WO2016068424A1 - 기-액 계면 플라즈마 중합에 의한 고분자 박막의 제조방법 및 이에 의해 제조된 고분자 박막 - Google Patents

기-액 계면 플라즈마 중합에 의한 고분자 박막의 제조방법 및 이에 의해 제조된 고분자 박막 Download PDF

Info

Publication number
WO2016068424A1
WO2016068424A1 PCT/KR2015/004309 KR2015004309W WO2016068424A1 WO 2016068424 A1 WO2016068424 A1 WO 2016068424A1 KR 2015004309 W KR2015004309 W KR 2015004309W WO 2016068424 A1 WO2016068424 A1 WO 2016068424A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
thin film
plasma
polymer thin
polymerization
Prior art date
Application number
PCT/KR2015/004309
Other languages
English (en)
French (fr)
Inventor
최호석
트란꺽시
Original Assignee
충남대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 충남대학교산학협력단 filed Critical 충남대학교산학협력단
Priority to JP2017522677A priority Critical patent/JP6764860B2/ja
Priority to CN201580057725.7A priority patent/CN107075154B/zh
Publication of WO2016068424A1 publication Critical patent/WO2016068424A1/ko
Priority to US15/486,959 priority patent/US20170218138A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/28Treatment by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2256Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/48Polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • C08K5/19Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2371/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2371/02Polyalkylene oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0045Room temperature molten salts comprising at least one organic ion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0085Immobilising or gelification of electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for producing a plasma polymer thin film having excellent thermal characteristics and suitable for a matrix of a gel polymer electrolyte, and a polymer thin film prepared by the method and a gel polymer electrolyte and a secondary battery to which the polymer thin film is applied.
  • a secondary battery is an example of a representative electrochemical device capable of realizing a high energy density.
  • the secondary battery is a device that converts and stores external electrical energy in the form of chemical energy and converts it into electrical energy when necessary. Compared to a primary battery that uses a secondary battery once, it can be repeatedly used by charging, so it is very economically and environmentally useful.
  • Examples of secondary batteries include lead capacitors, nickel cadmium batteries, nickel accumulator batteries, and lithium batteries.
  • the secondary battery is composed of a positive electrode, a negative electrode, a separator which prevents an electrical short circuit due to physical contact between the positive electrode and the negative electrode, and an electrolyte that plays a substantial role in the movement of ions between the positive electrode and the negative electrode.
  • a liquid electrolyte in which salts are dissolved in a non-aqueous organic solvent is mainly used.
  • safety problems such as volatilization of organic solvents, leakage liquids, and explosion risk due to degeneration of electrode materials are raised, interest in polymer electrolytes is increasing.
  • the polymer electrolyte may be divided into a solid polymer electrolyte and a gel polymer electrolyte.
  • the solid polymer electrolyte shows the ionic conductivity of dissociated salt ions by adding salt to the polymer having a polar group. It does not need a special structure to prevent leakage, and it is easy to process in a film form and has a large area battery. There is an advantage that the production is easy. However, the ionic conductivity is very small compared to the liquid electrolyte, and is being developed for only a limited use such as a high temperature operation type or a thin battery.
  • Gel polymer electrolytes impregnate ionic conductivity and high boiling point organic solvents (or plasticizers), such as carbonate-based non-aqueous organic solvents and salts, into the polymer matrix and thereby implement ionic conductivity. It is expressed by, and the polymer plays a role of support of the electrolyte.
  • organic solvents or plasticizers
  • the polymer matrix of the gel polymer electrolyte include polyethylene oxide (PEO), polyacrylonitrile (PAN), polymethyl methacrylate (PMMA), and polyvinylidene fluoride (PVdF).
  • the PEO series polymer electrolyte shows an ionic conductivity of approximately 10 -8 S / cm at room temperature and exhibits an ionic conductivity of 10 -5 S / cm or more only at a temperature above the melting point.
  • the glass transition point and melting point are low, durability at high temperatures is weak, and thus improvement of melting point and chemical resistance is required.
  • PAN-based and PVdF-based gel polymer electrolytes tend to destroy their structure over time as electrolytes due to physical crosslinking.
  • plasma polymerization can form a uniform thin film without defects, even if the ultra-thin film of 0.01 ⁇ m thickness, and can be polymerized even if the monomer does not have a reactor, a wide range of materials can be selected as a monomer.
  • Polymers produced by plasma polymerization generally have a dense structure with a high degree of crosslinking, and thus have excellent chemical resistance, heat resistance and mechanical properties. Therefore, plasma polymerized polymers are expected to have suitable properties as a matrix of gel polymer electrolytes.
  • conventional plasma polymer polymerization has a high cost to manufacture the polymer because it must be carried out in a vacuum state, there is a problem that large-area polymer film production or mass production is difficult.
  • the present invention to solve the above problems, to provide a plasma polymer thin film having a suitable property as a polymer matrix of the gel polymer electrolyte at room temperature, atmospheric pressure conditions and to provide a plasma polymer thin film produced by the method The purpose.
  • the present invention is to provide a polymer matrix of the gel polymer electrolyte excellent in durability made of the plasma polymer thin film.
  • Still another object of the present invention is to provide a secondary battery including the gel polymer electrolyte and the gel polymer electrolyte to which the polymer matrix is applied and which has excellent ion conductivity.
  • Plasma polymer production method of the present invention for achieving the above object is a method of producing a polymer thin film by plasma polymerization, the polymer thin film by plasma polymerization, characterized in that the polymerization by applying a plasma to the liquid polymer monomer interface It relates to a manufacturing method.
  • Conventional plasma polymerization is to polymerize by converting a gaseous polymer monomer into a plasma state under vacuum, whereby the polymers are produced in the form of a film coated on a substrate.
  • the polymer may be prepared by generating a plasma in the polymer monomer solution to induce a liquid plasma reaction.
  • the polymer since the polymer is generated at the gas-liquid interface by generating a plasma at the liquid polymer monomer interface, the polymer is formed in the form of a film from the surface of the solution.
  • Plasma can be generated at the liquid polymer monomer interface by placing a plasma electrode on the 0.1 to 5 mm from the interface of the liquid polymer monomer and then applying a voltage to the electrode.
  • the distance of the plasma electrode is too close, the energy delivered to the interface is rapidly reduced, the plasma generation is not efficient, and if the distance of the electrode is too close, energy is transmitted to the entire solution rather than the interface, it is not efficient for interfacial polymerization.
  • the liquid polymer monomer may be reacted in a container, but may be reacted in a coated state on a substrate to have a wider surface. That is, (A) coating a liquid polymer monomer on the substrate; (B) polymerizing by applying a plasma to the interface of the coated polymer monomer; And (C) peeling the plasma polymerized polymer from the substrate, to prepare a polymer thin film by plasma polymerization.
  • the substrate determines the shape of the polymer thin film to be manufactured. If the substrate itself is flat, the polymer to be manufactured is also formed in a flat thin film. If the curved substrate is used, a thin film having a curved surface is formed. In addition, when the uneven pattern is formed in the board
  • a glass substrate was used as the substrate, but the substrate is merely to maintain the shape by coating the reaction solution before polymerization, and the material of the substrate is not limited. That is, a metal such as aluminum or steel, or a polymer resin such as polyethylene or polydimethylsiloxane (PDMS) may also be used as a substrate.
  • PDMS polydimethylsiloxane
  • the coating of the liquid polymer monomer on the substrate may use any method available for the liquid coating method. Spin coating, bar coating, screen printing, inkjet printing, Dip coating or spray coating may be used, but is not limited thereto.
  • the produced polymer may be peeled off from the substrate to obtain a thin film. Peeling of the polymer may be physically removed from the substrate, and immersed in a solvent The substrate and the thin film can be separated.
  • a solvent organic solvents such as acetone, ethanol, methanol, nucleic acid, dimethyl acetylamide (DMAC) were effective, but are not limited thereto.
  • the liquid polymer monomer is preferably a mixture of an ionic liquid and polyethylene oxide.
  • the ionic liquid refers to an ionic salt present as a liquid at a temperature of 100 ° C. or lower.
  • Ionic liquids which usually consist of metal cations and nonmetal anions, melt at high temperatures of 800 ° C. or higher, whereas ionic liquids exist as liquids at low temperatures of 100 ° C. or lower.
  • Typical room temperature ionic liquids include imidazolium compounds and pyrrolidium compounds, and these compounds are known to have ionic liquid properties in derivatives having at least one carbon chain substituted with N C3 or more. .
  • BMIM salt of 1-butyl-3-methylimidazolium and BMMIM of 1-Butyl-2,3-dimethylimidazolium are exemplified, but it is not limited thereto.
  • R is an alkyl group of C3 ⁇ C16
  • the anion is BF 4 -, F -, Cl -, Br - or I - with a salt an ionic liquid consisting of a likewise with prior results BMIM salt to form a plasma polymer
  • Polyethylene oxide is a polymer of a monomer having an ethylene oxide functional group, and has a repeating unit of-(CH 2 CH 2 O) n- .
  • the polyethylene oxide may have a molecular weight of 200 to 2,000, and any compound can be used as long as it can be mixed with the ionic liquid. If the molecular weight is too large, homogeneous mixing with the ionic liquid was difficult because polyethylene oxide has the properties of a hard wax.
  • Triton X-based and Tween-based polyethylene oxides are exemplified, but since C ⁇ O bonds are generated in the resulting plasma polymer, an ethylene oxide repeating unit composed of-(CH 2 CH 2 O) n -is added to the reaction.
  • Participating compounds having different side chain structures are also not limited to this because it is obvious that plasma polymers can be formed by the method of the present invention.
  • Triton X-100 and Triton X-200 were representatively exemplified for the Triton X-based polyethylene oxide, but Triton X-based compounds having different ethylene oxide repeating units were also capable of polymer formation in a preliminary experiment.
  • Tween 20 and Tween 60 having different ester chains also formed polymers of the same aspect as Tween 80 by the method of the present invention.
  • POE alkyl phenyl ethers such as POE nonyl phenyl ether and POE tristyrenated phenyl ether, POE lauryl ether, POE stearyl ether, POE oleyl ether and POE tridecyl ether other than Tween series, POE alkyl ether, POE lauryl amine, Polyethylene oxide such as POE alkyl amine such as POE oleyl amine and POE stearyl amine could also be used to form the plasma polymer of the present invention.
  • the mixing ratio of the ionic liquid and the polyethylene oxide is meaningless because the optimum amount of use varies depending on the type of the ionic liquid and the polyethylene oxide used, and it will be easy for a person skilled in the art to select the optimum mixing ratio by repeated experiments. .
  • Triton X series or Tween 80 it is preferable that it is 25 mol% or less in the total mixture.
  • the content of polyethylene oxide is too high, the thin film formation rate is slow and the ratio of single bonds in the thin film is increased, thereby deteriorating the ionic conductivity.
  • the coated mixture was polymerized by applying plasma.
  • Plasma was polymerized by addition at atmospheric pressure, but the addition of plasma under vacuum is not excluded.
  • the conditions of the plasma reaction can be appropriately adjusted depending on the reactants used.
  • the reaction time and the plasma intensity were in proportion to the thickness of the plasma polymer.
  • the present invention also relates to a plasma polymer produced by the above method.
  • the plasma polymer according to the present invention has excellent thermal characteristics and chemical resistance to organic solvents.
  • the present invention also relates to a polymer matrix of the gel polymer electrolyte made of the plasma polymer.
  • the plasma polymer is excellent in heat resistance and chemical resistance, and also excellent in mechanical strength, so that the plasma polymer may serve as a separator or support without using a separate separator or support.
  • the present invention also relates to a gel polymer electrolyte characterized in that an organic electrolyte solution containing an ionic salt is impregnated into the plasma polymer of the present invention.
  • the ionic salt contained in the organic electrolyte may be a form in which an ionic salt such as a lithium salt is dissolved in a carbonate-based organic solvent or an ionic liquid in which the salt itself acts as an organic electrolyte.
  • the gel polymer electrolyte of the present invention is characterized by the polymer matrix impregnated with the organic electrolyte, and specific types of the ionic salt, organic solvent or ionic liquid can be appropriately selected and used by those skilled in the art. Since there will be a specific example thereof will be omitted.
  • the gel polymer electrolyte according to the present invention exhibits high ionic conductivity of about 10 ⁇ 3 even when the thickness is about several ⁇ m at room temperature, so that the gel polymer electrolyte may be used in the manufacture of ultra-thin secondary batteries.
  • the present invention also provides a secondary battery comprising the gel polymer electrolyte.
  • a plasma polymer having properties suitable for the polymer matrix of the gel polymer electrolyte can be manufactured by a quick, simple and environmentally friendly method under mild conditions of normal temperature and atmospheric pressure.
  • the polymer matrix of the gel polymer electrolyte using the plasma polymer prepared by the method of the present invention is thermally, chemically and mechanically stable and excellent in durability, and may constitute a gel polymer electrolyte without a separate support.
  • the gel polymer electrolyte of the present invention is excellent in ion conductivity even in the thickness of several ⁇ m can be used in the production of ultra-thin secondary battery.
  • 1 is a photograph showing that the polymer thin film is formed over time in one embodiment of the present invention.
  • FIG 3 shows a SEM image of a cross section of a polymer thin film produced according to the ratio of Triton X-100 and a thickness of the thin film with respect to the ratio of Triton X-100 according to an embodiment of the present invention.
  • FIG. 4 is an enlarged graph of the thickness of the thin film versus the ratio of Triton X-100 in the lower Triton X-100 content portion in the results of FIG.
  • FIG. 7 is a graph showing the ratio of elements in the polymer thin film calculated from the XPS spectrum and XPS spectrum of the polymer thin film according to one embodiment of the present invention.
  • FIG. 9 is a spectrum showing simulation results of the C1s peak of FIG. 8.
  • FIG. 11 is a graph showing the impedance value of the pouch cell manufactured using the polymer thin film according to an embodiment of the present invention.
  • FIG. 12 is a graph showing the ion conductivity of a polymer thin film calculated from the impedance value of the pouch cell of FIG. 11.
  • [BMIM] BF 4 (1-butyl-3-methylimidazolium tetrafluoroborate, Sigma-Aldrich) was added to the final concentration of Triton X-100 (Sigma-Aldrich, USA) to 6 M%, followed by Vortex Mixer-KMC -1300V) and stirred for 5 minutes.
  • 0.5 ml of the prepared solution was spin coated on a 20 ⁇ 20 mm glass plate at 500 rpm for 15 seconds using a spin-coater (SPIN-1200D, MIDAS). After the polymerization for 10 minutes using an atmospheric pressure plasma system (Ar, 150 W, 3 lpm). The distance between the plasma electrode and the spin coated thin film was 2 mm.
  • the plasma plated glass plate was immersed in ethanol to separate the thin film from the glass plate, washed sequentially with acetone and distilled water, and dried at 60 ° C. for 1 hour.
  • 1 is a photograph showing that the polymer thin film is formed over time. As the time to apply the plasma was confirmed that the thick and opaque thin film was formed with the naked eye.
  • Table 1 below shows the results of plasma polymerization under the above conditions using various types of ionic materials and polyethylene oxide.
  • [BMMIM] BF 4 represents 1-Butyl-2,3-dimethylimidazolium tetrafluoroborate
  • EMPyrr BF 4 represents 1-Ethyl-1-methylpyrrolidinium tetrafluoroborate.
  • terpineol which is not polyethylene oxide, did not occur in polymerization regardless of the type of ionic substance, and when ionic substance was not added, polymerization did not occur regardless of the type of polyethylene oxide used. .
  • EMPyrr BF4 a solid ionic salt rather than an ionic liquid, also did not undergo polymerization.
  • the polymer was formed by the polymerization reaction, but was prepared in the form of agglomerated powder or agglomerates.
  • Plasma polymerization of Triton X-100 and [BMIM] BF 4 was carried out in the same manner as in 1), except that the reaction time was adjusted to 1 to 30 minutes, and then the polymer thin film was separated to scan the electron microscope (SEM, JEOL). , JSM-7000F, USA) and the results are shown in FIG. 2) is a SEM image of the cross-section of the polymer thin film produced by plasma polymerization reaction for 1, 2, 6, 10 minutes, respectively, e) is a graph showing the thickness of the thin film with respect to the reaction time.
  • the thickness of the plasma polymer thin film initially increased in proportion to the reaction time, and when the spin-coated precursors were polymerized with the passage of the reaction time, the reaction time increased even if the reaction time increased further. The thickness remained constant.
  • FIG. 3 that the molar ratio of ionic liquid and polyethylene oxide affects the thickness of the thin film.
  • Figure 4 is an enlarged graph of the section of the content of Triton X-100 0 ⁇ 3 M% shows that the thickest film can be produced when the content of Triton X-100 is very low 1.5 M%.
  • Example 1 The structure of the plasma polymer thin film prepared in Example 1 was analyzed using solid-NMR (Agilent 400MHz 54mm NMR DD2, USA), IR (Nicolet 670, USA) and XPS (Thermo Scientific MultiLab 2000), and thermogravimetric analyzer ( Thermal properties were analyzed using TGA / DSC1, Mettler-Toledo Inc.).
  • the plasma polymer of Triton X-100 and [BMIM] BF 4 was analyzed as a sample, and in Example 1 1) using 6M% Triton X-100 and [BMIM] BF 4 unless otherwise specified.
  • the result of the analysis using the polymer which carried out plasma polymerization for 10 minutes according to the described method as a sample is shown.
  • the instrument used for the analysis is as follows.
  • FIG. 6 shows an IR spectrum of a polymer thin film according to M% of Triton X-100, and shows an enlarged peak region showing C ⁇ O bonds and C ⁇ C bonds.
  • 7A is a XPS spectrum of a representative polymer thin film
  • b) is a graph showing the ratio of elements in the polymer thin film according to M% of Triton X-100 calculated from the XPS spectrum.
  • Table 3 and Table 4 show the percentages of the elements in the plasma polymerized polymer according to M% of Triton X-100 and their ratios.
  • Plasma polymerized polymer thin films were analyzed using a thermogravimetric analyzer. 10 is a DSC and TGA spectrum obtained by heating the polymer thin film from 25 ° C to 1,000 ° C at a rate of 10 ° C / min, it can be seen that the decomposition temperature of the polymer is thermally very stable above 200 ° C. In addition, Tg and Tm measured from DSC spectrum were 3.11 degreeC and 279.50 degreeC, respectively.
  • Tm has a low durability at high temperature because PEO is 40-50 ° C. and PVDF or PMMA is about 160 ° C.
  • the driving temperature of the apparatus to which the Tm is applied is about 300 ° C. as compared with the related art.
  • a thin-film battery was manufactured by sandwiching a nickel electrode. 0.5 ml of 1 M LiPF 6 / DMC was added to the electrolyte, and the sealed sample was used after stabilizing at 150 ° C. for 3 seconds. The battery was connected to potentiostat (IVIUMSTAT, Ivium Technologies) using a lead wire, and the resistance value of the sample was measured by AC impedance method.
  • Fig. 11 is a graph showing the measured impedance values, and the ion conductivity ( ⁇ ) is calculated from the resistance value (R b ) and the thickness (L) and the area (A) of the polymer electrolyte calculated from the graph by the following equation. It calculated and the result was shown in FIG.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Secondary Cells (AREA)
  • Conductive Materials (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

본 발명은 열특성이 우수하여 겔 고분자 전해질의 메트릭스에 적합한 플라즈마 고분자 박막의 제조 방법 및 상기 방법에 의해 제조된 고분자 박막과 상기 고분자 박막이 적용된 겔 고분자 전해질과 이차전지에 관한 것으로, 보다 상세하게는 액상의 고분자 모노머 계면에 플라즈마를 가하여 중합하는 것을 특징으로 하는 플라즈마 중합에 의한 고분자 박막의 제조방법 및 상기 방법에 의해 제조된 고분자 박막과 상기 고분자 박막이 적용된 겔 고분자 전해질과 이차전지에 관한 것이다.

Description

기-액 계면 플라즈마 중합에 의한 고분자 박막의 제조방법 및 이에 의해 제조된 고분자 박막
본 발명은 열특성이 우수하여 겔 고분자 전해질의 메트릭스에 적합한 플라즈마 고분자 박막의 제조 방법 및 상기 방법에 의해 제조된 고분자 박막과 상기 고분자 박막이 적용된 겔 고분자 전해질과 이차전지에 관한 것이다.
전기, 전자, 통신, 컴퓨터 산업 및 전기 자동차 등의 확산과 더불어, 전자 장비의 소형화 및 경량화가 요구되면서, 이들의 에너지원으로 사용되는 고에너지 밀도의 전기화학소자에 대한 연구가 활발히 진행되고 있다. 이차전지는 높은 에너지 밀도를 실현할 수 있는 대표적인 전기화학소자의 예로, 외부의 전기 에너지를 화학 에너지의 형태로 바꾸어 저장해 두었다가 필요 시 전기에너지로 전환시키는 장치이다. 이차전지를 한번 쓰고 버리는 일차 전지에 비해 충전에 의해 반복 사용이 가능하기 때문에 경제적, 환경적으로 매우 유용하다. 이차전지로는 납 축전기, 니켈 카드뮴 전지, 니켈 축전지, 리튬 전지 등을 들 수 있다.
이차전지는 양극, 음극, 양극과 음극의 물리적 접촉에 따른 전기적 단락을 방지하는 분리막 및 양극과 음극간 이온의 이동에 실질적인 역할을 하는 전해질로 이루어진다. 상기 이차전지용 전해질로는 비수계 유기 용매에 염을 용해시킨 액체 전해질이 주로 사용되고 있다. 그러나 유기용매의 휘발, 누액 및 전극 물질의 퇴화에 의한 폭발 위험성 등 안전성에 문제가 불거지면서, 고분자 전해질에 대한 관심이 증대되고 있다.
고분자 전해질은 고체 고분자 전해질과 겔 고분자 전해질로 나눌 수 있다. 고체 고분자 전해질은 극성기를 보유하고 있는 고분자에 염을 첨가하여 해리된 염의 이온들이 고분자 내에서 이동하여 이온 전도도를 나타내는 것으로 누액 방지를 위한 특별한 구조가 필요없고, 필름 형태로 가공이 용이하며 대면적 전지의 제작이 용이하다는 장점이 있다. 그러나 이온 전도도가 액체 전해질과 비교하여 매우 작아 고온 작동형 또는 박형 전지 등 일부 제한된 용도로만 개발되고 있는 실정이다.
겔 고분자 전해질은 카보네이트 계역의 비수계 유기용매 및 염과 같은 이온 전도도와 비점이 높은 유기 용매(또는 가소제)를 고분자 매트릭스 내에 함침시키고 이를 통해 이온 전도도를 구현하는 것으로, 통상적으로 이온 전도는 유기 용매에 의해 발현되며, 고분자는 전해질의 지지체 역할을 담당한다. 겔 고분자 전해질의 고분자 매트릭스로는 폴리에틸렌옥사이드(PEO), 폴리아크릴로니트릴(PAN), 폴리메틸메타아크릴레이트(PMMA)와 폴리비닐리덴플루오라이드(PVdF)를 예로 들 수 있다. PEO 계열의 고분자 전해질은 상온에서 대략 10-8 S/cm의 이온 전도도를 나타내며 용융점 이상의 온도에서만 10-5 S/cm 이상의 이온 전도도를 보인다. 특히 유리 전이점과 융점이 낮기 때문에 고온에서의 내구성이 취약하므로 융점이나 내화학성 등의 개선이 필요하다. PAN 계 및 PVdF 계열의 겔 고분자 전해질은 물리적 가교결합에 의한 전해질로 시간경과 시 구조가 파괴되는 경향이 있다.
한편 플라즈마 중합은 통상적인 고분자 중합과 달리 0.01㎛ 두께의 초박막일지라도 흠결이 없이 균일한 박막을 형성할 수 있으며, 단량체가 반응기를 가지고 있지 않더라도 중합시킬 수 있어 모노머로 선택할 수 있는 소재의 폭이 넓다. 플라즈마 중합에 의해 생성된 고분자들은 대체로 높은 가교도와 함께 치밀한 조직을 가지며, 이 때문에 내화학성, 내열성 및 기계적 특성이 우수하다. 따라서 플라즈마 중합된 고분자들은 겔 고분자 전해질의 메트릭스로서 적합한 특성을 가질 것으로 기대된다. 그러나 통상의 플라즈마 고분자 중합은 진공상태에서 이루어져야 하기 때문에 고분자 제조에 높은 비용이 소요되며, 대면적 고분자 박막의 제조나 대량생산이 어렵다는 문제가 있다.
본 발명은 상기와 같은 문제를 해소하기 위하여, 상온, 상압의 조건에서 겔 폴리머 전해질의 고분자 메트릭스로 적합한 특성을 갖는 플라즈마 고분자 박막을 제조하는 방법 및 이 방법에 의해 제조된 플라즈마 고분자 박막을 제공하는 것을 목적으로 한다.
또한 본 발명은 상기 플라즈마 고분자 박막으로 이루어져 내구성이 우수한 겔 폴리머 전해질의 고분자 메트릭스를 제공하는 것을 다른 목적으로 한다.
본 발명의 또 다른 목적은 상기 고분자 메트릭스가 적용되며 이온 전도도가 우수한 겔 고분자 전해질과 겔 고분자 전해질을 포함하는 이차전지를 제공하는 것이다.
전술한 목적을 달성하기 위한 본 발명의 플라즈마 고분자의 제조방법은 플라즈마 중합에 의한 고분자 박막의 제조방법에 있어서, 액상의 고분자 모노머 계면에 플라즈마를 가하여 중합하는 것을 특징으로 하는 플라즈마 중합에 의한 고분자 박막의 제조방법에 관한 것이다.
종래의 플라즈마 중합은 진공하에서 가스 상의 고분자 모노머를 플라즈마 상태로 변환하여 중합하는 것으로, 이에 의해 생성된 고분자들은 기판 상에 코팅된 막의 형태로 제조된다. 또는 고분자 모노머 용액 내에 플라즈마를 발생시켜 액상 플라즈마 반응을 유도하여 고분자를 제조할 수도 있다. 이에 비해 본원발명은 액상의 고분자 모너머 계면에 플라즈마를 발생시켜 기-액 계면에서 고분자 중합이 일어나기 때문에, 용액의 표면으로부터 막의 형태로 고분자가 형성된다. 플라즈마 전극을 액상 고분자 모노머의 계면으로부터 0.1~5 mm 상에 위치시킨 후 전극에 전압을 가하면, 액상의 고분자 모노머 계면에 플라즈마를 발생시킬 수 있다. 플라즈마 전극의 거리가 너무 가까우면 계면에 전달되는 에너지가 급감하기 때문에 플라즈마 발생이 효율적이지 못하며, 전극의 거리가 너무 가까운 경우 계면이 아닌 용액 전체에 에너지가 전달되므로 오히려 계면 중합에 효율적이지 못하다.
상기 액상의 고분자 모노머는 용기에 담긴 상태로 반응하는 것도 가능하지만 보다 넓은 표면을 갖도록 기판 상에 코팅된 상태로 반응할 수도 있다. 즉, (A) 기판 상에 액상의 고분자 모노머를 코팅하는 단계; (B) 코팅된 고분자 모노머의 계면에 플라즈마를 가하여 중합하는 단계; 및 (C) 기판으로부터 플라즈마 중합된 고분자를 박리하는 단계;를 포함하여 플라즈마 중합에 의한 고분자 박막을 제조할 수 있다.
기판은 제조되는 고분자 박막의 형상을 결정하는 것으로 기판 자체가 편평하다면 제조되는 고분자 역시 편평한 모양의 박막이 형성되고, 곡선의 기판을 사용하면 곡선의 표면을 갖는 박막이 형성된다. 또한 기판에 요철의 패턴이 형성되어 있는 경우에는 역시 패턴이 형성된 박막을 얻을 수 있다. 기판으로는 하기 실시예에서는 유리 기판을 사용하였으나, 상기 기판은 단순히 중합 전 반응액을 코팅하여 형상을 유지시키기 위한 것으로 기판의 재질이 한정되는 것은 아니다. 즉, 알루미늄이나 스틸과 같은 금속이나 폴리에틸렌이나 PDMS(Polydimethylsiloxane)와 같은 고분자 수지 역시 기판으로 사용하여도 무방하였다.
기판 상에 액상의 고분자 모노머를 코팅하는 것은 액체의 코팅방법에 이용할 수 있는 어떤 방법을 사용하여도 좋다. 즉, 스핀코팅, 바코팅, 스크린 프린팅, 잉크젯 프린팅, 딥코팅 또는 스프레이 코팅 등을 사용할 수 있으며, 이에 한정되는 것은 아니다.
생성된 고분자는 기판으로부터 박리하여 박막상태로 얻을 수 있다. 고분자의 박리는 물리적으로 기판에서 제거할 수도 있으며, 용매에 침지하여 기판과 박막을 분리시킬 수 있다. 용매로는 아세톤, 에탄올, 메탄올, 핵산, 디메틸아세틸아마이드(DMAC) 등의 유기용매가 효과적이었으나, 이에 한정되는 것은 아니다.
상기 액상의 고분자 모노머는 이온성 액체와 폴리에틸렌옥사이드의 혼합물인 것이 바람직하다.
상기 이온성 액체란 100℃ 이하의 온도에서 액체로 존재하는 이온성 염을 일컫는다. 통상 금속 양이온과 비금속 음이온으로 이루어진 이온성 염 화합물은 800 ℃ 이상의 고온에서 녹는 것과 달리 이온성 액체는 100℃ 이하의 낮은 온도에서 액체로 존재한다. 대표적인 상온 이온성 액체로는 이미다졸륨 계 화합물이나 피롤리디움계 화합물을 들 수 있으며, 이들 화합물들은 N에 치환된 적어도 하나의 탄소 사슬이 C3 이상인 유도체들이 이온성 액체의 성질을 갖는 것으로 알려져 있다. 본 발명의 실시예에서는 1-butyl-3-methylimidazolium인 BMIM 염과 1-Butyl-2,3-dimethylimidazolium인 BMMIM만을 예로 들었으나, 이에 한정되는 것이 아님은 당연하다. 실제로 양이온이 치환 또는 비치환된 1-R-1-메틸피롤리디움(1-R-1-methylpyrrolidium) 또는 치환 또는 비치환된 1-R-3-메틸이미다졸륨(1-R-3-methylimidazolium)으로, R은 C3~C16인 알킬기이며, 음이온이 BF4 -, F-, Cl-, Br- 또는 I-로 이루어진 염인 이온성 액체들도 사전 실험 결과 BMIM 염과 마찬가지로 플라즈마 고분자를 형성할 수 있었으며, 구조적, 전기적 특성도 BMIM 염을 사용한 플라즈마 고분자와 유사하였다. R이 메틸 또는 에틸인 경우에는 이온성 액체의 성질을 나타내지 않았으며, R이 C17 이상인 이온성 액체는 제조된 고분자의 이온 전도도 특성이 좋지 않았다.
폴리에틸렌옥사이드는 에틸렌옥사이드 작용기를 갖는 모노머의 중합체로서, -(CH2CH2O)n-의 반복단위를 갖는 것이다. 상기 폴리에틸렌옥사이드는 분자량이 200~2,000 사이이며, 상기 이온성 액체와 혼합 가능한 것이라면 어떠한 것이라도 사용 가능하였다. 분자량이 너무 큰 경우에는 폴리에틸렌옥사이드가 경질 왁스의 성상을 갖기 때문에 이온성 액체와 균질한 혼합이 어려웠다. 하기 실시예에서는 Triton X 계열 및 Tween 계열의 폴리에틸렌 옥사이드만을 예시하였으나, 생성되는 플라즈마 고분자에 C=O결합이 생성되는 것으로부터 -(CH2CH2O)n-로 구성된 에틸렌 옥사이드 반복단위가 반응에 참여하는 것으로 곁가지 구조가 다른 화합물 역시 본 발명의 방법에 의해 플라즈마 고분자를 형성할 수 있음이 명백하므로 이에 한정되는 것은 아니다. Triton X 계열의 폴리에틸렌옥사이드에 대해서도 Triton X-100과 Triton X-200 만을 대표적으로 예시하였으나, 에틸렌옥사이드 반복단위가 다른 Triton X 계열 화합물 역시 사전 실험에서 고분자 형성이 가능하였다. 또한 에스테르 사슬이 다른 Tween 20과 Tween 60 역시 본 발명의 방법에 의해 Tween 80과 동일한 양상의 고분자를 형성하였다. 또한 Triton 계열이외에도 POE nonyl phenyl ether, POE tristyrenated phenyl ether와 같은 POE alkyl phenyl ether와, Tween 계열 이외의 POE Lauryl ether, POE stearyl ether, POE oleyl ether, POE tridecyl ether와 같은 POE alkyl ether, POE lauryl amine, POE oleyl amine, POE stearyl amine과 같은 POE alkyl amine과 같은 폴리에틸렌옥사이드 역시 본 발명의 플라즈마 고분자 형성에 이용될 수 있었다.
이온성 액체와 폴리에틸렌옥사이드의 혼합비는 사용되는 이온성 액체와 폴리에틸렌옥사이드의 종류에 따라 그 최적 사용량이 다르기 때문에 수치를 한정하는 것이 무의미하고, 당업자라면 반복 실험에 의해 최적 혼합비를 선택하는 것은 용이할 것이다. 다만, Triton X 계열이나 Tween 80의 경우에는 전체 혼합액 중 25 몰% 이하인 것이 바람직하였다. 폴리에틸렌옥사이드의 함량이 너무 많은 경우에는 박막 형성 속도가 늦고, 박막 중 단일결합의 비율이 늘어나 이온 전도도 특성이 열화되었다.
코팅된 혼합물에는 플라즈마를 가하여 중합하였다. 플라즈마는 상압에서 가하여 고분자 중합하였으나, 진공 하에서 플라즈마를 가하는 것을 배제하는 것은 아니다. 플라즈마 반응의 조건 역시 사용하는 반응물에 따라 적절히 조절할 수 있음은 당연하다. 또한, 플라즈마의 강도나 반응시간을 조절하는 것에 의해 생성되는 플라즈마 고분자의 두께를 조절할 수 있다. 반응시간과 플라즈마의 강도와 생성되는 플라즈마 고분자의 두께는 비례하였다.
본 발명은 또한 상기 방법에 의해 제조된 플라즈마 고분자에 관한 것이다. 본 발명에 의한 플라즈마 고분자는 열특성이 우수하고, 유기용매에 대한 내화학성 역시 우수하였다.
또한 본 발명은 상기 플라즈마 고분자로 이루어진 겔 고분자 전해질의 고분자 메트릭스에 관한 것이다. 상기 플라즈마 고분자는 내열성과 내화학성이 우수하고, 기계적 강도 역시 우수하여 별도의 분리막이나 지지체를 사용하지 않고 고분자 메트릭스 만으로도 분리막이나 지지체의 역할을 함께 수행할 수 있다.
본 발명은 또한 이온성 염을 함유하는 유기 전해액이 본 발명의 플라즈마 고분자에 함침되어 있는 것을 특징으로 하는 겔 고분자 전해질에 관한 것이다. 상기 유기 전해액에 함유되는 이온성염은 리튬염과 같은 이온성 염이 카보네이트 계열의 유기용매에 용해된 형태이거나 염 자체가 유기 전해액으로 작용하는 이온성 액체 일 수 있다. 본 발명의 겔 고분자 전해질은 상기 유기 전해액이 함침되는 고분자 메트릭스에 특징이 있는 것으로, 상기 이온성 염이나, 유기용매 또는 이온성 액체의 구체적인 종류는 종래 기술에서 알려진 것을 당 업자라면 적절히 선택하여 사용할 수 있을 것이므로 이에 대한 구체적인 예시는 생략한다. 본 발명에 의한 겔 고분자 전해질은 상온에서 두께가 수 ㎛ 정도인 경우에도 10-3 정도의 높은 이온 전도도를 나타내어, 초박형 이차 전지의 제조에 이용될 수 있다.
본 발명은 또한 상기 겔 고분자 전해질을 포함하는 이차전지를 제공한다.
이상과 같이 본 발명의 플라즈마 고분자 제조방법에 의하면 상온, 상압의 온화한 조건에서, 빠르고 간단하며 환경친화적인 방법으로 겔 고분자 전해질의 고분자 메트릭스에 적합한 특성을 갖는 플라즈마 고분자를 제조할 수 있다.
본 발명의 방법에 의해 제조된 플라즈마 고분자를 이용한 겔 고분자 전해질의 고분자 메트릭스는 열적, 화학적, 기계적으로 안정하여 내구성이 우수하며 별도의 지지체 없이도 겔 고분자 전해질을 구성할 수 있다.
또한, 본 발명의 겔 고분자 전해질은 수㎛의 두께에서도 이온 전도성이 우수하여 초박형 이차전지의 제조에 이용될 수 있다.
도 1은 본 발명의 일실시예에서 시간의 경과에 따라 고분자 박막이 형성되는 것을 보여주는 사진.
도 2의 본 발명의 일실시예에 의해 반응시간에 따라 생성된 고분자 박막 단면의 SEM 이미지 및 반응시간에 대한 박막의 두께를 나타낸 그래프.
도 3의 본 발명의 일실시예에 의해 Triton X-100의 비율에 따라 생성된 고분자 박막 단면의 SEM 이미지 및 Triton X-100의 비율에 대한 박막의 두께를 나타낸 그래프.
도 4는 도 3의 결과에서, 낮은 Triton X-100 함량 부분의 Triton X-100의 비율에 대한 박막의 두께를 확대한 그래프.
도 5는 본 발명의 일실시예에 의한 고분자 박막의 a) 13C MAS- NMR b)
1H-MAS-NMR (at 15 kHz) 및 c) FTIR 스펙트럼.
도 6은 본 발명의 일실시예에 의한 Triton X-100의 M%에 따른 고분자 박막의 IR 스펙트럼.
도 7의 본 발명의 일실시예에 의한 고분자 박막의 XPS 스펙트럼 및 XPS 스펙트럼으로부터 계산한 고분자 박막 내의 원소의 비를 나타내는 그래프.
도 8은 본 발명의 일실시예에 의한 고분자 박막의 Triton X-100의 M%에 따른 C와 F의 1s 전자에 해당하는 피크를 확대한 스펙트럼.
도 9는 도 8의 C1s 피크의 시뮬레이션 결과를 보여주는 스팩트럼.
도 10은 본 발명의 일실시예에 의한 고분자 박막의 DSC와 TGA 스펙트럼.
도 11은 본 발명의 일실시예에 의한 고분자 박막을 사용하여 제작한 파우치셀의 임피던스 값을 보여주는 그래프.
도 12는 도 11의 파우치셀의 임피던스 값으로부터 계산된 고분자 박막의 이온 전도도를 보여주는 그래프.
이하 첨부된 도면과 사전실험 및 실시예를 들어 본 발명을 보다 상세히 설명한다. 그러나 이러한 도면과 실시예는 본 발명의 기술적 사상의 내용과 범위를 쉽게 설명하기 위한 예시일 뿐, 이에 의해 본 발명의 기술적 범위가 한정되거나 변경되는 것은 아니다. 이러한 예시에 기초하여 본 발명의 기술적 사상의 범위 안에서 다양한 변형과 변경이 가능함은 당업자에게는 당연할 것이다.
실시예 1 : 플라즈마 고분자 박막의 제조
1) 폴리에틸렌옥사이드와 이온성 물질의 플라즈마 고분자 박막의 제조
[BMIM]BF4 (1-butyl-3-methylimidazolium tetrafluoroborate, Sigma-Aldrich)에 Triton X-100(Sigma-Aldrich, USA)의 최종농도가 6 M%가 되도록 첨가한 후 볼텍스 믹서(Vortex Mixer-KMC-1300V)를 사용하여 5분간 교반하였다. 제조된 용액 0.5 ㎖를 spin-coater (SPIN-1200D, MIDAS)를 사용하여 20x20 mm 유리판 위에 500 rpm에서 15초간 스핀 코팅하였다. 이후 상압 플라즈마 시스템 (Ar, 150 W, 3 lpm)을 사용하여 10분간 중합하였다. 플라즈마 전극과 스핀 코팅된 박막의 거리는 2 mm였다. 플라즈마 처리된 유리판은 에탄올에 침지하여 유리판으로부터 박막을 분리하고, 아세톤과 증류수로 순차적으로 세척한 후 60℃에서 1시간 건조하였다.
도 1은 시간의 경과에 따라 고분자 박막이 형성되는 것을 보여주는 사진이다. 플라즈마를 가하는 시간이 증가할수록 두껍고 불투명한 박막이 형성되는 것을 육안으로 확인할 수 있었다.
하기 표 1은 다양한 종류의 이온성 물질과 폴리에틸렌옥사이드를 사용하여 상기 조건에서 플라즈마 중합을 수행한 결과를 나타낸다. 하기 표 1에서 [BMMIM]BF4은 1-Butyl-2,3-dimethylimidazolium tetrafluoroborate를, EMPyrr BF4는 1-Ethyl-1-methylpyrrolidinium tetrafluoroborate를 나타낸다.
Figure PCTKR2015004309-appb-T000001
표 1에서 확인할 수 있듯이, 폴리에틸렌옥사이드가 아닌 terpineol은 이온성 물질의 종류와 무관하게 중합 반응이 일어나지 않았으며, 이온성 물질을 첨가하지 않은 경우 역시 사용한 폴리에틸렌옥사이드의 종류와 무관하게 중합반응이 일어나지 않았다. 이온성 액체가 아닌 고상의 이온염인 EMPyrr BF4 역시 중합반응이 일어나지 않았다. 또한, 이온성 물질로 무기 산인 HCl 또는 무기 염인 HAuCl4를 사용한 경우에는 중합반응에 의해 고분자는 형성되었으나 박막형태가 아닌 분말이나 덩어리로 뭉친 형태로 제조되었다. 이에 반해, 이온성 액체인 이미다졸륨 염은 폴리에틸렌옥사이드와 함께 중합반응에 의해 고분자 박막을 생성하였다. 다만, [BMIM]TFSI는 중합반응이 일어나지 않았는데, 이는 TFSI-가 중합반응에 참여하는 라디칼을 소거시키기 때문으로 사료된다.
2) 반응 시간 변화에 따른 플라즈마 고분자 박막의 제조
반응 시간을 1~30분으로 조절한 것을 제외하고는 1)과 동일한 방법으로 Triton X-100과 [BMIM]BF4를 플라즈마 중합한 후, 고분자 박막을 분리하여 단면을 주사전자현미경(SEM, JEOL, JSM-7000F, USA)으로 관찰하고 그 결과를 도 2에 도시하였다. 도 2의 a)~d)는 각각 1, 2, 6, 10분간 플라즈마 중합반응하여 생성된 고분자 박막 단면의 SEM 이미지이고, e)는 반응시간에 대한 박막의 두께를 나타낸 그래프이다.
도 2의 이미지와 그래프에서 확인할 수 있듯이 플라즈마 고분자 박막의 두께는 초기에는 반응시간과 비례하여 증가하였으며, 이후 반응시간의 경과에 따라 스핀코팅된 전구체가 모두 고분자화되면 반응시간이 더 증가하여도 박막의 두께는 일정하게 유지되었다.
3) 이온성 액체와 폴리에틸렌옥사이드 비율 변화에 따른 플라즈마 고분자 박막의 제조
Triton X-100의 M%를 0.3~48 M%로 조절한 것을 제외하고는 1)과 동일한 방법으로 Triton X-100과 [BMIM]BF4를 6분간 플라즈마 중합한 후(이때, Ar flow는 5 lpm), 고분자 박막을 분리하여 단면을 주사전자현미경(SEM)으로 관찰하고 그 결과를 도 3에 도시하였다. 도 3의 a)~g)는 각각 0.3, 0.7, 1.5, 3, 6, 12 및 24 M%의 Triton X-100을 사용하여 6분간 플라즈마 중합반응하여 생성된 고분자 박막 단면의 SEM 이미지이고, e)는 Triton X-100의 비율에 대한 박막의 두께를 나타낸 그래프이다. 도 3으로부터 이온성 액체와 폴리에틸렌옥사이드의 몰비는 박막의 두께에 영향을 미치는 것을 알 수 있다. 도 4는 Triton X-100의 함량이 0~3 M%인 구간을 확대한 그래프로 Triton X-100의 함량이 1.5 M%로 매우 낮을 때 가장 두꺼운 필름을 제조할 수 있음을 보여준다.
실시예 2 : 플라즈마 고분자 박막의 구조 분석
실시예 1에서 제조한 플라즈마 고분자 박막의 구조를 solid-NMR(Agilent 400MHz 54mm NMR DD2, USA), IR(Nicolet 670, USA) 및 XPS(Thermo Scientific MultiLab 2000)를 사용하여 분석하고, 열중량 분석기(TGA/DSC1, Mettler-Toledo Inc.)를 사용하여 열특성을 분석하였다. 하기 실시예에서는 Triton X-100과 [BMIM]BF4의 플라즈마 고분자를 시료로 분석하였으며, 특별한 언급이 없는 한 6M% Triton X-100과 [BMIM]BF4를 이용하여 실시예 1의 1)에 기재된 방법에 따라 10분간 플라즈마 중합한 고분자를 시료로 사용하여 분석한 결과를 나타낸다. 분석에 사용한 기기는 다음과 같다.
1) solid NMR 및 FTIR 을 이용한 구조 분석
도 5는 고분자 박막의 a) 13C MAS- NMR b) 1H-MAS-NMR (at 15 kHz) 및 c) FT-IR 스펙트럼을 보여준다. IR 스펙트럼으로부터 플라즈마 고분자에서 이미다졸륨 고리의 C-H 피크가 약화되고, C=C 및 C=O 결합이 생성된 것을 확인할 수 있었다.
도 6은 Triton X-100의 M%에 따른 고분자 박막의 IR 스펙트럼을 나타내며, 내부에는 C=O 결합 및 C=C 결합을 나타내는 피크 영역을 확대하여 도시하였다. 또한 표 2에는 Triton X-100의 M%에 따른 C=C 결합(1660 cm-1) 및 C=O 결합(1725 cm-1)을 나타내는 피크의 상대적인 세기(I1660/I1725)를 계산하여 결과를 기재하였다.
Figure PCTKR2015004309-appb-T000002
도 6과 표 2로부터 Triton X-100의 함량이 증가할수록 고분자 내 C=C 결합에 비해 C=O 결합의 비율이 점차 감소하는 것을 알 수 있으며, C-O-C 결합이 적색 편이(red-shift)하는 것으로부터 C-O-C 결합에 컨쥬게이션 될 수 있는 이중 결합이 형성된 것을 추측할 수 있다.
2) XPS (X-ray photoelectron spectroscopy)을 이용한 구조 분석
도 7의 a) 대표적인 고분자 박막의 XPS 스펙트럼이며, b)는 XPS 스펙트럼으로부터 계산한 Triton X-100의 M%에 따른 고분자 박막 내의 원소의 비를 나타내는 그래프이다. 또한 Triton X-100의 M%에 따라 플라즈마 중합된 고분자에서 원소의 %와 그 비율을 각각 표 3과 표 4에 나타내었다.
Figure PCTKR2015004309-appb-T000003
Figure PCTKR2015004309-appb-T000004
Triton X-100의 함량이 증가함에 따라 [BMIM]BF4의 함량이 상대적으로 줄어들면서 고분자 내에서도 [BMIM]BF4에만 함유되어 있는 F, N, B의 함량이 감소하는 것을 볼 수 있다. 또한 Triton X-100의 함량이 증가함에 따라 O/C 비가 감소하는 것은 도 6 및 표 2의 C=C/C=O 결합 비와 밀접한 관련이 있을 것으로 사료된다. 즉, Triton X-100의 함량이 증가함에 따라 이온성 액체와 Triton X-100 사이의 가교(cross-linking)보다는 Triton X-100 간의 가교가 증가하며, 그 결과 가교 형성과정에서 CO나 CO2 등의 형태로 산소원자가 제거됨에 따라 O/C 비율이 감소하는 것으로 해석할 수 있다.
도 8의 a)와 b)는 각각 Triton X-100의 M%에 따른 C와 F의 1s 전자에 해당하는 피크를 확대한 스펙트럼이다. C의 1s 전자의 피크는 Triton X-100의 함량에 따라 피크가 낮은 에너지 쪽으로 편이(shift)하는 것을 보여주었다. 이에 1.5 M%와 24 M%의 Triton X-100에 의해 제조된 플라즈마 고분자의 C1s 피크의 구성요소를 고분자를 이루는 결합의 형태를 고려하여 해석하였다(Plasmas and Polymers, Vol. 7, No. 4, p311-325, December 2002). 도 9는 각 피크의 시뮬레이션 결과를 보여주는 스팩트럼이며, 이를 구성하는 피크의 비율을 표 5에 나타내었다. 분석결과로부터 Triton X-100의 함량이 증가할수록 C=O, C-F 결합이 크게 감소하고, C-C 결합의 비율이 증가하는 것을 확인할 수 있다. 또한, C=C/C=O의 비율은 약 두배정도 증가하여 IR 스펙트럼의 피크 강도의 비율에서 얻은 결과와 일치하였다.
Figure PCTKR2015004309-appb-T000005
3) 열특성 분석
플라즈마 중합된 고분자 박막을 열중량 분석기를 사용하여 분석하였다. 도 10은 고분자 박막을 10℃/min의 속도로 25℃에서 1,000℃로 가열하여 얻은 DSC와 TGA 스펙트럼으로, 고분자의 분해온도가 200℃ 이상으로 열적으로 매우 안정함을 확인할 수 있었다. 또한, DSC 스펙트럼으로부터 측정한 Tg와 Tm은 각각 3.11℃와 279.50 ℃ 였다.
종래의 겔 고분자 전해질은 Tm이 PEO는 40~50℃, PVDF나 PMMA가 160℃ 정도로 낮은 편이기 때문에 고온에서의 내구성이 취약하였다. 그러나 본 발명에 의한 플라즈마 고분자의 경우 Tm이 거의 300℃ 정도로 이를 적용한 기기의 구동온도 역시 종래에 비해 증가할 수 있음을 알 수 있다.
실시예 3 : 플라즈마 고분자 박막의 전기적 특성 분석
실시예 1에서 제조한 플라즈마 고분자 박막의 전기적 특성을 측정하기 위하여 니켈 전극에 끼워 박막형 전지를 제작하였다. 전해질로 1M LiPF6/DMC를 0.5㎖ 첨가하고, 밀봉된 시료를 150℃에서 3초간 안정화 시킨 후 사용하였다. 전지를 리드선을 사용하여 potentiostat(IVIUMSTAT, Ivium Technologies)에 연결하고, 교류 임피던스 법에 의해 시료의 저항값을 측정하였다. 도 11은 측정된 임피던스의 값을 나타내는 그래프이며, 상기 그래프로부터 계산된 시료의 저항값(Rb)과 두께(ℓ) 및 폴리머 전해질의 면적(A)로부터 이온전도도(σ)를 하기 식에 의해 산출하고, 그 결과를 도 12에 도시하였다.
Figure PCTKR2015004309-appb-I000001
(식)
도 12는 Triton X-100의 함량이 증가함에 따라 전기전도도가 낮아지는 것을 보여주며, 이는 IR 및 XPS 스펙트럼에서 Triton X-100의 함량이 증가할수록 C=C/C=O의 값이 증가한 것과, XPS 스펙트럼의 분석에서 C=O, C-F와 같은 극성 결합의 비율이 감소한다는 사실에서 예측한 결과와 일치하였다. 또한 Triton X-100의 함량이 6% 이하인 경우 10-4 이상으로 높은 이온 전도도를 나타내었다.

Claims (11)

  1. 플라즈마 중합에 의한 고분자 박막의 제조방법에 있어서,
    액상의 고분자 모노머 계면에 플라즈마를 가하여 중합하는 것을 특징으로 하는 플라즈마 중합에 의한 고분자 박막의 제조방법.
  2. 제 1 항에 있어서,
    상기 액상의 고분자 모노머는 기판 상에 코팅된 상태로,
    (A) 기판 상에 액상의 고분자 모노머를 코팅하는 단계;
    (B) 코팅된 고분자 모노머의 계면에 플라즈마를 가하여 중합하는 단계; 및
    (C) 기판으로부터 플라즈마 중합된 고분자를 박리하는 단계;
    를 포함하는 것을 특징으로 하는 플라즈마 중합에 의한 고분자 박막의 제조방법.
  3. 제 1 항 또는 제 2 항에 있어서,
    상기 액상의 고분자 모노머는 이온성 액체와 폴리에틸렌옥사이드의 혼합물인 것을 특징으로 하는 플라즈마 중합에 의한 고분자 박막의 제조방법.
  4. 제 3 항에 있어서,
    상기 이온성 액체는 양이온이 치환 또는 비치환된 1-R-1-메틸피롤리디움(1-R-1-methylpyrrolidium) 또는 치환 또는 비치환된 1-R-3-메틸이미다졸륨(1-R-3-methylimidazolium)으로, R은 C3~C16인 알킬기이며, 음이온이 BF4 -, F-, Cl-, Br- 또는 I-로 이루어진 염인 것을 특징으로 하는 플라즈마 중합에 의한 고분자 박막의 제조방법.
  5. 제 3 항에 있어서,
    상기 폴리에틸렌옥사이드는 분자량이 200~2,000인 것을 특징으로 하는 플라즈마 중합에 의한 고분자 박막의 제조방법.
  6. 제 5 항에 있어서,
    상기 폴리에틸렌옥사이드는
    Figure PCTKR2015004309-appb-I000002
    또는 Tween 80이며,
    이때, n=5~30인 것을 특징으로 하는 플라즈마 중합에 의한 고분자 박막의 제조방법.
  7. 제 6 항에 있어서,
    상기 폴리에틸렌옥사이드의 함량은 25 몰% 이하인 것을 특징으로 하는 플라즈마 중합에 의한 고분자 박막의 제조방법.
  8. 제 1 항 또는 제 2 항의 방법에 의해 제조된 플라즈마 고분자 박막.
  9. 제 8 항의 플라즈마 고분자 박막으로 이루어진 겔 고분자 전해질의 고분자 메트릭스.
  10. 이온성 염을 함유하는 유기 전해액이 제 8 항의 플라즈마 고분자에 함침되어 있는 것을 특징으로 하는 겔 고분자 전해질.
  11. 제 10 항의 겔 고분자 전해질을 포함하는 이차전지.
PCT/KR2015/004309 2014-10-29 2015-04-29 기-액 계면 플라즈마 중합에 의한 고분자 박막의 제조방법 및 이에 의해 제조된 고분자 박막 WO2016068424A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017522677A JP6764860B2 (ja) 2014-10-29 2015-04-29 プラズマ重合による、ゲル高分子電解質の高分子マトリックスの製造方法
CN201580057725.7A CN107075154B (zh) 2014-10-29 2015-04-29 通过气-液界面等离子体聚合制备聚合物薄膜的方法及从中制备的聚合物薄膜
US15/486,959 US20170218138A1 (en) 2014-10-29 2017-04-13 Method for preparing polymer thin film by gas-liquid interface plasma polymerization and polymer thin film prepared by the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0148118 2014-10-29
KR1020140148118A KR101792832B1 (ko) 2014-10-29 2014-10-29 기-액 계면 플라즈마 중합에 의한 고분자 박막의 제조방법 및 이에 의해 제조된 고분자 박막

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/486,959 Continuation US20170218138A1 (en) 2014-10-29 2017-04-13 Method for preparing polymer thin film by gas-liquid interface plasma polymerization and polymer thin film prepared by the same

Publications (1)

Publication Number Publication Date
WO2016068424A1 true WO2016068424A1 (ko) 2016-05-06

Family

ID=55857738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/004309 WO2016068424A1 (ko) 2014-10-29 2015-04-29 기-액 계면 플라즈마 중합에 의한 고분자 박막의 제조방법 및 이에 의해 제조된 고분자 박막

Country Status (5)

Country Link
US (1) US20170218138A1 (ko)
JP (1) JP6764860B2 (ko)
KR (1) KR101792832B1 (ko)
CN (1) CN107075154B (ko)
WO (1) WO2016068424A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017217628A1 (ko) * 2016-06-14 2017-12-21 충남대학교산학협력단 금속 나노입자-고분자 복합체 박막의 제조방법
KR102109832B1 (ko) 2017-02-23 2020-05-12 주식회사 엘지화학 이차전지용 플라즈마 발생장치 및 그를 포함하는 라미네이션 시스템
CN117510778A (zh) * 2023-11-29 2024-02-06 东莞市通天下橡胶有限公司 一种用于鼠标垫的聚氨酯材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010025694A (ko) * 2001-01-18 2001-04-06 김성오 플라즈마 중합법을 이용한 2차전지의 제조 및 공정
US20040186189A1 (en) * 2001-07-11 2004-09-23 Jorg Muller Method for producing a plasma-polymerized polymer electrolyte membrane and a polyazol membrane coated by plasma-polymerization
KR20060045803A (ko) * 2004-04-19 2006-05-17 주식회사 엘지화학 이온성 액체를 이용한 젤 폴리머 전해질 및 이를 이용한전기 변색 소자
KR20120109905A (ko) * 2011-03-28 2012-10-09 포항공과대학교 산학협력단 고분자로 치환된 실리콘 나노 입자와 자기 조립성 블록 공중합체를 포함하는 고성능 리튬-폴리머 전지
KR20130115246A (ko) * 2010-09-13 2013-10-21 더 리전츠 오브 더 유니버시티 오브 캘리포니아 이온성 겔 전해질, 에너지 저장 장치, 및 이의 제조 방법

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS526943B2 (ko) * 1973-09-07 1977-02-25
JPH0640824B2 (ja) * 1987-03-19 1994-06-01 東洋紡績株式会社 安定なフラクト−スデヒドロゲナ−ゼ組成物
JP2000024585A (ja) * 1998-07-14 2000-01-25 Seiko Epson Corp 被膜形成方法
WO2013031455A1 (ja) * 2011-08-26 2013-03-07 富士フイルム株式会社 硬化膜の製造方法、膜、及びプラズマ開始重合性組成物
JP6055766B2 (ja) * 2011-09-09 2016-12-27 国立研究開発法人科学技術振興機構 生物試料をそのままの姿で観察するための電子顕微鏡による観察方法とそれに用いられる真空下での蒸発抑制用組成物、走査型電子顕微鏡および透過型電子顕微鏡
JP5922908B2 (ja) * 2011-10-27 2016-05-24 富士フイルム株式会社 硬化物の製造方法および硬化物
EP2894185B1 (en) * 2012-09-07 2017-11-29 Japan Science and Technology Agency Organic polymer thin film, and method for producing same
CN103985900A (zh) * 2014-04-24 2014-08-13 中山大学 一种改性聚合物电解质、其制备方法及其在锂电池中的应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010025694A (ko) * 2001-01-18 2001-04-06 김성오 플라즈마 중합법을 이용한 2차전지의 제조 및 공정
US20040186189A1 (en) * 2001-07-11 2004-09-23 Jorg Muller Method for producing a plasma-polymerized polymer electrolyte membrane and a polyazol membrane coated by plasma-polymerization
KR20060045803A (ko) * 2004-04-19 2006-05-17 주식회사 엘지화학 이온성 액체를 이용한 젤 폴리머 전해질 및 이를 이용한전기 변색 소자
KR20130115246A (ko) * 2010-09-13 2013-10-21 더 리전츠 오브 더 유니버시티 오브 캘리포니아 이온성 겔 전해질, 에너지 저장 장치, 및 이의 제조 방법
KR20120109905A (ko) * 2011-03-28 2012-10-09 포항공과대학교 산학협력단 고분자로 치환된 실리콘 나노 입자와 자기 조립성 블록 공중합체를 포함하는 고성능 리튬-폴리머 전지

Also Published As

Publication number Publication date
JP2017534729A (ja) 2017-11-24
CN107075154A (zh) 2017-08-18
US20170218138A1 (en) 2017-08-03
JP6764860B2 (ja) 2020-10-07
KR20160054058A (ko) 2016-05-16
CN107075154B (zh) 2020-08-21
KR101792832B1 (ko) 2017-11-20

Similar Documents

Publication Publication Date Title
Guo et al. Poly (ethylene glycol) brush on Li6. 4La3Zr1. 4Ta0. 6O12 towards intimate interfacial compatibility in composite polymer electrolyte for flexible all-solid-state lithium metal batteries
Xu et al. Gel polymer electrolyte based on PVDF-HFP matrix composited with rGO-PEG-NH2 for high-performance lithium ion battery
US20110003210A1 (en) Polyolefin Microporous Membrane Surface-Modified By Hydrophilic Polymer, Surface Modification Method Thereof And Lithium-Ion Polymer Battery Including The Same
CN108292753B (zh) 非水系二次电池粘接层用组合物、非水系二次电池用粘接层以及非水系二次电池
CN106099181B (zh) 离子液体聚合物、电解质和锂电池
CN106410269A (zh) 一种全固态复合型聚合物电解质及其制备方法
CN103208651A (zh) 一种硅氧烷基固体电解质及其制备和应用
WO2015076571A1 (ko) 분리막 코팅제 조성물, 상기 코팅제 조성물로 형성된 분리막 및 이를 이용한 전지
TW201827475A (zh) 導電材料及其用途
WO2016068424A1 (ko) 기-액 계면 플라즈마 중합에 의한 고분자 박막의 제조방법 및 이에 의해 제조된 고분자 박막
CN108847470A (zh) 一种混合涂层涂覆的锂电隔膜及其制备方法
CN113644313A (zh) 一种本征可拉伸双网络离子凝胶电解质及其制备方法与应用
CN111755693A (zh) 一种复合金属锂负极及其制备方法、锂离子电池
CN106887622A (zh) 含氟单离子导体聚合物电解质及其制备方法与应用
Qi et al. Enabling scalable polymer electrolyte with synergetic ion conductive channels via a two stage rheology tuning UV polymerization strategy
Grewal et al. Increasing the ionic conductivity and lithium-ion transport of photo-cross-linked polymer with hexagonal arranged porous film hybrids
CN103456981B (zh) 一种含有机锂的聚合物固体电解质薄膜的制造方法
CN103515654B (zh) 一种聚合物固体电解质的制造方法
Zhao et al. Robust 3D Network binder for Stable and High‐Performance Si‐Based Lithium‐Ion Battery Anodes
CN109273762B (zh) 一种离子液体/聚乙二醇修饰的氨基化石墨烯/聚合物凝胶电解质及其制备方法
KR102590176B1 (ko) 이차전지용 고체 전해질 조성물 및 이로부터 제조된 고체 전해질
CN103456985B (zh) 一种无机固体电解质的制造方法
JP2001200125A (ja) イオン伝導性組成物
CN114400372A (zh) 一种各向异性离子传输通道的固态电解质薄膜的制备方法
JP2001110403A (ja) 電気化学デバイス用電極

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15855576

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017522677

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15855576

Country of ref document: EP

Kind code of ref document: A1