WO2014161378A1 - 氮化物发光二极管及制作方法 - Google Patents

氮化物发光二极管及制作方法 Download PDF

Info

Publication number
WO2014161378A1
WO2014161378A1 PCT/CN2014/070989 CN2014070989W WO2014161378A1 WO 2014161378 A1 WO2014161378 A1 WO 2014161378A1 CN 2014070989 W CN2014070989 W CN 2014070989W WO 2014161378 A1 WO2014161378 A1 WO 2014161378A1
Authority
WO
WIPO (PCT)
Prior art keywords
growth
substrate
layer
light
barrier layer
Prior art date
Application number
PCT/CN2014/070989
Other languages
English (en)
French (fr)
Inventor
林文禹
叶孟欣
钟志白
Original Assignee
厦门市三安光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门市三安光电科技有限公司 filed Critical 厦门市三安光电科技有限公司
Publication of WO2014161378A1 publication Critical patent/WO2014161378A1/zh
Priority to US14/742,150 priority Critical patent/US9570654B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/22Roughened surfaces, e.g. at the interface between epitaxial layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02428Structure
    • H01L21/0243Surface structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02502Layer structure consisting of two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02658Pretreatments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/12Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/24Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate of the light emitting region, e.g. non-planar junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0025Processes relating to coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate

Definitions

  • the present invention relates to a nitride light emitting diode and a method of fabricating the same, and more particularly to a light emitting diode extension structure design of a low refractive index coatings on sub-micro patterned substrate.
  • Nitride light-emitting diodes have been widely used in the fields of display, indication, backlight and illumination. With the continuous improvement of luminous efficiency, it is expected to replace incandescent lamps and fluorescent lamps in the next few years, becoming the main source of general illumination.
  • the object of the present invention is to provide a novel extended substrate, and to perform an epitaxial structure design thereon, thereby improving the light extraction rate and the internal quantum efficiency, and finally improving the light output power of the light emitting diode.
  • a nitride light emitting diode comprising: a substrate having a submicron pattern on the surface, defined as a growth region and a non-growth region; and a growth barrier layer formed in the non-growth region of the substrate, An epitaxial growth for blocking a non-growth region of the substrate; a light-emitting epitaxial layer formed on the growth region of the substrate and extending laterally to the non-growth region to cover the growth barrier layer, including N-type layer, luminescent layer and p a type of layer; wherein the growth barrier layer has a refractive index smaller than that of the luminescent epitaxial layer, and forms a high and low undulation profile along the sub-micron pattern of the substrate, thereby increasing the light-harvesting interface of the light-emitting diode The difference in refractive index between the luminescent epitaxial layer and the light-taking interface is provided to improve the light extraction efficiency.
  • the angle ⁇ between the undulating surface of the growth barrier layer and the horizontal plane is 40 to 70 °, preferably 60 °.
  • the distance h between the top end and the bottom of the growth barrier layer is 200 nm to 900 nm.
  • the growth barrier layer is a series of discrete growth barrier material modules that may be distributed in a block or ribbon shape.
  • the discrete growth barrier material modules are periodically distributed, and the gap may be 100nm ⁇ 5000nm.
  • the material of the growth barrier layer may be an oxide coating or a nitride coating.
  • the refractive index X of the growth barrier layer satisfies: a substrate ⁇ X ⁇ luminescent epitaxial layer.
  • the growth substrate is made of sapphire (Al 2 O 3 )
  • the growth barrier layer is made of silicon nitride (Si 3 N 4 )
  • the refractive index of gallium nitride is n ⁇ 2.5
  • the refractive index of sapphire is n ⁇ 1.8
  • silicon nitride The refractive index n ⁇ 2.0 .
  • the refractive index X of the growth barrier layer satisfies: X ⁇ substrate ⁇ luminescent epitaxial layer.
  • the growth substrate is made of sapphire (Al 2 O 3 ) and the growth barrier layer is made of silicon dioxide (SiO 2 )
  • the refractive index of gallium nitride is n ⁇ 2.5
  • the refractive index of sapphire is n ⁇ 1.8
  • a gap is formed between the growth barrier layer and the epitaxial layer by controlling the pattern size of the growth substrate and the thickness of the growth barrier layer, thereby increasing the refractive index difference of the light extraction interface.
  • a method of fabricating a nitride light emitting diode comprising the steps of: providing a growth substrate having a submicron pattern on a surface, defining a surface thereof as a growth region and a non-grow region; The growth region forms a growth barrier layer for blocking epitaxial growth of the non-growth region of the substrate; growing a light-emitting epitaxial layer in the growth region of the substrate, and extending to the non-growth region by lateral epitaxy, covering the growth barrier layer ,include N-type layer, luminescent layer and p a type of layer; wherein the growth barrier layer has a refractive index smaller than that of the luminescent epitaxial layer, and forms a high and low undulation profile along the sub-micron pattern of the substrate, thus increasing the light-harvesting interface of the light-emitting diode
  • the difference in refractive index between the luminescent epitaxial layer and the light-taking interface is provided to improve the
  • a sub-micron concavo-convex pattern is first formed on a surface of the growth substrate; then a growth region and a non-growth region are defined; then a growth barrier layer is formed on the surface of the substrate, which is followed by the substrate
  • the sub-micron pattern forms a high and low undulation morphology; then the growth barrier layer of the growth region is removed to expose the surface of the growth substrate, and finally the epitaxial growth luminescence epitaxial layer is performed on the exposed growth substrate surface, and the non-growth is performed by lateral epitaxy A zone extends over the growth barrier layer.
  • a gap may be formed between the growth barrier layer and the epitaxial layer by controlling the pattern size of the growth substrate and the thickness of the growth barrier layer.
  • an illumination system or display system includes a series of light emitting diodes, each light emitting diode comprising: a substrate having a submicron pattern on the surface, defined as a growth zone and a non-growth zone; a growth barrier layer Forming in a non-growth region of the substrate for blocking epitaxial growth of a non-growth region of the substrate; a light-emitting epitaxial layer formed on the growth region of the substrate and extending to the non-growth region by lateral extension, covering
  • the growth barrier layer includes N-type layer, luminescent layer and p a type of layer; wherein the growth barrier layer has a refractive index smaller than that of the luminescent epitaxial layer, and forms a high and low undulation profile along the sub-micron pattern of the substrate, thereby increasing the light-harvesting interface of the light-emitting diode
  • the difference in refractive index between the luminescent epitaxial layer and the light-taking interface is provided to improve the light extraction efficiency.
  • FIG. 1 is a schematic view of a process for fabricating an epitaxial growth substrate in accordance with an embodiment of the present invention, wherein (a) is a cross-sectional view of a substrate having a sub-micron pattern, (b) A cross-sectional view after plating a growth barrier layer on the surface of the substrate shown in (a), (c) is a cross-sectional view after the growth barrier layer of the growth region is removed to expose the surface of the substrate.
  • Figures 2 and 3 show the distribution of the growth barrier layer in a simple way, with Figure 2 as a block distribution and Figure 3 as a band distribution.
  • Figure 4 is an enlarged view of a portion A of (c) in Figure 1.
  • Figure 5 is a photograph of the actual electron microscope (SEM) corresponding to (C) in Figure 1.
  • Figure 6 is a cross-sectional view showing epitaxial growth on the substrate shown in Figure 1 (c).
  • Figure 7 is a photograph of the actual electron microscope (SEM) corresponding to Figure 6.
  • Figure 8 is a cross-sectional view of a nitride light emitting diode in accordance with an embodiment of the present invention.
  • Enhance external quantum efficiency in GaN LEDs usually improves light extraction efficiency (LEE) and internal quantum efficiency (Internal Quantum) Efficiency, IQE) Start.
  • the development of a patterned sapphire substrate can be used to increase the light extraction rate while reducing the defect density.
  • the geometric pattern of the patterned sapphire substrate causes the lateral growth of the epitaxy to turn the dislocation (Dislocation Bending) to avoid it running through the surface.
  • the following embodiments based on the aforementioned patterned sapphire substrate, propose a new epitaxial growth mode, which firstly produces a submicron pattern on the surface of the growth substrate, followed by a portion of the growth substrate (ie, non-growth).
  • a layer of oxide as a growth barrier layer which forms a high and low undulation profile along the sub-micron pattern of the substrate; and then epitaxy on another region of the growth substrate (ie, the growth region) Growing an epitaxial layer and extending to the non-growth region by lateral epitaxy, covering the growth barrier layer, providing a light-receiving interface of the light-emitting diode, providing a difference in refractive index between the light-emitting epitaxial layer and the light-harvesting interface, and improving light extraction effectiveness.
  • This embodiment discloses a sub-micron patterned substrate with a low refractive index coating (lower refractive index) Coatings on sub-micro patterned substrate)
  • the LED is designed to be extended, in particular, a substrate deposited oxide layer having a submicron pattern on the surface, which is originally textured by the substrate.
  • the surface of the oxide layer deposited thereon forms a high and low undulating oxide coating along the textured surface, and then the oxide coating with high and low undulations is subjected to yellow lithography (photolithography), etching (etching) process is patterned,
  • Such a nitride material can be epitaxially formed on the exposed sub-micron patterned substrate to complete the entire light-emitting diode structure.
  • Figure 1 shows the process of making an epitaxial growth substrate.
  • a silicon dioxide film 002 is plated on the substrate 001, and the silicon dioxide film forms a high and low undulating shape along the original sub-micron patterned substrate, and the thickness is 400-500 nm.
  • Figure (b) its cross-sectional view is shown in Figure (b).
  • the silicon dioxide film 002 is then patterned to expose a portion of the sapphire substrate 001 to provide an epitaxially grown region, as shown in cross-section (c).
  • the region in which the silicon dioxide film is plated is the non-growth region 001A, and the region where the surface of the sapphire substrate can be exposed is the growth region 001B.
  • Silicon dioxide film 002 As a growth barrier layer, it is used to block epitaxial growth of the non-growth region of the substrate.
  • Figure 5 shows an actual electron microscope (SEM) image of the treated substrate, with the upper half being a semi-growth zone and the surface coated with a silicon dioxide film. 002, the lower part is the growth zone 001B.
  • each silicon dioxide film 002 is composed of a series of undulating surfaces 002A, and the distance h between the top and the bottom of the undulating surface is 200 nm to 900 nm, preferably 500 nm. Setting the undulating surface
  • the angle between 002A and the horizontal plane is ⁇ 40 ⁇ 70 °, preferably 60 °. In the light extraction interface of the LED, such an angular range gives the best light scattering probability.
  • a nitride buffer layer 101 is grown on the growth region 001B of the previously treated substrate. And extending through the lateral extension to the non-growth region 001A, covering the silicon dioxide film 002, being closed to a flat surface, and forming a gap between the silicon dioxide film 002 and the buffer layer 101 .
  • the material of the buffer layer can be selected from GaN, AlN or other materials.
  • Figure 7 shows the actual electron microscope (SEM) Take a picture. Epitaxial growth using the previously treated substrate allows the dislocation to be diverted to reduce the defect density.
  • a N-type conductive layer 201, a light-emitting layer 202, and a P-type conductive layer are sequentially deposited on the buffer layer 101.
  • the material of the N-type conductive layer 201 is an n-GaN layer, and the light-emitting layer 202 is generally composed of In
  • the gallium nitride-based compound semiconductor is preferably a multi-quantum well structure, specifically, an In x1 Ga 1-x1 N well layer (0 ⁇ x1 ⁇ 1) and In x2 Ga 1-x2
  • the N barrier layer (0 ⁇ x 2 ⁇ 1 , x 1 > x 2 ) is formed by alternately stacking at appropriate times.
  • An electron blocking layer (not shown) may be disposed between the conductive layers, and the material is usually aluminum gallium nitride, and the thickness is 10 nm to 60 nm and has a sufficiently high barrier to be limited from N. The injected electrons prevent it from overflowing into the P-type layer.
  • the material of the P-type conductive layer 203 is a p-GaN layer.
  • this embodiment on the one hand, by introducing a silicon dioxide coating on the sub-micron patterned substrate, a high and low undulating silicon dioxide film morphology is formed, thereby providing a larger refractive index difference and more with the epitaxial layer.
  • a multi-layer interface reflects and extracts light emitted from the active area.
  • this embodiment can provide more lateral growth than conventional micro-micron patterned substrates, thereby reducing the defect density.
  • this embodiment 1 Silicon nitride is used as the growth barrier layer.
  • the epitaxial layer without gaps can be formed by epitaxial growth because the refractive index of silicon nitride is 2.0. Left and right, this is just between GaN and sapphire, so it meets the Graded Refractive Index (GRIN).
  • GRIN Graded Refractive Index

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Led Devices (AREA)

Abstract

一种氮化物发光二极管,其包括:衬底(001),表面具有次微米图案,定义为生长区(001B)和非生长区(001A);生长阻隔层(002),形成于所述衬底的非生长区,用于阻挡衬底非生长区的外延生长;发光外延层(101),形成于所述衬底的生长区并通过横向外延向所述非生长区延伸,覆盖所述生长阻隔层,包括n型层(201)、发光层(202)和p型层(203);其中,所述生长阻隔层的折射率小于发光外延层的折射率,且顺着所述衬底的次微米图案形成高低起伏之形貌,从而在增加发光二极管的取光界面的同时,提供发光外延层与取光界面的折射系数差异,提高取光效率。

Description

氮化物发光二极管及制作方法
本申请主张如下优先权:中国发明专利申请号201310108094.X,题为 ' 氮化物发光二极管及制作方法 ' ,于 2013 年 4月 1 日提交。上述申请的全部内容通过引用结合在本申请中。
技术领域
本发明涉及氮化物发光二极管及其制作方法,具体为一种具有低折射系数镀膜次微米图形化衬底 (lower refractive index coatings on sub-micro patterned substrate) 之发光二极管之外延结构设计。
背景技术
氮化物发光二极管目前已经广泛应用于显示、指示、背光源和照明等领域,随着其发光效率的不断提升,有望在未来几年内取代白炽灯和荧光灯,成为通用照明的主要光源。
发明内容
本发明之目的在提供一新颖之外延衬底,并于其上进行外延结构设计,从而提升光萃取率与内部量子效率,最终提升发光二极管之光输出功率。
根据本发明的第一个方面,氮化物发光二极管,其包括:衬底,表面具有次微米图案,定义为生长区和非生长区;生长阻隔层,形成于所述衬底的非生长区,用于阻挡衬底非生长区的外延生长;发光外延层,形成于所述衬底的生长区并通过横向外延向所述非生长区延伸,覆盖所述生长阻隔层,包括 n 型层、发光层和 p 型层;其中,所述生长阻隔层的折射率小于发光外延层的折射率,且顺着所述衬底的次微米图案形成高低起伏之形貌,从而在增加发光二极管的取光界面的同时,提供发光外延层与取光界面的折射系数差异,提高取光效率。
优选地,所述生长阻隔层的起伏面与水平面的夹角α为 40~70 °,较佳的取 60 °。
优选地,所述生长阻隔层的顶端与底部距离 h 为 200nm~900nm 。
优选地,所述生长阻隔层为一系列离散的生长阻隔材料模块,其可呈块状或带状分布。在一些实施例中,所述离散的生长阻隔材料模块呈周期性分布,其间隙可为 100nm~5000nm 。
在前述结构中,所述生长阻隔层的材料可选用氧化物镀膜或氮化物镀膜。在一些实施例中,所述生长阻隔层的折射系数 X 满足:衬底 <X< 发光外延层。如:生长衬底选用蓝宝石( Al2O3 )、生长阻隔层选用氮化硅( Si3N4 ),那么氮化镓的折射率 n ≈ 2.5 ,蓝宝石折射率 n ≈ 1.8 ,氮化硅的折射率 n ≈ 2.0 。在一些实施例中,所述生长阻隔层的折射系数 X 满足: X < 衬底 < 发光外延层。如:生长衬底选用蓝宝石( Al2O3 )、生长阻隔层选用二氧化硅( SiO2 ),那么氮化镓的折射率 n ≈ 2.5 ,蓝宝石折射率 n ≈ 1.8 ,二氧化硅的折射率 n ≈ 1.48 。
在一些实施例中,通过控制生长衬底的图形尺寸及生长阻隔层的厚度,从而在所述生长阻隔层与外延层之间形成间隙,从而增加取光界面的折射率差。
根据本发明的第二个方面,氮化物发光二极管的制作方法,包括步骤:提供表面具有次微米图案的生长衬底,将其表面定义为生长区和非生长区;在所述衬底的非生长区形成生长阻隔层,用于阻挡衬底非生长区的外延生长;在所述衬底的生长区生长发光外延层,并通过横向外延向所述非生长区延伸,覆盖所述生长阻隔层,包括 n 型层、发光层和 p 型层;其中,所述生长阻隔层的折射率小于发光外延层的折射率,且顺着所述衬底的次微米图案形成高低起伏之形貌,如此在增加发光二极管的取光界面的同时,提供发光外延层与取光界面的折射系数差异,提高取光效率。藉由这样的衬底设计,不仅在非生长区有强大的光反射功效,在生长区也可由蓝宝石次微米图形衬底来提供反射,可谓提供一全面的复合式光反射衬底。
在一些实施例中,首先在所述生长衬底的表面制作次微米凹凸图案;接着定义生长区和非生长区;然后在所述衬底表面上成生长阻隔层,其顺着所述衬底的次微米图案形成高低起伏之形貌;再然后去除生长区的生长阻隔层露出生长衬底表面,最后在露出的生长衬底表面上进行外延生长发光外延层,通过横向外延向所述非生长区延伸覆盖所述生长阻隔层。
在一些实施例中,可以通过控制生长衬底的图形尺寸及生长阻隔层的厚度,从而在所述生长阻隔层与外延层之间形成间隙。
根据本发明的第三个方面,一种照明系统或显示系统,包括一系列发光二极管,每个发光二极管包括:衬底,表面具有次微米图案,定义为生长区和非生长区;生长阻隔层,形成于所述衬底的非生长区,用于阻挡衬底非生长区的外延生长;发光外延层,形成于所述衬底的生长区并通过横向外延向所述非生长区延伸,覆盖所述生长阻隔层,包括 n 型层、发光层和 p 型层;其中,所述生长阻隔层的折射率小于发光外延层的折射率,且顺着所述衬底的次微米图案形成高低起伏之形貌,从而在增加发光二极管的取光界面的同时,提供发光外延层与取光界面的折射系数差异,提高取光效率。
本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其它优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明,并不构成对本发明的限制。此外,附图数据是描述概要,不是按比例绘制。
图 1 为根据本发明实施之制作外延生长衬底的过程示意图,其中( a )为具有次微米图案的衬底的剖视图,( b )为在( a )所示衬底的表面上镀上一层生长阻隔层后的剖视图,( c )为去除生长区的生长阻隔层露出衬底的表面后的剖视图。
图 2 和图 3 简单显示了生长阻隔层的分布方式,其中图 2 为块状分布,图 3 为带状分布。
图 4 为图 1 中( c )的局部 A 的放大图。
图 5 为图 1 中 (C) 对应的实际电子显微镜 (SEM) 拍摄图。
图 6 为在图 1 ( c )所示的衬底上进行外延生长后剖视图。
图 7 为图 6 对应的实际电子显微镜 (SEM) 拍摄图。
图 8 为根据本发明实施的一种氮化物发光二极管的剖视图。
具体实施方式
在氮化镓发光二极管中,提升外部量子效率 (External Quantum Efficiency , EQE) 通常可从提升光萃取率 (Light Extraction Efficiency , LEE) 与内部量子效率 (Internal Quantum Efficiency, IQE) 着手。图形化蓝宝石衬底的开发可以用来增加光萃取率,同时降低缺陷密度。一方面藉由氮化镓 (n=2.5) 与蓝宝石 (n=1.8) 之折射系数差异 ( Δ n) ,将造成往蓝宝石衬底发射之光改变路径乃至射出发光二极管外;另一方面,图形化蓝宝石衬底之几何图案造成外延横向成长从而使位错转向 (Dislocation Bending) ,避免其贯穿至表面。
下面各实施例在前述图形化蓝宝石衬底的基础上,提出一种新的外延生长方式,其首先在生长衬底的表面上制作次微米图案,接着在生长衬底的部分区域(即非生长区)上镀上一层氧化层作为生长阻隔层,其顺着所述衬底的次微米图案形成高低起伏之形貌;然后在生长衬底的另一区域(即为生长区)上进行外延生长外延层,并通过横向外延向所述非生长区延伸,覆盖所述生长阻隔层,在增加发光二极管的取光界面的同时,提供发光外延层与取光界面的折射系数差异,提高取光效率。
为使本发明之一种氮化物发光二极管及其制作方法更易于理解其实质性特点及其所具的实用性,下面便结合附图对本发明若干具体实施例作进一步的详细说明。但以下关于实施例的描述及说明对本发明保护范围不构成任何限制。
实施例 1
本实施例公开一种具有低折射系数镀膜次微米图形化衬底 (lower refractive index coatings on sub-micro patterned substrate) 之发光二极管之外延结构设计,具体的说是在表面具有次微米案图的衬底沉积氧化物层,藉由衬底原本就具有织构化 (textured) 的表面,使得沉积于其上的氧化物层顺着此织构化的表面形成高低起伏之氧化物镀膜,随后将此具高低起伏形貌之氧化物镀膜进行黄光微影 (photolithography) 、蚀刻 (etching) 工艺予以图形化 (patterning) , 如此氮化物材料即可在露出之次微米图案化衬底上,进行外延至完成整个发光二级管结构。
附图 1 显示了制作外延生长衬底的过程。首先提供次微米图形化蓝宝石衬底 001 ,其表面上具有一系列周期分布的凸起图案,每个凸起图案的直径 D 为 800nm ,高度为 500nm ,图案的间隙 S 为 300nm ,其剖视图如图( a )所示。接着在衬底 001 上镀一层二氧化硅膜 002 ,二氧化硅膜将顺着原本之次微米图形化衬底形成高低起伏的形貌,厚度取 400~500nm ,其剖视图如图( b )所示。然后将此二氧化硅膜 002 图案化至露出部分蓝宝石衬底 001 以提供外延成长之区域,其剖视图如图( c )所示,其中镀有二氧化硅膜的区域为非生长区 001A ,其可以露出蓝宝石衬底表面的区域为生长区 001B 。二氧化硅膜 002 作为生长阻隔层,用于阻挡衬底非生长区的外延生长。图 5 显示了处理后的衬底的实际电子显微镜 (SEM) 拍摄图,其中上半部分为半生长区,其表面镀为二氧化硅膜 002 ,下半部分为生长区 001B 。
请参看图 2 和图 3 ,二氧化硅膜 002 层为一系列离散的模块,各个模块可呈块状或带状分布,各个模块的间隙为 100nm~5000nm 。请参看图 4 ,其为图 1 ( c )的局部 A 的放大图,各个二氧化硅膜 002 由一系列起伏面构成 002A ,起伏面的顶部与底部的距离 h 为 200nm~900nm ,较佳取 500nm 。设定起伏面 002A 与水平面的夹角为α为 40~70 °,较佳的取 60 °。在发光二极管的取光界面中,这样的角度范围可得到最佳的光散射机率。
请参看附图 6 ,在经前述处理过的衬底的生长区 001B 上生长氮化物缓冲层 101 ,并通过横向外延向非生长区 001A 延伸,覆盖二氧化硅膜 002 ,合拢为一平整面,并在二氧化硅膜 002 与缓冲层 101 之间形成间隙 301 。缓冲层的材料可选用 GaN , AlN 或其它材料。图 7 为实际电子显微镜 (SEM) 拍摄图。采用前述处理过的衬底进行外延生长,可使位错转向降低缺陷密度。
请参看附图 8 ,在缓冲层 101 上依次沉积 N 型传导层 201 、发光层 202 和 P 型传导层 203 ,构成发光外延层 200 ,并进行常规芯片工艺,制成 LED 芯片。 N 型传导层 201 的材料为 n-GaN 层,发光层 202 一般由 In 的氮化镓系化合物半导体所构成,较佳为多量子阱结构,具体可以由 In x1 Ga 1-x1 N 阱层 (0 < x1 < 1) 和 In x2 Ga 1-x2 N 垒层 (0 ≤ x 2 < 1 , x 1 > x 2 ) ,以适当次数交替反复层叠形成。在发光层 202 和 P 型传导层之间还可设置一层电子阻挡层(图中未示出),其材料通常为氮化铝镓,厚度为 10nm~60nm 且具有足够高之势垒,用以局限从 N 型注入之电子防止其溢流到 P 型层。 P 型传导层 203 的材料为 p-GaN 层。
在本实施例中,一方面藉由导入二氧化硅镀膜于次微米图形化衬底上,从而形成高低起伏之二氧化硅膜形貌,从而提供了与外延层更大的折射系数差和更多的界面去反射、萃取从有源区所射出之光线。另一方面相较于传统次微米图形化衬底,本实施例能够提供更多之横向成长,进而降低缺陷密度。
实施例 2
区别于实施例 1 ,本实施例 1 采用氮化硅作为生长阻隔层。在本实施例中,可藉由外延生长方式形成无间隙的外延层,由于氮化硅的折射系数为 2.0 左右,此刚好介于氮化镓与蓝宝石之间,如此满足渐变式折射率 ( Graded Refractive Index , GRIN) 关系,即藉由渐变式的折射系数减少光于界面的耗损,有利于光的多重导引,最终萃取出半导体中而增加光输出功率。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

  1. 氮化物发光二极管,包括:
    衬底,表面具有次微米图案,定义为生长区和非生长区;
    生长阻隔层,形成于所述衬底的非生长区,用于阻挡衬底非生长区的外延生长;
    发光外延层,形成于所述衬底的生长区并通过横向外延向所述非生长区延伸,覆盖所述生长阻隔层,包括 n 型层、发光层和 p 型层;
    其中,所述生长阻隔层的折射率小于发光外延层的折射率,且顺着所述衬底的次微米图案形成高低起伏之形貌,从而在增加发光二极管的取光界面的同时,提供发光外延层与取光界面的折射系数差异。
  2. 根据权利要求 1 所述的氮化物发光二极管,其特征在于:所述生长阻隔层与发光外延层之间具有间隙。
  3. 根据权利要求 1 所述的氮化物发光二极管,其特征在于:所述生长阻隔层的起伏面与水平面的夹角α为 40~70 °。
  4. 根据权利要求 1 所述的氮化物发光二极管,其特征在于:所述生长阻隔层的顶端与底部距离 h 为 200nm~900nm 。
  5. 根据权利要求 1 所述的氮化物发光二极管,其特征在于:所述生长阻隔层的折射系数 X 满足:
    衬底 <X< 发光外延层,从而增加取光界面的折射系数差异。
  6. 根据权利要求 1 所述的氮化物发光二极管,其特征在于:所述生长阻隔层的折射系数 X 满足:
    X< 衬底 < 发光外延层,从而增加取光界面的折射系数差异。
  7. 根据权利要求 1 所述的氮化物发光二极管,其特征在于:所述生长阻隔层为一系列离散的生长阻隔材料模块,其可呈块状或带状分布。
  8. 根据权利要求 1 所述的氮化物发光二极管,其特征在于:所述生长阻隔层为氧化物镀膜或氮化物镀膜。
  9. 氮化物发光二极管的制作方法,包括步骤:
    提供表面具有次微米图案的生长衬底,将其表面定义为生长区和非生长区;
    在所述衬底的非生长区形成生长阻隔层,用于阻挡衬底非生长区的外延生长;
    在所述衬底的生长区生长发光外延层,并通过横向外延向所述非生长区延伸,覆盖所述生长阻隔层,包括 n 型层、发光层和 p 型层;
    其中,所述生长阻隔层的折射率小于发光外延层的折射率,且顺着所述衬底的次微米图案形成高低起伏之形貌,从而在增加发光二极管的取光界面的同时,提供发光外延层与取光界面的折射系数差异,提高取光效率。
  10. 一种照明系统或显示系统,包括一系列发光二极管,每个发光二极管包括:
    衬底,表面具有次微米图案,定义为生长区和非生长区;
    生长阻隔层,形成于所述衬底的非生长区,用于阻挡衬底非生长区的外延生长;
    发光外延层,形成于所述衬底的生长区并通过横向外延向所述非生长区延伸,覆盖所述生长阻隔层,包括 n 型层、发光层和 p 型层;
    其中,所述生长阻隔层的折射率小于发光外延层的折射率,且顺着所述衬底的次微米图案形成高低起伏之形貌,如此在增加发光二极管的取光界面的同时,提供发光外延层与取光界面的折射系数差异,提高取光效率。
PCT/CN2014/070989 2013-04-01 2014-01-21 氮化物发光二极管及制作方法 WO2014161378A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/742,150 US9570654B2 (en) 2013-04-01 2015-06-17 Nitride light emitting diode and fabrication method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310108094XA CN103208568A (zh) 2013-04-01 2013-04-01 氮化物发光二极管及制作方法
CN201310108094.X 2013-04-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/742,150 Continuation US9570654B2 (en) 2013-04-01 2015-06-17 Nitride light emitting diode and fabrication method thereof

Publications (1)

Publication Number Publication Date
WO2014161378A1 true WO2014161378A1 (zh) 2014-10-09

Family

ID=48755723

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/070989 WO2014161378A1 (zh) 2013-04-01 2014-01-21 氮化物发光二极管及制作方法

Country Status (3)

Country Link
US (1) US9570654B2 (zh)
CN (1) CN103208568A (zh)
WO (1) WO2014161378A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103208568A (zh) * 2013-04-01 2013-07-17 厦门市三安光电科技有限公司 氮化物发光二极管及制作方法
DE102013108876B4 (de) * 2013-08-16 2022-08-18 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Fotolithografisches Verfahren zur Herstellung einer Struktur in einem Strahlung emittierenden Halbleiterbauelement
JP2019040898A (ja) * 2017-08-22 2019-03-14 株式会社小糸製作所 半導体成長用基板、半導体素子、半導体発光素子および半導体素子製造方法
CN108054259A (zh) * 2017-12-13 2018-05-18 苏州吉赛电子科技有限公司 一种led芯片及其制作方法
CN109103307A (zh) * 2018-08-17 2018-12-28 开发晶照明(厦门)有限公司 发光元件及其制造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1992359A (zh) * 2005-09-22 2007-07-04 索尼株式会社 发光二极管及其制造方法
CN101197410A (zh) * 2006-12-04 2008-06-11 三垦电气株式会社 半导体发光器件及其制造方法
US20100015739A1 (en) * 2005-06-25 2010-01-21 Epiplus Co., Ltd. Semiconductor light emitting device having improved luminance and manufacturing method thereof
CN101826582A (zh) * 2009-03-02 2010-09-08 Lg伊诺特有限公司 半导体发光器件
CN102368526A (zh) * 2011-10-27 2012-03-07 华灿光电股份有限公司 一种近紫外led器件的制造方法
CN103208568A (zh) * 2013-04-01 2013-07-17 厦门市三安光电科技有限公司 氮化物发光二极管及制作方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1104031B1 (en) * 1999-11-15 2012-04-11 Panasonic Corporation Nitride semiconductor laser diode and method of fabricating the same
TWI319893B (en) * 2006-08-31 2010-01-21 Nitride semiconductor substrate, method for forming a nitride semiconductor layer and method for separating the nitride semiconductor layer from the substrate
KR101020961B1 (ko) * 2008-05-02 2011-03-09 엘지이노텍 주식회사 반도체 발광소자 및 그 제조방법
KR101023135B1 (ko) * 2009-07-13 2011-03-18 한국광기술원 이중요철구조의 기판을 갖는 반도체 발광소자 및 그 제조방법
KR101274651B1 (ko) * 2010-11-30 2013-06-12 엘지디스플레이 주식회사 발광 다이오드 및 이의 제조 방법
CN102169936A (zh) * 2011-02-16 2011-08-31 亚威朗光电(中国)有限公司 图形衬底和led芯片

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100015739A1 (en) * 2005-06-25 2010-01-21 Epiplus Co., Ltd. Semiconductor light emitting device having improved luminance and manufacturing method thereof
CN1992359A (zh) * 2005-09-22 2007-07-04 索尼株式会社 发光二极管及其制造方法
CN101197410A (zh) * 2006-12-04 2008-06-11 三垦电气株式会社 半导体发光器件及其制造方法
CN101826582A (zh) * 2009-03-02 2010-09-08 Lg伊诺特有限公司 半导体发光器件
CN102368526A (zh) * 2011-10-27 2012-03-07 华灿光电股份有限公司 一种近紫外led器件的制造方法
CN103208568A (zh) * 2013-04-01 2013-07-17 厦门市三安光电科技有限公司 氮化物发光二极管及制作方法

Also Published As

Publication number Publication date
US20150311389A1 (en) 2015-10-29
CN103208568A (zh) 2013-07-17
US9570654B2 (en) 2017-02-14

Similar Documents

Publication Publication Date Title
US7642561B2 (en) Semiconductor light emitting diode having efficiency and method of manufacturing the same
WO2014161378A1 (zh) 氮化物发光二极管及制作方法
US20050173718A1 (en) Light emitting diode
US20110266552A1 (en) Light emitting element and manufacturing method thereof
JP2007294972A (ja) 発光素子及びその製造方法
CN102439740A (zh) 发光器件
CN103227258A (zh) 图案化基板及堆栈发光二极管结构
KR101023135B1 (ko) 이중요철구조의 기판을 갖는 반도체 발광소자 및 그 제조방법
CN102244168A (zh) 发光二极管及其制造方法
TWI774759B (zh) 發光元件及其製造方法
WO2022134009A1 (zh) 一种图形化衬底、发光二极管及制备方法
US8957449B2 (en) Method for manufacturing nano-imprint mould, method for manufacturing light-emitting diode using the nano imprint mould manufactured thereby, and light-emitting diode manufactured thereby
TW201034238A (en) Semiconductor optoelectronic device with enhanced light extraction efficiency and fabricating method thereof
CN108346718A (zh) 利用低折射率材料为介质的复合图形衬底及其制作方法
TWI437731B (zh) 一種具有提升光取出率之半導體光電元件及其製造方法
KR20070101424A (ko) 발광 다이오드
KR101862407B1 (ko) 질화물계 반도체 발광소자 및 그 제조방법
US20170141266A1 (en) Patterned Sapphire Substrate and Light Emitting Diode
US20120241754A1 (en) Light emitting diode and method of manufacturing thereof
TWI415298B (zh) 發光二極體及其製作方法
KR101581438B1 (ko) 나노막대를 이용한 백색 발광소자의 제조방법 및 그에 의해 제조된 나노막대를 이용한 백색 발광소자
KR101419525B1 (ko) 스텝형 3차원 블락킹 패턴을 이용한 반도체 발광 다이오드 소자의 제조 방법 및 이에 의해 제조된 반도체 발광 다이오드 소자
CN220934108U (zh) 发光二极管
CN108346719A (zh) 一种复合图形衬底及其制作方法
KR100831835B1 (ko) 고 광적출 발광 다이오드의 제조를 위한 질화 갈륨층의성장 방법, 이 방법을 이용한 발광 다이오드의 제조 방법,및 이 방법에 의해 제조된 발광 다이오드

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14779047

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14779047

Country of ref document: EP

Kind code of ref document: A1