WO2016068602A1 - 투명 전도체 및 이의 제조방법 - Google Patents

투명 전도체 및 이의 제조방법 Download PDF

Info

Publication number
WO2016068602A1
WO2016068602A1 PCT/KR2015/011439 KR2015011439W WO2016068602A1 WO 2016068602 A1 WO2016068602 A1 WO 2016068602A1 KR 2015011439 W KR2015011439 W KR 2015011439W WO 2016068602 A1 WO2016068602 A1 WO 2016068602A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent
light
transparent polymer
conductive
nano
Prior art date
Application number
PCT/KR2015/011439
Other languages
English (en)
French (fr)
Inventor
서창우
배창완
Original Assignee
주식회사 엔앤비
코스모신소재 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엔앤비, 코스모신소재 주식회사 filed Critical 주식회사 엔앤비
Priority to US15/520,949 priority Critical patent/US10535792B2/en
Priority to JP2017521222A priority patent/JP6446132B2/ja
Priority to CN201580058571.3A priority patent/CN107077910B/zh
Priority to DE112015004882.0T priority patent/DE112015004882T5/de
Publication of WO2016068602A1 publication Critical patent/WO2016068602A1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/04Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the partial melting of at least one layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0026Apparatus for manufacturing conducting or semi-conducting layers, e.g. deposition of metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/103Metal fibres

Definitions

  • the present invention relates to a transparent conductor and a method for manufacturing the same, in detail, a transparent conductor having a high binding force between the insulating material and the conductive film, having a uniform low surface resistance, and having a high transmittance and a manufacture thereof. It's about how.
  • Transparent conductors have adequate optical transparency and surface conductivity.
  • Transparent conductors with surface conductivity are flat liquid crystals.
  • Metal oxides such as indium tin oxide (ITO) have excellent optical transparency and electrical conductivity, but are prone to physical damage and are difficult to manufacture, with the disadvantages of physical deformation. In addition, there is a limit to requiring high temperature processes.
  • ITO indium tin oxide
  • a network of conductive nanowires such as silver nanowires is organic.
  • Transparent conductors of the structure embedded in the matrix are being developed.
  • these transparent conductors can be physically curved, but they are insulated.
  • Adhesion with the board is weak and there is a problem in its durability, and there is a limit that the electrical characteristics of the surface are not uniform.
  • the purpose of the present invention is to have a remarkably high binding force between the substrate and the conductive film.
  • Repetitive physical strain maintains stable electrical properties, has a uniform and low surface resistance over large areas, and transparent conductors that can have excellent transparency and It provides a method of making this.
  • a method of manufacturing a transparent conductor according to the present invention includes the steps of: a) manufacturing a laminated body in which a transparent polymer layer and a conductive network are sequentially laminated; b) applying an energy to the laminated body, and converting the conductive network into a transparent polymer. And sinking into layers.
  • the energy can be thermal energy, light energy or heat and light energy.
  • Applying energy to heat the transparent polymer of the transparent polymer layer of the laminate above the glass transition degree may cause the conductive network to sink into the transparent polymer layer.
  • the energy can include at least thermal energy.
  • the energy applied in step b) includes at least thermal energy, and in step b), the glass transition of the transparent polymer And heating above a glass temperature (Tg).
  • the energy applied in step b) includes at least light energy, and in step b), infrared (IR), ultraviolet (UV), visible light Light that is a beam, microwave, or a combination thereof can be irradiated.
  • the network may be a network of one or more nano units selected from conductive nanowires, conductive nano-levers, and conductive nano belts.
  • the network may be a network of one or more nano units selected from silver nanowires, silver nanobelts, carbon nanotubes, carbon nanowires and carbon nanobelts.
  • the network may be a porous structure in which nano units are physically bound to each other, or a porous structure in which nano units are formed in contact with or intertwined with each other.
  • the glass transition temperature of the transparent polymer of the transparent polymer layer may be 80 to 140 ° C.
  • the transparent polymer of the transparent polymer layer is polyester, polyethylene
  • PMMA Polymethyl methacrylate
  • acrylic resin acrylic resin
  • PC polycarbonate
  • polystyrene polystyrene
  • Triacetate polyvinyl alcohol, polyvinyl chloride, polyvinylidene chloride, polyethylene, ethylene-vinylacetate copolymer , Polyvinyl butyral, metal ion-crosslinked ethylene-methacrylic acid copolymers, polyurethanes, cellophane and
  • It may be one or more mixtures in polyolefins.
  • step a) includes: a) forming a coating film by applying a first solution containing a transparent polymer or a polymerized polymer of transparent polymer on a substrate; And a2) drying the coating film.
  • a method of manufacturing a transparent conductor according to an embodiment of the present invention wherein the step of a2) or at the same time as step a2), a step of amplifying a polymer of a transparent polymer or a transparent polymer of a coating film; .
  • the transparent polymer layer may be patterned or unpatterned.
  • the step a) includes a3) conductive nanowires, conductive nano-levers, and conductive nano belts on a transparent polymer layer surface of a substrate on which a transparent polymer layer is formed. At least one or more selected nano units in the dispersion medium is dispersed in a dispersion medium; may include.
  • the method of manufacturing a transparent conductor according to an embodiment of the present invention may further include irradiating and drying light including infrared rays (IR) to a coating film coated with a dispersion after step a3).
  • IR infrared rays
  • the dispersion may further contain an organic binder.
  • the organic binder may be a natural or synthetic polymer having a molecular weight (weight average molecular weight, Mw) of 5xl0 5 or less.
  • the organic binder is a polysaccharide, a polysaccharide derivative, polyethylene glycol (PEG); polyvinylpyrrolidone (PVP); and polyvinyl alcohol (PVA) group
  • Polysaccharides can be selected from glycogen, amylose, amylopectin, calose, agar, algin, alginate, pectin, carrageenan, cellulose, chitin, chitosan, curdlan, textlan, fructan, Collagen, gellan gum, gum arabic, starch, xanthan, gum tragacanth, carayan, carabean, glucomannanan or combinations thereof.
  • Cells can contain esters or cellulose ethers have.
  • the conductive material of the network may have optical activity, including surface plasmon or photocatalytic activity.
  • a method of manufacturing a transparent conductor according to an embodiment of the present invention the first light irradiation step of irradiating a first light containing a first ultraviolet (UV) to the nano-unit applied to the transparent polymer layer surface; and the first And a second light irradiation step of irradiating the nano-units irradiated with ultraviolet light with a second light including the Pils type white light.
  • UV ultraviolet
  • the second light may further include a second ultraviolet ray, a second infrared ray, or a second ultraviolet ray and a second infrared ray.
  • the first light may further include a pulsed second white light.
  • step b) step b can be carried out, i.e., by the second light irradiation step, the conductive network can sink into the transparent polymer layer.
  • the first white light and the second white light each have a wavelength of light corresponding to the absorption peak of the nano-units in the ultraviolet-visible spectroscopic spectrum of the nano-units. May contain
  • the present invention includes a transparent conductor prepared by the above-mentioned manufacturing method.
  • the transparent conductor according to one embodiment of the present invention is based on;
  • the composite layer includes a transparent polymer layer having a glass transition temperature (Tg; glass temperature) of 80 ° C. or higher; and a conductive network embedded in the transparent polymer layer.
  • the conductive network includes nanowires and nanotubes. And a density of nano-unit density in the lower region, including a network of nano-units selected from the nanobelt, one or more selected, and based on the total thickness of the composite layer, which is 5% thick from the lower surface, which is in contact with the substrate of the composite layer.
  • the density of nanounits in the upper region reaching 5% thickness from the surface may be relatively large.
  • a transparent conductor includes a substrate; and a composite layer positioned on the substrate; the composite layer includes a transparent polymer layer having a glass transition temperature (Tg) of 80 ° C. or higher; And a conductive network partially embedded in the transparent polymer layer, wherein the conductive network may be a network of nano units selected from one or more of nanowires, nanotubes, and nanobelts.
  • Tg glass transition temperature
  • the transparent conductor according to one embodiment of the present invention comprises a composite layer formed by sinking a conductive network in a substrate-formed transparent polymer layer, which is conductive.
  • the network may be a network of nanounits selected from one or more of nanowires, nanoleubes and nanobelts.
  • the light transmittance of the transparent conductor is More than 90%, haze can be less than 1.5%.
  • the transparent conductor may have a surface resistance increase rate of 1.4 or less, which is defined by Equation 2 below, during 1000 bending tests with a radius of curvature of 1 cm.
  • the average surface resistance of the transparent conductor is the average surface resistance of the transparent conductor.
  • the conductive network is nano
  • Units are physically bound to each other. It may be a porous structure or a porous structure in which nano units are formed in contact with or intertwined with each other.
  • the whole transparency according to the present invention has the advantage of excellent bonding with the substrate, has the uniform and excellent surface conductivity even in the large area, and has the advantage of extremely high light transmittance and low haze characteristics.
  • the entire transparency according to the present invention is extremely easy and can be patterned through a simple process, and furthermore, as the patterned surface (sides of the entire transparency) is very well defined planar shape, There is an advantage that the pattern can be formed and the pattern can be formed precisely.
  • the manufacturing method according to the present invention has the advantage of being able to mass-produce transparent conductors having the excellent characteristics described above in a very simple manner, and in particular, it has excellent transparency and excellent transparency in a very short time under ambient temperature conditions without damaging the polymer substrate which is very fragile. It is possible to manufacture a transparent conductor with low sheet resistance, which can be applied to a two-roll process to enable mass production of flexible transparent electrodes.
  • Example 1 is a view of the surface of the transparent conductor prepared in Example 2 of the present invention.
  • FIG. 2 observes the surface of the transparent conductor prepared in Example 2 of the present invention.
  • a silver nanowire-dispersed liquid is applied to an insulating substrate and then dried to form a silver nanowire network.
  • a method of manufacturing a transparent conductor by overcoating over a nanowire network has been used.
  • this method has the disadvantage that the surface conductivity of the transparent conductor is not only degraded due to the overcoating of the insulating polymer binder material, but also the uniformity of the surface resistance varies depending on the position. Along with the deterioration of the characteristics, it is pointed out that the bonding between the insulating substrate and the polymer binder material is a weak bond between the nanowire network and the composite layer, which is vulnerable to repetitive physical deformation.
  • the transparent polymer layer was first formed on the substrate.
  • Energy is applied to the conductive network to soften the transparent polymer layer.
  • the conductive network embedded in the substrate and the transparent polymer can have an improved binding force, and the transparent conductors can have a uniform surface resistance over a large area and a very good surface conductivity.
  • the surface of the composite layer may have a very smooth surface comparable to that produced by overcoating. High light transmittance and low haze characteristics are also possible.
  • a method for manufacturing a transparent conductor according to the present invention includes the steps of: a) manufacturing a laminated body in which a transparent polymer layer and a conductive network are sequentially laminated; b) applying an energy to the laminated body, and converting the conductive network into a transparent polymer. And sinking into layers.
  • the method for manufacturing a transparent conductor according to the present invention is formed on a transparent polymer layer on which a transparent polymer layer is formed, and after forming a conductive network to contact the transparent polymer layer, by applying energy, at least the conductive network and The transparent polymer layer area is softened so that transparent conductors can be manufactured by the conductive network sinking into the transparent polymer layer.
  • the entire transparent polymer layer may be softened.
  • the 'softening' of the transparent polymer can mean that the transparent polymers forming the transparent polymer layer are heated by the applied energy to a temperature above the glass transition temperature and below the melting temperature. have.
  • the conductive network is first formed on the substrate, and then the binder is transparent.
  • Overcoating of the polymer results in poor adhesion to the substrate, electrical uniformity, and surface conductivity. Specifically, overcoating of the transparent polymer over the conductive network causes the conductive nano-units that make up the conductive network to be pushed to the substrate side. In addition, the degree of movement due to the force applied by the overcoating varies according to the presence or position of other nano-units located on the basis of the nano-nano units or located above and below. In addition, after the overcoating is completed (the application and curing of the transparent polymer is completed), all the nano monomers are buried in the transparent polymer. Also, as the transparent polymer used as the binder is overcoated, the transparent polymer The voids between the conductive networks are in part bound to the substrate.
  • a transparent polymer layer is first formed on a substrate, and then a conductive network is applied to the transparent polymer layer softened by applying energy.
  • a conductive network is applied to the transparent polymer layer softened by applying energy.
  • the bonding strength with the substrate is virtually intact, and it is possible to manufacture transparent conductors with uniform electrical properties and excellent surface conductivity.
  • the application of energy softens the transparent polymer layer to form a conductive network.
  • the substrate refers to an insulating substrate and can serve as a support.
  • the substrate can be appropriately selected in view of the purpose of the transparent conductor.
  • the substrate can be either transparent or opaque.
  • the substrate can be rigid or flexible in physical properties.
  • the substrate can be appropriately selected according to the purpose of the transparent conductor, for example glass, Rigid polycarbonate, acrylic polyethylene terephthalate (PET)
  • PET acrylic polyethylene terephthalate
  • the substrate include polyester-based substrates such as polyester, phthalate and polycarbonate; polyolefin-based substrates such as linear, branched, and cyclic polyolefins; polyvinyl chloride, polyvinylidene chloride Polyvinyl base materials such as polyvinyl acetal, polystyrene and polyacrylic;
  • Salose ester base materials such as acetate (cellulose acetate);
  • flexible substrates such as polysulfone bases such as polyethersulfone; polyimide bases; or silicon bases; etc.
  • the present invention may not be limited by the bases.
  • the substrate may have an appropriate shape suitable for the purpose of the transparent conductor.
  • the transparent polymer of the transparent polymer layer may be a polymer in which the same repeating unit is polymerized, wherein the polymer in which the same repeating unit is polymerized includes two or more polymers having different polymerization degrees.
  • the transparent polymer layer may contain one or more polymers in which different repeat units are integrated.
  • the transparent polymer layer of the transparent polymer layer may have a polymerization degree and / or a repeat unit. It may include two or more polymers different from each other.
  • the transparent polymer of the transparent polymer layer is transparent to the transparent polymer layer
  • the glass transition temperature (Tg) is 80 to 140 o C, specifically 100 to 140,
  • this temperature is the temperature at which the conductive network can be stably and reproducibly formed in the transparent polymer charge, and is then driven by the energy applied to the transparent polymer to sink the conductive network into the transparent polymer layer.
  • the extent to which other components, such as substrates, can be prevented from being damaged is also the glass transition degree of these transparent polymers is the temperature at which thermal stability can be ensured when using the manufactured transparent conductors.
  • the transparent polymer of the transparent polymer layer may be heated, but the temperature is higher than the glass transition temperature (Tg) of the transparent polymer and the melting temperature (Tm) of the transparent polymer. It can be heated and softened to temperatures and sink the conductive network to softened transparent polymers.
  • Tg glass transition temperature
  • Tm melting temperature
  • the transparent polymer may be heated to a temperature above the glass transition temperature (Tg), but may be heated to the extent that the substrate flexible polymer is not thermally damaged.
  • the transparent polymer can be heated to 1 to 1.2 times the silver based on the glass transition temperature (Tg) by applying energy.
  • the glass transition temperature (Tg) is 80 to 140 o C, specifically, 100 to 140 ° C, More specifically, it is 110 to 130 ° C. Based on glass transition degree (Tg) When heated from 1 to 1.2 times, transparent conductors can be produced stably even on substrates with very low heat resistance, such as polyethylene terephthalate substrates.
  • the configuration which is heated 1 to 1.2 times based on the glass transition degree (Tg), to produce a fine patterned transparent conductor, even if the transparent polymer layer is fine patterned, the conductive network can sink and the pattern is reduced. It is possible to maintain a normalized shape.
  • the transparent polymer of the transparent polymer layer may have a single glass transition degree or two or more glass transition temperatures (Tg). , Two, three or four
  • the glass transition degree of the two or more transparent polymers increases by 80 to 140 o C, specifically, , 100 to 140 ° C, more specifically, 110 to 130 ° C.
  • the transparent polymer of the transparent polymer layer may be softened by heating to a temperature above the lowest glass transition temperature or higher than the highest glass transition temperature by applying energy.
  • the conductive network can sink in the transparent polymer layer.
  • the temperature difference between the highest glass transition temperature (of the two or more glass transition temperatures, the highest glass transition temperature) of the transparent polymer and the minimum glass transition temperature is 5 to 100 ° C, specifically 5 to 50 ° C, or more. Specifically, it can be between 5 and 20 o C.
  • the transparent polymer of the transparent polymer layer may satisfy the following Equation 1.
  • TS is the heat shrinkage at the glass transition degree of the transparent polymer film, which is a transparent polymer in the form of a film (transparent polymer of the transparent polymer layer).
  • TS has a width X length X thickness X 100 mm X 100 mm X , based on the transparent polymer film in the form of a transparent polymer film of 0.188mm, the glass transition temperature of the transparent polymer (over ° C, ⁇ the two cases having a glass transition temperature of the lowest glass jeonyieun also) a heat shrinkage eseoui in this case, the transparent polymer film Therefore, the heat shrinkage in the longitudinal, vertical or thickness direction may satisfy the relation 1, and preferably, the heat shrinkage in the horizontal, vertical and thickness directions may satisfy the relation 1. The more preferably the heat shrinkage rate does not occur According to relation 1
  • the lower limit can be 0 and can actually be 0.
  • the transparent polymer layer has a glass transition temperature (, two or more glass transition temperatures of the transparent polymer at a thickness of 0.5 ⁇ )
  • the yellowness change ⁇ before and after heating to the minimum glass transition temperature may be less than 0.5.
  • the transparent polymer in the transparent polymer layer is advantageously a non-occurring material capable of shrinkage due to heating and cooling and a non-occurring material capable of changing yellowness.
  • Some transparent polymer areas in contact with the conductive network of the laminate may be softened and sinks of the conductive network may occur.
  • the thermal shrinkage and / or yellowness of the transparent polymer material in the transparent polymer layer is explained. It is not necessary to meet the changing conditions.
  • the transparent polymer layer of the transparent polymer layer may be a conductive thin film made of the same material as the conductive network, and the contact angle of the transparent polymer may be 90 ° or less.
  • the conductive network is made up of very thin or thin nano
  • the transparent polymer of the transparent polymer layer can be used with any polymer provided it meets the above conditions while still having optical transparency.
  • the transparent polymer of the transparent polymer layer As an example of a practical material, the transparent polymer of the transparent polymer layer
  • Polyester polyethylene terephthalate
  • PET terephthalate
  • AC acrylate
  • PC Polycarbonate
  • polystyrene polystyrene
  • Triacetate polyvinyl alcohol, polyvinyl chloride, polyvinylidene chloride, polyethylene, ethylene-vinylacetate copolymer , Polyvinyl butyral, metal ion-crosslinked '' Metal ion-crosslinked ethylene-methacrylic acid copolymer, polyurethane, cellophane and
  • the polyolefin may be one or more mixtures, but is not limited to this. More specifically, the transparent polymer of the transparent polymer layer may be one or more selected from nonionic urethanes and acrylics. In this case, the average molecular weight of the transparent polymer may be 100 to 500,000,000, but is not limited thereto.
  • the thickness of the transparent polymer layer can be appropriately adjusted in consideration of the use of the transparent conductor.
  • the thickness of the transparent polymer layer is 50 nm to ⁇ , specifically, 50 nm to May be 2000 nm, but is not limited to this.
  • the transparent polymer layer may be a single film made of a single transparent polymer material, or a laminated film in which different transparent polymers are laminated in each layer.
  • the transparent polymer membrane hereinafter, the surface membrane
  • the thickness of the surface membrane is controlled by adjusting the thickness of the surface membrane.
  • the position at which the network sinks can be controlled, i.e., when the energy is applied, the surface layer is softer than the lower layer of the layer, allowing the conductive network to sink selectively in the surface area of the layer.
  • the applied energy, the sinking time, and the external process factors of the cooling column can be adjusted to control how the conductive network sinks into the transparent polymer layer.
  • the applied energy, the sinking time, and the external process factors of the cooling column can be adjusted to control how the conductive network sinks into the transparent polymer layer.
  • step a) comprises: al) transparent polymer or transparent
  • step a2) the step of polymerizing the transparent polymer of the coating film or the polymerized polymer of the transparent polymer after step a2) or simultaneously with step a2) may be further performed.
  • the polymerization step can be carried out when the first solution contains a polymer unit or when the transparent polymer is a curable transparent polymer having a curing ability.
  • the first solution when the first solution contains a transparent polymer having a curing ability or a polymerized monomer, the first solution may be cured after applying and drying the first solution on the substrate or during the drying step.
  • the curing may include photocuring, thermosetting or chemical curing.
  • a transparent polymer layer can be formed by applying and drying the first solution onto the substrate.
  • the transparent polymer layer formed on the substrate is patterned or
  • unpatterned means that intentional shape control of the transparent polymer layer is not performed.
  • unpatterned transparent polymer layer covering a certain area of the substrate with a simple film. Patterning means that intentional shape control is performed to have a shape different from the applied shape.
  • the transparent conductor it may have a pattern suitable for the purpose. It can be patterned in various forms such as interdigitate shape and fine line, but the present invention cannot be limited by the pattern shape of the transparent polymer layer.
  • the patterning of the transparent polymer layer can be applied with a specific pattern such as gravure printing.
  • the transparent polymer layer can be patterned.
  • the coating film can be applied, such as a light mask that transmits light only through the designed area and a light mask using a light mask.
  • the patterning of the transparent polymer layer can be achieved.
  • etching is performed after simple drying or drying and curing of the coating film.
  • Patterning can be achieved by partial removal of the transparent polymer material using masks and dry etching or wet etching.
  • the feature of pre-patterning a transparent polymer layer to manufacture a patterned transparent conductor is an advantage that can be realized by the technical features of the present invention, in which a conductive network is submerged in a transparent polymer layer to produce a transparent conductor.
  • the binder polymer used for overcoating after overcoating is cured in a patterned state and the uncured portion is removed, After curing all of the binder polymer without patterning, it was possible to pattern the transparent conductive film by partially removing the binder polymer and the conductive network by etching or the like.
  • the transparent polymer after forming a transparent polymer layer on a substrate, the transparent polymer is heated and softened to a glass transition temperature (above the minimum glass transition temperature at the time of the glass transition temperature in the phase of softening) and softened.
  • the conductive network on the transparent transparent polymer layer Depending on the method of sinking, the transparent polymer layer can be patterned first. Accordingly, the sides of the patterned transparent conductor may have a well-defined plane and extremely precise patterning is also possible.
  • the patterned transparent polymer layer formed on the substrate itself After patterning the transparent polymer layer formed on the substrate itself, the patterned transparent transparent polymer layer formed on the substrate itself, the patterned transparent transparent polymer layer formed on the substrate itself.
  • the solvent of the first solution is a solvent that dissolves transparent polymers or polymerized polymers of transparent polymers, and can be used as long as it is chemically non-reflective. Based on the material of the transparent polymers or polymers, the solvent dissolves the substance. It is well known that it may be appropriately selected.
  • the solvent may be a polar solvent, a nonpolar solvent, a polar aprotic solvent or a polar protic solvent, and in a non-limiting example, gamma-butyrolactone, formamide, N , ⁇ -dimethylformamide, diformamide, acetonitrile, tetrahydrofuran, dimethyl sulfoxide, diethylene glycol,
  • ⁇ -terpineol dihydroterpineol, 2-methoxyethanol, acetylacetone, methane, ethanol, propanol, butanol, pentanol, nucleool, ketone, methyl isobutyl ketone, pentane, hexane, cyclone Nucleene, 1,4-dioxene, benzene, roluene, triethylamine, chlorobenzene, ethylamine, ethyl ether, chloro product, ethyl acetate, acetic acid,
  • Methyl ethyl ketone and the like, but not limited thereto.
  • various solvents dissolving the transparent polymer or polymerized monomer thereof may be used, and a solvent having a low boiling point may be used for faster volatilization after application. Is more advantageous.
  • the first solution is crosslinking agent, polymerization branch, stabilizer, polymerization prevention system, surfactant,
  • additives for improving the physical properties of the polymer such as antioxidants, anti-yellowing agents, anti-shrinkage agents, etc.
  • antioxidants such as antioxidants, anti-yellowing agents, anti-shrinkage agents, etc.
  • the application of the first solution involves the application of liquid phases in the field of semiconductor or display manufacturing.
  • coating, spraying, printing, and the like can be used in various ways, specifically, for example, spin coating; bar coating;
  • the transparent polymer of the crab 1 solution in a manufacturing method according to an embodiment of the present invention, the transparent polymer of the crab 1 solution
  • the conductive network can be formed on top of the already hardened transparent polymer layer, i.e. when the transparent polymer does not have hardenability, the application of Crab 1 solution and After drying is complete, the conductive network forming step can be carried out. If the first solution contains a transparent polymer or polymerizable monomer with curing ability, the conductive network forming step is carried out after the first solution is applied, dried and cured. In this way, the stratified body is formed by a conductive network formed on a transparent polymer layer in a rigid state by drying (if the transparent polymer does not have a hardening ability) or by curing (if the transparent polymer has a hardening ability). May contain
  • the conductive network may refer to a structure in which a continuous charge transfer path is provided by at least physical contact between conductive nano units.
  • the nanounit may be selected from one or more of conductive nanowires, conductive nanotubes, and conductive nanobelts.
  • Nano-units can be composed of a single substance or two or more different substances, i.e., nano-units can be a conductive single substance with nanostructures.
  • the nano unit may be a non-conductive material having a nanostructure coated by another conductive material.
  • a non-conductive core and a core of a conductive shell may be used.
  • a shell structure or a core-shell structure consisting of conductive cores and conductive wells, wherein the core material may be translucent.
  • Such core-shell structures may be suitable when extremely high light transmittance is required.
  • the nano-unit material may be used as long as it has a conductivity.
  • the nano-unit material may be a metal; a semiconductor having conductivity due to doping or defects, or capable of electron or hole transfer due to the nature of the material; One or more selected from inorganic; and conductive organics.
  • Nanowires, silver nanobelts, carbon nanotubes, carbon nanowires, carbon nanobelts, etc., and the conductive network is one or more selected from silver nanowires, silver nanobelts, carbon nanotubes, carbon nanowires, and carbon nanobelts. It may be a network of monomers, but of course it cannot be limited by the present invention or by the substance of the no monomers.
  • the conductive network may be a network of conductive nano units having optical activity.
  • the conductive nano units having optical activity may be used to convert conductive nano units and / or photocatalytic activity from which surface plasmon occurs.
  • Conductive nanounits with these optically active properties, as described below, are more suitable than physical integration of conductive networks and sinking of conductive networks into transparent polymer layers, as described below.
  • surface plasmons are formed by the interaction of metals with light with nanodimen dogs and plasmons, the collective movement of free electrons in metals, on the surface of metal units.
  • the conductive nano-units that generate surface pullasmones may be nanowires, nano-leaves, or nanobelts of any metal known to generate surface plasmons.
  • the conductive nano-unit having a surface plasmon may be nanowires, nanotubes and / or nanobelts of one or more materials selected from gold, silver, copper, lithium, aluminum and their alloys, but the present invention It is not limited to this.
  • the photocatalytic ability refers to the ability to receive light energy and promote chemical reactions, the chemical reaction may be the decomposition reaction of organic matter, and the photocatalytic ability may be the organic decomposition photocatalytic ability. It is possible to provide a hole transport path, and nanowires of any material known to promote chemical reaction by light. Specific examples of conductive nano-units that provide an electron transport path and have a photocatalytic capability include titanium oxide and zinc. One or more metal oxide nanowires, nanotubes and / or nanobelts selected from the group consisting of oxides and tin oxides, and specific examples of the conductive nano-units that are metallic and have photocatalytic properties include gold, silver, platinum, and the like. Precious metal nanowires, precious metal nanotubes and / or precious metal nano belts, but are not limited to this invention.
  • conductive nano monomers having surface plasmons include surface plasmons and
  • the conductive network may, of course, further comprise additional conductive elements, such as conductive particles or conductive plates, as well as conductive units.
  • additional conductive elements such as conductive particles or conductive plates, as well as conductive units.
  • conductive particles or conductive plates such as graphene.
  • the size of the nano-units can satisfy the electrical characteristics required for the application, and it is sufficient to form a stable network.
  • the aspect ratio of the nano-units is It can be 50 to 20000, and more practical, for example, an average diameter of 5 to 100 nm and an average length: to ⁇ ⁇ .
  • the conductive network is formed by nano units.
  • a conductive network is a unit in which the nano-units are physically bound to form a unit. It can be a unit network.
  • the porous network structure may form a network in which nano-units are in contact with or intertwined with each other, and the nano-units in contact with or intertwined with each other are bound (or fused) to each other, and may refer to a physically integrated structure.
  • a nanounit network can refer to a structure in which nanounits provide a continuous charge transfer path by contacting or intertwining them regularly or irregularly.
  • a laminated body can be manufactured by placing an already integrated conductive network on top of the transparent polymer layer. After the dispersions are dispersed, the monomers are applied and dried to form a nano-unit network in which the nano-units are in contact with or intertwined with each other.
  • the mass per unit area of the conductive network is
  • the mass per unit area of the conductive network is based on the surface of the transparent polymer layer in contact with the conductive network, per unit surface area, and on top of the unit surface area. It can mean the mass of the conductive network located at .It can be properly adjusted according to the aspect ratio of the nano-units, but by the above-mentioned mass per unit area of the conductive network, it is stable by the nano-units, while preventing the decrease of the light transmittance as much as possible. And a low resistance conductive network can be created.
  • the laminated body is 1 to 30 parts by weight, specifically 5 to 30 parts by weight, more specifically 5 to 15 parts by weight, based on 100 parts by weight of the transparent polymer of the transparent polymer layer.
  • Conductive networks can be contained. These conductive networks are capable of producing transparent conductors with excellent physical stability, but also have a stable conductive path formed by nano-units and do not excessively degrade the transmittance.
  • the conductive network forming step includes conductive nano units and a dispersion medium.
  • the dispersion is 0.01 based on 100 parts by weight of the dispersion medium. Although it may contain up to 70 parts by weight of conductive nano units, the present invention cannot, of course, be limited by the content of nano units in the dispersion.
  • the dispersion medium does not dissolve the transparent polymer layer, but chemically with the transparent polymer layer.
  • the dispersion medium may be a nonsolvent of transparent polymer.At this point, it does not dissolve the transparent polymer at 20 ° C under 1 atm : solubility of transparent polymer is less than 0.01 wt%. , Specifically less than ⁇ ,, More
  • the transparent polymer layer may be prevented from being damaged in the process of applying and drying the dispersion on the transparent polymer layer.
  • Transparent polymer insects Even after the conductive network is formed on the transparent polymer layer, the surface of the transparent polymer layer is maintained as a smooth surface, thereby preventing the lowering of transparency due to surface irregularities and deterioration of haze characteristics.
  • Dispersions may further contain additives such as dispersants that enhance dispersibility, corrosion inhibitors, and binders to improve the physical stability of the applied conductive network, along with conductive nano units and dispersion media.
  • additives such as dispersants that enhance dispersibility, corrosion inhibitors, and binders to improve the physical stability of the applied conductive network, along with conductive nano units and dispersion media.
  • coating there are various methods such as coating, coating, spray (spraying), printing, etc.
  • spin coating screen printing; inkjet printing (ink-jet) printing; Bar coating; Gravure coating; blade coating; roll coating; slot die; or spray spraying; and the like. It is not limited by the method of dispersing the monomer dispersion.
  • drying of the coating film may be carried out, if necessary, before application of energy for the sinking of the conductive network.
  • the drying of the coating film is natural drying, irradiation of hot light including infrared rays, hot air drying, the method of using the dried air flow, and using a heat source. It can be carried out by heating, for example. However, the drying step is not carried out separately, but of course, drying can be carried out simultaneously when energy is applied to the sink.
  • a thermal irradiation step may be performed in which the conductive nano-unit dispersion is applied to the substrate and then irradiates light containing infrared (IR) to the conductive nano-unit contained in the substrate. Drying with light containing infrared rays does not require heat transfer through the base material, so even if the base is fragile, it is possible to prevent damage to the base material by drying, and furthermore, even a large area coating film can be dried uniformly in a short time. Very suitable for continuous processes including two rolls. Infrared intensity does not soften the transparent polymer layer and is sufficient to volatilize the dispersion medium.
  • any kind of energy can be used as long as the energy applied to the laminated body can warm the transparent polymer of the transparent polymer layer to a temperature above the glass transition temperature.
  • the energy applied to the laminate may be heat energy, light energy, or heat and light energy.
  • Thermal energy can include Joule heat.
  • Thermal energy can be applied directly or indirectly, which means that the heat source and the substrate on which the laminate is formed are physically in contact with each other. ), Which means that the substrate on which the laminate is formed is physically non-contacted.
  • a direct element is positioned at the bottom of the substrate, where a heating element is generated which generates heat by the flow of current.
  • a non-limiting example is a fluid (including air) between a transparent polymer layer and a heat source where heat sources are positioned at a distance from the substrate on which the indirect thin layer is formed. ) Is a method of transferring heat energy to a transparent polymer layer.
  • an indirect application is a space in which a heat treatment target, such as a tube, is located.
  • Typical heat treatment furnaces include a heat-resistant material that encloses a space to prevent heat loss and a heating element located within the heat-resistant material.
  • light energy may include infrared (IR), ultraviolet (UV) light, visible light, microwave, or a combination thereof
  • the application of light energy may include irradiation of light into a transparent polymer layer.
  • a light source spaced a certain distance from the substrate on which the laminate is formed may be positioned to irradiate light onto the transparent polymer layer.
  • the application of energy may be heat energy or light energy alone. Independently of this, the application of energy may include applying heat energy and light energy simultaneously or sequentially.
  • the sequential application may mean that another type of energy (for example, light energy) is applied after the application of one type of energy (for example, thermal energy) or during the application.
  • Sequential application may mean that different kinds of energy are applied to the transparent polymer layer continuously or discontinuously.
  • the atmosphere encountered by the substrate on which the laminate is formed may be any atmosphere in which undesired chemical reactions are not mentioned.
  • the atmosphere when energy is applied may be an air atmosphere. It is not limited by the atmosphere.
  • both heat and light energy can be used when energy is applied, and in order to sink the conductive network into the transparent polymer layer, referring to the contents described in the present invention, the skilled person uses heat and light.
  • the conditions of application for example, by applying heat energy, but by applying heat energy alone to the transparent polymer layer under the condition that the glass transition is less than the degree of glass transition, and applying the heat energy to the transparent polymer layer to maintain a constant temperature.
  • the combination of irradiated light energy and thermal energy will allow the transparent polymer of the transparent polymer layer to be heated to a temperature above the glass transition temperature.
  • the thermal polymer is heated to a temperature above the glass transition temperature
  • the application of optical energy will allow the conductive network to sink more quickly into the transparent polymer layer.
  • the transparent polymer layer may be heated to have a temperature higher than the glass transition degree of the transparent polymer to sink the conductive network into the transparent polymer layer (sink step).
  • the transparent polymer layer of the laminate can be heated to a temperature above the glass transition temperature and below the melting temperature. Specifically, the transparent polymer layer is heated to a temperature of 1 to 1 based on the glass transition temperature (Tg). It can be heated to 1.2 times the temperature.
  • the transparent polymer of the transparent polymer layer can have a single glass transition degree of 80 to 140 ° C, specifically, 100 to 140 ° C, more specifically, 110 to 130 ° C.
  • the transparent polymer layer of the sieve can be heated 1 to 1.2 times based on the glass transition temperature (Tg).
  • the transparent polymer layer of the laminated body may be heated to a silver (process silver) above the minimum glass transition degree, specifically, the lowest glass transition. It can be heated to temperatures above and below the maximum glass transition temperature.
  • the relatively low glass transition temperature is the first glass transition temperature
  • the relatively high glass transition temperature is the first glass transition temperature
  • the transparent polymer layer of the laminate may be heated to a temperature above the first glass transition temperature and below the second glass transition temperature.
  • the transparent polymer layer of the laminate may be heated to a temperature above the first glass transition temperature and below the third glass transition temperature.
  • the lowest glass transition temperature of transparent polymers (during more than one glass transition, the lowest glass transition temperature) can be 80 to 140 ° C, specifically, 100 to 140 ° C, more specifically, 110 to 130 ° C. .
  • the indirect heating and / or the energy transfer for heating is transferred to the transparent polymer layer through the substrate located at the bottom of the transparent polymer layer.
  • This can be achieved by direct heating. Indirect heating can be located underneath the heat source, and direct heating can be located above the heat source.
  • the transparent polymer layer As the transparent polymer layer is heated to the process temperature in the sinking phase, it is added to the conductive network. Under the action of gravity, the conductive network can sink into the transparent polymer layer.
  • the external force may be applied in the direction of the polymer layer.
  • the external force may be a pressure transfer member such as a plate or roller column, or a pressure transmitted through a gas phase having a pressure above atmospheric pressure.
  • the time to be maintained at the process temperature can, of course, be adjusted appropriately depending on the degree to which the conductive network is to be submerged. In one specific and non-limiting example, to ensure that all conductive networks are reliably submerged in a transparent polymer layer. Can be maintained for 10 seconds to 200 seconds at the process temperature, and more substantially 30 to 100 seconds at the process temperature.However, during this holding time, it is appropriate to determine the density of the conductive network, Of course it can be adjusted.
  • a cooling step for cooling the transparent polymer layer may be performed.
  • the cooling step can be performed when no more substantial conductive network sinks.
  • the conductive network sinks, and the transparent polymer layer are optionally, the conductive network sinks, and the transparent polymer layer.
  • Cooling can be achieved. By cooling the transparent polymer layer to increase the residual network sinking, part of the conductive network corresponding to the designed amount can be inserted into the transparent polymer layer and the remaining part can be projected onto the transparent polymer layer surface. have.
  • the amount of the conductive network projecting onto the transparent polymer layer surface is transparent.
  • the cooling of the transparent polymer layer may be artificial cooling using natural air cooling or a cooling fluid.
  • normal cooling means may be used in the lower part of the substrate.
  • a sinking sink step can be performed.
  • the sink energy can include infrared light, ultraviolet light, visible light, white light, or a combination of these.
  • the optical energy of the sink stage may at least partially heat the transparent polymer region positioned in contact with the lower portion of the conductive network by the light capable of heating the transparent polymer layer and / or the light energy absorbed by the conductive network. Softening light can be used.
  • the light capable of heating the transparent polymer layer may contain infrared rays. It means light with a wavelength range of 0.75 ⁇ to 1mm, also known as heat ray, as it is known to have a stronger thermal effect than visible or ultraviolet rays.Infrared rays are 0.75 to 3 ⁇ , near infrared, 3 to 25 wavelengths, 25 ⁇ to 1mm
  • the infrared rays of the sink stage can be irradiated for 5 sec to 5 minutes from 100 to 1000 W / cm 2 , but cannot be limited by the intensity and irradiation time of the irradiated infrared rays of the present invention. Of course.
  • the light absorbed by the conductive network is a conductive network (conductive nano
  • Light may include light having a wavelength corresponding to the absorption peak in the ultraviolet-visible spectroscopic spectrum of the unit (hereinafter, referred to as the conductive network absorption wavelength) .
  • the absorption wavelength of the conductive network is visible, specifically 430 In the range of from 600 nm, more specifically 400 nm to 800 nm, and more specifically 350 nm to 950 nm, the light absorbed by the conductive network may be white light.
  • the conductive nanounits forming the conductive network are prevented from being damaged by excessive light energy. In this respect, the white light can be irradiated in the form of a pill.
  • the intensity of the white light can be 300 to 1000 W / cm 2 , the width of the pill, the spacing of the pill, and the number of pils to be irradiated, to prevent damage to the substrate. It is sufficient that transparent polymers adjacent to the conductive network may be softened by the light energy absorbed by the conductive network. Width is the number of days 1msec to 10msec, Phelps spacing (gap pulse) which are 1.5 to 3 times the number of days Phelps width, the number of irradiation may be Phelps days once to 30 times.
  • Including light, or light containing infrared and white light can be irradiated, of which heat energy can be applied directly or indirectly with the light energy, in order to sink a faster and more stable conductive network.
  • both the fusion between the conductive nano units forming the conductive network (photosintering) and the sinking of the integrated conductive network by the optical sintering can be carried out by irradiating the light energy.
  • an excellent surface resistance uniformity is obtained even in a large area.
  • the dispersion contains an organic binder, but before the dispersion is applied, before the photonication and before the binder is removed.
  • a multi-stage light irradiation in which two or more different lights are irradiated twice, preferably a complex light is used.
  • Some of the binders are removed by light irradiation, and the light is sintered and sinked. Also, it is possible to manufacture transparent conductors with high surface resistance uniformity in large area, excellent bonding ability and good electrical conductivity.
  • the dispersion liquid is dispersed in the dispersion medium (transparent polymer for the transparent polymer layer.
  • Non-solvent together with conductive nano units, can contain organic binders.
  • the organic binder is preferably a low molecular weight natural polymer or a low molecular weight synthetic polymer having a molecular weight (weight average molecular weight) of 5xl0 5 or less, preferably 2xl0 5 or less. A high molecular weight exceeding the low molecular weight range indicated by the organic binder.
  • the organic binder present in the contact area may not be removed by light irradiation containing ultraviolet rays, and thus, the desired optical sintering may not be achieved.
  • the organic binder may have a molecular weight of 3,000 or more.
  • the present invention is organic
  • the low molecular weight organic binder can be selected from one or more of polyethylene glycol (PEG), polyvinylpyrrolidone (PVP), polyvinyl alcohol (PVA), polysaccharides and polysaccharide derivatives.
  • PEG polyethylene glycol
  • PVP polyvinylpyrrolidone
  • PVA polyvinyl alcohol
  • organic binders have molecular weights of 3,000 to 50,000, preferably 3,000 to
  • PEG low molecular weight polyethylene glycol
  • PVP low molecular weight polyvinylpyrrolidone
  • PVA low molecular weight polyvinyl alcohol
  • One or more can be selected from low molecular weight polysaccharides of 3,000 to 100,000 and low molecular weight polysaccharide derivatives of 3,000 to 200,000, preferably 3,000 to 100,000.
  • Low molecular weight polysaccharides include glycogen, amylose, amylopectin, calose, agar and algin, Alginate, pectin, carrageenan, cellulose, chitin, chitosan, curdlan, dextran, fructan, collagen, gellan gum, gum arabic, starch, xanthan, gum tragacanth ), Carayan, carabean, glucomannan or combinations of idols.
  • the polysaccharide derivatives may comprise cellulose esters or cellulose ethers.
  • organic binders can be low molecular weight salloth ethers
  • cellulose ethers can be carboxy-C1-C3-alkylcells, carboxy-C1-C3-alkyl hydroxy-C1-C3-alkylcells.
  • carboxy-C1-C3-alkylcells can include carboxymethylcells, and carboxy-C1-C3-alkylhydroxy-C1-C3-alkylcells are carboxymethyl hydroxyethylsal.
  • C1-C3-alkyl salose may include methyl cellulose, etc.
  • C1-C3-alkyl hydroxy-C1-C3-alkyl cellulose may be hydroxyethyl methyl salose, hydroxypropyl.
  • Hydroxypropylcelose or combinations thereof, wherein the combined hydroxy-C1-C3-alkylcellose may be hydroxyethylhydroxypropyl salose or alkoxyhydroxyethylhydroxypropylsalose (the alkoxy group).
  • the dispersion is 0.1 to 5% by weight, preferably 0.1 to
  • It can contain 1% by weight, more preferably ⁇ to 7% by weight of organic binder.
  • the content of the organic binder is such that when the dispersion containing the conductive nanounits is applied, the conductive nanounits can be uniformly and uniformly spread on the substrate, while minimizing the organic binder existing between the conductive nanounits in the contact region, and the light containing ultraviolet rays.
  • the amount of organic binder present in the contact area can be reliably removed by irradiation.
  • the aspect ratio, content, and dispersion medium of the conductive nano monomers contained in the dispersion are similar to those described in the 'conductive network'.
  • the selective removal of the organic binder present in the contact area between the nano-units, irradiated with ultraviolet light under conditions in which the organic binder cannot be removed by the ultraviolet-ray itself, is conducted by conducting nanoparticles having surface plasmons or photocatalytic properties. This can be achieved by irradiating the ultraviolet light in such a condition that the organic binder can be removed by the combination of the optical activity of the network and the ultraviolet light.
  • the conductive material of the conductive network preferably has the optical activity described above in the conductive network, i.e., the nanounits of the conductive network It may be nanowires, nano-lubes and / or nanobelts of conductive materials that generate surface plasmons or have photocatalytic properties.
  • One of the conductive materials having surface plasmons is gold, silver, copper, lithium, aluminum and their alloys.
  • a material selected from two or more, and a conductive material having a photocatalytic ability includes one or more metal oxides selected from titanium oxide, zinc oxide and tin oxide; and precious metals including gold, silver and platinum;
  • the conductive nano-unit having optical activity may include silver nanowires.
  • the organic polymer, the nano-units, and the dispersion medium containing the dispersion medium are transparent.
  • UV ultraviolet ray
  • the light irradiation may be performed in a multi-stage, and the multi-stage light irradiation may include a sequential irradiation of the first light irradiation and the 12 light irradiation.
  • the multi-stage light irradiation irradiates the first light including the first ultraviolet ray, and removes the line that removes the organic binder present in the contact area (including the intersecting area with the conductive nano units) at least in contact with the conductive nano units.
  • a fusion step in which the conductive nano-units are melted and bonded together by irradiating the second light including the step and the first white light, wherein the low U light irradiation and the second light irradiation are different from each other.
  • the first light irradiated during the first light irradiation includes first ultraviolet (UV) light and is contained in a dispersion by the first ultraviolet light.
  • First ultraviolet (UV) light and is contained in a dispersion by the first ultraviolet light.
  • Organic binders trapped on the substrate, such as conductive nano units, can be removed.
  • the organic binder present in the contact region between at least the substrate-conductive conductive nanounits can be partially removed by the ground light.
  • the first ultraviolet rays can mean light in the range of lOnm to 400nm, as known, ultraviolet rays have a very strong chemical reaction
  • the first ultraviolet ray may include UV-A in the 320-400 nm wavelength band, UV-B in the 280-320 nm wavelength band, UV-C in the 100-280 nm wavelength band, or a combination thereof.
  • UV-A in the 320-400 nm wavelength band
  • UV-B in the 280-320 nm wavelength band
  • UV-C in the 100-280 nm wavelength band
  • UV-A Ultraviolet rays are more effective in organic decomposition.
  • UV-C may be included, in which case all irradiated light may be a continuous light form in which light is continuously irradiated for a certain period of time, unless a mention is made of a specially irradiated light such as a pulse type.
  • the first ultraviolet ray may be irradiated in continuous light. Of course.
  • the organic binder is selectively removed.
  • the selective removal of the organic binder present in the contact region means that the organic binder remains on the substrate even after the first light irradiation, and furthermore, in the region other than the contact region, The conductive nano unit can be bound to the substrate by an organic binder.
  • the selective removal of the organic binder present in the contact area may be performed by irradiating the first ultraviolet ray on a condition that the organic light binder cannot be removed by the first photovoltaic light, specifically, the first ultraviolet light itself included in the first light.
  • the first ultraviolet rays can be removed under conditions that can cause the organic binder to be removed by the combination of the first ultraviolet rays and the optical activity of the conductive nano-units having polsmon and / or photocatalytic activity.
  • the organic binder provided in the conductive nano unit can be selectively removed at least in the contact region by combining with the ultraviolet 1 ultraviolet ray.
  • the first photovoltaic light specifically, the first ultraviolet light included in the first light is organic.
  • the intensity of the first ultraviolet ray may satisfy the following equation (2) when irradiated with the first light.
  • the organic binder film may be a film having an appropriate thickness for measuring the weight reduction rate, and may be a non-limiting example, the film having a thickness of 100 to 800 nm.
  • Equation 3 silver is the weight of the organic binder film defined in Equation 2 after the first ultraviolet irradiation, and M 0 is the weight of the organic binder film defined in Equation 2 of the first ultraviolet irradiation.
  • the organic binder contained in the conductive nanounit dispersion when the organic binder contained in the conductive nanounit dispersion is not inconsistent with the conductive nanounit, the organic binder is purely formed.
  • 1 minute irradiation In light irradiation, it is preferable that the organic binder is irradiated with an intensity that does not substantially occur (the weight loss rate according to relation 3 is less than ⁇ ).
  • the strength of satisfying relation 2 may be determined depending on the type of organic binder.
  • the first ultraviolet ray of the first light can be irradiated at an intensity of 0.1 to 5 mW / cm 2. The first ultraviolet ray is irradiated for 1 to 200 seconds. This invention may, but is not limited by the irradiation time of that ultraviolet light.
  • the intensity of the first ultraviolet light it is possible to selectively remove the organic binder, and furthermore, it is fundamental that the substrate is damaged by ultraviolet rays, especially when it is desired to manufacture a transparent transparent conductor on a thermally or chemically weak substrate. Can be prevented.
  • Organic binders present in the area preferably organic binders located at the junction between the other electrically conductive nanounits that are in contact with each other, are preferably removed as much as possible.
  • the organic binder existing in the contact region is removed by using the first ray and the optical activity of the conductive nanounit, and the first ultraviolet ray is removed for a short time.
  • the first light may further include a filament-type second white light together with the first ultraviolet light.
  • the first light may further include a filament-type second white light together with the first ultraviolet light.
  • the pulsed white light may play a role of promoting the decomposition of organic binders by a system of ultraviolet rays.
  • a polymer having a large molecular weight rather than a single molecular organic is normally used. These polymer organic matters have a much wider physical properties than single molecules, and these polymer-specific characteristics are inevitably decomposed and removed.
  • a hot spot is a contact area between the conductive nanounits.
  • hot spot 1 the organic binder present in the contact area between the conductive nanounits is more completely.
  • hot spots refer to the areas where very strong Korean electric fields are formed, and they are either nano-junctions or nano-junctions of metals on which surface plasmons occur. Can mean ⁇
  • the second white light may mean light including visible light including red, green and blue, and light having continuous wavelengths over the entire region of at least 430 to 600 nm, specifically at least 400 nm to 800 nm. Light having continuous wavelengths over a range of wavelengths, and more specifically, light having continuous wavelengths over at least 350 nm to 950 nm ranges.
  • a second white light source may be a xenon lamp, but the present invention is a white light source. It is not limited by.
  • the second white light is visible light, specifically at least 430 to 600 nm, more specifically at least 400 nm to 800 nm, and more specifically, 350 nm to 950 nm.
  • the second white light may contain light of a wavelength (nano monomer absorption wavelength) corresponding to the absorption peak of the conductive nano unit in the ultraviolet-visible spectroscopic spectrum of the conductive nano unit.
  • a second white light including the nano-unit absorption wavelength can be formed only by the white light source. If the wavelength differs from the wavelength of white light described above, the second white light is produced by a combination of white light and other light sources that produce nano-unit absorption wavelengths. It can be condensed light.
  • the Pils Brothers white light for removing the organic binder in the contact area can satisfy the following relation.
  • Equation 4 I [PL2 (exp) is the intensity of the white light at the first irradiation, and I IPL2 (0)
  • a second white light is applied to the reference body.
  • IiP L2 (0) is formed by applying and drying a reference dispersion of conductive nano units and dispersion medium.
  • the minimum strength at which fusion occurs in the contact region between the conductive nano-units when a single pulse is applied to the reference body with a pulse width of 10 msec, the minimum strength at which fusion occurs in the contact region between the conductive nano-units.
  • the organic binder present in the contact region is first decomposed and removed by the first light
  • the organic binder is preferably separated from the organic binder and the second light is preferably fused in the contact region.
  • the intensity of the pulsed white light should facilitate the decomposition of the organic binder, but should be irradiated with an intensity that does not cause partial melting of the conductive nano-units in the contact area between the conductive nano-units.
  • a representative conductive network forming material, and a material having representative optical activity is based on a nanowire network.
  • the intensity can be between 300 and 1000 W / cm 2.
  • the pulse width of the second white light, the spacing between the pillars, and the number of inspected pillars can be prevented from damaging the substrate and can be properly categorized to facilitate the disassembly and removal of the organic binder.
  • the fill width of the second white light may be between 1 msec and 10 msec, and the pulse interval (pill gap) may be 1.5 to 3 times the fill width.
  • the irradiation of the second white light is preferably a multi-pulse irradiation, which means that the second white light that satisfies the relation 4 is irradiated more than twice at regular intervals, so that the organic binder is decomposed faster than a single field irradiation.
  • the Dapils survey may mean more than two, specifically two to fifty fils, more specifically two to twenty fils, but the second white light of the present invention is investigated. Of course, it cannot be limited by the number of pillars, and of course, the number of pillars of the second white light to be irradiated can be properly adjusted according to the material of the organic barder.
  • the first light may include the Fils type white light together with the first ultraviolet light.
  • the first ultraviolet light is continuously irradiated, simultaneously with the irradiation of the first ultraviolet light, or The irradiation of the pulse type white light may be performed immediately before the irradiation of the first ultraviolet ray or the first ultraviolet ray is stopped. Specifically, when the first time of the first ultraviolet ray is irradiated, the first ultraviolet ray is started to be irradiated.
  • the point at which the Fils Brothers white light is irradiated may be within 0.9 t uvl at the same time as the first ultraviolet irradiation, but is not limited to the point at which the white light is irradiated by the present invention.
  • the first ultraviolet irradiation time is 1 to 100 sec, specifically 1 to 60 sec.
  • the second conductive light containing the pulsed first white light is added to the conductive nanounit on the substrate. Investigation may be performed by two light irradiation steps.
  • the contact area between the conductive nano units is melted.
  • conductive nano units By combining, conductive nano units can be physically combined in one body.
  • the first white light includes red, green, and blue.
  • the light source of the first white light may be a xenon lamp, but the present invention is not limited to the light source of white light.
  • the first white light similarly to the second white light, includes light of a wavelength corresponding to the absorption peak of the conductive nano monomer in the ultraviolet-visible spectroscopic spectrum of the conductive nano monomer (nano monomer absorption wavelength). You can do it
  • the first white light causing the adhesion (fusion) by partial melting in the contact region between the conductive nano-units may satisfy the following equation (5).
  • Equation 5 In> L1 (exp) is the intensity of the white light at the time of the second light irradiation, and 1 ⁇ , (0) is the same as that of the conductive nanounit dispersion, but does not contain an organic binder. In the reference body formed by drying, a white light is emitted to the reference body.
  • I IPL1 (C) It is the minimum strength that fusion occurs in the contact area between conductive nano units when a single field is applied with a 10 msec fill width
  • I IPL1 (C) has a single pulse of 10 msec at a width of 10 msec.
  • I IPL1 (c) is a reference made of conductive nano units and dispersion medium.
  • the application of the first white light to the reference body with a fill width of 10 msec results in partial application of the conductive nano-unit in the longitudinal direction of the major axis.
  • the first white light is caused to melt in the contact area by the short-pill irradiation, but the unwanted melting of the conductive nano-units in the area other than the contact area, Damage can be investigated with no strength.
  • Equation 5 can be similar to the conditions already established in the conventional method of dispersing conductive nano units in a dispersion medium without adopting an organic binder and then fusion of conductive nano units by sintering.
  • the organic binder is adopted for uniform and homogeneous dispersion and contact of the conductive nano-units
  • the optical sintering is performed without removing the organic binder at least in the contact region
  • the condition of the relation 5 is satisfied.
  • the condition of the relation 5 is satisfied.
  • the conductive nano unit itself When conducting light sintering, the conductive nano unit itself is partially melted or deformed even if the intensity of white light, pulse width, number of pillars, pulse interval, etc. are changed, and the conductive nano unit itself is damaged. No monomer network is produced.
  • relation 5 and the conditions described above are possible conditions by the configuration of multistage light irradiation of the first ultraviolet-first white light when using an organic binder and a conductive nano monomer dispersion containing conductive nano monomers.
  • the contact region is fused using a Pils type white light, so that the conductive nano material is satisfied under the condition that relation 5 is satisfied. Fusion between units can be achieved.
  • the first white light can be irradiated with a single pill by removing the organic binder present in the contact area by the first light irradiation, and then fusion welding the contact area using pulse white light. Even if white light is irradiated, contact areas can be fused evenly in a large area.
  • the intensity of the first white light may be 2000 to 3000 W / cm 2 based on a silver nanowire network, which is a representative conductive network forming material and has a representative optical activity.
  • a pulse brother white light that satisfies relation 5 can be irradiated with single pulses or two to five multiple pulses, as described below, when irradiating the first white light with a second ultraviolet light, Even with the irradiation of white light, a very stable and firm fusion occurs, which is better. However, when irradiated with a pull, the width of the pulse is sufficient to allow stable fusion of the conductive nano-units and not to damage the substrate.
  • the pulse width may be between 5 msec and 15 msec, but is not limited by the fill width of the white light of the present invention.
  • the contact area of the conductive nano-units is instantaneously heated to very silver and fusion between the conductive nano-units can be achieved.
  • the second light may include a second ultraviolet ray, an infrared ray, or a second ultraviolet ray and an infrared ray together with the pulse type white light.
  • the second light may include 2 ultraviolet rays together with the filth brother white light.
  • the crab 2 light may include the Filth white light, the second ultraviolet light and the infrared light.
  • the second light includes 12 ultraviolet rays
  • the second light is irradiated continuously for a period of time.
  • Ultraviolet light is preferably at least irradiated with conductive nanounits simultaneously with the irradiation of the first white light or prior to the irradiation of the first white light, i.e., the pulsed white light can be irradiated with the second irradiation.
  • Simultaneous fusion of the white light and the second ultraviolet light not only results in fusion between the conductive nano-units, but also improves the transparency of the transparent conductor by decomposing and removing organic binders remaining in the substrate (including the conductive nano-units) after the first light irradiation.
  • the conductive network can sink into the transparent polymer layer smoothly.
  • the second light irradiation may be irradiated with the first white light at the same time as the irradiation of the second ultraviolet ray, or immediately before the irradiation of the second ultraviolet ray is stopped.
  • the second light irradiation can satisfy the following expression (6).
  • Equation 6 2 is the total time (sec) for which the second ultraviolet ray is irradiated, and 1 ⁇ is the second.
  • the second ultraviolet light may mean light having a wavelength in the range of 10 nm to 400 nm independently of the first ultraviolet light.
  • the second ultraviolet light is independent of the first ultraviolet light, and UV-A, 280 to 280 in the wavelength range of 320 to 400 nm.
  • UV-B in the 320nm wavelength band, UV-C in the 100-280mn wavelength band, or a combination thereof.
  • the intensity of the 2 ultraviolet rays is also the intensity satisfying the relation 1, as described above based on the system 1 ultraviolet ray, i.e., the intensity of the second ultraviolet ray is not removed by the second ultraviolet ray alone. It is preferable that the organic binder be removed to the extent that the organic binder is removed, together with the heat generated during the second white light irradiation or the optical activity provided by the conductive nano-units. In the case of synthetic polymers, the intensity of the second ultraviolet ray may be 0.1 to 5 mW / cm 2 , independent of the first ultraviolet ray.
  • the irradiation time of the second ultraviolet ray is determined when irradiated on a substrate that is not coated with a conductive nano-dispersion.
  • the second ultraviolet irradiation time is 1 to 100 sec, specifically 10 to 10 hours. 60se c, more specifically 20 to 60 sec (t uvl )
  • the first white light is preferably irradiated at the point where the second ultraviolet ray is continuously irradiated for at least 0.5 2 .
  • the second light, together with the first white light preferably contains a total of 2 ultraviolet rays.
  • the first and second light can be irradiated continuously.
  • the independent light is irradiated to the conductive nanounits in which the first light is irradiated.
  • the continuous and sequential irradiation of the first light and the second light may mean that there is no intentional pause between the irradiation of the first light and the light of the second light.
  • the survey may be modified depending on the construction system of the manufacturing process line. In this case, when the second light includes the second ultraviolet light and the intensity of the second ultraviolet light is the same as the first ultraviolet light, the continuous irradiation continuously irradiates the ultraviolet light for a total time of and t uv2 hours, so that the first ultraviolet light of the first light Two broad systems of two ultraviolet rays can be implemented.
  • the second light including the second ultraviolet light and the first white light
  • conductive nanounits By investigating, conductive nanounits can fuse together and form a physically conductive network.
  • heat generated in the contact region of the conductive nano-unit during the first white light irradiation with the second ultraviolet ray is transmitted through the conductive network.
  • the transparent polymer area in contact with the conductive network is heated, so that the conductive network can sink into the transparent polymer layer.
  • the conductive network in which the conductive nano units are combined as a result of the photonization of the conductive nano units, can sink into the transparent polymer layer. It can correspond to the energy application of the phase.
  • the infrared ray is irradiated during the second light irradiation.
  • the second light may further contain infrared light.
  • 11 white light may be irradiated while 2 ultraviolet rays are irradiated, and infrared rays may be irradiated after the first white light is irradiated, or with the irradiation of the i white light.
  • Infrared refers to light in the ⁇ 75 ⁇ to lmm wavelength band, and is known as heat as it has a strong thermal activity compared to visible or ultraviolet light. Infrared may include near-infrared rays of 0.75 to 3 ⁇ wavelengths, infrared rays of 3 to 25 wavelengths, far infrared rays of 25 ⁇ to lmm or a combination thereof.
  • the infrared ray is 100 to 1000.
  • the present invention cannot be limited by the intensity of the infrared rays irradiated and the irradiation time.
  • infrared rays can be selectively irradiated as the conductive network can sink into the transparent polymer layer with only the second ultraviolet light and the first white light.
  • the present invention includes a transparent conductor prepared by the above-described manufacturing method.
  • the present invention is produced by the above-mentioned manufacturing method, the light transmittance is 90% or more,
  • the present invention includes a display device comprising a transparent conductor manufactured by the above-described manufacturing method.
  • the present invention includes flat liquid crystal displays comprising a transparent conductor manufactured by the above-described manufacturing method.
  • the present invention is a touch including a transparent conductor manufactured by the above-described manufacturing method.
  • It includes a touch panel.
  • the present invention includes electroluminescent devices comprising a transparent conductor manufactured by the above-described manufacturing method.
  • the present invention includes a transparent conductor prepared by the above-mentioned manufacturing method.
  • the present invention relates to a battery comprising a transparent conductor manufactured by the above-described manufacturing method.
  • the present invention includes electromagnetic wave shielding layers comprising transparent conductors prepared by the above-described manufacturing method.
  • a transparent conductor according to one embodiment of the present invention is provided with a substrate
  • the composite layer includes a transparent polymer layer having a glass temperature (Tg) of 80 ° C or higher; and a conductive network embedded in the transparent polymer layer; the conductive network includes nanowires and nanotubes. And a network of one or more selected nano-units in the nanobelt, and based on the total thickness of the composite layer, up to 5% from the lower surface that is in contact with the substrate of the composite layer. The density of nano units in the lower region is the opposite of the lower surface of the composite layer.
  • Tg glass temperature
  • the density of nano-units in the lower region may be equal to the number of nano-units in the lower region divided by the area of the lower surface.
  • the granularity of nano-units in the upper region can be counted by counting the number of nano-units located in the upper region and divided by the surface area (the same as that of the lower surface).
  • the transparent conductor according to an embodiment of the present invention is
  • Tg glass transition temperature
  • the number of nano-units on the surface opposite to the lower surface is larger than the number of nano-units on the lower surface, which includes the network and is in contact with the substrate of the composite layer.
  • the number of monomers can mean the number of nano-units per unit area of the lower surface, and the number of nano-units on the surface can mean the number of nano-units per unit area of the surface.
  • the nano-unit is located on the surface.
  • the difference in the number of nano-units between surfaces can be represented by a method of first forming a transparent polymer layer on a substrate, then softening the transparent polymer layer by heating it above the glass transition temperature, and sinking the conductive network to the softened transparent polymer layer. It is a characteristic.
  • a transparent conductor according to one embodiment of the present invention is based on a substrate
  • the composite layer has a glass transition temperature (Tg; glass temperature) of 80 ° C or more, specifically 80 to 140 ° C, more specifically, 100 to 140, or more.
  • Tg glass transition temperature
  • the transparent polymer layer includes 110 to 130 ° C .; and a conductive network having a part embedded in the transparent polymer layer; wherein the conductive network is formed of one or more selected nano units from nanowires, nanotubes, and nanobelts. It may be a network.
  • the projected conductive network area may be uncoated on its surface with a transparent polymeric material in the surface.
  • the extruded conductive network The domains (extruded nano-units) are the surfaces of the material itself that make up the conductive network. You can have
  • the transparent conductor according to one embodiment of the present invention has a characteristic in which a part of the conductive network is embedded in the transparent polymer layer, and these characteristics first form a transparent polymer layer on the substrate as described above. After that, the transparent polymer layer is heated to a temperature above the glass transition temperature to soften, and the soft transparent polymer layer is characterized by sinking the conductive network.
  • the protruding conductive network area can be controlled by softening the transparent polymer layer by heating it above the glass transition temperature and by sinking and sinking the conductive network in the softened transparent polymer layer.
  • 0.1 to 30% by weight of the total conductive network may be projected onto the surface of the transparent polymer layer, i.e., 0.1 to 30% by weight of the total weight of the nanounits forming the conductive network.
  • the nanounit may be protruded onto the surface of the transparent polymer layer.
  • the transparent conductor according to one embodiment of the present invention includes a composite layer in which a conductive network is sinked in a substrate-formed transparent polymer layer, and the conductive network includes nanowires, nano-leubes, and the like. It may be a network of one or more nano units selected from the nanobelt.
  • a transparent conductor according to an embodiment of the present invention includes a conductive phase nano-unit network in which conductive nano-units are melt-bonded in the contact area between conductive nano-units and integrally bonded, and have a large area conductive nano-unit network having an area of at least 20 mm x 20 mm.
  • transparent conductors having a plane resistance uniformity of 90% or more, which is defined by the following equation 7, are included.
  • the standard deviation of the sheet resistance and the sheet resistance average are based on a large-area transparent conductor having an area of at least 20 mm x 20 mm, and the surface area is divided equally into nine or more regions, and then randomly at least ten times in each divided region. It may have been obtained by measuring.
  • the transparent conductor according to one embodiment of the present invention has a surface resistance increase rate of 1.4 or less, which is defined by Equation 8 below, during a 1000 bending test (two point bending test) with a radius of curvature of 1 cm, and has physical flexibility. Electrical conductivity can be stably maintained even with repeated deformation.
  • the transparent conductor according to the embodiment of the present invention may have an average surface resistance of 100 ohm / sq or less.
  • the transparent conductor according to one embodiment of the present invention has a light transmittance of 90% or more.
  • Haze can be less than 1.5%.
  • Light transmittance is measured according to ASTM D 1003.
  • the haze may be measured according to ASTM D 1003.
  • the material, the material of the transparent polymer layer, the material of the conductive network, the structure, and the like are the same as described above, and the same as described above. And all of the foregoing in the application of energy.
  • the thickness of the transparent polymer layer is 50 nm to ⁇ , specifically, 50 nm
  • the thickness of the composite layer is 50nm to ⁇ ⁇ , specifically 50nm to 2000nm, but the number of days, and the like.
  • the composite layer is 1 to 30 parts by weight based on 100 parts by weight of transparent polymer
  • it may contain, but is not limited to, 5 to 30 parts by weight, more specifically 5 to 15 parts by weight of conductive network.
  • the present invention includes a display device including the transparent conductor described above.
  • the present invention includes flat liquid crystal displays comprising the transparent conductor described above.
  • the present invention includes a touch panel including the transparent conductor as described above.
  • the present invention includes electroluminescent devices comprising the transparent conductor described above.
  • the present invention relates to photovoltaic cells comprising the transparent conductor described above.
  • the present invention provides an anti-static layer comprising the above-mentioned transparent conductor.
  • the present invention includes electromagnetic wave shielding layers comprising the transparent conductor described above.
  • a transparent polymer layer having a glass transition temperature of 118.39 ° C. was used to form a transparent polymer layer with a thickness of 1000 nm.
  • Non-solvent deionized water was dispersed in a silver nanowire as a dispersion medium. The dispersed dispersion was dispersed on a transparent polymer layer and then dried to form a silver nanowire network.
  • the silver nanowires had an average diameter of 25 nm and an aspect ratio of 1000.
  • [304] was prepared by heating the transparent conductor since the transparent polymer layer to 120 ° C, cooled and then preserves the 90 seconds at a temperature of 120 o C.
  • the light transmittance and haze of the substrate were 92.57% (light transmittance) and 0.78% (haze), and the light transmittance and haze of the substrate on which the transparent polymer layer was formed were 92.25% and 0.54%.
  • the light transmittance of the prepared transparent conductor was 91.31%, haze was 1.2%, and sheet resistance was 70 to 100 ohm / sq.
  • Nanowires with average diameter of 20 nm and average length of 25 were used as conductive nano-units.
  • the ultraviolet-visible spectroscopic spectrum shows that the absorption peak of nanowire is
  • hydroxypropylmethyl cellulose HPMC having an increased average molecular weight of 86,000 was used, and deionized water was used as a dispersion medium. %of
  • Silver wire and hydroxypropylmethyl salose were added to the dispersion medium to contain hydroxypropyl methyl sal and then mixed. Subsequently, the dispersion was coated using a spin coating on a substrate on which a transparent polymer layer was formed. On the basis of the extension part, 15 parts of the dispersion were coated so that a silver nanowire network was formed.
  • the coating was dried by irradiating near infrared with the intensity of 350W for 10 sec using a near-infrared lamp (Adphos L40).
  • Example 2 The same procedure as in Example 2 was carried out, except that the ultraviolet ray lamp and the xenon lamp were dried on the dried coating film.
  • 2.78mW / cm 2 chair ultraviolet ray (first ultraviolet ray) was irradiated for 5 seconds, and at the same time with ultraviolet irradiation, pulse width 5msec, Phils gap 10msec, 666W / cm 2 intensity 15 times white white light (second white light)
  • 3.13mW / cm 2 chair ultraviolet ray (second ultraviolet ray) is irradiated for 50 seconds, and once before the ultraviolet ray (second ultraviolet ray) irradiation is stopped, with a pulse width of 15msec and 2800W / cm 2 intensity.
  • a transparent conductor was produced by irradiating a pils type white light (first white light).
  • the area of the prepared transparent conductors was 20 mm x 20 mm, and the corresponding areas were 9 pieces.
  • the surface resistance was randomly measured ten times for each divided region using a 4-point probe, and the surface resistance average and the surface resistance deviation were obtained by combining the measurement results of all divided regions.
  • the surface resistance uniformity of the manufactured transparent conductor was found to be 98% or higher regardless of the intensity during the first ultraviolet irradiation, and the conductivity of the silver nanowire network was better due to the fusion between the silver nanowires and the average surface resistance of the transparent conductor. It was confirmed to be improved to 83 ohm / sq.
  • a bending test was performed on the manufactured transparent conductors.
  • the bending test was carried out 1000 times at a bending radius of 10 mm through a two-point bending test.
  • the exposed silver nanowires were observed after removing the substrate, etching the transparent polymer layer to a thickness of 50 nm from the interface based on the interface between the substrate and the transparent polymer layer. As a result, it was confirmed that silver nanowire was practically nonexistent in the lower region.
  • the transparent polymer layer was etched away from the surface of the transparent polymer layer to a thickness of 50 nm. It was confirmed that the wire was present.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Laminated Bodies (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Conductive Materials (AREA)

Abstract

본 발명에 따른 투명 전도체의 제조방법은 a)기재상 투명 고분자층과 전도성 네트워크가 순차적으로 적층된 적층체를 제조하는 단계; 및 b) 상기 적층체에 에너지 인가하여,상기 전도성 네트워크를 투명 고분자층으로 가라앉히는 (sink)단계;를 포함한다.

Description

명세서
발명의명칭:투명전도체및이의제조방법 기술분야
[1] 본발명은투명전도체및이의제조방법에관한것으로,상세하게,절연기재와 도전막간현저하게높은결착력을가지며,균일하고낮은면저항을가지면서도, 높은투과율을갖는투명전도체및이의제조방법에관한것이다.
배경기술
[2] 투명전도체는높은광투과율의절연기재상에코팅된얇은도전막을
의미한다.투명전도체는적절한광학적투명성을가지며표면도전성 (surface conductivity)을갖는다.표면도전성을갖는투명전도체는평판액정
표시장처 (flat liquid crystal displays),터치패널 (touch panel),전자발광
장치 (electroluminescent devices),및태양전지 (photovoltaic cells)등,투명성과 도전성이동시에요구되는분야에서투명전극으로널리사용되고있으며,대전 방지증 (anti-static layers)이나전자기파차폐증 (electromagnetic wave shielding layers)로도널리사용되고있다.
[3] 인듐주석산화물 (indium tin oxide;ITO)과같은금속산화물은우수한광학적 투명성및전기적도전성을가지나,물리적층격에의해손상되기쉽고, 물리적인변형이불가한단점과함께,제조시고비용아소모될뿐만아니라, 고온공정을요구하는한계가있다.
[4] 도전성폴리머의경우,그전기적특성및광학적특성이떨어질뿐만아니라, 화학적및장기적안정성이떨어지는문제가있다.
[5] 이에 ,우수한전기적,광학적특성을가지고,장기간안정적으로그물성을
유지할수있으며,물리적변형이가능한투명전도체에대한요구가지속적으로 증가하고있다.
[6] 이러한요구에따라,대한민국공개특허제 2013-0135186호과같이,절연성
기재상,은나노와이어와같은전도성나노와이어의네트워크가유기
매트릭스에함입되어있는구조의투명전도체가개발되고있다.
[7] 그러나,이러한투명전도체는물리적으로휘어짐이가능하나,절연성
기판과의부착력이취약하여그내구성에문제가있으며,표면의전기적특성이 균일하지못한한계가있다.
[8]
발명의상세한설명
기술적과제
[9] 본발명의목적은기판과도전막간현저하게높은결착력을가져,장기간
반복적인물리적변형도안정적인전기적특성을유지하고,대면적에서도 균일하고낮은면저항을가지며,우수한투명도를가질수있는투명전도체및 이의제조방법을제공하는것이다.
[10]
과제해결수단
[11] 본발명에따른투명전도체의제조방법은 a)기재상투명고분자층과전도성 네트워크가순차적으로적층된적층체를제조하는단계; b)적층체에에너지를 인가하여,전도성네트워크를투명고분자층으로가라앉히는 (sink)단계;를 포함한다.
[12] 본발명의일실시예에따른투명전도체의제조방법에있어,인가되는
에너지는열에너지,광에너지또는열과광에너지일수있다.
[13] 본발명의일실시예에따른투명전도체의제조방법에있어, b)단계는
에너지를인가하여적층체의투명고분자층의투명고분자를유리전이은도 이상으로가열함으로써,전도성네트워크를투명고분자층으로가라앉히는 단계를포함할수있다.
[14] 본발명의일실시예에따른투명전도체의제조방법에있어,인가되는
에너지는적어도열에너지를포함할수있다.
[15] 본발명의일실시예에따른투명전도체의제조방법에있어, b)단계에서 인가되는에너지는적어도열에너지를포함하며, b)단계는,적층체의투명 고분자층을투명고분자의유리전이은도 (Tg; glass temperature)이상으로 가열하는단계를포함할수있다.
[16] 본발명의일실시예에따른투명전도체의제조방법에있어, b)단계에서 인가되는에너지는적어도광에너지를포함하며 , b)단계에서,적외선 (IR), 자외선 (UV),가시광선,마이크로파또는이들의조합인광이조사될수있다.
[17] 본발명의일실시예에따른투명전도체의제조방법에있어,전도성
네트워크는전도성나노와이어,전도성나노류브및전도성나노벨트에서하나 또는둘이상선택되는나노단위체의네트워크일수있다.
[18] 본발명의일실시예에따른투명전도체의제조방법에있어,전도성
네트워크는은나노와이어,은나노벨트,탄소나노튜브,탄소나노와이어및 탄소나노벨트에서하나또는둘이상선택되는나노단위체의네트워크일수 있다.
[19] 본발명의일실시예에따른투명전도체의제조방법에있어,전도성
네트워크는나노단위체가서로물리적으로결착된다공성구조체또는나노 단위체가서로접촉하거나얽혀형성되는다공성구조체일수있다.
[20] 본발명의일실시예에따른투명전도체의제조방법에있어,투명고분자층의 투명고분자의유리전이온도는 80내지 140°C일수있다.
[21] 본발명의일실시예에따른투명전도체의제조방법에있어,투명고분자층의 투명고분자는폴리에스테르 (polyester),폴리에틸렌
테레프탈레이트 (polyethylene terephthalate)(PET),아크릴레이트 (acrylate)(AC), 폴리부틸렌테레프탈레이트 (polybutylene terephthalate),폴리메틸
메타크릴레이트 (polymethyl methacrylate)(PMMA),아크릴수지 (acrylic resin), 폴리카보네이트 (polycarbonate)(PC),폴리스티렌 (polystyrene),
트리아세테이트 (triacetate)(TAC),폴리비닐알콜 (poly vinyl alcohol),폴리비닐 염화물 (polyvinyl chloride),폴리비닐리덴염화물 (polyvinylidene chloride), 폴리에틸렌 (polyethylene),에틸렌 -비닐아세테이트코폴리머 (ethylenevinylacetate copolymer)들,폴리비닐부티랄 (polyvinyl butyral),금속이은 -교차결합된 에틸렌-메타크릴산코폴리머 (metal ion-crosslinked ethylene-methacrylic acid copolymer)들,폴리우레탄 (polyurethane),셀로판 (cellophane)및
폴리올레핀 (polyolefin)에서하나또는둘이상의흔합물일수있다.
[22] 본발명의일실시예에따른투명전도체의제조방법에있어, a)단계는, al) 투명고분자또는투명고분자의중합단위체를함유하는제 1용액을기재상 도포하여도포막을형성하는단계;및 a2)도포막을건조하는단계;를포함할수 있다ᅳ
[23] 본발명의일실시예에따른투명전도체의제조방법에있어, a2)단계후,또는 a2)단계와동시에,도포막의투명고분자또는투명고분자의중합단위체를 증합하는단계;가더수행될수있다.
[24] 본발명의일실시예에따른투명전도체의제조방법에있어,투명고분자층은 패턴화또는비패턴화된것일수있다.
[25] 본발명의일실시예에따른투명전도체의제조방법에있어, a)단계는, a3) 투명고분자층이형성된기재의투명고분자층표면에,전도성나노와이어, 전도성나노류브및전도성나노벨트에서하나또는둘이상선택되는나노 단위체가분산매에분산된분산액을도포하는단계;를포함할수있다.
[26] 본발명의일실시예에따른투명전도체의제조방법은 a3)단계후,분산액이 도포된도포막에적외선 (IR)을포함하는광을조사하여건조하는단계;를더 포함할수있다.
[27] 본발명의일실시예에따른투명전도체의제조방법에있어,분산액은유기 바인더를더함유할수있다.
[28] 본발명의일실시예에따른투명전도체의제조방법에있어,유기바인더는 분자량 (중량평균분자량, Mw)이 5xl05이하의천연또는합성폴리머일수있다.
[29] 본발명의일실시예에따른투명전도체의제조방법에있어,유기바인더는 다당류,다당류유도체,폴리에틸렌글리콜 (PEG);폴리비닐피롤리돈 (PVP);및 폴리비닐알콜 (PVA)군에서하나또는둘이상선택될수있으며,다당류는 글리코겐,아밀로오스,아밀로펙틴,칼로오스,아가,알긴,알지네이트,펙틴, 카라기난,셀를로오스,키틴,키토산,커드란,텍스트란,프럭탄 (fructane),콜라겐, 젤란검 (gellan gum),검아라빅,전분,잔탄,검트래거캔스 (gum tragacanth), 카라얀 (carayan),카라빈 (carabean),글루코만난또는이들의조합을포함할수 있고,다당류유도체는셀를로스에스테르또는셀를로스에테르를포함할수 있다.
[30] 본발명의일실시예에따른투명전도체의제조방법에있어,전도성
네트워크의전도성물질은표면플라즈몬또는광촉매능을포함하는광학적 활성을가질수있다.
[31] 본발명의일실시예에따른투명전도체의제조방법은투명고분자층표면에 도포된나노단위체에제 1자외선 (UV)를포함하는제 1광을조사하는계 1광조사 단계;및제 1자외선이조사된나노단위체에필스형제 1백색광을포함하는제 2 광을조사하는제 2광조사단계 ;를포함할수있다.
[32] 본발명의일실시예에따른투명전도체의제조방법에있어,제 2광은제 2 자외선,제 2적외선또는제 2자외선과제 2적외선을더포함할수있다.
[33] 본발명의일실시예에따른투명전도체의제조방법에있어,제 1광은펄스형 제 2백색광을더포함할수있다.
[34] 본발명의일실시예에따른투명전도체의제조방법에있어,제 2광조사
단계에서, b)단계가수행될수있다.즉,제 2광조사단계에의해,전도성 네트워크가투명고분자층으로가라앉을수있다.
[35] 본발명의일실시예에따른투명전도체의제조방법에있어,제 1백색광및제 2 백색광은각각나노단위체의자외선-가시광선분광스펙트럼에서나노 단위체의흡광피크에해당하는파장의광을포함할수있다.
[36] 본발명은상술한제조방법으로제조된투명전도체를포함한다.
[37] 본발명의일실시예에따른투명전도체는기재;및기재상위치하는
복합층;을포함하고,복합층은유리전이은도 (Tg; glass temperature)가 80°C 이상인투명고분자층;및투명고분자층에함입된전도성네트워크;를 포함하며,전도성네트워크는나노와이어,나노튜브및나노벨트에서하나또는 들이상선택되는나노단위체의네트워크를포함하고,복합층의총두께를 기준으로,복합층의기재와접하는면인하부면으로부터 5%두께에이르는 하부영역에서의나노단위체밀도대비,복합층의하부면의대향면인
표면으로부터 5%두께에이르는상부영역에서의나노단위체의밀도가 상대적으로클수있다.
[38] 본발명의일실시예에따른투명전도체는기재;및상기기재상위치하는 복합층;을포함하고,복합층은유리전이은도 (Tg; glass temperature)가 80°C 이상인투명고분자층;및투명고분자층에일부가함입된전도성네트워크;를 포함하며,전도성네트워크는나노와이어,나노튜브및나노벨트에서하나또는 둘이상선택되는나노단위체의네트워크일수있다.
[39] 본발명의일실시예에따른투명전도체는기재상형성된투명고분자층에, 전도성네트워크가가라앉아 (sink)형성된복합층을포함하며,전도성
네트워크는나노와이어,나노류브및나노벨트에서하나또는둘이상선택되는 나노단위체의네트워크일수있다.
[40] 본발명의일실시예에따른투명전도체에있어,투명전도체의광투과율은 90%이상이며,헤이즈 (haze)는 1.5%이하일수있다.
[41] 본발명의일실시예에따른투명전도체에있어,투명전도체는적어도
20mmx20mm의면적을기준으로,하기관계식 1로규정되는면저항균일도가
90%이상일수있다.
[42] (관계식 1)
[43] 면저항균일도 (%)=[1- (면저항표준편차) /면저항평균)] xlOO
[44] 본발명의일실시예에따른투명전도체에있어,투명전도체는 1cm의곡률 반경으로 1000회의굽힘테스트시,하기의관계식 2로규정되는면저항 증가율이 1.4이하일수있다.
[45] (관계식 2)
[46] 면저항증가율 =굽힘테스트후의면저항 /굽힘테스트전의면저항
[47] 본발명의일실시예에따른투명전도체에있어,투명전도체의평균면저항은
100 ohm/sq이하일수있다.
[48] 본발명의일실시예에따른투명전도체에있어,전도성네트워크는나노
단위체가서로물리적으로결착된다공성구조체또는나노단위체가서로 접촉하거나얽혀형성되는다공성구조체일수있다.
[49]
발명의효과
50] 본발명에따른투명도전체는기재와의결착력이극히우수한장점아있으며, 대면적에서도균일하고우수한표면전도도를가지며,극히높은광투과율및 낮은헤이즈특성을갖는장점이있다.
[51] 또한,본발명에따른투명도전체는극히용이하고간단한공정을통해패턴화 - 가능하며,나아가,패턴화된표면 (투명도전체의측면들)이매우잘규정된평면 형상임에따라,극미세패턴의형성이가능하고정밀한패턴의형성이가능한 장점이있다.
[52] 본발명에따른제조방법은상술한우수한특성을갖는투명전도체를매우 간단한방법으로대량생산할수있는장점이있으며,특히열에매우취약한 폴리머기판의손상없이상온대기조건하에서극히짧은시간내에우수한 투명도및낮은면저항을갖는투명전도체를제조할수있어,를투롤공정에 적용이용이하여플렉서블투명전극의대량생산을가능하게한다.
[53]
도면의간단한설명
[54] 도 1은본발명의실시예 2에서제조된투명전도체의표면을관찰한
주사전자현미경사진이며,
[55] 도 2는본발명의실시예 2에서제조된투명전도체의표면을관찰한다른
주사전자현미경사진이다. 발명의실시를위한형태
[57] 이하본발명의투명전도체및이의제조방법을상세히설명한다.이때,
사용되는기술용어및과학용어에있어서다른정의가없다면,이발명이 속하는기술분야에서통상의지식을가진자가통상적으로이해하고있는 의미를가지며,하기의설명및첨부도면에서본발명의요지를불필요하게 흐릴수있는공지기능및구성에대한설명은생략한다.
[58] 통상적으로,전도성나노와이어네트워크에기반한투명전도체를제조하기 위해,절연성기재에은나노와이어가분산된액을도포한후건조하여은 나노와이어네트워크를형성한후,추가적인고분자바인더물질을은
나노와이어네트워크상부에오버코팅 (overcoating)하여,투명전도체를 제조하는방법이사용되고있다.
[59] 그러나,이러한방법은,절연성인고분자바인더물질이오버코팅됨에다라, 투명전도체의표면도전성이떨어질뿐만아니라,위치에따라표면도전성이 달라지는둥,면저항의균일도가떨어지는단점이있다.이러한전기적특성 저하와함께 ,보다큰문제점으로지적되는것은,절연성기재와고분자바인더 물질로덮인은나노와이어네트워크인복합층간의결착력이떨어져,반복적인 물리적변형에취약하다는점이다.
[60] 본출원인은이러한종래의투명전도체가갖는문제점들을해결하기위해,
― ― 장기간의연구를수행한결과,기재에투명고분자층을먼저형성시킨후,
에너지를인가하여연화된투명고분자층에전도성네트워크를
가라앉히는 (sink)방법을통해,투명전도체를제조하는경우,기재와투명 고분자에함입된전도성네트워크간극히향상된결착력을가지며,투명 전도체가대면적에서도균일한면저항을가질수있으며,매우우수한표면 도전성을가질수있음을발견하였다.또한투명고분자층을연화시켜전도성 네트워크를가라앉혀투명고분자와전도성네트워크의복합층을제조하는 경우,복합층의표면이오버코팅에의해제조되는것과버금가는매우매끄러운 표면을가질수있어,높은광투과율및낮은헤이즈특성의구현또한,가능하다.
[61] 또한,열에너지뿐만아니라,광에너지에의해서도,물리적으로일체인전도성 네트워크의형성및물리적으로일체인전도성네트워크를투명고분자층에 가라앉히는것이가능하여,단시간에대면적으로,대량생산가능하며,연속 공정으로투명전도체를제조할수있어,상업적효용가치가매우크다할수 있다.나아가,광에너지를이용한투명전극의제조시,기술적난제로여겨지는, 대면적에서의균일하고우수한전기적특성을구현할수있는방법을제공한다.
[62] 본발명에따른투명전도체의제조방법은 a)기재상투명고분자층과전도성 네트워크가순차적으로적층된적층체를제조하는단계; b)적층체에에너지를 인가하여,전도성네트워크를투명고분자층으로가라앉히는 (sink)단계;를 포함한다. [63] 즉,본발명에따른투명전도체의제조방법은투명고분자층이형성된기재의 투명고분자층상부로,투명고분자층과접하도록전도성네트워크를형성한후, 에너지인가에의해,적어도전도성네트워크와접하는투명고분자층영역이 연화되어,전도성네트워크가투명고분자층으로가라앉는방법을통해,투명 전도체를제조할수있다.
[64] 상술한바와같이,에너지인가에의해,투명고분자층전체가연화될수
있으며,또는,이와달리,투명고분자층에서전도성네트워크와접촉하는
영역이부분적으로연화될수있다ᅳ이때,투명고분자의 '연화 '는인가되는 에너지에의해,투명고분자층을이루는투명고분자물질이유리전이온도 이상의온도및용융온도미만의온도로가열된상태를의미할수있다.
[65] 종래와같이,기재에전도성네트워크를먼저형성한후,바인더인투명
고분자를오버코팅하는경우,기재와의결착력,전기적균일성및표면 전도도가떨어지게된다.상세하게,전도성네트워크상부로도포되는투명 고분자의오버코팅에의해,전도성네트워크들을구성하는전도성나노 단위체들은기재측으로밀리는힘올받게된다.또한,일나노단위체를 기준으로접하거나상하부에위치하는다른나노단위체의존재나위치등에 따라오버코팅에의해인가되는힘에의한이동정도또한서로달라지게된다. 또한,오버코팅이완료 (투명고분자의도포및경화가완료)된후,나노 단위체들이모두투명고분자에묻혀있는상태가된다.또한,바인더로 사용되는투명고분자가오버코팅됨에따라,투명고분자는기재와전도성 네트워크간의빈공간을통해,부분적으로기재와결착된상태일수밖에없다.
[66] 그러나,본발명의일실시예에따른투명전도체의제조방법은상술한바와 같이,기재에투명고분자층을먼저형성시킨후,에너지를인가에의해연화된 투명고분자층에전도성네트워크를가라앉힘에따라,기재와의결착력이 실질적으로전혀훼손되지않으며,균일한전기적특성을가지면서도,표면 전도도가우수한투명전도체의제조가가능하다.나아가,에너지인가에의해 투명고분자층을연화시켜전도성네트워크를가라앉히는방법을통해투명 전도체를제조함에따라,투명전도체의표면 (투명고분자의표면)이오버코팅을 이용하여제조된경우와버금가도록극히매끄러워,미세표면요철에의한 광투과율저하와해이즈특성열화가현저하게방지될수있다.
[67]
[68] ZlA - [69] 본발명에따른일실시예에있어,기재는절연성기재를의미하며,지지체의 역할을수행할수있다.기재는투명전도체의용도를고려하여적절히선택될 수있다.광학적으로,기재는투명또는불투명한기재일수있다.기재는 물성적으로딱딱한 (rigid)또는플렉시블 (flexible)기재일수있다.기재는투명 전도체의용도에따라적절히선택될수있는데,기재의일예로,유리, 플리카보네이트,아크릴폴리에틸렌테레프탈레이트 (PET)둥과같은딱딱한 기재를들수있다.기재의일예로,폴리에스테르나프탈레이트및 폴리카보네이트와같은폴리에스테르계기재;선형,분지 (brancned),및환형 폴리올레핀과같은폴리을레핀계기재;폴리염화비닐,폴리염화비닐리덴, 폴리비닐아세탈,폴리스티렌및폴리아크릴과같은폴리비닐계기재;
샐를로오스트리아세테이트 (cellulose triacetate)나샐를로오스
아세테이트 (cellulose acetate)와같은샐를로오스에스테르염기기재;
폴리에테르설폰과같은폴리설폰기재;폴리이미드기재;또는실리콘기재;등과 같은플렉시블기재를들수있다.그러나,본발명이기재에의해한정될수 없음은물론이다.기재는박막,필름등의형상일수있으나,기재가투명 전도체의용도에적합한적절한형상을가질수있음은물론이다.
[70]
[71] 투명고분자층
[72] 본발명에따른일실시예에있어,투명고분자층의투명고분자는동일한반복 단위가중합된증합체일수있다.이때,동일한반복단위가증합된중합체는 중합도가서로상이한둘이상의중합체들을포함할수있다.또는,이와 독립적으로,투명고분자층은서로상이한반복단위가증합된하나또는둘 이상의중합체들을함유할수있다.또는,이와독립적으로,투명고분자층의 투명고분자는중합도및 /또는반복단위가서로상이한둘이상의중합체들을 포함할수있다.
[73] 본발명에따른일실시예에있어,투명고분자층의투명고분자의
유리전이온도 (Tg)는 80내지 140oC,구체적으로, 100내지 140 ,보다
구체적으로, 110내지 130°C일수있다.이러한온도는투명고분자충상에 전도성네트워크를안정적이고재현성있게형성시킬수있는온도이며,이후 전도성네트워크를투명고분자층에가라앉히기위해투명고분자에인가되는 에너지에의해,기재와같은다른구성요소들이손상되는것을방지할수있는 범위이다.또한,이러한투명고분자의유리전이은도는제조된투명전도체의 사용시열적안정성이담보될수있는온도이다.
[74] 본발명에따른일실시예에있어 ,에너지인가에의해,투명고분자층의투명 고분자가가열될수있는데,투명고분자의유리전이온도 (Tg)이상의온도및 투명고분자의용융온도 (Tm)미만의온도로가열되어연화될수있고,연화된 투명고분자에전도성네트워크를가라앉을수있다.
[75] 플렉시블특성을가지거나,롤투롤과같은상업적공정을적용하기위해
플렉시블폴리머를기재로사용할수있다.이러한경우,투명고분자는 유리전이온도 (Tg)이상의온도로가열되되,기재인플렉시블폴리머가열적으로 손상되지않는은도로가열될수있다.구체적인일예로,투명고분자충의투명 고분자는에너지인가에의해,유리전이온도 (Tg)를기준으로 1내지 1.2배의 은도로가열될수있다.유리전이온도 (Tg)는 80내지 140oC,구체적으로, 100 내지 140°C,보다구체적으로, 110내지 130°C이다.유리전이은도 (Tg)를기준으로 1내지 1.2배로가열되는경우,폴리에틸렌테레프탈레이트기판와같이내열 특성이매우떨어지는기재에도안정적으로투명전도체가제조될수있다. 나아가,유리전이은도 (Tg)를기준으로 1내지 1.2배로가열되는구성은,미세 패턴화된투명전도체를제조하기위해,투명고분자층이미세패턴화되어있다 하더라도,전도성네트워크는가라앉을수있으면서도패턴화된형상의유지가 가능하도록한다.
[76] 본발명에따른일실시예에있어,투명고분자층의투명고분자는단일한 유리전이은도또는둘이상의유리전이은도 (Tg; glass temperature)를가질수 있다.구체적안일예로,투명고분자는하나,두개,세개또는네개의
유리전이온도를가질수있다.
[77] 본발명의일실시예에따른투명전도체에있어,투명고분자가둘이상의 유리전이온도를가질경우,투명고분자의둘이상의유리전이은도증가장낮은 유리전이은도는 80내지 140oC,구체적으로, 100내지 140°C,보다구체적으로, 110내지 130oC일수있다.
[78] 투명고분자가둘이상의유리전이온도를가질경우,투명고분자층의투명 고분자는에너지인가에의해,가장낮은유리전이온도이상내지가장높은 유리전이온도미만의온도로가열되어연화될수있으며,연화된투명 고분자층에전도성네트워크가가라앉을수있다.
[79] 이때,투명고분자의최고유리전이온도 (둘이상의유리전이온도중,가장 높은유리전이온도)와최저유리전이은도간의온도차는 5내지 100°C, 구체적으로 5내지 50°C,보다더구체적으로 5내지 20oC일수있다.상술한최저 유리전이온도및최고유리전이온도와최저유리전이온도간의온도차는 안정적인전도성네트워크의가라앉음이이루어지면서도,
폴리에틸렌테레프탈레이트기판와같이내열특성이떨어지는기재의손상이 방지될수있는범위이며,상술한바와같이,투명고분자층이패턴화된경우, 안정적으로형상이유지될수있는범위이다.
[80] 본발명에따른일실시예에있어,투명고분자층의투명고분자는하기관계식 1을만족할수있다.
[81] (관계식 1)
[82] TS( ) < 0.1
[83] 관계식 1에서 TS는,필름형태의투명고분자 (투명고분자층의투명고분자)인 투명고분자필름의유리전이은도에서의열수축률이다.구체적으로, TS는 가로 X세로 X두께가 100mm X 100mm X 0.188mm의필름형태의투명고분자인 투명고분자필름을기준하여,투명고분자의유리전이온도 (°C,둘이상의 유리전이온도를갖는경우최저유리전이은도)에서의열수축률이다.이때,투명 고분자필름의가로,세로또는두께방향으로의열수축률이관계식 1을만족할 수있으며,좋게는,가로,세로및두께방향으로의열수축률이모두관계식 1을 만족할수있다.열수축률이발생하지않을수록바람직함에따라,관계식 1의 하한은 0일수있으며,실질적으로 0.이일수있다.
본발명에따른일실시예에있어,투명고분자층은, 0.5μϊη의두께에서,투명 고분자의유리전이온도 ( ,둘이상의유리전이온도를갖는경우
최저유리전이온도)로의가열전과후의황색도변화 ΔΥΙ가 0.5이하일수있다. 기재에투명고분자층을먼저형성시킨후,투명고분자를유리전이온도 이상으로가열시켜,연화된투명고분자층에전도성네트워크를
가라앉히는 (sink)방법을사용함에따라,투명고분자층의투명고분자는가열및 냉각에따른수축률이가능한발생하지않으며황색도변화가가능한발생하지 않는물질인것이유리하다.그러나,후술하는광에너지인가에의해광소결및 전도성네트워크의싱크가동시에수행되는경우,투명고분자층의
일부 (적층체의전도성네트워크와접촉하는투명고분자영역)가연화되며 전도성네트워크의싱크가이루어질수있다.이에따라,후술하는광에너지 인가의경우,투명고분자층의투명고분자물질이상술한열수축률및 /또는 황색도변화조건을만족하지않아도무방하다.
본발명에따른일실시예에있어,투명고분자층의투명고분자는전도성 네트워크와동일한물질로이루어진전도성박막상,투명고분자의접촉각이 90°이하일수있다.이러한접촉각특성은,연화된투명고분자층으로증력만에 의해매우가늘거나얇은나노단위체로이루어진전도성네트워크를
가라앉히고자하는경우,보다효과적이다.이는,별도의외부적인힘의인가 없이,전도성네트워크에가해지는중력에의해,유리전이온도이상으로가열된 투명고분자에전도성네트워크가가라앉는경우,그크기가작은나노
단위체일수록,가라앉는속도에접촉각특성이영향을미칠수있기때문이다. 구체적으로,전도성네트워크의물질과투명고분자충의투명고분자물질이 90°이하의접촉각을갖는경우,전도성네트워크가극히미세한나노단위체로 이루어진다하더라도중력에의해안정적이며용이하고재현성있게투명 고분자층에가라앉을수있다.
투명고분자층의투명고분자는광학적투명성을가지면서도상술한조건을 만족하는경우,어떠한고분자라도사용가능하다.
실질적인물질의일예로,투명고분자층의투명고분자는
폴리에스테르 (polyester),폴리에틸렌테레프탈레이트 (polyethylene
terephthalate)(PET),아크릴레이트 (acrylate)(AC),폴리부틸렌
테레프탈레이트 (polybutylene terephthalate),폴리메틸메타크릴레이트 (polymethyl methacrylate)(PMMA),아크릴수지 (acrylic resin),
폴리카보네이트 (polycarbonate)(PC),폴리스티렌 (polystyrene),
트리아세테이트 (triacetate)(TAC),폴리비닐알콜 (poly vinyl alcohol),폴리비닐 염화물 (polyvinyl chloride),폴리비닐리덴염화물 (polyvinylidene chloride), 폴리에틸렌 (polyethylene),에틸렌-비닐아세테이트코폴리머 (ethylenevinylacetate copolymer)들,폴리비닐부티랄 (polyvinyl butyral),금속이온 -교차결합된 에'틸렌-메타크릴산코폴리머 (metal ion-crosslinked ethylene-methacrylic acid copolymer),폴리우레탄 (polyurethane),셀로판 (cellophane)및
폴리올레핀 (polyolefin)에서하나또는둘이상의혼합물일수있으나,이에 한정되는것은아니다.보다구체적인일예로,투명고분자층의투명고분자는 비이온성우레탄및아크릴에서하나또는둘이상선택되는물질일수있다. 이때,투명고분자의증량평균분자량은 100내지 500,000,000일수있으나,이에 한정되는것은아니다.
[89] 투명고분자의구체적인물질들의예에서,물질의종류,중합도,분자량분포, 서로상이한불질의흔합비,작용기도입,첨가제둥알려진다양한방법을 이용하여,제시된유리전이온도,열수축률,황색도변화및 /또는접촉각둥을 만족하는물성을가질수있음은물론이다.
[90] 본발명에따른일실시예에있어,투명고분자층의두께는,투명전도체의 용도를고려하여적절히조절될수있다.일예로,투명고분자층의두께는 50nm 내지 ΙΟμιη,구체적으로는 50nm내지 2000nm일수있으나,이에한정되는것은 아니다.
[91] 본발명에따른일실시예에있어,투명고분자층은,단일한투명고분자물질로 이루어진단일막또는,서로상이한투명고분자가각각층을이루며적층된 적층막일수있다.적층막의경우,적층막을이루는투명고분자중,보다낮은 유리전이온도를갖는투명고분자의막 (이하,표면막)이전도성네트워크에 접하도록위치할수있다.적층막에서적층막전체의두께대비표면막의두께를 조절함으로써,전도성네트워크가가라앉는위치를조절할수있다.즉,에너지 인가시적층막의하부막대비표면막이보다연화되도록하여,적층막에서 표면막영역에선택적으로전도성네트워크를가라앉도록할수있다.그러나, 투명고분자층이단일막인경우에도,인가되는에너지,가라앉히는시간, 냉각둥의외부공정인자를조절하여,전도성네트워크가투명고분자층에 가라앉는정도가조절될수있음은물론이다.
[92] 본발명에따른일실시예에있어, a)단계는, al)투명고분자또는투명
고분자의중합단위체를함유하는제 1용액을기재상도포하여도포막을 형성하는단계;및 a2)도포막을건조하는단계;를포함할수있다.
[93] 이때, a2)단계후,또는 a2)단계와동시에,도포막의투명고분자또는투명 고분자의중합단위체를중합하는단계;가더수행될수있다.이러한
중합단계는,제 1용액이중합단위체를함유하거나,투명고분자가경화능을 갖는경화성투명고분자인경우수행될수있다.
[94] 상술한바와같이,제 1용액이경화능을갖는투명고분자를함유하거나,중합 단위체를함유하는경우,기재상부에제 1용액을도포및건조한후,또는건조 단계에서,경화가이루어질수있다.이때,경화는광경화,열경화또는화학적 경화를포함할수있다.
[95] 그러나,경화능을갖지않는고분자또한사용가능함은물론이며,경화능을 갖지않는고분자의경우,제 1용액을기재상부에도포및건조하여투명 고분자층을형성할수있다.
[96] 본발명의일실시예에서,기재상형성되는투명고분자층은패턴화또는
비패턴화된것일수있다.이때,비패턴화는의도적인투명고분자층의형태 제어가수행되지않음을의미한다.구체적으로,비패턴화는기재의일정면적을 단순한막으로덮는투명고분자층을의미할수있다.패턴화는도포된형상과 상이한형상을갖도록의도적인형태제어가수행됨을의미한다.투명전도체의 용도를고려하여,용도에적절한패턴을가질수있으며,그리드형상,어골형상, 인터디지테이트 (interdigitate)형상,미세라인등다양한형태로패턴화될수 있으나,본발명이투명고분자층의패턴형상에의해한정될수없음은 물론이다ᅳ
[97] 투명고분자층의패턴화는,그라비아인쇄등특정패턴으로도포가능한
인쇄방법이용하여제 1용액을패턴화된상태로도포하고,도포막을단순건조 또는건조및경화시켜수행될수있다.
[98] 제 1용액이경화능을갖는고분자또는중합단위체를함유하는경우,
거 u용액의도포막을설계된패턴에따라부분적으로경화되도록함으로써,투명 고분자층의패턴화가이루어질수있다.일예로,설계된영역만으로광이 투과되는광마스크및광마스크를이용한광조사와같이,도포막을
부분적으로경화시킨후미경화된물질을제거함으로써투명고분자층의 패턴화가이루어질수있다.
[99] 이와독립적으로,도포막의단순건조또는건조및경화가수행된후,에칭
마스크및건식에칭이나습식에칭을이용한투명고분자물질의부분적제거에 의해패턴화가이루어질수있다.
[100] 투명고분자층을미리패턴화하여,패턴화된투명전도체를제조할수있는 특징은,전도성네트워크를투명고분자층에가라앉혀투명전도체를제조하는 본발명의기술적특징에의해,구현가능한장점이다.종래와같이,기재에 전도성네트워크를형성한후,오버코팅에의해투명전도막을제조하는경우, 오버코팅후오버코팅에사용된바인더폴리머를패턴화된상태로경화하고 비경화된부분을제거하거나,패턴화하지않고바인더폴리머를모두경화한후, 에칭등에의해부분적으로바인더폴리머와전도성네트워크를제거함으로써 투명도전막의패턴화가가능하였다ᅳ
[101] 이러한종래의패턴화는공정의복잡함과비용증가는물론이고,패턴화시에 이미전도성네트워크가바인더폴리머내부에존재함에따라,패턴화된투명 도전막의측면이매우불균일하고거칠어,정밀한패턴화가어려운문제점이 있다.
[102] 그러나,본발명의일실시예에따라기재에투명고분자층을먼저형성시킨후, 투명고분자를유리전이온도 (들이상의유리전이온도시최저유리전이온도 이상)으로가열하여연화시키고,연화된투명고분자층에전도성네트워크를 가라앉히는 (sink)방법적특징에따라,투명고분자층을먼저패턴할수있다. 이에따라,패턴화된투명전도체의측면이잘규정된평면을가질수있고극히 정밀한패턴화또한가능하다.
[103] 즉,기재에형성된투명고분자층자체를패턴화시킨후,패턴화된투명
고분자층에전도성네트워크를가라앉힘에따라,전도성네트워크와는 무관하게패턴화가이루어지는장점이있다.
[104] 제 1용액의용매는투명고분자또는투명고분자의중합단위체들을용해하며, 화학적으로기재와반웅하지않는용매면사용가능하다.투명고분자또는증합 단위체의물질에따라,해당물질을용해하는용매가적절히선택될수있음은 주지의사실이다.일예로,용매는극성용매,비극성용매,극성비양자성용매 또는극성양자성용매일수있으며,비한정적인일예로,감마 -부티로락톤, 포름아마이드, Ν,Ν-다이메틸포름아마이드,다이포름아마이드,아세토나이트릴, 테트라하이드로퓨란,다이메틸설폭사이드,다이에틸렌글리콜,
1_메틸 _2-피를리돈, Ν,Ν-다이메틸아세트아미드,아세톤, α-터피네올,
β_터피네올,다이하이드로터피네올, 2-메록시에탄올,아세틸아세톤,메탄을, 에탄올,프로판올,부탄올,펜탄올,핵산올,케톤,메틸이소부틸케톤,펜타인, 핵센,사이크로핵센, 1,4-다이옥센,벤젠,롤루엔,트리에틸아민,클로로벤젠, 에틸아민,에틸에테르,클로로품,에틸아세테이트,아세틱액시드,
- 1,2-다이클로로벤젠, tert-부틸알콜, 2-부탄올,이소프로파놀및
메틸에틸케톤등을들수있으나,이에한정될수없음은물론이다.다만,해당 투명고분자또는고분자의중합단위체를용해하는다양한용매들증,도포후 보다빠른휘발제거를위해끓는점이낮은용매를사용하는것이보다 유리하다.
[105] 이때,제 1용액은가교제,증합개지세,안정제,중합방지계,계면활성제,
산화방지제등,황변방지제,수축방지제등고분자의물성을개선하기위한 다양한첨가제를더포함할수있음은물론이며,제 1용액의점도조절을위한 점도조절제와같이,사용하고자하는도포방법에요구되는특성을만족시키기 위한다양한첨가제를더포함할수있음은물론이다.
[106] 제 1용액의도포는반도체나디스플레이제조분야에서,액상을도포및
건조하여균일한두께의막을제조하는데기사용되는어떠한방법을
사용하여도무방하다.일예로,코팅,스프레이,인쇄둥다양한방법을들수 있는데,구체적인일예로,스핀코팅 (Spin coating);바 -코팅 (Bar coating);
그라비아 -코팅 (Gravure coating);블레이드코팅 (Blade coating);롤 -코팅 (Roll coating);또는스로트다이 (slot die);등을들수있으나,본발명이제 1용액의도포 방법에의해한정되는것은아니다.
[107] 본발명의일실시예에따른제조방법에있어,게 1용액의투명고분자가
경화능을갖는경우,전도성네트워크는이미경화된투명고분자층상부로 형성될수있다.즉,투명고분자가경화능을갖지않는경우,게 1용액의도포및 건조가완료된후,전도성네트워크형성단계가수행될수있다.제 1용액이 경화능을갖는투명고분자나중합단위체를함유하는경우,제 1용액의도포, 건조및경화가완료된후,전도성네트워크형성단계가수행될수있다.이에 따라,작층체는건조 (투명고분자가경화능을갖지않는경우)또는경화 (투명 고분자가경화능을갖는경우)에의해딱딱한 (rigid)상태의투명고분자층상에 형성된전도성네트워크를포함할수있다.
[108]
[109] 저도성네트워크 -
[110] 본발명의일실시예에있어,전도성네트워크는전도성인나노단위체들간의 적어도물리적접촉에의해,연속적인전하이동경로가제공되는구조를의미할 수있다.
[111] 나노단위체는전도성나노와이어,전도성나노튜브및전도성나노벨트에서 하나또는둘이상선택될수있다.
[112] 나노단위체는단일한물질또는서로상이한둘이상의물질로이루어질수 있다.즉,나노단위체는나노구조를갖는전도성의단일한물질일수있다. 또는,둘이상의물질로이루어진경우,나노단위체는나노구조를갖는비 전도성물질이다른전도성물질에의해코팅된것일수있다.나노단위체가둘 이상의물질로이루어진구체적인일예로,비전도성코어및전도성쉘의 코어-쉘구조또는전도성코어및전도성웰로이루어진코어-쉘구조를들수 있다.이때,코어를이루는물질은투광성물질일수있다.이러한코어-쉘구조는 극히높은광투과율이요구될때,적합할수있다.
[113] 나노단위체의물질은전도성을갖는물질이면사용가능하다.일예로,나노 단위체의물질은금속;도핑이나결함등에의해전도성을갖거나,물질자체의 특성상전자또는정공전달이가능한반도체;전도성무기물;및전도성 유기물;에서하나또는둘이상선택된물질일수있다.
[114] 우수한전도성및투명도저하방지를고려한나노단위체의예로,은
나노와이어,은나노벨트,탄소나노튜브,탄소나노와이어,탄소나노벨트등을 들수있고,전도성네트워크는은나노와이어,은나노벨트,탄소나노튜브,탄소 나노와이어및탄소나노벨트에서하나또는둘이상선택되는나노단위체의 네트워크일수있다.그러나,본발명이나노단위체의물질에의해한정될수 없음은물론이다.
[115] 본발명에따른일실시예에있어,전도성네트워크는광학적활성을갖는 전도성나노단위체의네트워크일수있다.광학적활성을갖는전도성나노 단위체는표면플라즈몬이발생하는전도성나노단위체및 /또는광촉매능을 갖는전도성나노단위체를의미할수있다.이러한광학적활성을갖는전도성 나노단위체는,후술하는바와같이,광에너지에의해전도성네트워크의 물리적일체화와전도성네트워크를투명고분자층으로의가라앉힘이수행되는 경우보다적합하다. [116] 폴라즈모닉분야에서잘알려진바와같이,표면플라즈몬은나노디멘견을 갖는금속과광간의상호작용에의해,금속의자유전자의집단적움직임인 플라즈몬이금속단위체의표면에집중되어형성되는현상을의미한다.표면 풀라즈몬을발생하는전도성나노단위체는,표면플라즈몬이발생하는것으로 알려진어떠한금속의나노와이어,나노류브,나노벨트이어도무방하다.
구체적인일예로,표면플라즈몬을갖는전도성나노단위체는,금,은,구리, 리튬,알루미늄및이들의합금등에서하나또는둘이상선택되는물질의 나노와이어,나노튜브및 /또는나노벨트일수있으나,본발명이이에한정되는 것은아니다.
[117] 광촉매능은광에너지를받아화학반웅올촉진시키는능력올의미하며,화학 반웅은유기물의분해반웅일수있고,광촉매능은유기물분해광촉매능일수 있다.광촉매능을갖는전도성나노단위체는,전자또는정공의이동경로를 제공할수있으며,광에의해화학반웅을촉진시키는것으로알려진어떠한 물질의나노와이어도무방하다.전자이동경로를제공하며광촉매능을갖는 전도성나노단위체의구체적인일예로,타이타늄산화물,아연산화물및주석 산화물등에서하나이상선택되는금속산화물의나노와이어,나노튜브및 /또는 나노벨트를들수있고,금속이며광촉매능을갖는전도성나노단위체의 구체적인일예로,금,은,백금등을포함하는귀금속나노와이어,귀금속 나노튜브및 /또는귀금속나노벨트를들수있으나,본발명이이에한정되는 것은아니다.
[118] 또한,표면플라즈몬을갖는전도성나노단위체는표면플라즈몬및
광촉매능을모두갖는것으로해석될수있는데,이는표면플라즈몬을갖는 이방성 (anisotropic)구조의물질이광촉매능을갖는것으로알려진바에 부합한다.
[119] 본발명에따른일실시예에있어,요구되는특성을만족시키는한,전도성 네트워크는나노단위체와함께,전도성입자나전도성판과같은추가적인 전도성요소를더포함할수있음은물론이다.전도성판의구체적인일예로, 그래핀을들수있다.
[120] 나노단위체의크기는,용도에요구되는전기적특성을만족할수있으며, 안정적으로네트워크를형성할수있는정도이면무방하다.구체적인일예로, 전도성나노와이어나전도성나노튜브의경우,나노단위체의종횡비는 50내지 20000일수있고,보다실질적인일예로,평균직경 5내지 100 nm및평균길이: 내지 ΙΟΟ μιη일수있다.
[121] 본발명에따른일실시예에있어,전도성네트워크는나노단위체가서로
물리적으로결착된다공성구조체또는나노단위체가서로접촉하거나얽혀 형성되는다공성구조일수있다.즉,전도성네트워크는나노단위체가 물리적으로결착되어일체를이루는다공망구조또는나노단위체가서로 접촉하거나얽혀형성되는나노단위체네트워크일수있다. [122] 이때,다공망구조는나노단위체들이서로접촉하거나얽혀형성되는 네트워크를형성하되,서로접촉하거나얽힌나노단위체들이서로결착 (또는 융착)되어,물리적으로일체를이룬구조를의미할수있다.또한,나노단위체 네트워크는나노단위체들이규칙적또는불규칙적으로접촉하거나얽혀 연속적인전하이동경로를제공하는구조를의미할수있다.
[123] 전도성네트워크가물리적으로일체를이룬다공성구조 (다공망구조)인경우 투명고분자층상부에이미일체화된전도성네트워크를위치시켜,적층체를 제조할수있다.이와독립적으로,투명고분자층상부에나노단위체들이 분산된분산액을도포한후건조하여,나노단위체가서로접촉하거나얽혀 형성되는나노단위체네트워크를형성한후,이를일체화하여투명
고분자층으로가라앉힐수있다.
[124] 본발명에따른일실시예에있어,전도성네트워크의단위면적당질량은
0.0001내지 0.01 g/cm2,구체적으로는 0.0001내지 0.001 g/cm2일수있다.전도성 네트워크의단위면적당질량은,전도성네트워크와접하는투명고분자층의 표면을기준으로,단위표면적당,해당단위표면적의상부에위치하는전도성 네트워크의질량을의미할수있다.나노단위체의종횡비등에따라,적절히 조절될수있으나,상술한전도성네트워크의단위면적당질량에의해,광의 투과율을저하를가능한방지하면서도,나노단위체들에의해안정적이고낮은 저항의전도성네트워크가생성될수있다.
[125] 본발명에따른일실시예에있어,적층체는투명고분자층의투명고분자 100 증량부를기준으로 1내지 30중량부,구체적으로 5내지 30중량부,보다 구체적으로는 5내지 15중량부의전도성네트워크를함유할수있다.이러한 전도성네트워크의함량은,물리적안정성이우수한투명전도체의제조가 가능하면서도나노단위체에의해안정적인전도성경로가형성되며투과율이 과도하게저해되지않는범위이다.
[126] 전도성네트워크형성단계는전도성나노단위체및분산매를함유하는
분산액을투명고분자층상에도포하는단계;를포함할수있다.이때,도포된 분산액의분산매가휘발제거되며,투명고분자층상에전도성나노단위체의 네트워크가형성될수있다.분산액은분산매 100중량부를기준으로 0.01내지 70중량부의전도성나노단위체를함유할수있으나,본발명이분산액내나노 단위체의함량에의해한정될수없음은물론이다.
[127] 분산매는투명고분자층을용해시키지않고,투명고분자층과화학적으로
반웅하지않는,액상의물질이면사용가능하다.즉,분산매는투명고분자의 비용매일수있다.이때,투명고분자를용해하지않는다는의미는 20°C 1기압하 : 투명고분자의용해도가 0.01 wt%미만,구체적으로 αοοι %미만,보다
구체적으로 0.0001 wt%미만,실질적으로 0인용매를의미할수있다.분산매가 투명고분자의비용매임에따라,투명고분자층상에분산액을도포및건조하는 과정에서,투명고분자층이손상되는것을방지될수있다.즉,투명고분자충 상에전도성네트워크를형성한후에도투명고분자층의표면이매끄러운 표면으로유지되어,표면요철에의한투명도저하,헤이즈특성악화등을 방지할수있다.
[128] 분산액은전도성나노단위체및분산매와함께,분산성을향상시키는분산제 , 부식방지제,도포된전도성네트워크의물리적안정성을향상시키기위한 바인더등과같은첨가제들을더포함할수있음은물론이다.
[129] 분산액의도포또한,반도체나디스플레이제조분야에서,액상을도포및
건조하여균일한두께의막을제조하는데기사용되는어떠한방법을
사용하여도무방하다.일예로,코팅,코팅,스프레이 (분사),인쇄등다양한 방법을들수있는데,구체적인일예로,스핀코팅 (Spin coating);스크린 프린팅 (screen printing);잉크젯프린팅 (ink-jet printing);바 -코팅 (Bar coating); 그라비아 -코팅 (Gravure coating);블레이드코팅 (Blade coating);를 -코팅 (Roll coating);스로트다이 (slot die);또는스프레이 (spray)분사법;등을들수있으나, 본발명이전도성나노단위체분산액의도포방법에의해한정되는것은 아니다.
[130] 이때,분산액내전도성나노단위체의양및 /또는분산액의도포량등을
조절하여,투명고분자층상부에위치하는전도성나노단위체의단위면적당 질량의조절이가능함은물론이다.
[131] 분산액의도포가수행된후,필요시,전도성네트워크의싱크를위한에너지 인가전,도포막의건조가수행될수있다.건조가수행되는경우,투명
고분자층이유리전이온도미만의온도로유지되는조건에서건조가수행되는 것이바람직하다ᅳ도포막의건조는자연건조,적외선을포함한열광의조사, 열풍건조,건조된공기의흐름을이용하는방법,열원을이용한가열등을통해 수행될수있다.그러나,건조단계가별도로수행되지않고,싱크를위한에너지 인가시건조가동시에수행될수있음은물론이다.
[132] 독립적으로,건조단계가수행되는경우,전도성나노단위체분산액이기재에 도포된후,기재에도포된전도성나노단위체에적외선 (IR)을포함하는광을 조사하는열광조사단계가수행될수있다.적외선을포함하는광에의한 건조는,기재를통한열전달이불필요하여열에취약한기재일지라도건조에 의한기재의손상을방지할수있으며,나아가대면적의도포막일지라도 단시간에균질하게건조가능하여,를투롤을포함한연속공정에매우적합하다. 적외선의강도는투명고분자층을연화시키기않으며,분산매를휘발시킬수 있는정도면족하다.
[133]
[134] 에너지 ^가
[135] 본발명의일실시예에따른제조방법에있어,적층체에인가되는에너지는 투명고분자층의투명고분자를유리전이온도이상의온도로가온시킬수있는 에너지이면어떠한종류이든사용가능하다. [136] 구체적으로,적층체에인가되는에너지는열에너지,광에너지,또는열과광 에너지일수있다.
[137] 열에너지는줄열을포함할수있다.열에너지는직접적으로또는간접적으로 인가될수있는데,직접적인가는열원 (source)과적층체가형성된기재가 물리적으로접촉된상태를의미할수있다.간접적인가는열원 (source)과 적층체가형성된기재가물리적으로비접촉된상태를의미할수있다.비 한정적인일예로,직접적인인가는기재하부에 ,전류의흐름에의해줄열을 발생하는히팅엘리먼트가위치하여,기재를통해투명고분자층에열에너지를 전달하는방법을들수있다.비한정적인일예로,간접적인가는적층체가 형성된기재와일정거리이격되게열원이위치하여투명고분자층과열원 사이에존재하는유체 (공기를포함함)를통해투명고분자층에열에너지를 전달하는방법을들수있다.비한정적인일예로,간접적인인가는튜브등과 같은열처리대상이위치하는공간,열처리대상이위치하는공간을감싸열 손실을방지하는내열재및내열재내부에위치하는히팅엘리먼트를포함하여 구성되는통상의열처리로를이용한방법을들수있다.
[138] 구체적으로,광에너지는적외선 (IR),자외선 (UV),가시광선,마이크로파또는 이들의조합을포함할수있으며,광에너지의인가는투명고분자층으로의광 조사를포함할수있다.비한정적인일예로,적층체가형성된기재와일정거리 이격된광원이위치하여투명고분자층에광을조사할수있다.
[139] 본발명에따른일실시예에있어,에너지의인가는열에너지또는광에너지 단독인가일수있다.이와독립적으로,에너지의인가는열에너지와광 에너지가동시또는순차적으로인가되는것을포함할수있다.
[140] 순차적인가는일종류의에너지 (일예로,열에너지)인가가이루어진후또는 인가가이루어지고있는도중,다시다른종류의에너지 (일예로,광에너지) 인가가이루어지는것을의미할수있다.또한,순차적인가는서로상이한 종류의에너지가연속적또는불연속적으로투명고분자층에인가되는것을 의미할수있다.
[141] 에너지의인가시,적층체가형성된기재가처하는분위기는,원치않는화학적 반웅이야기되지않는분위기면무방하다.실질적인일예로,에너지가인가될 때의분위기는공기분위기일수있으나,본발명이이러한분위기에의해 한정되는것은아니다.
[142] 이하,열에너지인가의경우와광에너지인가의경우를보다상세히설명한다. 그러나,상술한바와같이,에너지인가시열과광에너지가모두사용될수 있음은물론이며,전도성네트워크를투명고분자층으로가라앉히기위해,본 발명에기재된내용을참고하여,당업자는열과광을이용한다양한에너지인가 조건을도출할수있을것이다.일예로,열에너지를인가하되,열에너지 단독으로는투명고분자층이유리전이은도미만의은도로가열되는조건으로 인가하고,열에너지가인가되어일정온도를유지하는투명고분자층에광을 조사하여,조사되는광에너지와열에너지의결합에의해비로소투명 고분자층의투명고분자가유리전이온도이상의온도로가열되도록할수있을 것이다.다른일예로,열에너지로,투명고분자층이유리전이온도이상의 온도로가열되도록함과동시에,광에너지를인가하여보다빠르게전도성 네트워크를투명고분자층으로가라앉힐수있을것이다.
[143]
[144] j에너지이가
[145] 적층체제조단계가수행된후,투명고분자의유리전이은도이상의온도를 갖도록투명고분자층를가열하여,전도성네트워크를투명고분자층으로 가라앉히는단계 (싱크단계)가수행될수있다.
[146] 투명고분자층의투명고분자가단일한유리전이온도를갖는경우,싱크
단계에서,적층체의투명고분자층은유리전이온도이상및용융온도미만의 온도로가열될수있다.상세하게,기재상위치하는투명고분자층을가열하되, 유리전이온도 (Tg)를기준으로 1내지 1.2배의온도로가열될수있다.투명 고분자층의투명고분자는 80내지 140°C,구체적으로, 100내지 140°C,보다 구체적으로, 110내지 130°C의단일한유리전이은도를가질수있고,적층체의 투명고분자층은유리전이온도 (Tg)를기준으로 1내지 1.2배로가열될수있다.
[147] 투명고분자층의투명고분자가둘이상의유리전이온도를갖는경우,싱크 단계에서,적층체의투명고분자층은최저유리전이은도이상의은도 (공정 은도)로가열될수있으며,구체적으로,최저유리전이온도이상내지최고 유리전이온도미만의온도로가열될수있다.
[148] 구체적인일예로,투명고분자가두개의유리전이온도를가질때,상대적으로 낮은유리전이온도를제 1유리전이온도로하고,상대적으로높은
유리전이온도를제 2유리전이온도로할때,적층체의투명고분자층은 제 1유리전이온도이상및제 2유리전이온도미만의온도로가열될수있다.
[149] 다른구체적인일예로,투명고분자가세개의유리전이온도를가질때,
상대적으로낮은온도에서높은은도방향으로,제 1유리전이은도,
제 2유리전이온도및제 3유리전이은도라할때,적층체의투명고분자층은 제 1유리전이은도이상및제 3유리전이온도미만의온도로가열될수있다.
[150] 투명고분자의최저유리전이온도 (둘이상의유리전이은도중,가장낮은 유리전이온도)는 80내지 140°C,구체적으로, 100내지 140oC,보다구체적으로, 110내지 130°C일수있다.
[151] 투명고분자층의가열은,가열을위한에너지전달이투명고분자층의하부에 위치하는기재를통해전달되는간접적가열및 /또는가열을위한에너지전달이 기재를통하지않고투명고분자층으로전달되는직접적가열을통해이루어질 수있다.간접적가열은열원이기재하부에위치하는경우를들수있으며, 직접적가열은열원이기재상부에위치하는경우를들수있다.
[152] 싱크단계에서투명고분자층이공정온도로가열됨에따라,전도성네트워크에 작용하는중력에의해,전도성네트워크가투명고분자층으로가라앉을수 있다.
[153] 이때,선택적으로,증력과함께,적층체기준,전도성네트워크로부터투명
고분자층방향으로외력이더인가될수있다.외력은판,롤러둥과같은압력 전달부재나대기압이상의압력을갖는가스상올통해전달되는압력을들수 있다.
[154] 공정온도로유지되는시간은,전도성네트워크를가라앉히고자하는정도에 따라적절히조절될수있음은물론이다.구체적이며비한정적인일예로,모든 전도성네트워크를투명고분자층에안정적으로가라앉히고자하는경우,공정 온도에서 10초내지 200초,보다실질적으로 30초내지 100초동안유지될수 있으나,이러한유지시간에전도성네트워크의밀도나전도성네트워크의물질, 투명고분자층의물질및공정온도에따라적절히조절될수있음은물른이다.
[155] 싱크단계가수행된후,투명고분자층을냉각하는냉각단계가수행될수있다.
[156] 냉각단계는더이상의실질적인전도성네트워크의가라앉음이발생하지않는 경우에수행될수있다.
[157] 그러나,선택적으로,전도성네트워크가가라앉는도증,투명고분자층의
냉각이이루어질수있다.잔도성네트워크가가라앉는도증에투명고분자층의 냉각시킴으로써,설계된양에해당하는전도성네트워크의일부는투명 고분자층에장입시키고,나머지일부가투명고분자층표면위로돌출되도록할 수있다.
[158] 이때,전도성네트워크중투명고분자층표면위로돌출되는양은,투명
고분자층의냉각시점에의해조절될수있음은물론이다.
[159] 투명고분자층의냉각은자연적공냉또는냉각유체를이용한인위적냉각일 수있다.인위적냉각이수행될경우,기재하부에통상의냉각수단을
구비하거나,투명고분자층과냉각된액체또는냉각된기체를접촉시켜수행될 수있다.
[160]
[161] 광에너지이가
[162] 광에너지는,열에취약한플렉시블기재의손상없이투명전도체를제조할수 있으며,쉽고빠르게대량제조가능하여상업적으로보다적합하다.
[163] 적층체제조후,투명고분자층에광에너지를인가하여전도성네트워크를
가라앉히는싱크단계가수행될수있다.싱크단계의광에너지는,적외선, 자외선,가시광선,백색광또는이들의조합인복합광을포함할수있다.
[164] 구체적으로,싱크단계의광에너지는,투명고분자층을가열할수있는광, 및 /또는전도성네트워크에의해흡수가능한광에너지에의해전도성네트워크 하부에접하여위치하는투명고분자영역을적어도부분적으로가열 (연화)시킬 수있는광이사용될수있다.
[165] 투명고분자층을가열할수있는광은,적외선을포함할수있다.적외선은 0.75μπ 내지 1mm파장대역의광을의미하며,알려진바와같이가시광선이나 자외선에비해강한열작용올가짐에따라열선으로도불린다.적외선은 0.75 내지 3μηι파장의근적외선, 3내지 25 파장의적외선, 25μιη내지 1mm의 원적외선또는이들의조합올포함할수있다.싱크단계의적외선은 100내지 1000 W/cm2로 5sec내지 5분동안조사될수있으나,본발명이조사되는 적외선의강도및조사시간에의해한정될수없음은물론이다.
[166] 전도성네트워크에의해흡수가능한광은,전도성네트워크 (전도성나노
단위체)의자외선-가시광선분광스펙트럼에서의흡광피크에해당하는파장의 광 (이하,전도성네트워크흡광파장)을포함하는광을의미할수있다.구체적인 일예로,전도성네트워의흡광파장이가시광,구체적으로 430내지 600nm,보다 구체적으로 400nm내지 800nm,보다더구체적으로 350nm내지 950nm의범위인 경우,전도성네트워크에의해흡수가능한광은백색광일수있다.전도성 네트워크를이루는전도성나노단위체가과도한광에너지에의해손상되는 것을방지하는측면에서,백색광은필스형으로조사될수있다.일예로, 백색광의강도는 300내지 1000W/cm2일수있으며,필스폭,필스간간격및 조사되는필스의수는,기재의손상을방지하며,전도성네트워크에의해흡수된 광에너지에의해전도성네트워크와인접하는투명고분자가연화될수있는 조건이면족하다.비한정적인일예로,필스폭은 1msec내지 10msec일수 있으며,필스간간격 (펄스갭)은필스폭의 1.5배내지 3배일수있고,조사되는 필스의수는 1회내지 30회일수있다.
[167] 상술한바와같이 ,싱크단계에서,적외선을포함하는광,또는백색광올
포함하는광,또는적외선과백색광을포함하는광이조사될수있다.이때,보다 빠르고안정적인전도성네트워크의가라앉음을위해,직접또는간접적으로열 에너지가광에너지와함께인가될수있음은물론이다.
[168]
[169] 광소^ 및광에너지에의하저도성 네트워크심크
[170] 적층체제조후,광에너지를조사하여,전도성네트워크를이루는전도성나노 단위체간의융착 (광소결)과,광소결에의해일체화된전도성네트워크를투명 고분자층에가라앉히는싱크가모두수행될수있다.
[171] 열에의한소결과달리,바인더나분산제의역할을수행하는유기물이나노 단위체와흔재하는경우,나노단위체의광소결이잘발생하지않는한계가 있다.
[172] 그러나,대면적에서도균일한전기적특성을갖는투명전도체를제조하기 위해서는,나노단위체의분산액에바인더나분산제의역할을수행하는 유기물이첨가되는것이필요하다.
[173] ' 이에,고분자를포함한유기물이첨가제로분산액에첨가된경우에도,원활이 광소결이이루어지며광에의한싱크가수행되는구성을제공하고자한다.
[174] 유기바인더에의해기판상전도성나노단위체가분산결착한경우,제논 램프를이용한광소결둥과같은종래알려진기술을통해서는,나노단위체가 손상되지않으면서도나노단위체들이서로접촉한영역이선택적으로용융 결착되는광소결이거의이루어지지않으며,분산액에유기물을첨가하지않고 단지나노단위체만을분산시키는경우상업적으로요구되는대면적에서의 면저항균일도확보에어려움이있다.
[175] 본발명에따른일실시예에있어,대면적에서도우수한면저항균일도를
가지며,광소결과광에의한싱크가동시수행되기위해,분산액이유기 바인더를함유하되,분산액의도포후,광소결전,바인더의선제거가수행되는 것이좋다.
[176] 이때,광에의해나노단위체들이서로접촉한영역이선택적으로용융
결착되는광소결전플라즈마등을통해모든바인더가선제거되는경우,나노 단위체간서로접촉한영역의용융결착시발생하는열웅력및변형에의해 나노단위체간의접촉점이감소될위험이있으며,기판과의결착력또한감소될 수있다.
[177] 이에따라,본발명에따른일실시예에있어,서로다른광이 2회이상조사되는 다단광조사,좋게는복합광을이용한다단광조사를통해바인더를일부 제거하고,광소결및싱크가수행됨으로써,대면적에서도높은면저항균일도를 가지고,우수한가판과의결합력을가지면서도,우수한전기전도도를갖는투명 전도체의제조가가능하다.
[178] 상술한바와같이,분산액은분산매 (투명고분자층의투명고분자에대한
비용매),전도성나노단위체와함께,유기바인더를함유할수있다.
[179] 유기바인더는,분자량 (중량평균분자량)이 5xl05이하,좋게는 2xl05이하인 저분자량의천연폴리머또는저분자량의합성폴리머인것이좋다.유기 바인더가제시한저분자량범위를넘어서는고분자량폴리머인경우자외선을 포함하는광조사에의해접촉영역에존재하는유기바인더가제거되지않을수 있으며,이에따라목적하는광소결이이루어지지않을수있다.이때실질적인 일예로,유기바인더는분자량이 3,000이상일수있으나,본발명아유기
바인더의분자량하한에의해한정될수없음은물론이다.
[180] 저분자량의유기바인더는폴리에틸렌글리콜 (PEG),폴리비닐피롤리돈 (PVP), 폴리비닐알콜 (PVA),다당류및다당류유도체에서하나또는둘이상선택될수 있다.
[181] 보다좋게,유기바인더는분자량이 3,000내지 50,000,좋게는 3,000내지
20,000인저분자량의폴리에틸렌글리콜 (PEG),분자량이 3,000내지 60,000인 저분자량의폴리비닐피롤리돈 (PVP),분자량이 3,000내지 50,000인저분자량의 폴리비닐알콜 (PVA),분자량이 3,000내지 200,000,좋게는 3,000내지 100,000인 저분자량의다당류및분자량이 3,000내지 200,000,좋게는 3,000내지 100,000인 저분자량의다당류유도체에서하나또는둘이상선택될수있다.
[ 182] 저분자량의다당류는글리코겐,아밀로오스,아밀로펙틴,칼로오스,아가,알긴, 알지네이트,펙틴,카라기난,셀를로오스,키틴,키토산,커드란,덱스트란, 프릭탄 (fructane),콜라겐,젤란검 (gellan gum),검아라빅,전분,잔탄,검 트래거캔스 (gum tragacanth),카라얀 (carayan),카라빈 (carabean),글루코만난또는 이돌의조합을포함할수있다.다당류유도체는셀를로스에스테르또는 셀를로스에테르를포함할수있다.
[183] 보다더좋게,유기바인더는저분자량의샐를로스에테르일수있으며, 셀를로스에테르는카복시 -C1-C3-알킬셀를로스,카복시 -C1-C3-알킬 하이드록시 -C1-C3-알킬셀를로스, C1-C3-알킬셀를로스, C1-C3-알킬 하이드록시 -C1-C3-알킬셀를로스,하이드록시 -C1-C3-알킬셀를로스,흔합된 하이드록시 -C1-C3-알킬셀를로스또는이들의혼합물을포함할수있다.
[184] 일예로,카복시 -C1-C3-알킬셀를로스는카복시메틸셀를로스둥을포함할수 있고,카복시 -C1-C3-알킬하이드록시 -C1-C3-알킬셀를로스는카복시메틸 하이드록시에틸샐를로스둥을포함할수있으며, C1-C3-알킬샐를로스는 메틸셀를로스등을포함할수있고, C1-C3-알킬하이드록시 -C1-C3-알킬 셀를로스는하이드록시에틸메틸샐를로스,하이드록시프로필메틸셀를로스, 에틸하이드록시에틸샐를로스또는이들의조합등을포함할수있고, 하이드록시 -C1-C3-알킬셀를로스는하이드록시에틸셀를로스,
하이드록시프로필셀를로스또는이들의조합을포함할수있으며,흔합된 하이드록시 -C1-C3-알킬셀를로스는하이드록시에틸하이드록시프로필 샐를로스,또는알콕시하이드록시에틸하이드록시프로필샐를로스 (상기 알콕시그룹은직쇄또는분지쇄이고 2내지 8개의탄소원자를함유한다)등을 포함할수있다.
[185] 본발명에따른일실시예에있어,분산액은 0.1내지 5중량 %,좋게는 0.1내지
1증량 %,보다좋게는 αι내지으7중량 %의유기바인더를함유할수있다. 이러한유기바인더의함량은전도성나노단위체를함유한분산액의도포시, 전도성나노단위체가기재상균일하고균질하게도포될수있으면서도접촉 영역에서전도성나노단위체사이에존재하는유기바인더를최소화하여, 자외선을포함하는광조사에의해적어도접촉영역에존재하는유기바인더가 안정적으로제거될수있는함량이다.
[186] 분산액에함유된전도성나노단위체의종횡비및함량,분산매등은 '전도성 네트워크'에서상술한바와유사내지동일하다.
[187] 나노단위체간의접촉영역에존재하는유기바인더의선택적제거는,자외선 자체로는유기바인더가제거되지못하는조건으로자외선을조사하되,표면 플라즈몬이발생하거나또는광촉매능을갖는전도성나노단위체로이루어진 전도성네트워크의광학적활성과자외선과의결합에의해비로소유기 바인더가제거될수있는조건으로자외선을조사함으로써이루어질수있다.
[188] 이러한측면에서,전도성네트워크의전도성물질은전도성네트워크'에서 상술한광학적활성을갖는것이좋다.즉,전도성네트워크의나노단위체는 표면플라즈몬이발생하거나또는광촉매능을갖는전도성물질의나노와이어, 나노류브및 /또는나노벨트일수있다.표면플라즈몬을갖는전도성물질로는, 금,은,구리,리륨,알루미늄및이들의합금등에서하나또는둘이상선택되는 물질등을들수있으며,광촉매능을갖는전도성물질로는타이타늄산화물, 아연산화물및주석산화물등에서하나이상선택되는금속산화물;및금,은, 백금둥을포함하는귀금속;둥을들수있다.구체적이며비한정적인일예로, 광학적활성을갖는전도성나노단위체는,은나노와이어를포함할수있다.
[189] 본발명에따른일실시예에있어,적층체의제조후,투명고분자층표면에 도포된나노단위체에제 1자외선 (UV)을포함하는제 1광을조사하는제 1광조사 단계;및제 1자외선이조사된나노단위체에펄스형제 1백색광을포함하는제 2 광을조사하는제 2광조사단계;를포함할수있다.구체적으로,유기바인더, 나노단위체및분산매를함유하는분산액을투명고분자층상에도포한후, 투명고분자층표면에도포된나노단위체에제 1자외선 (UV)을포함하는제 1광을조사하는제 1광조사단계;및제 1자외선이조사된나노단위체에펄스형 제 1백색광을포함하는제 2광을조사하는제 2광조사단계;를포함할수있다.
[190] 상술한바와같이,광조사는다단 (multi-stage)으로이루어질수있으며,다단 광조사는제 1광조사와겨 12광조사의순차적조사를포함할수있다.
구체적으로,다단광조사는제 1자외선을포함하는제 1광을조사하여,적어도 전도성나노단위체가서로접촉하는접촉영역 (전도성나노단위체들와교차 영역을포함함)에존재하는유기바인더를제거하는선제거단계및제 1 백색광을포함하는제 2광을조사하여,전도성나노단위체가서로접촉하는 접촉영역을용융시켜서로결착시키는융착단계를포함할수있다.이때,저 U 광조사와제 2광조사가서로독립적으로순차적으로수행될때,제 1광조사와 제 2광조사사이에휴지기가존재할수있음은물론이다.
[191] 상술한바와같이,본발명에따른일실시예에있어,제 1광조사시의조사되는 제 1광은제 1자외선 (UV)광을포함하며,제 1자외선에의해분산액에함유되어 전도성나노단위체와같이기재상에도포된유기바인더가제거될수있다. 상세하게,계 1광에의해,적어도,기재상도포된전도성나노단위체간의접촉 영역에존재하는유기바인더가일부내지전부분해제거될수있다.
[192] 제 1자외선 (ultraviolet rays)은파장이 lOnm내지 400nm범위의광을의미할수 있으며,알려진바와같이,자외선은매우강한화학작용을야기하여
화학선으로도불린다.제 1자외선은 320내지 400nm파장대역의 UV-A, 280 내지 320nm파장대역의 UV-B, 100내지 280nm파장대역의 UV-C또는이들의 조합을포함할수있다.이때,제 1자외선은유기물분해에보다효과적인
UV-C를포함할수있다.이때,펄스형과같이특별히조사되는광의조사형태에 대한언급이없는한,조사되는광은모두일정시간동안광이연속적으로 조사되는연속광형태일수있다.일예로,게 1자외선또한,특별히광의조사 형태가한정되지않음에따라,제 1자외선이연속광형태로조사될수있음은 물론이다.
[193] 상술한바와같이,기재상에전도성나노단위체와같이도포된유기바인더가 제 1광에의해모두분해제거되는경우,제 2광에의한전도성나노단위체의 융착시전도성나노단위체들의뒤를림에의해기판과의결착력이감소될수 있으며,나노단위체간의접점이줄어들며전도성나노단위체네트워크의 면저항이증가할수있다.이를방지하기위해서는,게 1광에의해,전도성나노 단위체가서로접촉하는접촉영역에존재하는유기바인더가선택적으로 제거되는것이좋다.이때,접촉영역에존재하는유기바인더의선택적제거는, 제 1광조사후에도기재상유기바인더가잔류함을의미하는것이며,나아가, 접촉영역이외의영역에서,전도성나노단위체가유기바인더에의해기판에 결착된상태를의미할수있다.
[194] 접촉영역에존재하는유기바인더의선택적제거는,제 1광자체,구체적으로, 제 1광에포함되는제 1자외선자체로는유기바인더가제거되지못하는 조건으로제 1자외선을조사하되,표면폴라즈몬이발생하거나및 /또는 광촉매능을갖는전도성나노단위체의광학적활성과제 1자외선과의결합에 의해비로소유기바인더가제거될수있는조건으로제 1자외선을
조사함으로써이루어질수있다.
[195] 즉,전도성나노단위체가제공하는광학적활성이계 1자외선과결합함으로써 적어도접촉영역에위치하는유기바인더가선택적으로제거될수있다
[196] 제 1광자체,구체적으로,제 1광에포함되는제 1자외선자체로는유기
바인더가제거되지못하되,전도성나노단위체가제공하는광학적활성의존재 하에비로소유기바인더를제거하기위해,제 1광의조사시,제 1자외선의 강도는하기관계식 2를만족할수있다.
[197] (관계식 2)
[198] IIR(exp) < IIR(0)
[199] 관계식 2에서 , IIR(exp)는제 1광조사시제 1자외선의강도이며 , IIR(0)는순수한 상기유기바인더의막에계 1자외선을 1분동안조사시관계식 3에따른중량 감소율이 \ 이하가되는최대강도이다.이때,유기바인더의막은중량 감소율을측정하는데적절한두께를갖는막이면무방하며,비한정적인일 예로,두께가 100내지 800nm인막일수있다.
[200] (관계식 3)
[201] (M0-M,) Mo * 100
[202] 관계식 3에서, 은제 1자외선조사후관계식 2에서정의된유기바인더막의 중량이며, M0는제 1자외선조사전관계식 2에서정의된유기바인더막의 중량이다.
[203] 즉,관계식 2및관계식 3을통해제시된바와같이,제 1자외선의강도는전도성 나노단위체분산액에함유되는유기바인더가전도성나노단위체와흔재하지 않고,순수하게유기바인더의막을이를때,제 1자외선을 1분간조사하는 광조사로는유기 바인더의분해제거가실질적으로거의 이루어지지 않는 (관계식 3에 따른중량감소율이 \ 이하)강도로조사되는것이좋다.유기 바인더의종류에따라어느정도관계식 2를만족하는강도가결정될수있으나, 상술한저분자량의천연폴리머또는저분자량의 합성폴리머의유기바인더의 경우,제 1광의제 1자외선은 0.1내지 5mW/cm2인의 강도로조사될수있다.제 1 자외선은 1내지 200초동안조사될수있으나,본발명이 저ᅵ1자외선의조사 시간에 의해한정되는것은아니다.
[204] 이러한제 1자외선의강도에의해,유기바인더의선택적 제거가가능할수 있으며,나아가,특히 열이나화학적으로취약한기판상에투명 투명 전도체을 제조하고자하는경우자외선에의해기판이손상되는것을원천적으로방지할 수있다.
[205] 제 1자외선을포함하는제 1광의조사에의해,전도성 나노단위체의 접촉
영역에존재하는유기바인더,구체적으로서로접점을이루는일전도성 나노 단위체와다른일전도성 나노단위체 간의 접점에위치하는유기 바인더가 가능한전부제거되는것이좋다.
[206] 그러나,접촉영역의유기바인더를모두제거하기위해 ,제 1자외선의조사 시간이 과도하게 길어지는경우,생산성 저하가발생할수있다.실질적으로 를투를공정을포함한연속공정의 생산성을고려할때,제 1자외선의
조사시간이가능한짧을수록좋다.
[207] 이에따라,제 1자의선과전도성나노단위체의광학적 활성을이용하여 접촉 영역에존재하는유기 바인더를제거하되,단시간동안제 1자외선을
조사하면서도접촉영역에 위치하는유기 바인더를보다완벽히 제거하기위해 , 제 1광은제 1자외선과함께필스형 제 2백색광을더포함할수있다.
[208] 즉,본발명에 따른일실시예에 있어,제 1광은제 1자외선과함께,필스형 제 2 백색광을더포함할수있다.
[209] 펄스형 제 2백색광은계 1자외선에의한유기바인더분해를보다촉진시키는 역할을수행할수있다.통상적으로바인더라는목적하는역할을잘수행하기 위해서는단분자유기물보다는분자량이큰고분자유기물이바인더로적합한 것으로알려져 있다.이러한고분자유기물은단분자대비 매우폭넓은물성을 가지며 이러한고분자특유의특성에 의해보다서서히분해제거될수밖에 없다.
[210] 전도성나노단위체에서 제공하는광학적활성의존재하,제 1자외선에 의해 유기 바인더가분해되는과정에서,펄스형 제 2백색광을통해,순간적으로강한 에너지를수회공급하는경우,유기바인더의분해속도를향상시킬수있다.
[211] 특히,전도성 나노단위체가표면플라즈몬이 발생하는금속나노와이어인 경우,제 1자외선을포함하는제 1광의조사시,펄스형 제 2백색광이동시 조사되는경우,전도성 나노단위체간의 접촉영역인핫스팟 (hot spot)어 1 의해, 전도성 나노단위체간의 접촉영역에존재하는유기 바인더가보다완벽히 제거될수있다.이때,폴라즈모닉분야에서잘알려진바와같이,핫 스팟 (hot-spot)은매우강한국소전기장이형성되는영역을의미하며 ,표면 플라즈몬이발생하는금속의나노단위체간접점이나나노 ¾등을의미할수 있다ᅳ
[212] 제 2백색광은적색,녹색및청색을포함하는가시광을포함하는광을의미할 수있으며,적어도 430내지 600nm영역전체에걸쳐연속적인파장을갖는광, 구체적으로는적어도 400nm내지 800nm영역전체에걸쳐연속적인파장을 갖는광,보다구체적으로는적어도 350nm내지 950nm영역전체에걸쳐 연속적인파장을갖는광을의미할수있다.일예로,제 2백색광의광원은제논 램프일수있으나,본발명이백색광의광원에의해한정되는것은아니다.
[213] 본발명에따른일실시예에있어,제 2백색광은가시광,구체적으로적어도 430 내지 600nm영역전체,보다구체적으로적어도 400nm내지 800nm영역전체, 보다더구체적으로 350nm내지 950nm영역전체에걸친파장의광을기본으로 하되,제 2백색광은전도성나노단위체의자외선-가시광선분광스펙트럼에서 전도성나노단위체의흡광피크에해당하는파장의광 (나노단위체흡광 파장)을포함할수있다.구체적으로,나노단위체흡광파장이가시광, 구체적으로 430내지 600nm,보다구체적으로 400nm내지 800nm,보다더 구체적으로 350nm내지 950nm의범위인경우,백색광의광원만으로나노 단위체흡광파장을포함하는제 2백색광이형성될수있으며,나노단위체흡광 파장이상술한백색광의파장과상이한경우,제 2백색광은백색광원과함께 나노단위체흡광파장을발생하는다른광원의조합에의해생성된광일수 있다.
[214] 접촉영역에위치하는유기바인더의분해를촉진시켜,보다효과적이며
선택적으로접촉영역의유기바인더를제거하기위한필스형제 2백색광은 하기관계식 4를만족할수있다.
[215] (관계식 4)
[216] 2(exp) < I,pL2(0)
[217] 관계식 4에서, I[PL2(exp)는제 1광조사시제 2백색광의강도이며, IIPL2(0)는
전도성나노단위체분산액과동일하되,유기바인더를함유하지않는기준 분산액이도포및건조되어형성된기준체에서,기준체에제 2백색광을
10msec의필스폭으로단일한필스인가시전도성나노단위체간의접촉 영역에서융착이발생하는최소강도이다.보다구체적으로, IiPL2(0)는전도성 나노단위체및분산매로이루어진기준분산액이도포및건조되어형성된 기준체에서,기준체에제 2백색광을 10msec의펄스폭으로단일한펄스인가시 전도성나노단위체간의접촉영역에서융착이발생하는최소강도이다.
[218] 즉,제 1광에의해접촉영역에존재하는유기바인더가선분해제거된후,유기 바인더의분해와독립된단계로,제 2광에의해접촉영역에서의융착이 이루어지는것이좋음에따라,관계식 4에제시된바와같이,제 1광에포함되는 펄스형제 2백색광의강도는유기바인더의분해는촉진시키되,전도성나노 단위체간의접촉영역에서전도성나노단위체의부분적용융이발생하지않는 강도로조사되는것이좋다.
[219] 상술한바와같이,전도성네트워크의물질이나나노구조에따라,제 2
백색광의강도가관계식 4를만족하는범주로적절이조절될수있다.보다 구체적이며실질적인예로,대표적인전도성네트워크형성물질이며,대표적인 광학적활성을갖는물질인은나노와이어네트워크를기준으로하면,제 2 백색광의강도는 300내지 1000 W/cm2일수있다.제 2백색광의펄스폭,필스간 간격및조사되는필스의수는,기재의손상을방지할수있으며,유기바인더의 분해제거를촉진시킬수있는범주로적절히조절될수있음은물론이다.비 한정적인일예로,제 2백색광의필스폭은 1msec내지 10msec일수있으며 , 펄스간간격 (필스갭)은필스폭의 1.5배내지 3배일수있다.
[220] 제 2백색광의조사는다필스 (multi-pulse)조사되는것이좋은데,이는관계식 4를만족하는제 2백색광의필스가일정간격으로 2회이상조사됨으로써 ,단일 필스조사대비보다빠르게유기바인더의분해제거가이루어질수있기 때문이다.다필스조사는 2회이상,구체적으로는 2회내지 50회의필스,보다 구체적으로는 2회내지 20회의필스가조사됨을의미할수있으나,본발명의 조사되는제 2백색광의필스수에의해한정될수없음은물론이며,유기 바안더의물질에따라조사되는제 2백색광의필스수가적절히조절될수 있음은물론이다.
[221] 상술한바와같이 ,제 1광은제 1자외선과함께필스형제 2백색광을포함할수 있다.제 1광의조사시,제 1자외선이연속적으로조사되는데,제 1자외선의 조사와동시,또는제 자외선의조사증,또는제 1자외선의조사가중단되기 직전에펄스형제 2백색광의조사가이루어질수있다.구체적인일예로,제 1 자외선이조사되는총시간이 일때,제 1자외선이조사되기시작하는시점을 기준으로,필스형제 2백색광이조사되는시점은제 1자외선조사와동시내지 0.9tuvl이내일수있으나,본발명이게 2백색광이조사되는시점에의해 한정되는것은아니다.
[222] 제 1자외선과함께펄스형제 2백색광을포함하는제 1광을조사하는경우,제 1 자외선조사시간을 1내지 100 sec,구체적으로는 1내지 60sec,보다
구체적으로는 1내지 20 sec(tuvl)로현저하게감소시킬수있으면서도접촉 영역의유기바인더를보다완벽히제거할수있다.
[223] 도포된전도성나노단위체에제 1자외선 (UV)을포함하는제 1광을조사하는 제 1광조사단계가수행된후,기재상의전도성나노단위체에펄스형제 1 백색광을포함하는게 2광을조사하는게 2광조사단계가수행될수있다.
[224] 제 2광조사단계에의해,전도성나노단위체간의접촉영역이용융되어
결합됨으로써,전도성나노단위체들이물리적으로일체로결합될수있다.
[225] 제 1백색광은상술한제 2.백색광과유사하게,적색,녹색및청색을포함하는 가시광을포함하는광을의미할수있으며 ,적어도 430내지 600nm영역전체에 걸쳐연속적인파장을갖는광,구체적으로는적어도 400nm내지 800nm영역 전체에걸쳐연속적인파장을갖는광,보다구체적으로는적어도 350nm내지 950nm영역전체에걸차연속적인파장을갖는광을의미할수있다.일예로, 제 1백색광의광원은제논램프일수있으나,본발명이백색광의광원에의해 한정되는것은아니다.
[226] 또한,제 1백색광은,제 2백색광과유사내지동일하게,전도성나노단위체의 자외선-가시광선분광스펙트럼에서전도성나노단위체의흡광피크에 해당하는파장의광 (나노단위체흡광파장)을포함할수있다ᅳ
[227] 전도성나노단위체간접촉영역에서의부분적용융에의한결착 (융착)을 야기하는제 1백색광은하기관계식 5를만족할수있다.
[228] (관계식 5)
[229] IIPL1(0) < I1PL1(exp) < IIPL1(c)
[230] 관계식 5에서 , In>L1(exp)는제 2광조사시제 1백색광의강도이며, 1^,(0)는 전도성나노단위체분산액과동일하되,유기바인더를함유하지않는기준 분산액이도포및건조되어형성된기준체에서,기준체에계 1백색광을
10msec의필스폭으로단일한필스인가시전도성나노단위체간의접촉 영역에서융착이발생하는최소강도이며, IIPL1(C)는기준체에제 1백색광을 10msec의필스폭으로단일한펄스인가시전도성나노단위체의장축 방향으로의부분적용융에의해일전도성나노단위체가둘이상의나노구조로 절단되는최소강도이다.보다구체적으로, IIPL1(0)는전도성나노단위체및 분산매로이루어진기준분산액이도포및건조되어형성된기준체에서, 기준체에제 1백색광을 10msec의필스폭으로단일한펄스인가시전도성나노 단위체간의접촉영역에서융착이발생하는최소강도이며, IIPL1(c)는전도성 나노단위체및분산매로이루어진기준분산액이도포및건조되어형성된 기준체에서,기준체에제 1백색광을 10msec의필스폭으로단일한펄스인가시 전도성나노단위체의장축방향으로의부분적용융에의해일전도성나노 단위체가둘이상의나노구조로절단되는최소강도이다.
[231] 즉,관계식 5를통해상술한바와같이,제 1백색광은단필스조사에의해접촉 영역의융착은발생하되,접촉영역이외의영역에서전도성나노단위체의원치 않는용융등,전도성나노단위체의손상이발생하지않는강도로조사될수 있다.
[232] 관계식 5는유기바인더를채택하지않고,전도성나노단위체를분산매에 분산시킨후,광소결을통해전도성나노단위체들을융착시키는종래의 방법에서이미확립된조건과동일내지유사할수있다.그러나,상술한바와 같이,전도성나노단위체의균일하고균질한분산과접촉을위해유기바인더를 채택하는경우,적어도접촉영역에서유기바인더를선제거하지않고광 소결을수행하는경우,관계식 5의조건을만족하는범위내에서는광소결이 이루어지지않을수있다.즉,유기바인더및전도성나노단위체를함유하는 전도성나노단위체분산액을도포및건조한후,상술한제 1자외선-제 1 백색광의다단광조사가아닌,종래와같이필스형백색광을조사하여광소결을 수행하고자할때,백색광의강도,펄스폭,필스수,펄스간격등을조절하여도 전도성나노단위체자체가부분적으로용융되거나변형되며전도성나노 단위체자체가손상될뿐,목적하는전도성나노단위체네트워크가제조되지 않는다.
[233] - 즉,상술한관계식 5와조건은,유기바인더및전도성나노단위체를함유하는 전도성나노단위체분산액을이용할때,제 1자외선-제 1백색광의다단광 조사의구성에의해가능한조건이다.
[234] 상술한바와같이,제 1광조사에의해접촉영역에존재하는유기바인더를 먼저제거한후,필스형제 1백색광을이용하여접촉영역을융착시킴에따라, 관계식 5를만족하는조건에서전도성나노단위체간의융착이이루질수있다. 또한,제 1광조사에의해접촉영역에존재하는유기바인더를먼저제거한후, 펄스형쎄 1백색광을이용하여접촉영역을융착시킴에따라,제 1백색광이 단필스로조사될수있으며,단일한필스로제 1백색광을조사하여도, 대면적에서도균질하게접촉영역들의융착이이루어질수있다.
[235] 상술한바와같이,전도성네트워크의물질이나나노구조에따라,게 1
- 백색광의강도가관계식 5를만족하는범주로적절이조절될수있다.보다
구체적이며실질적인예로,대표적인전도성네트워크형성물질이며,대표적인 광학적활성을갖는물질인은나노와이어네트워크를기준으로하면,제 1 백색광의강도는 2000내지 3000W/cm2일수있다.
[236] 관계식 5를만족하는펄스형제 1백색광은단필스또는 2내지 5회의다펄스로 조사될수있는데,후술하는바와같이,제 2자외선과함께,제 1백색광을 조사하는경우,단일한제 1백색광의조사로도,매우안정적이고견고한융착이 발생하여보다좋다.단펼스로조사될때,펄스의폭은전도성나노단위체들의 안정적인융착이이루어지면서도기재가손상되지않는폭이면족하다.
구체적인일예로,펄스의폭은 5msec내지 15msec일수있으나,본발명이계 1 백색광의필스폭에의해한정되는것은아니다.
[237] 관계식 5를만족하는필스형제 1백색광이조사될때,전도성나노단위체의 접촉영역은순간적으로매우고은으로가열되며전도성나노단위체간융착이 이루어질수있다.
[238] 본발명의일실시예에따른제조방법에있어,제 2광은펄스형제 1백색광과 함께,제 2자외선,적외선또는제 2자외선과적외선을포함할수있다.
[239] 구체적으로,제 2광은필스형제 1백색광과함께게 2자외선을포함할수
있으며,이와달리,게 2광은필스형제 1백색광,제 2자외선및적외선을포함할 수있다.
[240] 제 2광이거 12자외선을포함하는경우,일정시간동안연속적으로조사되는제 2 자외선은적어도,제 1백색광의조사와동시또는제 1백색광의조사전이미 전도성나노단위체에조사되고있는것이좋다.즉,펄스형제 1백색광은제 2 자외선이조사되는도증에조사될수있다.제 1백색광과제 2자외선의동시 조사에의해전도성나노단위체간의융착이이루어질뿐만아니라,제 1광조사 후에도기재상 (전도성나노단위체를포함함)에잔류할수있는유기바인더가 분해제거되어투명전도체의투명도가향상될수있으며,전도성네트워크가 원활하게투명고분자층으로가라앉을수있다.
[241] 또한,제 2자외선과제 1백색광을포함하는제 2광이조사됨으로써,보다낮은 강도의제 1백색광을단펄스로조사한경우에도,접촉영역에서안정적으로 재현성있게전도성나노단위체간의융착이이루어질수있다.
[242] 상술한바와같이,제 2광조사는제 2자외선의조사와동시 ,제 2자외선이 조사되는중또는제 2자외선의조사가중지되기직전제 1백색광이조사될수 있다.
[243] 상세하게,제 2광조사는하기관계식 6을만족할수있다.
[244] (관계식 6)
[245] 0.5 tuv2 < tpl < tuv2
[246] 관계식 6에서 , 2은제 2자외선이조사되는총시간 (sec)이며, 1^은제 2
자외선이조사되기시작하는시점을기준으로한계 1백색광의조사시점이다. 이때,관계식 5에서 < 의의미는제 2자외선의조사중단되는시점 (중단되기 직전)에제 1백색광이조사되는조건을의미한다.즉,제 1백색광은제 2자외선이 적어도 0.5 tuv2동안이미조사된후에조사될수있다.
[247] 관계식 6을만족할때,전도성나노단위체간의융착과함께,제 1광조사후에도 잔류하는유기바인더가제거되며,투명전도체의투명도를향상시킬수있다.
[248] 제 2자외선은제 1자외선과독립적으로,파장이 10nm내지 400nm범위의광을 의미할수있다.제 2자외선은제 1자외선과독립적으로 , 320내지 400nm파장 대역의 UV-A, 280내지 320nm파장대역의 UV-B, 100내지 280mn파장대역의 UV-C또는이들의조합을포함할수있다.
[249] 게 2자외선의강도또한,계 1자외선을기반으로상술한바와같이,관계식 1을 만족하는강도인것이좋다.즉,제 2자외선의강도또한,제 2자외선만으로는 유기바인더자체가제거되지않는강도이되,제 2백색광조사시발생하는 열이나전도성나노단위체에서제공되는광학적활성과함께유기바인더가 제거될수있는정도의강도인것이좋다.이러한측면에서,유기바인더가 상술한저분자량의천연또는합성고분자인경우,제 2자외선의강도는제 1 자외선과는독립적으로, 0.1내지 5 mW/cm2일수있다.제 2자외선의조사 시간은전도성나노단위체의분산액이도포되지않은기재에조사할때,기재가 손상되지않을정도의시간이면족하다.일예로,펄스형게 1백색광과함께제 2 자외선을포함하는제 2광을조사하는경우,제 2자외선조사시간은 1내지 lOOsec,구체적으로는 10내지 60sec,보다구체적으로는 20내지 60 sec(tuvl)일수 있다.이때,앞선관계식 6을통해상술한바와같이,제 1백색광은제 2자외선이 최소 0.5 2이상동안지속적으로조사된시점에서조사되는것이좋다.
[250] 전도성나노단위체가서로융착된후,투명고분자층으로가라앉기위해서는, 융착되어일체가된전도성나노단위체에유기바인더가잔류하지않는것이 좋다.즉,저 U광조사후잔류하는유기바인더는,게 2광조사에의해제거되는 것이좋다.이러한측면에서도,제 2광은제 1백색광과함께,계 2자외선을 포함하는것이좋다.
[251] 본발명의일실시예에따른제조방법에있어,제 1광과제 2광은서로
독립적으로조사될수있으며,이와달리,제 1광과제 2광은연속적으로조사될 수있다.서로독립되어조사됨은,제 1광이조사된후기재상위치하는전도성 나노단위체에광이미조사되는휴지기가존재함을의미할수있다.제 1광과 제 2광이연속적이며순차적으로조사됨은,제 1광의조사와제 2광의조사 사이에의도적인휴지기가존재하지않는경우를의미할수있다.이러한독립적 또는연속적조사는제조공정라인의구축시설계에따라변경가능한것이다. 이때,제 2광이제 2자외선을포함하며제 2자외선의강도가제 1자외선과동일한 경우,연속적조사는 과 tuv2시간을합한시간동안연속적으로자외선을 조사함으로써,계 1광의제 1자외선과게 2광의계 2자외선이구현될수있다. 제 1광과제 2광의조사시,단일한자외선램프로자외선을설정된시간 (tuvl+tuv2 )동안연속적으로조사하는경우공정라인구축이용이하고비용감소가가능할 뿐만아니라공정변수조작이보다용이한장점이있다.
[252] 상술한바와같이,제 2자외선및제 1백색광을포함하는제 2광이
조사됨으로써,전도성나노단위체가서로융착하며물리적으로일체인전도성 네트워크가형성될수있다.
[253] 이러한융착 (광소결)과함께,제 2자외선과함께조사되는제 1백색광조사시 전도성나노단위체의접촉영역에서발생한열 (광에너지의흡수에의해발생한 열)이전도성네트워크를통해전파됨으로써,전도성네트워크와접촉하는투명 고분자영역이가열되어,전도성네트워크가투명고분자층으로가라앉을수 있다.
[254] 즉,제 2광조사단계에의해,전도성나노단위체의광소결과함께,전도성나노 단위체가일체로결합된전도성네트워크가투명고분자층으로가라앉을수 있다.이에따라,제 2광조사가 b)단계의에너지인가단계에상응할수있다.
[255] 본발명에따른일실시예에있어,선택적으로,제 2광조사시,적외선이더
조사될수있다.상세하게 ,제 2광은제 2자외선,제 1백색광과함께,적외선을더 포함할수있다.
[256] 상술한바와같이 ,게 2자외선이조사되는중거 11백색광이조사될수있으며 , 제 1백색광이조사된후,또는제 i백색광의조사와함께,적외선이조사될수 있다.
[257] 이는,제 2자외선및제 1백색광조사시전도성나노단위체에서발생하는열과 함께,적외선에의해투명고분자층이가열됨으로써,보다원활히전도성 네트워크를투명고분자층으로가라앉힐수있다.
[258] 적외선은 α75μπι내지 lmm파장대역의광을의미하며 ,알려진바와같이 가시광선이나자외선에비해강한열작용을가짐에따라열광으로도불린다. 적외선은 0.75내지 3μπι파장의근적외선, 3내지 25 파장의적외선, 25μπι내지 lmm의원적외선또는이들의조합을포함할수있다.
[259] 적외선의강도및조사시간은기재의손상이방지되면서도제 1백색광의
조사와동시또는조사후,제 2자외선과함께조사되어,투명고분자층을 연화시킬수있는정도면족하다.구체적인일예로,적외선은 100내지 1000
W/cm2로 5내지 100초동안조사될수있으나,본발명이조사되는적외선의 강도및조사시간에의해한정될수없음은물론이다.
[260] 그러나,상술한바와같이,제 2자외선과제 1백색광만으로도전도성네트워크가 투명고분자층으로가라앉을수있음에따라,적외선은선택적으로조사될수 있다.
[261] 투명 ᅥ도체
[262] 본발명은상술한제조방법으로제조된투명전도체를포함한다.
[263] 본발명은상술한제조방법으로제조되어,광투과율이 90%이상이며,
헤이즈 (haze)가 1.5%이하인투명전도체를포함한다.
[264] 본발명은상술한제조방법으로제조된투명전도체를포함하는디스플레이 장치를포함한다.
[265] 본발명은상술한제조방법으로제조된투명전도체를포함하는평판액정 표시장치 (flat liquid crystal displays)를포함한다.
[266] 본발명은상술한제조방법으로제조된투명전도체를포함하는터치
패널 (touch panel)을포함한다.
[267] 본발명은상술한제조방법으로제조된투명전도체를포함하는전자발광 장치 (electroluminescent devices)를포함한다.
[268] 본발명은상술한제조방법으로제조된투명전도체를포함하는
태양전지 (photovoltaic cells)를포함한다.
[269] 본발명은상술한제조방법으로제조된투명전도체를포함하는대전
방지층 (anti-static layers)을포함한다.
[270] 본발명은상술한제조방법으로제조된투명전도체를포함하는전자기파 치"폐증 (electromagnetic wave shielding layers)을포함한다.
[271] 본발명의일실시예에따른투명전도체는기재;및기재상위치하는
복합층;을포함하고,복합층은유리전이온도 (Tg; glass temperature)가 80°C 이상인투명고분자층;및투명고분자층에함입된전도성네트워크;를 포함하며,전도성네트워크는나노와이어,나노튜브및나노벨트에서하나또는 둘이상선택되는나노단위체의네트워크를포함하고,복합층의총두께를 기준으로,복합층의기재와접하는면인하부면으로부터 5%두께에이르는 하부영역에서의나노단위체밀도대비,복합층의하부면의대향면인
표면으로부터 5%두께에이르는상부영역에서의나노단위체의밀도가 상대적으로큰특징이있다.
[272] 실험적으로,하부영역에서의나노단위체의밀도는,하부영역에위치하는 나노단위체의수를카운트하여,하부면의면적으로나눈값에해당할수있다. 실험저긍로,상부영역에서의나노단위체의말도는,상부영역에위치하는나노 단위체의수를카운트하여,표면의면적 (하부면의면적과동일함)으로나눈값에 해당할수있다.
[273] 이를다른관점에서상술하면,본발명의일실시예에따른투명전도체는
기재;및기재상위치하는복합층;을포함하고,복합층은유리전이온도 (Tg; glass temperature)가 80°C이상,구체적으로 80내지 140oC,보다구체적으로, 100내지 140°C,보다더구체적으로, 110내지 130oC인투명고분자층;및투명고분자 층에함입된전도성네트워크;를포함하며,전도성네트워크는나노와이어, 나노류브및나노벨트에서하나또는둘이상선택되는나노단위체의
네트워크를포함하고,복합층의기재와접하는면인하부면에위치하는나노 단위체의수보다상기하부면의대향면인표면에위치하는나노단위체의 수가큰특징이있다.이때,하부면에위치하는나노단위체의수는하부면의 단위면적당나노단위체의수를의미할수있고,표면에위치하는나노 단위체의수는표면의단위면적당나노단위체의수를의미할수있다.이때, 후술하는바와같이,나노단위체가표면에서돌출된경우또한,표면에나노 단위체가위치하는 (노출된)것으로간주될수있음은물론이다.
[274] 상술한상부영역과하부영역간의나노단위체간밀도차,또는하부면과
표면간의나노단위체수의차는,기재에투명고분자층을먼저형성시킨후, 투명고분자층을유리전이온도이상으로가열하여연화시키고,연화된투명 고분자층에전도성네트워크를가라앉히는 (sink)방법에의해나타날수있는 특성이다.
[275] 본발명의일실시예에따른투명전도체는기재;및기재상위치하는
복합층;을포함하고,복합층은유리전이온도 (Tg; glass temperature)가 80°C이상, 구체적으로 80내지 140°C,보다구체적으로, 100내지 140 ,보다더
구체적으로, 110내지 130oC인투명고분자층;및투명고분자층에일부가 함입된전도성네트워크;를포함하며,전도성네트워크는나노와이어,나노튜브 및나노벨트에서하나또는둘이상선택되는나노단위체의네트워크일수 있다.
[276] 일부가함입된구조는,전도성네트워크의적어도일부가투명고분자층
상부로돌출된구조를가짐을의미할수있다.돌출된전도성네트워크영역, 구체적으로돌출된나노단위체는그표면에투명고분자층의투명고분자 물질로코팅되지않은상태일수있다.구체적으로,돌출된전도성네트워크 영역 (돌출된나노단위체)는전도성네트워크를이루는물질그자체의표면을 가질수있다.
[277] 본발명의일실시예에따른투명전도체는상술한바와같이,투명고분자층에 전도성네트워크의일부가함입된특성을가지며,이러한특성은상술한바와 같이,기재에투명고분자층을먼저형성시킨후,투명고분자층을유리전이온도 이상으로가열하여연화시키고,연화된투명고분자층에전도성네트워크를 가라앉히는 (sink)방법에의해특징적으로나타나는특성이다.
[278] 돌출되는전도성네트워크영역은투명고분자층을유리전이온도이상으로 가열하여연화시키고,연화된투명고분자층에전도성네트워크를가라앉히되, 가라앉히는정도에의해조절될수있다.
[279] 구체적이며비한정적인일예로,전체전도성네트워크의 0.1내지 30중량%가 투명고분자층표면위로돌출된상태일수있다.즉,전도성네트워크를이루는 나노단위체전체중량중, 0.1내지 30중량 %의나노단위체가투명고분자층 표면위로돌출된상태일수있다.
[280] 방법적으로,본발명의일실시예에따른투명전도체는기재상형성된투명 고분자층에,전도성네트워크가가라앉아 (sink)형성된복합층을포함하며, 전도성네트워크는나노와이어,나노류브및나노벨트에서하나또는둘이상 선택되는나노단위체의네트워크일수있다.
[281] 발명의일실시예에따른투명전도체는전도성나노단위체들이전도성나노 단위체간의접촉영역에서용융결착하여일체로결합한전도상나노단위체 네트워크를포함하며,적어도 20mmx20mm의면적을갖는대면적전도성나노 단위체네트워크를기준으로,하기의관계식 7로규정되는면저항균일도가 90%이상인투명전도체를포함한다.
[282] (관계식 7)
[283] 면저항균일도 (%)=[1- (면저항표준편차) /면저항평균) ]χ100
[284] 이때,면저항표준편차와면저항평균은적어도 20mmx20mm의면적을갖는 대면적의투명전도체를기준으로,해당면적을 9개이상의영역으로균등하게 분할한후,분할영역별로최소 10회이상랜덤하게면저항을측정하여수득된 것일수있다.
[285] 본발명의일실시예에따른투명전도체는 1cm의곡률반경으로 1000회의 굽힘테스트 (2점굽힘테스트)시,하기의관계식 8로규정되는면저항증가율이 1.4이하로,물리적유연성을가지면서도반복적인변형에도안정적으로 전기전도도가유지될수있다.
[286] (관계식 8)
[287] 면저항증가율 =굽힘테스트후의면저항 /굽힘테스트전의면저항
[288] 본발명의일실시예에따른투명전도체는평균면저항이 100 ohm/sq이하일 수있다.
[289] 본발명의일실시예에따른투명전도체는광투과율이 90%이상이며,
헤이즈 (haze)가 1.5%이하일수있다.광투과율은 ASTM D 1003에따라측정된 것일수있으며 ,헤이즈는 ASTM D 1003에따라측정된것일수있다.
[290] 본발명의일실시예에따른투명전도체에서,기재,투명고분자층의물질, 전도성네트워크의물질,구조등은앞서,상술한바와유사내지동일하며,앞서 기재,투명고분자층,전도성네트워크및에너지인가에서상술한모든내용을 포함한다.
[291] 다만,투명고분자층의두께는 50nm내지 ΙΟμιη,구체적으로는 50nm내지
2000nm일수있음에따라,복합층의두께는 50nm내지 ΙΟμιη,구체적으로는 50nm내지 2000nm일수있으나,이에한정되는것은아니다.
[292] 다만,복합층은투명고분자 100증량부를기준으로 1내지 30증량부,
구체적으로, 5내지 30중량부,보다구체적으로는 5내지 15중량부의전도성 네트워크를함유할수있으나,이에한정되는것은아니다.
[293] 본발명은상술한투명전도체를포함하는디스플레이장치를포함한다.
[294] 본발명은상술한투명전도체를포함하는평판액정표시장치 (flat liquid crystal displays)를포함한다.
[295] 본발명은상술한투명전도체를포함하는터치패널 (touch panel)을포함한다.
[296] 본발명은상술한투명전도체를포함하는전자발광장치 (electroluminescent devices)를포함한다.
[297] 본발명은상술한투명전도체를포함하는태양전지 (photovoltaic cells)를
포함한다.
[298] 본발명은상술한투명전도체를포함하는대전방지층 (anti-static layers)을
포함한다.
[299] 본발명은상술한투명전도체를포함하는전자기파차폐층 (electromagnetic wave shielding layers)을포함한다.
[300] 본발명의우수함을실험적으로입증하기위한일예로,열에너지를인가하는 예를제공한다.
[301] (실시예 1)
[302] 폴리에틸렌테레프탈레이트 (PET)기판상,유리전이온도가 118.39°C인투명 고분자를이용하여, 1000 nm두께로투명고분자층을형성하였다.투명 고분자에대해비용매인탈이온수를분산매로은나노와이어가분산된수 분산액을투명고분자층상에도포한후건조하여은나노와이어네트워크를 형성하였다.
[303] 은나노와이어는평균직경이 25 nm이며,종횡비가 1000이었고,투명
고분자층 100증량부를기준으로, 15중량부의은나노와이어네트워크가 형성되도록은나노와이어분산액을도포하였다.
[304] 이후,투명고분자층을 120°C로가열하고 120oC의온도에서 90초간유지한후 냉각하여투명전도체를제조하였다.
[305] 기판의광투과율및해이즈는 92.57% (광투과율)및 0.78% (헤이즈)이었고,투명 고분자층이형성된기판의광투과율및헤이즈는 92.25%및 0.54%이었다. 제조된투명전도체의광투과율은 91.31%이었으며,해이즈는 1.2%였고, 면저항은 70내지 100 ohm/sq였다.
[306] 주사전자현미경관찰을통해,모든은나노와이어네트워크가투명
고분자층으로잠겼음을확인하였다.
[307]
[308] 본발명의우수함을실험적으로입증하기위한일예로,광에너지를인가하는 예를제공한다.
[309] (실시예 2)
[310] 열에너지를인가한실시예 1과동일한고분자층이형성된 PET기판을
이용하였다.
- [311] 전도성나노단위체로평균직경 20nm,평균길이 25 인은나노와이어를 사용하였다ᅳ자외선-가시광선분광스펙트럼결과은나노와이어의흡광피크는
355.2 nm이었다.분산액제조를위한바인더로증량평균분자량이 8만 6천인 하이드록시프로필메틸샐를로스 (HPMC)를사용하였으며,분산매로탈이온수를 사용하였다ᅳ분산액이 0.15중량 %의은나노와이어및 0.15중량 %의
하이드록시프로필메틸샐를로스를함유하도록분산매에은나노와이어및 하이드록시프로필메틸샐를로스를투입하고흔합하였다.이후,투명 고분자층이형성된기판상,스핀코팅을이용하여분산액을도포하였으며,투명 고분자층 100증량부를기준으로, 15증량부의은나노와이어네트워크가 형성되도록분산액을도포하였다.
[312] 이후,근적외선램프 (Adphos L40)를이용하여도포막에 350W의강도로 10 sec 동안근적외선을조사하여도포막을건조하였다.
[313] 건조후,자외선램프 (LUMATEC SUV-DC, UV-C)를이용하여, 0.31mW/cm2, 0.69mW/cm2또는 2.78mW/cm2의강도로 20초동안자외선 (제 1자외선)을 조사하였다.이후, 3.13mW/cm2의자외선 (제 2자외선)을 50초동안조사하며, 자외선 (제 2자외선)조사를멈추기직전에제논램프 (first light, 350~950nm 파장)를이용하여필스폭 15msec, 2800W/cm2의강도로 1회펄스형백색광을 조사하여,투명전도체를제조하였다.
[314] 추가적인실험을통해, 2.78mW/cm2의강도로두께가 500nm인순수한 HPMC의 막에 20분간자외선을조사했을때,중량감소가실질적으로발생하지않는것을 확인하였다.또한,분산액과동일하게,유리판상 1:1의중량비를갖는은 나노와이어와하이드록시프로필메틸샐를로스 (HPMC)의복합막을형성하고, 0.31mW/cm2의자외선을 20분간조사한후,중량감소를측정한결과,유리판을 포함한총질량기준, 0.173%질량의감소가발생함을확인하였다. X선광전자 분광분석 (XPS)을이용한 C Is를측정한결과,순수 C의질량은자외선조사전 61.3질량 %»이었던 C Is가 47.36질량 %로감소함을확인하였다.
[315] (실시예 3)
[316] 실시예 2과동일하게수행하되,건조된도포막에자외선램프및제논램프를 이용하여 2.78mW/cm2의자외선 (제 1자외선)올 5초동안조사하였으며,자외선의 조사와동시에펄스폭 5msec,필스갭 10msec, 666W/cm2의강도로 15회필스형 백색광 (제 2백색광)을조사하였다.이후, 3.13mW/cm2의자외선 (제 2자외선)을 50초동안조사하며,자외선 (제 2자외선)조사를멈추기직전에펄스폭 15msec, 2800W/cm2의강도로 1회필스형백색광 (제 1백색광)을조사하여,투명전도체를 제조하였다.
[317] 이때,바인더를포함하지않는순수한은나노와이어들을유리판에도포한후, 펄스갭 10msec, 666W/cm2의강도로 15회필스형백색광을조사한경우,광 소결이발생하지않음올확인하였다.
[318] 주사전자현미경관찰을통해,실시예 2및실시예 3에서제조된투명전도체 모두은나노와이어간융착이원활히발생하여광소결이이루어졌음을 확인하였으며,실시예 2에서제조된투명전도체를주사전자현미경으로관찰한 도 1(저배율)및도 2(고배율)와같이,자외선조사 (제 2자외선)와제논램프를 이용한필스형백색광의조사만으로,은나노와이어네트워크가투명
고분자층으로가라앉아잠긴것을확인하였다.
[319] 제조된투명전도체의면적은 20mmx20mm였으며,해당면적을 9개의
영역으로균등분할한후, 4-point프로브를이용하여분할한영역마다 10회씩 랜덤하게면저항을측정하고,모든분할영역의측정결과를종합하여면저항 평균및면저항편차를얻었다.
[320] 제조된투명전도체의면저항균일도는제 1자외선조사시의강도와무관하게, 98%이상임을확인하였으며,은나노와이어간의융착에의해,은나노와이어 네트워크의전도성이보다좋아져,투명전도체의평균면저항이 83 ohm/sq로 보다향상된것을확인하였다.
[321] 실시예에서제조된투명전도체의광투과율은 91.07% (실시예 2)및
91.25% (실시예 3)이었으며,헤이즈는 1.22% (실시예 2)및 1.23% (실시예
3)이었다.
[322] 제조된투명전도체에대해,굽힘 (bending)테스트를수행하였다.상세하게, 굽힘테스트는 2점굽힘시험을통해 10 mm의벤딩반경하에서 1000회
실시하였다.실시예 2및실시예 3에서제조된모든투명전도체가, 10mm의곡를 반경으로 1000회의굽힘테스트를수행하여도면저항증가율이 1.4이하로, 반복되는물리적변형에도안정적으로낮은면저항이유지됨을알수있다.
[323] 실시예 1내지 3에서제조된투명전도체에서,기판을제거하고기판과투명 고분자층의계면을기준하여계면으로부터 50nm에이르는두께까지투명 고분자층을에칭제거한후노출되는은나노와이어를관찰한결과,하부 영역에는은나노와이어가실질적으로존재하지않음을확인하였다.동일한 방법으로샘폴을제작하여,투명고분자층의표면으로부터 50nm에이르는 두께까지투명고분자층을에칭제거한결과,에칭제거한상부영역에은 나노와이어가존재함을확인하였다. [324] 이상과같이본발명에서는특정된사항들과한정된실시예및도면에의해 설명되었으나이는본발명의보다전반적인이해를돕기위해서제공된것일 뿐,본발명은상기의실시예에한정되는것은아니며,본발명이속하는 분야에서통상의지식을가진자라면이러한기재로부터다양한수정및변형이 가능하다.
[325] 따라서,본발명의사상은설명된실시예에국한되어정해져서는아니되며, 후술하는특허청구범위뿐아니라이특허청구범위와균등하거나등가적변형 0 있는모든것들은본발명사상의범주에속한다고할것이다.
[326]
[327]

Claims

청구범위
[청구항 1] a)기재상투명고분자층과전도성네트워크가순차적으로적층된 적층체를제조하는단계;
b)상기적층체에에너지를인가하여,상기전도성네트워크를 투명고분자층으로가라앉히는 (sink)단계; 를포함하는투명전도체의제조방법.
[청구항 2] 제 1항에있어서,
상기에너지는열에너지,광에너지또는열과광에너지인투명 전도체의제조방법.
[청구항 3] 제 1항에있어서,
b)단계는에너지를인가하여상기적층체의투명고분자층의 투명고분자를유리전이은도이상으로가열함으로써,상기전도성 네트워크를투명고분자층으로가라앉히는단계를포함하는투명 전도체의제조방법.
[청구항 4] 제 1항에있어서,
상기 b)단계에서,상기에너지는적어도광에너지를포함하며 , b)단계에서,적외선 (IR),자외선 (UV),가시광선,마이크로파또는 이들의조합인광이조사되는투명전도체의제조방법.
[청구항 5] 제 1항에있어서,
상기전도성네트워크는전도성나노와이어,전도성나노튜브및 전도성나노벨트에서하나또는둘이상선택되는나노단위체의 네트워크인투명전도체의제조방법.
[청구항 6] 제 1항에있어서,
상기전도성네트워크는은나노와이어,은나노벨트,
탄소나노류브,탄소나노와이어및탄소나노벨트에서하나또는 둘이상선택되는나노단위체의네트워크인투명전도체의 제조방법.
[청구항 7] 제 5항에있어서,
상기전도성네트워크는상기나노단위체가서로물리적으로 결착된다공성구조체또는상기나노단위체가서로접촉하거나 얽혀형성되는다공성구조체인투명전도체의제조방법.
[청구항 8] 제 1항에있어서,
상기투명고분자층의투명고분자의유리전이온도는 80내지 140°C인투명전도체의제조방법 .
[청구항 9] 제 1항에있어서,
상기투명고분자층의투명고분자는폴리에스테르 (polyester), 폴리에틸렌테레프탈레이트 (polyethylene terephthalate)(PET), 아크릴레이트 (acrylate)(AC),폴리부틸렌
테레프탈레이트 (polybutylene terephthalate),폴리메틸
메타크릴레이트 (polymethyl methacrylate)(PMMA),
아크릴수지 (acrylic resin),폴리카보네이트 (polycarbonate)(PC), 폴리스티렌 (polystyrene),트리아세테이트 (triacetate)(TAQ, 폴리비닐알콜 (polyvinyl alcohol),폴리비닐염화물 (polyvinyl chloride),폴리비닐리덴염화물 (polyvinylidene chloride), 폴리에틸렌 (polyethylene),에틸렌-비닐아세테이트
코폴리머 (ethylenevinylacetate copolymer)들,폴리비닐
부티랄 (polyvinyl butyral),금속이온 -교차결합된
에틸렌 -메타크릴산코폴리머 (metal ion-crosslinked
ethylene-methacrylic acid copolymer)들,폴리우레탄 (polyurethane), 셀로판 (cellophane)및폴리올레핀 (poly olefin)에서하나또는둘 이상의흔합물인투명전도체의제조방법.
제 1항에있어서,
상기 a)단계는,
al)투명고분자또는투명고분자의증합단위체를함유하는 제 1용액을기재상도포하여도포막을형성하는단계;및 a2)상기도포막을건조하는단계;
를포함하는투명전도체의제조방법.
제 10항에있어서,
상기 a2)단계후,또는 a2)단계와동시에,상기도포막의투명 고분자또는투명고분자의중합단위체를중합하는단계 ;가더 수행되는투명전도체의제조방법.
제 1항에있어서,
상기투명고분자층은패턴화또는비패턴화된투명전도체의 제조방법.
제 1항에있어서,
상기 a)단계는,
a3)상기투명고분자충이형성된기재의상기투명고분자층 표면에,전도성나노와이어,전도성나노류브및전도성 나노벨트에서하나또는둘이상선택되는나노단위체가 분산매에분산된분산액을도포하는단계;
를포함하는투명전도체의제조방법.
제 13항에있어서,
상기분산액은유기바인더를더함유하는투명전도체의 제조방법.
제 14항에있어서, 상기유기바인더는분자량이 5xl05이하의천연또는합성
폴리머인투명전도체의제조방법.
[청구항 16] 제 14항에있어서,
상기유기바인더는글리코겐,아밀로오스,아밀로펙틴,칼로오스, 아가,알긴,알지네이트,펙틴,카라기난,샐를로오스,키틴,키토산, 커드란,덱스트란,프럭탄 (fructane),콜라겐,젤란검 (gellan gum), 검아라빅,전분,잔탄,검트래거캔스 (gum tragacanth),
카라얀 (carayan),카라빈 (carabean),글루코만난또는이들의조합을 포함하는다당류;셀를로스에스테르또는셀를로스에테르를 포함하는다당류유도체;폴리에틸렌글리콜 (PEG);
폴리비닐피를리돈 (PVP);및폴리비닐알콜 (PVA)군에서하나또는 둘이상선택되는투명전도체의제조방법.
청구항 17] 제 13항에있어서,
상기 a3)단계후,분산액이도포된도포막에적외선 (IR)을 포함하는광을조사하여건조하는단계 ;를더포함하는투명 전도체의제조방법.
[청구항 18] 제 14항에있어서,
상기전도성네트워크의전도성물질은표면플라즈몬또는 광촉매능을포함하는광학적활성올갖는투명전도체의
제조방법.
[청구항 19] 제 18항에있어서,
상기투명고분자층표면에도포된나노단위체에제 1
자외선 (UV)를포함하는제 1광을조사하는제 1광조사단계 ;및 제 1자외선이조사된나노단위체에펄스형제 1백색광을 포함하는제 2광을조사하는제 2광조사단계 ;를포함하는투명 전도체의제조방법.
[청구항 20] 제 19항에있어서,
상기제 2광은제 2자외선,제 2적외선또는제 2자외선과제 2 적외선을더포함하는투명전도체의제조방법.
[청구항 21] 제 19항에있어서,
상기제 1광은펄스형제 2백색광을더포함하는투명전도체의 제조방법.
[청구항 22] 제 19항에있어서,
상기제 2광조사단계에서,상기 b)단계가수행되는투명 전도체의제조방법.
[청구항 23] 제 21항에있어서,
상기제 1백색광및제 2백색광은각각상기나노단위체의 자외선-가시광선분광스펙트럼에서나노단위체의흡광피크에 해당하는파장의광을포함하는투명전도체의제조방법.
기재;및상기기재상위치하는복합층;올포함하고,
상기복합층은유리전이온도 (Tg; glass temperature)가 80°C이상인 투명고분자층;및상기투명고분자층에함입된전도성 네트워크;를포함하며,
상기전도성네트워크는나노와이어,나노류브및나노벨트에서 하나또는둘이상선택되는나노단위체의네트워크를포함하고, 상기복합층의총두께를기준으로,상기복합층의기재와접하는 면인하부면으로부터 5%두께에이르는하부영역에서의상기 나노단위체밀도대비,복합층의하부면의대향면인
표면으로부터 5%두께에이르는상부영역에서의상기나노 단위체의밀도가상대적으로큰투명전도체.
기재;및상기기재상위치하는복합층;을포함하고,
상기복합층은유리전이온도 (Tg; glass temperature)가 80oC이상인 투명고분자층;및상기투명고분자층에일부가함입된전도성 네트워크;를포함하며,
상기전도성네트워크는나노와이어,나노튜브및나노벨트에서 하나또는둘이상선택되는나노단위체의네트워크를포함하는 투명전도체.
기재상형성된투명고분자층에,전도성네트워크가
가라앉아 (sink)형성된복합층을포함하며,
상기전도성네트워크는나노와이어,나노튜브및나노벨트에서 하나또는둘이상선택되는나노단위체의네트워크를포함하는 투명전도체.
제 24항내지제 26항증선택되는어느한항에있어서, 상기투명전도체의광투과율은 90%이상이며,헤이즈 (haze)는
1.5%이하인투명전도체.
제 24항내지제 26항중선택되는어느한항에있어서, 상기투명전도체는적어도 20mmx20mm의면적을기준으로,하기 관계식 1로규정되는면저항균일도가 90%이상인투명전도체. (관계식 1)
면저항균일도 (%)=[1- (면저항표준편차) /면저항평균) ]χ100 제 24항내지제 26항중선택되는어느한항에있어서, 상기투명전도체는 1cm의곡률반경으로 1000회의굽힘 테스트시,하기의관계식 2로규정되는면저항증가율이
1.4이하인투명전도체.
(관계식 2)
면저항증가율 =굽힘테스트후의면저항 /굽힘테스트전의면 저항
[청구항 3이 제 24항내지제 26항중선택되는어느한항에있어서,
상기투명전도체의평균면저항은 100 ohm/sq이하인투명 전도체.
[청구항 31] 제 24항내지제 26항중선택되는어느한항에있어서,
상기전도성네트워크는상기나노단위체가서로물리적으로 결착된다공성구조체또는상기나노단위체가서로접촉하거나 얽혀형성되는다공성구조체인투명전도체.
PCT/KR2015/011439 2014-10-28 2015-10-28 투명 전도체 및 이의 제조방법 WO2016068602A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/520,949 US10535792B2 (en) 2014-10-28 2015-10-28 Transparent conductor and preparation method for same
JP2017521222A JP6446132B2 (ja) 2014-10-28 2015-10-28 透明導電体およびその製造方法
CN201580058571.3A CN107077910B (zh) 2014-10-28 2015-10-28 透明导体及其制造方法
DE112015004882.0T DE112015004882T5 (de) 2014-10-28 2015-10-28 Transparenter Leiter und Herstellungsverfahren für denselben

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0147735 2014-10-28
KR20140147735 2014-10-28

Publications (1)

Publication Number Publication Date
WO2016068602A1 true WO2016068602A1 (ko) 2016-05-06

Family

ID=55857837

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/011439 WO2016068602A1 (ko) 2014-10-28 2015-10-28 투명 전도체 및 이의 제조방법

Country Status (6)

Country Link
US (1) US10535792B2 (ko)
JP (2) JP6446132B2 (ko)
KR (1) KR101802952B1 (ko)
CN (1) CN107077910B (ko)
DE (1) DE112015004882T5 (ko)
WO (1) WO2016068602A1 (ko)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10090078B2 (en) 2015-10-07 2018-10-02 King Fahd University Of Petroleum And Minerals Nanocomposite films and methods of preparation thereof
KR102521507B1 (ko) * 2016-06-01 2023-04-14 한국전기연구원 금속나노벨트와 탄소나노소재 복합체를 이용한 전도성 섬유 및 그 제조방법
US10329660B2 (en) * 2017-04-07 2019-06-25 Mind Technology Development Limited Flexible transparent thin film
US10572089B2 (en) * 2017-07-12 2020-02-25 Mind Technology Development Limited Sensing film with an integrated structure
KR102234230B1 (ko) * 2017-05-29 2021-04-01 주식회사 에스지플렉시오 나노와이어 투명 전극 및 이의 제조방법
CN111433614A (zh) 2017-10-11 2020-07-17 新亚集团控股有限公司 具有集成结构的感测薄膜
KR101913282B1 (ko) * 2017-12-29 2018-10-30 (주)아이테드 투명전극 제조방법
KR102125125B1 (ko) * 2018-02-23 2020-06-19 한양대학교 에리카산학협력단 다공성 구조체 및 그 제조 방법
CN108962436A (zh) * 2018-07-06 2018-12-07 无锡众创未来科技应用有限公司 制造透明导电薄膜的方法
CN109461516A (zh) * 2018-11-07 2019-03-12 刘紫嫣 一种导电银胶及其制备方法
US11910525B2 (en) * 2019-01-28 2024-02-20 C3 Nano, Inc. Thin flexible structures with surfaces with transparent conductive films and processes for forming the structures
CN110258126A (zh) * 2019-07-22 2019-09-20 中国科学院工程热物理研究所 一种红外隐身迷彩布料及其制备方法
JP2022545583A (ja) * 2019-09-09 2022-10-27 エスジー フレキシオ カンパニー リミテッド 導電性光学フィルムおよびその製造方法
CN112349449B (zh) * 2020-10-30 2022-04-08 中国建筑材料科学研究总院有限公司 一种透明导电涂层及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120087804A (ko) * 2009-05-14 2012-08-07 듀폰 테이진 필름즈 유.에스. 리미티드 파트너쉽 투명 전도성 복합 필름
KR20130048287A (ko) * 2010-03-05 2013-05-09 케어스트림 헬스 인코포레이티드 투명 전도성 필름, 제품, 및 방법
JP2013084628A (ja) * 2013-02-01 2013-05-09 Konica Minolta Holdings Inc 透明導電膜、透明導電性フィルム及びフレキシブル透明面電極
KR20130079279A (ko) * 2011-12-30 2013-07-10 에스케이씨 주식회사 투명 전도성 필름용 복합 입자 및 이를 이용한 투명 전도성 필름
US20140295179A1 (en) * 2013-04-01 2014-10-02 Kabushiki Kaisha Toshiba Transparent conductive film and electric device

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004230690A (ja) * 2003-01-30 2004-08-19 Takiron Co Ltd 制電性透明樹脂板
WO2007114645A1 (en) * 2006-04-04 2007-10-11 Topnanosis, Inc. Conductive composite material and method for manufacturing the same
US8018568B2 (en) * 2006-10-12 2011-09-13 Cambrios Technologies Corporation Nanowire-based transparent conductors and applications thereof
JP5194480B2 (ja) 2007-02-20 2013-05-08 東レ株式会社 カーボンナノチューブコーティング膜およびその製造方法
JP5288601B2 (ja) 2007-10-10 2013-09-11 旭化成株式会社 透明導電膜の形成方法
JP2009094033A (ja) * 2007-10-12 2009-04-30 Konica Minolta Holdings Inc 透明導電材料その製造方法及びそれを用いた透明導電素子
JP5533669B2 (ja) 2009-01-19 2014-06-25 コニカミノルタ株式会社 透明電極、その製造方法及び有機エレクトロルミネッセンス素子
EP2601688B1 (en) * 2010-08-07 2020-01-22 Tpk Holding Co., Ltd Device components with surface-embedded additives and related manufacturing methods
JP5888976B2 (ja) * 2011-09-28 2016-03-22 富士フイルム株式会社 導電性組成物、導電性部材およびその製造方法、タッチパネル並びに太陽電池
KR101317216B1 (ko) 2011-09-29 2013-10-16 한국과학기술원 패턴 형성방법 및 이를 적용한 투명전극, 터치스크린, 태양전지, 마이크로 히터, 투명 박막 트랜지스터, 플렉서블 디스플레이 패널, 플렉서블 태양전지, 전자책, 박막 트랜지스터, 전자파 차폐시트, 플렉서블 인쇄회로기판
KR101305710B1 (ko) 2011-12-21 2013-09-09 엘지이노텍 주식회사 나노 와이어 조성물 및 투명전극 제조 방법
US8915414B2 (en) * 2012-02-10 2014-12-23 Illinois Tool Works Inc. Combustion fastener tool with lockout mechanism
JP2013206809A (ja) * 2012-03-29 2013-10-07 Toyobo Co Ltd 透明導電性フィルム
JP5706998B2 (ja) * 2012-04-26 2015-04-22 国立大学法人大阪大学 透明導電性インク及び透明導電パターン形成方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120087804A (ko) * 2009-05-14 2012-08-07 듀폰 테이진 필름즈 유.에스. 리미티드 파트너쉽 투명 전도성 복합 필름
KR20130048287A (ko) * 2010-03-05 2013-05-09 케어스트림 헬스 인코포레이티드 투명 전도성 필름, 제품, 및 방법
KR20130079279A (ko) * 2011-12-30 2013-07-10 에스케이씨 주식회사 투명 전도성 필름용 복합 입자 및 이를 이용한 투명 전도성 필름
JP2013084628A (ja) * 2013-02-01 2013-05-09 Konica Minolta Holdings Inc 透明導電膜、透明導電性フィルム及びフレキシブル透明面電極
US20140295179A1 (en) * 2013-04-01 2014-10-02 Kabushiki Kaisha Toshiba Transparent conductive film and electric device

Also Published As

Publication number Publication date
DE112015004882T5 (de) 2017-08-17
JP2018174148A (ja) 2018-11-08
KR101802952B1 (ko) 2017-11-30
KR20160050002A (ko) 2016-05-10
JP6446132B2 (ja) 2018-12-26
US20170345965A1 (en) 2017-11-30
JP6716637B2 (ja) 2020-07-01
CN107077910B (zh) 2020-03-31
CN107077910A (zh) 2017-08-18
US10535792B2 (en) 2020-01-14
JP2017536657A (ja) 2017-12-07

Similar Documents

Publication Publication Date Title
WO2016068602A1 (ko) 투명 전도체 및 이의 제조방법
US10270004B2 (en) Production method for transparent electrically-conductive film using multistage light irradiation
TWI428937B (zh) 以奈米線為主之透明導體
US8018568B2 (en) Nanowire-based transparent conductors and applications thereof
JP2018092937A (ja) 透明導電体
US9318230B2 (en) Nanostructure dispersions and transparent conductors
KR20160040457A (ko) 마이크로- 또는 나노 구조 전도층을 가지는 물질의 제조방법
US8932898B2 (en) Deposition and post-processing techniques for transparent conductive films
JP2014003298A (ja) ナノワイヤベースの透明導電体およびその適用
KR101485858B1 (ko) 금속 나노 와이어 투명전극의 제조 방법 및 이에 의해 제조된 금속 나노 와이어 투명전극
Qiu et al. Trilayer nanomesh films with tunable wettability as highly transparent, flexible, and recyclable electrodes
US10831071B2 (en) Copper-reduced graphene oxide core-shell transparent conductor for controlling light transmission and method of making the same
WO2016024793A2 (ko) 다단 광조사를 이용한 투명 전도성 막의 제조방법
TW201735058A (zh) 透明導電性膜、透明導電性膜之製造方法、金屬模具、及金屬模具之製造方法
KR20160038268A (ko) 복합광원을 이용한 금속 나노와이어와 그래핀 옥사이드 기반의 투명전극 및 이의 제조방법
KR20140139390A (ko) 금속 나노고리를 이용한 투명 도전체와 그 제조방법
Amoli et al. Deposition of ITO nanopowder layers on flexible substrate by spin coating using pulsed Nd-YAG laser for crystallization and bonding

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15855463

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017521222

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15520949

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112015004882

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15855463

Country of ref document: EP

Kind code of ref document: A1