WO2016074486A1 - 一种激光打标振镜片的防抖结构及包含其的振镜腔 - Google Patents

一种激光打标振镜片的防抖结构及包含其的振镜腔 Download PDF

Info

Publication number
WO2016074486A1
WO2016074486A1 PCT/CN2015/082721 CN2015082721W WO2016074486A1 WO 2016074486 A1 WO2016074486 A1 WO 2016074486A1 CN 2015082721 W CN2015082721 W CN 2015082721W WO 2016074486 A1 WO2016074486 A1 WO 2016074486A1
Authority
WO
WIPO (PCT)
Prior art keywords
collet
rotating
lens
vibrating lens
structure according
Prior art date
Application number
PCT/CN2015/082721
Other languages
English (en)
French (fr)
Inventor
徐强
Original Assignee
广州创乐激光设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201420685767.8U external-priority patent/CN204262589U/zh
Priority claimed from CN201420685736.2U external-priority patent/CN204263722U/zh
Application filed by 广州创乐激光设备有限公司 filed Critical 广州创乐激光设备有限公司
Publication of WO2016074486A1 publication Critical patent/WO2016074486A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems

Definitions

  • the invention belongs to the technical field of laser marking equipment, and particularly relates to an anti-shake structure of a laser marking vibration lens and a galvanometer cavity including the anti-shake structure.
  • a galvanometer system which includes a galvanometer motor and a vibrating lens.
  • One end of the vibrating lens is fixedly connected with the output shaft of the galvanometer motor, and is driven by the galvanometer motor.
  • the vibrating lens is oscillated to adjust the angle of the incident laser beam, and the laser beam after the angle is adjusted is struck on the object to be marked to form a desired pattern.
  • the high-speed oscillation of the vibrating lens during the marking process makes the other end of the vibrating lens prone to undesired jitter, which causes the whole vibration of the vibrating lens, especially in order to make the beam scanning range more comprehensive, and the vibrating lens on the marking machine often does.
  • the object of the present invention is to solve the above deficiencies, and to design an anti-shake structure of a laser marking vibration lens, which overcomes the unnecessary shaking of the vibrating lens in the traditional marking process and greatly improves the marking precision.
  • the invention also designs a galvanometer cavity of the laser marking machine, and the galvanometer cavity adopts the anti-shake structure, which improves the marking precision and the stability of the whole machine.
  • An anti-shake structure of a laser marking vibration lens comprising a vibrating lens, a galvanometer motor and a support plate for fixing the galvanometer motor, wherein an output shaft of the galvanometer motor is connected to one end of the vibrating lens for driving the vibration
  • the lens rotates; further comprising a fixing frame and a clamping portion for clamping the other end of the vibration lens, wherein the clamping portion rotates synchronously with the vibrating lens;
  • the fixing frame is provided with a rotating support portion, and the clamping portion rotates
  • the support portion is rotatably connected.
  • the invention has the beneficial effects that the invention provides a clamping portion at the end of the vibrating lens, the clamping portion is fixed relative to the vibrating lens, and the clamping portion is rotatably connected with the rotating supporting portion for laser marking
  • the clamping portion rotates synchronously with the vibrating lens, which overcomes the problem of shaking of the vibrating lens during the conventional laser marking, greatly improving the precision and operational safety of the laser marking;
  • the proper connection and arrangement between the rotating support and the mounting increases the overall balance and stability of the marking device at a low cost.
  • the clamping portion comprises a collet and a rotating member
  • the vibrating lens is clamped on one side of the collet
  • the rotating member is fixed on the other side of the collet
  • the rotating member is rotatably connected with the rotating supporting portion.
  • an end of the rotating member near the rotating support portion is provided with a beading expansion hole
  • the top bead expansion hole has an opening facing the rotating support portion, and the opening diameter is smaller than the inner diameter of the hole
  • the top bead expansion hole is sequentially arranged from the inner hole to the opening Pressure spring and a top bead, the diameter of the top bead is larger than the diameter of the opening, and the top bead protrudes out of the opening under the action of the compression spring
  • the rotating support portion includes a concave cavity matching the shape of the protruding portion of the top bead, and the convexity of the top bead The outlet portion bears against the inner wall of the cavity.
  • the fixing frame is provided with a screw hole, and an axial direction of the screw hole coincides with a rotation axis direction of the clamping portion, and the rotation support portion and the screw hole are matched and screwed.
  • the galvanometer motor drives the vibrating lens and the clamping portion to rotate synchronously.
  • the protruding portion of the bead rotates in the cavity of the rotating support portion and presses against the inner wall of the cavity, which is convenient and safe to operate.
  • the clamping position of the clamping portion and the vibrating lens in the axial direction can be adjusted by adjusting the screwing position of the rotating support portion on the fixing frame to meet the specific requirements during marking.
  • the collet comprises a first collet, a second collet and a mounting;
  • the first collet is provided with a card slot matching the shape of the end of the vibrating lens;
  • the second collet includes The left clamping block and the right clamping block, the left clamping block and the right clamping block are engaged to form a cavity that can clamp the mounting member;
  • the mounting member is for mounting and fixing the rotating member.
  • the clamping portion comprises a collet and a rotating shaft disposed on the collet, the rotating supporting portion is a bearing, and the collet is rotatably coupled to the bearing through a rotating shaft.
  • the improved solution is provided with a collet at one end of the vibrating lens, the collet is fixed relative to the vibrating lens, the collet is rotatably connected with the bearing through the rotating shaft, and the bearing is mounted on the fixing frame for driving the galvanometer motor during laser marking
  • the lower chuck rotates synchronously with the vibrating lens, which overcomes the jitter problem of the vibrating lens during the conventional laser marking, greatly improves the precision and operational safety of the laser marking; and the reasonable connection and arrangement between the chuck, the bearing and the fixing frame
  • the overall balance and stability of the marking device is improved, and the marking error is further reduced.
  • the collet includes a first collet and a second collet; the first collet is provided with a card slot matching the shape of the end of the vibrating lens; and the second collet includes a left grip The block and the right clamping block, the left clamping block and the right clamping block are engaged to form a cavity that can grip the rotating shaft.
  • the left and right clamping blocks are engaged by the pin, and the rotating shaft is tightly clamped at one end. If the long-term use causes wear or failure, the rotating shaft or the clamping block can be replaced separately, thereby avoiding the scrapping of the entire anti-shake structure and saving. production cost.
  • the left clamping block or the right clamping block is integrally formed with the first clamping head.
  • the left and right clamping blocks are joined by pins, and the mounting members are tightly clamped, which not only improves the tightness of the connection between the clamping portion and the rotating member, but also reduces the space required for the installation of the anti-shake structure, and makes the entire marking device volume If the wearer or the rotating part wears or fails for a long time, it can be replaced separately, which avoids the scrapping of the entire anti-shake structure, saves manufacturing cost and is more convenient to install.
  • one end of the fixing frame is fixed on the support plate, and the end of the fixing frame extends to the outside of the clamping portion of the end portion of the vibrating lens, and the rotating supporting portion is mounted on the fixing frame.
  • the fixing frame is L-shaped.
  • the fixing frame is arranged parallel to the vibrating lens, which improves the balance and stability of the anti-shake structure.
  • the galvanometer motor is mounted on one side of the support plate, and the oscillating lens is located on the other side of the support plate, and an output shaft of the galvanometer motor is connected to the oscillating lens through the support plate.
  • a galvanometer cavity of a laser marking machine wherein the oscillating mirror cavity is provided with the anti-shake structure described above.
  • the anti-shake structure of the galvanometer cavity is designed to prevent unnecessary vibration of the vibrating lens during the marking process, thereby improving the hitting
  • the accuracy of the mark and the reasonable layout and connection of the anti-shake structure improve the stability of the entire galvanometer cavity.
  • FIG. 1 is a schematic structural view of an anti-shake structure according to Embodiment 1 of the present invention.
  • Figure 2 is an exploded view of the structure of Figure 1;
  • FIG. 3 is an enlarged view of a joint between a clamping portion and a rotating support portion in the anti-shake structure according to the first embodiment of the present invention
  • FIG. 4 is a schematic structural view of a collet in an anti-shake structure according to Embodiment 1 of the present invention.
  • Figure 5 is an exploded view of Figure 4.
  • Figure 6 is a rear elevational view of Figure 4.
  • Figure 7 is a schematic structural view of a mounting member in the first embodiment of the present invention.
  • Figure 8 is a schematic structural view of a rotating member in the first embodiment of the present invention.
  • Figure 9 is a schematic structural view of a rotary support portion in the first embodiment of the present invention.
  • FIG. 10 is a schematic structural view of a galvanometer cavity according to Embodiment 1 of the present invention.
  • FIG. 11 is a schematic structural view of an anti-shake structure according to Embodiment 2 of the present invention.
  • Figure 12 is an exploded view of the structure of Figure 11;
  • Figure 13 is an enlarged view of the joint of the collet and the bearing in the anti-shake structure of the second embodiment of the present invention.
  • FIG. 14 is a schematic structural view of a collet in an anti-shake structure according to Embodiment 2 of the present invention.
  • Figure 15 is an exploded view of Figure 14;
  • Figure 16 is a rear elevational view of Figure 14;
  • Figure 17 is a schematic view showing the structure of a rotating shaft on the chuck in the second embodiment of the present invention.
  • FIG. 18 is a schematic structural view of a fixing frame in Embodiment 2 of the present invention.
  • Figure 19 is a schematic view showing the structure of a galvanometer cavity according to a second embodiment of the present invention.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • an anti-shake structure of a laser-labeled vibrating lens includes a vibrating lens 1, a galvanometer motor 2, and a vertically disposed support plate 3 for fixing the galvanometer motor 2,
  • the output shaft 21 of the galvanometer motor 2 is connected to one end of the vibrating lens 1 through the support plate 3 for driving the vibrating lens to rotate.
  • the clamping portion 5 is rotatably coupled to the rotation support portion 8.
  • the fixing frame 4 is provided with a screw hole, and the axial direction of the screw hole coincides with the rotation axis direction of the clamping portion 5, and the rotation support portion 8 and the screw hole are matched and screwed.
  • the clamping portion 5 in turn comprises a first collet 51, a second collet 52 located on the back of the first collet 51, a mounting member 6 and a rotating member 7.
  • the first chuck 51 is provided with a card slot 53 matching the shape of the other end 1a of the vibrating lens, and the other end 1a of the vibrating lens is relatively fixed in the card slot 53.
  • the second chuck 52 can be opened and closed to the left and right, including a left clamping block 521 and a right clamping block 522, wherein the right clamping block 522 is integrally provided with the first clamping head 51, and the center of the left clamping block 521 and the right clamping block 522
  • the portions are provided with notches, and the left clamping block 521 and the right clamping block 522 are joined by the pin 52a, corresponding to The notch forms a clamping hole 54 for tightly securing the trailing end 62 of the mounting member 6 within the clamping aperture 54.
  • the front end 61 of the mounting member 6 is provided with a through hole 61a.
  • the tail end 71 of the rotating member 7 is nested and connected in the through hole 61a of the mounting member.
  • the front end of the rotating member 7 ie, the end near the rotating support portion 8) is provided with a beading telescopic hole having an opening facing the rotating support portion 8, the opening diameter being smaller than the inner diameter of the hole; and the beading telescopic hole opening from the hole to the opening.
  • the pressure spring 73 and the top bead 72 are sequentially disposed, and the diameter of the top bead 72 is larger than the diameter of the opening, and the top bead 72 protrudes outside the opening under the action of the compression spring 73.
  • the fixing frame 4 is disposed in parallel with the vibrating lens 1. One end 41 of the fixing frame 4 is fixedly connected to the supporting vertical plate 3, and one end 42 of the fixing frame connected to the rotating supporting portion is suspended.
  • One end 81 of the rotating support portion 8 is fixed to the outer side of the end of the fixing frame 42 , and the other end 82 is rotatably connected to the rotating member 7 through the end of the fixing frame 42 .
  • the end portion 82 of the rotating supporting portion has a shape matching with the protruding portion of the top bead 72 .
  • the cavity 82a, the convex portion of the top bead 72 abuts against the inner wall of the cavity 82a.
  • the working principle of the anti-shake structure of the present embodiment is as follows: one end of the vibrating lens 1 is fixedly connected to the output shaft 21 of the galvanometer motor 2, and the other end 1a of the vibrating lens 1 is fixed in the card slot 53 on the first chuck 51.
  • the tail end 62 of the mounting member 6 is clamped in the clamping hole 54 of the second chuck 52.
  • the tail end 71 of the rotating member 7 is nested and connected in the through hole 61a, so that the vibrating lens and the clamping portion are oppositely opposed.
  • the fixed, rotating support portion 8 is fixed to the fixing frame 4, and the top bead 72 of the rotating member 7 is pressed against the inner wall of the cavity 82a of the rotating support portion 8.
  • the vibrating lens 1 and the clamping portion 5 are synchronously rotated by the galvanometer motor 2, so that the end portion of the vibrating lens is clamped and fixed, and the clamping portion thereof is synchronously rotated with the vibrating lens to avoid
  • the unnecessary shaking of the vibrating lens during marking greatly improves the marking accuracy and stability.
  • the clamping tension between the clamping portion 5 and the vibrating lens 1 in the axial direction can be adjusted by adjusting the screwing position of the rotating support portion 8 on the fixing frame 4. Improve marking accuracy and ease of operation, making the marking process safer.
  • a galvanometer cavity of a laser marking machine provided with the above anti-shake structure includes a vibrating lens 1, a galvanometer motor 2, and a vertical support plate 3 for mounting the galvanometer motor 2
  • the vibrating lens 11 and the vibrating lens 1 respectively control the X-axis and the Y-axis of the marking.
  • the output shaft of the galvanometer motor 2 is connected to the oscillating lens 1 through a vertical support plate 3, and the output shaft of the galvanometer motor 22 is connected to the oscillating lens 11 through the lateral support plate 23.
  • One end 41 of the holder 4 is fixed to the support plate 3, and one end 42 of the holder 4 connected to the rotation support portion 8 is suspended in the galvanometer cavity, and the rotation support portion 8 is fixedly coupled to the end of the bent end 42.
  • One end portion 1a of the vibrating lens 1 is clamped and fixed to the clamping portion 5, the clamping portion 5 is rotatably connected to the rotation support portion 8, and the vibrating lens 11 is rotated by the galvanometer motor 22, and the vibrating lens 1 is in the galvanometer motor.
  • the driving of 2 is integrally rotated with the clamping portion 5.
  • a laser inlet 3a is disposed on one side of the galvanometer cavity, and the laser beam incident from the laser inlet into the galvanometer cavity is first hit onto the rotating vibrating lens 11, and is reflected by the vibrating lens 11 to the vibrating lens 1, and the vibrating lens 1 is The laser beam is scanned under the action of the anti-shake structure to scan the laser beam to form a desired pattern on the object to be marked.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • an anti-shake structure of a laser-labeled vibrating lens includes a vibrating lens 1a, a galvano-motor 2a, and a vertically disposed support plate 3a for fixing the galvano-motor 2a.
  • the output shaft 21a of the galvano mirror motor 2a is connected to one end of the vibrating mirror 1a through the support plate 3a.
  • the chuck 5a is provided with a rotating shaft 6a.
  • the fixing frame 4a is disposed in parallel with the vibrating lens 1a.
  • One end 41a of the fixing frame 4a is fixedly connected to the supporting plate 3a, and the other end 42a of the fixing frame 4a is bent.
  • the receiving hole 42aa is disposed thereon, and the bearing 7a is mounted thereon. Hold the hole inside.
  • the chuck 5a and the bearing 7a are rotatably coupled by a rotating shaft 6a.
  • the chuck 5a includes a first chuck 51a and a second chuck 52a.
  • the first chuck 51a is provided with a card slot 53a matching the shape of the other end 1aa of the vibrating lens, and the other end 1aa of the vibrating lens is relatively fixed at Inside the card slot 53a.
  • the second chuck 52a is openable to the left and right, including a left clamping block 521a and a right clamping block 522a, and the right clamping block 522a is integrally provided with the first clamping head 51a, and the center of the left clamping block 521a and the right clamping block 522a
  • the portions are provided with notches.
  • the corresponding notches form a clamping hole 54a for tightly fixing the trailing end 62a of the rotating shaft 6a to the clamping hole 54a.
  • the front end 61a of the rotating shaft 6a penetrates into the receiving hole 42aa and is in close contact with the inner wall of the bearing 7a.
  • the working principle of the anti-shake structure of the present embodiment is as follows: one end of the vibrating lens 1a is fixedly connected to the output shaft 21a of the galvano motor 2a, and the other end 1aa of the vibrating lens 1a is fixed in the card slot 53a of the first collet 51a.
  • the tail end 62a of the rotating shaft 6a is clamped in the holding hole 54a of the second chuck 52a, and the other end 61a of the rotating shaft 6a penetrates into the cavity of the bearing 7a, and the outer wall of the rotating shaft 6a and the inner wall of the bearing are fitted to each other. .
  • the vibrating lens 1a and the collet 5a are synchronously rotated by the galvano motor 2a, and the ball 72a of the bearing 7a drives the inner wall of the bearing to rotate together with the rotating shaft 6a, so that the other end of the vibrating lens is clamped.
  • the holding is fixed, and the collet rotates synchronously with the vibrating lens, which avoids unnecessary shaking of the vibrating lens during marking, and greatly improves the marking precision and stability.
  • a galvanometer cavity of a laser marking machine provided with the above-described anti-shake structure includes a vibrating lens 1a, a galvanometer motor 2a, and a vertical support plate 3a on which the galvano motor 2a is mounted.
  • the oscillating lens 11a and the oscillating lens 1a control the X-axis and the Y-axis of the marking, respectively.
  • the output shaft of the galvanometer motor 2a is connected to the oscillating lens 1a through the vertical support plate 3a, and the output shaft of the galvanometer motor 22a is connected to the oscillating lens 11a through the lateral support plate 23a.
  • One end 41a of the holder 4a is fixed to the vertical support plate 3a, and one end 42a of the holder 7a on which the bearing 7a is mounted is suspended in the galvanometer cavity.
  • the 1aa end of the vibrating lens 1a is clamped and fixed to the chuck 5a, and the vibrating lens 11a is rotated by the galvano mirror motor 22a, and the vibrating lens 1a is rotated in synchronization with the chuck 5a by the galvano mirror motor 2a.
  • a laser inlet 3aa is disposed on one side of the galvanometer cavity, and the laser beam incident from the laser inlet into the galvanometer cavity is first hit on the rotating vibrating lens 11a, and is reflected by the vibrating lens 11a to the vibrating lens 1a, and the vibrating lens 1a
  • the laser beam is scanned under the action of the anti-shake structure to scan the laser beam to form a desired pattern on the object to be marked.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Laser Beam Processing (AREA)

Abstract

一种激光打标振镜片的防抖结构,包括振镜片(1)、振镜电机(2)和用于固定振镜电机(2)的支撑板(3),所述振镜电机(2)的输出轴(21)与所述振镜片(1)一端连接,用于驱动振镜片(1)转动;还包括固定架(4)和用于夹持振镜片另一端(1a)的夹持部(5),所述夹持部(5)与振镜片(1)同步转动;所述固定架(4)上设有转动支撑部(8),所述夹持部(5)与转动支撑部(8)转动连接。一种包含防抖结构的振镜腔。克服了传统激光打标时振镜片的抖动问题,提高了激光打标的精度和操作安全性;其中转动支撑部、夹持部、固定架之间的合理连接与布置提高了打标设备的整体平衡和稳定性。

Description

一种激光打标振镜片的防抖结构及包含其的振镜腔 技术领域
本发明属于激光打标设备技术领域,具体涉及一种激光打标振镜片的防抖结构以及包括该防抖结构的振镜腔。
背景技术
目前市场上的激光打标机中大部分都使用了振镜系统,所述振镜系统包括振镜电机和振镜片,振镜片的一端与振镜电机的输出轴固定连接,通过振镜电机驱动振镜片进行摆动,实现对入射激光束角度的调整,调整角度后的激光束打在被打标物上,形成所需的图案。但打标过程中振镜片的高速摆动使得振镜片的另一端很容易发生不期望的抖动,进而引起振镜片整体抖动,尤其是为了使光束扫描范围更全面,打标机上的振镜片往往做的很宽很薄,这样振镜片的抖动会加剧,使入射到振镜片上的激光束角度发生偏离,不能按照预先设定的角度进行反射,使打标形成的图案产生偏移和误差。当激光束发生严重偏移时会对操作人员造成伤害。因此,如何减小及防止打标过程中振镜片的抖动是发明人所关注的重点。
发明内容
本发明的目的在于为了解决以上的不足,设计了一种激光打标振镜片的防抖结构,克服了传统打标过程中振镜片的不必要抖动,大大提高了打标精度。
本发明还设计了一种激光打标机的振镜腔,该振镜腔采用了所述防抖结构,提高了打标精度和整机稳定性。
本发明激光打标振镜片的防抖结构可以采取如下技术方案:
一种激光打标振镜片的防抖结构,包括振镜片、振镜电机和用于固定振镜电机的支撑板,所述振镜电机的输出轴与所述振镜片一端连接,用于驱动振镜片转动;还包括固定架和用于夹持振镜片另一端的夹持部,所述夹持部与振镜片同步转动;所述固定架上设有转动支撑部,所述夹持部与转动支撑部转动连接。
与现有技术相比,发明的有益效果在于:本发明通过在振镜片端部设置夹持部,夹持部与振镜片相对固定,且夹持部与转动支撑部转动连接,进行激光打标时,在振镜电机的驱动下,夹持部与振镜片同步转动,克服了传统激光打标时振镜片的抖动问题,大大提高了激光打标的精度和操作安全性;同时夹持部、转动支撑部和固定架之间的合理连接与布置提高了打标设备的整体平衡和稳定性,且成本低。
优选的,所述夹持部包括夹头和转动件,所述夹头一侧夹持振镜片,夹头另一侧固定所述转动件,所述转动件与所述转动支撑部转动连接。
优选的,所述转动件靠近转动支撑部的一端设有顶珠伸缩孔,所述顶珠伸缩孔具有一朝向转动支撑部的开口,开口直径小于孔内直径;顶珠伸缩孔从孔内向开口处依次设有压簧和 顶珠,顶珠的直径大于所述开口的直径,顶珠在压簧作用下部分凸出于所述开口外;所述转动支撑部包括一与所述顶珠凸出部分形状匹配的凹腔,顶珠的凸出部分顶住所述凹腔的内壁。
优选的,所述固定架上设有螺孔,螺孔的轴向与所述夹持部的转动轴线方向重合,所述转动支撑部与所述螺孔相互匹配螺接。
振镜电机驱动振镜片和夹持部同步转动,转动时,顶珠的凸出部分在转动支撑部的凹腔内转动,并顶紧所述凹腔内壁,操作方便且安全。在实际使用过程中可通过调节转动支撑部在固定架上的螺接位置,来调节夹持部与振镜片在轴向上的夹持松紧程度,以满足打标时的具体要求。
优选的,所述夹头包括第一夹头、第二夹头和安装件;所述第一夹头上设有与所述振镜片端部形状匹配的卡槽;所述第二夹头包括左夹持块和右夹持块,左夹持块和右夹持块接合形成可夹持所述安装件的空腔;所述安装件用于安装固定所述转动件。
优选的,所述夹持部包括夹头和设于夹头上的转动轴,所述转动支撑部为轴承,所述夹头通过转动轴与所述轴承转动连接。
本改进方案通过在振镜片一端部设置夹头,夹头与振镜片相对固定,夹头通过转动轴与轴承转动连接,轴承安装在固定架上,进行激光打标时,在振镜电机的驱动下夹头与振镜片同步转动,克服了传统激光打标时振镜片的抖动问题,大大提高了激光打标的精度和操作安全性;同时夹头、轴承和固定架之间的合理连接与布置提高了打标设备的整体平衡和稳定性,使打标误差进一步减小。
优选的,所述夹头包括第一夹头和第二夹头;所述第一夹头上设有与所述振镜片端部形状匹配的卡槽;所述第二夹头包括左夹持块和右夹持块,左夹持块和右夹持块接合形成可夹持所述转动轴的空腔。
左右夹持块通过销钉接合,将转动轴一端紧密夹持,若长时间使用造成磨损或出现故障时,可单独对转动轴或夹持块进行更换,避免了整个防抖结构的报废,节省了制作成本。
优选的,所述左夹持块或右夹持块与第一夹头一体成型。
左右夹持块通过销钉接合,将安装件紧密夹持,不仅提高了夹持部与转动件之间连接的紧密性,同时减小了防抖结构安装所需的空间,使整个打标设备体积减小;而且若安装件或转动件长时间使用发生磨损或故障时,可单独对其进行更换,避免了整个防抖结构的报废,节省了制造成本,安装更加方便。
优选的,所述固定架一端固定于支撑板上,固定架末端延伸至振镜片端部的夹持部的外侧,固定架上安装有所述转动支撑部。
优选的,所述固定架为L形。
将固定架平行于振镜片布置,提高了防抖结构的平衡和稳定性。
优选的,所述振镜电机安装于支撑板一侧,所述振镜片位于支撑板另一侧,振镜电机的输出轴穿过支撑板与所述振镜片连接。
本发明的激光打标机的振镜腔可以采取如下技术方案:
一种激光打标机的振镜腔,所述振镜腔内设有以上所述的防抖结构。
该振镜腔内防抖结构的设计使得在打标过程中振镜片不会发生不必要的抖动,提高了打 标精度,且防抖结构的合理布局与连接提高了整个振镜腔的稳定性。
附图说明
图1是本发明实施例一的防抖结构的结构示意图;
图2是图1的结构分解图;
图3是本发明实施例一的防抖结构中夹持部与转动支撑部连接处的放大图;
图4是本发明实施例一的防抖结构中夹头的结构示意图;
图5是图4的分解图;
图6是图4的后视图;
图7是本发明实施例一中安装件的结构示意图;
图8是本发明实施例一中转动件的结构示意图;
图9是本发明实施例一中转动支撑部的结构示意图;
图10是本发明实施例一的型振镜腔的结构示意图;
图11是本发明实施例二的防抖结构的结构示意图;
图12是图11的结构分解图;
图13是本发明实施例二的防抖结构中夹头与轴承连接处的放大图;
图14是本发明实施例二的防抖结构中夹头的结构示意图;
图15是图14的分解图;
图16是图14的后视图;
图17是本发明实施例二中夹头上的转动轴的结构示意图;
图18是本发明实施例二中固定架的结构示意图;
图19是本发明实施例二的振镜腔的结构示意图。
具体实施方式
下面结合附图对本发明的具体实施方式作进一步说明:
实施例一:
参照附图1至附图3所示,一种激光打标振镜片的防抖结构,包括振镜片1、振镜电机2和用于固定振镜电机2的竖向设置的支撑板3,所述振镜电机2的输出轴21贯穿支撑板3与振镜片1一端连接,用于驱动振镜片转动。还包括固定架4、设于固定架4上的转动支撑部8以及用于夹持振镜片1另一端1a的夹持部5。
夹持部5与转动支撑部8转动连接。所述固定架4上设有螺孔,螺孔的轴向与夹持部5的转动轴线方向重合,转动支撑部8与所述螺孔相互匹配螺接。所述夹持部5依次包括第一夹头51、位于第一夹头51背面的第二夹头52、安装件6和转动件7。
如附图1至附图9所示,所述第一夹头51上设有与振镜片另一端1a形状匹配的卡槽53,振镜片另一端1a被相对固定在所述卡槽53内。第二夹头52可左右开合,包括左夹持块521和右夹持块522,其中右夹持块522与第一夹头51一体设置,左夹持块521和右夹持块522中心部位均设有缺口,左夹持块521和右夹持块522通过销钉52a相接合后,对应 的缺口形成夹持孔54,用于将安装件6的尾端62紧密固定在夹持孔54内。安装件6的前端61设有通孔61a。
转动件7的尾端71嵌套连接在安装件的通孔61a内。所述转动件7的前端(即靠近转动支撑部8的一端)设有顶珠伸缩孔,顶珠伸缩孔具有一朝向转动支撑部8的开口,开口直径小于孔内直径;顶珠伸缩孔从孔内向开口处依次设有压簧73和顶珠72,顶珠72的直径大于所述开口的直径,顶珠72在压簧73作用下部分凸出于所述开口外。所述固定架4与振镜片1平行设置,固定架4的一端41固定连接在支撑竖板3上,固定架与转动支撑部连接的一端42悬空。
所述转动支撑部8的一端81固定在固定架42端的外侧,另一端82贯穿固定架42端与转动件7转动连接,转动支撑部的端部82上具有与顶珠72凸出部分形状匹配的凹腔82a,顶珠72的凸出部分顶住所述凹腔82a的内壁。
本实施例的防抖结构的工作原理如下:振镜片1的一端与振镜电机2的输出轴21固定连接,振镜片1的另一端1a被固定在第一夹头51上的卡槽53内,安装件6的尾端62被夹持在第二夹头52的夹持孔54内,转动件7的尾端71嵌套连接在通孔61a内,使振镜片和夹持部之间相对固定,转动支撑部8固定在固定架4上,转动件7的顶珠72顶紧所述转动支撑部8的凹腔82a内壁。进行激光打标时,振镜片1和夹持部5在振镜电机2的驱动下同步转动,如此设计使得振镜片的端部被夹持固定,且其夹持部随振镜片同步转动,避免了打标时振镜片的不必要抖动,大大提高了打标精度和稳定性。在实际使用过程中可根据具体打标需要,通过调节转动支撑部8在固定架4上的螺接位置来调节夹持部5与振镜片1之间在轴向方向上的夹持松紧程度,提高了打标精度及操作方便性,使打标过程更加安全。
参照附图1和附图10所示,一种设有上述防抖结构的激光打标机的振镜腔,包括振镜片1、振镜电机2、安装振镜电机2的竖向支撑板3、振镜片11、振镜电机22和安装振镜电机22的支撑横板23。振镜片11和振镜片1分别控制打标的X轴向和Y轴向。所述振镜电机2的输出轴贯穿竖向支撑板3与振镜片1连接,所述振镜电机22的输出轴贯穿横向支撑板23与振镜片11连接。固定架4的一端41固定在向支撑板3上,固定架4与转动支撑部8连接的一端42悬空在振镜腔内,转动支撑部8固定连接在弯折端42的端头。振镜片1的一端部1a被夹持固定在夹持部5上,夹持部5与转动支撑部8转动连接,振镜片11在振镜电机22的驱动下转动,振镜片1在振镜电机2的驱动下和夹持部5一体转动。在振镜腔的一侧设有激光入口3a,从激光入口入射到振镜腔内的激光束,先打到转动的振镜片11上,经振镜片11反射至振镜片1上,振镜片1在防抖结构作用下快速摆动,对激光束进行扫描,使激光束打在被打标物件上形成所需图案。
实施例二:
参照附图11至附图18所示,一种激光打标振镜片的防抖结构,包括振镜片1a、振镜电机2a和用于固定振镜电机2a的竖向设置的支撑板3a,所述振镜电机2a的输出轴21a贯穿支撑板3a与振镜片1a一端连接。还包括固定架4a、轴承7a和用于夹持振镜片1a另一端1aa的夹头5a。夹头5a上设有转动轴6a。
所述固定架4a与振镜片1a平行设置,固定架4a的一端41a固定连接在支撑板3a上,固定架4a的另一端42a弯折,其上设有容置孔42aa,轴承7a安装在该容置孔内。所述夹头5a和轴承7a通过转动轴6a转动连接。
所述夹头5a包括第一夹头51a和第二夹头52a,所述第一夹头51a上设有与振镜片另一端1aa形状匹配的卡槽53a,振镜片另一端1aa被相对固定在所述卡槽53a内。第二夹头52a可左右开合,包括左夹持块521a和右夹持块522a,且右夹持块522a与第一夹头51a一体设置,左夹持块521a和右夹持块522a中心部位均设有缺口,左夹持块521a和右夹持块522a通过销钉52aa相接合后,对应的缺口形成夹持孔54a,用于将转动轴6a的尾端62a紧密固定在夹持孔54a内。转动轴6a的前端61a贯穿入所述容置孔42aa,且与轴承7a的内壁紧密贴合。
本实施例的防抖结构的工作原理如下:振镜片1a的一端与振镜电机2a的输出轴21a固定连接,振镜片1a的另一端1aa被固定在第一夹头51a上的卡槽53a内,转动轴6a的尾端62a被夹持在第二夹头52a的夹持孔54a内,转动轴6a的另一端61a贯穿入轴承7a的空腔内,转动轴6a外壁与轴承内壁相互贴合。进行激光打标时,振镜片1a和夹头5a在振镜电机2a的驱动下同步转动,同时轴承7a的滚珠72a带动轴承内壁和转动轴6a一起转动,如此设计使得振镜片的另一端被夹持固定,且夹头随振镜片同步转动,避免了打标时振镜片的不必要抖动,大大提高了打标精度和稳定性。
参照附图11和附图19所示,一种设有上述防抖结构的激光打标机的振镜腔,包括振镜片1a、振镜电机2a、安装振镜电机2a的竖向支撑板3a、振镜片11a、振镜电机22a和安装振镜电机22a的横向支撑板23a。振镜片11a和振镜片1a分别控制打标的X轴向和Y轴向。所述振镜电机2a的输出轴贯穿竖向支撑板3a与振镜片1a连接,所述振镜电机22a的输出轴贯穿所述横向支撑板23a与振镜片11a连接。固定架4a的一端41a固定在竖向支撑板3a上,固定架上安装有轴承7a的一端42a悬空在振镜腔内。振镜片1a的1aa端被夹持固定在夹头5a上,振镜片11a在振镜电机22a的驱动下转动,振镜片1a在振镜电机2a的驱动下和夹头5a同步转动。在振镜腔的一侧设有激光入口3aa,从激光入口入射到振镜腔内的激光束,先打到转动的振镜片11a上,经振镜片11a反射至振镜片1a上,振镜片1a在防抖结构作用下快速摆动,对激光束进行扫描,使激光束打在被打标物件上形成所需图案。
根据上述说明书的揭示和教导,本发明所属领域的技术人员还可以对上述实施方式进行变更和修改。因此,本发明并不局限于上面揭示和描述的具体实施方式,对发明的一些修改和变更也应当落入本发明的权利要求的保护范围内。此外,尽管本说明书中使用了一些特定的术语,但这些术语只是为了方便说明,并不对本实用新型构成任何限制。

Claims (12)

  1. 一种激光打标振镜片的防抖结构,包括振镜片、振镜电机和用于固定振镜电机的支撑板,所述振镜电机的输出轴与所述振镜片一端连接,用于驱动振镜片转动;其特征在于,还包括固定架和用于夹持振镜片另一端的夹持部,所述夹持部与振镜片同步转动;所述固定架上设有转动支撑部,所述夹持部与转动支撑部转动连接。
  2. 根据权利要求1所述的防抖结构,其特征在于,所述夹持部包括夹头和转动件,所述夹头一侧夹持振镜片,夹头另一侧固定所述转动件,所述转动件与所述转动支撑部转动连接。
  3. 根据权利要求2所述的防抖结构,其特征在于,所述转动件靠近转动支撑部的一端设有顶珠伸缩孔,所述顶珠伸缩孔具有一朝向转动支撑部的开口,开口直径小于孔内直径;顶珠伸缩孔从孔内向开口处依次设有压簧和顶珠,顶珠的直径大于所述开口的直径,顶珠在压簧作用下部分凸出于所述开口外;所述转动支撑部包括一与所述顶珠凸出部分形状匹配的凹腔,顶珠的凸出部分顶住所述凹腔的内壁。
  4. 根据权利要求1至3任一项所述的防抖结构,其特征在于,所述固定架上设有螺孔,螺孔的轴向与所述夹持部的转动轴线方向重合,所述转动支撑部与所述螺孔相互匹配螺接。
  5. 根据权利要求2所述的防抖结构,其特征在于,所述夹头包括第一夹头、第二夹头和安装件;
    所述第一夹头上设有与所述振镜片端部形状匹配的卡槽;
    所述第二夹头包括左夹持块和右夹持块,左夹持块和右夹持块接合形成可夹持所述安装件的空腔;
    所述安装件用于安装固定所述转动件。
  6. 根据权利要求1所述的防抖结构,其特征在于,所述夹持部包括夹头和设于夹头上的转动轴,所述转动支撑部为轴承,所述夹头通过转动轴与所述轴承转动连接。
  7. 根据权利要求6所述的防抖结构,其特征在于,所述夹头包括第一夹头和第二夹头;
    所述第一夹头上设有与所述振镜片端部形状匹配的卡槽;
    所述第二夹头包括左夹持块和右夹持块,左夹持块和右夹持块接合形成可夹持所述转动轴的空腔。
  8. 根据权利要求5或7所述的防抖结构,其特征在于,所述左夹持块或右夹持块与第一夹头一体成型。
  9. 根据权利要求1所述的防抖结构,其特征在于,所述固定架一端固定于支撑板上,固定架末端延伸至振镜片端部的夹持部的外侧,固定架上安装有所述转动支撑部。
  10. 根据权利要求9所述的防抖结构,其特征在于,所述固定架为L形。
  11. 根据权利要求1所述的防抖结构,其特征在于,所述振镜电机安装于支撑板一侧,所述振镜片位于支撑板另一侧,振镜电机的输出轴穿过支撑板与所述振镜片连接。
  12. 一种激光打标机的振镜腔,其特征在于,所述振镜腔内设有如权利要求1所述的防抖结构。
PCT/CN2015/082721 2014-11-14 2015-06-30 一种激光打标振镜片的防抖结构及包含其的振镜腔 WO2016074486A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201420685736.2 2014-11-14
CN201420685767.8U CN204262589U (zh) 2014-11-14 2014-11-14 激光打标振镜片的防抖结构及包含其的振镜腔
CN201420685767.8 2014-11-14
CN201420685736.2U CN204263722U (zh) 2014-11-14 2014-11-14 激光打标振镜片的防抖结构及其振镜腔

Publications (1)

Publication Number Publication Date
WO2016074486A1 true WO2016074486A1 (zh) 2016-05-19

Family

ID=55953697

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/082721 WO2016074486A1 (zh) 2014-11-14 2015-06-30 一种激光打标振镜片的防抖结构及包含其的振镜腔

Country Status (1)

Country Link
WO (1) WO2016074486A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106825936A (zh) * 2017-02-09 2017-06-13 深圳市吉祥云科技有限公司 一种新型光纤打标机组合装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06214181A (ja) * 1993-01-14 1994-08-05 Matsushita Electric Works Ltd 光スキャナ用ミラー
JP2002107652A (ja) * 2000-09-29 2002-04-10 Miyachi Technos Corp レーザマーキング装置
JP2004020956A (ja) * 2002-06-17 2004-01-22 Sumitomo Heavy Ind Ltd ビームスキャナ
US20090261773A1 (en) * 2008-04-22 2009-10-22 Canon Kabushiki Kaisha Galvano motor and galvano motor system
JP2013078771A (ja) * 2011-09-30 2013-05-02 Panasonic Industrial Devices Sunx Co Ltd レーザ加工装置
CN103309032A (zh) * 2012-03-12 2013-09-18 住友重机械工业株式会社 电扫描仪
CN204263722U (zh) * 2014-11-14 2015-04-15 广州创乐激光设备有限公司 激光打标振镜片的防抖结构及其振镜腔
CN204262589U (zh) * 2014-11-14 2015-04-15 广州创乐激光设备有限公司 激光打标振镜片的防抖结构及包含其的振镜腔

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06214181A (ja) * 1993-01-14 1994-08-05 Matsushita Electric Works Ltd 光スキャナ用ミラー
JP2002107652A (ja) * 2000-09-29 2002-04-10 Miyachi Technos Corp レーザマーキング装置
JP2004020956A (ja) * 2002-06-17 2004-01-22 Sumitomo Heavy Ind Ltd ビームスキャナ
US20090261773A1 (en) * 2008-04-22 2009-10-22 Canon Kabushiki Kaisha Galvano motor and galvano motor system
JP2013078771A (ja) * 2011-09-30 2013-05-02 Panasonic Industrial Devices Sunx Co Ltd レーザ加工装置
CN103309032A (zh) * 2012-03-12 2013-09-18 住友重机械工业株式会社 电扫描仪
CN204263722U (zh) * 2014-11-14 2015-04-15 广州创乐激光设备有限公司 激光打标振镜片的防抖结构及其振镜腔
CN204262589U (zh) * 2014-11-14 2015-04-15 广州创乐激光设备有限公司 激光打标振镜片的防抖结构及包含其的振镜腔

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106825936A (zh) * 2017-02-09 2017-06-13 深圳市吉祥云科技有限公司 一种新型光纤打标机组合装置

Similar Documents

Publication Publication Date Title
CN1971214B (zh) 激光测量仪
EP3208780B1 (en) Banknote separation device and radial lash adjusting method therefor
CN106249375B (zh) 镜片可调整的全密封光学系统
WO2016074486A1 (zh) 一种激光打标振镜片的防抖结构及包含其的振镜腔
EP3339952B1 (en) Handheld cloud platform and battery cover tightening mechanism thereof
CN103471577B (zh) 机械抖动激光陀螺合光机构
JP2011113063A (ja) レンズ装置
JP6377969B2 (ja) 織機の筬打ち装置
CN218122337U (zh) 一种光学角度可调节镜筒
JP3867894B2 (ja) 調心装置
CN206585641U (zh) 全景双摄模组辅助安装设备
CN110550107A (zh) 一种车架与控制臂的连接结构和车辆
JP2006339082A (ja) 電球交換器具
WO2021120369A1 (zh) 一种可快速拆装锯条的智能钢锯
CN107462962B (zh) 镜片支撑装置和光学仪器
CN110132059B (zh) 光学调节用连接结构、调节支架及瞄具
CN202870369U (zh) 一种光路光线调节机构
JP2002221416A (ja) 墨出し装置
WO2014109261A1 (ja) バーカッターおよびバーカッターを備えたグラビア彫刻装置
JP3815552B2 (ja) レーザ加工機の集光レンズ位置調整機構
KR101188281B1 (ko) 용접장치용 오실레이터
CN221261350U (zh) 一种镜片俯仰调整架
CN219610720U (zh) 调试设备
CN214409413U (zh) 一种大力矩防划伤的压圈拆装装置
CN217100606U (zh) 压花辊拆卸装置及包装机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15859651

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 11/10/2017)

122 Ep: pct application non-entry in european phase

Ref document number: 15859651

Country of ref document: EP

Kind code of ref document: A1