WO2016072204A1 - 導電性ペースト、及びガラス物品 - Google Patents

導電性ペースト、及びガラス物品 Download PDF

Info

Publication number
WO2016072204A1
WO2016072204A1 PCT/JP2015/078482 JP2015078482W WO2016072204A1 WO 2016072204 A1 WO2016072204 A1 WO 2016072204A1 JP 2015078482 W JP2015078482 W JP 2015078482W WO 2016072204 A1 WO2016072204 A1 WO 2016072204A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
conductive
glass
conductive paste
electrically conductive
Prior art date
Application number
PCT/JP2015/078482
Other languages
English (en)
French (fr)
Inventor
伸一 次本
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2016557512A priority Critical patent/JP6296315B2/ja
Priority to CN201580056194.XA priority patent/CN107077913B/zh
Publication of WO2016072204A1 publication Critical patent/WO2016072204A1/ja
Priority to US15/480,641 priority patent/US10029542B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J1/00Windows; Windscreens; Accessories therefor
    • B60J1/002Windows; Windscreens; Accessories therefor with means for clear vision, e.g. anti-frost or defog panes, rain shields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/052Metallic powder characterised by the size or surface area of the particles characterised by a mixture of particles of different sizes or by the particle size distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/103Metallic powder containing lubricating or binding agents; Metallic powder containing organic material containing an organic binding agent comprising a mixture of, or obtained by reaction of, two or more components other than a solvent or a lubricating agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/12Metallic powder containing non-metallic particles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C14/00Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix
    • C03C14/004Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix the non-glass component being in the form of particles or flakes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/06Surface treatment of glass, not in the form of fibres or filaments, by coating with metals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/14Compositions for glass with special properties for electro-conductive glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • C03C8/16Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions with vehicle or suspending agents, e.g. slip
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • C03C8/18Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions containing free metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/69Particle size larger than 1000 nm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/14Conductive material dispersed in non-conductive inorganic material
    • H01B1/16Conductive material dispersed in non-conductive inorganic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/02Surface treatment of glass, not in the form of fibres or filaments, by coating with glass
    • C03C17/04Surface treatment of glass, not in the form of fibres or filaments, by coating with glass by fritting glass powder
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2207/00Compositions specially applicable for the manufacture of vitreous enamels
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2214/00Nature of the non-vitreous component
    • C03C2214/08Metals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/29Mixtures
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/44Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the composition of the continuous phase
    • C03C2217/45Inorganic continuous phases
    • C03C2217/452Glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/46Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
    • C03C2217/47Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase consisting of a specific material
    • C03C2217/475Inorganic materials
    • C03C2217/479Metals
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/11Treatments characterised by their effect, e.g. heating, cooling, roughening
    • H05K2203/1126Firing, i.e. heating a powder or paste above the melting temperature of at least one of its constituents

Definitions

  • the present invention relates to a conductive paste and a glass article. More specifically, the present invention relates to a conductive paste for forming an antifogging hot wire or an antenna pattern attached to a window glass for a vehicle such as an automobile, and the conductive property. The present invention relates to glass articles such as anti-fogging glass and glass antenna using paste.
  • glass articles such as a glass antenna that receives radio waves from the outside of a vehicle and an antifogging glass provided with a heat ray for antifogging are used for a window glass of a vehicle such as an automobile.
  • a conductive paste having a predetermined pattern is usually formed by applying a conductive paste in a line on a glass substrate and baking it.
  • conductive paste for glass articles has been actively conducted.
  • Patent Document 1 discloses a conductive paste containing Ag powder, glass frit, and an organic vehicle, and 50 wt% or more of the Ag powder has a particle diameter of 4.5 ⁇ m to 7 ⁇ m, and A conductive paste that is a silver powder having a crystallite diameter of 100 nm or more and is used for an antifogging heat ray of an automobile window has been proposed.
  • Patent Document 2 discloses a first Ag powder having an average particle size of 5 ⁇ m or less obtained by an atomizing method and a second Ag particle having a mean particle size of 0.2 to 2.0 ⁇ m obtained by a wet reduction method. And the second Ag powder has an average particle size of 20/80 ⁇ (first Ag powder / second Ag powder) ⁇ 80/20.
  • a conductive paste containing fine powder in the range of 1.0 to 2.0 ⁇ m and ultrafine powder in the range of average particle diameter of 0.2 to 0.6 ⁇ m has been proposed.
  • Patent Document 2 an electrically conductive paste that suppresses firing shrinkage and has a low resistance value after firing by blending atomized powder having a predetermined particle size and wet reduced powder having a predetermined particle size at a predetermined mass ratio. Trying to get.
  • Japanese Patent No. 3776714 (Claim 1, paragraph numbers [0004], [0017] to [0020], FIGS. 1 to 3 etc.)
  • Japanese Patent No. 4805621 (Claim 1, [0006], [0008], etc.)
  • wet reduction methods and atomization methods are widely known as methods for producing conductive powder such as Ag powder contained in conductive paste.
  • Ag powder having a relatively large particle diameter of about 4.5 ⁇ m to 7 ⁇ m as in Patent Document 1 is preferably produced by an atomizing method rather than a wet reduction method in view of cost.
  • window glass for automobiles it is widely practiced to form a black ceramic layer having an antiglare action on a glass substrate and form a line-shaped conductive film on the ceramic layer.
  • the window glass for automobiles is usually formed by forming a ceramic dry film on a glass substrate, then applying a conductive paste on the ceramic dry film and drying it, and simultaneously drying the ceramic dry film and the conductive paste.
  • the ceramic layer and the conductive film are formed by firing.
  • Patent Document 2 attempts to suppress firing shrinkage by adjusting the blending ratio of atomized powder having an average particle diameter of 5 ⁇ m or less and wet reduced powder having an average particle diameter of 0.2 to 2.0 ⁇ m.
  • the average particle size is 5 ⁇ m or less, even if an atomized powder with low sinterability is used, the effect of suppressing the firing shrinkage is lowered, and thus there is a possibility that structural defects such as cracks may occur in the ceramic layer after firing.
  • the present invention has been made in view of such circumstances, and uses a conductive paste capable of suppressing discoloration of a glass substrate and occurrence of structural defects such as cracks in the underlying layer of the conductive film, and the use of this conductive paste.
  • An object of the present invention is to provide a glass article such as an anti-fogging glass.
  • the atomized powder is obtained by spraying a molten metal with a jet stream to form droplets, which are solidified to obtain metal powder. Therefore, compared with the wet reduction powder which reduces metal salt aqueous solution and deposits metal powder, it can suppress that a surface becomes uneven
  • the present inventor has conducted intensive research using mixed powder of atomized powder and conductive powder other than atomized powder, for example, wet reduced powder, and found that a trace amount in molten metal or spray water in the process of atomized powder production.
  • a trace amount in molten metal or spray water in the process of atomized powder production was found that such a chlorine component was mixed in the conductive powder as an impurity, and the glass substrate near the conductive film was discolored after firing.
  • the present inventor conducted further earnest research if the content of the chlorine component mixed in the conductive powder is 42 ppm or less, the atomized powder whose average particle size is adjusted to a predetermined range is used as the conductive powder. It was found that the glass substrate can be prevented from being discolored or structural defects such as cracks can be suppressed in the underlying layer of the conductive film by adding a predetermined amount.
  • the conductive paste according to the present invention is a conductive paste containing at least a conductive powder, a glass frit, and an organic vehicle, and the conductive powder.
  • a conductive paste containing at least a conductive powder, a glass frit, and an organic vehicle, and the conductive powder.
  • the average particle diameter means a particle diameter having an accumulated cumulative distribution of 50%, that is, a median diameter (hereinafter referred to as “average particle diameter D 50 ”).
  • the conductive powder contains wet reduced powder.
  • conductive powder as a mixed powder of atomized powder and wet reduced powder, a conductive paste that does not turn yellow after firing can be effectively obtained.
  • the content of the conductive powder is preferably 50 to 90 wt%.
  • the average particle size of the glass frit is not more than twice the average particle size of the conductive powder.
  • the glass frit preferably has a softening point of 350 ° C. to 600 ° C.
  • the conductive powder is preferably composed mainly of Ag.
  • the glass article according to the present invention is a glass article in which a conductive film having a predetermined pattern is formed on a glass substrate, and the conductive paste according to any one of the above is formed on the glass substrate. It is characterized by being applied and sintered.
  • the glass article according to the present invention is preferably characterized in that a ceramic layer is formed on the surface of the glass substrate, and at least a part of the conductive film is formed on the surface of the ceramic layer. .
  • the conductive paste of the present invention is a conductive paste containing at least a conductive powder, a glass frit and an organic vehicle, and the conductive powder contains atomized powder in a range of 5 to 40 wt%.
  • the average particle size of the atomized powder is 5.2 to 9 ⁇ m, and the content of the chlorine component mixed in the conductive powder is 42 ppm or less.
  • the amount of chlorine component in the conductive paste can be suppressed to such an extent that the glass substrate does not discolor significantly, and even if the underlayer is formed of a ceramic layer or the like, structural defects such as cracks do not occur in the underlayer In addition, the sinterability can be suppressed.
  • a glass article in which a conductive film having a predetermined pattern is formed on a glass substrate, wherein the conductive film has any of the conductive pastes on the glass substrate Since it is applied and sintered, it is possible to obtain a glass article such as antifogging glass that can suppress discoloration of the glass substrate near the conductive film to yellow or the like.
  • a ceramic layer is formed on the surface of the glass substrate, and structural defects such as cracks are generated in the ceramic layer even when at least a part of the conductive film is formed on the surface of the ceramic layer. Glass articles such as anti-fogging glass that can be suppressed can be obtained.
  • FIG. 2 is a cross-sectional view taken along line AA in FIG. 1. It is sectional drawing which shows typically 2nd Embodiment of the glass article which concerns on this invention.
  • FIG. 1 is a front view showing an embodiment of an anti-fogging glass as a glass article manufactured using the conductive paste according to the present invention
  • FIG. 2 is a cross-sectional view taken along the line AA in FIG. It is.
  • a plurality of line-shaped conductive films 2 which are thinned and thinned with a predetermined interval on the surface of the glass substrate 1 are formed in parallel.
  • the bus bar electrodes 3a and 3b are formed at both ends of the bus bar, and the bus bar electrodes 3a and 3b are connected to a power supply terminal (not shown) via solder.
  • This anti-fogging glass can be produced as follows.
  • a conductive paste according to the present invention which will be described later, is applied in a line shape on a glass substrate 1 and dried, and then a baking process is performed to form a conductive film 2 having a predetermined pattern, and the conductive film 2 is fixed on the glass substrate 1.
  • the bus bar electrodes 3a and 3b are electrically connected to both ends of the conductive film 2, and the bus bar electrodes 3a and 3b are soldered to power supply terminals (not shown), whereby the antifogging glass according to the first embodiment. Is produced.
  • the anti-fogging glass formed in this way is equipped mainly as a rear glass of a vehicle such as an automobile, for example, and is fed to the conductive film 2 from the power supply terminal via the bus bar electrodes 3a and 3b and generates heat to fog the window glass. Stop can be done.
  • FIG. 3 is a cross-sectional view of an essential part showing a second embodiment of the antifogging glass.
  • the ceramic layer 4 is formed on the surface of the glass substrate 1, and the conductive film 2 having a predetermined pattern is formed on the surface of the ceramic layer 4.
  • This anti-fogging glass can be produced as follows.
  • a ceramic paste containing a ceramic powder containing glass frit and an organic vehicle is prepared.
  • the ceramic powder containing glass frit is not particularly limited, and ZnO, Al 2 O 3 , B 2 O 3 , SiO 2 , TiO 2 , ZrO 2 , alkali metal oxide, alkaline earth metal It can be appropriately selected from oxides and the like as necessary, and can be used after blending to a predetermined composition.
  • the glass frit is also preferably amorphous.
  • Amorphous glass frit is easy to soften during firing and is rich in fluidity, and therefore can be fired at a relatively low temperature.
  • the present antifogging glass is usually installed in the rear part of a vehicle or the like, it is also preferable to add a black pigment having an antiglare action to the ceramic paste.
  • the organic vehicle can be the same as the conductive paste of the present invention described later.
  • the ceramic powder containing the glass frit and the organic vehicle are weighed and mixed so as to have a predetermined mixing ratio, and dispersed and kneaded using a three-roll mill or the like, thereby producing a ceramic paste.
  • this ceramic paste is applied onto the glass substrate 1 and dried, thereby producing a ceramic dry film.
  • the conductive paste of the present invention which will be described later, is applied in a line on the ceramic dry film and dried, and then a firing process is performed to form the conductive film 2 having a predetermined pattern on the ceramic layer 4. As a result, the conductive film 2 is fixed on the glass substrate 1 via the ceramic layer 4.
  • the bus bar electrodes 3a and 3b are electrically connected to both ends of the conductive film 2, and the bus bar electrodes 3a and 3b are soldered to power supply terminals (not shown).
  • the anti-fog glass of 2nd Embodiment is produced.
  • the antifogging glass formed in this way is equipped as a windshield of a vehicle such as an automobile as described above, and from the power supply terminal to the conductive film 2 via the bus bar electrodes 3a and 3b, as in the first embodiment.
  • the window glass can be defrosted by being supplied with power and generating heat. It is also possible to have an antiglare function by making the ceramic layer 4 black.
  • the conductive paste contains at least conductive powder, glass frit, and an organic vehicle.
  • the conductive powder contains atomized powder in the range of 5 to 40 wt%. That is, the conductive powder is formed of a mixed powder of atomized powder and powder other than atomized powder, and the content of atomized powder is 5 to 40 wt%. In the present embodiment, wet reduced powder is used as powder other than atomized powder.
  • the conductive powder has an average particle size of atomized powder of 5.2 to 8.8 ⁇ m, and the content of chlorine component contained in the conductive powder is 42 ppm or less.
  • a fine metal powder such as a conductive powder is usually produced by a wet reduction method or an atomization method.
  • the wet reduction method is a manufacturing method using a chemical process, in which an aqueous solution of a metal salt such as an Ag salt is reduced with a reducing agent to deposit metal powder. For this reason, the shape of the particles is close to a sphere, but the surface has a large specific surface area because fine irregularities are formed on the surface. These geometric features promote grain growth and can provide good sinterability.
  • molten metal melted by heat treatment flows out from the nozzle at the bottom of the tundish, and a jet stream is sprayed onto the molten metal to form droplets, which are solidified to produce metal powder. . Therefore, although the rough shape of the particles is a distorted indeterminate shape, the surface is smooth and the uneven shape is reduced, and the specific surface area is reduced. These shape characteristics reduce sinterability contrary to wet reduced powder. Furthermore, there is an advantage that it can be manufactured at a lower cost than the wet reduced powder, and the treatment of harmful waste liquid generated in the wet process becomes unnecessary.
  • the conductive powder in order to alleviate the difference in shrinkage behavior during firing with the glass substrate 1 or the ceramic layer 4 and avoid the occurrence of structural defects such as deformation of the glass substrate 1 and cracks in the ceramic layer 4. It is considered desirable to use an atomized powder that has low sinterability and is inexpensive.
  • the conductive powder is composed only of atomized powder
  • the glass substrate 1 in the vicinity of the conductive film is discolored to yellow or the like after firing, so that it is beautiful. May affect the visibility of the driver.
  • a jet stream is sprayed on the molten metal to form droplets, which are solidified, so that a trace amount of chlorine component may be mixed in the molten metal.
  • tap water and industrial water are usually used as spray water for spraying a jet stream, and these tap water and industrial water contain a chlorine component.
  • these chlorine components are mixed as impurities into the atomized powder, the glass substrate 1 in the vicinity of the conductive film 2 may be discolored.
  • conductive powder mixed with chlorine component When conductive powder mixed with chlorine component is used, chlorine and metal particles such as Ag react with each other during firing of the conductive paste to produce a metal salt such as AgCl.
  • the metal salt evaporates and scatters around the conductive film 2 and adheres to the surface of the glass substrate 1, and metal ions such as Ag ions diffused from the surface of the glass substrate 1 into the glass substrate 1 are reduced to reduce the glass substrate. It is considered that a metal colloid such as an Ag colloid is generated on the surface layer surface of 1 and as a result, the surface of the glass substrate 1 is changed to yellow or the like.
  • the chlorine component mixed in the conductive powder is reduced as much as possible.
  • chlorine content the content of the chlorine component in the conductive powder
  • the content of the atomized powder in the conductive powder the content of the atomized powder in the conductive powder
  • average particle diameter D 50 of the atomized powder are set in the above ranges. The reason will be described in detail.
  • Chlorine content The reason why the glass substrate 1 in the vicinity of the conductive film 2 turns yellow is considered to be the chlorine component mixed as an impurity in the conductive powder as described above. Moreover, since there is a possibility that a trace amount of chlorine components may be mixed in the wet reduced powder, it is necessary to regulate not only the chlorine content in the atomized powder but also the total amount of chlorine content in the conductive powder.
  • the glass substrate 1 of the vicinity of the electrically conductive film 2 turns yellow by suppressing the total amount of chlorine content in electrically conductive powder to 42 ppm or less. It was found that it can be prevented.
  • the chlorine content in the conductive powder is set to 42 ppm or less.
  • the method for suppressing the chlorine content in the conductive powder to 42 ppm or less is not particularly limited.
  • the chlorine content is suppressed by using water-treated high-purity ion-exchanged water or the like. can do.
  • Atomized powder has low sinterability compared with wet-reduced powder, and therefore can suppress firing shrinkage of the conductive film 2, and the ceramic layer 4 serving as an underlayer of the conductive film 2. It is possible to prevent structural defects such as cracks from occurring.
  • the atomized powder needs to be at least 5 wt% in the conductive powder.
  • the content of atomized powder in the conductive powder is 5 to 40 wt%.
  • the conductive film 2 is usually produced by a screen printing method.
  • the average particle diameter D 50 of the atomized powder exceeds 9 ⁇ m, the mesh of the screen printing plate tends to be clogged, which is not preferable.
  • the average particle diameter D 50 of the atomized powder in the conductive powder is set to 5.2 to 9 ⁇ m.
  • the average particle diameter D 50 of the entire conductive powder is preferably 9 ⁇ m or less.
  • the conductive powder is not particularly limited as long as it is a metal powder having good conductivity, but normally, Ag powder can be preferably used. Moreover, you may contain Ag powder as a main component and various electroconductive powders, such as Pd powder and Pt powder, as a subcomponent.
  • the shape of the conductive powder is not particularly limited, and may be, for example, a spherical shape, a flat shape, an irregular shape, or a mixed powder thereof.
  • the content of the conductive powder in the conductive paste is not particularly limited, but is preferably 50 to 90 wt%.
  • the content of the conductive powder is less than 50 wt%, a screen printing plate having a mesh with a large wire diameter must be used during screen printing in order to obtain a standard 3 to 20 ⁇ m thick conductive film 2. , There is a risk of lowering the resolution.
  • the content of the conductive powder exceeds 90 wt%, the conductive powder becomes excessive and it may be difficult to form a paste. Accordingly, the content of the conductive powder is not particularly limited, but is preferably 50 to 90 wt%.
  • the composition of the glass frit is not particularly limited, but from the viewpoint of avoiding a decrease in the sintered density and insufficient sealing at the interface of the conductive film 2, it is necessary to melt and flow at the firing temperature. Since glass articles such as antifogging glass are usually fired at a temperature of about 500 to 800 ° C., it is preferable to use a glass frit whose composition is adjusted to a softening point of about 350 to 600 ° C.
  • glass frit Bi 2 O 3, PbO, SiO 2, B 2 O 3, Al 2 O 3, BaO, CaO, SrO, ZnO, Na 2 O, K It can be selected from various oxides such as 2 O, Li 2 O, Sb 2 O 3 , FeO, and CuO in consideration of the softening point and chemical durability.
  • the average particle diameter D 50 of the glass frit is not particularly limited, but it is desirable that the glass frit is uniformly filled in the gap between the conductive powder and the glass substrate 1.
  • the average particle diameter D 50 is desirably not more than 2 times the average particle diameter D 50 of the conductive powder.
  • the organic vehicle is prepared so that the binder resin and the organic solvent are in a volume ratio of, for example, 1 to 3: 7 to 9.
  • the binder resin is not particularly limited, and for example, ethyl cellulose resin, nitrocellulose resin, acrylic resin, alkyd resin, or a combination thereof can be used.
  • the organic solvent is not particularly limited, and ⁇ -terpineol, xylene, toluene, diethylene glycol monobutyl ether, diethylene glycol monobutyl ether acetate, diethylene glycol monoethyl ether, diethylene glycol monoethyl ether acetate, etc. alone or in combination thereof Can be used.
  • the atomized powder and the wet reduced powder are weighed so that the content of atomized powder in the conductive powder is 5 to 40 wt% and the chlorine content in the conductive powder is 42 ppm or less. Further, the glass frit and the organic vehicle are weighed and mixed so as to have a predetermined mixing ratio, and can be easily manufactured by dispersing and kneading using a three-roll mill or the like.
  • the conductive paste contains at least conductive powder, glass frit, and an organic vehicle, and the conductive powder contains atomized powder in a range of 5 to 40 wt%, The average particle size of the atomized powder is 5.2 to 9 ⁇ m, and the content of the chlorine component mixed in the conductive powder is 42 ppm or less.
  • the amount of chlorine component in the conductive paste can be suppressed to such an extent that the glass substrate 1 is not discolored, and the sinterability can be suppressed to the extent that no structural defects such as cracks occur in the ceramic layer 4.
  • the present invention is not limited to the above embodiment.
  • the conductive powder is a mixed powder of atomized powder and wet reduced powder, but the conductive powder contained together with the atomized powder is not limited to wet reduced powder, and other methods It may be produced by.
  • the conductive film 2 is formed on the surface of the ceramic layer 4.
  • the conductive film 2 may be formed on a part of the ceramic layer 4 as necessary.
  • anti-fog glass was illustrated as a glass article, this invention is not limited to anti-fog glass, It applies also to other glass articles, such as a glass antenna. It goes without saying that it is possible.
  • various inorganic components may be contained in the conductive paste as necessary within a range that does not affect the characteristics.
  • Zr, P, V, Ce, Nb, Ta, W, Pd, Ag, Ru, Sn, In, Y, Dy, La, or the like may be contained.
  • the form of inclusion is not particularly limited, and is appropriately selected from oxides, hydroxides, peroxides, halides, carbonates, nitrates, phosphates, sulfates, fluorides, organometallic compounds, and the like. can do.
  • plasticizers such as di-2-ethylhexyl phthalate and dibutyl phthalate
  • a rheology modifier such as a fatty acid amide or a fatty acid, and a thixotropic agent, a thickener, a dispersant, etc. may be added.
  • sample preparation Six types of Ag powders (powder samples A to F) having an average particle diameter D 50 and a chlorine content as shown in Table 1 were prepared, and Bi—B—Si—O having an average particle diameter D 50 of 2 ⁇ m. A system glass frit was prepared.
  • Powder sample A was prepared by a wet reduction method, and powder samples B to F were prepared by an atomizing method.
  • powder samples A ⁇ F using a laser diffraction particle size distribution analyzer (Microtrac Bell Co. 9320HRA), it was measured average particle diameter D 50.
  • the chlorine content in each powder sample was measured using an ion chromatograph measuring device (ICS-5000 manufactured by Dionex).
  • an organic vehicle was produced by the following method. That is, the organic cellulose was produced by mixing ethyl cellulose resin and terpineol so that the binder resin was 10 wt% ethyl cellulose resin and the organic solvent was turpineol 90 wt%.
  • the blending ratio of the atomized powder and the wet reduced powder is adjusted so that the content ratio of the atomized powder in the Ag powder is as shown in Table 2, and the total content of the Ag powder is 78 wt%,
  • the mixture was blended so that the content was 4 wt% and the balance was an organic vehicle, mixed with a planetary mixer, then dispersed with a three-roll mill and kneaded to prepare conductive pastes of sample numbers 1 to 14.
  • Example evaluation A slide glass made of soda lime having a length of 76 mm, a width of 26 mm, and a thickness of 1.4 mm, and a black ceramic paste were prepared. And ceramic paste was apply
  • Table 2 shows the types of atomized powder used in sample numbers 1 to 14, the content ratio of the atomized powder in the Ag powder, the chlorine content, discoloration, and the presence or absence of cracks.
  • the Ag powder other than the atomized powder uses the wet reduced powder of sample number A.
  • Sample No. 1 was confirmed to have cracks in the ceramic layer, although no noticeable discoloration occurred in the slide glass near the conductive film. This is because the Ag powder does not contain atomized powder that has the effect of suppressing firing shrinkage, and is formed only from wet reduced powder, and thus firing shrinkage is promoted. Therefore, the Ag powder and the ceramic layer during firing are promoted. It seems that cracks occurred in the ceramic layer due to the difference in shrinkage behavior.
  • Sample Nos. 4 to 6, 8 to 10, 13, and 14 contain the atomized powder of powder samples D to F having an average particle diameter D 50 of 5.2 to 8.8 ⁇ m in the range of 5 to 40 wt%.
  • the chlorine content is 11 to 42 ppm and 42 ppm or less, both of which are within the scope of the present invention, so that the color change of the slide glass is slight and not noticeable, and the underlying ceramic layer is not cracked. It was confirmed that an antifogging glass that can withstand practicality was obtained.
  • Conductive paste suitable for forming hot wires for anti-fogging glass for automobiles and the like, which can prevent the glass substrate in the vicinity of the conductive film from turning yellow or cracking in the ceramic layer serving as the underlayer Glass articles can be obtained.

Abstract

 導電性ペーストは、少なくとも導電性粉末とガラスフリットと有機ビヒクルとを含有している。導電性粉末は、アトマイズ法で作製されたアトマイズ粉と湿式還元法で作製された湿式還元粉との混合粉であり、アトマイズ粉を5~40wt%の範囲で含有している。アトマイズ粉の平均粒径が5.2~9μmであり、前記導電性粉末中に混入した塩素成分の含有量が42ppm以下である。この導電性ペーストをガラス基板1上にライン状に塗布して焼成し、導電膜2を得る。これによりガラス基板に変色が生じたり導電膜の下地層に亀裂等の構造欠陥が生じるのを抑制できる導電性ペースト、及びこの導電性ペーストを使用した防曇ガラス等のガラス物品を実現する。

Description

導電性ペースト、及びガラス物品
 本発明は、導電性ペースト、及びガラス物品に関し、より詳しくは、自動車等の車両用窓ガラスに付設される防曇用の熱線やアンテナパターン等を形成するための導電性ペースト、及びこの導電性ペーストを使用した防曇ガラスやガラスアンテナ等のガラス物品に関する。
 従来より、自動車等の車両の窓ガラスには、防曇用の熱線を配した防曇ガラスや車外からの電波を受信するガラスアンテナ等のガラス物品が使用されている。これらのガラス物品、例えば防曇ガラスでは、通常、ガラス基板上に導電性ペーストをライン状に塗布して焼成し、所定パターンの導電膜を形成している。そして、従来より、この種のガラス物品用導電性ペーストの研究・開発も盛んに行われている。
 例えば、特許文献1には、Ag粉末と、ガラスフリットと、有機ビヒクルとを含む導電性ペーストであって、上記Ag粉末のうちの50wt%以上は、粒子径が4.5μm~7μm、かつ、結晶子径が100nm以上である銀粉末であり、自動車ウインドウの防曇熱線用である導電性ペーストが提案されている。
 この特許文献1では、Ag粉末のうちの50wt%以上が所定の粒子径及び結晶子径を有する導電性ペーストを使用することにより、Ag粒子の焼結を遅らせ、これにより良好なはんだ濡れ性を有し、接合強度が低下せず、かつ自動車用窓ガラスに適した高比抵抗を有する防曇用の熱線を得ようとしている。
 また、特許文献2には、アトマイズ製法で得られる平均粒径が5μm以下の第1のAg粉末と、湿式還元法で得られる平均粒径が0.2~2.0μmの範囲内の第2のAg粉末とを、20/80≦(第1のAg粉末/第2のAg粉末)≦80/20の範囲内の質量割合で含み、且つ、前記第2のAg粉末は、平均粒径が1.0~2.0μmの範囲内の微粉と、平均粒径が0.2~0.6μmの範囲内の超微粉とを含む導電性ペーストが提案されている。
 この特許文献2では、所定粒径のアトマイズ粉と所定粒径の湿式還元粉とを所定の質量割合で配合することにより、焼成収縮を抑制し、かつ焼成後の抵抗値が低い導電性ペーストを得ようとしている。
特許第3767514号公報(請求項1、段落番号〔0004〕、〔0017〕~〔0020〕、図1~図3等) 特許第4805621号公報(請求項1、〔0006〕、〔0008〕等)
 導電性ペーストに含有されるAg粉末等の導電性粉末の作製方法としては、従来より、湿式還元法やアトマイズ法が広く知られている。そして、特許文献1のような4.5μm~7μm程度の比較的大きな粒子径を有するAg粉末は、コスト面を考慮すると湿式還元法よりもアトマイズ法で作製するのが好ましい。
 しかしながら、特許文献1のAg粉末をアトマイズ法で作製し、斯かるアトマイズ粉を含有した導電性ペーストをガラス基板上にライン状に塗布し焼成した場合、焼成後の導電膜周辺のガラス基板が黄色等に変色し、自動車用窓ガラスとして使用した場合、美観を損ねるおそれがあり、また運転者の視認性に影響を及ぼすおそれがある。
 一方、湿式還元粉を使用した場合は、黄色等への変色は生じないものの、上述したようにアトマイズ粉に比べ、コスト高を招くおそれがある。
 また、自動車用窓ガラスとしては、ガラス基板上に防眩作用を有する黒色状のセラミック層を形成し、該セラミック層上にライン状の導電膜を形成することが広く行われている。
 この場合、上記自動車用窓ガラスは、通常、ガラス基板上にセラミック乾燥膜を形成した後、該セラミック乾燥膜上に導電性ペーストを塗布して乾燥させ、セラミック乾燥膜と導電性ペーストとを同時焼成してセラミック層及び導電膜を形成している。
 しかしながら、特許文献2では、平均粒径が5μm以下のアトマイズ粉と平均粒径が0.2~2.0μmの湿式還元粉の配合比率を調整することにより、焼成収縮を抑制しようとしているものの、平均粒径が5μm以下になると、焼結性の低いアトマイズ粉を使用したとしても、焼成収縮の抑制作用が低下し、このため焼成後にはセラミック層に亀裂等の構造欠陥が生じるおそれがある。
 本発明はこのような事情に鑑みなされたものであって、ガラス基板が変色したり導電膜の下地層に亀裂等の構造欠陥が生じるのを抑制できる導電性ペースト、及びこの導電性ペーストを使用した防曇ガラス等のガラス物品を提供することを目的とする。
 アトマイズ粉は、溶融金属にジェット流を噴霧して液滴化し、これを凝固させて金属粉を得ている。したがって、金属塩水溶液を還元させて金属粉を析出させる湿式還元粉に比べ、表面が凹凸形状になるのを抑制でき、比表面積を小さくできることから、焼結性を低下させることができる。
 一方、〔発明が解決しようとする課題〕の項でも述べたように、導電性粉末としてアトマイズ粉のみを使用したのでは焼成後に導電膜近傍のガラス基板が変色し、好ましくない。
 そこで、本発明者は、アトマイズ粉とアトマイズ粉以外の導電性粉末、例えば湿式還元粉との混合粉を使用し、鋭意研究を行ったところ、アトマイズ粉の製造過程における溶融金属や噴霧水中に微量の塩素成分が含まれることから、斯かる塩素成分が不純物として導電性粉末に混入し、このため、焼成後に導電膜近傍のガラス基板が変色することが分かった。
 そして、本発明者が更なる鋭意研究を行ったところ、導電性粉末中に混入した塩素成分の含有量が42ppm以下であれば、平均粒径が所定範囲に調整されたアトマイズ粉を導電性粉末に所定量含有させることにより、ガラス基板が変色したり導電膜の下地層に亀裂等の構造欠陥が生じるのを抑制できるという知見を得た。
 本発明はこのような知見に基づきなされたものであって、本発明に係る導電性ペーストは、少なくとも導電性粉末とガラスフリットと有機ビヒクルとを含有した導電性ペーストであって、前記導電性粉末は、アトマイズ粉を5~40wt%の範囲で含有すると共に、前記アトマイズ粉の平均粒径が5.2~9μmであり、前記導電性粉末中に混入した塩素成分の含有量が42ppm以下であることを特徴としている。
 尚、本発明では、上記平均粒径は、積算累積分布が50%の粒径、すなわちメジアン径(以下、「平均粒径D50」と記す。)をいう。
 また、本発明の導電性ペーストは、前記導電性粉末が、湿式還元粉を含有しているのが好ましい。
 このように導電性粉末をアトマイズ粉と湿式還元粉との混合粉とすることにより、焼成後に黄色等に変色することのない導電性ペーストを効果的に得ることができる。
 また、本発明の導電性ペーストは、前記導電性粉末の含有量が、50~90wt%であるのが好ましい。
 さらに、本発明の導電性ペーストは、前記ガラスフリットの平均粒径が、前記導電性粉末の平均粒径の2倍以下であるのが好ましい。
 また、本発明の導電性ペーストは、前記ガラスフリットが、軟化点が350℃~600℃であるのが好ましい。
 また、本発明の導電性ペーストは、前記導電性粉末が、Agを主成分としているのが好ましい。
 また、本発明に係るガラス物品は、ガラス基板上に所定パターンの導電膜が形成されたガラス物品であって、前記導電膜は、上記のいずれかに記載の導電性ペーストが前記ガラス基板上に塗布されて焼結されてなることを特徴としている。
 また、本発明に係るガラス物品は、前記ガラス基板の表面にセラミック層が形成されると共に、前記導電膜の少なくとも一部が前記セラミック層の表面に形成されていることを特徴とするのも好ましい。
 本発明の導電性ペーストによれば、少なくとも導電性粉末とガラスフリットと有機ビヒクルとを含有した導電性ペーストであって、前記導電性粉末は、アトマイズ粉を5~40wt%の範囲で含有すると共に、前記アトマイズ粉の平均粒径が5.2~9μmであり、前記導電性粉末中に混入した塩素成分の含有量が42ppm以下であるので、自動車用窓ガラスに使用しても、導電膜近傍のガラス基板が顕著に変色しない程度に導電性ペースト中の塩素成分量を抑制することができ、かつセラミック層等で下地層を形成しても、下地層に亀裂等の構造欠陥が生じない程度に焼結性を抑制することができる。
 また、本発明のガラス物品によれば、ガラス基板上に所定パターンの導電膜が形成されたガラス物品であって、前記導電膜は、上記いずれかに記載の導電性ペーストが前記ガラス基板上に塗布されて焼結されてなるので、導電膜近傍のガラス基板の黄色等への変色を抑制できる防曇ガラス等のガラス物品を得ることができる。
 また、前記ガラス基板の表面にセラミック層が形成されると共に、前記導電膜の少なくとも一部は前記セラミック層の表面に形成された場合であっても、セラミック層に亀裂等の構造欠陥の発生を抑制できる防曇ガラス等のガラス物品を得ることができる。
本発明に係る導電性ペーストを使用して作製されたガラス物品の一実施の形態(第1の実施の形態)を示す正面図である。 図1のA-A矢視断面図である。 本発明に係るガラス物品の第2の実施の形態を模式的に示す断面図である。
 次に、本発明の実施の形態を詳説する。
 図1は、本発明に係る導電性ペーストを使用して製造されたガラス物品としての防曇ガラスの一実施の形態を示す正面図であり、図2は図1のA-A矢視断面図である。
 この第1の実施の形態に係る防曇ガラスは、ガラス基板1の表面に所定間隔を有して細線化・薄膜化されたライン状の導電膜2が平行状に複数形成され、導電膜2の両端部にはバスバー電極3a、3bが形成され、バスバー電極3a、3bははんだを介して不図示の給電端子に接続されている。
 この防曇ガラスは以下のようにして作製することができる。
 まず、後述する本発明の導電性ペーストをガラス基板1上にライン状に塗布し乾燥した後、焼成処理を行って所定パターンの導電膜2を形成し、導電膜2をガラス基板1上に固着する。次いで、導電膜2の両端にバスバー電極3a、3bを電気的に接続し、該バスバー電極3a、3bを給電端子(不図示)にはんだ付けし、これにより第1の実施の形態の防曇ガラスが作製される。
 このように形成された防曇ガラスは、例えば自動車等の主に車両のリアガラスとして装備され、バスバー電極3a、3bを介して給電端子から導電膜2に給電され、発熱させることによって窓ガラスの曇り止めを行うことができる。
 図3は、上記防曇ガラスの第2の実施の形態を示す要部断面図である。
 この第2の実施の形態に係る防曇ガラスは、ガラス基板1の表面にセラミック層4が形成され、該セラミック層4の表面に所定パターンの導電膜2が形成されている。
 この防曇ガラスは以下のようにして作製することができる。
 まず、ガラスフリットを含むセラミック粉末と有機ビヒクルとを含有したセラミックペーストを作製する。
 ここで、ガラスフリットを含むセラミック粉末としては、特に限定されるものではなく、ZnO、Al、B、SiO、TiO、ZrO、アルカリ金属酸化物、アルカリ土類金属酸化物等の中から必要に応じて適宜選択し、所定組成に調合して使用することができる。
 また、ガラスフリットは、非晶質であるのも好ましい。非晶質ガラスフリットは、焼成時に軟化しやすく、流動性に富むことから、比較的低温で焼成可能である。
 また、本防曇ガラスは、通常、車両等のリア部に装備されることから、セラミックペーストには、防眩作用を有する黒色顔料を添加するのも好ましい。
 有機ビヒクルは、後述する本発明の導電性ペーストと同様のものを使用することができる。
 そして、ガラスフリットを含有したセラミック粉末と有機ビヒクルとを所定の混合比率となるように秤量して混合し、三本ロールミル等を使用して分散・混練し、これによりセラミックペーストを作製する。
 次に、このセラミックペーストをガラス基板1上に塗布して乾燥し、これによりセラミック乾燥膜を作製する。
 次いで、後述する本発明の導電性ペーストをセラミック乾燥膜上にライン状に塗布し乾燥し、その後、焼成処理を行ってセラミック層4上に所定パターンの導電膜2を形成する。そしてこれにより導電膜2はセラミック層4を介してガラス基板1上に固着される。  
 その後は、第1の実施の形態と同様、導電膜2の両端にバスバー電極3a、3bを電気的に接続し、該バスバー電極3a、3bを給電端子(不図示)にはんだ付けし、これにより第2の実施の形態の防曇ガラスが作製される。
 このように形成された防曇ガラスは、上述したように自動車等の車両のフロントガラスとして装備され、第1の実施の形態と同様、バスバー電極3a、3bを介して給電端子から導電膜2に給電され、発熱させることによって窓ガラスの曇り止めを行うことができる。また、セラミック層4を黒色状とすることにより防眩機能を有することも可能である。
 次に、上記第1及び第2の実施の形態で使用した本発明の導電性ペーストについて詳述する。
 本導電性ペーストは、少なくとも導電性粉末と、ガラスフリットと、有機ビヒクルとを含有している。
 上記導電性粉末は、アトマイズ粉を5~40wt%の範囲で含有している。すなわち、上記導電性粉末は、アトマイズ粉とアトマイズ粉以外の粉末との混合粉で形成され、アトマイズ粉の含有量が5~40wt%とされている。尚、本実施の形態ではアトマイズ粉以外の粉末として、湿式還元粉が使用されている。
 さらに、上記導電性粉末は、アトマイズ粉の平均粒径が5.2~8.8μmであり、導電性粉末中に含有される塩素成分の含有量が42ppm以下とされている。
 そして、これによりガラス基板1の黄色等への変色を抑制することができ、美観や視認性が良好な防曇ガラスを得ることができる。また、上記第2の実施の形態のように、導電膜2とガラス基板1との間にセラミック層4が介在されていても、該セラミック層4に亀裂等の構造欠陥が生じるのを防止できる。
 すなわち、導電性粉末のような微粒の金属粉末は、通常、湿式還元法やアトマイズ法で作製される。
 湿式還元法は、化学的プロセスを利用した製法であり、Ag塩等の金属塩の水溶液を還元剤で還元させて金属粉を析出させる。このため、粒子の形状は球状に近くなるが、表面は微細な凹凸形状が形成されるため比表面積が大きい。これらの形状的特徴は粒成長を促進し、良好な焼結性を得ることができる。
 一方、アトマイズ法は、加熱処理して溶湯化された溶融金属をタンデッシュ底部のノズルから流出させると共に、この溶融金属にジェット流を噴霧して液滴化し、これを凝固させて金属粉を作製する。したがって、粒子の概形は歪な不定形状となるが、表面は滑らかで凹凸形状が少なくなり、比表面積が小さくなる。これらの形状的特徴は湿式還元粉とは逆に焼結性を低下させる。さらに、湿式還元粉に比べて安価に製造でき、湿式プロセスで発生する有害な廃液の処理も不要になるという利点がある。
 したがって、導電性粉末としては、ガラス基板1やセラミック層4との焼成時の収縮挙動の差異を緩和してガラス基板1の変形やセラミック層4の亀裂等の構造欠陥の発生を回避するためには、焼結性が低く安価なアトマイズ粉を使用するのが望ましいと考えられる。
 しかしながら一方で、〔発明が解決しようとする課題〕の項でも述べたように、導電性粉末をアトマイズ粉のみで構成したのでは焼成後に導電膜近傍のガラス基板1が黄色等に変色し、美観を損ねたり運転者の視認性に影響を与えるおそれがある。
 しかるに、本発明者が、アトマイズ粉と湿式還元粉との混合粉を使用し、試行錯誤を繰り返しながら鋭意研究を行ったところ、導電膜近傍のガラス基板1の変色は、導電性粉末中に不純物として混入した微量の塩素成分にあることが分かった。
 すなわち、アトマイズ粉の場合、溶融金属にジェット流を噴霧して液滴化し、これを凝固させることから、溶融金属中に微量の塩素成分が混入するおそれがある。また、ジェット流を噴霧するための噴霧水には、通常、水道水や工業用水が使用されるが、これら水道水や工業用水には塩素成分が含まれている。そして、これらの塩素成分が不純物としてアトマイズ粉に混入すると、前記導電膜2近傍のガラス基板1が変色するおそれがある。
 その理由は以下のように考えられる。
 塩素成分が混入した導電性粉末を使用した場合、導電性ペーストの焼成時に塩素とAg等の金属粒子とが反応し、AgCl等の金属塩を生成する。そして、この金属塩が導電膜2周辺に蒸発飛散してガラス基板1の表面に付着し、ガラス基板1の表面からガラス基板1の内部に拡散したAgイオン等の金属イオンが還元されてガラス基板1の表層面にAgコロイド等の金属コロイドを生成し、その結果、ガラス基板1の表面が黄色等に変色すると考えられる。
 そこで、本実施の形態では、導電性粉末中に混入する塩素成分を極力少なくなるようにしている。
 以下、導電性粉末中の塩素成分の含有量(以下、「塩素含有量」という。)、導電性粉末中のアトマイズ粉の含有量、及びアトマイズ粉の平均粒径D50を上述の範囲とした理由を詳述する。
(1)塩素含有量
 導電膜2の近傍のガラス基板1が黄色に変色する原因は、上述したように導電性粉末中に不純物として混入する塩素成分にあると考えられる。また、湿式還元粉中にも微量の塩素成分が混入するおそれがあることから、アトマイズ粉中の塩素含有量のみならず、導電性粉末中の塩素含有量の総量を規制する必要がある。
 そして、本発明者が試行錯誤を繰り返して鋭意研究を行ったところ、導電性粉末中の塩素含有量の総量を42ppm以下に抑制することにより、導電膜2の近傍のガラス基板1が黄色に変色するのを防止できることが分かった。
 そこで、本実施の形態では、導電性粉末中の塩素含有量を42ppm以下としている。
 尚、導電性粉末中の塩素含有量を42ppm以下に抑制する方法としては、特に限定されるものではなく、例えば水処理された高純度のイオン交換水等を使用することにより塩素含有量を抑制することができる。
(2)アトマイズ粉の含有量
 アトマイズ粉は、湿式還元粉に比べて焼結性が低いことから、導電膜2の焼成収縮を抑制することができ、導電膜2の下地層となるセラミック層4に亀裂等の構造欠陥が発生するのを防止できる。そして、そのためにはアトマイズ粉は導電性粉末中で少なくとも5wt%以上は必要である。
 一方、導電性粉末中のアトマイズ粉の含有量が40wt%を超えて過剰になると、導電性粉末中の塩素含有量の絶対値も増加することから、導電膜2近傍のガラス基板1の黄色等への変色が顕著になる。
 そこで、本実施の形態では、導電性粉末中のアトマイズ粉の含有量を5~40wt%としている。
(3)アトマイズ粉の平均粒径D50
 アトマイズ粉は、上述したように導電膜2の焼成収縮を抑制し、これによりセラミック層4の構造欠陥の発生を防止することが可能である。
 しかしながら、アトマイズ粉の平均粒径D50が5.2μm未満に小さくなると、粒径が微粒になりすぎ、このため焼結性の低いアトマイズ粉を使用したとしても十分に焼成収縮を抑制することが困難となる。
 一方、導電膜2は、通常、スクリーン印刷法で作製されるが、アトマイズ粉の平均粒径D50が9μmを超えると、スクリーン印刷版のメッシュに目詰まりが生じやすくなり、好ましくない。
 そこで、本実施の形態では、導電性粉末中のアトマイズ粉の平均粒径D50を5.2~9μmとしている。
 尚、混合粉である導電性粉末の平均粒径D50が9μmを超えると、目詰まりが生じやすいことから、導電性粉末全体の平均粒径D50も9μm以下が好ましい。
 導電性粉末としては、良好な導電性を有する金属粉であれば特に限定されるものではないが、通常はAg粉末を好んで使用することができる。また、Ag粉末を主成分とし、Pd粉末、Pt粉末等の各種導電性粉末を副成分として含有させてもよい。
 また、導電性粉末の形状も特に限定されるものではなく、例えば、球形状、扁平状、不定形形状、或いはこれらの混合粉であってもよい。
 また、導電性ペースト中の導電性粉末の含有量は、特に限定されるものではないが、50~90wt%が好ましい。導電性粉末の含有量が50wt%未満になると、標準的な3~20μmの厚膜の導電膜2を得るためにスクリーン印刷時に線径の大きなメッシュを有するスクリーン印刷版を使用しなければならず、解像度の低下を招くおそれがある。一方、導電性粉末の含有量が90wt%を超えると、導電性粉末が過剰となってペースト化が困難になるおそれがある。したがって、導電性粉末の含有量は、特に限定されないものの、50~90wt%が好ましい。
 また、ガラスフリットの組成は、特に限定されないが、焼結密度の低下や導電膜2の界面での封止不足を回避する観点からは、焼成温度で溶融し流動させる必要がある。そして、防曇ガラス等のガラス物品では、通常、500~800℃程度の温度で焼成されることから、軟化点が350~600℃程度に組成調整されたガラスフリットを使用するのが好ましい。
 また、ガラスフリットの構成成分については特に限定されるものではなく、Bi、PbO、SiO、B、Al、BaO、CaO、SrO、ZnO、NaO、KO、LiO、Sb、FeO、CuOなどの各種酸化物から、軟化点や化学的耐久性を考慮して選定することができる。
 また、ガラスフリットの平均粒径D50も、特に限定されないが、該ガラスフリットは、導電性粉末やガラス基板1との空隙に均一に充填されるのが望ましく、斯かる観点から、ガラスフリットの平均粒径D50は、導電性粉末の平均粒径D50の2倍以下であるのが望ましい。
 また、有機ビヒクルは、バインダ樹脂と有機溶剤とが、例えば体積比率で、1~3:7~9となるように調製されている。尚、バインダ樹脂としては、特に限定されるものではなく、例えば、エチルセルロース樹脂、ニトロセルロース樹脂、アクリル樹脂、アルキド樹脂、又はこれらの組み合わせを使用することができる。また、有機溶剤についても特に限定されるものではなく、α―テルピネオール、キシレン、トルエン、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテルアセテート等を単独、或いはこれらを組み合わせて使用することができる。
 そして、この導電性ペーストは、導電性粉末中のアトマイズ粉の含有量が5~40wt%となり、かつ導電性粉末中の塩素含有量が42ppm以下となるようにアトマイズ粉及び湿式還元粉を秤量し、さらにガラスフリット、有機ビヒクルを所定の混合比率となるように秤量して混合し、三本ロールミル等を使用して分散・混練することにより、容易に製造することができる。
 このように本実施の形態では、少なくとも導電性粉末とガラスフリットと有機ビヒクルとを含有した導電性ペーストであって、前記導電性粉末は、アトマイズ粉を5~40wt%の範囲で含有すると共に、前記アトマイズ粉の平均粒径が5.2~9μmであり、前記導電性粉末中に混入した塩素成分の含有量が42ppm以下であるので、自動車用窓ガラスに使用しても、導電膜2近傍のガラス基板1が変色しない程度に導電性ペースト中の塩素成分量を抑制することができ、かつセラミック層4に亀裂等の構造欠陥が生じない程度に焼結性を抑制することができる。
 尚、本発明は上記実施の形態に限定されるものではない。例えば、上記実施の形態では、導電性粉末をアトマイズ粉と湿式還元粉との混合粉としたが、アトマイズ粉と共に含有される導電性粉末は湿式還元粉に限定されるものではなく、他の方法で作製したものであってもよい。
 また、上記第2の実施の形態では、セラミック層4の表面に導電膜2を形成したが、必要に応じセラミック層4の一部に導電膜2を形成するようにしてもよい。
 また、上記第1及び第2の実施の形態では、ガラス物品として防曇ガラスを例示したが、本発明は防曇ガラスに限定されるものではなく、ガラスアンテナ等の他のガラス物品にも適用可能なのはいうまでもない。
 また、本発明は、特性に影響を与えない範囲で、導電性ペースト中に必要に応じ各種無機成分を含有していてもよい。例えば、Zr、P、V、Ce、Nb、Ta、W、Pd、Ag、Ru、Sn、In、Y、Dy、La等を含有していてもよい。また、含有形態についても特に限定されるものではなく、酸化物、水酸化物、過酸化物、ハロゲン化物、炭酸塩、硝酸塩、リン酸塩、硫酸塩、フッ化物、有機金属化合物等、適宜選択することができる。 
 また、本導電性ペーストには、必要に応じて、フタル酸ジ2-エチルヘキシル、フタル酸ジブチル等の可塑剤を1種又はこれらの組み合わせを添加するのも好ましい。また、脂肪酸アマイドや脂肪酸等のレオロジー調整剤を添加するのも好ましく、さらにはチクソトロピック剤、増粘剤、分散剤などを添加してもよい。
 次に、本発明の実施例を具体的に説明する。
〔試料の作製〕
 表1に示すような平均粒径D50及び塩素含有量を有する6種類のAg粉末(粉末試料A~F)を用意し、また、平均粒径D50が2μmのBi-B-Si-O系ガラスフリットを用意した。
 粉末試料Aは湿式還元法で作製し、粉末試料B~Fはアトマイズ法で作製した。粉末試料A~Fについて、レーザー回析式粒度分布測定装置(マイクロトラック・ベル社製9320HRA)を使用し、平均粒径D50を測定した。また、イオンクロマトグラフ測定装置(ダイオネックス社製ICS-5000)を使用し、各粉末試料中の塩素含有量を測定した。
Figure JPOXMLDOC01-appb-T000001
 次いで、有機ビヒクルを以下の方法で作製した。すなわち、バインダ樹脂としてエチルセルロース樹脂10wt%、有機溶剤としてターピネオール90wt%となるようにエチルセルロース樹脂とターピネオールとを混合し、有機ビヒクルを作製した。
 次に、Ag粉末中のアトマイズ粉の含有比率が、重量比で表2となるようにアトマイズ粉と湿式還元粉の配合割合を調整し、さらにAg粉末の総含有量が78wt%、ガラスフリットの含有量が4wt%、残部が有機ビヒクルとなるように配合し、プラネタリーミキサで混合した後、三本ロールミルで分散させて混練し、試料番号1~14の導電性ペーストを作製した。
〔試料の評価〕
 縦:76mm、横:26mm、厚み:1.4mmのソーダライムからなるスライドガラス、及び黒色のセラミックペーストを用意した。そして、スライドガラスの全体の約1/2の領域にセラミックペーストをスクリーン印刷法を使用して塗布し、150℃の温度で10分間乾燥させ、セラミック乾燥膜を作製した。
 次に、ライン全長L:100mm、線幅W:0.5mmとなるようにスクリーン印刷し、スライドガラス上又はセラミック乾燥膜上に導電パターンを形成した。次いで、このスライドガラスを150℃の温度で10分間乾燥した後、最高温度600℃で5分間焼成し、表面に導電膜が形成された試料番号1~14の試料を得た。
 次に、スライドガラスの表面に直接形成された導電膜近傍が黄色等に変色していないか否かを目視観察し、変色が軽微で目立たない試料を合格(○)、変色が顕著な試料を不合格(×)とした。
 また、セラミック層の表面に形成された導電膜周縁部をマイクロスコープで観察し、セラミック層に亀裂が生じていない試料を合格(○)、亀裂が生じている試料を不合格(×)とした。
 表2は、試料番号1~14で使用したアトマイズ粉の粉末種、Ag粉末中のアトマイズ粉の含有比率、塩素含有量、変色及び亀裂の有無を示している。
 尚、表2中、アトマイズ粉以外のAg粉末は、試料番号Aの湿式還元粉を使用している。
Figure JPOXMLDOC01-appb-T000002
 試料番号1は、導電膜近傍のスライドガラスに目立った変色は生じなかったものの、セラミック層に亀裂が生じることが確認された。これはAg粉末には焼成収縮の抑制作用があるアトマイズ粉が含まれておらず湿式還元粉のみで形成されているため、焼成収縮が促進されてしまい、このため焼成時におけるAg粉末とセラミック層との間の収縮挙動の差に起因してセラミック層に亀裂が生じたものと思われる。
 試料番号2及び3も、導電膜近傍のスライドガラスに目立った変色は生じなかったものの、セラミック層に亀裂が生じることが確認された。これはAg粉末中の塩素含有量が29~40ppmであり42ppm以下に抑制されていることから、変色は生じなかったが、アトマイズ粉の平均粒径D50が3.0μm及び4.5μmの粉末試料B、Cを使用しており、いずれも平均粒径D50が5.2μm未満であるため、Ag粉末の焼成収縮の抑制作用が十分ではなく、このため、試料番号1と同様、焼成時におけるAg粉末とセラミック層との間の収縮挙動の差に起因してセラミック層に亀裂が生じたものと思われる。
 試料番号7は、導電膜近傍のスライドガラスの変色が顕著で、しかもセラミック層にも亀裂が生じることが確認された。これは塩素含有量が51ppmと多いため変色が生じ、しかも、アトマイズ粉の平均粒径D50が3.0μmの粉末試料Bを使用していることから、焼成収縮の抑制作用を十分に発揮することができず、このためセラミック層にも亀裂が生じたものと思われる。
 試料番号11及び12は、セラミック層の亀裂は生じなかったが、塩素含有量が45ppm、54ppmと多いため、顕著な変色が確認された。
 これに対し試料番号4~6、8~10、13、及び14は、平均粒径D50が5.2~8.8μmの粉末試料D~Fのアトマイズ粉を5~40wt%の範囲で含有し、塩素含有量は11~42ppmと42ppm以下であり、いずれも本発明範囲内であるので、スライドガラスの変色は軽微で目立つことはなく、また下地のセラミック層に亀裂が生じることもなく、実用性に耐え得る防曇ガラスが得られることが確認された。
 導電膜近傍のガラス基板が黄色等に変色したり、下地層となるセラミック層に亀裂が生じるのを抑制できる自動車の防曇ガラス用熱線等の形成に適した導電性ペースト及びこれを使用した各種ガラス物品を得ることができる。
1 ガラス基板
2 導電膜
4 セラミック層

Claims (8)

  1.  少なくとも導電性粉末とガラスフリットと有機ビヒクルとを含有した導電性ペーストであって、
     前記導電性粉末は、アトマイズ粉を5~40wt%の範囲で含有すると共に、前記アトマイズ粉の平均粒径が5.2~9μmであり、
     前記導電性粉末中に混入した塩素成分の含有量が42ppm以下であることを特徴とする導電性ペースト。
  2.  前記導電性粉末は、湿式還元粉を含有していることを特徴とする請求項1記載の導電性ペースト。
  3.  前記導電性粉末の含有量は、50~90wt%であることを特徴とする請求項1又は請求項2記載の導電性ペースト。
  4.  前記ガラスフリットの平均粒径は、前記導電性粉末の平均粒径の2倍以下であることを特徴とする請求項1乃至請求項3のいずれかに記載の導電性ペースト。
  5.  前記ガラスフリットは、軟化点が350℃~600℃であることを特徴とする請求項1乃至請求項4のいずれかに記載の導電性ペースト。
  6.  前記導電性粉末は、Agを主成分としていることを特徴とする請求項1乃至請求項5のいずれかに記載の導電性ペースト。
  7.  ガラス基板上に所定パターンの導電膜が形成されたガラス物品であって、
     前記導電膜は、請求項1乃至請求項6のいずれかに記載の導電性ペーストが前記ガラス基板上に塗布されて焼結されてなることを特徴とするガラス物品。
  8.  前記ガラス基板の表面にセラミック層が形成されると共に、前記導電膜の少なくとも一部は前記セラミック層の表面に形成されていることを特徴とする請求項7記載のガラス物品。
PCT/JP2015/078482 2014-11-06 2015-10-07 導電性ペースト、及びガラス物品 WO2016072204A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016557512A JP6296315B2 (ja) 2014-11-06 2015-10-07 導電性ペースト、及びガラス物品
CN201580056194.XA CN107077913B (zh) 2014-11-06 2015-10-07 导电性膏、及玻璃物品
US15/480,641 US10029542B2 (en) 2014-11-06 2017-04-06 Conductive paste and glass article

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-225995 2014-11-06
JP2014225995 2014-11-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/480,641 Continuation US10029542B2 (en) 2014-11-06 2017-04-06 Conductive paste and glass article

Publications (1)

Publication Number Publication Date
WO2016072204A1 true WO2016072204A1 (ja) 2016-05-12

Family

ID=55908932

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/078482 WO2016072204A1 (ja) 2014-11-06 2015-10-07 導電性ペースト、及びガラス物品

Country Status (4)

Country Link
US (1) US10029542B2 (ja)
JP (1) JP6296315B2 (ja)
CN (1) CN107077913B (ja)
WO (1) WO2016072204A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11185528A (ja) * 1997-12-25 1999-07-09 Dai Ichi Kogyo Seiyaku Co Ltd 低温焼成基板用導電ペースト
JP2000048645A (ja) * 1998-07-31 2000-02-18 Toray Ind Inc 感光性導電ペーストおよびプラズマディスプレイ用電極の製造方法
JP2012079458A (ja) * 2010-09-30 2012-04-19 Taiyo Holdings Co Ltd 導電性樹脂組成物及び電子回路基板
WO2013073607A1 (ja) * 2011-11-18 2013-05-23 住友金属鉱山株式会社 銀粉、銀粉の製造方法及び導電性ペースト

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3767514B2 (ja) 2002-04-26 2006-04-19 株式会社村田製作所 導電性ペースト
JP4647224B2 (ja) * 2004-03-30 2011-03-09 昭栄化学工業株式会社 積層セラミック電子部品端子電極用導体ペースト
JP4934993B2 (ja) * 2005-05-25 2012-05-23 住友電気工業株式会社 導電性ペーストおよびそれを用いた配線基板
JP4805621B2 (ja) 2005-07-07 2011-11-02 株式会社ノリタケカンパニーリミテド 導電性ペースト
TW201138029A (en) * 2010-03-26 2011-11-01 Kyocera Corp Light-reflecting substrate, substrate which can be mounted in light-emitting element, light-emitting device, and process for production of substrate which can be mounted in light-emitting element
KR101434167B1 (ko) * 2012-10-25 2014-08-27 대주전자재료 주식회사 태양전지 전극용 은 페이스트 조성물

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11185528A (ja) * 1997-12-25 1999-07-09 Dai Ichi Kogyo Seiyaku Co Ltd 低温焼成基板用導電ペースト
JP2000048645A (ja) * 1998-07-31 2000-02-18 Toray Ind Inc 感光性導電ペーストおよびプラズマディスプレイ用電極の製造方法
JP2012079458A (ja) * 2010-09-30 2012-04-19 Taiyo Holdings Co Ltd 導電性樹脂組成物及び電子回路基板
WO2013073607A1 (ja) * 2011-11-18 2013-05-23 住友金属鉱山株式会社 銀粉、銀粉の製造方法及び導電性ペースト

Also Published As

Publication number Publication date
JPWO2016072204A1 (ja) 2017-05-25
CN107077913B (zh) 2019-05-14
US10029542B2 (en) 2018-07-24
JP6296315B2 (ja) 2018-03-20
US20170210207A1 (en) 2017-07-27
CN107077913A (zh) 2017-08-18

Similar Documents

Publication Publication Date Title
US10403421B2 (en) Thick film resistor and production method for same
EP2911160B1 (en) Electroconductive paste
EP1703526B1 (en) Resistance paste and process for manufacturing a resistor from this resistance paste
KR20050019055A (ko) 자동차 유리용 후막 도전체 페이스트
US10052690B2 (en) Conductive paste and glass article
US6866800B2 (en) Electroconductive paste and method of forming electrode pattern
JP4079669B2 (ja) 厚膜抵抗体ペースト
JP6296315B2 (ja) 導電性ペースト、及びガラス物品
JP2004311438A (ja) 電子回路における使用のための伝導体組成物
DE112014006907T5 (de) Kupfer enthaltende leitfähige Pasten und daraus hergestellte Elektroden
JP2018133166A (ja) 厚膜抵抗体用材料、厚膜抵抗体用ペースト、厚膜抵抗体、厚膜抵抗器、厚膜抵抗体の製造方法および厚膜抵抗器の製造方法
JP7095542B2 (ja) 厚膜抵抗体用組成物、厚膜抵抗体用ペースト、および厚膜抵抗体
KR101739744B1 (ko) 무연 후막 저항 조성물, 무연 후막 저항체 및 이의 제조방법
CN107785138B (zh) 片式电阻器
WO2015194290A1 (ja) 導電性ペースト、及びガラス物品
JP2009026903A (ja) 厚膜抵抗体組成物、抵抗ペースト及び厚膜抵抗体
WO2019064738A1 (ja) 導電性ペースト、ガラス物品、及びガラス物品の製造方法
JP7135696B2 (ja) 厚膜抵抗体用組成物、厚膜抵抗体用ペースト、および厚膜抵抗体
JP7279551B2 (ja) 厚膜抵抗体用組成物、厚膜抵抗体用ペースト、および厚膜抵抗体
WO2017159055A1 (ja) 導電性ペースト、導電パターンの形成方法、及びガラス物品
WO2019073637A1 (ja) 導電性ペースト、ガラス物品、及びガラス物品の製造方法
JP7273266B2 (ja) 厚膜抵抗体用組成物、厚膜抵抗体用ペースト、および厚膜抵抗体
WO2022255117A1 (ja) 導電性ペースト、及びガラス物品
JP7390103B2 (ja) 抵抗体用組成物、抵抗ペースト、厚膜抵抗体
JP2020198404A (ja) 厚膜抵抗体用組成物、厚膜抵抗体用ペースト、および厚膜抵抗体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15857487

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016557512

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15857487

Country of ref document: EP

Kind code of ref document: A1