WO2016070805A1 - 选择性催化氧化硫化氢催化剂、尾气焚烧催化剂及深度催化氧化硫化氢为硫磺的工艺 - Google Patents

选择性催化氧化硫化氢催化剂、尾气焚烧催化剂及深度催化氧化硫化氢为硫磺的工艺 Download PDF

Info

Publication number
WO2016070805A1
WO2016070805A1 PCT/CN2015/093756 CN2015093756W WO2016070805A1 WO 2016070805 A1 WO2016070805 A1 WO 2016070805A1 CN 2015093756 W CN2015093756 W CN 2015093756W WO 2016070805 A1 WO2016070805 A1 WO 2016070805A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
hydrogen sulfide
exhaust gas
sulfur
oxidation
Prior art date
Application number
PCT/CN2015/093756
Other languages
English (en)
French (fr)
Inventor
杨楠
杨彦伟
张鲜鲜
安睿
郝春辉
张英魁
孙抒
刘慧�
刘佳琳
解秀清
王爱梅
朱印
Original Assignee
杨楠
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杨楠 filed Critical 杨楠
Priority to EP15856649.7A priority Critical patent/EP3216519B1/en
Priority to US15/525,052 priority patent/US10166531B2/en
Publication of WO2016070805A1 publication Critical patent/WO2016070805A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/847Vanadium, niobium or tantalum or polonium
    • B01J23/8472Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8603Removing sulfur compounds
    • B01D53/8612Hydrogen sulfide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0446Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical
    • B01J8/0449Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical beds
    • B01J8/0457Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical beds the beds being placed in separate reactors
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/02Preparation of sulfur; Purification
    • C01B17/04Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides
    • C01B17/0404Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides by processes comprising a dry catalytic conversion of hydrogen sulfide-containing gases, e.g. the Claus process
    • C01B17/0456Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides by processes comprising a dry catalytic conversion of hydrogen sulfide-containing gases, e.g. the Claus process the hydrogen sulfide-containing gas being a Claus process tail gas
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/02Preparation of sulfur; Purification
    • C01B17/04Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides
    • C01B17/0404Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides by processes comprising a dry catalytic conversion of hydrogen sulfide-containing gases, e.g. the Claus process
    • C01B17/046Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides by processes comprising a dry catalytic conversion of hydrogen sulfide-containing gases, e.g. the Claus process without intermediate formation of sulfur dioxide
    • C01B17/0465Catalyst compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/002Removal of contaminants
    • C10K1/003Removal of contaminants of acid contaminants, e.g. acid gas removal
    • C10K1/004Sulfur containing contaminants, e.g. hydrogen sulfide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/34Purifying combustible gases containing carbon monoxide by catalytic conversion of impurities to more readily removable materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20707Titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20723Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20738Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/304Hydrogen sulfide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • B01J2208/00176Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles outside the reactor

Definitions

  • the invention relates to a process for selectively catalytically oxidizing hydrogen sulfide catalyst, exhaust gas incineration catalyst and deep catalytic oxidation of hydrogen sulfide to sulfur, belonging to the field of catalysts and applications.
  • acid gas sulfur recovery mainly adopts modified Claus process (H 2 S ⁇ 30%) and direct oxidation process ( ⁇ 20%) according to its H 2 S concentration.
  • the exhaust gas treatment system is nearly 80 million, and the gas consumption of the exhaust gas incinerator is 120 million/year, while the cost of sulfur is 1,500 yuan, the market price of sulfur is 600-1000 yuan; in low sulfur (H 2 S ⁇ 20%), Direct oxidation process, the specific process: Linde's CLINSULF-DO, acid gas and oxygen-containing gas mixed preheating - internal cooling tubular reactor (lower isothermal section of the upper adiabatic section) - condensation separation - exhaust gas incinerator, using France Prande's CRS-31 catalyst is characterized by short process, easy operation, long catalyst life, sulfur yield ⁇ 90%, poor selectivity, system exhaust gas containing both H 2 S, SO 2 , and has been discontinued; such as Selextox Method, using four-stage reactor, the specific process: oxygen-containing mixed acid gas preheating - catalytic oxidation section - two-stage Claus - catalytic incineration section - chimney venting, using selection catalyst, total sulfur
  • the cycle method is adopted, and the exhaust gas is recycled to the oxidation section;
  • the Super/Euro-claus of Holland Netherlands is the Claus exhaust gas treatment process matched with the conventional Claus sulfur recovery process.
  • the exhaust gas of the above oxidation process exceeded the standard (total sulfur ⁇ 960mg/m3, 1996 standard).
  • the inventors introduced a selective oxidation process and a catalyst for treating an acid gas containing a low concentration of hydrogen sulfide (H 2 S ⁇ 3.0%) in the invention patent 200810157750, in all the examples provided, H 2 S ⁇ 2 %, using heat insulation
  • Both the reactor and the outlet have H 2 S and SO 2 .
  • SO 2 100 to 200 mg/m 3 .
  • H 2 S far exceeds the environmental emission standard (H 2 S ⁇ 5mg/m 3 ), it must be treated again.
  • its activity and sulfur yield are not ideal. .
  • the common feature of the above catalytic oxidation catalyst is that the adiabatic reactor has a simple structure and high conversion rate, but the application range is narrow, and only low-concentration acid gas (non-circulation, H 2 S ⁇ 3%) can be processed, and the sulfur yield is ⁇ 90. %; Secondly, the catalyst selectivity is poor, the outlet tail gas contains both H 2 S and SO 2 , and the tail gas must be reprocessed.
  • exhaust gas treatment is divided into two methods: thermal incineration and catalytic incineration.
  • the thermal incineration method uses the gas in the tail gas of the incinerator to convert the H 2 S in the tail gas into a low toxicity at a high temperature of 700 to 800 ° C.
  • SO 2 has no sulfur recovery effect; while catalytic incineration (not yet applied in China) is to complete the conversion of H 2 S at 300-400 ° C by using an exhaust gas incineration catalyst.
  • the sulfur yield is ⁇ 30%, and a large amount of sulfur-containing gas is discharged into the atmosphere, which pollutes the environment and wastes sulfur resources.
  • the thermal incineration method adopted in China has a large gas consumption. According to the data of a certain 80,000 sulfur/year sulfur recovery unit using the reduction absorption method, only one gas consumption per year is as high as 2,200 tons, and the cost is over 100 million. At present, the requirements of the world for environmental protection are increasing.
  • the oxidation reaction of H 2 S is a strong exothermic reaction.
  • the reaction (1) under adiabatic conditions, the oxidation of 1% H 2 S to the elemental sulfur exotherm produces a temperature rise of about 60 ° C, and the low temperature The oxidation reaction is advantageous.
  • the reaction (2) begins to occur at 260 ° C in the absence of a catalyst. Since the reaction (2) is an unfavorable reaction, it should be avoided as much as possible. Therefore, how to promote the reaction (1), suppress the reaction (2), develop a catalyst with high activity and high selectivity, and a suitable process has become a research hotspot.
  • the object of the present invention is to provide a catalyst for selectively catalyzing the oxidation of hydrogen sulfide, which has the characteristics of high selectivity and high sulfur recovery rate; the invention also provides an exhaust gas incineration catalyst; the invention also provides a deep catalytic oxidation sulfide which is easy to operate and control. Hydrogen is a process of sulfur.
  • the selective catalytic oxidation hydrogen sulfide catalyst of the present invention is prepared from the following mass percentage components: 10 to 34% of ferric oxide, 60 to 84% of anatase titanium dioxide, and the balance is an auxiliary.
  • Another catalyst according to the present invention is an exhaust gas incineration catalyst prepared from the following mass percentage components: 48 to 78% of ferric oxide, 18 to 48% of anatase titanium dioxide, and the balance being an auxiliary.
  • the exhaust gas incineration catalyst may further contain vanadium pentoxide in a mass percentage of 0.4 to 0.8%.
  • the process for deep catalytic oxidation of hydrogen sulfide to sulfur according to the present invention is carried out by using a constant temperature reactor and an adiabatic reactor in series to charge a catalyst for selective catalytic oxidation of hydrogen sulfide and an exhaust gas incineration catalyst.
  • the O 2 /H 2 S molar ratio is from 1.0 to 3.0, preferably from 1.5 to 2.0.
  • the mixed gas at the inlet of the constant temperature reactor is mixed with air according to the molar ratio of O 2 /H 2 S used in the selective oxidation catalyst, and the sulfur yield of the constant temperature reaction is ⁇ 95%; in the adiabatic reactor After the inlet is added to the air according to the O 2 /H 2 S molar ratio used in the tail gas incineration catalyst, the sulfur yield of the adiabatic reaction section is ⁇ 90%, the conversion rate is ⁇ 99%; the system outlet tail gas SO 2 ⁇ 400mg/m 3 ,H 2 S ⁇ 5 mg / m 3 .
  • the catalyst of the present invention may be a conventional auxiliary agent such as water glass, aluminum sol, silica sol, dilute nitric acid, tianqing powder, carboxymethyl cellulose or the like.
  • the raw materials used are all commercially available products, the content of ferric oxide is 85%, the industrial grade metatitanic acid (calcium dioxide content 80%), and the 2% dilute nitric acid aqueous solution.
  • the selective catalytic oxidation hydrogen sulfide catalyst and the exhaust gas incineration catalyst of the present invention are prepared according to the following steps:
  • iron oxide such as exhaust gas incineration catalyst containing vanadium pentoxide, it is necessary to add ammonium metavanadate measured by vanadium pentoxide
  • dilute nitric acid aqueous solution volume is about 12-15% of the mass of iron oxide
  • mix 30 Minutes then add metatitanic acid
  • aluminum sol and silica sol volume is 10% of total mass of iron oxide and metatitanic acid
  • mixed solution and tianjing powder Tianjing powder quality according to total iron oxide and metatitanic acid 1% of the amount
  • kneading in a kneading machine for about 40 minutes, and then extruding a strip-shaped semi-finished product having a diameter of 4 mm by a screw extruder, and drying the semi-finished product at ambient temperature (25 ° C) for 24 hours, and feeding it to an oven. After drying at 150 ° C for 2 hours, the dried semi-finished product was finally placed in a muffle furnace and
  • the selective oxidation catalyst of the invention significantly improves the selectivity of the catalyst, thereby obtaining a higher sulfur yield, sulfur yield ⁇ 95%, greatly reducing the exhaust gas.
  • the total sulfur content in the medium reduces the load of deep purification of the exhaust gas; the tail gas incineration catalyst disposed after the oxidation catalyst is selected not only further recovers sulfur, the sulfur yield is ⁇ 90%, and the residual hydrogen sulfide ( ⁇ 10%) is completely converted into
  • the low-toxic sulfur dioxide eliminates the high-energy tail gas incinerator, which significantly reduces energy consumption and system operating costs, and is simple in process and easy to operate and control.
  • the invention greatly expands the H 2 S concentration range of the acid gas treatment by adopting two different catalyst combination processes in the constant temperature reactor and the adiabatic reactor, and realizes the self-heat balance in the system.
  • the operating cost is less than 10% of the Claus process, and the investment cost is only 20% of the equivalent processing capacity of the Claus plant. It can not only replace the traditional Claus sulfur recovery process, but also achieve one-step in place, while ensuring efficient recovery of sulfur while tail gas can be directly discharged without incinerator, in line with the national 2014 Air Pollutant Emission Standard, with huge Environmental and economic benefits.
  • Figure 1 is a process flow diagram of the present invention
  • thermostatic reactors of Examples 1-3 were respectively subjected to selective catalytic oxidation of hydrogen sulfide catalysts A, B, and C.
  • the activity evaluation conditions of the catalysts are shown in Table 1.
  • the activity evaluation data and the composition of the catalysts are shown in Table 2.
  • the adiabatic reactors of Examples 4-7 used exhaust gas incineration catalysts E, F, G, and H.
  • the activity evaluation conditions of the catalysts are shown in Table 3.
  • the activity evaluation data and the composition of the catalysts are shown in Table 4.
  • the process for deep catalytic oxidation of hydrogen sulfide to sulfur according to the present invention is carried out by using a constant temperature reactor and an adiabatic reactor in series to charge a catalyst for selective catalytic oxidation of hydrogen sulfide and an exhaust gas incineration catalyst.
  • the air is filtered by the air filter 1 and then operated by the air compressor 2 through the pressure regulator 3, the first water gas separator 4-1, and the air flow meter 5 to the gas mixing valve 11;
  • the acid gas of the gas storage tank 6 is sequentially operated to the gas mixing valve 11 via the second water gas separator 4-2, the acid gas filter 7, the inlet shutoff valve 8, the acid gas flow meter 9, and the acid gas heat exchanger 10.
  • the mixed gas is sequentially passed through the mixing heat exchanger 12, the constant temperature reactor 13, the first collector 15-1, the adiabatic reactor 14, the second collector 15-2, and the modified activated carbon filter tank 16. Discharge after treatment.
  • a heat transfer oil tank 17 and a heat transfer oil circulation pump 18 are disposed between the mixing heat exchanger 12 and the constant temperature reactor 13 to recycle heat. After the acid gas is mixed into the air, it enters the constant temperature reactor.
  • the constant temperature reactor adopts the selective catalytic oxidation of hydrogen sulfide catalyst A.
  • the process parameters are shown in Table 1. The space velocity is 1500/h, the reaction temperature is 200 °C, and the tail gas content and sulfur yield. See Table 2, the tail gas is mixed with air into the adiabatic reactor.
  • the adiabatic reactor uses tail gas incineration catalyst E, airspeed 1000/h, O 2 /H 2 S molar ratio is 1.5, reaction temperature is 250 ° C, adiabatic reaction sulfur The rate was 95.3%, the conversion rate was 99.5%; the outlet tail gas SO 2 was 0.1504 mg/m 3 , and the H 2 S was 0.
  • the process for deep catalytic oxidation of hydrogen sulfide to sulfur is carried out by using a constant temperature reactor and an adiabatic reactor in series to charge a catalyst for selective catalytic oxidation of hydrogen sulfide and an exhaust gas incineration catalyst.
  • the process was as in Example 8.
  • the acid gas is mixed into the air and then enters the constant temperature reactor.
  • the constant temperature reactor adopts selective catalytic oxidation of hydrogen sulfide catalyst B.
  • the process parameters are shown in Table 1.
  • the space velocity is 1500/h
  • the reaction temperature is 250 °C
  • the tail gas content and sulfur yield See Table 2, the exhaust gas is mixed with air into the adiabatic reactor.
  • the adiabatic reactor uses tail gas incineration catalyst F, the space velocity is 2000/h, the O 2 /H 2 S molar ratio is 2.0, the reaction temperature is 300 ° C, and the adiabatic reaction is sulfur.
  • the rate was 94.7%, the conversion rate was 99.8%; the outlet tail gas SO 2 was 0.1608 mg/m 3 , and the H 2 S was 0.0094 mg/m 3 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

本发明涉及一种选择性氧化硫化氢为元素硫的催化剂、尾气焚烧催化剂及深度催化氧化硫化氢为硫磺的工艺,属于催化剂及应用领域。所述选择性氧化硫化氢为元素硫的催化剂由如下质量百分数的原料制成:三氧化二铁10~34%,锐钛型二氧化钛60~84%,余量为助剂。本发明提供的另外一种尾气焚烧催化剂,由如下质量百分数的原料制成:三氧化二铁48~78%,锐钛型二氧化钛18~48%,余量为助剂。本发明的催化剂具有选择性高、硫磺回收率高的特点。本发明采用串联的恒温反应器和绝热反应器分别装填上述两种催化剂进行反应,从而达到回收硫磺、降低尾气总硫的目的,其硫收率、转化率高,出口尾气总硫低。

Description

选择性催化氧化硫化氢催化剂、尾气焚烧催化剂及深度催化氧化硫化氢为硫磺的工艺 技术领域
本发明涉及一种选择性催化氧化硫化氢催化剂、尾气焚烧催化剂及深度催化氧化硫化氢为硫磺的工艺,属于催化剂及应用领域。
背景技术
目前酸性气硫回收根据其含H2S浓度不同主要采用改良克劳斯工艺(H2S≥30%)和直接氧化工艺(≤20%)。
改良克劳斯工艺:采用酸性气燃烧炉(1200~1300℃)--二段或三段克劳斯催化转化(200~300℃)--克劳斯尾气处理系统(还原吸收法)--尾气焚烧炉(750~1300℃)。其优点是技术成熟,处理能力强,总硫收率95~97%,但是尾气处理系统的投资及运行成本都很高,据了解50000吨硫磺/年的还原吸收法硫磺回收装置全部投资1.4亿以上,尾气处理系统近8000万,而且尾气焚烧炉燃气消耗1.2亿/年以上,而吨硫磺成本为1500元、硫磺市场价600~1000元;在低硫(H2S≤20%),采用直接氧化工艺,具体流程:林德公司的CLINSULF-DO,酸性气与含氧气体混合预热--内冷管式反应器(上部绝热段下部等温段)-冷凝分离-尾气焚烧炉,采用法国普朗特公司的CRS-31催化剂,特点是流程短,操作易,催化剂寿命长,硫收率≤90%,选择性差,系统尾气同时含有H2S、SO2,现已停止转让;如Selextox法,采用四段反应器,具体流程:含氧混合酸性气预热--催化氧化段--两段克劳斯--催化焚烧段--烟囱放空,采用selection催化剂,总硫收率≤90%。当酸性气H2S≥5%时,采用循环法,尾气循环返回至氧化段;荷兰荷丰的Super/Euro-claus,是与常规克劳斯硫回收工艺配套的克劳斯尾气处理工艺,具体流程:二段克劳斯尾气--加氢转化---Super/Euroclaus--冷凝分离--尾气焚烧,催化氧化段硫收率≤85%。上述氧化工艺尾气均超标(总硫≥960mg/m3,1996标准)。
本发明人在发明专利200810157750介绍了处理含低浓度硫化氢(H2S≤3.0%)酸性气的选择氧化工艺及催化剂,在其提供的所有实施例中,H2S≤2%,采用绝热反应器,出口均有H2S和SO2。H2S:20~60mg/m3,SO2:100~200mg/m3。虽然总硫降低,但其中H2S远超环保排放标准(H2S≤5mg/m3),必须再处理,其次,在较高浓度硫化氢条件下,其活性和硫收率并不理想。上述催化氧化催化剂的共同特点在于,采用绝热反应器,结构简单,转化率高,但应用范围窄,只能处理低浓度酸性气(非循环、H2S≤3%),硫收率≯90%;其次,催化剂选择性差,出口尾气同时含有H2S和SO2,必须对尾气再处理。一般说来,尾气处理分热焚烧和催化焚烧两种方法,热焚烧法是利用焚烧炉尾气中配入燃气,在700~800℃高温条件下,将尾气中的H2S转化成低毒性的SO2,无硫回收效果;而催化焚烧(我国尚未有应用)是采 用尾气焚烧催化剂在300~400℃完成H2S的转化。其硫收率均≤30%,大量含硫气体排放到大气,既污染环境,又浪费了硫资源。我国目前均采用的热焚烧方法,燃气消耗大,据采用还原吸收法的某80000硫磺/年硫回收装置数据,每年仅燃气消耗一项高达2200吨,费用过亿。目前,世界各国对环保的要求日益提高,我国2014年出台的《大气污染物排放标准》,总硫(SO2)排放指标从原来的960mg/m3降至400mg/m3以下,因此,开发取代克劳斯工艺的新硫回收技术迫在眉睫,关键在于开发具有高效硫收率的选择氧化催化剂和同时具有高转化率和高硫收率的尾气焚烧催化剂,不仅节能减排,净化环境,而且最大幅度将污染物资源化,获得可观的利润、促进环保产业良性循环。
在H2S的氧化反应中,有两种不同的反应:
H2S+1/2O2---S+H2OΔH(273K)=-222KJ/mol  (1)
H2S+3/2O2---SO2+H2OΔH(273K)=-519KJ/mol  (2)
由此可见,H2S的氧化反应,均为强放热反应,反应(1)在绝热条件下,1%的H2S氧化为单质硫放热产生的温升约60℃,而且低温对氧化反应有利。在无催化剂条件下,260℃即开始出现反应(2)。由于反应(2)是不利反应,应当尽力避免,因此如何推动反应(1)、抑制反应(2),开发同时具有高活性、高选择性的催化剂、适合的工艺成为研究的热点。
发明内容
本发明的目的是提供一种选择性催化氧化硫化氢催化剂,具有选择性高、硫磺回收率高的特点;本发明同时提供尾气焚烧催化剂;本发明还提供一种易于操作控制的深度催化氧化硫化氢为硫磺的工艺。
本发明所述的选择性催化氧化硫化氢催化剂,由如下质量百分数的组分制成:三氧化二铁10~34%,锐钛型二氧化钛60~84%,余量为助剂。
本发明所述的另外一种催化剂是尾气焚烧催化剂,由如下质量百分数的组分制成:三氧化二铁48~78%,锐钛型二氧化钛18~48%,余量为助剂。
所述的尾气焚烧催化剂,进一步还可以含有质量百分数为0.4~0.8%的五氧化二钒。
本发明所述的深度催化氧化硫化氢为硫磺的工艺,采用串联的恒温反应器和绝热反应器分别装填选择性催化氧化硫化氢催化剂、尾气焚烧催化剂进行反应。
其中:
恒温反应器中,选择性氧化硫化氢为元素硫的催化剂的使用条件如下:
温度150~300℃,
空速300~2000/h,优选300~1000/h;
O2/H2S摩尔比为0.5~1.5,优选0.5~1.0;
绝热反应器中,尾气焚烧催化剂的使用条件如下:
温度180~350℃,
空速1000~2000/h;
O2/H2S摩尔比为1.0~3.0,优选1.5~2.0。
所述的工艺中,恒温反应器入口的混合气体经原料气按上述选择氧化催化剂使用的O2/H2S摩尔比配入空气后,恒温反应的硫收率≥95%;在绝热反应器入口按尾气焚烧催化剂使用的O2/H2S摩尔比补充配入空气后,绝热反应段的硫收率≥90%,转化率≥99%;系统出口尾气SO2≤400mg/m3,H2S≤5mg/m3
本发明所述的催化剂使用常规助剂即可,如水玻璃、铝溶胶、硅溶胶、稀硝酸、田青粉、羧甲基纤维素等。采用的原料均为市售产品,三氧化二铁含量85%,工业级偏钛酸(二氧化钛含量80%),2%的稀硝酸水溶液。
本发明所述的选择性催化氧化硫化氢催化剂、尾气焚烧催化剂均按照以下步骤制备:
取氧化铁(尾气焚烧催化剂如含有五氧化二钒,需同时加入按五氧化二钒计量的偏钒酸铵),加入稀硝酸水溶液(体积约为氧化铁质量的12~15%),混合30分钟,再加入偏钛酸,同时加入铝溶胶和硅溶胶(体积为氧化铁和偏钛酸总质量的10%),混合溶液及田菁粉(田菁粉质量按照氧化铁和偏钛酸总量的1%计),在混捏机进行混捏约40分钟,再用螺杆挤出机挤出直径为4mm的条形半成品,将上述半成品至于环境温度(25℃)自然干燥24小时,送入烘箱在150℃烘干2小时,最后将干燥好的半成品置于马弗炉,在450℃下焙烧2小时得到试验样品。
本发明的有益效果如下:
在硫化氢催化氧化为单质硫的过程中,采用本发明选择氧化催化剂,显著地提高了催化剂的选择性,因而获得了较高的硫收率,硫收率≥95%,极大地降低了尾气中总硫含量,减轻了尾气深度净化的负荷;在选择氧化催化剂之后配置的尾气焚烧催化剂,不仅进一步回收硫磺,硫收率≥90%,而且将残余的硫化氢(≤10%)完全转化为低毒的二氧化硫,取消了高能耗的尾气焚烧炉,明显降低了能耗和系统运行成本,工艺简单,易于操作控制。本发明通过在恒温反应器、绝热反应器分别采用两种不同的催化剂组合工艺,极大地扩展了处理酸性气的H2S浓度范围,系统内实现自热平衡。其运行成本不及克劳斯工艺的10%,投资成本也仅相当于同等处理能力克劳斯装置的20%。不仅能够取代传统的克劳斯硫回收工艺,而且实现一步到位,在保证高效回收硫磺同时、尾气在无焚烧炉情况下可直接排放,符合国家2014年《大气污染物排放标准》,具有巨大的环境效益和经济效益。
附图说明
图1是本发明的工艺流程图;
图中:1、空气过滤器;2、空压机;3、压力调节器;4-1、第一水气分离器;4-2、第二水气分离器;5、空气流量计;6、酸性气储罐;7、酸性气过滤器;8、入口截止阀;9、酸性气流量计;10、酸性气换热器;11、气体混合阀;12、混合换热器;13、恒温反应器;14、绝热反应器;15-1、第一收集器;15-2、第二收集器;16、改性活性炭过滤罐;17、导热油槽;18、导热油循环泵。
具体实施方式
以下结合实施例对本发明做进一步描述。
实施例中采用如下仪器和条件进行催化剂的活性评价:
CHT-02小型催化剂活性评价装置(北京威肯杜科技公司)
TY-2000微量硫分析仪(西南化工研究设计院自动化研究所)
3420A-气相色谱分析仪(北京麦哈克分析仪器公司)
注:因原料气酸性气H2S浓度与反应器尾气H2S浓度(≤100mg/m3)相差较大,需用不同方法分析,故原料气采用气相色谱的热导池检测器分析,尾气采用火焰光度检测器分析。气相色谱的另一气路用4A分子筛为担体分析酸性气中氧含量。
实施例1-3
实施例1-3中恒温反应器分别采用选择性催化氧化硫化氢催化剂A、B、C,催化剂的活性评价条件参数见表1,活性评价数据及催化剂的组成见表2。
对比例1
对比例1中恒温反应器采用工业现有的催化剂D,催化剂的活性评价条件参数见表1,活性评价数据及催化剂的组成见表2。
表1选择氧化催化剂活性评价条件
Figure PCTCN2015093756-appb-000001
表2选择氧化催化剂活性评价数据
Figure PCTCN2015093756-appb-000002
实施例4-7
实施例4-7中绝热反应器采用尾气焚烧催化剂E、F、G、H,催化剂的活性评价条件参数见表3,活性评价数据及催化剂的组成见表4。
表3尾气焚烧催化剂活性评价条件
Figure PCTCN2015093756-appb-000003
表4尾气焚烧催化剂活性评价数据
Figure PCTCN2015093756-appb-000004
实施例8
本发明所述的深度催化氧化硫化氢为硫磺的工艺,采用串联的恒温反应器和绝热反应器分别装填选择性催化氧化硫化氢催化剂、尾气焚烧催化剂进行反应。
如图1所示,空气经空气过滤器1过滤后由空压机2依次经压力调节器3、第一水气分离器4-1、空气流量计5运行至气体混合阀11处;来自酸性气储罐6的酸性气依次经第二水气分离器4-2、酸性气过滤器7、入口截止阀8、酸性气流量计9、酸性气换热器10运行至气体混合阀11处,与空气进行混合,混合后的气体再依次经混合换热器12、恒温反应器13、第一收集器15-1、绝热反应器14、第二收集器15-2、改性活性炭过滤罐16处理后排放。混合换热器12、恒温反应器13之间设置导热油槽17、导热油循环泵18对热量进行循环利用。酸性气配入空气后进入恒温反应器,恒温反应器采用选择性催化氧化硫化氢催化剂A,工艺参数见表1,空速1500/h,反应温度为200℃,其尾气成分含量和硫收率见表2,尾气配入空气进入绝热反应器,绝热反应器采用尾气焚烧催化剂E,空速1000/h,O2/H2S摩尔比为1.5,反应温度为250℃,绝热反应的硫收率95.3%,转化率为99.5%;出口尾气SO20.1504mg/m3,H2S为0。
实施例9
本发明所述的深度催化氧化硫化氢为硫磺的工艺,采用串联的恒温反应器和绝热反应器分别装填选择性催化氧化硫化氢催化剂、尾气焚烧催化剂进行反应。工艺过程如实施例8。酸性气配入空气后进入恒温反应器,恒温反应器采用选择性催化氧化硫化氢催化剂B,工艺参数见表1,空速1500/h,反应温度为250℃,其尾气成分含量和硫收率见表2,尾气配入空气进入绝热反应器,绝热反应器采用尾气焚烧催化剂F,空速2000/h,O2/H2S摩尔比为2.0,反应温度为300℃,绝热反应的硫收率94.7%,转化率为99.8%;出口尾气SO20.1608mg/m3,H2S为0.0094mg/m3

Claims (10)

  1. 一种选择性催化氧化硫化氢催化剂,其特征在于:由如下质量百分数的组分制成:三氧化二铁10~34%,锐钛型二氧化钛60~84%,余量为助剂。
  2. 一种尾气焚烧催化剂,其特征在于:由如下质量百分数的组分制成:三氧化二铁48~78%,锐钛型二氧化钛18~48%,余量为助剂。
  3. 根据权利要求2所述的尾气焚烧催化剂,其特征在于:含有质量百分数为0.4~0.8%的五氧化二钒。
  4. 一种深度催化氧化硫化氢为硫磺的工艺,其特征在于:采用串联的恒温反应器和绝热反应器分别装填选择性催化氧化硫化氢催化剂、尾气焚烧催化剂进行反应;其中:
    选择性催化氧化硫化氢催化剂由如下质量百分数的组分制成:三氧化二铁10~34%,锐钛型二氧化钛60~84%,余量为助剂;
    尾气焚烧催化剂由如下质量百分数的组分制成:三氧化二铁48~78%,锐钛型二氧化钛18~48%,余量为助剂。
  5. 根据权利要求4所述的深度催化氧化硫化氢为硫磺的工艺,其特征在于:尾气焚烧催化剂含有质量百分数为0.4~0.8%的五氧化二钒。
  6. 根据权利要求4所述的深度催化氧化硫化氢为硫磺的工艺,其特征在于:选择性氧化催化剂的使用条件如下:温度150~300℃,空速300~2000/h,O2/H2S摩尔比0.5~1.5。
  7. 根据权利要求6所述的深度催化氧化硫化氢为硫磺的工艺,其特征在于:空速300~1000/h,O2/H2S摩尔比0.5~1.0。
  8. 根据权利要求4所述的深度催化氧化硫化氢为硫磺的工艺,其特征在于:尾气焚烧催化剂的使用条件如下:温度180~350℃,空速1000~2000/h,O2/H2S摩尔比为1.0~3.0。
  9. 根据权利要求8所述的深度催化氧化硫化氢为硫磺的工艺,其特征在于:O2/H2S摩尔比为1.5~2.0。
  10. 根据权利要求4~9任一所述的深度催化氧化硫化氢为硫磺的工艺,其特征在于:
    恒温反应器入口的混合气体经原料气按选择氧化催化剂使用的O2/H2S摩尔比配入空气,恒温反应的硫收率≥95%;在绝热反应器入口按尾气焚烧催化剂使用的O2/H2S摩尔比补充配入空气,绝热反应的硫收率≥90%,转化率≥99%;出口尾气SO2≤400mg/m3,H2S≤5mg/m3
PCT/CN2015/093756 2014-11-05 2015-11-04 选择性催化氧化硫化氢催化剂、尾气焚烧催化剂及深度催化氧化硫化氢为硫磺的工艺 WO2016070805A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP15856649.7A EP3216519B1 (en) 2014-11-05 2015-11-04 Process for deeply catalytically oxidizing hydrogen sulfide to sulphur
US15/525,052 US10166531B2 (en) 2014-11-05 2015-11-04 Catalyst for selectively catalytically oxidizing hydrogen sulfide, catalyst for burning tail-gas, and process for deeply catalytically oxidizing hydrogen sulfide to element sulfur

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410617863.3A CN104475104B (zh) 2014-11-05 2014-11-05 选择性催化氧化硫化氢催化剂、尾气焚烧催化剂及深度催化氧化硫化氢为硫磺的工艺
CN2014106178633 2014-11-05

Publications (1)

Publication Number Publication Date
WO2016070805A1 true WO2016070805A1 (zh) 2016-05-12

Family

ID=52749785

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/093756 WO2016070805A1 (zh) 2014-11-05 2015-11-04 选择性催化氧化硫化氢催化剂、尾气焚烧催化剂及深度催化氧化硫化氢为硫磺的工艺

Country Status (4)

Country Link
US (1) US10166531B2 (zh)
EP (1) EP3216519B1 (zh)
CN (1) CN104475104B (zh)
WO (1) WO2016070805A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018056828A1 (en) * 2016-09-26 2018-03-29 Jacobs Nederland B.V. Improved catalyst for the selective oxidation of hydrogen sulfide
CN112694163A (zh) * 2019-10-23 2021-04-23 中国石油化工股份有限公司 催化湿式氧化丙烯腈装置急冷废水的方法
CN115184506A (zh) * 2022-07-25 2022-10-14 贵州威顿催化技术有限公司 一种二氧化硫氧化制酸用钒催化剂活性评价方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104475104B (zh) * 2014-11-05 2018-03-23 杨楠 选择性催化氧化硫化氢催化剂、尾气焚烧催化剂及深度催化氧化硫化氢为硫磺的工艺
CN105565279A (zh) * 2015-12-21 2016-05-11 中国科学院生态环境研究中心 一种用于Claus尾气净化硫磺回收的SCOT+联合催化氧化工艺
CN108310964A (zh) * 2017-01-16 2018-07-24 托普索公司 催化氧化贫h2s流的方法和系统
CN109382105B (zh) * 2017-08-02 2021-12-21 中国石油化工股份有限公司 硫化氢选择氧化催化剂及其制备方法
CN110605109B (zh) * 2018-06-14 2022-05-10 中国石油天然气股份有限公司 用于液硫脱气工艺的废气处理的催化剂、制备方法及应用工艺
CN109126847B (zh) * 2018-08-04 2021-10-15 山东迅达化工集团有限公司 氧化铁二氧化钛复合型硫磺回收催化剂的制备方法
CN109529809B (zh) * 2018-12-05 2020-10-20 西南化工研究设计院有限公司 一种用于含硫气体的选择性催化焚烧催化剂及其制备方法
CN111321015B (zh) * 2020-03-12 2021-06-04 中国科学院过程工程研究所 一种高炉煤气干法脱硫及硫资源化的装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5278123A (en) * 1990-02-19 1994-01-11 Rhone-Poulenc Chimie Monolithic catalysts for converting sulfur compounds into SO2
CN1868572A (zh) * 2005-05-25 2006-11-29 中国石油天然气股份有限公司 一种直接氧化脱硫催化剂及其制备方法
CN101043941A (zh) * 2004-10-19 2007-09-26 千年无机化学公司 氧化钛负载金属氧化物的高活性脱nox催化剂
CN102039137A (zh) * 2009-10-21 2011-05-04 中国石油化工股份有限公司 蜂窝状硫回收尾气催化焚烧催化剂及制备方法
CN104479763A (zh) * 2014-12-12 2015-04-01 杨楠 合成气干法催化氧化脱硫工艺
CN104475104A (zh) * 2014-11-05 2015-04-01 杨楠 选择性催化氧化硫化氢催化剂、尾气焚烧催化剂及深度催化氧化硫化氢为硫磺的工艺

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3128242A (en) * 1961-06-08 1964-04-07 Socony Mobil Oil Co Inc Isothermal-adiabatic catalytic hydrocarbon conversion
DE4302896A1 (de) * 1993-02-02 1994-08-04 Degussa Eisenoxidhaltiges Titandioxidpulver
CN1088607C (zh) * 1997-06-27 2002-08-07 中国石化齐鲁石油化工公司 选择性氧化硫化氢回收元素硫的催化剂及制备方法
CA2318734C (en) * 1998-01-26 2007-07-03 Tda Research, Inc. Catalysts for the selective oxidation of hydrogen sulfide to sulfur
CN1126595C (zh) * 2001-04-27 2003-11-05 中国石化集团齐鲁石油化工公司 一种双功能硫磺回收催化剂及其制备方法
WO2003082455A2 (en) * 2002-03-25 2003-10-09 Tda Research, Inc. Catalysts and process for oxidizing hydrogen sulfide to sulfur dioxide and sulfur
CN1210201C (zh) * 2002-12-31 2005-07-13 中国石油化工股份有限公司齐鲁分公司 一种多功能硫磺回收催化剂及其制备方法
RU2388524C2 (ru) * 2004-03-03 2010-05-10 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Способ высокоэффективного получения серы из потока кислого газа
DE102004054048A1 (de) * 2004-11-05 2006-05-11 Basf Ag Beschichtungsmassen
US7833935B2 (en) * 2006-11-08 2010-11-16 Rockwood Italia S.P.A. Iron oxide containing precipitated crystalline titanium dioxide and process for the manufacture thereof
CN101380582B (zh) * 2008-10-14 2011-11-23 淄博海川精细化工有限公司 选择性氧化硫化氢成为元素硫的催化剂及反应工艺
EP2522418A1 (de) * 2011-05-11 2012-11-14 Sachtleben Pigment GmbH Rohstoffe für vanadiumfreie oder vanadiumreduzierte DeNOx-Katalysatoren und Verfahren zu ihrer Herstellung
CN102849684A (zh) * 2012-09-24 2013-01-02 邵志辉 一种双级等温氧化制硫装置
CN103495333B (zh) * 2013-10-11 2016-02-17 陕西延长石油(集团)有限责任公司炼化公司 一种用于含二氧化硫、硫化氢及有机硫的克劳斯尾气处理工艺
WO2015082351A1 (en) * 2013-12-02 2015-06-11 Haldor Topsøe A/S Catalytic oxidation of a gas comprising hydrogen sulfide
US10376836B2 (en) * 2013-12-31 2019-08-13 Beijing Sj Environmental Protection And New Material Co., Ltd. Desulfurizer for conversion and absorption of high-concentration carbonyl sulfide and a desulfurizer for catalytic conversion and absorption of carbon disulfide and their preparation methods

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5278123A (en) * 1990-02-19 1994-01-11 Rhone-Poulenc Chimie Monolithic catalysts for converting sulfur compounds into SO2
CN101043941A (zh) * 2004-10-19 2007-09-26 千年无机化学公司 氧化钛负载金属氧化物的高活性脱nox催化剂
CN1868572A (zh) * 2005-05-25 2006-11-29 中国石油天然气股份有限公司 一种直接氧化脱硫催化剂及其制备方法
CN102039137A (zh) * 2009-10-21 2011-05-04 中国石油化工股份有限公司 蜂窝状硫回收尾气催化焚烧催化剂及制备方法
CN104475104A (zh) * 2014-11-05 2015-04-01 杨楠 选择性催化氧化硫化氢催化剂、尾气焚烧催化剂及深度催化氧化硫化氢为硫磺的工艺
CN104479763A (zh) * 2014-12-12 2015-04-01 杨楠 合成气干法催化氧化脱硫工艺

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018056828A1 (en) * 2016-09-26 2018-03-29 Jacobs Nederland B.V. Improved catalyst for the selective oxidation of hydrogen sulfide
NL2017533B1 (en) * 2016-09-26 2018-04-04 Jacobs Nederland Bv Improved catalyst for the selective oxidation of hydrogen sulfide
CN112694163A (zh) * 2019-10-23 2021-04-23 中国石油化工股份有限公司 催化湿式氧化丙烯腈装置急冷废水的方法
CN115184506A (zh) * 2022-07-25 2022-10-14 贵州威顿催化技术有限公司 一种二氧化硫氧化制酸用钒催化剂活性评价方法

Also Published As

Publication number Publication date
EP3216519A1 (en) 2017-09-13
CN104475104B (zh) 2018-03-23
EP3216519B1 (en) 2019-10-23
US10166531B2 (en) 2019-01-01
CN104475104A (zh) 2015-04-01
EP3216519A4 (en) 2018-08-08
US20170333880A1 (en) 2017-11-23

Similar Documents

Publication Publication Date Title
WO2016070805A1 (zh) 选择性催化氧化硫化氢催化剂、尾气焚烧催化剂及深度催化氧化硫化氢为硫磺的工艺
CN102616868B (zh) 利用含钌废催化剂制备固体亚硝酰硝酸钌的方法
CN103212288B (zh) 一种用于脱除丙烯腈废气的方法
CN107159202B (zh) 一种锰掺杂的钯负载型催化剂及其制备方法与应用
CN102580525A (zh) 一种使用活性炭负载氧化铜复合催化剂吸附含氮氧化物的方法
CN110075904B (zh) 一种用于选择性氧化硫化氢气体的碳氮催化剂及其制备方法
CN106732531A (zh) 一种scr脱硝催化剂及其制备方法和用途
CN104524968B (zh) 克劳斯尾气深度净化催化还原氧化工艺及其使用的催化剂
CN103910342B (zh) 一种氮气纯化装置
CN100493699C (zh) 中温羰基硫水解催化剂及其制备方法与用途
Wei-yi et al. Reaction mechanism of NOx removal from flue gas with pyrolusite slurry
Hung The effect of the calcination temperature on the activity of Cu–La–Ce composite metal catalysts for the catalytic wet oxidation of ammonia solution
CN105731386A (zh) 将冶炼烟气制备成硫磺的系统
Han et al. Effects of manganese content and calcination temperature on Mn/Zr-PILM catalyst for low-temperature selective catalytic reduction of NO x by NH 3 in metallurgical sintering flue gas
CN107442159B (zh) 选择性氧化硫化氢成元素硫的催化剂及其制备方法和应用
CN107497449B (zh) 催化氧化元素硫及硫化物的催化剂及其制备方法和应用
CN103230792A (zh) 生产硫酸用的铷钒催化剂及其制备方法
CN110787797A (zh) 一种含氯有机废气催化燃烧催化剂及其制备方法
CN110386692A (zh) 一种助剂废水处理工艺
CN106311257A (zh) 用于处理含硫化氢废气的催化焚烧催化剂及其制备方法
Boyano et al. Characterization and kinetic study of carbon-based briquettes for the reduction of NO
CN106732763A (zh) 一种Fe2O3/SAPO‑34低温SCR烟气脱硝催化剂及其制备方法与应用
US11390522B2 (en) Process for conversion of sulfur trioxide and hydrogen production
CN105126826A (zh) 一种fcc再生烟气脱硝用氧化锰/二氧化钛催化剂及其制备方法和用途
CN205472650U (zh) 将冶炼烟气制备成硫磺的系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15856649

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015856649

Country of ref document: EP