WO2016070758A1 - 生态化照明led器件的制备方法 - Google Patents

生态化照明led器件的制备方法 Download PDF

Info

Publication number
WO2016070758A1
WO2016070758A1 PCT/CN2015/093549 CN2015093549W WO2016070758A1 WO 2016070758 A1 WO2016070758 A1 WO 2016070758A1 CN 2015093549 W CN2015093549 W CN 2015093549W WO 2016070758 A1 WO2016070758 A1 WO 2016070758A1
Authority
WO
WIPO (PCT)
Prior art keywords
led device
film
patterned
preparing
eco
Prior art date
Application number
PCT/CN2015/093549
Other languages
English (en)
French (fr)
Inventor
常君斌
Original Assignee
常君斌
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 常君斌 filed Critical 常君斌
Priority to CN201580059247.3A priority Critical patent/CN107112383A/zh
Publication of WO2016070758A1 publication Critical patent/WO2016070758A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/10Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a light reflecting structure, e.g. semiconductor Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/22Roughened surfaces, e.g. at the interface between epitaxial layers

Definitions

  • the invention belongs to the field of manufacture of optoelectronic light-emitting devices.
  • nitride LED for a new generation of green solid-state lighting sources is becoming a new research hotspot.
  • the sapphire substrate has the advantages of stable chemical and physical properties, good light transmittance, and suitable cost, and is widely used in nitride epitaxial substrates.
  • a pattern substrate is usually used to form a pattern interface on a substrate.
  • defects of the epitaxial film are limited to a small area formed by the pattern, thereby obtaining a high quality epitaxial film.
  • the patterned sapphire substrate is generally prepared by dry etching, and the ICP dry etching technique is widely used because of its advantages of effectively controlling plasma density and bombardment energy.
  • dry etching inevitably causes certain pollution and damage to the surface of the sapphire, which is not conducive to the improvement of the quality of the nitride epitaxial crystal.
  • the refractive indices of sapphire and air differ greatly, the light emitted by the LED chip is limited to the inside of the chip and the sapphire, which limits the efficiency of light extraction. Therefore, the patterned sapphire substrate with high light extraction efficiency becomes the brightness of the LED chip. The key issue.
  • the present invention provides a method for preparing an ecological lighting LED device, comprising the following steps:
  • S1 providing a sapphire substrate, preparing a high reflectivity multilayer dielectric film on the sapphire substrate;
  • the nitride preferentially grows upward on the exposed sapphire substrate, and the growth condition is adjusted when the epitaxial layer completely covers the multilayer reflective layer structure and is in contact with the above-mentioned aluminum oxide. It tends to grow laterally; after the lateral growth completely covers the aluminum oxide, the growth conditions are transformed to grow upward.
  • the multi-step growth process defects caused by lattice mismatch are confined around the pattern, resulting in a high quality epitaxial material.
  • the material of the multilayer dielectric film in the step S1 may be a combination of silicon dioxide, titanium oxide, or aluminum oxide, etc.
  • the multilayer dielectric reflective layer may be two or more layers, and the number of layers The higher the reflectance, the greater the thickness is from 100 nm to 1.5 ⁇ m.
  • the aluminum film in the step S2 is prepared by evaporation or sputtering, and the aluminum film has a thickness of 5 to 400 nm.
  • the mask in the step S3 includes a photoresist or other material for forming a patterned mask, the purpose of which is to form a patterned mask; the etching method may be ICP or other dry etching Eclipse technology.
  • step S5 first heating at 400-600 ° C for 20 minutes to 5 hours, the aluminum film is transformed into a polyaluminum oxide polycrystalline structure; then heating at 700-900 ° C for 1 to 5 In an hour, heating at 1000-1250 ° C for 1 to 5 hours, the polyaluminum oxide polycrystalline structure is converted into a dense single crystal sapphire structure.
  • the tapered anti-reflection micro/nano structure is prepared by performing a plasma etching process in a reaction chamber having a mixed reaction gas, and ecologicalizing the etching process by controlling etching parameters.
  • a nanoscale island-like polymer film formed on the surface of the illumination LED device is used as a mask for the etching process to generate a randomly distributed refractive index-grading tapered anti-reflection micro-nano structure.
  • the gas component of the plasma includes CHF3, SF6, and He.
  • the manufacturing method of the invention forms the sapphire structure by the method of segmental oxidation by first forming the patterned metal aluminum, thereby reducing the manufacturing process difficulty and the manufacturing cost.
  • the patterned structure in the method comprises a multilayer dielectric reflective layer, and the reflectivity thereof can be improved by increasing the number of reflective layer layers. For example, 28 layers of silicon dioxide and titanium oxide have a blue light reflectance of more than 95%.
  • the patterned substrate thus produced can greatly improve the light extraction efficiency, thereby improving the luminous efficiency of the LED device, and has great significance.
  • the method for preparing an ecological illumination LED device comprises the following steps:
  • S1 providing a sapphire substrate, preparing a high reflectivity multilayer dielectric film on the sapphire substrate;
  • the material of the multilayer dielectric film in step S1 may be a combination of silicon dioxide, titanium oxide, or aluminum oxide, etc., and the multilayer dielectric reflective layer may be two or more layers, and the more the number of layers, the higher the reflectance. Its thickness is from 100 nm to 1.5 ⁇ m.
  • the aluminum film in the step S2 is prepared by evaporation or sputtering, and the thickness of the aluminum film is 5 to 400 nm.
  • the mask in step S3 includes a photoresist or other material for forming a patterned mask for the purpose of forming a patterned mask; the etching method may be ICP or other dry etching techniques.
  • step S5 first heating at 400-600 ° C for 20 minutes to 5 hours, the aluminum film is converted into a polyaluminum oxide polycrystalline structure; then heated at 700-900 ° C for 1 to 5 hours, at 1000-1250 ° C Heating for 1 to 5 hours causes the aluminum oxide polycrystalline structure to be converted into a dense single crystal sapphire structure.
  • the surface of the ecological illumination LED device is formed with a tapered refraction micro-nano structure having a graded refractive index, and the tapered anti-reflection micro-nano structure is subjected to plasma etching in a reaction chamber having a mixed reaction gas.
  • the process is prepared by controlling the etching parameters to make the nano-sized island-like polymer film formed on the surface of the ecological illumination LED device during the etching process as a mask of the etching process to generate a randomly distributed refractive index gradient cone.
  • the shape-reducing micro-nano structure, the gas components of the plasma include CHF3, SF6 and He, and the combination of the three gas components can produce a nano-sized island-like polymer film, and the nano-sized island-like polymer film can be engraved An intermediate product is formed as a self-mask during the etching process.
  • the nitride preferentially grows upward on the exposed sapphire substrate, and the growth condition is adjusted when the epitaxial layer completely covers the multilayer reflective layer structure and is in contact with the above-mentioned aluminum oxide. It tends to grow laterally; after the lateral growth completely covers the aluminum oxide, the growth conditions are further transformed to grow upward.
  • the manufacturing method of the invention forms the sapphire structure by the method of segmental oxidation by first forming the patterned metal aluminum, thereby reducing the manufacturing process difficulty and the manufacturing cost.
  • the patterned structure in the method comprises a multilayer dielectric reflective layer, and the reflectivity thereof can be improved by increasing the number of reflective layer layers. For example, 28 layers of silicon dioxide and titanium oxide have a blue light reflectance of more than 95%.
  • the patterned substrate thus produced can greatly improve the light extraction efficiency, thereby improving the luminous efficiency of the LED device, and has great significance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

提供了一种生态化照明LED器件的制备方法,包括如下步骤:S1:提供蓝宝石衬底,在蓝宝石衬底上制备高反射率的多层介质薄膜;S2:在多层介质薄膜上沉积铝膜;S3:通过掩膜和刻蚀获得图形化结构;S4:去除掩膜;S5:低温热处理,使图形化结构中的铝膜充分氧化为图形化多晶三氧化二铝膜;高温热处理,使图形化多晶三氧化二铝膜转化为单晶三氧化二铝膜。与现有图形化技术相比,以上制作方法通过先制作图形化金属铝,再通过分段氧化的方法形成蓝宝石结构,降低了制作工艺难度和制作成本。以上方法中的图形化结构包括多层介质反射层,以此制作的图形化衬底能提高光的取出效率,从而提高LED器件发光效率。

Description

生态化照明LED器件的制备方法
技术领域
本发明属于光电子发光器件制造领域。
背景技术
随着以GaN(氮化镓)材料P型掺杂的突破为起点的第三代半导体材料的兴起,伴随着以Ⅲ族氮化物为基础的高亮度发光二极管(Light Emitting Diodes,LED)的技术突破,用于新一代绿色环保固体照明光源的氮化物LED正在成为新的研究热点。蓝宝石衬底具有化学和物理性质稳定、透光性好、成本合适等优点,广泛被用于氮化物外延衬底。但是由于氮化物外延材料与蓝宝石衬底存在晶格失配,造成外延层较高的位错密度,影响了LED芯片的内量子效率。为了解决这个问题,通常采用图形衬底的方法,在衬底上制作图形的界面,通过控制侧向外延,外延薄膜的缺陷局限于图形所形成的细小面积之内,从而得到高质量的外延薄膜。
目前,图形化蓝宝石衬底一般采用干法刻蚀制备,其中ICP干法刻蚀技术具有能有效控制等离子体密度和轰击能量的优点而被大量使用。但是干法刻蚀不可避免对蓝宝石表面造成一定的污染和损伤,不利于氮化物外延晶体质量的提高。此外由于蓝宝石和空气的折射率相差很大,导致LED芯片发出的光被限制在芯片和蓝宝石内部,限制了光的取出效率,因此具有高出光效率的图形化蓝宝石衬底成为LED芯片亮度提升的关键问题。
发明内容
为了克服现有技术存在的不足,本发明的目的在于提供一种可以提高出光效率与外延晶体质量的制造方法。
为达到以上目的,本发明提供了一种生态化照明LED器件的制备方法,包括如下步骤:
S1:提供蓝宝石衬底,在蓝宝石衬底上制备高反射率的多层介质薄膜;
S2:在所述的多层介质薄膜上沉积铝膜;
S3:通过掩膜和刻蚀获得图形化结构;
S4:去除掩膜;
S5:低温热处理,使图形化结构中的铝膜充分氧化为图形化多晶三氧化二铝膜;高温热处理,使图形化多晶三氧化二铝膜转化为单晶三氧化二铝膜。
本方案的图形化衬底在外延生长时,氮化物优先在暴露的蓝宝石基板上向上生长,待生长外延层完全覆盖多层反射层结构并与上面的三氧化二铝接触时,调节生长条件使其倾向于侧向生长;侧向生长完全覆盖三氧化二铝后,再转化生长条件使其向上生长。通过此种多步生长工艺,将晶格失配造成的缺陷局限在图形周围,从而得到高质量的外延材料。
作为进一步的改进,所述的步骤S1中的多层介质薄膜的材料可以是二氧化硅、氧化钛、或氧化铝等的组合,多层介质反射层可以是两层甚至更多层,层数越多反射率越高,其厚度为100nm-1.5μm。
作为进一步的改进,所述的步骤S2中的铝膜的制备方法为蒸镀或溅射,铝膜的厚度为5-400nm。
作为进一步的改进,所述的步骤S3中的掩膜包括用于形成图形化掩膜的光刻胶或者其他材料,其目的是形成图形化掩膜;刻蚀方法可以是ICP或其他干法刻蚀技术。
作为进一步的改进,所述的步骤S5中,首先在400-600℃下加热20分钟到5小时,使铝膜转变成三氧化二铝多晶结构;然后在700-900℃下加热1到5小时,在1000-1250℃下加热1到5小时,使三氧化二铝多晶结构为转化为致密的单晶蓝宝石结构。
作为本发明的进一步改进,所述的锥形减反射微纳结构通过在具有混合反应气体的反应室中实施等离子体刻蚀制程制备而成,通过控制刻蚀参数使刻蚀过程中在生态化照明LED器件的表面生成的纳米级岛状聚合物薄膜作为刻蚀过程的掩膜,以生成随机分布的折射率渐变的锥形减反射微纳结构。
作为本发明的进一步改进,所述的等离子体的气体组分包括CHF3、SF6以及He。
与现有图形化技术相比,本发明制作方法通过先制作图形化金属铝,在通过分段氧化的方法形成蓝宝石结构,降低了制作工艺难度和制作成本。本方法中的图形化结构包括多层介质反射层,其反射率可通过增加反射层层数来提高,以28层二氧化硅和氧化钛为例,其蓝光段反射率高达95%以上。以此制作的图形化衬底能大大提高光的取出效率,从而提高LED器件发光效率,具有重大的意义。
具体实施方式
下面对本发明的较佳实施例进行详细阐述,以使本发明的优点和特征能更易于被本领域技术人员理解,从而对本发明的保护范围做出更为清楚明确的界定。
本发明所提供的生态化照明LED器件的制备方法,包括如下步骤:
S1:提供蓝宝石衬底,在蓝宝石衬底上制备高反射率的多层介质薄膜;
S2:在多层介质薄膜上沉积铝膜;
S3:通过掩膜和刻蚀获得图形化结构;
S4:去除掩膜;
S5:低温热处理,使图形化结构中的铝膜充分氧化为图形化多晶三氧化二铝膜;高温热处理,使图形化多晶三氧化二铝膜转化为单晶三氧化二铝膜。
在步骤S1中的多层介质薄膜的材料可以是二氧化硅、氧化钛、或氧化铝等的组合,多层介质反射层可以是两层甚至更多层,层数越多反射率越高,其厚度为100nm-1.5μm。
步骤S2中的铝膜的制备方法为蒸镀或溅射,铝膜的厚度为5-400nm。
步骤S3中的掩膜包括用于形成图形化掩膜的光刻胶或者其他材料,其目的是形成图形化掩膜;刻蚀方法可以是ICP或其他干法刻蚀技术。
步骤S5中,首先在400-600℃下加热20分钟到5小时,使铝膜转变成三氧化二铝多晶结构;然后在700-900℃下加热1到5小时,在1000-1250℃下加热1到5小时,使三氧化二铝多晶结构为转化为致密的单晶蓝宝石结构。
作为本发明的进一步改进,生态化照明LED器件的表面形成有折射率渐变的锥形减反射微纳结构,锥形减反射微纳结构通过在具有混合反应气体的反应室中实施等离子体刻蚀制程制备而成,通过控制刻蚀参数使刻蚀过程中在生态化照明LED器件的表面生成的纳米级岛状聚合物薄膜作为刻蚀过程的掩膜,以生成随机分布的折射率渐变的锥形减反射微纳结构,等离子体的气体组分包括CHF3、SF6以及He,这三种气体组分的结合可以产生纳米级岛状聚合物薄膜,而该纳米级岛状聚合物薄膜可以在刻蚀过程中形成一种作为自掩模的中间产物。
由于本方案的图形化衬底在外延生长时,氮化物优先在暴露的蓝宝石基板上向上生长,待生长外延层完全覆盖多层反射层结构并与上面的三氧化二铝接触时,调节生长条件使其倾向于侧向生长;侧向生长完全覆盖三氧化二铝后,再转化生长条件使其向上生长。通过此种多步生长工艺,将晶格失配造成的缺陷局限在图形周围,从而得到高质量的外延材料。因而与现有图形化技术相比,本发明制作方法通过先制作图形化金属铝,在通过分段氧化的方法形成蓝宝石结构,降低了制作工艺难度和制作成本。本方法中的图形化结构包括多层介质反射层,其反射率可通过增加反射层层数来提高,以28层二氧化硅和氧化钛为例,其蓝光段反射率高达95%以上。以此制作的图形化衬底能大大提高光的取出效率,从而提高LED器件发光效率,具有重大的意义。
以上实施方式只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人了解本发明的内容并加以实施,并不能以此限制本发明的保护范围,凡根据本发明精神实质所做的等效变化或修饰均涵盖在本发明的保护范围内。

Claims (10)

1、 一种生态化照明LED器件的制备方法,其特征在于:包括如下步骤:
S1:提供蓝宝石衬底,在蓝宝石衬底上制备高反射率的多层介质薄膜;
S2:在所述的多层介质薄膜上沉积铝膜;
S3:通过掩膜和刻蚀获得图形化结构;
S4:去除掩膜;
S5:低温热处理,使图形化结构中的铝膜充分氧化为图形化多晶三氧化二铝膜;高温热处理,使图形化多晶三氧化二铝膜转化为单晶三氧化二铝膜。
2、 根据权利要求1所述的生态化照明LED器件的制备方法,其特征在于:所述的步骤S1中的多层介质薄膜的材料包括二氧化硅、氧化钛以及氧化铝中的一种或多种。
3、 根据权利要求1所述的生态化照明LED器件的制备方法,其特征在于:所述的步骤S1中的多层介质薄膜的厚度为100nm~1.5μm。
4、 根据权利要求1所述的生态化照明LED器件的制备方法,其特征在于:所述的步骤S2中的铝膜的制备方法为蒸镀或溅射,铝膜的厚度为5~400nm。
5、 根据权利要求1所述的生态化照明LED器件的制备方法,其特征在于:所述的步骤S3中的掩膜包括用于形成图形化掩膜的光刻胶。
6、 根据权利要求1所述的生态化照明LED器件的制备方法,其特征在于:所述的步骤S3中的刻蚀的方法包括ICP或干法刻蚀技术。
7、 根据权利要求1所述的生态化照明LED器件的制备方法,其特征在于:所述的步骤S5中,首先在400-600℃下加热20分钟到5小时,使铝膜转变成三氧化二铝多晶结构;然后在700-900℃下加热1到5小时,在1000-1250℃下加热1到5小时,使三氧化二铝多晶结构为转化为致密的单晶蓝宝石结构。
8、 根据权利要求1所述的生态化照明LED器件的制备方法,其特征在于:生态化照明LED器件的表面形成有折射率渐变的锥形减反射微纳结构。
9、 根据权利要求8所述的生态化照明LED器件的制备方法,其特征在于:所述的锥形减反射微纳结构通过在具有混合反应气体的反应室中实施等离子体刻蚀制程制备而成,通过控制刻蚀参数使刻蚀过程中在生态化照明LED器件的表面生成的纳米级岛状聚合物薄膜作为刻蚀过程的掩膜,以生成随机分布的折射率渐变的锥形减反射微纳结构。
10、 根据权利要求9所述的生态化照明LED器件的制备方法,其特征在于:所述的等离子体的气体组分包括CHF3、SF6以及He。
PCT/CN2015/093549 2014-11-06 2015-10-31 生态化照明led器件的制备方法 WO2016070758A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201580059247.3A CN107112383A (zh) 2014-11-06 2015-10-31 生态化照明led器件的制备方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410618591.9A CN104300046A (zh) 2014-11-06 2014-11-06 蓝宝石图形化衬底的制备方法
CN201410618591.9 2014-11-06

Publications (1)

Publication Number Publication Date
WO2016070758A1 true WO2016070758A1 (zh) 2016-05-12

Family

ID=52319704

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/093549 WO2016070758A1 (zh) 2014-11-06 2015-10-31 生态化照明led器件的制备方法

Country Status (2)

Country Link
CN (2) CN104300046A (zh)
WO (1) WO2016070758A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104300046A (zh) * 2014-11-06 2015-01-21 苏州瀚墨材料技术有限公司 蓝宝石图形化衬底的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102315342A (zh) * 2011-09-02 2012-01-11 华灿光电股份有限公司 一种新型GaN基LED外延片及其制备方法
US20120043522A1 (en) * 2010-08-18 2012-02-23 Liang-Jyi Yan High-reflectivity and low-defect density LED structure
CN102403420A (zh) * 2011-11-11 2012-04-04 哈尔滨工业大学深圳研究生院 一种图形化蓝宝石衬底的制备方法
CN103311386A (zh) * 2013-05-29 2013-09-18 哈尔滨工业大学深圳研究生院 一种图形化蓝宝石衬底的制备方法
CN104300046A (zh) * 2014-11-06 2015-01-21 苏州瀚墨材料技术有限公司 蓝宝石图形化衬底的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120043522A1 (en) * 2010-08-18 2012-02-23 Liang-Jyi Yan High-reflectivity and low-defect density LED structure
CN102315342A (zh) * 2011-09-02 2012-01-11 华灿光电股份有限公司 一种新型GaN基LED外延片及其制备方法
CN102403420A (zh) * 2011-11-11 2012-04-04 哈尔滨工业大学深圳研究生院 一种图形化蓝宝石衬底的制备方法
CN103311386A (zh) * 2013-05-29 2013-09-18 哈尔滨工业大学深圳研究生院 一种图形化蓝宝石衬底的制备方法
CN104300046A (zh) * 2014-11-06 2015-01-21 苏州瀚墨材料技术有限公司 蓝宝石图形化衬底的制备方法

Also Published As

Publication number Publication date
CN104300046A (zh) 2015-01-21
CN107112383A (zh) 2017-08-29

Similar Documents

Publication Publication Date Title
WO2015066955A1 (zh) 一种用于ⅲ-ⅴ族氮化物生长的衬底结构及其制备方法
WO2012161451A9 (ko) 반도체 박막 구조 및 그 형성 방법
CN103794688B (zh) 一种光子晶体结构GaN基LED的制备方法
CN104362240A (zh) 一种LED芯片的Al2O3/SiON钝化层结构及其生长方法
CN110416372A (zh) 一种面向micro-LED应用的无损微纳结构的制备方法
CN110444640A (zh) 一种多波长GaN基核壳纳米棒LED器件结构及其制备方法
CN104037293A (zh) 一种生长在Si图形衬底上的LED外延片及其制备方法
TWI412069B (zh) 氮化物半導體基板及其製造方法
JP2017521878A (ja) 基板構造及びその形成方法、並びにこれを用いた窒化物半導体の製造方法
CN101976712A (zh) 一种增强led出光效率的粗化方法
CN103500778A (zh) 一种嵌入TiO2纳米棒图形阵列提高LED发光效率的方法
CN102691102A (zh) 蓝宝石纳米碗阵列图形衬底的制作方法
JP5632081B2 (ja) ナノインプリントモールドを用いた発光ダイオードの製造方法、及びこの方法により製造された発光ダイオード
CN102683518A (zh) 一种蓝宝石纳米孔状图形衬底的制备方法
TWI473295B (zh) 應力與缺陷間均衡化之半導體模板之製造方法
WO2014161378A1 (zh) 氮化物发光二极管及制作方法
CN204118111U (zh) 一种LED芯片的Al2O3/SiON钝化层结构
CN116995172B (zh) 一种绿光led芯片及其制备方法
WO2016070758A1 (zh) 生态化照明led器件的制备方法
CN109713099B (zh) 一种图形化蓝宝石衬底结构及其制作工艺
CN104701137B (zh) AlN缓冲层及具有该缓冲层的芯片的制备方法
TWI527265B (zh) 適用於發光二極體之圖形化基板及其製造方法
TW201248915A (en) Light-emitting diode of high light-extraction efficiency and its preparation method
CN204696144U (zh) 一种用于倒装led芯片的衬底
WO2016173359A1 (zh) 一种发光二极管结构及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15856985

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 24/10/2017)

122 Ep: pct application non-entry in european phase

Ref document number: 15856985

Country of ref document: EP

Kind code of ref document: A1