、2組の可動電極と固定電極とを備え、両電極間に生じる各静電容量の差から、加速度を検出する差動型の半導体加速度センサ用の検出装置についての技術が記載されている。米国特許第6497149号明細書(特許文献3)には、1対の固定電極と、可動電極と、を有し、質量の動きを検出するために、静電容量の変化を用いる加速度計が記載されている。
国際公開第2010/122953号 特開2001-272415号公報 米国特許第6497149号明細書
 上記した反射法弾性波探査に用いられる加速度センサでは、加速度の感度を向上させるために、可動部の質量を大きくするか、または、可動部が固定部に接続する弾性変形部のバネ定数を小さくすることがある。
 ところが、一方の端部が固定部に接続された可動部は、自重により傾斜する。そして、可動部が自重により傾斜した状態で、鉛直方向に印加された重力加速度よりも小さい加速度を検出する場合には、加速度センサの消費電力が増大するか、または、印加された加速度に対する加速度センサの出力の線形性が低下することを、本発明者らは見出した。
 本発明の目的は、感度が高く、消費電力が低く、印加された加速度に対する出力の線形性が高い加速度センサを提供することにある。
 本発明の前記ならびにその他の目的と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。
 本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、次のとおりである。
 代表的な実施の形態による加速度センサは、基板と、基板の主面上に固定された固定部と、平面視において、第1方向における固定部の第1の側に配置された可動部と、可動部の下面と対向配置された第1電極と、可動部の上面と対向配置された第2電極と、を有する。可動部の固定部側の第1端部は、固定部に接続され、可動部と第1電極との間の第1静電容量、および、可動部と第2電極との間の第2静電容量に基づいて、加速度が検出される。第1電極の固定部側の第2端部と、固定部との間の、第1方向の距離を、第1距離とし、第1電極の固定部側と反対側の第3端部と、固定部との間の、第1方向の距離を、第2距離とする。また、第2電極の固定部側の第4端部と、固定部との間の、第1方向の距離を、第3距離とし、第2電極の固定部側と反対側の第5端部と、固定部との間の、第1方向の距離を、第4距離とする。このようにしたとき、第1距離は、第3距離よりも短く、第2距離は、第4距離よりも短い。
 また、代表的な実施の形態による加速度センサは、基板と、基板の主面上に固定された固定部と、平面視において、第1方向における固定部の第1の側に配置された可動部と、可動部の下面と対向配置された第1電極と、可動部の上面と対向配置された第2電極と、を有する。可動部の固定部側の第1端部は、固定部に接続され、可動部と第1電極との間の第1静電容量、および、可動部と第2電極との間の第2静電容量に基づいて、加速度が検出される。第1電極は、第1領域と、平面視において、第1領域を挟んで固定部と反対側に位置する第2領域と、を含み、第2電極は、第3領域と、平面視において、第3領域を挟んで固定部と反対側に位置する第4領域と、を含む。第1領域の上面の高さは、第2領域の上面の高さよりも高く、第3領域の下面の高さは、第4領域の下面の高さよりも高い。
 また、代表的な実施の形態による加速度センサは、基板と、基板の主面上に固定された固定部と、平面視において、第1方向における固定部の第1の側に配置された第1可動部と、平面視において、固定部を挟んで第1可動部と反対側に配置された第2可動部と、を有する。また、当該加速度センサは、第1可動部の上面と対向配置された第1電極と、第2可動部の上面と対向配置された第2電極と、を有する。第1可動部の固定部側の第1端部は、固定部に接続され、第2可動部の固定部側の第2端部は、固定部に接続され、第1可動部および第2可動部は、固定部に対して、平面視において第1方向と交差する第2方向に沿った軸を中心として、一体的に回転変位可能である。第1可動部と第1電極との間の第1静電容量、および、第2可動部と第2電極との間の第2静電容量に基づいて、加速度が検出される。第1電極の固定部側の第3端部と、軸との間の、第1方向の距離を、第1距離とし、第1電極の固定部側と反対側の第4端部と、軸との間の、第1方向の距離を、第2距離とする。また、第2電極の固定部側の第5端部と、軸との間の、第1方向の距離を、第3距離とし、第2電極の固定部側と反対側の第6端部と、軸との間の、第1方向の距離を、第4距離とする。このようにしたとき、第1距離は、第3距離よりも短く、第2距離は、第4距離よりも短い。
 本願において開示される発明のうち、代表的なものによって得られる効果を簡単に説明すれば以下のとおりである。
 代表的な実施の形態によれば、感度が高く、消費電力が低く、印加された加速度に対する出力の線形性が高い加速度センサを提供することができる。
反射法弾性波探査の概要を示した地表の断面模式図である。 実施の形態1の加速度センサの断面図である。 実施の形態1の加速度センサの断面図である。 実施の形態1の加速度センサの平面図である。 実施の形態1の加速度センサの平面図である。 実施の形態1の加速度センサの平面図である。 実施の形態1の加速度センサの断面図である。 比較例1の加速度センサの断面図である。 比較例1の加速度センサの平面図である。 比較例1の加速度センサの平面図である。 比較例1の加速度センサの平面図である。 比較例1の加速度センサの断面図である。 比較例1における、可動電極と下部電極との間の静電容量、および、可動電極と上部電極との間の静電容量のギャップ長依存性を示すグラフである。 比較例2の加速度センサの断面図である。 比較例2における、可動電極と下部電極との間の静電容量、および、可動電極と上部電極との間の静電容量のギャップ長依存性を示すグラフである。 実施の形態1における、可動電極と下部電極との間の静電容量、および、可動電極と上部電極との間の静電容量のギャップ長依存性を示すグラフである。 実施の形態1、比較例1および比較例2の加速度センサに加速度が印加されたときの出力ΔCの非線形性を示すグラフである。 出力ΔCと、距離LXtsと距離LXbsとの差(LXts-LXbs)との関係を示すグラフである。 実施の形態1の変形例の加速度センサの平面図である。 実施の形態1の変形例の加速度センサの平面図である。 実施の形態2の加速度センサの断面図である。 実施の形態2の加速度センサの断面図である。 実施の形態2の加速度センサの平面図である。 実施の形態2の加速度センサの平面図である。 実施の形態2の変形例の加速度センサの平面図である。 実施の形態2の変形例の加速度センサの平面図である。 実施の形態3の加速度センサの断面図である。 実施の形態3の加速度センサの断面図である。 実施の形態3の加速度センサの平面図である。 実施の形態3の加速度センサの平面図である。 実施の形態3の加速度センサの断面図である。 実施の形態3の変形例の加速度センサの平面図である。 実施の形態4の加速度センサの断面図である。 実施の形態4における、可動電極と下部電極との間の静電容量、および、可動電極と上部電極との間の静電容量のギャップ長依存性を示すグラフである。 実施の形態4の加速度センサに加速度が印加されたときの出力ΔCの非線形性を示すグラフである。 実施の形態4の加速度センサの平面図である。 実施の形態4の加速度センサの平面図である。 実施の形態4の第2変形例の加速度センサの断面図である。 実施の形態4の第2変形例における、可動電極と下部電極との間の静電容量、および、可動電極と上部電極との間の静電容量のギャップ長依存性を示すグラフである。 実施の形態4の第2変形例の加速度センサに加速度が印加されたときの出力ΔCの非線形性を示すグラフである。 実施の形態4の第3変形例の加速度センサの断面図である。 実施の形態4の第3変形例の加速度センサの平面図である。
 以下の実施の形態においては便宜上その必要があるときは、複数のセクションまたは実施の形態に分割して説明するが、特に明示した場合を除き、それらはお互いに無関係なものではなく、一方は他方の一部または全部の変形例、詳細、補足説明等の関係にある。
 また、以下の実施の形態において、要素の数等(個数、数値、量、範囲等を含む)に言及する場合、特に明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではなく、特定の数以上でも以下でもよい。
 さらに、以下の実施の形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことはいうまでもない。
 同様に、以下の実施の形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に明らかにそうでないと考えられる場合等を除き、実質的にその形状等に近似または類似するもの等を含むものとする。このことは、上記数値および範囲についても同様である。
 以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において、同一の機能を有する部材には同一の符号を付し、その繰り返しの説明は省略する。また、以下の実施の形態では、特に必要なとき以外は同一または同様な部分の説明を原則として繰り返さない。
 また、実施の形態で用いる図面においては、断面図であっても図面を見易くするためにハッチングを省略する場合もある。また、平面図であっても図面を見易くするためにハッチングを付す場合もある。
 また、以下の実施の形態において、A~Bとして範囲を示す場合には、特に明示した場合を除き、A以上B以下を示すものとする。
 (実施の形態1)
 <反射法弾性波探査法>
 初めに、地下資源探査の分野で行われる、加速度センサを用いた反射法弾性波探査について説明する。反射法弾性波探査とは、物理探査の一種であり、人工的に地震波を発生させ、地表に設置した受振器により地下から跳ね返ってくる反射波を捉え、その結果を解析して地下構造を解明する方法である。
 図1は、反射法弾性波探査の概要を示した地表の断面模式図である。
 図1に示すように、反射法弾性波探査では、地表G3に設置された起振源G1から地中に弾性波(図1中矢印)を励振し、地層の境界G4aおよびG4bのいずれかで反射した弾性波を、地表G3に設置された受振器G2a、G2b、G2c、G2dおよびG2eのいずれかでセンシングする。一般的な起振源G1は地表に対して垂直方向に発振するため、鉛直に近い方向にP波が効率よく励振される。そのため、反射法弾性波探査では、P波を用いる。また、再び地表に戻ってくる弾性波は、鉛直方向に近い方向から伝搬してくるP波であるため、受振器は鉛直方向の弾性振動を検知する必要がある。
 さまざまな方向に励振された弾性波は、減衰の大きい地中を伝搬し、複数の地層の境界G4aおよびG4bで反射し、再び減衰の大きい地中を伝搬し、広い領域に拡散して地表に戻ってくる。微弱な弾性振動を検知するため、受振器G2a、G2b、G2c、G2dおよびG2eとして、鉛直方向に高感度な加速度センサを用いる必要がある。したがって、受振器G2a、G2b、G2c、G2dおよびG2eとして、以下に説明する実施の形態1の加速度センサを用いることが望ましい。
 <加速度センサの構成>
 次に、本実施の形態1の加速度センサの構成について、図面を参照しながら説明する。
 図2および図3は、実施の形態1の加速度センサの断面図である。図4~図6は、実施の形態1の加速度センサの平面図である。図7は、実施の形態1の加速度センサの断面図である。
 図2は、図4~図6のA-A線に沿った断面図であり、図3および図7は、図4~図6のB-B線に沿った断面図である。図2および図3は、重力加速度がz軸方向に印加されていない状態を示し、図7は、重力加速度GRが-z軸方向に印加されている状態を示す。すなわち、図7は、重力加速度GRにより可動電極31が回転軸AX1を中心として回転変位した状態を示す。
 図4は、キャップ層CLおよびメンブレン層MLを除去して透視した状態を示し、ベース層の上面の状態を示している。図5は、キャップ層の下面の状態を示している。図6は、キャップ基板20を除去して透視した状態を示し、メンブレン層の状態を示している。なお、図5~図6では、ベース基板10の図示を省略している。
 図2および図3に示すように、本実施の形態1の加速度センサ1は、ベース層BLと、メンブレン層MLと、キャップ層CLと、を有する。
 図2~図4に示すように、ベース層BLは、基体としてのベース基板10と、下部電極11と、ギャップ調整膜12aおよび12bと、空間13と、を有する。
 ベース基板10は、ベース基板10の主面としての上面の領域であって、ベース基板10の中心側の中心領域としての領域AR1と、ベース基板10の上面の領域であって、領域AR1よりもベース基板10の周辺側の周辺領域としての領域AR2と、を有する。
 なお、平面視において、互いに交差、好適には直交する2つの方向を、x軸方向およびy軸方向とし、ベース基板10の主面に垂直な方向をz軸方向とする。また、本願明細書では、平面視において、とは、ベース基板10の主面としての上面に垂直な方向であるz軸方向から視た場合を意味する。
 領域AR2では、ベース基板10の上面上、すなわちベース基板10上には、ギャップ調整膜12aが形成されている。また、領域AR1のうち一部の領域でも、ベース基板10の上面上、すなわちベース基板10上には、ギャップ調整膜12aと同層に、ギャップ調整膜12bが形成されている。
 一方、領域AR1のうちギャップ調整膜12bが形成された領域以外の領域では、ベース基板10の上面上、すなわちベース基板10上には、ギャップ調整膜12bは形成されておらず、下部電極11が形成されている。下部電極11は、領域AR1で、平面視において、x軸方向におけるギャップ調整膜12bの一方の側(図4中右側)に配置されている。下部電極11は、可動部としての可動電極31の下面と対向配置されている。
 ギャップ調整膜12aおよび12bの厚さは、下部電極11の厚さよりも厚い。そのため、領域AR1では、下部電極11上、および、ベース基板10上に、空間13が形成されている。すなわち、ギャップ調整膜12aおよび12bは、下部電極11上に空間13を形成するためのものである。空間13は、大気圧より十分低い圧力の気体で充満されている。
 ベース基板10は、単結晶シリコン基板と、単結晶シリコン基板の表面に形成された酸化シリコン膜(図示せず)とにより形成されている。この酸化シリコン膜により、下部電極11は、ベース基板10の単結晶シリコン基板と電気的に絶縁されている。また、下部電極11は、電気接続線(図示せず)とを介して例えば検出回路と電気的に接続されている。
 図2、図3および図5に示すように、キャップ層CLは、基体としてのキャップ基板20と、上部電極21と、ギャップ調整膜22aおよび22bと、空間23と、を有する。
 領域AR1は、キャップ基板20の主面としての下面の領域であって、キャップ基板20の中心側の中心領域としての領域でもある。また、領域AR2は、キャップ基板20の下面の領域であって、領域AR1よりもキャップ基板20の周辺側の周辺領域としての領域でもある。さらに、x軸方向およびy軸方向は、キャップ基板20の主面としての下面内で、互いに交差、好適には直交する2つの方向でもあり、z軸方向は、キャップ基板20の下面に垂直な方向でもある。
 領域AR2では、キャップ基板20の下面下、すなわちキャップ基板20下には、ギャップ調整膜22aが形成されている。また、領域AR1のうち一部の領域でも、キャップ基板20の下面下、すなわちキャップ基板20下には、ギャップ調整膜22aと同層に、ギャップ調整膜22bが形成されている。
 一方、領域AR1のうちギャップ調整膜22bが形成された領域以外の領域では、キャップ基板20の下面下、すなわちキャップ基板20下には、ギャップ調整膜22bは形成されておらず、上部電極21が形成されている。上部電極21は、領域AR1で、平面視において、x軸方向におけるギャップ調整膜22bの一方の側(図5中右側)に配置されている。上部電極21は、可動部としての可動電極31の上面と対向配置されている。
 ギャップ調整膜22aおよび22bの厚さは、上部電極21の厚さよりも厚い。そのため、領域AR1では、上部電極21下、および、キャップ基板20下に、空間23が形成されている。すなわち、ギャップ調整膜22aおよび22bは、上部電極21下に空間23を形成するためのものである。空間23は、大気圧より十分低い圧力の気体で充満されている。
 キャップ基板20は、単結晶シリコン基板と、単結晶シリコン基板の表面に形成された酸化シリコン膜(図示せず)とにより形成されている。この酸化シリコン膜により、上部電極21は、キャップ基板20の単結晶シリコン基板と電気的に絶縁されている。また、上部電極21は、電気接続線(図示せず)を介して例えば検出回路と電気的に接続されている。
 図2、図3および図6に示すように、メンブレン層MLは、可動部としての可動電極31と、ねじれバネ32aおよび32bと、固定部33と、枠34と、を有する。可動電極31、ねじれバネ32aおよび32b、固定部33および枠34は、いずれも低抵抗の単結晶シリコン基板からなり、その単結晶シリコン基板を、例えば厚さ方向(z軸方向)にDRIE(Deep Reactive Ion Etching)によりエッチングして、単結晶シリコン基板を貫通する孔部を形成することにより、形成されている。なお、可動電極31の外側面と、枠34の内側面との間には、空間35が形成されている。
 固定部33は、図2に示すように、ギャップ調整膜12bとギャップ調整膜22bとに挟まれている。固定部33の下端は、ギャップ調整膜12bに機械的に接続され、固定部33の上端は、ギャップ調整膜22bに機械的に接続されている。ギャップ調整膜12bは、ベース基板10に機械的に接続されているため、結局、固定部33は、ベース基板10に機械的に固定されている。すなわち、固定部33は、ベース基板10の主面としての上面上に固定されている。また、ギャップ調整膜22bは、キャップ基板20に機械的に接続されているため、結局、固定部33は、キャップ基板20に機械的に固定されている。固定部33は、電気接続線(図示せず)を介して例えば検出回路と電気的に接続されている。
 ねじれバネ32aは、y軸方向に延在し、ねじれバネ32aのy軸方向における一方の側の端部36aは、固定部33に接続され、ねじれバネ32aのy軸方向における他方の側の端部37aは、可動電極31の端部61に接続されている。また、ねじれバネ32bは、y軸方向に延在し、ねじれバネ32bのy軸方向における一方の側の端部36bは、固定部33に接続され、ねじれバネ32bのy軸方向における他方の側の端部37bは、可動電極31の端部61に接続されている。
 ねじれバネ32aは、ねじれバネ32aが弾性変形して、端部37aが端部36aに対してねじれることにより、端部37aが、端部36aに対して、y軸方向に沿った回転軸AX1を中心として回転変位可能となるように、設けられている。また、ねじれバネ32bは、ねじれバネ32bが弾性変形して、端部37bが端部36bに対してねじれることにより、端部37bが、端部36bに対して、ねじれバネ32aの回転軸AX1と同一の回転軸AX1を中心として回転変位可能となるように、設けられている。したがって、ねじれバネ32aおよび32bの各々は、弾性変形部である。
 好適には、ねじれバネ32aのz軸方向の厚さは、ねじれバネ32aのx軸方向の幅よりも大きい。これにより、端部37aが端部36aに対して容易にねじれるようにすることができる。また、好適には、ねじれバネ32bのz軸方向の厚さは、ねじれバネ32bのx軸方向の幅よりも大きい。これにより、端部37bが端部36bに対して容易にねじれるようにすることができる。
 可動電極31は、図6に示すように、領域AR1で、平面視において、x軸方向における固定部33の一方の側(図6中右側)に配置されている。可動電極31の回転軸AX1側の端部61には、y軸方向に延在する回転軸AX1を中心として回転変位可能な2個のねじれバネ32aおよび32bが、y軸方向で互いに離れて接続されている。そのため、可動電極31の固定部33側の端部61は、ねじれバネ32aおよび32bを介して、固定部33に接続されている。また、可動電極31は、固定部33に対して、ねじれバネ32aおよび32bの回転軸AX1を中心として、回転変位可能である。
 可動電極31は、z軸方向から視たときに、例えば長方形の形状を有する。すなわち、可動電極31は、例えば、x軸方向に垂直な側面SM1および側面SM2、ならびに、y軸方向に垂直な側面SM3および側面SM4を有する。側面SM1は、可動電極31の回転軸AX1側の端部61であり、側面SM2は、可動電極31の回転軸AX1側と反対側の端部62である。言い換えれば、側面SM1は、可動電極31のx軸方向における負側の端部61であり、側面SM2は、可動電極31のx軸方向における正側の端部62である。また、側面SM3は、可動電極31のy軸方向における負側の端部63であり、側面SM4は、可動電極31のy軸方向における正側の端部64である。
 一例として、z軸方向から視たときの可動電極31の平面寸法を、4.0mm(x軸方向)×3.9mm(y軸方向)とすることができる。また、z軸方向における可動電極31の厚さを、0.25mmとすることができる。
 可動電極31の回転軸AX1側の端部61(側面SM1)と、回転軸AX1との間の、x軸方向の距離を、距離LXmsとする。また、可動電極31の回転軸AX1側と反対側の端部62(側面SM2)と、回転軸AX1との間の、x軸方向の距離を、距離LXmeとする。このとき、距離LXmsを、200μmとし、距離LXmeを、4200μmとすることができる。
 なお、図6に示す例では、可動電極31は、接続部38aを介してねじれバネ32aの端部37aと接続され、接続部38bを介してねじれバネ32bの端部37bと接続されているが、x軸方向における接続部38aおよび38bの長さを限りなく短くすることができる。このとき、可動電極31と、ねじれバネ32aおよび32bとの間、または、可動電極31と、固定部33との間には、x軸方向における幅が非常に狭いスリットが形成されることになるので、距離LXmsを、略0とみなすことができる。
 また、可動電極31は、ねじれバネを介さずに固定部33に接続することもできる。このような場合には、「可動電極31の回転軸AX1側」とは、「可動電極31の固定部33側」に相当し、「可動電極31の回転軸AX1側と反対側」とは、「可動電極31の固定部33側と反対側」に相当する。また、例えば「可動電極31の回転軸AX1側の端部61(側面SM1)と、回転軸AX1との間の、x軸方向の距離」とは、「可動電極31の固定部33側の端部61(側面SM1)と、固定部33との間の、x軸方向の距離」に相当する。さらに、「可動電極31の回転軸AX1側と反対側の端部62(側面SM2)と、回転軸AX1との間の、x軸方向の距離」とは、「可動電極31の固定部33側と反対側の端部62(側面SM2)と、固定部33との間の、x軸方向の距離」に相当する。
 本実施の形態1の加速度センサ1は、ベース基板10の上面またはキャップ基板20の下面、すなわちxy平面に垂直な方向(-z軸方向)に、重力加速度GR(9.8ms-2)が印加された状態で、±z軸方向に印加される微小な振動加速度を、高精度に検出することができる。図7に示すように、加速度センサ1を、z軸方向が鉛直方向と平行になるように、つまり-z軸方向が、重力加速度GRが印加される方向と一致するように設置することにより、±z軸方向の振動を、最も高精度に検出することができる。
 本実施の形態1における加速度センサ1では、可動電極31の質量、ならびに、ねじれバネ32aおよび32bのバネ定数は、重力加速度GR(図7参照)が印加されている状態で、可動電極31の回転軸AX1側と反対側の端部62が、重力加速度GRが印加されていない状態に比べ、z軸方向において負側に2μm変位するように、調整されている。
 ギャップ長GAPbは、可動電極31と下部電極11との間に存在する空間13のz軸方向の厚さであり、可動電極31と下部電極11との間のz軸方向の距離である。可動電極31が回転軸AX1を中心として回転変位することにより傾斜するため、空間13のz軸方向の厚さ、すなわち可動電極31と下部電極11との間のz軸方向の距離は、x軸方向の各位置によって異なる。ここでは、x軸方向の下部電極11の中心位置における、空間13のz軸方向の厚さを、ギャップ長GAPbとして、定義する。すなわち、x軸方向の下部電極11の中心位置における、可動電極31と下部電極11との間のz軸方向の距離を、ギャップ長GAPbとして、定義する。
 ギャップ長GAPtは、可動電極31と上部電極21との間に存在する空間23のz軸方向の厚さであり、可動電極31と上部電極21との間のz軸方向の距離である。可動電極31が回転軸AX1を中心として回転変位することにより傾斜するため、空間23のz軸方向の厚さ、すなわち可動電極31と上部電極21との間のz軸方向の距離は、x軸方向の各位置によって異なる。ここでは、x軸方向の上部電極21の中心位置における、空間23のz軸方向の厚さを、ギャップ長GAPtとして、定義する。すなわち、x軸方向の上部電極21の中心位置における、可動電極31と上部電極21との間のz軸方向の距離を、ギャップ長GAPtとして、定義する。
 好適には、ギャップ調整膜12aおよび12bの厚さは、ギャップ調整膜22aおよび22bの厚さよりも、厚い。すなわち、可動電極31の回転軸AX1側の端部61の下端と、下部電極11の上面との間の、z軸方向の距離LZbは、可動電極31の回転軸AX1側の端部61の上端と、上部電極21の下面との間の、z軸方向の距離LZtよりも、長い。これにより、ギャップ調整膜12aおよび12bの厚さがギャップ調整膜22aおよび22bの厚さに等しい場合に比べ、重力加速度が印加されているときの、ギャップ長GAPbとギャップ長GAPtとの差を、0に近づけることができる。
 本実施の形態1では、ギャップ調整膜12aおよび12bの厚さを、ギャップ調整膜22aおよび22bの厚さより例えば2μm大きくすることができる。このとき、距離LZbを6μmとし、距離LZtを4μmとすることができ、重力加速度GRが印加されているときの、ギャップ長GAPtと、ギャップ長GAPbとを、等しくすることができる。
 なお、距離LZbを、回転軸AX1と、下部電極11の上面との間の、z軸方向の距離と定義することもでき、距離LZtを、回転軸AX1と、上部電極21の下面との間の、z軸方向の距離と定義することもできる。このような場合でも、好適には、距離LZbは、距離LZtよりも、長い。
 また、図2および図3では、理解を簡単にするために、距離LZbを、ギャップ調整膜12aまたは12bの上面と、下部電極11の上面との間の、z軸方向の距離として表示し、距離LZtを、ギャップ調整膜22aまたは22bの下面と、上部電極21の下面との間の、z軸方向の距離として表示する(以下の各断面図においても同様)。
 下部電極11と上部電極21とは、図2~図5に示すように、互いに平行になるように配置されている。また、前述したように、下部電極11は、可動電極31の下面と対向配置され、上部電極21は、可動電極31の上面と対向配置されている。
 下部電極11は、z軸方向から視たときに、長方形の形状を有する。すなわち、下部電極11は、x軸方向に垂直な側面SB1および側面SB2、ならびに、y軸方向に垂直な側面SB3および側面SB4を有する。側面SB1は、下部電極11の回転軸AX1側の端部41であり、側面SB2は、下部電極11の回転軸AX1側と反対側の端部42である。言い換えれば、側面SB1は、下部電極11のx軸方向における負側の端部41であり、側面SB2は、下部電極11のx軸方向における正側の端部42である。また、側面SB3は、下部電極11のy軸方向における負側の端部43であり、側面SB4は、下部電極11のy軸方向における正側の端部44である。
 上部電極21は、z軸方向から視たときに、長方形の形状を有する。すなわち、上部電極21は、x軸方向に垂直な側面SC1および側面SC2、ならびに、y軸方向に垂直な側面SC3および側面SC4を有する。側面SC1は、上部電極21の回転軸AX1側の端部51であり、側面SC2は、上部電極21の回転軸AX1側と反対側の端部52である。言い換えれば、側面SC1は、上部電極21のx軸方向における負側の端部51であり、側面SC2は、上部電極21のx軸方向における正側の端部52である。また、側面SC3は、上部電極21のy軸方向における負側の端部53であり、側面SC4は、上部電極21のy軸方向における正側の端部54である。
 下部電極11の回転軸AX1側の端部41(側面SB1)と、回転軸AX1との間の、x軸方向の距離を、距離LXbsとする。また、下部電極11の回転軸AX1側と反対側の端部42(側面SB2)と、回転軸AX1との間の、x軸方向の距離を、距離LXbeとする。このとき、距離LXbsを、200μmとし、距離LXbeを、3810μmとすることができる。すなわち、距離LXbeと距離LXbsとの差を、3610μmとすることができる。
 上部電極21の回転軸AX1側の端部51(側面SC1)と、回転軸AX1との間の、x軸方向の距離を、距離LXtsとする。また、上部電極21の回転軸AX1側と反対側の端部52(側面SC2)と、回転軸AX1との間の、x軸方向の距離を、距離LXteとする。このとき、距離LXtsを、590μmとし、距離LXteを、4200μmとすることができる。すなわち、距離LXteと距離LXtsとの差を、3610μmとすることができる。
 本実施の形態1における加速度センサ1では、可動電極31は、-z軸方向に重力加速度GRが印加されているときに、重力加速度GRとは別に印加される加速度であって、微小な振動成分からなる加速度を、高精度に検出するためのものである。加速度により可動電極31に印加される力が十分大きくなるように、可動電極31は、十分大きな質量を有する。上述した微小な振動成分からなる加速度が可動電極31に印加されることにより、当該加速度により可動電極31に印加される力は、回転軸AX1を支点としたトルクとして可動電極31に作用し、回転軸AX1を中心として、可動電極31を回転変位させる。
 可動電極31と下部電極11とにより、空間13を挟んで、非平行平板型コンデンサが形成される。図7に示すように、y軸方向の負側から正側に向かって視た場合、可動電極31が時計方向に回転変位したときは、可動電極31と下部電極11との間の静電容量Cbは、大きくなる。一方、y軸方向の負側から正側に向かって視た場合、可動電極31が反時計方向に回転変位したときは、可動電極31と下部電極11との間の静電容量Cbは、小さくなる。
 可動電極31と上部電極21とにより、空間23を挟んで、非平行平板型コンデンサが形成される。図7に示すように、y軸方向の負側から正側に向かって視た場合、可動電極31が時計方向に回転変位したときは、可動電極31と上部電極21との間の静電容量Ctは、可動電極31と下部電極11との間の静電容量Cbとは逆に、小さくなる。一方、y軸方向の負側から正側に向かって視た場合、可動電極31が反時計方向に回転変位したときは、可動電極31と上部電極21との間の静電容量Ctは、可動電極31と下部電極11との間の静電容量Cbとは逆に、大きくなる。
 本実施の形態1における加速度センサ1に、重力加速度GRより小さい鉛直方向の振動加速度が入力された場合、可動電極31は回転変位方向に振動する。そのため、静電容量Cbの容量値と、静電容量Ctの容量値とは、互いに逆位相に振動する。そのため、加速度センサ1は、検出回路により検出された静電容量Cbと、検出回路により検出された静電容量Ctとの容量差、すなわちΔC=Cb-Ctにより算出される出力ΔCに基づいて、重力より小さい鉛直方向の加速度振動を検出する。すなわち、加速度センサ1は、静電容量Cbと静電容量Ctとに基づいて、加速度を検出する。
 <静止位置における重力加速度の影響について>
 次に、静止位置における重力加速度の影響について、図8~図15を参照し、比較例1と比較しながら説明する。
 図8は、比較例1の加速度センサの断面図である。図9~図11は、比較例1の加速度センサの平面図である。図12は、比較例1の加速度センサの断面図である。
 図8および図12は、図9のB-B線に沿った断面図である。図8は、重力加速度がz軸方向に印加されていない状態を示し、図12は、重力加速度GRが-z軸方向に印加されている状態を示す。すなわち、図12は、重力加速度GRにより可動電極31が回転軸AX1を中心として回転変位した状態を示す。
 図8に示すように、比較例1の加速度センサ101は、本実施の形態1の加速度センサ1と同様に、ベース層BLと、メンブレン層MLと、キャップ層CLと、を有する。ベース層BLは、ベース基板10と、下部電極11と、ギャップ調整膜12aおよび12bと、空間13と、を有する。キャップ層CLは、キャップ基板20と、上部電極21と、ギャップ調整膜22aおよび22bと、空間23と、を有する。メンブレン層MLは、可動電極31と、ねじれバネ32aおよび32bと、固定部33と、枠34と、を有する。
 図11に示すように、メンブレン層MLに含まれる可動電極31は、実施の形態1の加速度センサ1の可動電極31と同様に、低抵抗の単結晶シリコン基板からなり、z軸方向から視たときに、例えば長方形の形状を有する。z軸方向から視たときの可動電極31の平面寸法を、4.0mm(x軸方向)×3.5mm(y軸方向)とすることができる。また、z軸方向における可動電極31の厚さを、0.25mmとすることができる。
 ギャップ長GAPbは、可動電極31と下部電極11との間に存在する空間13のz軸方向の厚さであり、可動電極31と下部電極11との間のz軸方向の距離である。また、比較例1でも、実施の形態1と同様に、x軸方向の下部電極11の中心位置における、空間13のz軸方向の厚さを、ギャップ長GAPbとして、定義する。
 ギャップ長GAPtは、可動電極31と上部電極21との間に存在する空間23のz軸方向の厚さであり、可動電極31と上部電極21との間のz軸方向の距離である。また、比較例1でも、実施の形態1と同様に、x軸方向の上部電極21の中心位置における、空間23のz軸方向の厚さを、ギャップ長GAPtとして、定義する。
 下部電極11と上部電極21とは、図8~図11に示すように、可動電極31を挟んで対向する位置に配置されている。
 下部電極11の回転軸AX1側の端部41(側面SB1)と、回転軸AX1との間の、x軸方向の距離を、距離LXbsとする。また、下部電極11の回転軸AX1側と反対側の端部42(側面SB2)と、回転軸AX1との間の、x軸方向の距離を、距離LXbeとする。このとき、比較例1では、距離LXbsを、200μmとし、距離LXbeを、4200μmとすることができる。
 上部電極21の回転軸AX1側の端部51(側面SC1)と、回転軸AX1との間の、x軸方向の距離を、距離LXtsとする。また、上部電極21の回転軸AX1側と反対側の端部52(側面SC2)と、回転軸AX1との間の、x軸方向の距離を、距離LXteとする。このとき、距離LXtsを、距離LXbsと等しい200μmとし、距離LXteを、距離LXbeと等しい4200μmとする。
 比較例1の加速度センサ101でも、本実施の形態1の加速度センサ1と同様に、可動電極31の質量、ならびに、ねじれバネ32aおよび32bのバネ定数は、重力加速度が印加されていない場合と比較して、重力加速度が印加された場合に、可動電極31の固定部33側と反対側の端部62がz軸方向において負側に2μm移動するように、設定されている。
 比較例1の加速度センサ101では、ギャップ調整膜12aおよび12bの厚さは、ギャップ調整膜22aおよび22bの厚さと、等しい。そのため、可動電極31の回転軸AX1側の端部61の下端と、下部電極11の上面との間の、z軸方向の距離LZbは、可動電極31の回転軸AX1側の端部61の上端と、上部電極21の下面との間の、z軸方向の距離LZtと、等しい。
 比較例1において、距離LZbおよび距離LZtのいずれも、5μmとし、重力加速度が-z軸方向に印加されているときの、ギャップ長GAPtを、6μmとし、ギャップ長GAPbを、4μmとする。
 図13は、比較例1における、可動電極と下部電極との間の静電容量、および、可動電極と上部電極との間の静電容量のギャップ長依存性を示すグラフである。図13の横軸は、重力加速度GRが-z軸方向に印加され、かつ、可動電極31が振動していないときの、すなわち重力加速度GRが印加された静止状態の、ギャップ長GAPbを基準としたときの、ギャップ長GAPbの変化量ΔGAPbを示す。また、図13の横軸は、重力加速度GRが-z軸方向に印加され、かつ、可動電極31が振動していないときの、すなわち重力加速度GRが印加された静止状態の、ギャップ長GAPtを基準としたときの、ギャップ長GAPtの変化量ΔGAPtを示す。
 言い換えれば、変化量ΔGAPbは、重力加速度GRが印加された静止状態から、可動電極31が回転軸AX1を中心として回転変位したときの、ギャップ長GAPbのずれ量である。また、変化量ΔGAPtは、重力加速度GRが印加された静止状態から、可動電極31が回転軸AX1を中心として回転変位したときの、ギャップ長GAPtのずれ量である。
 図13では、重力加速度GRが印加された状態での、静電容量Cbの変化量ΔGAPb依存性(図13では、重力有での静電容量Cbと表記)を、実線で示し、静電容量Ctの変化量ΔGAPt依存性(図13では、重力有での静電容量Ctと表記)を、一点鎖線で示している。
 なお、図13では、重力加速度が印加されていない状態での、静電容量Cbの変化量ΔGAPb依存性、および、静電容量Ctの変化量ΔGAPt依存性を、破線で示している(図13では、重力無での静電容量Cb、Ctと表記)。重力加速度が印加されていない場合、図8に示すように、可動電極31は下部電極11と上部電極21との間の中間位置で静止するため、静電容量Cbの変化量ΔGAPb依存性と、静電容量Ctの変化量ΔGAPt依存性とは、一致する。
 鉛直方向(-z軸方向)に重力加速度が印加された場合、図12に示すように、y軸方向の負側から正側に向かって視たときに、可動電極31は反時計方向に回転変位し、ギャップ長GAPbは約1μm減少し、ギャップ長GAPtは約1μm増加する。そのため、ΔGAPb=ΔGAPt=0の場合、すなわち、重力加速度GRが印加された静止状態での、静電容量Cbの容量値と、静電容量Ctの容量値と、が異なる。
 前述したように、加速度センサは、静電容量Cbの容量値と、静電容量Ctの容量値と、の容量差に基づいて、加速度を検出する。すなわち、加速度センサの出力ΔCは、静電容量Cbの容量値と、静電容量Ctの容量値と、の容量差であり、この出力ΔCに基づいて、加速度を検出する。そのため、静電容量Ctの容量値と、静電容量Cbの容量値と、の容量差において、重力加速度GRに相当する静電容量Ctの容量値と、重力加速度GRに相当する静電容量Cbの容量値とが、キャンセルされていることが望ましい。すなわち、重力加速度GRが印加されており、かつ、重力加速度GRより小さい鉛直方向の振動加速度が印加されていない状態で、可動電極31が静止状態であるときに、重力加速度GRに相当する静電容量Cbの容量値と、重力加速度GRに相当する静電容量Ctの容量値と、が等しいことが、望ましい。
 ここで、重力加速度GRが印加され、かつ、重力加速度GRより小さい鉛直方向の振動加速度が印加されていない状態で、可動電極31が静止状態であるときに、静電容量Cbの容量値と、静電容量Ctの容量値とが、キャンセルされていないと、重力加速度GRより小さい鉛直方向の振動加速度を検知する精度が著しく低下する。
 例えば、重力加速度GRが印加されており、かつ、重力加速度GRより小さい鉛直方向の振動加速度が印加されていない状態で、可動電極31が静止状態であるときに、静電容量Ctの容量値と、静電容量Cbの容量値とが、重力加速度GRに対応した容量値だけ異なる場合を考える。このような場合であって、重力加速度GRの1000分の1、すなわちGR/1000の加速度に相当する振幅の振動を1%の測定精度で測定するときは、検出器として、(1+1/1000-1/100000)GRと、(1+1/1000+1/100000)GRと、を分離する必要があるため、6桁の測定精度を有する検出器が必要である。
 一方、重力加速度GRが印加されており、かつ、重力加速度GRより小さい鉛直方向の振動加速度が印加されていない状態で、可動電極31が静止状態であるときに、静電容量Ctの容量値と、静電容量Cbの容量値と、が等しい場合を考える。すなわち、静電容量Ctの容量値と、静電容量Cbの容量値と、がキャンセルされる場合を考える。このような場合であって、重力加速度GRの1000分の1、すなわちGR/1000の加速度に相当する振幅の振動を1%の測定精度で測定するときは、検出器として、(0+1/1000-1/100000)GRと、(0+1/1000+1/100000)GRと、を分離するためには、3桁の測定精度を有する検出器を用いれば十分である。
 すなわち、重力加速度が印加された静止状態で、静電容量Cbの容量値と、静電容量Ctの容量値と、の容量差が増加すると、加速度センサのダイナミックレンジを大きくする必要があり、加速度センサの検出回路の消費電力が増加するおそれがある。一方、ダイナミックレンジを大きくすることができない場合には、加速度センサにおける加速度の測定精度が低下するか、または、加速度の感度が低下するおそれがある。
 ここで、上記特許文献2に記載された技術によれば、上記した消費電力の増加、または、測定精度もしくは感度の低下の課題を解決する方法として、可動電極31の回転軸AX1を+z軸方向に移動させる方法が考えられる。しかしながら、このような方法では、課題を解決できないことを、比較例2と比較しながら、以下に説明する。
 図14は、比較例2の加速度センサの断面図である。
 図14に示すように、比較例2の加速度センサ201は、本実施の形態1の加速度センサ1と同様に、ベース層BLと、メンブレン層MLと、キャップ層CLと、を有する。ベース層BLは、ベース基板10と、下部電極11と、ギャップ調整膜12aおよび12b(図2参照)と、空間13と、を有する。キャップ層CLは、キャップ基板20と、上部電極21と、ギャップ調整膜22aおよび22b(図2参照)と、空間23と、を有する。メンブレン層MLは、可動電極31と、ねじれバネ32aおよび32bと、固定部33(図2参照)と、枠34と、を有する。
 比較例2の加速度センサ201では、ギャップ調整膜12aの厚さは、ギャップ調整膜22aの厚さよりも厚い。そのため、可動電極31の回転軸AX1側の端部61の下端と、下部電極11の上面との間の、z軸方向の距離LZbは、可動電極31の回転軸AX1側の端部61の上端と、上部電極21の下面との間の、z軸方向の距離LZtよりも、長い。
 比較例2でも、本実施の形態1と同様に、x軸方向の下部電極11の中心位置における、可動電極31と下部電極11との間のz軸方向の距離を、ギャップ長GAPbとして、定義する。また、比較例2でも、本実施の形態1と同様に、x軸方向の上部電極21の中心位置における、可動電極31と上部電極21との間のz軸方向の距離を、ギャップ長GAPtとして、定義する。
 比較例2では、ギャップ調整膜12aの厚さを、ギャップ調整膜22aの厚さより例えば2μm大きくする。このとき、距離LZbは6μmとなり、距離LZtは4μmとなり、重力加速度GRが-z軸方向に印加されているときの、ギャップ長GAPtと、ギャップ長GAPbとが、等しくなる。
 本発明者らは、比較例2の加速度センサ201において、可動電極31の回転角度を回転角度θとしたときに、可動電極31と下部電極11との間の静電容量Cbの容量値、および、可動電極31と上部電極21との間の静電容量Ctの容量値の、回転角度θ依存性を、詳細に検討した。その結果、静電容量Ctの容量値、および、静電容量Cbの容量値が、下記式(1)~式(5)を満たすことを見出した。
Figure JPOXMLDOC01-appb-M000001
 ここで、
Figure JPOXMLDOC01-appb-M000002
   であり、また、
Figure JPOXMLDOC01-appb-M000003
である。さらに、εは、空間13および23を占める気体の誘電率であり、Sbは、静電容量Cbに対応した有効電極面積であり、Scは、静電容量Ctに対応した有効電極面積である。比較例2では、下部電極11の面積は、可動電極31の面積よりも小さく、かつ、上部電極21の面積は、可動電極31の面積よりも小さい。そのため、静電容量Cbに対応した有効電極面積は、下部電極11の面積であり、静電容量Ctに対応した有効電極面積は、上部電極21の面積である。
 式(1)~式(5)において、回転角度θを0に近づけたときに、式(1)に示す静電容量Cbの容量値、および、式(2)に示す静電容量Ctの容量値は、上記特許文献2の式(1)と式(2)に漸近する。そのため、本願明細書の式(1)~式(5)は、可動電極が傾斜することを考慮した式ということができる。
 図15は、比較例2における、可動電極と下部電極との間の静電容量、および、可動電極と上部電極との間の静電容量のギャップ長依存性を示すグラフである。図15の横軸は、図13の横軸と同様に、ギャップ長GAPbの変化量ΔGAPb、および、ギャップ長GAPtの変化量ΔGAPtを示す。
 図15に示すように、比較例2では、ΔGAPb=ΔGAPt=0の場合、静電容量Cbの容量値と、静電容量Ctの容量値とは、等しい。しかし、ΔGAPt=ΔGAPb≠0の場合、静電容量Cbの容量値と、静電容量Ctの容量値とは、異なる。これは、ΔGAPt=ΔGAPb=0での、静電容量Cbの1次導関数Cb’と、静電容量Ctの1次導関数Ct’とが、等しくなく、かつ、ΔGAPb=ΔGAPt=0での、静電容量Ctの2次導関数Ct”と、静電容量Cbの2次導関数Cb”とが、等しくないことによる。これは、上記特許文献2とは異なる結果であるが、前述した式(1)~式(5)を用いて説明したように、本発明者らが、可動電極31が傾斜することを考慮したためであり、可動電極が傾斜することに起因する現象である。
 前述したように、反射法弾性波探査では、反射法弾性波探査に用いられる加速度センサは、鉛直方向、すなわち重力加速度と同じ方向に印加され、かつ、重力加速度より小さい加速度を、検出する必要がある。すなわち、反射法弾性波探査に用いられる加速度センサでは、鉛直方向の加速度の感度を向上させる必要がある。そのため、反射法弾性波探査に用いられる加速度センサでは、加速度の感度を向上させるために、可動部の質量を大きくするか、または、可動部を固定部と接続する弾性変形部のバネ定数を小さくすることがある。
 ところが、一方の端部が固定部に接続された可動電極は、自重により傾斜する。そして、可動電極が自重により傾斜した状態で、鉛直方向に印加された重力加速度よりも小さい加速度を検出する場合に、加速度センサの消費電力が増大するか、または、印加された加速度に対する加速度センサの出力の線形性が低下することを、本発明者らは見出した。
 上記特許文献1および上記特許文献2に記載された技術では、可動電極が自重により傾斜したことによって、加速度センサの消費電力が増大することも、加速度センサの出力の加速度に対する線形性が低下することも、十分に考慮されていない。
 一方、本実施の形態1の加速度センサ1では、距離LXbsが距離LXtsよりも小さく、かつ、距離LXbeが距離LXteよりも小さい。
 図16は、実施の形態1における、可動電極と下部電極との間の静電容量、および、可動電極と上部電極との間の静電容量のギャップ長依存性を示すグラフである。図16の横軸は、図13の横軸と同様に、ギャップ長GAPbの変化量ΔGAPb、および、ギャップ長GAPtの変化量ΔGAPtを示す。
 本実施の形態1の加速度センサ1では、前述したように、距離LXbsが距離LXtsよりも小さく、かつ、距離LXbeが距離LXteよりも小さい。そのため、ΔGAPb=ΔGAPt=0を満たす位置、すなわち鉛直方向(-z軸方向)に重力加速度GRが印加されている状態における可動電極31の静止位置において、静電容量Cbの1次導関数Cb’が静電容量Ctの1次導関数Ct’と等しく、かつ、静電容量Cbの2次導関数Cb”が静電容量Ctの2次導関数Ct”と等しい。そのため、ギャップ長GAPbの変化量ΔGAPb、および、ギャップ長GAPtの変化量ΔGAPtの広い範囲(±1μm未満)で、静電容量Cbが静電容量Ctと等しい。
 また、上記特許文献2にも記載されているように、静電容量Cbの2次導関数Cb”と、静電容量Ctの2次導関数Ct”との間に差が生じると、加速度センサの静電容量Cbと静電容量Ctとの容量差に対応した出力ΔCの、変化量ΔGAPbおよびΔGAPtに対する直線性が低下するおそれがある。
 図17は、実施の形態1、比較例1および比較例2の加速度センサに加速度が印加されたときの出力ΔCの非線形性を示すグラフである。図17の横軸は、重力加速度GRで規格化した印加加速度を示す。図17の縦軸は、重力加速度をGRとし、静止位置を中心とした±0.95GRの範囲での出力ΔCをフルスケール(FS)としたとき(以下では、「フルスケール(FS)±0.95GR」とも称する。)の、出力ΔCの非線形性を示す。
 図17に示すように、比較例2における出力ΔCの非線形性は、比較例1における出力ΔCにおける非線形性よりも小さくなっており、さらに、本実施の形態1における出力ΔCの非線形性は、比較例2における出力ΔCにおける非線形性よりも小さくなっている。図17に示すように、フルスケール(FS)±0.95GRにおける非線形性は、比較例1では14.2%FSであり、比較例2では4.5%FSであり、本実施の形態1では2.2%FSであり、本実施の形態1では、比較例1および比較例2のいずれに比べても非線形性が小さくなるため、本実施の形態1の効果は明白である。
 図18は、出力ΔCと、距離LXtsと距離LXbsとの差(LXts-LXbs)との関係を示すグラフである。図18では、実施の形態1における出力ΔCに加え、可動電極31が下部電極11および上部電極21のいずれとも平行でないことを無視した場合の出力ΔCを、比較例3として示している。比較例3は、上記特許文献2の式(3)に示す関係に相当するものである。なお、本実施の形態1の非線形性を示すグラフのうち、左端(LXts-LXbs=0)に白抜きの丸で示すデータは、比較例2のデータに相当する。
 なお、図18では、距離LXbeを、3810μmとし、距離LXteを、4200μmとしている。
 比較例3の非線形性を示すグラフでは、可動電極31が下部電極11および上部電極21のいずれとも平行でないことを無視しているため、距離LXtsと距離LXbsとの差(LXts-LXbs)を変化させても、出力ΔCの非線形性は変化せず、一定である。一方、実施の形態1の非線形性を示すグラフでは、距離LXtsと距離LXbsとの差(LXts-LXbs)を変化させることにより、出力ΔCの非線形性を調整することができる。すなわち、本実施の形態1では、距離LXbsを距離LXtsよりもある程度短くすることにより、出力ΔCの線形性の改善の効果があることが明らかである。
 なお、図18に示す例では、距離LXtsと距離LXbsとの差(LXts-LXbs)が550μm程度のときに、出力ΔCの非線形性が最小になる。
 このように、本発明者らが見出した、距離LXtsと距離LXbsとの差を調整することにより出力ΔCの非線形性を調整することは、可動電極31が下部電極11および上部電極21のいずれとも平行でないことを考慮したことにより、初めて明らかになった現象である。
 つまり、可動電極31が回転軸AX1を中心として回転変位したときの静電容量Cbおよび静電容量Ctの変化への寄与の大きさは、回転軸AX1からの距離に依存する。回転軸AX1側と反対側の部分の可動電極31、および、回転軸AX1側と反対側の部分の下部電極11の方が、回転軸AX1側の部分の可動電極31、および、回転軸AX1側の部分の下部電極11に比べ、静電容量Cb、静電容量Cbの1次導関数Cb’、および、静電容量Cbの2次導関数Cb”への寄与が大きい。また、回転軸AX1側の部分の可動電極31、および、回転軸AX1側の部分の上部電極21の方が、回転軸AX1側と反対側の部分の可動電極31、および、回転軸AX1側と反対側の部分の上部電極21に比べ、静電容量Ct、静電容量Ctの1次導関数Ct’、および、静電容量Ctの2次導関数Ct”への寄与が大きい。
 比較例2で示したように、距離LXbsが距離LXtsと等しく、かつ、距離LXbeが距離LXteと等しいときは、静電容量Ctの1次導関数Ct’は、静電容量Cbの1次導関数Cb’よりも小さく、静電容量Ctの2次導関数Ct”は、静電容量Cbの2次導関数Cb”よりも小さい。
 一方、本実施の形態1で示したように、距離LXbsを距離LXtsよりも小さくし、かつ、距離LXbeを距離LXteよりも小さくする。このとき、回転軸AX1側と反対側の部分の可動電極31の、静電容量Cb、静電容量Cbの1次導関数Cb’、および、静電容量Cbの2次導関数Cb”への寄与が、小さくなる。また、回転軸AX1側の部分の可動電極31の、静電容量Ct、静電容量Ctの1次導関数Ct’、および、静電容量Ctの2次導関数Ct”への寄与が、小さくなる。したがって、本実施の形態1では、比較例2に比べ、1次導関数Ct’と1次導関数Cb’との差、および、2次導関数Ct”と2次導関数Cb”との差を、小さくすることができる。
 これにより、加速度センサの静電容量Cbと静電容量Ctとの容量差に対応した出力ΔCの、変化量ΔGAPbおよびΔGAPtに対する直線性を向上させることができる。そのため、加速度センサのダイナミックレンジを小さくすることができ、加速度センサの検出回路の消費電力を低減することができる。または、加速度センサによる加速度の測定精度を向上させることができ、加速度の感度を向上させることができる。
 なお、上記特許文献2に記載された技術では、距離LXbeが距離LXteよりも短い例は示されているものの、距離LXbsが距離LXtsよりも短い例は記載されていない。
 <本実施の形態の主要な特徴と効果>
 以上説明したように、本実施の形態1における加速度センサ1では、距離LXbsが距離LXtsよりも短く、かつ、距離LXbeが距離LXteよりも短い。これにより、重力加速度GRが印加されているときの可動電極31の静止位置において、静電容量Cbの1次導関数Cb’を、静電容量Ctの1次導関数Ct’と等しくし、かつ、静電容量Cbの2次導関数Cb”を、静電容量Ctの2次導関数Ct”と等しくすることができ、線形性に優れた出力ΔCを出力することができる。そのため、感度が高く、消費電力が低く、印加された加速度に対する出力の線形性が高い加速度センサを提供することができる。
 なお、本実施の形態1における加速度センサ1では、後述する実施の形態2の加速度センサ1bとは異なり、距離LZtが距離LZbよりも小さい。これにより、重力加速度GRが印加されているときの可動電極31の静止位置において、ギャップ長GAPbをギャップ長GAPtと等しくすることができる。
 本実施の形態1では、可動部としての可動電極31が、固定部33に対して、平面視においてy軸方向に沿った軸を中心として、回転変位可能である例について説明した。しかし、可動電極31の一部が少なくともz軸方向に変位可能であればよく、例えばx軸方向における可動電極31の固定部33側の端部61が、固定部33に直接接続されることにより、可動電極31が、いわゆる片持ち梁であってもよい。
 このような場合、距離LXbsは、下部電極11の固定部33側の端部41と、固定部33との間の、x軸方向の距離であり、距離LXbeは、下部電極11の固定部33側と反対側の端部42と、固定部33との間の、x軸方向の距離である。また、距離LXtsは、上部電極21の固定部33側の端部51と、固定部33との間の、x軸方向の距離であり、距離LXteは、上部電極21の固定部33側と反対側の端部52と、固定部33との間の、x軸方向の距離である。
 <実施の形態1の変形例>
 鉛直方向の加速度を高精度に測定する方法として、可動電極と固定電極との間に電圧を印加し、発生するクーロン力で可動電極の位置を制御するサーボ制御による方法が考えられる。以下では、サーボ制御による方法を用いて加速度を検出する加速度センサを、実施の形態1の変形例として、説明する。
 図19および図20は、実施の形態1の変形例の加速度センサの平面図である。
 図19に示すように、実施の形態1の変形例の加速度センサ1aでは、ベース層BLは、下部電極11に加え、サーボ制御用下部電極14を有する。サーボ制御用下部電極14は、図2に示した下部電極11と同様に、領域AR1のうちギャップ調整膜12bが形成された領域以外の領域で、ベース基板10の上面上、すなわちベース基板10上に形成されている。サーボ制御用下部電極14は、平面視において、下部電極11のy軸方向における一方の側に、配置されている。
 図20に示すように、実施の形態1の変形例の加速度センサ1aでは、キャップ層CLは、上部電極21に加え、サーボ制御用上部電極24を有する。サーボ制御用上部電極24は、図2に示した上部電極21と同様に、領域AR1のうちギャップ調整膜22bが形成された領域以外の領域で、キャップ基板20の下面下、すなわちキャップ基板20下に形成されている。サーボ制御用上部電極24は、平面視において、上部電極21のy軸方向における一方の側に、配置されている。
 なお、実施の形態1の変形例の加速度センサ1aの構造を、本実施の形態1における加速度センサ1と同様な構造とし、サーボ制御用下部電極を下部電極11と兼用し、サーボ制御用上部電極を上部電極21と兼用してもよい。あるいは、実施の形態1の変形例の加速度センサ1aが、可動電極31に加え、サーボ制御用可動電極を有してもよい。
 すなわち、サーボ制御用下部電極と、下部電極11とを、別に設けても一体的に設けてもよく、いずれの場合にも、同様の効果を有する。また、サーボ制御用上部電極と、上部電極21とを、別に設けても一体的に設けてもよく、いずれの場合にも、同様の効果を有する。さらに、サーボ制御用可動電極と、可動電極31とを、別に設けても一体的に設けてもよく、いずれの場合にも、同様の効果を有する。
 サーボ制御で用いるクーロン力は、静電容量Cbの1次導関数Cb’ に比例し、静電容量Ctの1次導関数Ct’に比例する。そのため、1次導関数Ct’の変化量ΔGAPt依存性と1次導関数Cb’の変化量ΔGAPb依存性と、が異なる場合、サーボ制御用下部電極に印加するサーボ電圧と、サーボ制御用上部電極に印加するサーボ電圧とを、それぞれ異なる値に制御する必要が生じ、サーボ制御が煩雑になる。また、1次導関数Cb’ と1次導関数Ct’のうち、小さい方に合わせて最大サーボ電圧を決定する必要があるため、サーボ電圧が高電圧化するおそれがある。それに伴って、鉛直方向(-z軸方向)に印加される微小な振動加速度を精度よく検出できないか、または、加速度センサの消費電力が増大するおそれがある。
 一方、本変形例の加速度センサ1aでも、実施の形態1の加速度センサ1と同様に、距離LXbsが距離LXtsよりも小さく、かつ、距離LXbeが距離LXteよりも小さい。
 本変形例の加速度センサ1aにおける、可動電極31と下部電極11との間の静電容量Cbの容量値のギャップ長依存性を、図16に示した実施の形態1における、可動電極31と下部電極11との間の静電容量Cbの容量値のギャップ長依存性と、同様にすることができる。また、本変形例の加速度センサ1aにおける、可動電極31と上部電極21との間の静電容量Ctの容量値のギャップ長依存性を、図16に示した実施の形態1における、可動電極31と上部電極21との間の静電容量Ctの容量値のギャップ長依存性と、同様にすることができる。
 ここで、実施の形態1に対する本変形例の関係と同様に、比較例1および比較例2に対して、サーボ制御用下部電極およびサーボ制御用上部電極を形成したものを、それぞれ比較例4および比較例5とする。分りやすいように、比較例4および比較例5のサーボ制御用下部電極およびサーボ制御用上部電極は、比較例1および比較例2の下部電極および上部電極と面積は同じに設定している。
 例えばサーボ電圧1Vを印加した時に下部電極11および上部電極21で発生するクーロン力の絶対値は、容量値とギャップ量の比であるから、比較例4では、下部電極11で4.6μN、上部電極21で1.6μNであり、比較例5では、下部電極11で2.9μN、上部電極21で2.3μNである。
 一方、本変形例では、例えばサーボ電圧1Vを印加した時に下部電極11および上部電極21で発生するクーロン力の絶対値は、下部電極11で2.5μN、上部電極21で2.5μNである。このように、本変形例では、例えばサーボ電圧1Vを印加した時に、下部電極11で発生するクーロン力が、上部電極21で発生するクーロン力と等しくなるため、サーボ制御が煩雑にならず、サーボ電圧を低電圧化することができる。
 つまり、本変形例でも、実施の形態1と同様に、重力加速度GRが印加されているときの可動電極31の静止位置において、静電容量Cbの1次導関数Cb’を、静電容量Ctの1次導関数Ct’と等しくし、静電容量Cbの2次導関数Cb”を、静電容量Ctの2次導関数Ct”と等しくすることができる。これにより、サーボ制御が煩雑にならず、サーボ電圧を低電圧化することができる。そのため、鉛直方向(-z軸方向)に印加される微小な振動加速度を高精度で検出できるか、または、加速度センサの消費電力を低減することができる。
 (実施の形態2)
 次に、実施の形態2の加速度センサについて説明する。実施の形態2の加速度センサは、下部電極の面積が、上部電極の面積よりも小さい。
 <加速度センサの構成>
 図21および図22は、実施の形態2の加速度センサの断面図である。図23および図24は、実施の形態2の加速度センサの平面図である。
 図21および図22は、図23および図24のB-B線に沿った断面図である。図21は、重力加速度がz軸方向に印加されていない状態を示し、図22は、重力加速度GRが-z軸方向に印加されている状態を示す。すなわち、図22は、重力加速度GRにより可動電極31が回転軸AX1を中心として回転変位した状態を示す。
 図21および図22に示すように、本実施の形態2における加速度センサ1bは、ベース層BLと、メンブレン層MLと、キャップ層CLと、を有する。また、本実施の形態2における加速度センサ1bは、下部電極11および上部電極21の平面形状を除き、比較例1の加速度センサ101の構造と同様の構造を有する。
 本実施の形態2における加速度センサ1bも、実施の形態1の加速度センサ1と同様に、-z軸方向に重力加速度GR(図22参照)が印加された状態で、±z軸方向に印加される微小な振動加速度を、高精度に検出することができる。
 本実施の形態2でも、実施の形態1と同様に、可動電極31の質量、ならびに、ねじれバネ32aおよび32bのバネ定数は、重力加速度GRが印加されている状態で、可動電極31の回転軸AX1側と反対側の端部62が、重力加速度GRが印加されていない状態に比べ、z軸方向において負側に2μm移動するように、調整されている。
 ギャップ長GAPbは、可動電極31と下部電極11との間に存在する空間13のz軸方向の厚さであり、可動電極31と下部電極11との間のz軸方向の距離である。また、本実施の形態2でも、実施の形態1と同様に、x軸方向の下部電極11の中心位置における、可動電極31と下部電極11との間のz軸方向の距離を、ギャップ長GAPbとして、定義する。
 ギャップ長GAPtは、可動電極31と上部電極21との間に存在する空間23のz軸方向の厚さである。また、本実施の形態2でも、実施の形態1と同様に、x軸方向の上部電極21の中心位置における、可動電極31と上部電極21との間のz軸方向の距離を、ギャップ長GAPtとして、定義する。
 本実施の形態2の加速度センサ1bでは、ギャップ調整膜12aの厚さは、ギャップ調整膜22aの厚さと、等しい。そのため、可動電極31の回転軸AX1側の端部61の下端と、下部電極11の上面との間の、z軸方向の距離LZbは、可動電極31の回転軸AX1側の端部61の上端と、上部電極21の下面との間の、z軸方向の距離LZtと、等しい。
 なお、実施の形態1では、距離LZbと距離LZtを、距離LZbと距離LZtの平均値から±20%調節することで、重力GRが印加された状態のギャップ長GAPbとGAPtとを一致させた。本実施の形態2で、距離LZbが距離LZtと等しいとは、距離LZbおよび距離LZtの各々の、距離LZbと距離LZtとの平均値からの差がそれぞれ20%以下であることを意味する。
 本実施の形態2では、距離LZbおよび距離LZtのいずれも5μmとし、重力加速度が-z軸方向に印加されているときの、ギャップ長GAPtを、6μmとし、ギャップ長GAPbを、4μmとすることができる。
 下部電極11と上部電極21とは、図21~図24に示すように、互いに平行、かつ、いずれもz軸に垂直になるように、配置されている。また、下部電極11および上部電極21は、z軸方向において互いに対向するように配置されている。
 下部電極11の回転軸AX1側の端部41(側面SB1)と、回転軸AX1との間の、x軸方向の距離を、距離LXbsとする。また、下部電極11の回転軸AX1側と反対側の端部42(側面SB2)と、回転軸AX1との間の、x軸方向の距離を、距離LXbeとする。このとき、距離LXbsを、200μmとし、距離LXbeを、3810μmとすることができる。すなわち、距離LXbeと距離LXbsとの差を、3610μmとすることができる。
 上部電極21の回転軸AX1側の端部51(側面SC1)と、回転軸AX1との間の、x軸方向の距離を、距離LXtsとする。また、上部電極21の回転軸AX1側と反対側の端部52(側面SC2)と、回転軸AX1との間の、x軸方向の距離を、距離LXteとする。このとき、距離LXtsを、590μmとし、距離LXteを、4200μmとすることができる。すなわち、距離LXteと距離LXtsとの差を、3610μmとすることができる。
 一方、下部電極11のy軸方向の長さLYbは、上部電極21のy軸方向の長さLYtよりも小さい。すなわち、下部電極11の面積は、上部電極21の面積よりも小さい。本実施の形態2における加速度センサ1bでは、長さLYbと長さLYtが、下記式(6)
Figure JPOXMLDOC01-appb-M000004
を満たす。これにより、式(1)により示される静電容量Cbの容量値と、式(2)により示される静電容量Ctの容量値とを、等しくすることができる。
 <本実施の形態の主要な特徴と効果>
本実施の形態2における加速度センサ1bでも、実施の形態1の加速度センサ1と同様に、距離LXbsが距離LXtsよりも短く、かつ、距離LXbeが距離LXteよりも短い。
 一方、本実施の形態2における加速度センサ1bでは、実施の形態1の加速度センサ1とは異なり、距離LZbが距離LZtと等しい一方で、長さLYbが長さLYtよりも小さい。すなわち、下部電極11の面積は、上部電極21の面積よりも小さい。
 このような場合、重力加速度GRが印加されているときの可動電極31の静止位置において、ギャップ長GAPbはギャップ長GAPtよりも小さくなる。しかし、式(1)~式(6)を満たす場合には、重力加速度GRが印加されているときの静止位置において、静電容量Ctの1次導関数Ct’を、静電容量Cbの1次導関数Ct’と等しくし、かつ、静電容量Cbの2次導関数Cb”を、静電容量Ctの2次導関数Ct”と等しくすることができ、線形性に優れた出力ΔCを出力することができる。そのため、本実施の形態2でも、本実施の形態1と同様の効果を有し、感度が高く、消費電力が低く、印加された加速度に対する出力の線形性が高い加速度センサを提供することができる。
 <実施の形態2の変形例>
 本実施の形態2における加速度センサ1bでは、分かりやすい例として、距離LXbeと距離LXbsとの差、および、距離LXteと距離LXtsとの差を、いずれも3610μmにした。しかし、距離LXbsが距離LXtsよりも短く、かつ、距離LXbeが距離LXteよりも短ければよく、距離LXbeと距離LXbsとの差を、距離LXteと距離LXtsとの差と等しくする必要はない。このような、距離LXbeと距離LXbsとの差と、距離LXteと距離LXtsとの差とが異なる例を、実施の形態2の変形例として、図25および図26に示す。図25および図26は、実施の形態2の変形例の加速度センサの平面図である。
 図25および図26に示すように、本変形例の加速度センサ1cでは、距離LXbeと距離LXbsとの差(LXbe-LXbs)は、距離LXteと距離LXtsとの差(LXte-LXts)よりも小さい。このような場合でも、距離LXbs、距離LXbe、距離LXtsおよび距離LXte、ならびに、長さLYbおよび長さLYtが、式(6)を満たすように設定することにより、実施の形態2と同様の効果が得られる。
 なお、上記式(6)の左辺が1に等しくなくても、実施の形態1と略同様の効果が得られる。例えば本変形例の加速度センサ1cの場合では、重力が印加されない場合(θ=0)の左辺の値は0.8程度であるから、それより1に近い場合、つまり0.8~1.2程度であれば、実施の形態1と略同様の効果が得られる。
 (実施の形態3)
 次に、実施の形態3の加速度センサについて説明する。実施の形態3の加速度センサは、z軸方向から視たときに、可動電極31が、回転軸AX1を挟んで両側に配置された可動右電極31Rと可動左電極31Lとを有する。
 <加速度センサの構成>
 図27および図28は、実施の形態3の加速度センサの断面図である。図29および図30は、実施の形態3の加速度センサの平面図である。図31は、実施の形態3の加速度センサの断面図である。
 図27は、図29および図30のA-A線に沿った断面図であり、図28および図31は、図29および図30のB-B線に沿った断面図である。図27および図28は、重力加速度がz軸方向に印加されていない状態を示し、図31は、重力加速度GRが-z軸方向に印加されている状態を示す。すなわち、図31は、重力加速度GRにより可動電極31が回転軸AX1を中心として回転変位した状態を示す。
 図27および図28に示すように、本実施の形態3の加速度センサ1dは、ベース層BLと、メンブレン層MLと、キャップ層CLと、を有する。
 図27~図29に示すように、ベース層BLは、基体としてのベース基板10と、ギャップ調整膜12aおよび12bと、空間13と、を有する。
 ベース基板10は、ベース基板10の主面としての上面の領域であって、ベース基板10の中心側の中心領域としての領域AR1と、ベース基板10の上面の領域であって、領域AR1よりもベース基板10の周辺側の周辺領域としての領域AR2と、を有する。
 なお、平面視において、互いに交差、好適には直交する2つの方向を、x軸方向およびy軸方向とし、ベース基板10の主面に垂直な方向をz軸方向とする。
 領域AR2では、ベース基板10の上面上、すなわちベース基板10上には、ギャップ調整膜12aが形成されている。また、領域AR1のうち一部の領域でも、ベース基板10の上面上、すなわちベース基板10上には、ギャップ調整膜12aと同層に、ギャップ調整膜12bが形成されている。
 一方、領域AR1のうちギャップ調整膜12bが形成された領域以外の領域では、ベース基板10の上面上、すなわちベース基板10上には、ギャップ調整膜12bは形成されていない。また、本実施の形態3では、実施の形態1とは異なり、領域AR1のうちギャップ調整膜12bが形成された領域以外の領域では、下部電極11(図2参照)も形成されていない。したがって、領域AR1では、ベース基板10上に、空間13が形成されている。すなわち、ギャップ調整膜12bは、ベース基板10上に、空間13を形成するためのものである。空間13は、大気圧より十分低い圧力の気体で充満されている。
 図27、図28および図30に示すように、キャップ層CLは、基体としてのキャップ基板20と、上部左電極21Lと、上部右電極21Rと、ギャップ調整膜22aおよび22bと、空間23と、を有する。
 領域AR1は、キャップ基板20の主面としての下面の領域であって、キャップ基板20の中心側の中心領域としての領域でもある。また、領域AR2は、キャップ基板20の下面の領域であって、領域AR1よりもキャップ基板20の周辺側の周辺領域としての領域でもある。また、x軸方向およびy軸方向は、キャップ基板20の主面としての下面内で、互いに交差、好適には直交する2つの方向でもあり、z軸方向は、キャップ基板20の主面に垂直な方向でもある。
 領域AR2では、キャップ基板20の下面下、すなわちキャップ基板20下には、ギャップ調整膜22aが形成されている。また、領域AR1のうち一部の領域でも、キャップ基板20の下面下、すなわちキャップ基板20下には、ギャップ調整膜22aと同層に、ギャップ調整膜22bが形成されている。
 一方、領域AR1のうちギャップ調整膜22bが形成された領域よりもx軸方向における一方の側(図27中左側)の領域では、キャップ基板20の下面下、すなわちキャップ基板20下には、ギャップ調整膜22bは形成されておらず、上部左電極21Lが形成されている。上部左電極21Lは、領域AR1で、平面視において、x軸方向におけるギャップ調整膜22bの一方の側(図27中左側)に配置されている。上部左電極21Lは、可動部としての可動左電極31Lの上面と対向配置されている。
 また、領域AR1のうちギャップ調整膜22bが形成された領域よりもx軸方向における他方の側(図27中右側)の領域では、キャップ基板20の下面下、すなわちキャップ基板20下には、ギャップ調整膜22bは形成されておらず、上部右電極21Rが形成されている。上部右電極21Rは、領域AR1で、平面視において、ギャップ調整膜22bを挟んで上部左電極21Lと反対側(図27中右側)に配置されている。上部右電極21Rは、可動部としての可動右電極31Rの上面と対向配置されている。
 ギャップ調整膜22aおよび22bの厚さは、上部左電極21Lおよび上部右電極21Rの厚さよりも厚い。そのため、領域AR1では、上部左電極21L下、上部右電極21R下、および、キャップ基板20下に、空間23が形成されている。すなわち、ギャップ調整膜22aおよび22bは、上部左電極21L下、および、上部右電極21R下に、空間23を形成するためのものである。空間23は、大気圧より十分低い圧力の気体で充満されている。
 キャップ基板20は、単結晶シリコン基板と、単結晶シリコン基板の表面に形成された酸化シリコン膜(図示せず)とにより形成されている。この酸化シリコン膜により、上部左電極21Lおよび上部右電極21Rは、キャップ基板20の単結晶シリコン基板と電気的に絶縁されている。また、上部左電極21Lおよび上部右電極21Rの各々は、電気接続線(図示せず)を介して例えば検出回路と電気的に接続されている。なお、ベース基板10も、単結晶シリコン基板により形成されている。
 図27、図28および図30に示すように、メンブレン層MLは、可動部としての可動電極31と、ねじれバネ32aおよび32bと、固定部33と、枠34と、を有する。可動電極31、ねじれバネ32aおよび32b、固定部33および枠34は、いずれも低抵抗の単結晶シリコン基板からなり、その単結晶シリコン基板を、例えば厚さ方向(z軸方向)にDRIEによりエッチングして、単結晶シリコン基板を貫通する孔部を形成することにより、形成されている。なお、可動電極31の外側面と、枠34の内側面との間には、空間35が形成されている。
 固定部33は、図27に示すように、ギャップ調整膜12bとギャップ調整膜22bとに挟まれている。固定部33の下端は、ギャップ調整膜12bに機械的に接続され、固定部33の上端は、ギャップ調整膜22bに機械的に接続されている。ギャップ調整膜12bは、ベース基板10に機械的に接続されているため、結局、固定部33は、ベース基板10に機械的に固定されている。すなわち、固定部33は、ベース基板10の主面としての上面上に固定されている。また、ギャップ調整膜22bは、キャップ基板20に機械的に接続されているため、結局、固定部33は、キャップ基板20に機械的に固定されている。固定部33は、電気接続線(図示せず)を介して例えば検出回路と電気的に接続されている。
 ねじれバネ32aは、y軸方向に延在し、ねじれバネ32aのy軸方向における一方の側の端部36aは、固定部33に接続され、ねじれバネ32aのy軸方向における他方の側の端部37aは、可動電極31に接続されている。また、ねじれバネ32bは、y軸方向に延在し、ねじれバネ32bのy軸方向における一方の側の端部36bは、固定部33に接続され、ねじれバネ32bのy軸方向における他方の側の端部37bは、可動電極31に接続されている。
 ねじれバネ32aは、ねじれバネ32aが弾性変形して、端部37aが端部36aに対してねじれることにより、端部37aが、端部36aに対して、y軸方向に沿った回転軸AX1を中心として回転変位可能となるように、設けられている。また、ねじれバネ32bは、ねじれバネ32bが弾性変形して、端部37bが端部36bに対してねじれることにより、端部37bが、端部36bに対して、ねじれバネ32aの回転軸AX1と同一の回転軸AX1を中心として回転変位可能となるように、設けられている。したがって、ねじれバネ32aおよび32bの各々は、弾性変形部である。
 図27~図31に示すように、可動電極31は、可動左電極31Lと、可動右電極31Rと、接続部38aおよび38bと、を有する。
 可動左電極31Lは、領域AR1で、平面視において、x軸方向における固定部33の一方の側(図27中左側)に配置されている。また、可動右電極31Rは、領域AR1で、平面視において、x軸方向における固定部33の他方の側(図27中右側)に配置されている。すなわち、可動右電極31Rは、平面視において、固定部33を挟んで可動左電極31Lと反対側に配置されている。
 可動左電極31Lの回転軸AX1側の端部61Lと、可動右電極31Rの回転軸AX1側の端部61Rとは、y軸方向で互いに離れて設けられた接続部38aおよび接続部38bにより、接続されている。接続部38aには、y軸方向に延在する回転軸AX1を中心として回転変位可能なねじれバネ32aが、接続され、接続部38bには、y軸方向に延在する回転軸AX1を中心として回転変位可能なねじれバネ32bが、接続されている。そのため、可動左電極31Lの固定部33側の端部61Lは、接続部38aおよび接続部38bを介して固定部33に接続されており、可動右電極31Rの固定部33側の端部61Rは、接続部38aおよび接続部38bを介して固定部33に接続されている。また、接続部38aおよび接続部38bにより接続された可動左電極31Lおよび可動右電極31Rは、固定部33に対して、ねじれバネ32aおよび32bの回転軸AX1を中心として、一体的に回転変位可能である。
 可動左電極31Lと、可動右電極31Rとは、いずれも、z軸方向から視たときに、例えば長方形の形状を有する。すなわち、可動左電極31Lは、例えば、x軸方向に垂直な側面SM1Lおよび側面SM2L、ならびに、y軸方向に垂直な側面SM3Lおよび側面SM4Lを有し、可動右電極31Rは、例えば、x軸方向に垂直な側面SM1Rおよび側面SM2R、ならびに、y軸方向に垂直な側面SM3Rおよび側面SM4Rを有する。
 側面SM1Lは、可動左電極31Lの回転軸AX1側の端部61Lであり、側面SM2Lは、可動左電極31Lの回転軸AX1側と反対側の端部62Lである。また、側面SM3Lは、可動左電極31Lのy軸方向における負側の端部63Lであり、側面SM4Lは、可動左電極31Lのy軸方向における正側の端部64Lである。
 側面SM1Rは、可動右電極31Rの回転軸AX1側の端部61Rであり、側面SM2Rは、可動右電極31Rの回転軸AX1側と反対側の端部62Rである。また、側面SM3Rは、可動右電極31Rのy軸方向における負側の端部63Rであり、側面SM4Rは、可動右電極31Rのy軸方向における正側の端部64Rである。
 一例として、z軸方向から視たときの可動左電極31Lの平面寸法を、4.0mm(x軸方向)×3.9mm(y軸方向)とし、z軸方向から視たときの可動右電極31Rの平面寸法を、4.0mm(x軸方向)×3.9mm(y軸方向)とすることができる。
 接続部38aにねじれバネ32aが接続され、接続部38bにねじれバネ32bが接続されているため、可動左電極31Lと、可動右電極31Rとは、回転軸AX1を中心としてシーソーのように回転変位することができる。
 可動左電極31Lの回転軸AX1側の端部61L(側面SM1L)と、回転軸AX1との間の、x軸方向の距離を、距離LXLmsとし、可動左電極31Lの回転軸AX1側と反対側の端部62L(側面SM2L)と、回転軸AX1との間の、x軸方向の距離を、距離LXLmeとする。また、可動右電極31Rの回転軸AX1側の端部61R(側面SM1R)と、回転軸AX1との間の、x軸方向の距離を、距離LXRmsとし、可動右電極31Rの回転軸AX1側と反対側の端部62R(側面SM2R)と、回転軸AX1との間の、x軸方向の距離を、距離LXRmeとする。
 具体的には、距離LXLmsを、200μmとし、距離LXLmeを、4200μmとすることができる。また、距離LXRmsを、200μmとし、距離LXRmeを、4200μmとすることができる。
 図30に示すように、可動左電極31Lと、可動右電極31Rとは、z軸方向から視たときに、同一の平面形状を有する。しかし、図27および図28に示すように、可動左電極31Lのz軸方向の厚さは、可動右電極31Rのz軸方向の厚さよりも小さい。これにより、可動左電極31Lの質量MSLを、可動右電極31Rの質量MSRよりも小さくすることができる。なお、メンブレン層MLを例えばSOI(Silicon On Insulator)基板により形成することにより、可動左電極31Lのz軸方向の厚さを、可動右電極31Rのz軸方向の厚さよりも容易に小さくすることができる。
 具体的には、実施の形態3では、重力は-z軸方向に印加されているため、可動左電極31Lのz軸方向の厚さを、可動右電極31Rのz軸方向の厚さの例えば半分に設定することができ、可動左電極31Lのz軸方向の厚さを例えば125μmとし、可動右電極31Rのz軸方向の厚さを例えば250μmとすることができる。なお、重力が+z軸方向に印加されている場合は、可動左電極31Lのz軸方向の厚さを例えば250μmとし、可動右電極31Rのz軸方向の厚さを例えば125μmとすることで、同じ効果を得ることができる。
 可動左電極31Lの重心GCLと、回転軸AX1との間の、x軸方向の距離を、距離LXLとする。また、可動右電極31Rの重心GCRと、回転軸AX1との間の、x軸方向の距離を、距離LXRとする。本実施の形態3では、重力の方向が、上部左電極21Lから可動左電極31Lに向かう方向(-z軸方向)である場合、質量MSLと距離LXLとの積が、質量MSRと距離LXRとの積よりも小さい。これにより、鉛直方向(-z軸方向)に重力加速度GRが印加されるときに、y軸方向の負側から正側に向かって視た場合、可動電極31が時計方向に回転変位することになる。なお、重力の方向が、可動左電極31Lから上部左電極21Lに向かう方向(+z軸方向)である場合、質量MSLと距離LXLとの積が、質量MSRと距離LXRとの積よりも大きい。
 本実施の形態3における加速度センサ1dも、実施の形態1の加速度センサ1と同様に、-z軸方向に重力加速度GR(図31参照)が印加された状態で、±z軸方向に印加される微小な振動加速度を、高精度に検出することができる。
 本実施の形態3における加速度センサ1dでは、可動左電極31Lおよび可動右電極31Rの質量、ならびに、ねじれバネ32aおよび32bのバネ定数は、重力加速度GR(図31参照)が印加されている状態で、可動右電極31Rの回転軸AX1側と反対側の端部62Rが、重力加速度GRが印加されていない状態に比べ、z軸方向において負側に2μm移動するように、調整されている。
 ギャップ長GAPLtは、可動左電極31Lと上部左電極21Lとの間に存在する空間23のz軸方向の厚さであり、可動左電極31Lと上部左電極21Lとの間のz軸方向の距離である。可動左電極31Lが回転軸AX1を中心として回転変位することにより傾斜するため、空間23のz軸方向の厚さ、すなわち可動左電極31Lと上部左電極21Lとの間のz軸方向の距離は、x軸方向の各位置によって異なる。ここでは、x軸方向の上部左電極21Lの中心位置における、空間23のz軸方向の厚さを、ギャップ長GAPLtとして、定義する。すなわち、x軸方向の上部左電極21Lの中心位置における、可動左電極31Lと上部左電極21Lとの間のz軸方向の距離を、ギャップ長GAPLtとして、定義する。
 ギャップ長GAPRtは、可動右電極31Rと上部右電極21Rとの間に存在する空間23のz軸方向の厚さであり、可動右電極31Rと上部右電極21Rとの間のz軸方向の距離である。可動右電極31Rが回転軸AX1を中心として回転変位することにより傾斜するため、空間23のz軸方向の厚さ、すなわち可動右電極31Rと上部右電極21Rとの間のz軸方向の距離は、x軸方向の各位置によって異なる。ここでは、x軸方向の上部右電極21Rの中心位置における、空間23のz軸方向の厚さを、ギャップ長GAPRtとして、定義する。すなわち、x軸方向の上部右電極21Rの中心位置における、可動右電極31Rと上部右電極21Rとの間のz軸方向の距離を、ギャップ長GAPRtとして、定義する。
 ギャップ調整膜22aおよび22bの厚さを調整することにより、可動左電極31Lの回転軸AX1側の端部61Lの上端と、上部左電極21Lの下面との間の、z軸方向の距離であり、可動右電極31Rの回転軸AX1側の端部61Rの上端と、上部右電極21Rの下面との間の、z軸方向の距離である距離LZtは、調整されている。
 本実施の形態3では、距離LZtを5μmとし、重力加速度GRが印加されているときの、ギャップ長GAPLtを4μmとし、ギャップ長GAPRtを6μmとすることができる。
 上部左電極21Lと上部右電極21Rとは、図27、図28および図31に示すように、互いに同層に配置されている。また、前述したように、上部左電極21Lは、可動左電極31Lの上面と対向配置され、上部右電極21Rは、可動右電極31Rの上面と対向配置されている。
 上部左電極21Lの回転軸AX1側の端部51L(側面SC1L)と、回転軸AX1との間の、x軸方向の距離を、距離LXLtsとする。また、上部左電極21Lの回転軸AX1側と反対側の端部52L(側面SC2L)と、回転軸AX1との間の、x軸方向の距離を、距離LXLteとする。このとき、距離LXLtsを、200μmとし、距離LXLteを、3810μmとすることができる。すなわち、距離LXLteと距離LXLtsとの差を、3610μmとすることができる。なお、側面SC3Lは、上部左電極21Lのy軸方向における負側の端部53Lであり、側面SC4Lは、上部左電極21Lのy軸方向における正側の端部54Lである。
 上部右電極21Rの回転軸AX1側の端部51R(側面SC1R)と、回転軸AX1との間の、x軸方向の距離を、距離LXRtsとする。また、上部右電極21Rの回転軸AX1側と反対側の端部52R(側面SC2R)と、回転軸AX1との間の、x軸方向の距離を、距離LXRteとする。このとき、距離LXRtsを、590μmとし、距離LXRteを、4200μmとすることができる。すなわち、距離LXRteと距離LXRtsとの差を、3610μmとすることができる。なお、側面SC3Rは、上部右電極21Rのy軸方向における負側の端部53Rであり、側面SC4Rは、上部右電極21Rのy軸方向における正側の端部54Rである。
 一方、上部左電極21Lのy軸方向の長さLYLtは、上部右電極21Rのy軸方向の長さLYRtよりも小さい。すなわち、上部左電極21Lの面積は、上部右電極21Rの面積よりも小さい。本実施の形態3における加速度センサ1dでは、長さLYRtと長さLYLtが、下記式(7)
Figure JPOXMLDOC01-appb-M000005
を満たす。ここで、
Figure JPOXMLDOC01-appb-M000006
であり、また、
Figure JPOXMLDOC01-appb-M000007
である。これにより、式(1)により示される静電容量Cbの容量値と、式(2)により示される静電容量Ctの容量値とを、等しくすることができる。
 本実施の形態3における加速度センサ1dでは、可動左電極31Lおよび可動右電極31Rからなる可動電極31は、-z軸方向に重力加速度GRが印加されているときに、重力加速度GRとは別に印加される加速度であって、微小な振動成分からなる加速度を、高精度に検出するためのものである。加速度により可動左電極31Lに印加される力と、加速度により可動右電極31Rに印加される力との差が十分大きくなるように、可動左電極31Lの質量と、可動右電極31Rの質量との質量差は、十分大きな値を有する。上述した微小な振動成分からなる加速度が可動電極31に印加されることにより、当該加速度により可動電極31に印加される力は、回転軸AX1を支点としたトルクとして可動右電極31Rおよび可動左電極31Lに作用し、回転軸AX1を中心として、可動右電極31Rおよび可動左電極31Lを、一体的に回転変位させる。
 可動左電極31Lと上部左電極21Lとにより、空間23を挟んで、非平行平板型コンデンサが形成され、可動右電極31Rと上部右電極21Rとにより、空間23を挟んで、非平行平板型コンデンサが形成される。
 図31に示すように、y軸方向の負側から正側に向かって視た場合、可動電極31が時計方向に回転変位したときは、可動左電極31Lと上部左電極21Lとの間の静電容量Cbは、大きくなる。一方、y軸方向の負側から正側に向かって視た場合、可動電極31が反時計回りに回転変位したときは、可動左電極31Lと上部左電極21Lとの間の静電容量Cbは、小さくなる。
 また、図31に示すように、y軸方向の負側から正側に向かって視た場合、可動電極31が時計方向に回転変位したときは、可動右電極31Rと上部右電極21Rとの間の静電容量Ctは、小さくなる。一方、y軸方向の負側から正側に向かって視た場合、可動電極31が反時計回りに回転変位したときは、可動右電極31Rと上部右電極21Rとの間の静電容量Ctは、大きくなる。
 本実施の形態3における加速度センサ1dの静電容量Cbは、実施の形態1における加速度センサ1の静電容量Cbに相当し、本実施の形態3における加速度センサ1dの静電容量Ctは、実施の形態1における加速度センサ1の静電容量Ctに相当する。つまり、加速度センサ1dは、検出回路により検出された静電容量Cbと、検出回路により検出された静電容量Ctとの容量差、すなわちΔC=Cb-Ctにより算出される出力ΔCに基づいて、重力加速度より小さい鉛直方向の加速度振動を検出する。すなわち、加速度センサ1dは、静電容量Cbと静電容量Ctとに基づいて、加速度を検出する。
 <本実施の形態の主要な特徴と効果>
 本実施の形態3における加速度センサ1dにおいて、距離LXLtsが距離LXRtsよりも短く、かつ、距離LXLteが距離LXRteよりも短いことは、実施の形態1の加速度センサ1において、距離LXbsが距離LXtsよりも短く、かつ、距離LXbeが距離LXteよりも短いことに相当する。そのため、本実施の形態3でも、本実施の形態1の効果に相当する効果を有し、感度が高く、消費電力が低く、印加された加速度に対する出力の線形性が高い加速度センサを提供することができる。
 一方、本実施の形態3における加速度センサ1dでは、ベース層BLは、実施の形態1の下部電極11(図2参照)に相当する電極を有しない。そのため、加速度センサの製造工程数を削減することができ、加速度センサの製造コストを低減することができる。
 <実施の形態3の変形例>
 実施の形態3における加速度センサ1dでは、可動左電極31Lのz軸方向の厚さを、可動右電極31Rのz軸方向の厚さよりも薄くすることにより、可動左電極31Lの質量MSLを、可動右電極31Rの質量MSRよりも小さくした。しかし、質量MSLと距離LXLとの積を、質量MSRと距離LXRとの積よりも小さくすることにより、加速度により可動電極31に印加される力が、回転軸AX1を支点としたトルクとして可動電極31に印加されればよい。そのため、可動左電極31Lのz軸方向の厚さを、可動右電極31Rのz軸方向の厚さよりも薄くする必要はない。したがって、可動左電極31Lのz軸方向の厚さを、可動右電極31Rのz軸方向の厚さと等しくする一方、距離LXLを距離LXRよりも小さくした例を、実施の形態3の変形例として、図32に示す。図32は、実施の形態3の変形例の加速度センサの平面図である。
 図32に示すように、本変形例の加速度センサ1eでは、距離LXLを距離LXRよりも小さくすることにより、質量MSLと距離LXLとの積を、質量MSRと距離LXRとの積よりも小さくする。これにより、実施の形態3の加速度センサ1dと同様の効果が得られる。
 なお、実施の形態3では、分かりやすい例として、距離LXLteと距離LXLtsとの差(LXLte-LXLts)と距離LXRteと距離LXRtsとの差(LXRte-LXRts)を、いずれも3610μmにした。しかし、距離LXLtsが距離LXRtsよりも短く、かつ、距離LXLteが距離LXRteよりも短ければよく、距離LXLteと距離LXLtsとの差と、距離LXRteと距離LXRtsとの差とを、等しくする必要はない。重力加速度GRが印加された静止状態でのギャップ長GAPLtおよびGAPRtと、距離LXLts、LXLte、LXRtsおよびLXRteと、長さLYLtおよびLYRtとが、式(7)~式(10)を満たすように設定することにより、実施の形態3と同様の効果が得られる。
 (実施の形態4)
 次に、実施の形態4の加速度センサについて説明する。実施の形態4の加速度センサでは、回転軸AX1側の部分の下部電極11の上面の高さが、回転軸AX1側と反対側の部分の下部電極11の上面の高さよりも高く、回転軸AX1側の部分の上部電極21の下面の高さが、回転軸AX1側と反対側の部分の上部電極21の下面の高さよりも高い。
 <加速度センサの構成>
 図33は、実施の形態4の加速度センサの断面図である。図33は、実施の形態1における図7の断面図に相当する断面図である。
 図33に示すように、本実施の形態4における加速度センサ1fは、ベース層BLと、メンブレン層MLと、キャップ層CLと、を有する。また、本実施の形態4における加速度センサ1fは、空間13および23の形状、ならびに、可動電極31のy軸方向の長さを除き、比較例2の加速度センサ201の構造と同様の構造を有する。
 すなわち、加速度センサ1fも、ベース基板10と、ベース基板10の主面としての上面上に固定された固定部33(図6参照)と、平面視において、x軸方向における固定部33の一方の側に配置された可動電極31と、可動電極31の下面と対向配置された下部電極11と、可動電極31の上面と対向配置された上部電極21と、を有する。可動電極31の固定部33側の端部61は、固定部33に接続されている。また、可動電極31は、ねじれバネ32aおよび32b(図6参照)の回転軸AX1を中心として回転変位可能である。
 なお、本実施の形態4における加速度センサ1fでは、可動電極31のy軸方向の長さを3.1mmとし、実施の形態1の加速度センサ1と略同じ容量値に設定している。
 下部電極11は、領域11aおよび領域11bを含む。領域11aは、下部電極11のうち、回転軸AX1側の領域、すなわち固定部33側の領域である。領域11bは、下部電極11のうち、回転軸AX1側と反対側の領域、すなわち固定部33側と反対側の領域であり、平面視において、領域11aを挟んで固定部33と反対側に位置する。
 上部電極21は、領域21aおよび領域21bを含む。領域21aは、上部電極21のうち、回転軸AX1側の領域、すなわち固定部33側の領域である。領域21bは、上部電極21のうち、回転軸AX1側と反対側の領域、すなわち固定部33側と反対側の領域であり、平面視において、領域21aを挟んで固定部33と反対側に位置する。
 このとき、領域11aの上面の高さは、領域11bの上面の高さよりも高く、領域21aの下面の高さは、領域21bの下面の高さよりも高い。
 可動電極31の回転軸AX1側(図33中左側)の端部61の下端と、領域11aの上面とのz軸方向の距離を、距離LZb1とする。また、可動電極31の回転軸AX1側(図33中左側)の端部61の上端と、領域11bの上面とのz軸方向の距離を、距離LZb2とする。このとき、距離LZb1は、距離LZb2よりも短い。
 一方、可動電極31の回転軸AX1側(図33中左側)の端部61の上端と、領域21aの下面とのz軸方向の距離を、距離LZt1とする。また、可動電極31の回転軸AX1側(図33中左側)の端部61の上端と、領域21bの上面とのz軸方向の距離を、距離LZt2とする。このとき、距離LZt1は、距離LZt2よりも長い。
 例えば、領域11aと領域11bとの間に、高さ1.2μmの段差が形成され、領域21aと領域21bとの間に、高さ1.2μmの段差が形成されている。
 なお、距離LZb1を、回転軸AX1と領域11aの上面とのz軸方向の距離と定義し、距離LZb2を、回転軸AX1と領域11bの上面とのz軸方向の距離と定義してもよい。また、距離LZt1を、回転軸AX1と領域21aの下面とのz軸方向の距離と定義し、距離LZt2を、回転軸AX1と領域21bの下面とのz軸方向の距離と定義してもよい。
 これにより、本実施の形態4でも、実施の形態1と同様に、回転軸AX1側と反対側の部分の可動電極31の、静電容量Cb、静電容量Cbの1次導関数Cb’、および、静電容量Cbの2次導関数Cb”への寄与が、小さくなる。また、回転軸AX1側の部分の可動電極31の、静電容量Ct、静電容量Ctの1次導関数Ct’、および、静電容量Ctの2次導関数Ct”への寄与が、小さくなる。したがって、本実施の形態4でも、比較例2に比べ、1次導関数Cb’と1次導関数Ct’との差、および、2次導関数Cb”と2次導関数Ct”との差を、小さくすることができる。
 なお、x軸方向の領域11aの中心位置における、可動電極31と領域11aとの間のz軸方向の距離を、ギャップ長GAPb1と定義し、x軸方向の領域11bの中心位置における、可動電極31と領域11bとの間のz軸方向の距離を、ギャップ長GAPb2と定義する。また、x軸方向の領域21aの中心位置における、可動電極31と領域21aとの間のz軸方向の距離を、ギャップ長GAPt1と定義し、x軸方向の領域21bの中心位置における、可動電極31と領域21bとの間のz軸方向の距離を、ギャップ長GAPt2と定義する。
 図34は、実施の形態4における、可動電極と下部電極との間の静電容量、および、可動電極と上部電極との間の静電容量のギャップ長依存性を示すグラフである。図34の横軸は、図13の横軸と同様に、ギャップ長GAPbの変化量ΔGAPb、および、ギャップ長GAPtの変化量ΔGAPtを示す。
 なお、図34では、ギャップ長GAPbを、ギャップ長GAPb1およびGAPb2の大きい方と定義し、ギャップ長GAPtを、ギャップ長GAPt1およびGAPt2の大きい方と定義している。
 本実施の形態4の加速度センサ1fでは、前述したように、距離LZb1が距離LZb2よりも短く、かつ、距離LZt1が距離LZt2よりも長い。そのため、ΔGAPb=ΔGAPt=0を満たす位置、すなわち鉛直方向(-z軸方向)に重力加速度GRが印加されている状態における可動電極31の静止位置において、静電容量Cbの1次導関数Cb’が静電容量Ctの1次導関数Ct’と等しく、かつ、静電容量Cbの2次導関数Cb”が静電容量Ctの2次導関数Ct”と等しい。そのため、ギャップ長GAPbの変化量ΔGAPb、および、ギャップ長GAPtの変化量ΔGAPtの広い範囲(±1μm未満)で、静電容量Cbが静電容量Ctと等しい。したがって、本実施の形態4における加速度センサ1fでも、本実施の形態1における加速度センサ1と同様の効果を有する。
 図35は、実施の形態4の加速度センサに加速度が印加されたときの出力ΔCの非線形性を示すグラフである。図35の横軸は、重力加速度GRで規格化した印加加速度を示す。図35の縦軸は、重力加速度をGRとし、静止位置を中心とした±0.95GRの範囲での出力ΔCをフルスケール(FS)としたときの、出力ΔCの非線形性を示す。
 図35に示す本実施の形態4における出力ΔCの非線形性は、図17に示した比較例1および比較例2のいずれにおける出力ΔCの非線形性よりも小さくなっている。図35に示すように、フルスケール(FS)±0.95GRにおける非線形性は、本実施の形態4では2.4%FSであり、本実施の形態4では、図17に示した比較例1および比較例2のいずれに比べても非線形性が小さくなるため、本実施の形態4の効果は明白である。
 なお、好適には、距離LZb1は、距離LZt1よりも長い。これにより、距離LZb1および距離LZb2の各々が、距離LZt1および距離LZt2のいずれよりも長くなるので、重力加速度GRが印加された静止状態で、静電容量Cbと静電容量Ctとが等しくなるように、容易に調整することができる。
 図36および図37は、実施の形態4の加速度センサの平面図である。
 図36および図37に示すように、下部電極11のy軸方向の長さLYbは、上部電極21のy軸方向の長さLYtよりも短くてもよい。すなわち、下部電極11の面積は、上部電極21の面積よりも小さくてもよい。これにより、重力加速度GRが印加されていない静止状態において、静電容量Cbと、静電容量Ctとが等しく、静電容量Cbの1次導関数Cb’と、静電容量Ctの1次導関数Ct’とが等しく、かつ、静電容量Cbの2次導関数Cb”と、静電容量Ctの2次導関数Ct”とが等しくなるように、容易に調整することができる。
 なお、図36および図37に示すように、距離LXbsを距離LXtsと等しくすることができ、距離LXbeを距離LXteと等しくすることができる。これにより、可動電極31のx軸方向の長さを短くすることができ、加速度センサを小型化することができる。
 また、距離LXbsが距離LXtsと等しいとは、距離LXbsおよび距離LXtsの各々の、距離LXbsと距離LXtsとの平均値からの差がそれぞれ20%以下であることを意味する。また、距離LXbeが距離LXteと等しいとは、距離LXbeおよび距離LXteの各々の、距離LXbeと距離LXteとの平均値からの差がそれぞれ20%以下であることを意味する。
 <本実施の形態の主要な特徴と効果>
 本実施の形態4における加速度センサ1fでは、回転軸AX1側の部分の下部電極11の上面の高さが、回転軸AX1側と反対側の部分の下部電極11の上面の高さよりも高く、回転軸AX1側の部分の上部電極21の下面の高さが、回転軸AX1側と反対側の部分の上部電極21の下面の高さよりも高い。これにより、重力加速度GRが印加されているときの可動電極31の静止位置において、静電容量Cbの1次導関数Cb’を、静電容量Ctの1次導関数Ct’と等しくし、かつ、静電容量Cbの2次導関数Cb”を、静電容量Ctの2次導関数Ct”と等しくすることができ、線形性に優れた出力ΔCを出力することができる。そのため、感度が高く、消費電力が低く、印加された加速度に対する出力の線形性が高い加速度センサを提供することができる。
 <実施の形態4の第1変形例>
 本実施の形態4でも、実施の形態1と同様に、サーボ制御による方法を用いて加速度を検出することができる。以下では、サーボ制御による方法を用いて加速度を検出する加速度センサを、実施の形態4の第1変形例として、説明する。
 例えばサーボ電圧1Vを印加した時に下部電極11および上部電極21で発生するクーロン力の絶対値は、容量値とギャップ量の比であるから、本第1変形例では、下部電極11で2.9μN、上部電極21で2.9μNである。このように、本第1変形例では、例えばサーボ電圧1Vを印加した時に、下部電極11で発生するクーロン力が、上部電極21で発生するクーロン力と等しくなるため、サーボ制御が煩雑にならず、サーボ電圧を低電圧化することができる。
 したがって、本第1変形例でも、実施の形態4と同様に、重力加速度GRが印加されているときの可動電極31の静止位置において、静電容量Cbの1次導関数Cb’を静電容量Ctの1次導関数Ct’と等しくし、静電容量Cbの2次導関数Cb”を静電容量Ctの2次導関数Ct”と等しくすることができる。これにより、サーボ制御が煩雑にならず、サーボ電圧を低電圧化することができる。そのため、鉛直方向(-z軸方向)に印加される微小な振動加速度を高精度で検出できるか、または、加速度センサの消費電力を低減することができる。
 <実施の形態4の第2変形例>
 実施の形態4において、領域11a上に少なくとも空気の比誘電率よりも高い比誘電率を有する絶縁膜を形成することにより、距離LZb1を真空の誘電率で換算したときの実効的な距離が、距離LZb2を真空の誘電率で換算したときの実効的な距離より短くなるようにしてもよい。また、領域21b下に少なくとも空気の比誘電率よりも高い比誘電率を有する絶縁膜を形成することにより、距離LZt1を真空の誘電率で換算したときの実効的な距離が、距離LZt2を真空の誘電率で換算したときの実効的な距離より短くなるようにしてもよい。このような例を、実施の形態4の第2変形例として、図38に示す。図38は、実施の形態4の第2変形例の加速度センサの断面図である。図38は、図33の断面図に相当する断面図である。
 本第2変形例では、領域11aの上面の高さは、領域11bの上面の高さと等しいが、領域11a上に、下部絶縁膜15が形成されている。そのため、領域11a上に形成された下部絶縁膜15の上面の高さは、領域11bの上面の高さよりも高い。また、本第2変形例では、領域21aの下面の高さは、領域21bの下面の高さと等しいが、領域21b下に、上部絶縁膜25が形成されている。そのため、領域21aの下面の高さは、領域21b下に形成された上部絶縁膜25の下面の高さよりも高い。
 本第2変形例では、可動電極31の回転軸AX1側の端部61の下端と、領域11aの上面との間の、z軸方向の距離を、距離LZb1とし、可動電極31の回転軸AX1側の端部61の下端と、領域11bの上面との間の、z軸方向の距離を、距離LZb2とする。また、可動電極31の回転軸AX1側の端部61の上端と、領域21aの下面との間の、z軸方向の距離を、距離LZt1とし、可動電極31の回転軸AX1側の端部61の上端と、領域21bの下面との間の、z軸方向の距離を、距離LZt2とする。
 下部絶縁膜15および上部絶縁膜25の各々は、少なくとも空気の比誘電率よりも高い比誘電率を有する絶縁膜である。このような下部絶縁膜15および上部絶縁膜25を形成することにより、距離LZb1を真空の誘電率で換算したときの実効的な距離が、距離LZb2を真空の誘電率で換算したときの実効的な距離より短くなる。
 なお、領域11aの上面の高さが、領域11bの上面の高さと等しいとは、領域11aの上面の高さおよび領域11bの上面の高さの各々の、領域11aの上面の高さと領域11bの上面の高さとの平均値からの差がそれぞれ20%以下であることを意味する。また、領域21aの下面の高さが、領域21bの下面の高さと等しいとは、領域21aの下面の高さおよび領域21bの下面の高さの各々の、領域21aの下面の高さと領域21bの下面の高さとの平均値からの差がそれぞれ20%以下であることを意味する。
 例えば、領域11a上に、厚さ1.6μmの酸化シリコンからなる下部絶縁膜15が形成され、領域21b下に、厚さ1.6μmの酸化シリコンからなる上部絶縁膜25が形成されている。
 図39は、実施の形態4の第2変形例における、可動電極と下部電極との間の静電容量、および、可動電極と上部電極との間の静電容量のギャップ長依存性を示すグラフである。図39の横軸は、図13の横軸と同様に、ギャップ長GAPbの変化量ΔGAPb、および、ギャップ長GAPtの変化量ΔGAPtを示す。なお、ギャップ長GAPbおよびGAPtの定義は、実施の形態1と同様にすることができる。
 本実施の形態4の第2変形例の加速度センサ1gでは、距離LZb1を真空の誘電率で換算したときの実効的な距離が、距離LZb2を真空の誘電率で換算したときの実効的な距離よりも短い。また、距離LZt1を真空の誘電率で換算したときの実効的な距離が、距離LZt2を真空の誘電率で換算したときの実効的な距離よりも長い。そのため、ΔGAPb=ΔGAPt=0を満たす位置、すなわち鉛直方向(-z軸方向)に重力加速度GRが印加されている状態における可動電極31の静止位置において、静電容量Cbの1次導関数Cb’が静電容量Ctの1次導関数Ct’と等しく、かつ、静電容量Cbの2次導関数Cb”が静電容量Ctの2次導関数Ct”と等しい。すなわち、ギャップ長GAPbの変化量ΔGAPb、および、ギャップ長GAPtの変化量ΔGAPtの広い範囲(±1μm未満)で、静電容量Cbと静電容量Ctとは、一致している。したがって、本実施の形態4の第2変形例における加速度センサ1gでも、本実施の形態4における加速度センサ1fと同様の効果を有する。
 図40は、実施の形態4の第2変形例の加速度センサに加速度が印加されたときの出力ΔCの非線形性を示すグラフである。図40の横軸は、重力加速度GRで規格化した印加加速度を示す。図40の縦軸は、重力加速度を重力加速度GRとし、静止位置を中心としたときの±0.95GRの範囲での出力ΔCをフルスケール(FS)としたとき(以下では、「フルスケール(FS)±0.95GR」とも称する。)の、出力ΔCの非線形性を示す。
 図40に示す本第2変形例における出力ΔCの非線形性も、図35に示した実施の形態4における出力ΔCの非線形性と同様に、図17に示した比較例1および比較例2のいずれにおける出力ΔCにおける非線形性よりも小さくなっている。そのため、本第2変形例の効果も、実施の形態4の効果と同様に、明白である。
 なお、図38において二点鎖線で示すように、下部絶縁膜15が、領域11a上および領域11b上に形成されていてもよく、この場合、領域11a上に形成された部分の下部絶縁膜15の厚さが、領域11b上に形成された部分の下部絶縁膜15の厚さよりも厚ければよい。また、上部絶縁膜25が、領域21a下および領域21b下に形成されていてもよく、この場合、領域21a下に形成された部分の上部絶縁膜25の厚さが、領域21b下に形成された部分の上部絶縁膜25の厚さよりも薄ければよい。
 このような下部絶縁膜15を形成することにより、距離LZb1を真空の誘電率で換算したときの実効的な距離が、距離LZb2を真空の誘電率で換算したときの実効的な距離より短くなる。また、このような上部絶縁膜25を形成することにより、距離LZt1を真空の誘電率で換算したときの実効的な距離が、距離LZt2を真空の誘電率で換算したときの実効的な距離より長くなる。
 すなわち、本第2変形例は、電極と可動電極との間に、少なくとも空気の比誘電率よりも高い比誘電率を有する絶縁膜を形成することにより、絶縁膜を形成しない場合に比べ、可動電極と電極との間の距離を真空の誘電率で換算したときの実効的な距離を、短くするものである。
 <実施の形態4の第3変形例>
 あるいは、実施の形態4の加速度センサに代え、実施の形態3の加速度センサにおいて、回転軸AX1側の部分の上部左電極21Lの下面の高さが、回転軸AX1側と反対側の部分の上部左電極21Lの下面の高さよりも低くてもよい。また、回転軸AX1側の部分の上部右電極21Rの下面の高さが、回転軸AX1側と反対側の部分の上部右電極21Rの下面の高さよりも高くてもよい。このような例を、実施の形態4の第3変形例として、図41および図42に示す。
 図41は、実施の形態4の第3変形例の加速度センサの断面図である。図42は、実施の形態4の第3変形例の加速度センサの平面図である。図41は、図42のB-B線に沿った断面図である。図41は、重力加速度GRが-z軸方向に印加されている状態を示す。すなわち、図41は、重力加速度GRにより可動電極31が回転軸AX1を中心として回転変位した状態を示す。
 本第3変形例の加速度センサ1hでは、上部左電極21Lは、領域21Laおよび領域21Lbを含む。領域21Laは、上部左電極21Lのうち、回転軸AX1側の領域、すなわち固定部33(図27参照)側の領域である。領域21Lbは、上部左電極21Lのうち、回転軸AX1側と反対側の領域、すなわち固定部33側と反対側の領域であり、平面視において、領域21Laを挟んで固定部33と反対側に位置する。
 上部右電極21Rは、領域21Raおよび領域21Rbを含む。領域21Raは、上部右電極21Rのうち、回転軸AX1側の領域、すなわち固定部33側の領域である。領域21Rbは、上部右電極21Rのうち、回転軸AX1側と反対側の領域、すなわち固定部33側と反対側の領域であり、平面視において、領域21Raを挟んで固定部33と反対側に位置する。
 このとき、領域21Laの下面の高さは、領域21Lbの下面の高さよりも低く、領域21Raの下面の高さは、領域21Rbの下面の高さよりも高い。
 可動左電極31Lの回転軸AX1側の端部61L(図30参照)の上端と、領域21Laの下面とのz軸方向の距離を、距離LZLt1とする。また、可動左電極31Lの回転軸AX1側の端部61L(図30参照)の上端と、領域21Lbの下面とのz軸方向の距離を、距離LZLt2とする。このとき、距離LZLt1は、距離LZLt2よりも短い。
 一方、可動右電極31Rの回転軸AX1側の端部61R(図30参照)の上端と、領域21Raの下面とのz軸方向の距離を、距離LZRt1とする。また、可動右電極31Rの回転軸AX1側の端部61R(図30参照)の上端と、領域21Rbの下面とのz軸方向の距離を、距離LZRt2とする。このとき、距離LZRt1は、距離LZRt2よりも長い。
 なお、距離LZLt1を、回転軸AX1と領域21Laの下面とのz軸方向の距離と定義し、距離LZLt2を、回転軸AX1と領域21Lbの下面とのz軸方向の距離と定義してもよい。また、距離LZRt1を、回転軸AX1と領域21Raの下面とのz軸方向の距離と定義し、距離LZRt2を、回転軸AX1と領域21Rbの下面とのz軸方向の距離と定義してもよい。
 このような場合、領域21Laに比べ、領域21Lbの、静電容量Cbの1次導関数Cb’および静電容量Cbの2次導関数Cb”への寄与が、小さくなる。また、領域21Raに比べ、領域21Rbの、静電容量Ctの1次導関数Ct’および静電容量Ctの2次導関数Ct”への寄与が、大きくなる。そのため、重力加速度GRが印加されているときの可動電極31の静止位置において、静電容量Cbの1次導関数Cb’を、静電容量Ctの1次導関数Ct’と等しくし、かつ、静電容量Cbの2次導関数Cb”を、静電容量Ctの2次導関数Ct”とを等しくすることができ、線形性に優れたΔCを出力することができる。したがって、感度が高く、消費電力が低く、印加された加速度に対する出力の線形性が高い加速度センサを提供することができる。
 なお、実施の形態3の加速度センサにおいても、本実施の形態4の第2変形例と同様に、領域21Laの下面の高さを、領域21Lbの下面の高さと等しくし、領域21La下に少なくとも空気の比誘電率よりも高い比誘電率を有する絶縁膜を形成してもよい。これにより、距離LZLt1を真空の誘電率で換算したときの実効的な距離を、距離LZLt2を真空の誘電率で換算したときの実効的な距離よりも短くすることができる。
 また、領域21Raの下面の高さを、領域21Rbの下面の高さと等しくし、領域21Rb下に少なくとも空気の比誘電率よりも高い比誘電率を有する絶縁膜を形成してもよい。これにより、距離LZRt1を真空の誘電率で換算したときの実効的な距離を、距離LZRt2を真空の誘電率で換算したときの実効的な距離よりも長くすることができる。
 以上、本発明者によってなされた発明をその実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。
 本発明は、加速度センサに適用して有効である。
 1、1a~1h 加速度センサ
10 ベース基板
11 下部電極
11a、11b、21a、21b 領域
12a、12b、22a、22b ギャップ調整膜
13、23、35 空間
14 サーボ制御用下部電極
15 下部絶縁膜
20 キャップ基板
21 上部電極
21L 上部左電極
21La、21Lb、21Ra、21Rb 領域
21R 上部右電極
24 サーボ制御用上部電極
25 上部絶縁膜
31 可動電極
31L 可動左電極
31R 可動右電極
32a、32b ねじれバネ
33 固定部
34 枠
36a、36b、37a、37b 端部
38a、38b 接続部
41~44、51、51L、51R、52、52L、52R 端部
53、53L、53R、54、54L、54R 端部
61、61L、61R、62、62L、62R 端部
63、63L、63R、64、64L、64R 端部
AR1、AR2 領域
AX1 回転軸
BL ベース層
CL キャップ層
G1 起振源
G2a~G2e 受振器
G3 地表
G4a、G4b 境界
GAPb、GAPb1、GAPb2、GAPLt ギャップ長
GAPRt、GAPt、GAPt1、GAPt2 ギャップ長
GCL、GCR 重心
GR 重力加速度
LXbe、LXbs、LXL、LXLme、LXLms 距離
LXLte、LXLts、LXme 距離
LXms、LXR、LXRme、LXRms 距離
LXRte、LXRts、LXte、LXts 距離
LYb、LYLt、LYRt、LYt 長さ
LZb、LZb1、LZb2、LZLt1、LZLt2 距離
LZRt1、LZRt2、LZt、LZt1、LZt2 距離
ML メンブレン層
SB1~SB4 側面
SC1、SC1L、SC1R、SC2、SC2L、SC2R 側面
SC3、SC3L、SC3R、SC4、SC4L、SC4R 側面
SM1、SM1L、SM1R、SM2、SM2L、SM2R 側面
SM3、SM3L、SM3R、SM4、SM4L、SM4R 側面

Claims (15)

  1.  基板と、
     前記基板の主面上に固定された固定部と、
     平面視において、第1方向における前記固定部の第1の側に配置された可動部と、
     前記可動部の下面と対向配置された第1電極と、
     前記可動部の上面と対向配置された第2電極と、
     を有し、
     前記可動部の前記固定部側の第1端部は、前記固定部に接続され、
     前記可動部と前記第1電極との間の第1静電容量、および、前記可動部と前記第2電極との間の第2静電容量に基づいて、加速度が検出され、
     前記第1電極の前記固定部側の第2端部と、前記固定部との間の、前記第1方向の距離を、第1距離とし、
     前記第1電極の前記固定部側と反対側の第3端部と、前記固定部との間の、前記第1方向の距離を、第2距離とし、
     前記第2電極の前記固定部側の第4端部と、前記固定部との間の、前記第1方向の距離を、第3距離とし、
     前記第2電極の前記固定部側と反対側の第5端部と、前記固定部との間の、前記第1方向の距離を、第4距離としたとき、
     前記第1距離は、前記第3距離よりも短く、
     前記第2距離は、前記第4距離よりも短い、加速度センサ。
  2.  請求項1記載の加速度センサにおいて、
     前記第1端部と、前記第1電極との間の、前記主面に垂直な第2方向の距離を、第5距離とし、
     前記第1端部と前記第2電極との間の前記第2方向の距離を、第6距離としたとき、
     前記第5距離は、前記第6距離よりも長い、加速度センサ。
  3.  請求項1記載の加速度センサにおいて、
     前記第1電極の面積は、前記第2電極の面積よりも小さい、加速度センサ。
  4.  請求項1記載の加速度センサにおいて、
     前記可動部は、前記固定部に対して、平面視において前記第1方向と交差する第3方向に沿った軸を中心として、回転変位可能である、加速度センサ。
  5.  請求項4記載の加速度センサにおいて、
     前記第1電極と前記軸との間の、前記主面に垂直な第4方向の距離を、第7距離とし、
     前記第2電極と前記軸との間の前記第4方向の距離を、第8距離としたとき、
     前記第7距離は、前記第8距離よりも長い、加速度センサ。
  6.  請求項4記載の加速度センサにおいて、
     前記固定部に接続された弾性変形部を有し、
     前記弾性変形部は、前記第3方向に延在し、
     前記第3方向における前記弾性変形部の第2の側の第6端部は、前記固定部に接続され、
     前記弾性変形部の前記第6端部と反対側の第7端部は、前記可動部の前記第1端部に接続され、
     前記第7端部は、前記第7端部が前記第6端部に対してねじれることにより、前記軸を中心として回転変位可能である、加速度センサ。
  7.  請求項6記載の加速度センサにおいて、
     前記弾性変形部の、前記主面に垂直な第5方向の厚さは、前記弾性変形部の前記第1方向の幅よりも大きい、加速度センサ。
  8.  基板と、
     前記基板の主面上に固定された固定部と、
     平面視において、第1方向における前記固定部の第1の側に配置された可動部と、
     前記可動部の下面と対向配置された第1電極と、
     前記可動部の上面と対向配置された第2電極と、
     を有し、
     前記可動部の前記固定部側の第1端部は、前記固定部に接続され、
     前記可動部と前記第1電極との間の第1静電容量、および、前記可動部と前記第2電極との間の第2静電容量に基づいて、加速度が検出され、
     前記第1電極は、
     第1領域と、
     平面視において、前記第1領域を挟んで前記固定部と反対側に位置する第2領域と、
     を含み、
     前記第2電極は、
     第3領域と、
     平面視において、前記第3領域を挟んで前記固定部と反対側に位置する第4領域と、
     を含み、
     前記第1領域の上面の高さは、前記第2領域の上面の高さよりも高く、
     前記第3領域の下面の高さは、前記第4領域の下面の高さよりも高い、加速度センサ。
  9.  請求項8記載の加速度センサにおいて、
     前記第1端部と前記第1領域との間の、前記主面に垂直な第2方向の距離を、第1距離とし、
     前記第1端部と前記第3領域との間の前記第2方向の距離を、第2距離としたとき、
     前記第1距離は、前記第2距離よりも長い、加速度センサ。
  10.  請求項8記載の加速度センサにおいて、
     前記第1電極の面積は、前記第2電極の面積よりも小さい、加速度センサ。
  11.  請求項8記載の加速度センサにおいて、
     前記可動部は、前記固定部に対して、平面視において前記第1方向と交差する第3方向に沿った軸を中心として、回転変位可能である、加速度センサ。
  12.  請求項11記載の加速度センサにおいて、
     前記第1領域と前記軸との間の、前記主面に垂直な第4方向の距離を、第3距離とし、
     前記第3領域と前記軸との間の前記第4方向の距離を、第4距離としたとき、
     前記第3距離は、前記第4距離よりも長い、加速度センサ。
  13.  請求項8記載の加速度センサにおいて、
     前記第1電極の前記固定部側の第2端部と、前記固定部との間の、前記第1方向の距離を、第5距離とし、
     前記第1電極の前記固定部側と反対側の第3端部と、前記固定部との間の、前記第1方向の距離を、第6距離とし、
     前記第2電極の前記固定部側の第4端部と、前記固定部との間の、前記第1方向の距離を、第7距離とし、
     前記第2電極の前記固定部側と反対側の第5端部と、前記固定部との間の、前記第1方向の距離を、第8距離としたとき、
     前記第5距離は、前記第7距離と等しく、
     前記第6距離は、前記第8距離と等しい、加速度センサ。
  14.  基板と、
     前記基板の主面上に固定された固定部と、
     平面視において、第1方向における前記固定部の第1の側に配置された第1可動部と、
     平面視において、前記固定部を挟んで前記第1可動部と反対側に配置された第2可動部と、
     前記第1可動部の上面と対向配置された第1電極と、
     前記第2可動部の上面と対向配置された第2電極と、
     を有し、
     前記第1可動部の前記固定部側の第1端部は、前記固定部に接続され、
     前記第2可動部の前記固定部側の第2端部は、前記固定部に接続され、
     前記第1可動部および前記第2可動部は、前記固定部に対して、平面視において前記第1方向と交差する第2方向に沿った軸を中心として、一体的に回転変位可能であり、
     前記第1可動部と前記第1電極との間の第1静電容量、および、前記第2可動部と前記第2電極との間の第2静電容量に基づいて、加速度が検出され、
     前記第1電極の前記固定部側の第3端部と、前記軸との間の、前記第1方向の距離を、第1距離とし、
     前記第1電極の前記固定部側と反対側の第4端部と、前記軸との間の、前記第1方向の距離を、第2距離とし、
     前記第2電極の前記固定部側の第5端部と、前記軸との間の、前記第1方向の距離を、第3距離とし、
     前記第2電極の前記固定部側と反対側の第6端部と、前記軸との間の、前記第1方向の距離を、第4距離としたとき、
     前記第1距離は、前記第3距離よりも短く、
     前記第2距離は、前記第4距離よりも短い、加速度センサ。
  15.  請求項14記載の加速度センサにおいて、
     前記第1可動部の質量を第1質量とし、
     前記第2可動部の質量を第2質量とし、
     前記第1可動部の重心と前記軸との間の前記第1方向の距離を、第5距離とし、
     前記第2可動部の重心と前記軸との間の前記第1方向の距離を、第6距離としたとき、
     重力の方向が、前記第1電極から前記第1可動部に向かう方向である場合、
     前記第1質量と前記第5距離との積は、前記第2質量と前記第6距離との積よりも小さく、
     重力の方向が、前記第1可動部から前記第1電極に向かう方向である場合、
     前記第1質量と前記第5距離との積は、前記第2質量と前記第6距離との積よりも大きい、加速度センサ。
PCT/JP2014/079895 2014-11-11 2014-11-11 加速度センサ WO2016075761A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016558480A JP6330055B2 (ja) 2014-11-11 2014-11-11 加速度センサ
US15/511,444 US10527642B2 (en) 2014-11-11 2014-11-11 Acceleration sensor
PCT/JP2014/079895 WO2016075761A1 (ja) 2014-11-11 2014-11-11 加速度センサ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/079895 WO2016075761A1 (ja) 2014-11-11 2014-11-11 加速度センサ

Publications (1)

Publication Number Publication Date
WO2016075761A1 true WO2016075761A1 (ja) 2016-05-19

Family

ID=55953874

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/079895 WO2016075761A1 (ja) 2014-11-11 2014-11-11 加速度センサ

Country Status (3)

Country Link
US (1) US10527642B2 (ja)
JP (1) JP6330055B2 (ja)
WO (1) WO2016075761A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018230057A1 (ja) * 2017-06-15 2018-12-20 株式会社日立製作所 地下探査システム

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6631108B2 (ja) * 2015-09-15 2020-01-15 セイコーエプソン株式会社 物理量センサー、センサーデバイス、電子機器および移動体
JP6437429B2 (ja) * 2015-12-25 2018-12-12 株式会社日立製作所 加速度センサ、受振器および地震探査システム
JP2019060675A (ja) * 2017-09-26 2019-04-18 セイコーエプソン株式会社 物理量センサー、物理量センサー装置、電子機器、および移動体
JP7456988B2 (ja) * 2021-09-15 2024-03-27 株式会社東芝 センサ及び電気装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1022514A (ja) * 1996-07-03 1998-01-23 Zexel:Kk 高感度加速度センサの製造方法及び高感度加速度センサ
JP2008513800A (ja) * 2004-09-23 2008-05-01 ヴェーテーイー テクノロジーズ オサケユキチュア 容量性センサーおよび該容量性センサーを製造する方法
JP2010517014A (ja) * 2007-01-18 2010-05-20 フリースケール セミコンダクター インコーポレイテッド 差動容量型センサとその製造方法
JP2013040856A (ja) * 2011-08-17 2013-02-28 Seiko Epson Corp 物理量センサー及び電子機器
JP2013519880A (ja) * 2010-02-10 2013-05-30 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 改良された慣性要素を利用する微小電子機械の磁界センサ
US20130319117A1 (en) * 2012-05-29 2013-12-05 Freescale Semiconductor, Inc. Mems sensor with stress isolation and method of fabrication

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3433401B2 (ja) * 1995-05-18 2003-08-04 アイシン精機株式会社 静電容量型加速度センサ
FR2769369B1 (fr) 1997-10-08 1999-12-24 Sercel Rech Const Elect Accelerometre a plaque mobile, avec moteur electrostatique de contre-reaction
US6196067B1 (en) * 1998-05-05 2001-03-06 California Institute Of Technology Silicon micromachined accelerometer/seismometer and method of making the same
JP3341214B2 (ja) 2001-02-15 2002-11-05 オムロン株式会社 半導体加速度センサ用の検出装置
JP5187441B2 (ja) 2009-04-24 2013-04-24 株式会社村田製作所 Mems素子およびその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1022514A (ja) * 1996-07-03 1998-01-23 Zexel:Kk 高感度加速度センサの製造方法及び高感度加速度センサ
JP2008513800A (ja) * 2004-09-23 2008-05-01 ヴェーテーイー テクノロジーズ オサケユキチュア 容量性センサーおよび該容量性センサーを製造する方法
JP2010517014A (ja) * 2007-01-18 2010-05-20 フリースケール セミコンダクター インコーポレイテッド 差動容量型センサとその製造方法
JP2013519880A (ja) * 2010-02-10 2013-05-30 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 改良された慣性要素を利用する微小電子機械の磁界センサ
JP2013040856A (ja) * 2011-08-17 2013-02-28 Seiko Epson Corp 物理量センサー及び電子機器
US20130319117A1 (en) * 2012-05-29 2013-12-05 Freescale Semiconductor, Inc. Mems sensor with stress isolation and method of fabrication

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018230057A1 (ja) * 2017-06-15 2018-12-20 株式会社日立製作所 地下探査システム

Also Published As

Publication number Publication date
JP6330055B2 (ja) 2018-05-23
US10527642B2 (en) 2020-01-07
US20170292970A1 (en) 2017-10-12
JPWO2016075761A1 (ja) 2017-05-25

Similar Documents

Publication Publication Date Title
JP6330055B2 (ja) 加速度センサ
US10209269B2 (en) Z-axis microelectromechanical detection structure with reduced drifts
US11105829B2 (en) MEMS accelerometer
US7617729B2 (en) Accelerometer
US10274512B2 (en) Microelectromechanical sensor device with reduced stress sensitivity
US11267694B2 (en) MEMS sensor structure comprising mechanically preloaded suspension springs
CN109319729B (zh) Mems器件及其形成方法和形成叉指式电容电极结构的方法
WO2013179647A2 (ja) 物理量センサ
US20160370403A1 (en) Capacitive accelerometer devices and wafer level vacuum encapsulation methods
KR20190016006A (ko) 가속도계
US10137851B2 (en) MEMS sensor and a semiconductor package
WO2013172010A1 (ja) センサ装置
JP6606601B2 (ja) 加速度センサ
US20200158751A1 (en) Accelerometer
CN212568844U (zh) Mems惯性传感器和电子设备
US20200174035A1 (en) Mems accelerometric sensor having high accuracy and low sensitivity to temperature and aging
JP2015125124A (ja) 多軸センサ
WO2014057623A1 (ja) 加速度センサ
CN105388323B (zh) 振动式传感器装置
JP2014215294A (ja) Mems素子
JP4983107B2 (ja) 慣性センサおよび慣性センサの製造方法
US20190112181A1 (en) Stabile micromechanical devices
JP2015017819A (ja) 加速度センサ
JP6074854B2 (ja) 加速度センサ
JP6032407B2 (ja) 加速度センサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14905754

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016558480

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15511444

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14905754

Country of ref document: EP

Kind code of ref document: A1