WO2016072241A1 - ガラス - Google Patents

ガラス Download PDF

Info

Publication number
WO2016072241A1
WO2016072241A1 PCT/JP2015/079270 JP2015079270W WO2016072241A1 WO 2016072241 A1 WO2016072241 A1 WO 2016072241A1 JP 2015079270 W JP2015079270 W JP 2015079270W WO 2016072241 A1 WO2016072241 A1 WO 2016072241A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
less
content
present
organic
Prior art date
Application number
PCT/JP2015/079270
Other languages
English (en)
French (fr)
Inventor
佳龍 李
智基 柳瀬
隆 村田
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to JP2016557683A priority Critical patent/JP6635314B2/ja
Publication of WO2016072241A1 publication Critical patent/WO2016072241A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/066Glass compositions containing silica with less than 40% silica by weight containing boron containing zinc
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/068Glass compositions containing silica with less than 40% silica by weight containing boron containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/095Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to glass suitable for organic EL lighting substrates and the like.
  • Organic EL light-emitting elements include glass substrates, transparent electrodes such as ITO and IZO as anodes, single-layer or multiple-layer organic light-emitting layers including organic light-emitting elements that emit electroluminescence by current injection, and for light reflection And a cathode made of a metal film or the like.
  • transparent electrodes such as ITO and IZO as anodes
  • single-layer or multiple-layer organic light-emitting layers including organic light-emitting elements that emit electroluminescence by current injection, and for light reflection And a cathode made of a metal film or the like.
  • an organic EL light emitting device when a current flows through the organic light emitting device, holes and electrons in the organic light emitting device are recombined to emit light. The emitted light is transmitted to the outside through the transparent conductive material and the glass substrate (see, for example, Patent Document 1).
  • the light extraction efficiency to the outside is insufficient due to the light reflection loss caused by the difference in refractive index between the glass substrate and air and between the organic light emitting layer and the glass substrate. In general, it is known that the light extraction efficiency to the outside is about 15 to 20%.
  • an object of the present invention is to provide a glass that can enhance the extraction efficiency of light generated in an organic EL element or the like and is excellent in chemical resistance and devitrification resistance.
  • the present inventors have found that the above problem can be solved by regulating the glass composition range to a predetermined range, and propose the present invention.
  • the glass of the present invention is, by mass%, SiO 2 25-50%, Al 2 O 3 0.1-8%, B 2 O 3 0.1-15%, BaO 0.1-50%, TiO 2 2.1-15%, And La 2 O 3 0.1 to 15%, substantially no PbO, Na 2 O + K 2 O is 5% or less, and (TiO 2 + La 2 O 3 ) / B 2 O 3 is 0.5 or more. It is characterized by that.
  • the glass of the present invention can increase the refractive index by containing the above-mentioned predetermined amounts of TiO 2 and La 2 O 3 .
  • the refractive index of the glass when the glass is used, for example, in an organic EL lighting substrate, the difference in the refractive index between the glass substrate and the air increases, and the light extraction efficiency from the glass substrate to the outside can be improved. It becomes possible.
  • the contents of SiO 2 , B 2 O 3 and TiO 2 as described above it is possible to obtain a glass excellent in both chemical resistance and devitrification resistance.
  • the glass of the present invention preferably contains MgO 0 to 10%, CaO 0 to 15%, and SrO 4 to 15%.
  • the glass of the present invention preferably contains 0.1 to 10% of ZrO 2 .
  • the glass of the present invention preferably contains 0 to 5% of Nb 2 O 5 .
  • the glass of the present invention preferably contains 0-20% ZnO.
  • the glass of the present invention preferably contains substantially no Li 2 O, Na 2 O and K 2 O.
  • the glass of the present invention preferably has a Sb 2 O 3 content of less than 0.2%.
  • the glass of the present invention preferably has a refractive index (nd) of 1.60 or more.
  • the glass plate of the present invention is characterized by comprising the above glass.
  • the glass plate of the present invention preferably has a thickness of 2 mm or less.
  • the glass plate of the present invention is used as an organic EL lighting substrate.
  • the glass plate of the present invention is used as an organic EL display substrate.
  • the glass plate of the present invention is used as a solar cell substrate.
  • the glass plate of the present invention is used as a light guide plate.
  • the present invention it is possible to improve the extraction efficiency of light generated in an organic EL element or the like, and to provide a glass excellent in chemical resistance and devitrification resistance.
  • the glass of the present invention is, by mass%, SiO 2 25-50%, Al 2 O 3 0.1-8%, B 2 O 3 0.1-15%, BaO 0.1-50%, TiO 2 2.1-15%, and La 2 O 3 0.1 to 15%, substantially no PbO, Na 2 O + K 2 O is 5% or less, and (TiO 2 + La 2 O 3 ) / B 2 O 3 is 0.5 or more.
  • % means “% by mass” unless otherwise specified.
  • SiO 2 is a component that forms a glass network structure.
  • the content of SiO 2 decreases, it becomes difficult to form a glass network structure, and vitrification becomes difficult, and chemical resistance tends to decrease. Further, the viscosity of the glass is excessively lowered, and it becomes difficult to ensure a high liquid phase viscosity. Therefore, the content of SiO 2 is 25% or more, preferably 30% or more, 32% or more, 34% or more, and particularly preferably 35% or more.
  • the content of SiO 2 is 50% or less, preferably 48% or less, 45% or less, 40% or less, particularly 40% or less.
  • Al 2 O 3 stabilizes the component balance of the glass composition and contributes to the improvement of devitrification resistance. However, when there is too much the content, devitrification crystal
  • the content of Al 2 O 3 is 8% or less, preferably 6% or less, particularly preferably 5% or less. Meanwhile, to obtain the above effect, the content of Al 2 O 3 is 0.1% or more, 0.5% or more, particularly 1% or more is preferable.
  • B 2 O 3 is a component that lowers the liquidus temperature and raises the liquidus viscosity to increase devitrification resistance. However, if the content is too large, the refractive index and Young's modulus tend to decrease, and the strain point tends to decrease.
  • the content of B 2 O 3 is 15% or less, preferably 10% or less, 9% or less, 8% or less, particularly 7% or less. In order to obtain the above effect, the content of B 2 O 3 is 0.1% or more, preferably 1% or more, 3% or more, particularly preferably 5% or more.
  • BaO is an alkaline earth metal oxide component that has a high effect of increasing the refractive index without extremely reducing the viscosity. Moreover, it is a component which is easy to raise a thermal expansion coefficient and a liquid phase viscosity. However, when the content is too large, the balance of the glass composition is lacking, and the devitrification resistance tends to decrease. Also, the density tends to increase.
  • the content of BaO is 50% or less, preferably 40% or less, 35% or less, particularly 30% or less. In order to obtain the above effect, the content of BaO is 0.1% or more, preferably 10% or more, 20% or more, 22% or more, particularly 25% or more.
  • TiO 2 is a component that increases the refractive index and chemical resistance. However, when there is too much the content, devitrification resistance will fall easily.
  • the content of TiO 2 is 15% or less, preferably 13% or less and 11% or less. In order to obtain the above effect, the content of TiO 2 is 2.1% or more, 3% or more, 5% or more is preferable.
  • La 2 O 3 is a component that increases the refractive index and chemical resistance. However, if the content is too large, the density and thermal expansion coefficient become too high, and the devitrification resistance tends to decrease.
  • the content of La 2 O 3 is 15% or less, preferably 14% or less, 13% or less, 12% or less, or 10% or less.
  • the La 2 O 3 content is 0.1% or more, preferably 1% or more, 2.5% or more, 3% or more, 5% or more, and particularly preferably 8% or more.
  • Na 2 O and K 2 O are components that reduce the liquidus viscosity and increase the tendency to devitrify. Further, there is a tendency to deteriorate the transparent conductive film such as ITO, and a barrier film such as SiO 2 is required before forming the transparent conductive film, which causes an increase in cost. Therefore, the content of Na 2 O + K 2 O is 5% or less, preferably 3% or less and 1% or less, particularly preferably not contained. “Na 2 O + K 2 O” means the total amount of Na 2 O content and K 2 O content. Further, “substantially not containing” means not intentionally containing as a raw material, and does not exclude inevitable impurities. Objectively, it means less than 0.1%. The individual contents of Na 2 O and K 2 O also preferably satisfy the above range.
  • the content of Li 2 O is preferably 5% or less, 3% or less, or 1% or less, and particularly preferably substantially free of Li 2 O.
  • the content of Li 2 O + Na 2 O + K 2 O is preferably 5% or less, 3% or less, or 1% or less, particularly preferably not contained.
  • (TiO 2 + La 2 O 3 ) / B 2 O 3 indicates a value obtained by dividing the total amount of TiO 2 and La 2 O 3 by the content of B 2 O 3 .
  • (TiO 2 + La 2 O 3 ) / B 2 O 3 is 0.5 or more, preferably 1 or more, particularly preferably 1.5 or more. If (TiO 2 + La 2 O 3 ) / B 2 O 3 is too small, chemical resistance tends to decrease. Further, the refractive index tends to decrease.
  • the upper limit of (TiO 2 + La 2 O 3 ) / B 2 O 3 is not particularly limited, but if the value is too large, the liquidus viscosity tends to decrease and the devitrification tendency tends to increase. 4 or less, 3.5 or less, particularly 3 or less are preferred.
  • the glass of the present invention can contain the following components in addition to the above components.
  • MgO is a component that increases the refractive index, Young's modulus, and thermal expansion coefficient. Moreover, there exists an effect which improves a meltability. However, if the content is too large, the balance of the glass composition is lacking, and the devitrification resistance is lowered or phase separation is liable to occur. Also, the density tends to increase.
  • the content of MgO is 10% or less, preferably 8% or less, 6% or less, or 3%. In order to obtain the above effect, the MgO content is preferably 0.1% or more, 0.5% or more, 1% or more, and particularly preferably 2% or more.
  • CaO is a component that increases the refractive index, Young's modulus, and thermal expansion coefficient. Moreover, there exists an effect which improves a meltability. However, when the content is too large, the balance of the glass composition is lacking, and the devitrification resistance tends to decrease. Also, the density tends to increase.
  • the CaO content is 15% or less, preferably 10% or less. In order to obtain the above effect, the CaO content is preferably 1% or more, 2% or more, 3% or more, and particularly preferably 5% or more.
  • SrO is a component that increases the refractive index and thermal expansion coefficient. Moreover, there exists an effect which improves a meltability. However, if the content is too large, the devitrification resistance tends to decrease due to lack of balance of the glass composition. Also, the density tends to increase.
  • the SrO content is 15% or less, preferably 10% or less, particularly preferably 8% or less. In order to obtain the above effect, the SrO content is 4% or more, preferably 6% or more, 8% or more, and particularly preferably 10% or more.
  • ZrO 2 is a component that increases the refractive index and increases chemical resistance. Moreover, there exists an effect which raises liquid phase viscosity and improves devitrification resistance. However, when there is too much the content, devitrification resistance will fall easily.
  • the ZrO 2 content is 10% or less, preferably 8% or less, 5% or less, or 3% or less. In order to obtain the above effect, the content of ZrO 2 is 0.1% or more, preferably 1% or more, particularly preferably 2% or more.
  • Nb 2 O 5 is a component that increases the refractive index. However, when there is too much the content, devitrification resistance will fall easily. In addition, the density and thermal expansion coefficient may be too high. Furthermore, the raw material cost is likely to increase. Therefore, the content of Nb 2 O 5 is preferably 5% or less, 3% or less, or 1% or less, and more preferably not substantially contained.
  • the ZnO is a component that improves devitrification resistance.
  • the content is too large, the density and thermal expansion coefficient become too high, the glass composition component balance is lacking, devitrification resistance decreases, chemical resistance decreases, and liquid phase viscosity tends to decrease.
  • the ZnO content is preferably 20% or less, 15% or less, 10% or less, 5% or less, or 2% or less, and more preferably substantially not contained.
  • the glass of this invention does not contain PbO substantially considering the load to an environment.
  • Sb 2 O 3 is also an environmentally hazardous substance, its content is preferably less than 0.2%, and more preferably substantially not contained.
  • the refractive index (nd) of the glass of the present invention is preferably 1.60 or more, 1.64 or more, 1.65 or more, 1.67 or more, 1.68 or more, 1.69 or more 1.70 or more, 1.71 or more, particularly 1.73 or more.
  • the refractive index is too low, when the glass of the present invention is used for, for example, an organic EL lighting substrate, the light extraction efficiency to the outside tends to decrease.
  • reflection at the interface between a transparent conductive film such as ITO and a glass substrate increases the probability that light is trapped in the organic light-emitting layer or transparent conductive film, and the light extraction efficiency tends to decrease. is there.
  • the refractive index of the glass is preferably 2.2 or less, 2.1 or less, 2.0 or less, 1.9 or less, 1.8 or less, particularly 1.78 or less.
  • the density of the glass of the present invention is 5 g / cm 3 or less, 4.8 g / cm 3 or less, 4.6 g / cm 3 or less, 4.5 g / cm 3 or less, 4.3 g / cm 3 or less, 4.0 g / cm 3 or less, 3.8 g / cm 3 or less, particularly 3.6 g / cm 3 or less is preferable.
  • the thermal expansion coefficient of the glass of the present invention is 50 ⁇ 10 ⁇ 7 to 120 ⁇ 10 ⁇ 7 / ° C., 50 ⁇ 10 ⁇ 7 to 110 ⁇ 10 ⁇ 7 / ° C., 60 ⁇ 10 ⁇ 7 to 110 ⁇ 10 ⁇ 7 / ° C. 70 ⁇ 10 ⁇ 7 to 110 ⁇ 10 ⁇ 7 / ° C., particularly preferably 70 ⁇ 10 ⁇ 7 to 100 ⁇ 10 ⁇ 7 / ° C.
  • the thermal expansion coefficient of the glass is out of the above range, the thermal expansion coefficient does not match with a film such as a transparent conductive film formed on the glass substrate surface made of the glass or a substrate to be bonded, a sealing material such as glass frit, There is a risk of problems such as film peeling and cracks.
  • the strain point of the glass of the present invention is preferably 600 ° C or higher, particularly preferably 620 ° C or higher.
  • the liquid phase temperature (TL) of the glass of the present invention is preferably 1070 ° C. or lower, 1060 ° C. or lower, 1040 ° C. or lower, 1020 ° C. or lower, 1000 ° C. or lower, 980 ° C. or lower, 960 ° C. or lower, particularly 940 ° C. or lower.
  • the liquid phase viscosity (viscosity at the liquid phase temperature) of the glass of the present invention is 10 3.5 dPa ⁇ s or more, 10 4.0 dPa ⁇ s or more, 10 4.2 dPa ⁇ s or more, 10 4.4 dPa ⁇ s or more, 10 4.6 dPa ⁇ s or more.
  • the temperature at 10 2.0 dPa ⁇ s of the glass of the present invention is preferably 1450 ° C. or lower, 1400 ° C. or lower, 1350 ° C. or lower, particularly 1300 ° C. or lower.
  • the thickness of the glass plate made of the glass of the present invention is preferably 2 mm or less, 1.6 mm or less, 0.8 mm or less, 0.5 mm or less, and particularly preferably 0.3 mm or less.
  • the smaller the thickness of the glass plate the more advantageous is the weight reduction and cost reduction of the device, and the improvement of flexibility.
  • the thickness is preferably 0.05 mm or more, 0.01 mm or more, particularly 0.2 mm or more.
  • the glass of the present invention is preferably formed by an overflow down draw method.
  • the overflow downdraw method is a method in which molten glass is overflowed from both sides of a bowl-shaped molded body and stretched downward while being joined at the lower end of the molded body.
  • Tables 1 to 8 show examples (Nos. 1 to 59) and comparative examples (Nos. 60 and 61).
  • raw material batches were obtained by preparing raw materials so as to have the glass compositions shown in Tables 1 to 8.
  • the obtained raw material batch was supplied to a glass melting furnace and melted at 1300-1500 ° C.
  • glass was obtained by performing a predetermined annealing treatment.
  • refractive index (nd) liquidus viscosity (log ⁇ TL), liquidus temperature (TL), density ( ⁇ ), thermal expansion coefficient ( ⁇ ), strain point (Ts), 10 4.0 dPa ⁇ s and 10 Temperature and chemical resistance characteristics at 2.0 dPa ⁇ s were evaluated. The results are shown in Tables 1-8.
  • the refractive index As the refractive index, a measured value at the d line (wavelength 587.6 nm) of the He lamp using a refractive index measuring device KPR-2000 manufactured by Shimadzu Corporation was adopted.
  • the density was measured by the well-known Archimedes method.
  • the thermal expansion coefficient was measured in the range of 30 to 380 ° C. using a dilatometer.
  • the strain point Ps was measured according to ASTM C336-71.
  • the liquidus temperature TL is the temperature at which crystals pass through a standard sieve 30 mesh (500 ⁇ m) and the glass powder remaining in 50 mesh (300 ⁇ m) is placed in a platinum boat and then kept in a temperature gradient furnace for 24 hours. Is a measured value.
  • the liquidus viscosity log ⁇ TL is a value obtained by measuring the viscosity of glass at the liquidus temperature by a platinum ball pulling method.
  • the temperatures at 10 4.0 dPa ⁇ s and 10 2.0 dPa ⁇ s were measured by the platinum ball pulling method.
  • Chemical resistance was evaluated as follows. A polyimide tape was attached to a part of the surface of a glass substrate obtained by processing the glass obtained above into 10 mm ⁇ 50 mm ⁇ 0.7 mm, and immersed in an etching solution (ITO-06N, manufactured by Kanto Chemical) for 15 minutes. After washing the glass substrate with water, the polyimide tape was peeled off. In the glass substrate, the level
  • ITO-06N etching solution
  • the glass of No. 1 to 59 as an example was excellent in each of the above characteristics.
  • the glass No. 60 which is a comparative example, has a low liquidus viscosity of 10 1 dPa ⁇ s
  • the glass of No. 61 has a high liquidus temperature of 1075 ° C. and a low liquidus viscosity of 10 3.4 dPa ⁇ s. Therefore, it was inferior to devitrification resistance. Since the glasses No. 60 and 61 are inferior in devitrification resistance as described above, it is considered difficult to form into a plate shape by using, for example, the overflow down draw method.
  • the glass of No. 60 had a large chemical resistance evaluation value of 10 ⁇ m and was inferior in chemical resistance.
  • the glass of the present invention is suitable as a light guide plate used for edge light type surface light emitting devices in liquid crystal display devices and the like in addition to substrate uses such as organic EL lighting substrates, organic EL display substrates and solar cell substrates.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)
  • Electroluminescent Light Sources (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 有機EL素子等において発生した光の取り出し効率を高めることができ、かつ耐薬品性及び耐失透性に優れたガラスを提供する。 質量%で、SiO2 25~50%、Al2O3 0.1~8%、B2O3 0.1~15%、BaO 0.1~50%、TiO2 2.1~15%、及びLa2O3 0.1~15%を含有し、実質的にPbOを含有せず、Na2O+K2Oが5%以下、(TiO2+La2O3)/B2O3が0.5以上であることを特徴とするガラス。

Description

ガラス
 本発明は有機EL照明基板等に好適なガラスに関する。
 近年、有機EL発光素子を用いた照明(有機EL照明)は次世代高効率光源として期待されている。有機EL発光素子は、ガラス基板と、陽極であるITO、IZO等の透明電極と、電流の注入によってエレクトロルミネッセンスを発する有機発光素子を含む単層または複数層からなる有機発光層と、光反射用の金属膜等からなる陰極とが順次積層されてなる素子である。有機EL発光素子において、有機発光素子に電流が流れると、有機発光素子中の正孔と電子が再結合して発光する。発光した光は透明導電及びガラス基板を透過して外部に放出される(例えば、特許文献1参照)。
特開2014-111539号公報
 有機EL照明の発光効率を高めるためには、有機発光層で発生する光を効率良く外部に取り出すことが重要である。しかしながら、ガラス基板-空気間、及び有機発光層-ガラス基板間の屈折率差に起因する光反射ロスにより、外部への光取出し効率が不十分であるのが現状である。一般的には、外部への光取出し効率は15~20%程度であることが知られている。
 また、洗浄工程における変質を抑制するため、ガラス基板には高い耐薬品性が求められている。
 さらに、有機EL照明の照度を高めるため、ガラス基板の大面積化も求められている。しかしながら、大面積のガラス基板は成形時に失透しやすく、生産性に劣るという問題がある。
 以上に鑑み、本発明は、有機EL素子等において発生した光の取り出し効率を高めることができ、かつ耐薬品性及び耐失透性に優れたガラスを提供することを目的とする。
 本発明者等は、鋭意検討を行った結果、ガラス組成範囲を所定範囲に規制することにより、上記の課題を解決できることを見出し、本発明として提案するものである。
 即ち、本発明のガラスは、質量%で、SiO2 25~50%、Al2O3 0.1~8%、B2O3 0.1~15%、BaO 0.1~50%、TiO2 2.1~15%、及びLa2O3 0.1~15%を含有し、実質的にPbOを含有せず、Na2O+K2Oが5%以下、(TiO2+La2O3)/B2O3が0.5以上であることを特徴とする。本発明のガラスは、TiO2及びLa2O3を上記所定量含有することで屈折率を高めることができる。ガラスの屈折率が高まることにより、当該ガラスを例えば有機EL照明基板等に使用した場合、ガラス基板-空気間の屈折率差が大きくなり、ガラス基板から外部への光取出し効率を向上させることが可能となる。また、SiO2、B2O3及びTiO2の含有量を上記の通り最適化することで耐薬品性及び耐失透性の両特性に優れたガラスとすることが可能となる。
 本発明のガラスは、MgO 0~10%、CaO 0~15%、SrO 4~15%を含有することが好ましい。
 本発明のガラスは、ZrO2 0.1~10%を含有することが好ましい。
 本発明のガラスは、Nb2O5を0~5%含有することが好ましい。
 本発明のガラスは、ZnOを0~20%含有することが好ましい。
 本発明のガラスは、Li2O、Na2O及びK2Oを実質的に含有しないことが好ましい。
 本発明のガラスは、Sb2O3の含有量が0.2%未満であることが好ましい。
 本発明のガラスは、屈折率(nd)が1.60以上であることが好ましい。
 本発明のガラス板は、上記のガラスからなることを特徴とする。
 本発明のガラス板は、厚み2mm以下であることが好ましい。
 本発明のガラス板は、有機EL照明基板として用いられる。
 本発明のガラス板は、有機ELディスプレイ基板として用いられる。
 本発明のガラス板は、太陽電池基板として用いられる。
 本発明のガラス板は、導光板として用いられる。
 本発明によれば、有機EL素子等において発生した光の取り出し効率を高めることができ、かつ耐薬品性及び耐失透性に優れたガラスを提供することが可能となる。
 本発明のガラスは、質量%で、SiO2 25~50%、Al2O3 0.1~8%、B2O3 0.1~15%、BaO 0.1~50%、TiO2 2.1~15%、及びLa2O3 0.1~15%を含有し、実質的にPbOを含有せず、Na2O+K2Oが5%以下、(TiO2+La2O3)/B2O3が0.5以上であることを特徴とする。このようにガラス組成を限定した理由を以下に説明する。なお、以下の各成分の含有量に関する説明において、特に断りのない限り「%」は「質量%」を意味する。
 SiO2はガラス網目構造を形成する成分である。SiO2の含有量が少なくなると、ガラス網目構造を形成し難くなってガラス化が困難になり、耐薬品性も低下する傾向がある。またガラスの粘性が低下し過ぎて、高い液相粘度を確保し難くなる。よって、SiO2の含有量は25%以上であり、好ましくは30%以上、32%以上、34%以上、特に35%以上が好ましい。一方、SiO2の含有量が多くなると、溶融性や成形性が低下し易くなり、また屈折率ndが低下し易くなる。よって、SiO2の含有量は50%以下であり、好ましくは48%以下、45%以下、40%以下、特に40%以下である。
 Al2O3はガラス組成の成分バランスを安定にして、耐失透性の向上に寄与する。ただし、その含有量が多すぎると、失透結晶が析出し易くなって、液相粘度が低下し易くなる。また屈折率が低下し易くなる。Al2O3の含有量は8%以下であり、6%以下、特に5%以下が好ましい。一方、上記効果を得るため、Al2O3の含有量は0.1%以上であり、0.5%以上、特に1%以上が好ましい。
 B2O3は液相温度を低下させ、液相粘度を上昇させて耐失透性を高める成分である。ただし、その含有量が多すぎると、屈折率やヤング率が低下し易くなり、また歪点が低下し易くなる。B2O3の含有量は15%以下であり、好ましくは10%以下、9%以下、8%以下、特に7%以下である。なお、上記効果を得るため、B2O3の含有量は0.1%以上であり、1%以上、3%以上、特に5%以上が好ましい。
 BaOはアルカリ土類金属酸化物の中で、粘性を極端に低下させずに、屈折率を高める効果が高い成分である。また熱膨張係数、液相粘度を高めやすい成分である。ただし、その含有量が多すぎると、ガラス組成のバランスを欠いて、耐失透性が低下し易くなる。また、密度が高くなる傾向がある。BaOの含有量は50%以下であり、好ましくは40%以下、35%以下、特に30%以下である。なお、上記効果を得るため、BaOの含有量は0.1%以上であり、好ましくは10%以上、20%以上、22%以上、特に25%以上である。
 TiO2は屈折率を高め、耐薬品性を高める成分である。ただし、その含有量が多すぎると、耐失透性が低下し易くなる。TiO2の含有量は15%以下であり、13%以下、11%以下が好ましい。なお、上記効果を得るためには、TiO2の含有量は2.1%以上であり、3%以上、5%以上が好ましい。
 La2O3は屈折率、耐薬品性を高める成分である。ただし、その含有量が多すぎると、密度、熱膨張係数が高くなり過ぎ、また耐失透性が低下し易くなる。La2O3の含有量は15%以下であり、14%以下、13%以下、12%以下、10%以下が好ましい。なお、上記効果を得るためには、La2O3含有量は0.1%以上であり、1%以上、2.5%以上、3%以上、5%以上、特に8%以上が好ましい。
 Na2O及びK2Oは液相粘度が低下させて失透傾向を強める成分である。また、ITO等の透明導電膜を劣化させる傾向があり、透明導電膜の製膜前にSiO2などのバリア膜が必要となるため、コストアップの原因となる。そのため、Na2O+K2Oの含有量は5%以下であり、3%以下、1%以下が好ましく、実質的に含有しないことが特に好ましい。なお、「Na2O+K2O」はNa2Oの含有量とK2Oの含有量の合量を意味する。また、「実質的に含有しない」とは、意図的に原料として含有させないことを意味し、不可避的不純物を排除するものではない。客観的には、0.1%未満であることをいう。Na2O及びK2Oのそれぞれ個別の含有量も上記範囲を満たすことが好ましい。
 なお、Li2Oも失透傾向を強めるため、その含有量を規制することが好ましい。具体的には、Li2Oの含有量は5%以下、3%以下、1%以下が好ましく、実質的に含有しないことが特に好ましい。また、Li2O+Na2O+K2Oの含有量は5%以下、3%以下、1%以下が好ましく、実質的に含有しないことが特に好ましい。
 (TiO2+La2O3)/B2O3を適宜調整することにより、耐失透性と耐薬品性を両立させることができる。なお、(TiO2+La2O3)/B2O3はTiO2及びLa2O3の合量をB2O3の含有量で除した値を指す。(TiO2+La2O3)/B2O3は0.5以上であり、1以上、特に1.5以上が好ましい。(TiO2+La2O3)/B2O3が小さすぎると、耐薬品性が低下しやすくなる。また、屈折率が低下しやすくなる。なお、(TiO2+La2O3)/B2O3の上限は特に限定されないが、その値が大きすぎると、液相粘度が低下して失透傾向が強まる傾向があるため、6以下、4以下、3.5以下、特に3以下が好ましい。
 本発明のガラスには、上記成分以外にも下記の成分を含有させることができる。
 MgOは屈折率、ヤング率、熱膨張係数を高める成分である。また、溶融性を改善する効果がある。ただし、その含有量が多すぎると、ガラス組成のバランスを欠いて、耐失透性が低下したり、分相し易くなる。また、密度が高くなる傾向がある。MgOの含有量は10%以下であり、8%以下、6%以下、3%が好ましい。なお、上記効果を得るためには、MgOの含有量を0.1%以上、0.5%以上、1%以上、特に2%以上とすることが好ましい。
 CaOは屈折率、ヤング率、熱膨張係数を高める成分である。また、溶融性を改善する効果がある。ただし、その含有量が多すぎると、ガラス組成のバランスを欠いて、耐失透性が低下し易くなる。また、密度が高くなる傾向がある。CaOの含有量は15%以下であり、10%以下が好ましい。なお、上記効果を得るためには、CaOの含有量は1%以上、2%以上、3%以上、特に5%以上が好ましい。
 SrOは屈折率、熱膨張係数を高める成分である。また、溶融性を改善する効果がある。ただし、その含有量が多すぎると、ガラス組成のバランスを欠いて耐失透性が低下し易くなる。また、密度が高くなる傾向がある。SrOの含有量は15%以下であり、10%以下、特に8%以下が好ましい。なお、上記効果を得るためには、SrOの含有量は4%以上であり、6%以上、8%以上、特に10%以上が好ましい。
 ZrO2は屈折率を高め、耐薬品性を高める成分である。また、液相粘度を高め、耐失透性を向上させる効果がある。ただし、その含有量が多すぎると、耐失透性が低下し易くなる。ZrO2の含有量は10%以下であり、8%以下、5%以下、3%以下が好ましい。なお、上記効果を得るためには、ZrO2の含有量は0.1%以上であり、1%以上、特に2%以上が好ましい。
 Nb2O5は屈折率を高める成分である。ただし、その含有量が多すぎると、耐失透性が低下し易くなる。また、密度、熱膨張係数が高くなりすぎるおそれがある。さらに、原料コストが高騰しやすくなる。従って、Nb2O5の含有量は5%以下、3%以下、1%以下が好ましく、実質的に含有しないことがより好ましい。
 ZnOは耐失透性を向上させる成分である。ただし、その含有量が多すぎると、密度や熱膨張係数が高くなりすぎる、ガラス組成の成分バランスを欠いて耐失透性が低下する、耐薬品性が低下する、液相粘度が低下し易くなる、等の不具合が発生する傾向がある。従って、ZnO含有量は20%以下、15%以下、10%以下、5%以下、2%以下が好ましく、実質的に含有しないことがより好ましい。
 なお、本発明のガラスは、環境への負荷を考慮してPbOを実質的に含有しない。また、Sb2O3も環境負荷物質であるため、その含有量は0.2%未満が好ましく、特に実質的に含有しないことがより好ましい。
 本発明のガラスの屈折率(nd)は1.60以上、1.64以上、1.65以上、1.67以上、1.68以上、1.69以上1.70以上、1.71以上、特に1.73以上であることが好ましい。屈折率が低すぎると、本発明のガラスを例えば有機EL照明基板等に使用した場合、外部への光取出し効率が低下し易くなる。具体的には、有機EL照明においては、ITO等の透明導電膜とガラス基板界面における反射によって、有機発光層または透明導電膜に光が閉じ込められる確率が高くなり、光取り出し効率が低下する傾向がある。一方、屈折率が高すぎると、空気とガラス基板界面での反射率が高くなり、外部への光の取り出し効率が低下し易くなる。また、空気とガラス基板界面での反射を抑制するため、ガラス基板の空気側表面に樹脂製等の散乱層を形成する場合があるが、その場合にも、散乱層とガラス基板の屈折率を整合させることが困難になる。従って、ガラスの屈折率は2.2以下、2.1以下、2.0以下、1.9以下、1.8以下、特に1.78以下であることが好ましい。
 本発明のガラスの密度は5g/cm3以下、4.8g/cm3以下、4.6g/cm3以下、4.5g/cm3以下、4.3g/cm3以下、4.0g/cm3以下、3.8g/cm3以下、特に3.6g/cm3以下が好ましい。密度が小さいほど、本発明のガラスからなるガラス基板を用いた有機EL照明等のデバイスを軽量化しやすくなる。
 本発明のガラスの熱膨張係数は50×10-7~120×10-7/℃、50×10-7~110×10-7/℃、60×10-7~110×10-7/℃、70×10-7~110×10-7/℃、特に70×10-7~100×10-7/℃が好ましい。ガラスの熱膨張係数が上記範囲外となると、当該ガラスからなるガラス基板表面に形成する透明導電膜等の膜や被接着基材、ガラスフリット等のシール材と、熱膨張係数が整合せず、膜剥がれやクラック等の不具合が発生するおそれがある。
 本発明のガラスの歪点は600℃以上、特に620℃以上が好ましい。ガラスの歪点が高いほど耐熱性が高くなるため好ましい。
 本発明のガラスの液相温度(TL)は1070℃以下、1060℃以下、1040℃以下、1020℃以下、1000℃以下、980℃以下、960℃以下、特に940℃以下が好ましい。本発明のガラスの液相粘度(液相温度における粘度)は103.5dPa・s以上、104.0dPa・s以上、104.2dPa・s以上、104.4dPa・s以上、104.6dPa・s以上、104.8dPa・s以上、105.0dPa・s以上が好ましい。なお、液相温度が低く、液相粘度が高いほど、耐失透性が高く成形性に優れている。一般に、高屈折率のガラスは液相粘度が低く板状に成形し難い傾向があるが、ガラス組成を適正に規制して、液相粘度103.5dPa・s以上に調整すれば、板状に成形し易くなる。
 また本発明のガラスの102.0dPa・sにおける温度は1450℃以下、1400℃以下、1350℃以下、特に1300℃以下が好ましい。102.0dPa・sにおける温度が低いほど、低温で溶融しやすくなり、製造コストが低減しやすくなる。
 本発明のガラスからなるガラス板の厚みは2mm以下、1.6mm以下、0.8mm以下、0.5mm以下、特に0.3mm以下であることが好ましい。ガラス板の厚みが小さいほど、デバイスの軽量化及びコストダウン、また可撓性の向上には有利となる。なお、可撓性の指標として、例えば曲率半径100mmで曲げても破損しないことが挙げられる。ただし、ガラス板の厚みが小さすぎると、破損し易くなるため、0.05mm以上、0.01mm以上、特に0.2mm以上であることが好ましい。
 本発明のガラスはオーバーフローダウンドロー法で成形されることが好ましい。オーバーフローダウンドロー法は、溶融ガラスを樋状成形体の両側から溢れさせて、成形体の下端で合流させながら、下方に延伸成形する方法である。
 以下、本発明を実施例に基づいて説明するが、本発明はこれらの実施例に何ら限定されるものではない。
 表1~8は実施例(No.1~59)及び比較例(No.60、61)を示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 まず、表1~8に記載のガラス組成になるように原料を調合して原料バッチを得た。得られた原料バッチをガラス溶融炉に供給して1300~1500℃で溶融した。次に、得られた溶融ガラスをカーボン板の上に流し出して平板状に成形した後、所定のアニール処理を行うことによりガラスを得た。得られたガラスについて、屈折率(nd)、液相粘度(logηTL)、液相温度(TL)、密度(ρ)、熱膨張係数(α)、歪点(Ts)、104.0dPa・s及び102.0dPa・sにおける温度、耐薬品性の各特性を評価した。結果を表1~8に示す。
 屈折率は、島津製作所社製の屈折率測定器KPR-2000を用いて、Heランプのd線(波長587.6nm)での測定値を採用した。
 密度は、周知のアルキメデス法で測定した。
 熱膨張係数は、ディラトメーターを用いて30~380℃の範囲で測定した。
 歪点Psは、ASTM C336-71に準じて測定した。
 液相温度TLは、標準篩30メッシュ(500μm)を通過し、50メッシュ(300μm)に残るガラス粉末を白金ボートに入れた後、温度勾配炉中に24時間保持して、結晶が析出する温度を測定した値である。液相粘度logηTLは、液相温度におけるガラスの粘度を白金球引き上げ法で測定した値である。
 104.0dPa・s及び102.0dPa・sにおける温度は白金球引き上げ法で測定した。
 耐薬品性は次のようにして評価した。上記で得られたガラスを10mm×50mm×0.7mmに加工したガラス基板の表面の一部にポリイミドテープを貼り付け、50℃のエッチング液(関東化学製ITO-06N)中に15分間浸漬した。ガラス基板を水洗後、ポリイミドテープを剥がした。ガラス基板において、ポリイミドテープを貼り付けていた箇所と貼り付けていなかった箇所の間に生じた段差を、小坂研究所製サーフコーダーET4000にて測定し、その値を耐薬品性として評価した。
 実施例であるNo.1~59のガラスは上記の各特性に優れていた。一方、比較例であるNo.60のガラスは液相粘度が101dPa・sと低く、No.61のガラスは液相温度が1075℃と高く、液相粘度が103.4dPa・sと低いため耐失透性に劣っていた。No.60、61のガラスはこのように耐失透性に劣っているため、例えばオーバーフローダウンドロー法を用いて板状に成形することが困難であると考えられる。なお、No.60のガラスは耐薬品性評価の値が10μmと大きく、耐薬品性に劣っていた。
 本発明のガラスは有機EL照明基板、有機ELディスプレイ基板、太陽電池基板等の基板用途の他に、液晶表示装置等におけるエッジライト型面発光装置に使用される導光板として好適である。

Claims (14)

  1.  質量%で、SiO2 25~50%、Al2O3 0.1~8%、B2O3 0.1~15%、BaO 0.1~50%、TiO2 2.1~15%、及びLa2O3 0.1~15%を含有し、実質的にPbOを含有せず、Na2O+K2Oが5%以下、(TiO2+La2O3)/B2O3が0.5以上であることを特徴とするガラス。
  2.  MgO 0~10%、CaO 0~15%、SrO 4~15%を含有することを特徴とする請求項1に記載のガラス。
  3.  ZrO2 0.1~10%を含有することを特徴とする請求項1または2に記載のガラス。
  4.  Nb2O5を0~5%含有することを特徴とする請求項1~ 3のいずれか一項に記載のガラス。
  5.  ZnOを0~20%含有することを特徴とする請求項1~4のいずれか一項に記載のガラス。
  6.  Li2O、Na2O及びK2Oを実質的に含有しないことを特徴とする請求項1~5のいずれか一項に記載のガラス。
  7.  Sb2O3の含有量が0.2%未満であることを特徴とする請求項1~6のいずれか一項に記載のガラス。
  8.  屈折率(nd)が1.60以上であることを特徴とする請求項1~7のいずれか一項に記載のガラス。
  9.  請求項1~8のいずれか一項に記載のガラスからなることを特徴とするガラス板。
  10.  厚み2mm以下であることを特徴とする請求項9に記載のガラス板。
  11.  有機EL照明基板として用いられることを特徴とする請求項9または10に記載のガラス板。
  12.  有機ELディスプレイ基板として用いられることを特徴とする請求項9または10に記載のガラス板。
  13.  太陽電池基板として用いられることを特徴とする請求項9または10に記載のガラス板。
  14.  導光板として用いられることを特徴とする請求項9または10に記載のガラス板。
PCT/JP2015/079270 2014-11-05 2015-10-16 ガラス WO2016072241A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016557683A JP6635314B2 (ja) 2014-11-05 2015-10-16 ガラス及びガラス板

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-224873 2014-11-05
JP2014224873 2014-11-05

Publications (1)

Publication Number Publication Date
WO2016072241A1 true WO2016072241A1 (ja) 2016-05-12

Family

ID=55908968

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/079270 WO2016072241A1 (ja) 2014-11-05 2015-10-16 ガラス

Country Status (2)

Country Link
JP (1) JP6635314B2 (ja)
WO (1) WO2016072241A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11161769B2 (en) 2016-09-16 2021-11-02 Corning Incorporated High transmission glasses with alkaline earth oxides as a modifier

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06144868A (ja) * 1992-11-05 1994-05-24 Ohara Inc 光学ガラス
JPH08217484A (ja) * 1995-02-13 1996-08-27 Ohara Inc 光学ガラス
JPH101328A (ja) * 1996-03-13 1998-01-06 Hoya Corp 耐熱性ガラス
JPH11157868A (ja) * 1997-08-02 1999-06-15 Carl Zeiss:Fa 無鉛重クラウン乃至特重クラウン光学ガラス
JP2012012291A (ja) * 2010-06-02 2012-01-19 Nippon Electric Glass Co Ltd 電界放射型装置用ガラス板
JP2013063892A (ja) * 2011-09-02 2013-04-11 Nippon Electric Glass Co Ltd 高屈折率ガラス

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06144868A (ja) * 1992-11-05 1994-05-24 Ohara Inc 光学ガラス
JPH08217484A (ja) * 1995-02-13 1996-08-27 Ohara Inc 光学ガラス
JPH101328A (ja) * 1996-03-13 1998-01-06 Hoya Corp 耐熱性ガラス
JPH11157868A (ja) * 1997-08-02 1999-06-15 Carl Zeiss:Fa 無鉛重クラウン乃至特重クラウン光学ガラス
JP2012012291A (ja) * 2010-06-02 2012-01-19 Nippon Electric Glass Co Ltd 電界放射型装置用ガラス板
JP2013063892A (ja) * 2011-09-02 2013-04-11 Nippon Electric Glass Co Ltd 高屈折率ガラス

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11161769B2 (en) 2016-09-16 2021-11-02 Corning Incorporated High transmission glasses with alkaline earth oxides as a modifier

Also Published As

Publication number Publication date
JP6635314B2 (ja) 2020-01-22
JPWO2016072241A1 (ja) 2017-08-10

Similar Documents

Publication Publication Date Title
TWI555714B (zh) 高折射率玻璃
JP6175742B2 (ja) 高屈折率ガラス
WO2012157695A1 (ja) 高屈折率ガラス
TWI584949B (zh) 複合基板
WO2016013612A1 (ja) 高屈折率ガラス
JP6547995B2 (ja) 高屈折率ガラス基板
WO2015186606A1 (ja) 分相ガラス、分相性ガラス、有機elデバイス及び分相ガラスの製造方法
TWI603933B (zh) 高折射率玻璃、照明裝置、有機電致發光照明以及 有機電致發光顯示器
JP2016028996A (ja) 高屈折率ガラス
WO2015186584A1 (ja) 分相ガラス及び分相ガラスの製造方法並びに分相ガラスを用いた複合基板
JP2014032740A (ja) 複合基板
JP6635314B2 (ja) ガラス及びガラス板
JP2016098118A (ja) 分相ガラス
JP6249218B2 (ja) ガラスの製造方法及びガラス
JP5812242B2 (ja) 高屈折率ガラス
JP6435610B2 (ja) 高屈折率ガラス
JP5812241B2 (ja) 高屈折率ガラス
JP2016056029A (ja) 強化ガラス及び強化用ガラス
JP6331076B2 (ja) ガラスフィルム及びこれを用いた複合基板
JP2015227272A (ja) 分相ガラス及びこれを用いた複合基板
JP2015127291A (ja) ガラス
JP2012121757A (ja) 高屈折率ガラス
JP2016011245A (ja) 分相ガラス
JP5988059B2 (ja) 無アルカリガラス
JP2014224037A (ja) 高屈折率ガラス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15856235

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016557683

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15856235

Country of ref document: EP

Kind code of ref document: A1