WO2016072226A1 - 水素化ケイ素の酸化物を含む有機溶剤の製造方法 - Google Patents
水素化ケイ素の酸化物を含む有機溶剤の製造方法 Download PDFInfo
- Publication number
- WO2016072226A1 WO2016072226A1 PCT/JP2015/078922 JP2015078922W WO2016072226A1 WO 2016072226 A1 WO2016072226 A1 WO 2016072226A1 JP 2015078922 W JP2015078922 W JP 2015078922W WO 2016072226 A1 WO2016072226 A1 WO 2016072226A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- silicon hydride
- organic solvent
- oxide
- formula
- cyclic silane
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/113—Silicon oxides; Hydrates thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/40—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
- B01J23/46—Ruthenium, rhodium, osmium or iridium
- B01J23/464—Rhodium
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/04—Hydrides of silicon
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G77/00—Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
- C08G77/60—Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which all the silicon atoms are connected by linkages other than oxygen atoms
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02123—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
- H01L21/0217—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02205—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
- H01L21/02208—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
- H01L21/02214—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/0226—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
- H01L21/02282—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
Definitions
- the present invention relates to a cyclic silane and a method for producing the same.
- the present invention relates to a silane polymer applied to applications such as integrated circuits and thin film transistors.
- Silicon semiconductors have been studied for a long time as materials for thin film transistors (TFTs) and solar cells.
- TFTs thin film transistors
- a silicon film is generally formed by a vacuum process such as a CVD method.
- Such an apparatus requires a large-scale apparatus because a vacuum process is used, and has a problem that it is difficult to handle because the raw material is a gas.
- silicon oxide films are widely used as semiconductor insulating films.
- a polysilane compound represented by SinRm (n represents an integer of 3 or more, m represents an integer of n to 2n + 2, R represents a hydrogen atom, an alkyl group, a phenyl group, or a halogen) in a non-oxidizing atmosphere.
- a method for forming a silicon oxide film is disclosed in which a coating film containing s is formed and then the coating film is oxidized (see Patent Document 1).
- the non-oxidizing atmosphere is applied at the coating stage.
- the substrate may be oxidized by heating in the atmosphere on the substrate, and the substrate is greatly damaged by the heating.
- the substrate is limited to a substrate having high heat resistance such as silicon, quartz, and glass, there is a problem that it is difficult to apply to a substrate having relatively low heat resistance such as plastic.
- it is difficult to sufficiently oxidize the silane compound in the solution on the substrate there is a problem that the oxidation purity is low.
- the object of the present invention is that an oxide of silicon hydride is formed in the coating solution before coating on the substrate, and it is not necessary to place it in a non-oxidizing atmosphere during coating, and heat treatment on the substrate is necessary after coating. It is another object of the present invention to provide a method for producing an organic solvent containing a silicon hydride oxide capable of forming a silicon hydride oxide film on a substrate.
- the oxide film formed on the substrate according to the present invention can be used as an electrical insulating film.
- the present invention provides a method for producing an organic solvent containing an oxide of silicon hydride, wherein a gas containing oxygen is blown into an organic solvent containing silicon hydride or a polymer thereof,
- the method for producing an organic solvent containing an oxide of silicon hydride according to the first aspect wherein the silicon hydride is a cyclic silane
- the method for producing an organic solvent containing an oxide of silicon hydride according to the first aspect in which the silicon hydride is cyclopentasilane
- the following steps (A) is blown into an organic solvent containing silicon hydride or a polymer thereof.
- the cyclic silane represented by the formula (2) is reacted with hydrogen halide in cyclohexane in the presence of aluminum halide.
- R 3 and R 4 each represent a halogen atom, and n represents an integer of 4 to 6
- n represents an integer of 4 to 6
- the step of obtaining the cyclic silane represented by the method comprising the step of using the cyclic silane obtained by the method of the silicon hydride according to the first aspect
- a method for producing an organic solvent containing an oxide As a sixth aspect, in the step (A), after obtaining a solution containing the cyclic silane represented by the formula (2), the solution is further distilled to obtain a cyclic silane represented by the formula (2).
- the oxide is formed in the solution before being applied to the substrate, it is not necessary to place it in a non-oxidizing atmosphere at the time of application, and there is no need for heat treatment on the substrate after application, Even if the processing is performed, it is possible under mild conditions.
- an oxide film can be easily formed even on a substrate that requires processing at a low temperature.
- the generated oxide film on the substrate can be used as an electrical insulating film.
- the present invention provides an organic oxide in which Si—H groups of silicon hydride are converted into oxidized chemical groups such as Si—O groups by blowing oxygen-containing gas into an organic solvent containing silicon hydride or a polymer thereof. It is a manufacturing method related to a solution dissolved in a solvent. That is, since it is the oxidation of silicon hydride in solution, the oxidation can proceed sufficiently. In addition, since the obtained oxide is present in the solution in advance, the compatibility with the solvent is high, and it can exist stably without sedimentation of the formed oxide.
- FIG. 1 shows an IR (infrared absorption spectrum) chart before oxidation of the cyclopentasilane polymer in Example 1.
- FIG. 2 shows an IR (infrared absorption spectrum) chart after oxidation of the cyclopentasilane polymer in Example 1.
- FIG. 3 shows 29 Si-NMR spectra before and after oxidation of the cyclopentasilane polymer in Example 1.
- the present invention is a method for producing an organic solvent containing an oxide of silicon hydride, characterized by blowing a gas containing oxygen into an organic solvent containing silicon hydride or a polymer thereof.
- oxidation is performed in a solution in which silicon hydride or a polymer thereof is dissolved in an organic solvent at a ratio of 0.01 to 50% by mass, or preferably 1 to 10% by mass.
- An organic solvent containing silicon hydride or its polymer oxide in a concentration, ie 0.01 to 50% by weight, or preferably 1 to 10% by weight, can be obtained.
- organic solvent examples include n-hexane, n-heptane, n-octane, n-decane, cyclohexane, cyclooctane, dicyclopentane, benzene, toluene, xylene, durene, indene, tetrahydronaphthalene, decahydronaphthalene, and squalane.
- Hydrocarbon solvents such as: dipropyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol methyl ethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol methyl ethyl ether, tetrahydrofuran, tetrahydropyran, 1,2-dimethoxyethane, bis Ether solvents such as (2-methoxyethyl) ether and p-dioxane; Over DOO, .gamma.-butyrolactone, N- methyl-2-pyrrolidone, dimethyl formamide, acetonitrile, dimethyl sulfoxide and the like. Of these solvents, cyclohexane and cyclooctane can be preferably used.
- the gas containing oxygen used in the present invention can use oxygen alone as a gas. Further, a mixed gas of oxygen and another gas can be used.
- the mixed gas includes air. It is preferable to use air to prevent rapid oxidation.
- an amount of blowing air an oxygen amount equal to or more than a chemical equivalent with respect to silicon hydride is used, and usually a gas containing an excessive amount of oxygen is blown.
- oxidation time varies depending on the oxidation rate, it can be carried out, for example, for 0.1 to 100 hours, or preferably about 0.1 to 10 hours.
- the production apparatus used in the production method of the present invention includes a pipe for introducing a gas containing oxygen into a container containing an organic solvent containing silicon hydride or a polymer thereof, and the organic solvent from the nozzle at the end of the pipe. Gas is introduced into the.
- the organic solvent is preferably stirred during the introduction of the gas, and a stirring device may be attached to the container. In this manner, an oxidation reaction of silicon hydride or a polymer thereof occurs, and an organic solvent containing silicon hydride or an oxide of the polymer can be produced.
- the silicon hydride can be a cyclic silane.
- cyclopentasilane can be used for silicon hydride.
- the resulting silicon hydride or polymer oxide thereof has a (residual Si—H group) / (Si—H group before oxidation) of 1 to 40 mol%, or preferably 5 to 40 mol%, or more It can be formed as an oxide contained in a proportion of preferably 10 to 40 mol%, or more preferably 10 to 30 mol%, or even 20 to 30 mol%.
- the remaining Si atoms other than the Si—H group are considered to form an oxide structure such as Si—O.
- a structure in which a halogen atom is bonded to a Si atom or a structure in which a phenyl group is bonded is used as an impurity. Can be contained. If the above value is less than 1 mol%, it is not preferable because fine oxides are deposited. Moreover, when it exceeds 40 mol%, it is not fully oxidized, and when it coat
- the silicon hydride used in the present invention can be produced by the above steps (A) and (B).
- the alkyl group having 1 to 6 carbon atoms in the definition of the groups R 1 and R 2 in the cyclic silane represented by the formula (1) includes methyl group, ethyl group, n-propyl group, i-propyl group.
- the cyclic silane represented by the formula (1) and the halogen or hydrogen halide can be reacted to synthesize the cyclic silane represented by the formula (2).
- the cyclic silane shown by Formula (2) can be obtained by distillation.
- the distillation in the step (A) is performed at a temperature of 40 to 80 ° C. and a reduced pressure of 0 to 30 Torr (for example, 1 to 30 Torr, or 5 to 30 Torr) for 2 to 24 hours.
- an aluminum halide eg, aluminum chloride, aluminum bromide
- an organic solvent eg, cyclohexane, hexane, heptane, toluene, benzene
- Hydrogen halide for example, hydrogen chloride
- the catalyst can be added at a ratio of 0.01 mol to 2 mol with respect to 1 mol of cyclic silane.
- R 3 and R 4 in the formula (2) are chlorine atoms.
- step (B) the cyclic silane represented by formula (2) is reduced with hydrogen or lithium aluminum hydride to obtain the cyclic silane represented by formula (3).
- step (B) the compound of formula (2) was dissolved in an organic solvent (for example, cyclohexane, hexane, heptane, toluene, benzene) and dissolved in ether (for example, diethyl ether, tetrahydrofuran, cyclopentymethyl ether).
- organic solvent for example, cyclohexane, hexane, heptane, toluene, benzene
- ether for example, diethyl ether, tetrahydrofuran, cyclopentymethyl ether.
- Lithium aluminum hydride can be gradually added to reduce the cyclic silane represented by the formula (2) into the cyclic silane represented by the formula (3).
- the lithium aluminum hydride added at this time can be added at a ratio of 2 to 3 moles with respect to 1 mole of the cyclic silane represented by the formula (2).
- n is an integer of 4 to 6, but cyclopentasilane in which n is 5 is 80 mol% or more, for example, 80 to 100 mol%, more preferably 90, in the total silane obtained. It is preferable to contain in the ratio of thru
- step (C) a step of distilling the formula (3) by adding a polymerization inhibitor to the cyclic silane represented by the formula (3) can also be performed.
- the distillation in step (C) is performed at a temperature of 20 to 70 ° C. and a reduced pressure of 1 to 50 Torr (for example, 1 to 35 Torr, or more preferably 2 to 50 Torr) for 4 to 6 hours.
- the cyclic silane represented by the formula (1) which is a raw material when the above cyclopentasilane is synthesized.
- the formula (a) (In the formula (a), R 1 and R 2 each independently represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an optionally substituted phenyl group (provided that R 1 and R 2 are At the same time, it is not a hydrogen atom.), X represents a halogen atom.
- a compound represented by the formula (1) can be reacted in an organic solvent in the presence of an alkali metal to obtain a cyclic silane represented by the above formula (1).
- examples of the alkyl group having 1 to 6 carbon atoms and the optionally substituted phenyl group include the above-mentioned examples.
- examples of the halogen atom include fluorine, chlorine, bromine and iodine, but chlorine can be preferably used.
- the alkali metal is an alkali metal such as lithium, sodium or potassium. When an alkali metal is dispersed in an organic solvent such as tetrahydrofuran and a silane of the formula (a) is further added, a cyclic silane represented by the formula (1) is generated. The alkali metal used at this time is about 1.5 to 3 moles of the silane of the formula (a). This reaction is performed at room temperature, and the obtained product is recrystallized.
- silane of the above formula (a) examples include diphenyldichlorosilane, diphenyldibromosilane, diphenyldiiodosilane, di (phenyl chloride) dichlorosilane, dimethyldichlorosilane, and dimethyldibromosilane.
- the polymer of silicon hydride used in the present invention can be obtained as a polymer of polysilane, such as cyclopentasilane, by polymerizing the cyclic silane obtained as described above, such as cyclopentasilane.
- Polymerization includes a method using a catalyst and a method using thermal polymerization.
- the obtained polysilane is a polymer of cyclopentasilane
- it is obtained, for example, as a solution in an organic solvent of 1% by mass to 20% by mass.
- a transparent solution can be obtained.
- the resulting polymer of cyclopentasilane has a weight average molecular weight of about 600 to 3000, the Mw / Mn ratio between the weight average molecular weight Mw and the number average molecular weight Mn is 1.03 to 1.55, and the molecular weight distribution is A narrow polymer is obtained. Polymer yields can be obtained in the high range of 80-90%.
- the obtained polysilane (silicon hydride polymer) product is obtained by removing volatile components under reduced pressure, and can be dissolved in a solvent and stored.
- Polysilane solvents include n-hexane, n-heptane, n-octane, n-decane, cyclohexane, cyclooctane, dicyclopentane, benzene, toluene, xylene, durene, indene, tetrahydronaphthalene, decahydronaphthalene, and squalane.
- Hydrocarbon solvents such as: dipropyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol methyl ethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol methyl ethyl ether, tetrahydrofuran, tetrahydropyran, 1,2-dimethoxyethane, bis Ether solvents such as (2-methoxyethyl) ether and p-dioxane; Sulfonates, .gamma.-butyrolactone, N- methyl-2-pyrrolidone, dimethyl formamide, acetonitrile, dimethyl sulfoxide and the like.
- cyclooctane is preferably used, and the polysilane can be obtained by containing 5 to 8% by mass of the polysilane in cyclooctane.
- an organic solvent containing the above-described silicon hydride or an oxide of a polymer thereof is applied to a substrate, and heat treatment is performed to obtain an oxide film. It is done.
- the application is performed using an apparatus such as spin coat, roll coat, dip coat, and the heat treatment can be performed after the application.
- the spinner is rotated at a rotational speed of 500 to 1000 rpm.
- the coating process is preferably performed in the atmosphere. Moreover, it can also carry out in gas, such as nitrogen, helium, and argon.
- the coated substrate can be used without being heat-treated, but can also be heat-treated, and the heating temperature is 20 to 500 ° C., or preferably 100 to 425 ° C., and 10 to 20 minutes. Is performed.
- the film thickness of the silicon hydride oxide film thus obtained can be obtained in the range of 60 to 100 nm.
- the substrate examples include transparent electrodes such as quartz, glass, and ITO, metal electrodes such as gold, silver, copper, nickel, titanium, aluminum, and tungsten, glass substrates, and plastic substrates.
- the weight average molecular weight can be measured by gel permeation chromatography (GPC) (measuring instrument: HLC-8320GPC (manufactured by Tosoh Corporation)), column: GPC / SEC (PLgel 3 ⁇ m, 300 ⁇ 7.5 mm, Varian) Manufactured), column temperature: 35 ° C., detector: RI, flow rate: 1.0 ml / min, measurement time: 15 minutes, eluent: cyclohexane, injection amount: 10 ⁇ L), sample concentration 1.0% (in cyclohexane).
- GPC gel permeation chromatography
- the IR measurement for Si-H%, the peak and Si-H 2100 cm -1, a peak of 1100 cm -1 as Si-O, was defined as follows. Si ⁇ H% (Si—H integral value) / (Si—H integral value + Si—O integral value) ⁇ 100.
- the IR analysis was performed after removing the solvent by concentration.
- Rhblack rhodium black
- Example 1 Under an argon atmosphere, the cyclopentasilane polymer (4.0 g) obtained in Synthesis Example 4 was dissolved in cyclohexane / cyclooctane (weight ratio 95/5, 96.0 g) to prepare a 4 mass% solution. High-purity air was blown into the cyclohexane / cyclooctane solution (20.0 g) containing 4% by mass of this cyclopentasilane polymer at 100 ml / min for 6 hours for oxidation. The IR chart before and after oxidation is shown in FIG. 1 (before oxidation) and FIG. 2 (after oxidation). The obtained solution was colorless and transparent.
- Example 2 Under an argon atmosphere, cyclopentasilane (4.0 g) obtained in Synthesis Example 2 was dissolved in cyclohexane (96.0 g) to prepare a 4 mass% solution. High purity air was blown into the cyclohexane solution (10.0 g) containing 4% by mass of cyclopentasilane at 50 ml / min for 6 hours for oxidation. The obtained solution was colorless and transparent. When IR measurement was performed, the Si—H group remaining in the polymer after oxidation was 26.9 mol% with respect to the Si—H group remaining in the polymer before oxidation. Met.
- An oxide of silicon hydride is formed in the coating solution before coating on the substrate, and it is not necessary to place it in a non-oxidizing atmosphere at the time of coating, and there is no need for heat treatment on the substrate after coating.
- a method for producing an organic solvent (coating solution) containing silicon hydride oxide capable of forming a silicon hydride oxide film is provided.
- the oxide film on the substrate can be used as an electrical insulating film.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Materials Engineering (AREA)
- Silicon Compounds (AREA)
- Formation Of Insulating Films (AREA)
- Silicon Polymers (AREA)
Abstract
Description
集積回路や薄膜トランジスターに応用されるシリコン薄膜のパターン形成はCVD法等の真空プロセスによりシリコン膜を形成することが一般的に行われている。このような装置では真空プロセスが用いられているため大がかりな装置が必要であり、原料が気体であるため取り扱いにくい等の問題がある。
例えば非酸化性雰囲気下でSinRm(nは3以上の整数を、mはn乃至2n+2の整数を示す。Rは水素原子、アルキル基、フェニル基、又はハロゲンを示す。)で表されるポリシラン化合物を含有する塗膜を形成し、次いで該塗膜を酸化処理するシリコン酸化膜の形成方法が開示されている(特許文献1参照)。
また、基板上の溶液中のシラン化合物を十分に酸化することが難しいために酸化純度が低いという問題があった。
本発明の目的は基板への塗布前の塗布溶液中に水素化ケイ素の酸化物が形成されていて、塗布時に非酸化性雰囲気下に置く必要がなく、塗布後に基板上での加熱処理が必要なく、基板上に水素化ケイ素の酸化物被膜を形成することができる水素化ケイ素の酸化物を含む有機溶剤の製造方法を提供することにある。本発明により生成された、基板上の酸化物被膜は電気絶縁膜として用いることができる。
第2観点として、水素化ケイ素が環状シランである第1観点に記載の水素化ケイ素の酸化物を含む有機溶剤の製造方法、
第3観点として、水素化ケイ素がシクロペンタシランである第1観点に記載の水素化ケイ素の酸化物を含む有機溶剤の製造方法、
第4観点として、水素化ケイ素の酸化物を含む有機溶剤において、水素化ケイ素又はその重合体の酸化物が、(残存するSi-H基)/(酸化前のSi-H基)=1乃至40モル%となる割合で含まれるものとする第1観点に記載の水素化ケイ素の酸化物を含む有機溶剤の製造方法、
第5観点として、前記水素化ケイ素として下記(A)、及び(B)工程:
(A)工程:式(1):
(ただし、式(1)中、R1及びR2はそれぞれ独立に水素原子、炭素数1乃至6のアルキル基、又は置換されていても良いフェニル基を示し(ただし、R1及びR2は同時に水素原子でない。)、nは4乃至6の整数を示す。)で示される環状シランを、ハロゲン化アルミニウムの存在下にシクロヘキサン中でハロゲン化水素と反応させ、式(2):
(ただし、式(2)中、R3及びR4はそれぞれハロゲン原子を示し、nは4乃至6の整数を示す。)で示される環状シランを含む溶液を得る工程、
(B)工程:式(2)で示される環状シランを有機溶剤に溶解し、水素又はリチウムアルミニウムハイドライドで還元して、式(3):
(ただし、式(3)中、nは4乃至6の整数を示す。)で示される環状シランを得る工程、を含む方法で得られた環状シランを用いる第1観点に記載の水素化ケイ素の酸化物を含む有機溶剤の製造方法、
第6観点として、上記(A)工程において、式(2)で示される環状シランを含む溶液を得た後、更に蒸留して式(2)で示される環状シランを得る工程を含む第5観点に記載の水素化ケイ素の酸化物を含む有機溶剤の製造方法、
第7観点として、用いる水素化ケイ素の重合体が不活性ガス下に、水素化ケイ素と金属ロジウムとの接触により生成したものである第1観点に記載の水素化ケイ素の酸化物を含む有機溶剤の製造方法、及び
第8観点として、酸素を含むガスが空気である第1観点乃至第7観点のいずれか一つに記載の水素化ケイ素の酸化物を含む有機溶剤の製造方法である。
本発明では基板に塗布する前の溶液中で酸化物を形成するために、塗布時に非酸化性雰囲気下に置く必要がなく、塗布後に基板上での加熱処理の必要がなく、仮に塗布後に酸化処理を行うことにしても緩やかな条件で可能である。そして、低温での処理が必要な基材でも容易に酸化物被膜を形成することができる。生成された基板上の酸化物被膜は電気絶縁膜として用いることができる。
すなわち溶液中での水素化ケイ素の酸化であるため、酸化が十分に進行することができる。また、得られた酸化物は予め溶液中に存在するために溶剤との相容性が高く、形成された酸化物の沈降もなく安定に存在することができる。
上記値が1モル%未満であると、微少な酸化物の析出等があり好ましくない。また、40モル%を超えると十分に酸化されておらず、被覆した時に十分な電気絶縁性を示すことができない。
(A)工程において、式(1)で示される環状シラン中基R1及びR2の定義における炭素数1乃至6のアルキル基としては、メチル基、エチル基、n-プロピル基、i-プロピル基、シクロプロピル基、n-ブチル基、i-ブチル基、s-ブチル基、t-ブチル基、シクロブチル基、1-メチル-シクロプロピル基、2-メチル-シクロプロピル基、n-ペンチル基等が挙げられる。さらに置換されていても良いフェニル基において、置換基は例えば上記アルキル基が挙げられる。nは4乃至6の整数であり、好ましくはn=5である環状シランのみ、或いはn=5である環状シランを主成分として用いることができる。n=5である環状シランで、R1とR2がフェニル基である場合はデカフェニルシクロペンタシランであり、デカフェニルシクロペンタシランを原料として好ましく用いることができる。そして、n=4、n=6である環状シランを含むこともできる。
その際に、有機溶媒(例えば、シクロヘキサン、ヘキサン、ヘプタン、トルエン、ベンゼン)中でハロゲン化アルミニウム(例えば、塩化アルミニウム、臭化アルミニウム)を触媒として反応させることができる。ハロゲン化水素(例えば、塩化水素)は環状シランに対して2nモル以上必要であり、例えば2.5nモル乃至3.5nモルとすることができ、また過剰に添加することもできる。触媒は環状シラン1モルに対して、0.01モル乃至2モルの割合で添加することができる。(A)工程で、塩化水素を用いた場合には式(2)のR3とR4は塩素原子である。
式(3)中で、nは4乃至6の整数であるが、得られた全シラン中にnが5であるシクロペンタシランが80モル%以上、例えば80乃至100モル%、より好ましくは90乃至100モル%の割合で含有していることが好ましい。特に好ましくは純度の高いシクロペンタシラン(100モル%)であることが好ましい。
(ただし、式(a)中、R1及びR2はそれぞれ独立に水素原子、炭素数1乃至6のアルキル基、又は置換されていても良いフェニル基を示し(ただし、R1及びR2は同時に水素原子でない。)、Xはハロゲン原子を示す。)で示される化合物を有機溶剤中でアルカリ金属の存在下に反応させ、上記式(1)で示される環状シランを得ることができる。
得られたシクロペンタシランの重合体は、重量平均分子量が600乃至3000程度であり、重量平均分子量Mwと数平均分子量MnとのMw/Mn比が1.03乃至1.55となり、分子量分布が狭い重合体が得られる。
重合体の収率は80乃至90%の高い範囲で得ることができる。
上記溶剤中でもシクロオクタンが好ましく用いられ、シクロオクタン中に上記ポリシランを5乃至8質量%で含有してポリシラン組成物とすることができる。
塗布工程は大気中で行われることが好ましい。また窒素、ヘリウム、アルゴン等のガス中で行うこともできる。
Si-H%についてはIR測定により、2100cm-1のピークをSi-H、1100cm-1のピークをSi-Oとして、次の様に定義した。Si-H%=(Si-Hの積分値)/(Si-Hの積分値+Si-Oの積分値)×100として計算した。なお、IR分析の際は濃縮により、溶媒除去した後に実施した。
窒素雰囲気下、2L反応フラスコにデカフェニルシクロペンタシラン(500.0g)と溶媒としてシクロヘキサン(453.7g)を仕込んだ。これに塩化アルミニウムAlCl3(14.7g)を加えた後、これを水浴で室温まで昇温させた。これに塩化水素HClガスを8時間吹込んだ。その後、減圧と窒素による復圧を10回繰返して塩化水素を除去した後、メンブレンフィルターでろ過してデカクロロシクロペンタシランのシクロヘキサン溶液(1099.5g)を得た。
合成例1にて得たデカクロロシクロペンタシランのシクロヘキサン溶液(1099.5g)の溶媒除去を行い、その後、蒸留することによりシクロヘキシルベンゼンを除去したデカクロロシクロペンタシラン(268.56g)を得た。これにシクロヘキサン(814.5g)加え溶解させた後、メンブレンフィルターでろ過し、シクロヘキサン(50g)で洗浄を行い、高純度デカクロロシクロペンタシランのシクロヘキサン溶液(1100.6g)を得た。
これをアルゴン雰囲気下、2L反応フラスコ仕込み0乃至10℃にて水素化アルミニウムリチウムLiAlH4(57.5g)のジエチルエーテルET2O(269.6g)溶液を2時間かけて滴下した。室温で1時間撹拌後、0乃至10℃にて反応溶液へイオン交換水(592.7g)を1時間かけて滴下した。撹拌、静置後、水層部分を除去した。引き続き、室温でイオン交換水(592.7g)を加え、この水洗操作を4回繰り返した後、有機層を硫酸マグネシウム(23.7g)で乾燥させた後、メンブレンフィルターでろ過、濃縮を行いシクロペンタシランを含む反応混合物(71.8g)を得た。得られたシクロペンタシランを蒸留精製することによりシクロペンタシラン(53.74g)を得た。
窒素雰囲気下、1L反応フラスコに塩化ロジウムn水和物(1.00g)、炭酸アンモニウム(0.48g)、イオン交換水(482ml)を仕込んだ。次いで、室温から30分かけて90℃まで昇温した。ヒドラジンn水和物(9.65ml)加え、90℃で25分間撹拌した後、撹拌しながら30℃以下まで降温し、溶液を一晩静置させてRhblackを沈降させた。上澄み液を400ml分取した後、残りを遠心分離機(2000rpm)にかけて水を分離し、フラスコに移して真空で一晩乾燥させた。乾燥したRhblack(ロジウムブラック)を、メノウ製すり鉢ですりつぶし、得られたRhblackは0.45gであった。
アルゴン雰囲気下、合成例3より得られたRh black(150.7mg)を仕込み、合成例2で得られたシクロペンタシラン(49.95g)を添加した。この反応混合物を3時間半撹拌した。次いでシクロヘキサン321.5gを加えて反応を停止させ、次いで混合用液を、PTFE(ポリテトラフルオロエチレン)製メンブランフィルターで濾過した。次いで得られたろ液を、ナスフラスコに移し、濃縮したところ生成物が41.94g得られた。GPCを測定したところ、Mn=1,038、Mw=1,287であった。また、重合せずに残っている残存シクロペンタシラン量は、14.7%であった。
アルゴン雰囲気下、合成例4で得られたシクロペンタシランポリマー(4.0g)をシクロヘキサン/シクロオクタン(重量比95/5、96.0g)に溶解させ、4質量%の溶液を調整した。このシクロペンタシランポリマーを4質量%で含有するシクロヘキサン/シクロオクタン溶液(20.0g)へ高純度空気を100ml/分で6時間吹き込み酸化させた。酸化前後のIRチャートについては図1(酸化前)及び図2(酸化後)に示す。得られた溶液については無色透明であり、IR測定を行ったところ酸化後にポリマー中に残存するSi-H基は、酸化前にポリマー中に残存するSi-H基に対して25.3モル%であった。酸化前後の29Si-NMRスペクトルを図3に示す。
アルゴン雰囲気下、合成例2で得られたシクロペンタシラン(4.0g)をシクロヘキサン(96.0g)に溶解させ、4質量%の溶液を調整した。このシクロペンタシランを4質量%で含有するシクロヘキサン溶液(10.0g)へ高純度空気を50ml/分で6時間吹き込み酸化させた。得られた溶液については無色透明であり、IR測定を行ったところ酸化後にポリマー中に残存するSi-H基は、酸化前にポリマー中に残存するSi-H基に対して26.9モル%であった。
Claims (8)
- 水素化ケイ素又はその重合体を含む有機溶剤に、酸素を含むガスを吹き込むことを特徴とする水素化ケイ素の酸化物を含む有機溶剤の製造方法。
- 水素化ケイ素が環状シランである請求項1に記載の水素化ケイ素の酸化物を含む有機溶剤の製造方法。
- 水素化ケイ素がシクロペンタシランである請求項1に記載の水素化ケイ素の酸化物を含む有機溶剤の製造方法。
- 水素化ケイ素の酸化物を含む有機溶剤において、水素化ケイ素又はその重合体の酸化物が、(残存するSi-H基)/(酸化前のSi-H基)=1乃至40モル%となる割合で含まれるものとする請求項1に記載の水素化ケイ素の酸化物を含む有機溶剤の製造方法。
- 前記水素化ケイ素として下記(A)、及び(B)工程:
(A)工程:式(1):
(ただし、式(1)中、R1及びR2はそれぞれ独立に水素原子、炭素数1乃至6のアルキル基、又は置換されていても良いフェニル基を示し(ただし、R1及びR2は同時に水素原子でない。)、nは4乃至6の整数を示す。)で示される環状シランを、ハロゲン化アルミニウムの存在下にシクロヘキサン中でハロゲン化水素と反応させ、式(2):
(ただし、式(2)中、R3及びR4はそれぞれハロゲン原子を示し、nは4乃至6の整数を示す。)で示される環状シランを含む溶液を得る工程、
(B)工程:式(2)で示される環状シランを有機溶剤に溶解し、水素又はリチウムアルミニウムハイドライドで還元して、式(3):
(ただし、式(3)中、nは4乃至6の整数を示す。)で示される環状シランを得る工程、
を含む方法で得られた環状シランを用いる請求項1に記載の水素化ケイ素の酸化物を含む有機溶剤の製造方法。 - 上記(A)工程において、式(2)で示される環状シランを含む溶液を得た後、更に蒸留して式(2)で示される環状シランを得る工程を含む請求項5に記載の水素化ケイ素の酸化物を含む有機溶剤の製造方法。
- 用いる水素化ケイ素の重合体が不活性ガス下に、水素化ケイ素と金属ロジウムとの接触により生成したものである請求項1に記載の水素化ケイ素の酸化物を含む有機溶剤の製造方法。
- 酸素を含むガスが空気である請求項1乃至請求項7のいずれか1項に記載の水素化ケイ素の酸化物を含む有機溶剤の製造方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP15857977.1A EP3248940A4 (en) | 2014-11-04 | 2015-10-13 | Method for producing organic solvent including oxide of silicon hydride |
CN201580072282.9A CN107428543A (zh) | 2014-11-04 | 2015-10-13 | 制造含氧硅氢化物有机溶剂的方法 |
KR1020177013131A KR20170083050A (ko) | 2014-11-04 | 2015-10-13 | 수소화 규소의 산화물을 포함하는 유기용제 제조방법 |
JP2016557679A JPWO2016072226A1 (ja) | 2014-11-04 | 2015-10-13 | 水素化ケイ素の酸化物を含む有機溶剤の製造方法 |
US15/523,921 US10414661B2 (en) | 2014-11-04 | 2015-10-13 | Method of producing silicon hydride oxide-containing solvent |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014224513 | 2014-11-04 | ||
JP2014-224513 | 2014-11-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016072226A1 true WO2016072226A1 (ja) | 2016-05-12 |
Family
ID=55908953
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/078922 WO2016072226A1 (ja) | 2014-11-04 | 2015-10-13 | 水素化ケイ素の酸化物を含む有機溶剤の製造方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US10414661B2 (ja) |
EP (1) | EP3248940A4 (ja) |
JP (1) | JPWO2016072226A1 (ja) |
KR (1) | KR20170083050A (ja) |
CN (1) | CN107428543A (ja) |
TW (1) | TW201638007A (ja) |
WO (1) | WO2016072226A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6026664A (ja) * | 1983-07-22 | 1985-02-09 | Canon Inc | アモルフアスシリコン堆積膜形成法 |
JPH11260729A (ja) * | 1998-01-08 | 1999-09-24 | Showa Denko Kk | 高次シランの製造法 |
JP2005022964A (ja) * | 2003-06-13 | 2005-01-27 | Jsr Corp | シラン重合体およびシリコン膜の形成方法 |
WO2013019208A1 (en) * | 2011-07-29 | 2013-02-07 | Kovio, Inc. | Methods of polymerizing silanes and cyclosilanes using n-heterocyclic carbenes, metal complexes having n-heterocyclic carbene ligands, and lanthanide compounds |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6027705A (en) | 1998-01-08 | 2000-02-22 | Showa Denko K.K. | Method for producing a higher silane |
US8092867B2 (en) * | 2006-10-06 | 2012-01-10 | Kovio, Inc. | Silicon polymers, methods of polymerizing silicon compounds, and methods of forming thin films from such silicon polymers |
-
2015
- 2015-10-13 WO PCT/JP2015/078922 patent/WO2016072226A1/ja active Application Filing
- 2015-10-13 EP EP15857977.1A patent/EP3248940A4/en not_active Withdrawn
- 2015-10-13 JP JP2016557679A patent/JPWO2016072226A1/ja active Pending
- 2015-10-13 US US15/523,921 patent/US10414661B2/en active Active
- 2015-10-13 KR KR1020177013131A patent/KR20170083050A/ko unknown
- 2015-10-13 CN CN201580072282.9A patent/CN107428543A/zh active Pending
- 2015-10-28 TW TW104135438A patent/TW201638007A/zh unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6026664A (ja) * | 1983-07-22 | 1985-02-09 | Canon Inc | アモルフアスシリコン堆積膜形成法 |
JPH11260729A (ja) * | 1998-01-08 | 1999-09-24 | Showa Denko Kk | 高次シランの製造法 |
JP2005022964A (ja) * | 2003-06-13 | 2005-01-27 | Jsr Corp | シラン重合体およびシリコン膜の形成方法 |
WO2013019208A1 (en) * | 2011-07-29 | 2013-02-07 | Kovio, Inc. | Methods of polymerizing silanes and cyclosilanes using n-heterocyclic carbenes, metal complexes having n-heterocyclic carbene ligands, and lanthanide compounds |
Non-Patent Citations (1)
Title |
---|
See also references of EP3248940A4 * |
Also Published As
Publication number | Publication date |
---|---|
EP3248940A4 (en) | 2018-08-22 |
CN107428543A (zh) | 2017-12-01 |
TW201638007A (zh) | 2016-11-01 |
US20170313592A1 (en) | 2017-11-02 |
JPWO2016072226A1 (ja) | 2017-09-28 |
EP3248940A1 (en) | 2017-11-29 |
US10414661B2 (en) | 2019-09-17 |
KR20170083050A (ko) | 2017-07-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI600614B (zh) | 矽石質膜之形成方法及以相同方法形成之矽石質膜 | |
US6517911B1 (en) | Process for the formation of silicon oxide films | |
KR20180069769A (ko) | 실리콘 옥사이드 필름의 증착을 위한 조성물 및 방법 | |
US7776990B1 (en) | Method for preparing polysilazane solution with reducing ammonia substitution of Si-H bond | |
WO2016010038A1 (ja) | 濃縮法を用いた環状シランの製造方法 | |
JP6900503B2 (ja) | シリルアミン化合物、それを含むシリコン含有薄膜蒸着用組成物、およびそれを用いたシリコン含有薄膜の製造方法 | |
JP2002246384A (ja) | シリコン酸化膜の形成方法および形成用組成物 | |
JP6652488B2 (ja) | 高分子量ポリシラン及びその製造方法 | |
WO2016072226A1 (ja) | 水素化ケイ素の酸化物を含む有機溶剤の製造方法 | |
JP2007254593A (ja) | ゲルマニウムポリマー、その製造法およびゲルマニウム膜の形成方法 | |
US20110184141A1 (en) | Polymer production process | |
JP6673845B2 (ja) | シランの重合禁止剤 | |
JP4748288B2 (ja) | スピロ[4.4]ノナシランを含有する組成物 | |
TWI797640B (zh) | 基於矽之自組裝單層組成物及使用該組成物之表面製備 | |
WO2016009897A1 (ja) | 加熱重合によるポリシランの製造方法 | |
JP2001055444A (ja) | ケイ素ポリマーの製造方法 | |
JP2001011184A (ja) | ケイ素ポリマーおよびその製造方法 | |
JP2011114162A (ja) | ボラジン骨格を含むパッシベーション膜、それを使った表示装置 | |
JP2001089572A (ja) | リン変性ケイ素ポリマー、その製法、それを含有する組成物ならびにリン変性シリコンの製法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15857977 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016557679 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15523921 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20177013131 Country of ref document: KR Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2015857977 Country of ref document: EP |