WO2016071651A1 - Nouveaux catalyseurs de réticulation de compositions silicones - Google Patents

Nouveaux catalyseurs de réticulation de compositions silicones Download PDF

Info

Publication number
WO2016071651A1
WO2016071651A1 PCT/FR2015/053012 FR2015053012W WO2016071651A1 WO 2016071651 A1 WO2016071651 A1 WO 2016071651A1 FR 2015053012 W FR2015053012 W FR 2015053012W WO 2016071651 A1 WO2016071651 A1 WO 2016071651A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
carbon atoms
different
catalyst
organopolysiloxane
Prior art date
Application number
PCT/FR2015/053012
Other languages
English (en)
Inventor
Vincent Monteil
Jean Raynaud
Delphine CROZET
Magali BOUSQUIÉ
Sebastien Marrot
Original Assignee
Bluestar Silicones France Sas
Universite Claude Bernard Lyon 1
Centre National De La Recherche Scientifique - Cnrs
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bluestar Silicones France Sas, Universite Claude Bernard Lyon 1, Centre National De La Recherche Scientifique - Cnrs filed Critical Bluestar Silicones France Sas
Priority to EP15801905.9A priority Critical patent/EP3215555B1/fr
Priority to JP2017542350A priority patent/JP6533588B2/ja
Priority to US15/524,683 priority patent/US20170313823A1/en
Priority to CN201580060289.9A priority patent/CN107075120B/zh
Priority to KR1020177014990A priority patent/KR102225423B1/ko
Publication of WO2016071651A1 publication Critical patent/WO2016071651A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/32Post-polymerisation treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2226Anionic ligands, i.e. the overall ligand carries at least one formal negative charge
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/06Preparatory processes
    • C08G77/08Preparatory processes characterised by the catalysts used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • C08G77/44Block-or graft-polymers containing polysiloxane sequences containing only polysiloxane sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0091Complexes with metal-heteroatom-bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/842Iron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/70Siloxanes defined by use of the MDTQ nomenclature
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/04Polysiloxanes
    • C08J2383/05Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/04Polysiloxanes
    • C08J2383/07Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2483/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2483/04Polysiloxanes
    • C08J2483/05Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2483/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2483/04Polysiloxanes
    • C08J2483/07Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/05Polymer mixtures characterised by other features containing polymer components which can react with one another
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2312/00Crosslinking

Definitions

  • the present invention relates to the field of materials obtained by crosslinking of silicone compositions in which are brought into contact reagents having at least two unsaturated bonds and organosilicon compounds having at least two hydrogenosilyl units ( ⁇ SiH) in the presence of a catalyst C which is a complex corresponding to the following formula:
  • the symbol Ni represents nickel at the oxidation state II
  • the symbols L 1 which are identical or different, represent a ligand which is a ⁇ -dicarbonylato anion or the enolate anion of a ⁇ -dicarbonyl compound.
  • hydrosilylation also called polyaddition
  • polyaddition is a predominant reaction.
  • a compound comprising at least one unsaturation reacts with a compound comprising at least one hydrogen atom bonded to a silicon atom.
  • This reaction can for example be described by the reaction equation (1) in the case of alkene-type unsaturation:
  • organometallic platinum catalysts is still problematic. It is a toxic metal, expensive, in the process of rarefaction and whose cost fluctuates enormously. Its use on an industrial scale is therefore difficult. It is therefore desired to reduce as much as possible the amount of catalyst required for the reaction, without decreasing the yield and the speed of the reaction. In addition, it is desired to have a stable catalyst during the reaction. It was found that during the catalyzed reaction, the platinum metal could precipitate, which results in the formation of insoluble colloids in the reaction medium. The catalyst is then less active. In addition, these colloids form a cloud in the reaction medium, and the products obtained are unsatisfactory aesthetically because they are colored.
  • the platinum-based complexes catalyze the hydrosilylation reactions at room temperature with rapid kinetics, of the order of a few minutes.
  • the silicone composition is formulated to form a bath which must remain liquid at room temperature for several hours before being deposited on the substrate. It is only after this deposition that it is desired that the hardening by hydrosilylation occurs.
  • the introduction of hydrosilylation inhibiting additives effectively prevents the reaction as long as necessary before activation.
  • This objective is achieved by means of a catalyst which is a complex of nickel (II) having a specific structure.
  • These catalysts do not need to be handled in a protective atmosphere (for example under argon).
  • the crosslinking reactions in which they are implemented can also be operated in air, without a protective atmosphere.
  • the present invention thus provides, in a first aspect, a crosslinked silicone material Y obtained by heating at a temperature ranging from 70 to 200 ° C., preferably from 80 to 150 ° C., and more preferably from 80 to 130 ° C. , a crosslinkable composition X comprising:
  • At least one organopolysiloxane compound A comprising, per molecule, at least two C 2 -C 6 alkenyl radicals bonded to silicon atoms,
  • organohydrogenpolysiloxane compound B comprising, per molecule, at least two hydrogen atoms bonded to an identical or different silicon atom
  • At least one catalyst C which is a complex corresponding to the following formula:
  • Ni nickel with oxidation state II
  • the symbols L 1 which are identical or different, represent a ligand which is a ⁇ -dicarbonylato anion or the enolate anion of a ⁇ -dicarbonyl compound,
  • crosslinked silicone material any silicone product obtained by crosslinking and / or curing compositions comprising organopolysiloxanes having at least two unsaturated bonds and organopolysiloxanes having at least two hydrogenosilyl units ( ⁇ SiH).
  • the crosslinked silicone material may for example be an elastomer, a gel or a foam.
  • the subject of the invention is also, according to a second aspect, a crosslinkable composition X as described above.
  • composition X according to the invention is crosslinkable, that is to say, within the meaning of the present application, that after the compounds A and B have reacted with each other in the presence of the catalyst C, a three-dimensional network is formed, which leads to hardening of the composition.
  • Crosslinking therefore implies a gradual physical change of the medium constituting the composition.
  • the subject of the invention is also, according to a third aspect, the use of the catalyst C previously described as a crosslinking catalyst for silicone compositions.
  • the subject of the invention is, according to a fourth aspect, a process for crosslinking silicone compositions, characterized in that it consists in heating the composition X described above at a temperature ranging from 70 to 200 ° C., preferably from 80 to 200 ° C. at 150 ° C., and more preferably from 80 to 130 ° C., as well as the crosslinked silicone material Y thus obtained.
  • the organopolysiloxane A comprising, per molecule, at least two C 2 -C 6 alkenyl radicals bonded to silicon atoms, comprises:
  • Z represent a monovalent hydrocarbon group having from 1 to 30 carbon atoms, and preferably chosen from the group consisting of alkyl groups having from 1 to 8 carbon atoms and the aryl groups containing between 6 and 12 carbon atoms, and even more preferably chosen from the group consisting of a methyl, ethyl, propyl, 3,3,3-trifluoropropyl, xylyl, tolyl and phenyl radical, (ii) and optionally at least one siloxyl unit of following formula: Za S iQ-a (A.2)
  • the symbols Z 1 which are identical or different, represent a monovalent hydrocarbon group having from 1 to 30 carbon atoms and preferably chosen from the group consisting of alkyl groups containing from 1 to 8 carbon atoms inclusive and aryl groups containing from 6 to and 12 carbon atoms, and even more preferably selected from the group consisting of a methyl, ethyl, propyl, 3,3,3-trifluoropropyl, xylyl, tolyl and phenyl radical.
  • radicals Z and Z 1 are chosen from the group consisting of a methyl and phenyl radical
  • W is chosen from the following list: vinyl, propenyl, 3-butenyl, 5-hexenyl, 9-decenyl, 10-undecenyl, 5,9-decadienyl and 6-1-dodecadienyl, and preferably W is vinyl.
  • organopolysiloxanes may have a linear, branched or cyclic structure. Their degree of polymerization is preferably between 2 and 5000.
  • linear polymers consist essentially of "D" siloxyl units selected from the group consisting of siloxy units W 2 SiO 2 / 2, WZS1O2 / 2 and Z 1 2 Si0 2/2, and siloxy units "M" selected from the group consisting of siloxyl units W 3 SiO / 2, WZ 2 SiO / 2, W 2 ZSiOi / 2 and Z 1 3 SiOi / 2 .
  • the symbols W, Z and Z 1 are as described above.
  • terminal "M" units mention may be made of trimethylsiloxy, dimethylphenylsiloxy, dimethylvinylsiloxy or dimethylhexenylsiloxy groups.
  • D units mention may be made of dimethylsiloxy, methylphenylsiloxy, methylvinylsiloxy, methylbutenylsiloxy, methylhexenylsiloxy, methyldecenylsiloxy or methyldecadienylsiloxy groups.
  • the said organopolysiloxanes A can be oils with a dynamic viscosity of the order of 10 to 100000 mPa.s at 25 ° C., generally of the order of 10 to 70000 mPa.s at 25 ° C., or gums having a molecular weight. of the order of 1,000,000 mPa.s or more at 25 ° C.
  • cyclic organopolysiloxanes consist of siloxyl units "D" of following formulas: W 2 Si0 2/2, Z 2 Si0 2/2 or 2/2 WZSi0, which may be of the type dialkylsiloxy, alkylarylsiloxy, alkylvinylsiloxy, alkylsiloxy. Examples of such siloxyl units have already been mentioned above.
  • These cyclic organopolysiloxanes A have a viscosity of the order of 10 to 5000 mPa.s at 25 ° C.
  • the composition X according to the invention comprises a second organopolysiloxane compound comprising, per molecule, at least two C 2 -C 6 alkenyl radicals bonded to silicon atoms, different from the organopolysiloxane compound A, said second organopolysiloxane compound being preferably divinyltetramethylsiloxane (dvtms).
  • the organopolysiloxane compound A has a mass content of Si-vinyl unit of between 0.001 and 30%, preferably between 0.01 and 10%.
  • the organohydrogenpolysiloxane compound B is an organopolysiloxane having at least two hydrogen atoms, per molecule, bonded to an identical or different silicon atom and, preferably, having at least three hydrogen atoms per molecule. directly related to an identical or different silicon atom.
  • the organohydrogenpolysiloxane compound B is an organopolysiloxane comprising:
  • the symbols Z 3 represent a monovalent hydrocarbon group having from 1 to 30 carbon atoms and preferably selected from the group consisting of alkyl groups having from 1 to 8 carbon atoms and aryl groups containing between 6 and 12 carbon atoms, and even more preferably chosen from the group consisting of a methyl, ethyl, propyl, 3,3,3-trifluoropropyl, xylyl, tolyl and phenyl radical, and
  • the symbols Z 2 which are identical or different, represent a monovalent hydrocarbon group having from 1 to 30 carbon atoms and preferably chosen from the group consisting of alkyl groups having from 1 to 8 carbon atoms and aryl groups containing from 6 to and 12 carbon atoms, and even more preferably selected from the group consisting of a methyl, ethyl, propyl, 3,3,3-trifluoropropyl, xylyl, tolyl and phenyl radical.
  • the organohydrogenpolysiloxane compound B may be formed solely of siloxyl units of formula (B.1) or may also comprise units of formula (B.2). It may have a linear, branched, or cyclic structure.
  • the degree of polymerization is preferably greater than or equal to 2. More generally, it is less than 5000.
  • siloxyl units of formula (B1) include the following reasons: H (CH 3) 2 SiO / 2, HCH 3 Si0 2/2 and H (C 6 H 5) Si0 2/2, When it comes to linear polymers, these essentially consist of:
  • siloxyl units of "D" selected from the following units of formulas Z 2 2 Si0 2/2 or Z 3 HSi0 2/2, and
  • siloxy units "M” selected from the following units of formulas Z 2 SiO 3/2 or Z 3 2 HSiO 1 / 2-
  • linear organopolysiloxanes can be oils with a dynamic viscosity of from 1 to 100,000 mPa.s at 25 ° C., generally of the order of 10 to 5000 mPa.s at 25 ° C., or gums having a molecular weight of the order of 1,000,000 mPa.s or more at 25 ° C.
  • cyclic organopolysiloxanes consist of siloxyl units "D" of following formulas Z 2 2 Si0 2/2 and Z 3 HSi0 2/2, which can be of the type or dialkylsiloxy alkylarylsiloxy or Z 3 HSi0 2/2 patterns only. They then have a viscosity of the order of 1 to 5000 mPa.s.
  • linear organohydrogenpolysiloxane compound B examples include dimethylpolysiloxanes with hydrogenodimethylsilyl ends, dimethylhydrogenomethylpolysiloxanes with trimethylsilyl ends, dimethylhydrogenomethylpolysiloxanes with hydrogenodimethylsilyl ends, trimethylsilyl-terminated hydrogenomethylpolysiloxanes, and cyclic hydrogenomethylpolysiloxanes.
  • organohydrogenpolysiloxane compound B is oligomers and polymers having the general formula (B.3):
  • x and y are an integer ranging from 0 to 200,
  • R 1 identical or different, represent independently of one another:
  • An aralkyl radical having an alkyl part containing between 5 and 14 carbon atoms and an aryl part containing between 6 and 12 carbon atoms.
  • organohydrogenpolysiloxane compound B is particularly suitable for the invention as organohydrogenpolysiloxane compound B.
  • 0 ⁇ a ⁇ 150 preferably 0 ⁇ a ⁇ 100, and more particularly 0 ⁇ a ⁇ 20, and - 1 ⁇ b ⁇ 90, preferably 10 ⁇ b ⁇ 80 and more particularly 30 ⁇ b ⁇ 70,
  • ⁇ d ⁇ 200 preferably 20 ⁇ d ⁇ 100, and 2 ⁇ e ⁇ 90, preferably 10 ⁇ e ⁇ 70.
  • the organohydrogenpolysiloxane compound B has an SiH mass content of between 0.2 and 91%, preferably between 0.2 and 50%.
  • the composition X implements at least one catalyst C which is a complex corresponding to the following formula:
  • Ni nickel with oxidation state II
  • the symbols L 1 which are identical or different, represent a ligand which is a ⁇ -dicarbonylato anion or the enolate anion of a ⁇ -dicarbonyl compound.
  • the ligand L 1 is a anion derived from a compound of formula (1): R 1 COCHR 2 COR 3 (1)
  • R 1 and R 3 identical or different, represent a hydrocarbon radical -C 30 linear, cyclic or branched, an aryl comprising between 6 and 12 carbon atoms, or a radical -OR 4 with R 4 representing a hydrocarbon radical C1-C30 linear, cyclic or branched,
  • R 2 is a hydrogen atom or a hydrocarbon radical, preferably alkyl, comprising 1 to 4 carbon atoms;
  • R 1 and R 2 can be joined to form a C 5 -C 6 ring
  • R 2 and R 4 can be connected to form a C 5 -C 6 ring.
  • the compound of formula (1) is chosen from the group consisting of ⁇ -diketones: 2,4-pentanedione (acac); the 2,4-hexanedione; 2,4-heptanedione; heptanedione-3.5; 3-ethyl-2,4-pentanedione; 5-methyl-2,4-hexanedione; 2,4-octanedione; octanedione-3.5; 2,4,5-dimethyl-2,4-hexanedione; methyl-6 heptanedione-2,4; 2,2-dimethyl-3,5-nonanedione; 2,6-dimethyl-3,5-heptanedione; 2-acetylcyclohexanone (Cyacac); 2,2,6,6-tetramethyl-3,5-heptanedione (TMHD); 1,1,5,5,5-hexafluoro-2,4-p
  • the ⁇ -dicarbonylato ligand L 1 is a ⁇ -ketoesterat anion chosen from the group consisting of anions derived from the following compounds: methyl, ethyl, n-propyl and isopropyl esters; n-butyl, sec-butyl, isobutyl, tert-butyl, isopentyl, n-hexyl, n-octyl, 1-methylheptyl, n-nonyl, n-decyl and n-dodecyl acetylacetic acid or those described in the FR-A-1435882.
  • the catalyst C is selected from the complexes [Ni (acac) 2 ], [Ni (TMHD) 2 ], [Ni (ketoester) 2 ] and [Ni (Rhodiastab 50) 2 ].
  • acac means the anion derived from the compound 2,4-pentanedione
  • THMD means the anion derived from the compound 2,2,6,6-tetramethyl-3,5- heptanedione
  • ketoester means the anion derived from a methyl ester of acetylacetic acid
  • Rhodiastab 50 means a mixture of anions derived from the benzoylstearoylmethane compound, and anions derived from the benzoylpalmitoylmethane compound.
  • Catalyst C may in particular be present in composition X according to the invention in a content ranging from 0.001 to 10 mol% of nickel per number of moles of C 2 -C 6 alkenyl radicals bonded to silicon atoms of the organopolysiloxane A compound. preferably from 0.01 to 7%, and more preferably from 0.1 to 5%.
  • composition X used to obtain the material Y according to the invention is preferably free of platinum, palladium, ruthenium or rhodium catalyst.
  • free of catalyst other than catalyst C is meant that composition X according to the invention comprises less than 0.1% by weight of catalyst other than catalyst C, preferably less than 0.01% by weight, and more preferably less than 0.001% by weight, relative to the total weight of the composition.
  • composition X may advantageously comprise at least one adhesion promoter D.
  • adhesion promoter D comprises:
  • the alkoxylated organosilane (D.1) of the adhesion promoter D is selected from the products of the following general formula:
  • R 1, R 2 and R 3 are hydrogenated or hydrocarbon radicals that are identical to or different from each other and represent a hydrogen atom, a linear or branched C 1 -C 4 alkyl or a phenyl optionally substituted with at least one C 1 -C 3 alkyl,
  • U is a linear or branched C 1 -C 4 alkylene
  • R 4 and R 5 are identical or different radicals and represent a linear or branched dC 4 alkyl
  • vinyltrimethoxysilane is a particularly suitable compound (D.1).
  • organosilicon compound (D.2) As regards the organosilicon compound (D.2), it is provided according to the invention to choose it:
  • R 6 is a linear or branched C 1 -C 4 alkyl radical
  • R 7 is a linear or branched alkyl radical
  • y 0, 1, 2 or 3
  • R 8 , R 9 , R 10 which are identical or different radicals representing a hydrogen atom or a linear or branched C 1 -C 4 alkyl
  • R 8 and R 9 or R 10 may alternatively constitute, together with the two epoxy-bearing carbons, an alkyl ring having from 5 to 7 members, or) one of the products (D.2b) consisting of epoxyfunctional polydiorganosiloxanes comprising :
  • X is the radical as defined above for the formula (D.2 a)
  • G is a monovalent hydrocarbon group, which has no adverse effect on the activity of the catalyst and is selected from alkyl groups having from 1 to 8 carbon atoms inclusive, optionally substituted by at least one halogen atom, and also from aryl groups containing between 6 and 12 carbon atoms,
  • the preferred products are those in which the metal M of the chelate and / or the alkoxide (D.3) is chosen from the following list: Ti , Zr, Ge, Li or Mn. It should be emphasized that titanium is more particularly preferred. It may be associated, for example, an alkoxy radical of butoxy type.
  • the adhesion promoter D may be formed of:
  • an advantageous combination for forming the adhesion promoter is as follows:
  • VTMO vinyltrimethoxysilane
  • GLYMO 3-glycidoxypropyltrimethoxysilane
  • butyl titanate butyl titanate
  • the weight ratio (D.2): (D.1) is preferably between 2: 1 and 0.5: 1, the ratio 1: 1 being more particularly preferred.
  • the adhesion promoter D is present in a proportion of 0.1 to 10% by weight, preferably 0.5 to 5% by weight, and more preferably 1 to 3% by weight, relative to the total weight of all the constituents of the composition X.
  • the composition X implemented to obtain the material Y according to the invention also comprises at least one load E.
  • the charges E possibly contained in the compositions according to the invention are preferably mineral. They can be especially siliceous. As for siliceous materials, they can act as reinforcing or semi-reinforcing filler.
  • the reinforcing siliceous fillers are chosen from colloidal silicas, silica powders for combustion and precipitation, or mixtures thereof. These powders have an average particle size generally less than 0.1 ⁇ (micrometers) and a BET specific surface area greater than 30 m 2 / g, preferably between 30 and 350 m 2 / g.
  • Semi-reinforcing siliceous fillers such as diatomaceous earth or ground quartz can also be used.
  • non-siliceous mineral materials they can be used as semi-reinforcing mineral filler or stuffing.
  • these non-siliceous fillers that can be used alone or in a mixture are carbon black, titanium dioxide, aluminum oxide, hydrated alumina, expanded vermiculite, unexpanded vermiculite, and optionally treated calcium carbonate. on the surface with fatty acids, zinc oxide, mica, talc, iron oxide, barium sulphate and slaked lime.
  • fillers have a particle size generally between 0.001 and 300 ⁇ (micrometers) and a BET surface area of less than 100 m 2 / g.
  • the fillers used may be a mixture of quartz and silica. Charges can be processed by any suitable product. In terms of weight, it is preferred to use a quantity of filler of between 1% and 50% by weight, preferably between 1% and 40% by weight relative to all the constituents of the composition.
  • composition X comprising:
  • At least one organopolysiloxane compound A comprising, per molecule, at least two C 2 -C 6 alkenyl radicals bonded to silicon atoms,
  • organohydrogenpolysiloxane compound B comprising, per molecule, at least two hydrogen atoms bonded to an identical or different silicon atom
  • At least one catalyst C which is a complex corresponding to the following formula:
  • Ni nickel with oxidation state II
  • the symbols L 1 which are identical or different, represent a ligand which is a ⁇ -dicarbonylato anion or the enolate anion of a ⁇ -dicarbonyl compound,
  • composition X according to the invention may further comprise one or more usual functional additives.
  • usual functional additives mention may be made of:
  • additives for heat resistance, resistance to oils or fire resistance for example metal oxides.
  • Silicone resins are well known and commercially available branched organopolysiloxane oligomers or polymers. They exhibit, in their structure, at least two different units chosen from those of formula R3S1O1 / 2 (M unit), R 2 Si0 2/2 (D unit), RSi0 3/2 (T unit) and Si0 4/2 ( Q), at least one of which is a T or Q pattern.
  • the radicals R are identical or different and are chosen from linear or branched C1-C6 alkyl, hydroxyl, phenyl and 3,3,3-trifluoropropyl radicals. Mention may be made, for example, as alkyl radicals, methyl, ethyl, isopropyl, tert-butyl and n-hexyl radicals.
  • oligomers or branched organopolysiloxane polymers examples include MQ resins, MDQ resins, TD resins and MDT resins, the hydroxyl functional groups that may be borne by the M, D and / or T units.
  • resins which are particularly suitable include hydroxylated MDQ resins having a weight content of hydroxyl group of between 0.2 and 10% by weight.
  • the Y materials according to the invention can in particular be obtained by first introducing the catalyst C into the reaction medium and then adding the organopolysiloxane A with stirring. Finally, the organohydrogenpolysiloxane compound B is introduced and the temperature of the mixture is increased to reach the crosslinking temperature. The mixture is maintained at the crosslinking temperature until stirring stops due to an increase in the viscosity of the mixture.
  • the subject of the present invention is also a process for crosslinking silicone compositions, characterized in that it consists in heating the composition X as defined above at a temperature ranging from 70 to 200 ° C., preferably from 80 to 150 ° C. and more preferably from 80 to 130 ° C.
  • composition X implemented to obtain the material Y according to the invention has the advantage of not being sensitive to air and thus being able to be used and in particular to crosslink under a non-inert atmosphere, and in particular to the air.
  • the present invention is illustrated in more detail in the nonlimiting exemplary embodiments.
  • organohydrogenpolysiloxane of formula B MD'soM (1, 58 mol of hydrogen atoms bonded to silicon per 100 g of oil), where: M: (CH 3) 3 SiO / 2; and D: (CH 3) HSi0 2/2
  • the catalysts (A), (B), (C) and (D) are commercially available, for example under Strem purity references> 95% for the compound [Ni (acac) 2 ], Strem purity> 98% for the compound [Ni (TMHD) 2 ].
  • the catalyst (E) is obtained by a synthesis well known to those skilled in the art:
  • the salt obtained is recrystallized from diethyl ether.
  • the deprotonated ligand obtained lithium salt
  • NiCl 2 nickel chloride
  • the complex [Ni (cetoester) 2 ] is in the form of an apple green solid.
  • the catalyst (F) is also obtained by a synthesis well known to those skilled in the art:
  • the salt obtained is recrystallized from diethyl ether.
  • the deprotonated ligand obtained (lithium salt) is added to a nickel chloride (NiCl 2 ) in solution in THF at room temperature (12 h).
  • the resulting complex is viscous, green in color.
  • a recrystallization step leads to obtaining a solid.
  • the catalyst is weighed and introduced into a Schlenk at room temperature and under an inert atmosphere when the complex is sensitive to air (especially Ni (0)), or in a glass flask when the complexes are stable in the air.
  • Comparative formulation 1 comprising a complex of Ni (0) cross-links after 3h20 but must be maintained under an inert atmosphere. Indeed, under a non-inert atmosphere, the complex degrades very quickly, even before the start of the reaction, during the rise in temperature.
  • the comparative formulation 3 employing a Ni (II) complex having stearate ligands, does not crosslink until after 45h.
  • the nickel catalysts according to the invention have been tested under the following different operating conditions:
  • Formulations 5 and 6 according to the invention show that crosslinking is obtained at 90 ° C., even if this crosslinking is slower than that observed for formulations 2 and 4 operated at 110 ° C.
  • Formulations 7, 8 and 10 according to the invention show that a crosslinking is obtained from 0.125 mol% of catalyst, even if this crosslinking is slower than that observed for formulations 2, 4 and 9 comprising 0.25 mol% of catalyst.
  • EXAMPLE 2 Nickel-Based Catalysts for the Crosslinking of MD 70 M with MD'soM
  • the catalyst is weighed and introduced into a Schlenk at room temperature and under an inert atmosphere when the complex is sensitive to air (case of Ni (O)), or in a glass flask when the complexes are stable. in the air.
  • the M VI oil D7 0 M VI was then introduced, followed by the MD '50 M oil.
  • the flask (or Schlenk) is stirred in an oil bath which will be heated to the desired reaction temperature.
  • Formulation 11 comprising a Ni (0) complex cross-links after 2 h 50 but must be maintained under an inert atmosphere. Indeed, as already indicated in example 1, the complex degrades very quickly under non-inert atmosphere, even before the start of the reaction.
  • the comparative formulation employing a Ni (II) complex having stearate ligands, still does not crosslink after 48h.
  • the formulations 12, 19 and 24 to 29 according to the invention show that the increase in the catalyst concentration makes it possible to significantly reduce the crosslinking time.
  • the formulation also shows that the crosslinking can be observed even with very low levels of catalyst, which makes it possible to avoid or limit the coloration of the crosslinked material.
  • crosslinking is carried out under a non-inert atmosphere.
  • Formulations 14 and 14A, and 30 and 31 show that increasing the ratio R makes it possible to reduce the crosslinking time.
  • organopolysiloxane of the formula M vl D35oM yl, where: Vi vinyl; M VI : (CH 3 ) 2 ViSiOi / 2 and D:
  • the ratio R corresponding to the molar ratio of the silicon-bonded hydrogen atoms (Si-H) in the organohydrogenpolysiloxane (MD '50 M) on the alkenyl (here vinyl) radicals bonded to silicon (Si-CH CH 2 ) in the organopolysiloxane (D 3 5oM M vl vl) of 10: 1.
  • the crosslinked material is demolded and its hardness (Shore A) measured.
  • the material has a hardness of 9 in Shore A degree.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

La présente invention a pour objet un matériau silicone réticulé Y obtenu par chauffage à une température allant de 70 à 200°C, de préférence de 80 à 150°C, et plus préférentiellement de 80 à 130°C, d'une composition X réticulable comprenant : - au moins un composé organopolysiloxane A comportant, par molécule, au moins deux radicaux alcényles en C2-C6 liés à des atomes de silicium, - au moins un composé organohydrogénopolysiloxane B comportant, par molécule, au moins deux atomes d'hydrogène liés à un atome de silicium identique ou différent, - au moins un catalyseur C qui est un complexe répondant à la formule suivante: [Ni (L1)2] dans laquelle: - le symbole Ni représente le nickel au degré d'oxydation II; - les symboles L1, identiques ou différents, représentent un ligand qui est un anion β-dicarbonylato ou l'anion énolate d'un composé β-dicarbonylé, - éventuellement au moins un promoteur d'adhérence D et - éventuellement au moins une charge E. L'invention a également pour objet une composition X réticulable, l'utilisation du catalyseur C précédemment décrit comme catalyseur de réticulation de compositions silicones, ainsi qu'un procédé de réticulation de compositions silicones, caractérisé en ce qu'il consiste à chauffer la composition X à une température allant de 70 à 200°C, et le matériau silicone réticulé Y ainsi obtenu.

Description

NOUVEAUX CATALYSEURS DE RETICULATION DE COMPOSITIONS SILICON ES
DOMAINE DE L'INVENTION
La présente invention concerne le domaine des matériaux obtenus par réticulation de compositions silicones dans lesquelles sont mis en contact des réactifs possédant au moins deux liaisons insaturées et des composés organosiliciés possédant au moins deux motifs hydrogénosilylés (≡SiH) en présence d'un catalyseur C qui est un complexe répondant à la formule suivante:
[Ni (L1)2]
dans laquelle le symbole Ni représente le nickel au degré d'oxydation II, et les symboles L1, identiques ou différents, représentent un ligand qui est un anion β-dicarbonylato ou l'anion énolate d'un composé β-dicarbonylé.
ARRIERE-PLAN TECHNOLOGIQUE Dans le domaine de la réticulation des compositions silicones, l'hydrosilylation, également appelée polyaddition, est une réaction prépondérante.
Lors d'une réaction d'hydrosilylation, un composé comprenant au moins une insaturation réagit avec un composé comprenant au moins un atome d'hydrogène lié à un atome de silicium. Cette réaction peut par exemple être décrite par l'équation réactionnelle (1 ) dans le cas d'une insaturation de type alcène :
I \ / I I /
— Si-H + C=C »► —Si— C— CH
(1 ) I / \ I I \
ou par l'équation réactionnelle (2) dans le cas d'une insaturation de type alcyne :
—Si-H + — C≡C *~ —Si— C=CH
(2) I I I I
L'hydrosilylation de composés insaturés est réalisée par catalyse, à l'aide de catalyseur organométallique. Actuellement, le catalyseur organométallique approprié pour cette réaction est un catalyseur au platine. Ainsi, la plupart des réactions industrielles d'hydrosilylation sont catalysées par le complexe de platine de Karstedt, de formule générale Pt2(divinyltétraméthyldisiloxane)3 (ou en abrégé Pt2(DVTMS)3) :
Figure imgf000003_0001
Au début des années 2000, la préparation de complexes de platine - carbène de formule générale :
Figure imgf000003_0002
a permis d'avoir accès à des catalyseurs plus stables (voir par exemple la demande internationale de brevet WO 01/42258).
Toutefois, l'utilisation de catalyseurs organométalliques au platine est toujours problématique. Il s'agit d'un métal toxique, cher, en voie de raréfaction et dont le coût fluctue énormément. Son utilisation à l'échelle industrielle est donc difficile. On souhaite donc diminuer autant que possible la quantité de catalyseur nécessaire à la réaction, sans pour autant diminuer le rendement et la vitesse de la réaction. Par ailleurs, on souhaite disposer d'un catalyseur stable au cours de la réaction. Il a été constaté que, lors de la réaction catalysée, le platine métallique pouvait précipiter, ce qui a pour conséquence la formation de colloïdes insolubles dans le milieu réactionnel. Le catalyseur est alors moins actif. De plus, ces colloïdes forment un trouble dans le milieu réactionnel, et les produits obtenus ne sont pas satisfaisants esthétiquement car ils sont colorés.
Enfin, les complexes à base de platine catalysent les réactions d'hydrosilylation à température ambiante avec une cinétique rapide, de l'ordre de quelques minutes. Afin d'avoir le temps de préparer, transporter et mettre en œuvre la composition avant son durcissement, il est souvent nécessaire d'inhiber temporairement la réaction d'hydrosilylation. Par exemple, lorsqu'on souhaite revêtir un substrat papier ou polymère d'un revêtement silicone antiadhérent, la composition silicone est formulée pour former un bain qui doit rester liquide à température ambiante pendant plusieurs heures avant d'être déposée sur le substrat. Ce n'est qu'après ce dépôt que l'on souhaite que le durcissement par hydrosilylation se produise. L'introduction d'additifs inhibiteurs d'hydrosilylation permet d'empêcher efficacement la réaction aussi longtemps que nécessaire avant activation. Toutefois, il est parfois nécessaire d'utiliser de grandes quantités d'agent inhibiteur, ce qui provoque une forte inhibition du catalyseur d'hydrosilylation. Cela a pour conséquence que la vitesse de durcissement de la composition, même après activation, est ralentie, ce qui est un inconvénient important d'un point de vue industriel car cela oblige notamment à réduire la vitesse d'enduction et donc la cadence de production.
Il serait donc intéressant de proposer des catalyseurs organométalliques alternatifs aux catalyseurs à base de platine et de disposer de nouveaux matériaux siliconés réticulés et/ou durcis au moyen de catalyseurs ne présentant plus les problèmes décrits ci-dessus, en particulier ne nécessitant pas d'utiliser d'agent inhibiteur.
Cet objectif est atteint à l'aide d'un catalyseur qui est un complexe du nickel (II) présentant une structure spécifique. Ces catalyseurs, en particulier, ne nécessitent pas d'être manipulés sous atmosphère protectrice (par exemple sous argon). Les réactions de réticulation dans lesquelles ils sont mis en œuvre peuvent également être opérées à l'air, sans atmosphère protectrice.
La présente invention a ainsi pour objet, selon un premier aspect, un matériau silicone réticulé Y obtenu par chauffage à une température allant de 70 à 200°C, de préférence de 80 à 150°C, et plus préférentiellement de 80 à 130°C, d'une composition X réticulable comprenant :
- au moins un composé organopolysiloxane A comportant, par molécule, au moins deux radicaux alcényles en C2-C6 liés à des atomes de silicium,
- au moins un composé organohydrogénopolysiloxane B comportant, par molécule, au moins deux atomes d'hydrogène liés à un atome de silicium identique ou différent,
- au moins un catalyseur C qui est un complexe répondant à la formule suivante:
[Ni (L1)2]
dans laquelle:
- le symbole Ni représente le nickel au degré d'oxydation II,
- les symboles L1, identiques ou différents, représentent un ligand qui est un anion β- dicarbonylato ou l'anion énolate d'un composé β-dicarbonylé,
- éventuellement au moins un promoteur d'adhérence D et
- éventuellement au moins une charge E.
On entend par « matériau silicone réticulé » tout produit à base de silicone obtenu par réticulation et/ou durcissement de compositions comprenant des organopolysiloxanes possédant au moins deux liaisons insaturées et des organopolysiloxanes possédant au moins deux motifs hydrogénosilylés (≡SiH). Le matériau silicone réticulé peut par exemple être un élastomère, un gel ou une mousse. L'invention a également pour objet, selon un second aspect, une composition X réticulable telle que décrite précédemment.
La composition X selon l'invention est réticulable, c'est-à-dire, au sens de la présente demande, qu'une fois que les composés A et B ont réagi entre eux en présence du catalyseur C, un réseau en trois dimensions se forme, ce qui conduit au durcissement de la composition. La réticulation implique donc un changement physique progressif du milieu constituant la composition. Les publications Bogdan Marciniec et al. « Catalyst of hydrosililation Part XXV. Effect of nickel (o) and nickel (II) complex catalysts on dehydrogenative silylation, hydrosilylation and dimerization of vinyltriethoxysilane », Journal of Organometallic chemistry, vol. 484, n°1 -2, 27 dec. 1994 et « Catalyst of hydrosililation Part XX. Unusual reaction of vinyltriethoxysilane with triethoxysilane catalyzed by nickel acetylacetonate », Journal of Organometallic chemistry, Lausane JOM, 15 oct. 1991 , décrivent une réaction d'hydrosilylation entre deux silanes, le vinyltriéthoxysilane (EtO)3-Si-Vi et le triéthoxysilane (EtO)3-SiH, en présence de catalyseurs de nickel (0) ou (2). Les silanes comprenant la liaison Si-H ont comme substituants des motifs éthoxy Si-O-Et bien spécifiques et bien différent des siloxanes selon la présente demande qui présentent des substituants alkyle et siloxy.
L'invention a également pour objet, selon un troisième aspect, l'utilisation du catalyseur C précédemment décrit comme catalyseur de réticulation de compositions silicones.
L'invention a encore pour objet, selon un quatrième aspect, un procédé de réticulation de compositions silicones, caractérisé en ce qu'il consiste à chauffer la composition X précédemment décrite à une température allant de 70 à 200°C, de préférence de 80 à 150°C, et plus préférentiellement de 80 à 130°C, ainsi que le matériau silicone réticulé Y ainsi obtenu.
Suivant une modalité particulièrement avantageuse, l'organopolysiloxane A comportant, par molécule, au moins deux radicaux alcényles en C2-C6 liés à des atomes de silicium, comprend :
(i) au moins deux motifs siloxyles (A.1 ), identiques ou différents, de formule suivante : W_ZsSiO , , , ,
2 (A.1 )
dans laquelle :
- a= 1 ou 2, b= 0, 1 ou 2 et a+b= 1 , 2 ou 3; - les symboles W, identiques ou différents, représentent un groupement alcényle linéaire ou ramifié en C2-C6,
- et les symboles Z, identiques ou différents, représentent un groupe hydrocarboné monovalent ayant de 1 à 30 atomes de carbone, et de préférence choisi parmi le groupe constitué par les groupes alkyles ayant de 1 à 8 atomes de carbone et les groupes aryles contenant entre 6 et 12 atomes de carbone, et encore plus préférentiellement choisi parmi le groupe constitué par un radical méthyle, éthyle, propyle, 3,3,3-trifluoropropyle, xylyle, tolyle et phényle, (ii) et éventuellement au moins un motif siloxyle de formule suivante : ZaSiQ-a (A.2)
2 dans laquelle :
- a= 0, 1 , 2 ou 3,
les symboles Z1, identiques ou différents, représentent un groupe hydrocarboné monovalent ayant de 1 à 30 atomes de carbone et de préférence choisi parmi le groupe constitué par les groupes alkyles ayant de 1 à 8 atomes de carbone inclus et les groupes aryles contenant entre 6 et 12 atomes de carbone, et encore plus préférentiellement choisi parmi le groupe constitué par un radical méthyle, éthyle, propyle, 3,3,3-trifluoropropyle, xylyle, tolyle et phényle.
Avantageusement, les radicaux Z et Z1 sont choisis parmi le groupe constitué par un radical méthyle et phényle, et W est choisis parmi la liste suivante : vinyle, propényle, 3- butènyle, 5-hexènyle, 9-décényle, 10-undécènyle, 5,9-décadiènyle et 6-1 1 -dodécadiényle, et de préférence W est un vinyle.
Ces organopolysiloxanes peuvent présenter une structure linéaire, ramifiée, ou cyclique. Leur degré de polymérisation est, de préférence, compris entre 2 et 5000. Lorsqu'il s'agit de polymères linéaires, ceux-ci sont essentiellement constitués de motifs siloxyles « D » choisis parmi le groupe constitué par les motifs siloxyles W2Si02/2, WZS1O2/2 et Z1 2Si02/2, et de motifs siloxyles « M » choisis parmi le groupe constitué par les motifs siloxyles W3SiOi/2, WZ2SiOi/2, W2ZSiOi/2 et Z1 3SiOi/2. Les symboles W, Z et Z1 sont tels que décrits ci-dessus. A titre d'exemples de motifs « M » terminaux, on peut citer les groupes triméthylsiloxy, diméthylphénylsiloxy, diméthylvinylsiloxy ou diméthylhexènylsiloxy.
A titre d'exemples de motifs « D », on peut citer les groupes diméthylsiloxy, méthylphénylsiloxy, méthylvinylsiloxy, méthylbutènylsiloxy, méthylhexènylsiloxy, méthyldécènylsiloxy ou méthyldécadiènylsiloxy.
Lesdits organopolysiloxanes A peuvent être des huiles de viscosité dynamique de l'ordre de 10 à 100000 mPa.s à 25°C, généralement de l'ordre de 10 à 70000 mPa.s à 25°C, ou des gommes présentant une masse moléculaire de l'ordre de 1 000 000 mPa.s ou plus à 25°C.
Toutes les viscosités dont il est question dans le présent exposé correspondent à une grandeur de viscosité dynamique à 25°C dite "Newtonienne", c'est-à-dire la viscosité dynamique qui est mesurée, de manière connue en soi, avec un viscosimètre Brookfield à un gradient de vitesse de cisaillement suffisamment faible pour que la viscosité mesurée soit indépendante du gradient de vitesse.
Lorsqu'il s'agit d'organopolysiloxanes cycliques, ceux-ci sont constitués de motifs siloxyles «D» de formules suivantes : W2Si02/2, Z2Si02/2 ou WZSi02/2, qui peuvent être du type dialkylsiloxy, alkylarylsiloxy, alkylvinylsiloxy, alkylsiloxy. Des exemples de tels motifs siloxyles ont déjà été cités ci-dessus. Lesdits organopolysiloxanes A cycliques présentent une viscosité de l'ordre de 10 à 5000 mPa.s à 25°C.
Selon un mode préféré de réalisation, la composition X selon l'invention comprend un second composé organopolysiloxane comportant, par molécule, au moins deux radicaux alcényles en C2-C6 liés à des atomes de silicium, différent du composé organopolysiloxane A, ledit second composé organopolysiloxane étant de préférence le divinyltétraméthylsiloxane (dvtms). De préférence, le composé organopolysiloxane A a une teneur massique en motif Si- vinyle comprise entre 0,001 et 30%, de préférence entre 0,01 et 10%.
Selon un mode de réalisation préféré, le composé organohydrogénopolysiloxane B est un organopolysiloxane ayant au moins deux atomes d'hydrogène, par molécule, liés à un atome de silicium identique ou différent et, de préférence, ayant au moins trois atomes d'hydrogène par molécule directement liés à un atome de silicium identique ou différent. Avantageusement, le composé organohydrogénopolysiloxane B est un organopolysiloxane comprenant :
(i) au moins deux motifs siloxyles et, de préférence, au moins trois motifs siloxyles de formule suivante:
Figure imgf000008_0001
dans laquelle:
- d= 1 ou 2, e = 0, 1 ou 2 et d+e= 1 , 2 ou 3,
les symboles Z3, identiques ou différents, représentent un groupe hydrocarboné monovalent ayant de 1 à 30 atomes de carbone et de préférence choisi parmi le groupe constitué par les groupes alkyles ayant de 1 à 8 atomes de carbone et les groupes aryles contenant entre 6 et 12 atomes de carbone, et encore plus préférentiellement choisi parmi le groupe constitué par un radical méthyle, éthyle, propyle, 3,3,3-trifluoropropyle, xylyle, tolyle et phényle, et
(ii) éventuellement au moins un motif siloxyle de formule suivante :
Z^SiO^ (B 2)
2
dans laquelle :
- c= 0, 1 , 2 ou 3,
- les symboles Z2, identiques ou différents, représentent un groupe hydrocarboné monovalent ayant de 1 à 30 atomes de carbone et de préférence choisi parmi le groupe constitué par les groupes alkyles ayant de 1 à 8 atomes de carbone et les groupes aryles contenant entre 6 et 12 atomes de carbone, et encore plus préférentiellement choisi parmi le groupe constitué par un radical méthyle, éthyle, propyle, 3,3,3-trifluoropropyle, xylyle, tolyle et phényle.
Le composé organohydrogénopolysiloxane B peut être uniquement formé de motifs siloxyle de formule (B.1 ) ou comporter en plus des motifs de formule (B.2). Il peut présenter une structure linéaire, ramifiée, ou cyclique. Le degré de polymérisation est de préférence supérieur ou égal à 2. Plus généralement, il est inférieur à 5000.
Des exemples de motifs siloxyles de formule (B.1 ) sont notamment les motifs suivants :H(CH3)2SiOi/2, HCH3Si02/2 et H(C6H5)Si02/2, Lorsqu'il s'agit de polymères linéaires, ceux-ci sont essentiellement constitués :
de motifs siloxyles « D » choisis parmi les motifs de formules suivantes Z2 2Si02/2 ou Z3HSi02/2, et
de motifs siloxyles « M » choisis parmi les motifs de formules suivantes Z2 3SiOi/2 ou Z3 2HSiO 1/2-
Ces organopolysiloxanes linéaires peuvent être des huiles de viscosité dynamique à de l'ordre de 1 à 100 000 mPa.s à 25°C, généralement de l'ordre de 10 à 5000 mPa.s à 25°C, ou des gommes présentant une masse moléculaire de l'ordre de 1 000 000 mPa.s ou plus à 25°C.
Lorsqu'il s'agit d'organopolysiloxanes cycliques, ceux-ci sont constitués de motifs siloxyles « D » de formules suivantes Z2 2Si02/2 et Z3HSi02/2, qui peuvent être du type dialkylsiloxy ou alkylarylsiloxy ou de motifs Z3HSi02/2 uniquement. Ils présentent alors une viscosité de l'ordre de 1 à 5000 mPa.s.
Des exemples de composé organohydrogénopolysiloxane linéaire B sont : les diméthylpolysiloxanes à extrémités hydrogénodiméthylsilyles, les diméthylhydrogénométhylpolysiloxanes à extrémités triméthylsilyles, les diméthylhydrogénométhylpolysiloxanes à extrémités hydrogénodiméthylsilyles, les hydrogénométhylpolysiloxanes à extrémités triméthylsilyles, et les hydrogénométhylpolysiloxanes cycliques.
Sont notamment préférés à titre de composé organohydrogénopolysiloxane B, les oligomères et polymères répondant à la formule générale (B.3) :
Figure imgf000009_0001
dans laquelle :
- x et y sont un nombre entier variant entre 0 et 200,
- les symboles R1, identiques ou différents, représentent indépendamment les uns des autres :
• un radical alkyle linéaire ou ramifié contenant 1 à 8 atomes de carbone, éventuellement substitué par au moins un halogène, de préférence le fluor, les radicaux alkyle étant, de préférence, méthyle, éthyle, propyle, octyle et 3,3,3-trifluoropropyle,
• un radical cycloalkyle contenant entre 5 et 8 atomes de carbone cycliques,
• un radical aryle contenant entre 6 et 12 atomes de carbone, ou
• un radical aralkyle ayant une partie alkyle contenant entre 5 et 14 atomes de carbone et une partie aryle contenant entre 6 et 12 atomes de carbone.
Conviennent particulièrement à l'invention titre de compose organohydrogénopolysiloxane B les com osés suivants :
Figure imgf000010_0001
S1 S2 S3
avec a, b, c, d et e définis ci-dessous :
- dans le polymère de formule S1 :
- 0 < a < 150, de préférence 0 < a < 100, et plus particulièrement 0 < a < 20, et - 1 < b < 90 de préférence 10 < b < 80 et plus particulièrement 30 < b < 70,
- dans le polymère de formule S2 : 0 < c < 15
- dans le polymère de formule S3 : 5 < d < 200, de préférence 20 < d < 100, et 2 < e < 90, de préférence 10 < e < 70.
En particulier, le composé organohydrogénopolysiloxane B convenant à l'invention est le composé de formule S1 , où a=0.
De préférence le composé organohydrogénopolysiloxane B a une teneur massique en motif SiH comprise entre 0,2 et 91 %, de préférence entre 0,2 et 50%.
Dans le cadre de l'invention, les proportions de l'organopolysiloxane A et de l'organohydrogénopolysiloxane B sont telles que le rapport molaire des atomes d'hydrogène liés au silicium (Si-H) dans l'organohydrogénopolysiloxane B sur les radicaux alcényles liés au silicium (Si-CH=CH2) dans l'organopolysiloxane A est compris entre 0,2 et 20, de préférence entre 0,5 et 15, plus préférentiellement entre 0,5 et 10 et encore plus préférentiellement entre 0,5 et 5.
Pour permettre l'obtention du matériau Y selon l'invention, la composition X met en œuvre au moins un catalyseur C qui est un complexe répondant à la formule suivante:
[Ni (L1)2]
dans laquelle:
- le symbole Ni représente le nickel au degré d'oxydation II,
- les symboles L1, identiques ou différents, représentent un ligand qui est un anion β- dicarbonylato ou l'anion énolate d'un composé β-dicarbonylé.
Il est à noter qu'au moins une partie du caractère inventif de l'invention, tient à la sélection judicieuse et avantageuse de la structure du catalyseur C. Selon une autre disposition préférée de réalisation de l'invention, le ligand L1 est un anion dérivé d'un composé de formule (1 ) : R1COCHR2COR3 (1 )
dans laquelle :
- R1 et R3, identiques ou différents, représentent un radical hydrocarboné en CrC30 linéaire, cyclique ou ramifié, un aryle contenant entre 6 et 12 atomes de carbone, ou un radical -OR4 avec R4 qui représente un radical hydrocarboné en C1-C30 linéaire, cyclique ou ramifié,
- R2 est un atome d'hydrogène ou un radical hydrocarboné, de préférence alkyle, comprenant de 1 à 4 atomes de carbone ; avec
- R1 et R2 peuvent être reliés pour former un cycle en C5-C6, et
- R2 et R4 peuvent être reliés pour former un cycle en C5-C6.
Avantageusement, le composé de formule (1 ) est choisi parmi le groupe constitué par les β-dicétones: 2,4-pentanedione (acac); l'hexanedione-2,4; heptanedione-2,4; heptanedione- 3,5; l'éthyl-3 pentanedione-2,4; méthyl-5 hexanedione-2,4; octanedione-2,4; octanedione- 3,5; diméthyl-5,5 hexanedione-2,4; méthyl-6 heptanedione-2,4; diméthyl-2, 2 nonanedione- 3,5; diméthyl-2, 6 heptanedione-3,5; 2-acétylcyclohexanone {Cy-acac); 2,2,6,6-tétraméthyl- 3,5-heptanedione (TMHD); 1 ,1 ,1 ,5,5,5-hexafluoro-2,4-pentanedione {F-acac)]; benzoylacétone; dibenzoyl-méthane; 3-méthyl-2,4-pentadione; 3-acétyl-pentane-2-one; 3- acétyl-2-hexanone; 3-acétyl-2-heptanone; 3-acétyl-5-méthyl-2-hexanone; benzoylstéaroylméthane; benzoylpalmitoylméthane; octanoylbenzoylméthane; 4-t-butyl-4'- méthoxy-dibenzoylméthane; 4,4'-diméthoxy-dibenzoylméthane et 4,4'-di-tert-butyl- dibenzoylméthane, et de préférence parmi les β-dicétones 2,4-pentanedione (acac) et 2,2,6,6-tétraméthyl-3,5-heptanedione {TMHD). Selon une autre disposition préférée de réalisation de l'invention, le ligand β- dicarbonylato L1 est un anion β-cétoestérato choisi parmi le groupe constitué par les anions dérivés des composés suivants: les esters méthylique, éthylique, n-propylique, isopropylique, n-butylique, sec-butylique, isobutylique, tertiobutylique, isopentylique, n-hexylique, n- octylique, méthyl-1 heptylique, n-nonylique, n-décylique et n-dodécylique de l'acide acétylacétique ou ceux décrit dans la demande de brevet FR-A-1435882.
Selon un mode particulièrement préféré de réalisation, le catalyseur C est choisi parmi les complexes [Ni(acac)2], [Ni(TMHD)2], [Ni(cétoester)2] et [Ni(Rhodiastab 50)2]. Il est entendu que dans les formules ci-dessus « acac » signifie l'anion dérivé du composé 2,4- pentanedione, « THMD » signifie l'anion dérivé du composé 2,2,6,6-tétraméthyl-3,5- heptanedione, « cétoester » signifie l'anion dérivé d'un ester méthylique de l'acide acétylacétique et « Rhodiastab 50 » signifie un mélange d'anions dérivés du composé benzoylstéaroylméthane, et d'anions dérivés du composé benzoylpalmitoylméthane.
Le catalyseur C peut notamment être présent dans la composition X selon l'invention en une teneur allant de 0,001 à 10% molaire de nickel par nombre de moles de radicaux alcényles en C2-C6 liés à des atomes de silicium du composé organopolysiloxane A, de préférence de 0,01 à 7%, et plus préférentiellement de 0,1 à 5%.
La composition X mise en œuvre pour obtenir le matériau Y selon l'invention est de préférence exempte de catalyseur à base de platine, de palladium, de ruthénium ou de rhodium. Par « exempte » de catalyseur autre que le catalyseur C, on entend que la composition X selon l'invention comprend moins de 0,1 % en poids de catalyseur autre que le catalyseur C, de préférence moins de 0,01 % en poids, et plus préférentiellement moins de 0,001 % en poids, par rapport au poids total de la composition.
La composition X peut avantageusement comprendre au moins un promoteur d'adhérence D.
Sans que cela ne soit limitatif, il peut être considéré que le promoteur d'adhérence D comporte:
- (D.1 ) au moins un organosilane alcoxylé contenant, par molécule, au moins un groupe alcényle en C2-C6, ou
- (D.2) au moins un composé organosilicié comprenant au moins un radical époxy, ou
- (D.3) au moins un chélate de métal M et/ou un alcoxyde métallique de formule générale : M(OJ)n, avec n = valence de M et J = alkyle linéaire ou ramifié en CrC8, M étant choisi dans le groupe formé par : Ti, Zr, Ge, Li, Mn, Fe, Al et Mg ou leurs mélanges
Conformément à une disposition préférée de l'invention, l'organosilane alcoxylé (D.1 ) du promoteur d'adhérence D est sélectionné parmi les produits de formule générale suivante:
Figure imgf000013_0001
(D.1 )
formule dans laquelle :
- R1 , R2, R3 sont des radicaux hydrogénés ou hydrocarbonés identiques ou différents entre eux et représentent un atome d'hydrogène, un alkyle linéaire ou ramifié en CrC4 ou un phényle éventuellement substitué par au moins un alkyle en CrC3,
U est un alkylène linéaire ou ramifié en CrC4,
W est un lien valentiel,
R4 et R5 sont des radicaux identiques ou différents et représentent un alkyle en d-C4 linéaire ou ramifié,
x' = 0 ou 1 , et
x = 0 à 2.
Sans que cela soit limitatif, il peut être considéré que le vinyltriméthoxysilane est un composé (D.1 ) particulièrement approprié.
S'agissant du composé organosilicié (D.2), il est prévu conformément à l'invention, de le choisir:
a) soit parmi les produits (D.2a) répondant à la formule générale suivante :
Figure imgf000013_0002
(D.2a)
formule dans laquelle :
R6 est un radical alkyle linéaire ou ramifié en CrC4,
- R7 est un radical alkyle linéaire ou ramifié,
y est égal à 0, 1 , 2 ou 3, et
X étant défini par la formule suivante :
Figure imgf000014_0001
avec :
E et D qui sont des radicaux identiques ou différents choisis parmi les alkyles en d- C4 linéaires ou ramifiés,
z qui est égal à 0 ou 1 ,
R8, R9, R10 qui sont des radicaux identiques ou différents représentant un atome d'hydrogène ou un alkyle linéaire ou ramifié en CrC4, et
R8 et R9 ou R10 pouvant alternativement constituer ensemble et avec les deux carbones porteurs de l'époxy, un cycle alkyle ayant de 5 à 7 chaînons, ou ) soit parmi les produits (D.2b) constitués par des polydiorganosiloxanes époxyfonctionnels comportant :
(i) au moins un motif siloxyle de formule :
Xn G a SiO
(D.2 bi)
formule dans laquelle :
X est le radical tel que défini ci-dessus pour la formule (D.2 a)
G est un groupe hydrocarboné monovalent, exempt d'action défavorable sur l'activité du catalyseur et choisi parmi les groupes alkyles ayant de 1 à 8 atomes de carbone inclus, éventuellement substitués par au moins un atome d'halogène, et ainsi que parmi les groupes aryles contenant entre 6 et 12 atomes de carbone,
p = 1 ou 2,
q = 0, 1 ou 2,
p + q = 1 , 2 ou 3. et et (ii) éventuellement au moins un motif siloxyle de formule :
Gf SiO ^-—
r 2
(D.2 bii) formule dans laquelle G a la même signification que ci-dessus et r est égale à 0, 1 , 2 ou 3. En ce qui concerne le dernier composé (D.3) du promoteur d'adhérence D, les produits préférés sont ceux dont le métal M du chélate et/ou de l'alcoxyde (D.3) est choisi dans la liste suivante : Ti, Zr, Ge, Li ou Mn. Il est à souligner que le titane est plus particulièrement préféré. On peut lui associer, par exemple, un radical alkoxy de type butoxy.
Le promoteur d'adhérence D pourra être formé de :
(D.1 ) seul
(D.2) seul
(D.1 ) + (D.2)
Ou selon deux modalités préférées de :
(D.1 ) + (D.3)
(D.2) + (D.3)
et enfin selon la modalité la plus préférée : (D.1 ) + (D.2) + (D.3).
Selon l'invention, une combinaison avantageuse pour former le promoteur d'adhérence est la suivante :
- vinyltriméthoxysilane (VTMO), 3-glycidoxypropyltriméthoxysilane (GLYMO) et titanate de butyle.
Sur le plan quantitatif, il peut être précisé que les proportions pondérales entre (D.1 ), (D.2) et (D.3), exprimées en pourcentages en poids par rapport au total des trois, sont les suivantes :
- (D.1 ) > 10, de préférence compris entre 15 et 70 et plus préférentiellement encore entre 25 à 65,
- (D.2) < 90, de préférence compris entre 70 et 15 et plus préférentiellement encore entre 65 à 25, et
- (D.3) > 1 , de préférence compris entre 5 et 25 et plus préférentiellement encore entre 8 à 18, étant entendu que la somme de ces proportions en (D.1 ), (D.2) et (D.3) est égale à 100%.
Pour de meilleures propriétés d'adhésion, le ratio pondéral (D.2) : (D.1 ) est de préférence compris entre 2 : 1 et 0,5 : 1 , le ratio 1 : 1 étant plus particulièrement préféré.
Avantageusement, le promoteur d'adhérence D est présent à raison de 0,1 à 10% en poids, de préférence 0,5 à 5% en poids, et plus préférentiellement de 1 à 3 % en poids, par rapport au poids total de l'ensemble des constituants de la composition X.
Selon un mode particulier de réalisation, la composition X mise en œuvre pour obtenir le matériau Y selon l'invention comprend également au moins une charge E. Les charges E éventuellement contenues dans les compositions selon l'invention sont de préférence minérales. Elles peuvent être notamment siliceuses. S'agissant des matières siliceuses, elles peuvent jouer le rôle de charge renforçante ou semi-renforçante. Les charges siliceuses renforçantes sont choisies parmi les silices colloïdales, les poudres de silice de combustion et de précipitation ou leurs mélanges. Ces poudres présentent une taille moyenne de particule généralement inférieure à 0,1 μηη (micromètres) et une surface spécifique BET supérieure à 30 m2/g, de préférence comprise entre 30 et 350 m2/g. Les charges siliceuses semi-renforçantes telles que des terres de diatomées ou du quartz broyé, peuvent être également employées. En ce qui concerne les matières minérales non siliceuses, elles peuvent intervenir comme charge minérale semi-renforçante ou de bourrage. Des exemples de ces charges non siliceuses utilisables seules ou en mélange sont le noir de carbone, le dioxyde de titane, l'oxyde d'aluminium, l'alumine hydratée, la vermiculite expansée, la vermiculite non expansée, le carbonate de calcium éventuellement traité en surface par des acides gras, l'oxyde de zinc, le mica, le talc, l'oxyde de fer, le sulfate de baryum et la chaux éteinte. Ces charges ont une granulométrie généralement comprise entre 0,001 et 300 μηη (micromètres) et une surface BET inférieure à 100 m2/g. De façon pratique mais non limitative, les charges employées peuvent être un mélange de quartz et de silice. Les charges peuvent être traitées par tout produit approprié. Sur le plan pondéral, on préfère mettre en œuvre une quantité de charge comprise entre 1 % et 50% en poids, de préférence entre 1 % et 40% en poids par rapport à l'ensemble des constituants de la composition.
L'invention a ainsi également pour objet, dans le cadre de la présente demande, une composition X réticulable comprenant :
- au moins un composé organopolysiloxane A comportant, par molécule, au moins deux radicaux alcényles en C2-C6 liés à des atomes de silicium,
- au moins un composé organohydrogénopolysiloxane B comportant, par molécule, au moins deux atomes d'hydrogène liés à un atome de silicium identique ou différent,
- au moins un catalyseur C qui est un complexe répondant à la formule suivante:
[Ni (L1)2]
dans laquelle:
- le symbole Ni représente le nickel au degré d'oxydation II,
- les symboles L1, identiques ou différents, représentent un ligand qui est un anion β- dicarbonylato ou l'anion énolate d'un composé β-dicarbonylé,
- éventuellement au moins un promoteur d'adhérence D et
- éventuellement au moins une charge E. La composition X selon l'invention peut en outre comprendre un ou plusieurs additifs fonctionnels usuels. Comme familles d'additifs fonctionnels usuels, on peut citer :
les résines silicone,
les modulateurs d'adhérence,
- les additifs pour augmenter la consistance,
les pigments, et
les additifs de tenue thermique, de tenue aux huiles ou de tenue au feu, par exemple les oxydes métalliques.
Les résines silicone sont des oligomères ou polymères organopolysiloxanes ramifiés bien connus et disponibles dans le commerce. Elles présentent, dans leur structure, au moins deux motifs différents choisis parmi ceux de formule R3S1O1/2 (motif M), R2Si02/2 (motif D), RSi03/2(motif T) et Si04/2 (motif Q), l'un au moins de ces motifs étant un motif T ou Q.
Les radicaux R sont identiques ou différents et sont choisis parmi les radicaux alkyles linéaires ou ramifiés en C1 - C6, hydroxyle, phényle, trifluoro-3,3,3 propyle. On peut citer par exemple comme radicaux alkyles, les radicaux méthyle, éthyle, isopropyle, tertiobutyle et n- hexyle.
Comme exemples d'oligomères ou de polymères organopolysiloxanes ramifiés, on peut citer les résines MQ, les résines MDQ, les résines TD et les résines MDT, les fonctions hydroxyles pouvant être portées par les motifs M, D et/ou T. Comme exemple de résines qui conviennent particulièrement bien, on peut citer les résines MDQ hydroxylées ayant une teneur pondérale en groupe hydroxyle comprise entre 0,2 et 10 % en poids.
Les matériaux Y selon l'invention peuvent notamment être obtenus en introduisant en premier lieu le catalyseur C dans le milieu réactionnel, puis en ajoutant l'organopolysiloxane A sous agitation. Enfin, le composé organohydrogénopolysiloxane B est introduit et la température du mélange est augmentée pour atteindre la température de réticulation. Le mélange est maintenu à la température de réticulation jusqu'à l'arrêt de l'agitation dû à une augmentation de la viscosité du mélange.
La présente invention a également pour objet un procédé de réticulation de compositions silicones, caractérisé en ce qu'il consiste à chauffer la composition X telle que définie précédemment à une température allant de 70 à 200°C, de préférence de 80 à 150°C, et plus préférentiellement de 80 à 130°C.
La composition X mise en œuvre pour obtenir le matériau Y selon l'invention présente l'avantage de ne pas être sensible à l'air et de pouvoir ainsi être mise en œuvre et notamment réticuler sous atmosphère non inerte, et en particulier à l'air. La présente invention est illustrée plus en détails dans les exemples de réalisation non limitatifs.
EXEMPLE 1 : catalyseurs à base de nickel pour la réticulation de
divinyltétraméthylsiloxane (dvtms) avec MD'50M
I) Constituants
1 ) Organopolysiloxane A : divinyltétraméthylsiloxane (dvtms) (1 ,073 mole de radicaux vinyle liés au silicium pour 100g d'huile)
2) Organohydrogénopolysiloxane B de formule : MD'soM (1 ,58 mole d'atomes d'hydrogène liés au silicium pour 100g d'huile), avec : M: (CH3)3SiOi/2; et D': (CH3)HSi02/2
3) Catalyseurs (A), (B), (C), (D), (E) et (F) :
Figure imgf000018_0001
(A) = [Ni(TMHD)2] quand R = t-Butyle
(B) = [Ni(acac)2] quand R = Méthyle
Figure imgf000018_0002
(C) = [Ni(COD)2]
Figure imgf000018_0003
(D) = Ni(l l) stéarate
Figure imgf000018_0004
(E) = [Ni(cetoester)2] quand Ri = Méthyle et R2 = Méthoxy
(F) = [Ni(Rhodiastab50)2] quand Ri = Phényle et R2 = Ci7H35 ou C15H31
Les catalyseurs (A), (B), (C) et (D) sont disponibles commercialement, par exemple sous références Strem pureté >95% pour le composé [Ni(acac)2], Strem pureté >98% pour composé [Ni(TMHD)2].
Le catalyseur (E) est obtenu par une synthèse bien connue de l'homme du métier :
Figure imgf000019_0001
Le composé cétoester avec Ri = Méthyle et R2 = Méthoxy (fournisseur : Sigma-AIdrich) est dans un premier temps déprotoné à l'aide d'un équivalent de Bu-Li (fournisseur : Sigma- AIdrich) à basse température (-78°C). Le sel obtenu est recristallisé dans le diéthyléther. Le ligand déprotoné obtenu (sel de lithium) est additionné sur un chlorure de nickel (NiCI2) en solution dans le THF à température ambiante (12 h). Après décantation, filtration et concentration, le complexe est recristallisé dans le THF.
Le complexe [Ni(cetoester)2] se présente sous la forme d'un solide vert pomme. Le catalyseur (F) est également obtenu par une synthèse bien connue de l'homme du métier :
Figure imgf000019_0002
Le composé dicétone avec Ri = Phényle et R2 = Ci7H35 ou Ci5H31 (fournisseur : Solvay) est dans un premier temps déprotoné à l'aide d'un équivalent de Bu-Li (Fournisseur : Sigma- AIdrich) à basse température (-78°C). Le sel obtenu est recristallisé dans le diéthyléther. Le ligand déprotoné obtenu (sel de lithium) est additionné sur un chlorure de nickel (NiCI2) en solution dans le THF à température ambiante (12 h). Le complexe obtenu est visqueux, de coloration verte. Une étape de recristallisation permet de conduire à l'obtention d'un solide. II) Formulations et résultats:
Pour chaque formulation testée, le catalyseur est pesé et introduit dans un Schlenk à température ambiante et sous atmosphère inerte lorsque le complexe est sensible à l'air (Cas notamment du Ni(0)), ou dans un flacon de verre lorsque les complexes sont stables à l'air.
On a ensuite introduit 1 ,87g de divinyltétraméthylsiloxane (dvtms) puis 1 ,27g d'huile MD 50M. Le flacon (ou Schlenk) est placé sous agitation dans un bain d'huile qui sera chauffé à la température de réaction souhaitée.
Le ratio R correspond au rapport molaire des atomes d'hydrogène liés au silicium (Si-H) dans l'organohydrogénopolysiloxane (MD'5oM) sur les radicaux alcényles (ici vinyles) liés au silicium (Si-CH=CH2) dans l'organopolysiloxane (dvtms).
Le début de réticulation est mesuré. Le début de réticulation est défini comme étant l'arrêt de l'agitation dû à une augmentation de la viscosité du milieu. Tableau 1 :
Figure imgf000020_0001
(1 ) Exprimé en % molaire de nickel par nombre de moles de radicaux vinyles liés au silicium (Si- CH=CH2) dans dvtms
La formulation 1 comparative comprenant un complexe de Ni(0) réticule au bout de 3h20 mais doit être maintenue sous atmosphère inerte. En effet, sous atmosphère non inerte, le complexe se dégrade très rapidement, avant même le début de la réaction, lors de la montée en température.
Les formulations 2 et 4 selon l'invention où le catalyseur est un complexe de Ni(l l) présentant deux ligands β-dicarbonylés réticulent en 1 à 2h.
La formulation 3 comparative, mettant en œuvre un complexe de Ni(ll) présentant des ligands stéarates, ne réticule qu'après 45h. On a par ailleurs testé les catalyseurs de nickel selon l'invention dans les différentes conditions opératoires suivantes :
Tableau 2 :
Figure imgf000021_0001
(1 ) Exprimé en % molaire de nickel par nombre de moles de radicaux vinyles liés au silicium (Si-
CH=CH2) dans dvtms
Les formulations 5 et 6 selon l'invention montrent qu'une réticulation est obtenue dès 90°C, même si cette réticulation est plus lente que celle observée pour les formulations 2 et 4 opérées à 1 10°C.
Les formulations 7, 8 et 10 selon l'invention montrent qu'une réticulation est obtenue dès 0,125% molaire de catalyseur, même si cette réticulation est plus lente que celle observée pour les formulations 2, 4 et 9 comprenant 0,25% molaire de catalyseur. EXEMPLE 2 : catalyseurs à base de nickel pour la réticulation de M D70 M avec MD'soM
1) Constituants
1 ) Organopolysiloxane A de formule MvlD7oMvl (0,038 mole de radicaux vinyle liés au silicium pour 100g d'huile), avec : Vi= Vinyle ; Mvi: (CHs^ViSiO^ et D: (CH3)2Si02/2
2) Organohydrogénopolysiloxane B de formule : MD'5oM (1 ,58mole d'atomes d'hydrogène liés au silicium pour 100g d'huile), avec : M: (CH3)3SiOi/2; et D': (CH3)HSi02/2 3) Catalyseurs (A), (B), (C), (D), (E) et (F) tels que définis dans l'exemple 1.
Il) Formulations et résultats:
Pour chaque formulation testée, le catalyseur est pesé et introduit dans un Schlenk à température ambiante et sous atmosphère inerte lorsque le complexe est sensible à l'air (cas du Ni(0)), ou dans un flacon de verre lorsque les complexes sont stables à l'air.
On a ensuite introduit l'huile MVID70MVI puis l'huile MD'50M.
Pour un ratio R correspondant au rapport molaire des atomes d'hydrogène liés au silicium (Si-H) dans l'organohydrogénopolysiloxane (MD'50M) sur les radicaux alcényles (ici vinyles) liés au silicium (Si-CH=CH2) dans l'organopolysiloxane (MVID70MVI) de 1 :1 , on introduit 4,39g d'huile MviD7oMvi puis 0,105g d'huile MD'50M.
On ajuste les teneurs en huile MvlD7oMvl et en huile MD'5oM selon le ratio R souhaité.
Le flacon (ou Schlenk) est placé sous agitation dans un bain d'huile qui sera chauffé à la température de réaction souhaitée.
Le ratio R correspond au rapport molaire des atomes d'hydrogène liés au silicium (Si-H) dans l'organohydrogénopolysiloxane (MD'50M) sur les radicaux alcényles (ici vinyles) liés au silicium (Si-CH=CH2) dans l'organopolysiloxane (MVI D70 MVI).
Le début de réticulation est mesuré. > Etude de la durée de réticulation
Tableau 3 :
Figure imgf000022_0001
(1 ) Exprimé en % molaire de nickel par nombre de moles de radicaux vinyles liés au silicium (Si-
CH-CH2) dans l'organopolysiloxane (MVID70MVI)
La formulation 11 comprenant un complexe de Ni(0) réticule au bout de 2h50 mais doit être maintenue sous atmosphère inerte. En effet, comme déjà indiqué dans l'exemple 1 , le complexe se dégrade très rapidement sous atmosphère non inerte, avant même le début de la réaction.
Les formulations 12 et 14 selon l'invention où le catalyseur est un complexe de Ni(ll) présentant deux ligands β-dicarbonylés réticulent au bout d'environ 1 h50 à 2h20.
La formulation 13 comparative, mettant en œuvre un complexe de Ni(ll) présentant des ligands stéarates, ne réticule toujours pas après 48h.
On a par ailleurs testé les catalyseurs (E) et (F) selon l'invention dans les différentes conditions opératoires suivantes :
Tableau 4 :
Figure imgf000023_0001
(1 ) Exprimé en % molaire de nickel par nombre de moles de radicaux vinyles liés au silicium (Si-
CH-CH2) dans l'organopolysiloxane (MVID Etude de l'effet de la température
Tableau 5 : Effet de l'augmentation de températu
Figure imgf000023_0002
Exprimé en % molaire de nickel par nombre de moles de radicaux vinyles liés au silicium (Si-CH-
CH2) dans l'organopolysiloxane (Mv'D7oMvl) Tableau 6 : Effet de l'augmentation de températu
Figure imgf000024_0001
Exprimé en % molaire de nickel par nombre de moles de radicaux vinyles liés au silicium (Si-CH-
CH2) dans l'organopolysiloxane (Mv'D7oMvl) Les formulations 18 à 23 selon l'invention montrent que l'augmentation de la température permet de diminuer significativement le temps de réticulation.
> Etude de l'effet de la concentration en catalyseur
Tableau 7 : effet de l'augmentation de la concentration en catalyseur (1 )
Figure imgf000024_0002
Exprimé en % molaire de nickel par nombre de moles de radicaux vinyles liés au silicium (Si-CH-
CH2) dans l'organopolysiloxane (Mv'D7oMvl)
Tableau 8 : effet de l'augmentation de la concentration en catalyseur (2)
Figure imgf000025_0001
Exprimé en % molaire de nickel par nombre de moles de radicaux vinyles liés au silicium (Si-CH-
CH2) dans l'organopolysiloxane (Mv'D7oMvl)
Les formulations 12, 19 et 24 à 29 selon l'invention montrent que l'augmentation de la concentration en catalyseur permet de diminuer significativement le temps de réticulation. La formulation 25 montre par ailleurs que la réticulation peut être observée même avec de très faibles teneurs en catalyseur, ce qui permet d'éviter ou de limiter la coloration du matériau réticulé.
> Etude de l'effet du ratio R
Tableau 9 : Effet du ratio R (1 )
Figure imgf000025_0002
(1 ) Exprimé en % molaire de nickel par nombre de moles de radicaux vinyles liés au silicium (Si-
CH=CH2) dans l'organopolysiloxane (Mv'D7oMvl) Tableau 10 : Effet du ratio R (2)
Figure imgf000026_0001
(1 ) Exprimé en % molaire de nickel par nombre de moles de radicaux vinyles liés au silicium (Si-
CH=CH2) dans l'organopolysiloxane (MVID70MVI)
Les réticulations sont opérées sous atmosphère non inerte. Les formulations 14 et 14A, et 30 et 31 montrent que l'augmentation du ratio R permet de diminuer le temps de réticulation.
> Durée de réticulation des catalyseurs (A), (B), (E) et (F)
Enfin, on a testé la réticulation pour les catalyseurs (A), (B), (E) et (F) avec un ratio R de 1 ,6 : 1 . Les résultats sont présentés dans le tableau 8.
Tableau 8 :
Figure imgf000026_0002
(1 ) Exprimé en % molaire de nickel par nombre de moles de radicaux vinyles liés au silicium (Si- CH=CH2) dans l'organopolysiloxane (MVID70MVI)
Les réticulations sont opérées sous atmosphère non inerte. Les formulations 32 à 35 montrent que la réticulation est observée pour différents catalyseurs à base de nickel au degré d'oxydation (I I). EXEMPLE 3 : catalyseur [Ni(TMHD)2] pour la réticulation de MVI D35o MVI avec MD'50M
I) Constituants
1 ) Organopolysiloxane A de formule MvlD35oMvl, avec : Vi= Vinyle ; MVI: (CH3)2ViSiOi/2 et D:
Figure imgf000027_0001
2) Organohydrogénopolysiloxane B de formule : MD'5oM (1 ,58 mole d'atomes d'hydrogène liés au silicium pour 100g d'huile), avec : M: (CH3)3SiOi/2; et D': (CH3)HSi02/2
3) Catalyseur (A) tel que défini dans l'exemple 1 . II) Formulations et résultats:
On a pesé 12,4 g de MviD35oMvi avec : Vi= Vinyle ; Mvi: (CH3)2ViSiOi/2 et D: (CH3)2Si02/2 et 0,6 g de MD'5oM (1 ,58mole d'atomes d'hydrogène liés au silicium pour 100g d'huile), avec : M: (CH3)3SiOi/2; et D': (CH3)HSi02/2
Le ratio R correspondant au rapport molaire des atomes d'hydrogène liés au silicium (Si-H) dans l'organohydrogénopolysiloxane (MD'50M) sur les radicaux alcényles (ici vinyles) liés au silicium (Si-CH=CH2) dans l'organopolysiloxane (MvlD35oMvl) de 10 :1 .
5 mol% de catalyseur [Ni(TMHD)2] (exprimé en % molaire de nickel par nombre de moles de radicaux vinyles liés au silicium (Si-CH=CH2) dans l'organopolysiloxane (Mv'D35oMvl)) est dissout à température ambiante dans l'huile MD'50M et le mélange est incorporé à température ambiante dans l'huile MvlD35oMvl. L'ensemble est placé dans un moule téfloné puis dans une étuve à 1 10°C.
Après deux heures, le matériau réticulé est démoulé et sa dureté (en Shore A) mesurée. Le matériau présente une dureté de 9 en degré Shore A.
Cet exemple permet de montrer que la mise en œuvre des catalyseurs revendiqués dans des réactions de réticulation de composé organopolysiloxane A avec un composé organohydrogénopolysiloxane B permet l'obtention de matériaux Y dont la dureté peut être mesurée.

Claims

REVENDICATIONS
1 - Matériau silicone réticulé Y obtenu par chauffage à une température allant de 70 à 200°C, de préférence de 80 à 150°C, et plus préférentiellement de 80 à 130°C, d'une composition X réticulable comprenant :
- au moins un composé organopolysiloxane A comportant, par molécule, au moins deux radicaux alcényles en C2-C6 liés à des atomes de silicium,
- au moins un composé organohydrogénopolysiloxane B comportant, par molécule, au moins deux atomes d'hydrogène liés à un atome de silicium identique ou différent,
- au moins un catalyseur C qui est un complexe répondant à la formule suivante:
[Ni (L1)2]
dans laquelle:
- le symbole Ni représente le nickel au degré d'oxydation II,
- les symboles L1, identiques ou différents, représentent un ligand qui est un anion β- dicarbonylato ou l'anion énolate d'un composé β-dicarbonylé,
- éventuellement au moins un promoteur d'adhérence D et
- éventuellement au moins une charge E.
2 - Matériau silicone réticulé Y selon la revendication 1 , caractérisé en ce que le catalyseur C est présent en une teneur allant de 0,001 à 10% molaire de nickel par nombre de moles de radicaux alcényles en C2-C6 liés à des atomes de silicium du composé organopolysiloxane A, de préférence de 0,01 à 7%, et plus préférentiellement de 0,1 à 5%.
3 - Matériau silicone réticulé Y selon l'une quelconque des revendications précédentes, caractérisé en ce que la composition X est exempte de catalyseur à base de platine, de palladium, de ruthénium ou de rhodium.
4 - Matériau silicone réticulé Y selon la revendication 1 , caractérisé en ce que le ligand L1 est un anion dérivé d'un composé de formule (1 ) :
R1COCHR2COR3 (1 )
dans laquelle :
- R1 et R3, identiques ou différents, représentent un radical hydrocarboné en CrC30 linéaire, cyclique ou ramifié, un aryle contenant entre 6 et 12 atomes de carbone, ou un radical -OR4 avec R4 qui représente un radical hydrocarboné en C1-C30 linéaire, cyclique ou ramifié, - R2 est un atome d'hydrogène ou un radical hydrocarboné, de préférence alkyle, comprenant de 1 à 4 atomes de carbone ; avec
- R1 et R2 peuvent être reliés pour former un cycle en C5-C6, et - R2 et R4 peuvent être reliés pour former un cycle en C5-C6.
5 - Matériau silicone réticulé Y selon la revendication précédente, dans lequel le composé de formule (1 ) est choisi parmi le groupe constitué par les β-dicétones: 2,4-pentanedione (acac); l'hexanedione-2,4; heptanedione-2,4; heptanedione-3,5; l'éthyl-3 pentanedione-2,4; méthyl-5 hexanedione-2,4; octanedione-2,4; octanedione-3,5; diméthyl-5,5 hexanedione-2,4; méthyl-6 heptanedione-2,4; diméthyl-2, 2 nonanedione-3,5; diméthyl-2,6 heptanedione-3,5;
2- acétylcyclohexanone (Cy-acac); 2,2,6,6-tétraméthyl-3,5-heptanedione (TMHD); 1 ,1 ,1 ,5,5,5-hexafluoro-2,4-pentanedione (F-acac)]; benzoylacétone; dibenzoyl-méthane; 3- méthyl-2,4-pentadione; 3-acétyl-pentane-2-one; 3-acétyl-2-hexanone; 3-acétyl-2-heptanone;
3- acétyl-5-méthyl-2-hexanone; benzoylstéaroylméthane; benzoylpalmitoylméthane; octanoylbenzoylméthane; 4-t-butyl-4'-méthoxy-dibenzoylméthane; 4,4'-diméthoxy- dibenzoylméthane et 4,4'-di-tert-butyl-dibenzoylméthane, et de préférence parmi les β- dicétones 2,4-pentanedione (acac) et 2,2,6,6-tétraméthyl-3,5-heptanedione (TMHD).
6 - Matériau silicone réticulé Y selon l'une quelconque des revendications précédente, dans lequel le catalyseur C est choisi parmi les complexes [Ni(acac)2], [Ni(TMHD)2], [Ni(cétoester)2] et [Ni(Rhodiastab 50)2], où « acac » signifie l'anion dérivé du composé 2,4- pentanedione, « THMD » signifie l'anion dérivé du composé 2,2,6,6-tétraméthyl-3,5- heptanedione, « cétoester » signifie l'anion dérivé d'un ester méthylique de l'acide acétylacétique et « Rhodiastab 50 » signifie un mélange d'anions dérivés du composé benzoylstéaroylméthane, et d'anions dérivés du composé benzoylpalmitoylméthane.
7 - Matériau silicone réticulé Y selon la revendication précédente, caractérisé en ce que l'organopolysiloxane A comprend :
(i) au moins deux motifs siloxyles (A.1), identiques ou différents, de formule suivante : d :i 4-Î3+D)
5 (A.1 )
- dans laquelle :
- a= 1 ou 2, b= 0, 1 ou 2 et a+b= 1 , 2 ou 3;
- les symboles W, identiques ou différents, représentent un groupement alcényle linéaire ou ramifié en C2-C6,
- et les symboles Z, identiques ou différents, représentent un groupe hydrocarboné monovalent ayant de 1 à 30 atomes de carbone, et de préférence choisi parmi le groupe constitué par les groupes alkyles ayant de 1 à 8 atomes de carbone et les groupes aryles contenant entre 6 et 12 atomes de carbone, et encore plus préférentiellement choisi parmi le groupe constitué par un radical méthyle, éthyle, propyle, 3,3,3-trifluoropropyle, xylyle, tolyle et phényle, (ii) et éventuellement au moins un motif siloxyle de formule suivante :
Figure imgf000030_0001
2 dans laquelle :
- a= 0, 1 , 2 ou 3,
les symboles Z1, identiques ou différents, représentent un groupe hydrocarboné monovalent ayant de 1 à 30 atomes de carbone et de préférence choisi parmi le groupe constitué par les groupes alkyles ayant de 1 à 8 atomes de carbone inclus et les groupes aryles contenant entre 6 et 12 atomes de carbone, et encore plus préférentiellement choisi parmi le groupe constitué par un radical méthyle, éthyle, propyle, 3,3,3-trifluoropropyle, xylyle, tolyle et phényle.
8 - Matériau silicone réticulé Y selon l'une quelconque des revendications précédentes, dans lequel le composé organohydrogénopolysiloxane B comprend au moins trois atomes d'hydrogène par molécule directement liés à un atome de silicium identique ou différent.
9 - Matériau silicone réticulé Y selon l'une quelconque des revendications précédentes, dans lequel le composé organohydrogénopolysiloxane B est un organopolysiloxane comprenant :
(i) au moins deux motifs siloxyles et, de préférence, au moins trois motifs siloxyles de formule suivante:
Figure imgf000030_0002
dans laquelle:
- d= 1 ou 2, e = 0, 1 ou 2 et d+e= 1 , 2 ou 3,
les symboles Z3, identiques ou différents, représentent un groupe hydrocarboné monovalent ayant de 1 à 30 atomes de carbone et de préférence choisi parmi le groupe constitué par les groupes alkyles ayant de 1 à 8 atomes de carbone et les groupes aryles contenant entre 6 et 12 atomes de carbone, et encore plus préférentiellement choisi parmi le groupe constitué par un radical méthyle, éthyle, propyle, 3,3,3-trifluoropropyle, xylyle, tolyle et phényle, et
(ii) éventuellement au moins un motif siloxyle de formule suivante : ZcSiO^ (B 2)
2
dans laquelle :
- c= 0, 1 , 2 ou 3,
- les symboles Z2, identiques ou différents, représentent un groupe hydrocarboné monovalent ayant de 1 à 30 atomes de carbone et de préférence choisi parmi le groupe constitué par les groupes alkyles ayant de 1 à 8 atomes de carbone et les groupes aryles contenant entre 6 et 12 atomes de carbone, et encore plus préférentiellement choisi parmi le groupe constitué par un radical méthyle, éthyle, propyle, 3,3,3-trifluoropropyle, xylyle, tolyle et phényle.
10 - Matériau silicone réticulé Y selon l'une quelconque des revendications précédentes, caractérisé en ce que la composition X comprend un second composé organopolysiloxane comportant, par molécule, au moins deux radicaux alcényles en C2-C6 liés à des atomes de silicium, différent du composé organopolysiloxane A, ledit second composé organopolysiloxane étant de préférence le divinyltétraméthylsiloxane.
11 - Matériau silicone réticulé Y selon l'une quelconque des revendications précédentes, caractérisé en ce que les proportions de l'organopolysiloxane A et de l'organohydrogénopolysiloxane B sont telles que le rapport molaire des atomes d'hydrogène liés au silicium dans l'organohydrogénopolysiloxane B sur les radicaux alcényles liés au silicium dans l'organopolysiloxane A est compris entre 0,2 et 20, de préférence entre 0,5 et 15, plus préférentiellement entre 0,5 et 10 et encore plus préférentiellement entre 0,5 et 5. 12 - Matériau silicone réticulé Y selon l'une quelconque des revendications précédentes, caractérisé en ce que la composition X comprend un ou plusieurs additifs fonctionnels choisi parmi:
les résines silicone,
les modulateurs d'adhérence,
- les additifs pour augmenter la consistance,
les pigments, et
les additifs de tenue thermique, de tenue aux huiles ou de tenue au feu, par exemple les oxydes métalliques. 13 - Utilisation du catalyseur C tel que décrit selon l'une quelconques des revendications 1 à 12 comme catalyseur de réticulation de compositions silicones.
14 - Composition X réticulable comprenant :
- au moins un composé organopolysiloxane A comportant, par molécule, au moins deux radicaux alcényles en C2-C6 liés à des atomes de silicium,
- au moins un composé organohydrogénopolysiloxane B comportant, par molécule, au moins deux atomes d'hydrogène liés à un atome de silicium identique ou différent,
- au moins un catalyseur C qui est un complexe répondant à la formule suivante:
[Ni (L1)2]
dans laquelle:
- le symbole Ni représente le nickel au degré d'oxydation II ;
- les symboles L1, identiques ou différents, représentent un ligand qui est un anion β- dicarbonylato ou l'anion énolate d'un composé β-dicarbonylé,
- éventuellement au moins un promoteur d'adhérence D et
- éventuellement au moins une charge E.
15 - Procédé de réticulation de compositions silicones, caractérisé en ce qu'il consiste à chauffer une composition X selon la revendication 14 à une température allant de 70 à 200°C, de préférence de 80 à 150°C, et plus préférentiellement de 80 à 130°C.
PCT/FR2015/053012 2014-11-07 2015-11-06 Nouveaux catalyseurs de réticulation de compositions silicones WO2016071651A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP15801905.9A EP3215555B1 (fr) 2014-11-07 2015-11-06 Nouveaux catalyseurs de réticulation de compositions silicones
JP2017542350A JP6533588B2 (ja) 2014-11-07 2015-11-06 シリコーン組成物を架橋させる新規の触媒
US15/524,683 US20170313823A1 (en) 2014-11-07 2015-11-06 Novel silicone composition crosslinking catalysts
CN201580060289.9A CN107075120B (zh) 2014-11-07 2015-11-06 硅氧烷组合物交联催化剂
KR1020177014990A KR102225423B1 (ko) 2014-11-07 2015-11-06 신규 실리콘 조성물 가교 촉매

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1460803 2014-11-07
FR1460803A FR3028258B1 (fr) 2014-11-07 2014-11-07 Nouveaux catalyseurs de reticulation de compositions silicones

Publications (1)

Publication Number Publication Date
WO2016071651A1 true WO2016071651A1 (fr) 2016-05-12

Family

ID=52627322

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/FR2015/053012 WO2016071651A1 (fr) 2014-11-07 2015-11-06 Nouveaux catalyseurs de réticulation de compositions silicones
PCT/FR2015/053017 WO2016071654A1 (fr) 2014-11-07 2015-11-06 Nouveaux catalyseurs de reticulation de compositions silicones
PCT/FR2015/053014 WO2016071652A1 (fr) 2014-11-07 2015-11-06 Nouveaux catalyseurs de réticulation de compositions silicones

Family Applications After (2)

Application Number Title Priority Date Filing Date
PCT/FR2015/053017 WO2016071654A1 (fr) 2014-11-07 2015-11-06 Nouveaux catalyseurs de reticulation de compositions silicones
PCT/FR2015/053014 WO2016071652A1 (fr) 2014-11-07 2015-11-06 Nouveaux catalyseurs de réticulation de compositions silicones

Country Status (7)

Country Link
US (3) US10308770B2 (fr)
EP (3) EP3215556B1 (fr)
JP (3) JP6533588B2 (fr)
KR (3) KR101877192B1 (fr)
CN (3) CN107207733B (fr)
FR (1) FR3028258B1 (fr)
WO (3) WO2016071651A1 (fr)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017220871A1 (fr) 2016-06-21 2017-12-28 Bluestar Silicones France Sas Procédé de lutte contre l'apparition de brouillard dans un dispositif à cylindres lors de l'enduction de supports flexibles avec une composition silicone liquide réticulable
WO2020127818A1 (fr) 2018-12-20 2020-06-25 Elkem Silicones France Sas Procédé de lutte contre l'apparition de brouillard dans un dispositif a cylindres lors de l'enduction de supports flexibles avec une composition silicone liquide réticulable
WO2021014058A1 (fr) 2019-07-25 2021-01-28 Elkem Silicones France Sas Composition silicone pour mousse elastomere
WO2021211752A1 (fr) 2020-04-15 2021-10-21 Elkem Silicones USA Corp. Utilisation de gommes d'organopolysiloxane contenant un groupe aryle en tant qu'additifs pour augmenter le comportement rhéologique
WO2021260279A1 (fr) 2020-06-25 2021-12-30 Elkem Silicones France Sas Compositions silicones thermoconductrices
WO2022129348A1 (fr) 2020-12-16 2022-06-23 Elkem Silicones France Sas Composition silicone biocide applicable sur des surfaces
WO2023111405A1 (fr) 2021-12-17 2023-06-22 Elkem Silicones France Sas Procédé de préparation de mousse silicone
WO2023214130A1 (fr) 2022-05-03 2023-11-09 Elkem Silicones France Sas Article apte au contact alimentaire et son procédé de fabrication
WO2024026456A1 (fr) 2022-07-28 2024-02-01 Elkem Silicones USA Corp. Compositions de mousse de silicone
EP4344873A1 (fr) 2022-09-27 2024-04-03 Elkem Silicones France SAS Post-traitement d'un article en silicone élastomère imprimé en 3d

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3061183B1 (fr) 2016-12-23 2020-09-11 Bluestar Silicones France Compose du cobalt utile comme catalyseur d'hydrosilylation, de silylation deshydrogenante et de reticulation de compositions silicones
MX2019011564A (es) * 2017-03-29 2020-02-13 Elkem Silicones France Sas Composición de silicón de entrelazamiento por poliadición que es útil para el sobremoldeo de piezas.
MX2022008171A (es) * 2019-12-30 2022-10-07 Elkem Silicones Shanghai Co Ltd Compuesto multicapa resistente a la abrasion.
WO2021262497A1 (fr) * 2020-06-24 2021-12-30 Dow Global Technologies Llc Compositions de caoutchouc de silicone

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1435882A (fr) 1964-01-22 1966-04-22 Argus Chem Stabilisation de résines de chlorure de polyvinyle à l'aide de dérivés d'un acide cétoacétique
FR2207924A1 (fr) * 1972-11-23 1974-06-21 Ceskoslovenska Akademie Ved
EP0604104A2 (fr) * 1992-12-14 1994-06-29 Shin-Etsu Chemical Co., Ltd. Compositions durcissable par hydrosilylation et procédés de reaction d'hydrosilylation
WO2001042258A1 (fr) 1999-12-07 2001-06-14 Rhodia Chimie Catalyseurs pour reactions d'hydrosilylation
WO2013052838A1 (fr) * 2011-10-06 2013-04-11 Dow Corning Corporation Procédé de formation d'un gel à stabilité thermique améliorée

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4803244A (en) * 1987-11-16 1989-02-07 Union Carbide Corporation Process for the preparation of thermoplastic elastomers
DE69511180T2 (de) * 1994-06-20 1999-12-23 Dow Corning Verfahren zur Steuerung der Freisetzung einer Wirksubstanz oder eines Arzneistoffs aus einer Silikongummi-Matrix
DE19521757A1 (de) * 1995-06-14 1996-12-19 Wacker Chemie Gmbh Porphyrinhaltige Silicone mit erhöhter Temperaturbeständigkeit
JPH0934131A (ja) * 1995-07-25 1997-02-07 Toray Ind Inc 水なし平版印刷版の修正方法
US6573328B2 (en) * 2001-01-03 2003-06-03 Loctite Corporation Low temperature, fast curing silicone compositions
JP2006131813A (ja) * 2004-11-09 2006-05-25 Shin Etsu Chem Co Ltd 自己接着性加熱硬化促進型液状シリコーンゴム組成物
JP2007106905A (ja) * 2005-10-14 2007-04-26 Shin Etsu Chem Co Ltd 加熱硬化型液状シリコーンゴム組成物
DE102006017588A1 (de) * 2006-04-13 2007-10-18 Wacker Chemie Ag Hydrosilylierungsverfahren in Gegenwart von Ruthenium-Katalysatoren
JP5288872B2 (ja) * 2008-04-28 2013-09-11 信越化学工業株式会社 加熱硬化型シリコーン組成物
JP2012526178A (ja) * 2009-05-06 2012-10-25 ダウ コーニング コーポレーション ビニル水素ポリシロキサン接着剤組成物
FR2946981A1 (fr) * 2009-06-19 2010-12-24 Bluestar Silicones France Composition silicone reticulable par deshydrogenocondensation en presence d'un catalyseur metallique
EP2443177B1 (fr) * 2009-06-19 2014-04-02 Bluestar Silicones France Composition silicone reticulable par deshydrogenocondensation en presence d'un catalyseur metallique
JP5522111B2 (ja) * 2011-04-08 2014-06-18 信越化学工業株式会社 シリコーン樹脂組成物及び当該組成物を使用した光半導体装置
US8273914B1 (en) * 2011-06-27 2012-09-25 Bausch & Lomb Incorporated Process for preparing vinyl chloroformate
JP5922463B2 (ja) * 2012-03-30 2016-05-24 東レ・ダウコーニング株式会社 硬化性シリコーン組成物、その硬化物、および光半導体装置
CN102977374B (zh) * 2012-12-07 2015-01-07 中国科学院化学研究所 环二硅氮烷-硅氧烷共聚物及其制备方法与应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1435882A (fr) 1964-01-22 1966-04-22 Argus Chem Stabilisation de résines de chlorure de polyvinyle à l'aide de dérivés d'un acide cétoacétique
FR2207924A1 (fr) * 1972-11-23 1974-06-21 Ceskoslovenska Akademie Ved
EP0604104A2 (fr) * 1992-12-14 1994-06-29 Shin-Etsu Chemical Co., Ltd. Compositions durcissable par hydrosilylation et procédés de reaction d'hydrosilylation
WO2001042258A1 (fr) 1999-12-07 2001-06-14 Rhodia Chimie Catalyseurs pour reactions d'hydrosilylation
WO2013052838A1 (fr) * 2011-10-06 2013-04-11 Dow Corning Corporation Procédé de formation d'un gel à stabilité thermique améliorée

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Catalyst of hydrosililation Part XX. Unusual reaction of vinyltriethoxysilane with triethoxysilane catalyzed by nickel acetylacetonate", JOURNAL OF ORGANOMETALLIC CHEMISTRY, 15 October 1991 (1991-10-15)
BOGDAN MARCINIEC ET AL.: "Catalyst of hydrosililation Part XXV. Effect of nickel (o) and nickel (11) complex catalysts on dehydrogenative silylation, hydrosilylation and dimerization of vinyltriethoxysilane", JOURNAL OF ORGANOMETALLIC CHEMISTRY, vol. 484, no. 1-2, 27 December 1994 (1994-12-27)
BOGDAN MARCINIEC ET AL: "Catalysis of hydrosilylation Part XXV. Effect of nickel(O) and nickel(II) complex catalysts on dehydrogenative silylation, hydrosilylation and dimerization of vinyltriethoxysilane", JOURNAL OF ORGANOMETALLIC CHEMISTRY, vol. 484, no. 1-2, 27 December 1994 (1994-12-27), pages 147 - 151, XP055180965, ISSN: 0022-328X, DOI: 10.1016/0022-328X(94)87198-1 *
BOGDAN MARCINIEC ET AL: "Catalysis of hydrosilylation XX *. Unusual reaction of vinyltriethoxysilane with triethoxysilane catalyzed by nickel acetylacetonate", JOURNAL OF ORGANOMETALLIC CHEMISTRY LAUSANNE JOM, 15 October 1991 (1991-10-15), pages 61 - 67, XP055180963, Retrieved from the Internet <URL:http://ac.els-cdn.com/0022328X9186346R/1-s2.0-0022328X9186346R-main.pdf?_tid=59dd15b4-d91c-11e4-9e20-00000aacb362&acdnat=1427967831_5ba20ce87c32113fd6220a6601545c16> [retrieved on 20150402] *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017220871A1 (fr) 2016-06-21 2017-12-28 Bluestar Silicones France Sas Procédé de lutte contre l'apparition de brouillard dans un dispositif à cylindres lors de l'enduction de supports flexibles avec une composition silicone liquide réticulable
US11078379B2 (en) 2016-06-21 2021-08-03 Elkem Silicones France Sas Method for the prevention of mist formation in a device comprising rolls during the coating of flexible media with a crosslinkable liquid silicone composition
WO2020127818A1 (fr) 2018-12-20 2020-06-25 Elkem Silicones France Sas Procédé de lutte contre l'apparition de brouillard dans un dispositif a cylindres lors de l'enduction de supports flexibles avec une composition silicone liquide réticulable
WO2021014058A1 (fr) 2019-07-25 2021-01-28 Elkem Silicones France Sas Composition silicone pour mousse elastomere
FR3099165A1 (fr) 2019-07-25 2021-01-29 Elkem Silicones France Sas Composition silicone pour mousse elastomere.
WO2021211752A1 (fr) 2020-04-15 2021-10-21 Elkem Silicones USA Corp. Utilisation de gommes d'organopolysiloxane contenant un groupe aryle en tant qu'additifs pour augmenter le comportement rhéologique
WO2021260279A1 (fr) 2020-06-25 2021-12-30 Elkem Silicones France Sas Compositions silicones thermoconductrices
WO2022129348A1 (fr) 2020-12-16 2022-06-23 Elkem Silicones France Sas Composition silicone biocide applicable sur des surfaces
WO2023111405A1 (fr) 2021-12-17 2023-06-22 Elkem Silicones France Sas Procédé de préparation de mousse silicone
WO2023214130A1 (fr) 2022-05-03 2023-11-09 Elkem Silicones France Sas Article apte au contact alimentaire et son procédé de fabrication
WO2024026456A1 (fr) 2022-07-28 2024-02-01 Elkem Silicones USA Corp. Compositions de mousse de silicone
WO2024026459A1 (fr) 2022-07-28 2024-02-01 Elkem Silicones USA Corp. Implants comprenant une mousse de silicone
EP4344873A1 (fr) 2022-09-27 2024-04-03 Elkem Silicones France SAS Post-traitement d'un article en silicone élastomère imprimé en 3d
WO2024068044A1 (fr) 2022-09-27 2024-04-04 Elkem Silicones France Sas Post-traitement d'un article en silicone élastomère imprimé en 3d

Also Published As

Publication number Publication date
CN107001634B (zh) 2020-04-24
CN107001634A (zh) 2017-08-01
FR3028258A1 (fr) 2016-05-13
JP2018500406A (ja) 2018-01-11
EP3215557A1 (fr) 2017-09-13
KR101944204B1 (ko) 2019-01-30
CN107075120B (zh) 2021-02-26
KR102225423B1 (ko) 2021-03-08
WO2016071654A1 (fr) 2016-05-12
US20180273690A1 (en) 2018-09-27
KR20170102222A (ko) 2017-09-08
WO2016071652A1 (fr) 2016-05-12
EP3215555B1 (fr) 2018-08-22
KR20170101906A (ko) 2017-09-06
US10196488B2 (en) 2019-02-05
US10308770B2 (en) 2019-06-04
CN107207733B (zh) 2020-07-14
KR101877192B1 (ko) 2018-07-10
EP3215555A1 (fr) 2017-09-13
JP6499757B2 (ja) 2019-04-10
US20180016398A1 (en) 2018-01-18
CN107207733A (zh) 2017-09-26
EP3215556A1 (fr) 2017-09-13
CN107075120A (zh) 2017-08-18
JP2017533335A (ja) 2017-11-09
JP6533588B2 (ja) 2019-06-19
EP3215556B1 (fr) 2018-10-17
FR3028258B1 (fr) 2017-01-13
KR20170118033A (ko) 2017-10-24
JP6400198B2 (ja) 2018-10-03
US20170313823A1 (en) 2017-11-02
JP2017538849A (ja) 2017-12-28
EP3215557B1 (fr) 2018-09-26

Similar Documents

Publication Publication Date Title
EP3215555B1 (fr) Nouveaux catalyseurs de réticulation de compositions silicones
EP3385304B1 (fr) Composition organopolysiloxane durcissable a temperature ambiante en un elastomere
EP1641871B1 (fr) Compositions polyorganosiloxanes (pos) monocomposantes reticulant par des reactions de polycondensation en elastomeres a temperature ambiante et en presence d&#39;eau, et elastomeres ainsi obtenus
EP2222756B1 (fr) Composition organopolysiloxanique vulcanisable a temperature ambiante en elastomere et nouveaux catalyseurs de polycondensation d&#39;organopolysiloxanes
EP2443180B1 (fr) Composition silicone reticulable par deshydrogenocondensation en presence d&#39;un catalyseur metallique
US4562096A (en) Heat-curable silicone compositions, use thereof and stabilizer therefor
EP2443177B1 (fr) Composition silicone reticulable par deshydrogenocondensation en presence d&#39;un catalyseur metallique
EP2089461A1 (fr) Composition silicone monocomposante sans etain reticulable en elastomere
EP2222771A1 (fr) Composition organopolysiloxanique vulcanisable a temperature ambiante en elastomere et nouveaux catalyseurs de polycondensation d&#39;organopolysiloxanes
EP1639030B1 (fr) Composition silicone reticulable par deshydrogenocondensation en presence d un catalyseur metallique
EP3559088A1 (fr) Compose du cobalt utile comme catalyseur d&#39;hydrosilylation, de silylation deshydrogenante et de reticulation de compositions silicones

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15801905

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015801905

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017542350

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15524683

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177014990

Country of ref document: KR

Kind code of ref document: A