WO2016068286A1 - 非水電解質電池及び電池パック - Google Patents

非水電解質電池及び電池パック Download PDF

Info

Publication number
WO2016068286A1
WO2016068286A1 PCT/JP2015/080725 JP2015080725W WO2016068286A1 WO 2016068286 A1 WO2016068286 A1 WO 2016068286A1 JP 2015080725 W JP2015080725 W JP 2015080725W WO 2016068286 A1 WO2016068286 A1 WO 2016068286A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
positive electrode
separator
nonaqueous electrolyte
electrolyte battery
Prior art date
Application number
PCT/JP2015/080725
Other languages
English (en)
French (fr)
Inventor
秀郷 猿渡
志子田 将貴
大 山本
元気 山岸
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to AU2015337606A priority Critical patent/AU2015337606B2/en
Priority to EP18210404.2A priority patent/EP3474365B1/en
Priority to CN201580041257.4A priority patent/CN106663832B/zh
Priority to EP15855003.8A priority patent/EP3214689B1/en
Priority to JP2016556654A priority patent/JP6226407B2/ja
Publication of WO2016068286A1 publication Critical patent/WO2016068286A1/ja
Priority to US15/453,623 priority patent/US10541398B2/en
Priority to US16/708,559 priority patent/US11362398B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/429Natural polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/429Natural polymers
    • H01M50/4295Natural cotton, cellulose or wood
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • Embodiments of the present invention relate to a nonaqueous electrolyte battery and a battery pack.
  • Polyester is effective as a separator for non-aqueous electrolyte batteries because it has a high melting point and oxidation resistance and low hydrophilicity.
  • a polyester separator undergoes hydrolysis under basic conditions, there is a problem in that battery resistance increases due to hydrolysis of the separator in combination with an active material containing a large amount of residual alkali.
  • the problem to be solved by the present invention is to provide a non-aqueous electrolyte battery capable of improving life characteristics and a battery pack provided with the non-aqueous electrolyte battery.
  • a non-aqueous electrolyte battery including a positive electrode, a negative electrode, a separator disposed between the positive electrode and the negative electrode, and a non-aqueous electrolyte is provided.
  • the positive electrode Li x Ni 1-ab Co a Mn b M c O 2 (0.9 ⁇ x ⁇ 1.25,0 ⁇ a ⁇ 0.4,0 ⁇ b ⁇ 0.45,0 ⁇ c ⁇ 0. 1, M contains a positive electrode active material containing at least one element selected from the group consisting of Mg, Al, Si, Ti, Zn, Zr, Ca and Sn).
  • the separator has a pore volume of 0.9 cm 3 / g or more and 3 cm 3 / g or less in a pore diameter distribution by mercury intrusion method, and an air permeability (JIS-P-8117) by Gurley method of 2 sec / 100 ml or more. Within a range of 15 sec / 100 ml or less and containing polyester.
  • a battery pack including the nonaqueous electrolyte battery is provided.
  • Li x Ni 1-ab Co a Mn b M c O 2 (0.9 ⁇ x ⁇ 1.25,0 ⁇ a ⁇ 0.4,0 ⁇ b ⁇ 0.45,0 ⁇ c ⁇ 0.1
  • M is a positive electrode containing a positive electrode active material containing at least one element selected from the group consisting of Mg, Al, Si, Ti, Zn, Zr, Ca and Sn), and by mercury porosimetry
  • the pore volume from the pore size distribution is in the range of 0.9 to 3 cm 3 / g
  • the air permeability by the Gurley method JIS-P-8117
  • JIS-P-8117 is in the range of 2 to 15 sec / 100 ml
  • contains polyester It has been found that the use of a separator improves the life characteristics of the nonaqueous electrolyte battery.
  • Polyester is superior in thermal stability because it has a higher melting point than polyolefin, which is one of the separator materials, and less hydrophilic than cellulose, which is one of the separator materials, reducing the amount of moisture brought into the battery. Since it is easy to do, it is suitable as a main component of the separator for nonaqueous electrolyte batteries.
  • the positive electrode active material represented by Li x Ni 1-ab Co a Mn b M c O 2 is known to residual alkali content is high.
  • battery resistance which is considered to be caused by hydrolysis of the separator, tends to increase.
  • the main cause of the increase in battery resistance is clogging of the separator. Clogging of the separator can be avoided by setting the pore volume obtained from the pore diameter distribution by the mercury intrusion method of the separator within the range of 0.9 to 3 cm 3 / g.
  • the pore volume When the pore volume is smaller than 0.9 cm 3 / g, battery resistance increases due to clogging of the separator, which is considered to be caused by hydrolysis of polyester. On the other hand, if the pore volume is larger than 3 cm 3 / g, it is difficult to obtain a sufficient insulating effect between the positive electrode and the negative electrode by the separator. A more preferred range is in the range of 1 cm 3 / g to 2 cm 3 / g. Further, the air permeability (JIS-P-8117) of the separator by the Gurley method is preferably 2 to 15 sec / 100 ml.
  • this air permeability is determined by the pore ratio and pore diameter in the separator, the thickness of the separator, and the torch on the separator (the ratio of the actual path length in the separator to the separator thickness). Accordingly, if the pore ratio, pore diameter and thickness of the separator are the same, the tortoise will change. In this case, the high air permeability means that the ion path to move through the separator is long because the torch is large. It seems to suggest that it is complicated. If the air permeability is greater than 15 sec / 100 ml, the battery resistance is likely to increase due to clogging even if the pore volume is in the range of 0.9 to 3.0 cm 3 / g.
  • a more preferable range is in the range of 3 to 10 sec / 100 ml.
  • the separator is hydrolyzed due to the residual alkali content of the positive electrode active material represented by Li x Ni 1-ab Co a Mn b M c O 2. Since clogging of the separator to be performed can be suppressed, an increase in battery resistance can be suppressed, and cycle life performance can be improved.
  • the separator may be formed only of polyester, but preferably contains at least one polymer selected from the group consisting of cellulose, polyolefin, polyamide, polyimide and polyvinyl alcohol in addition to polyester. This is because even when the polyester is hydrolyzed, the shape as a separator is easily maintained by the other components, so that the battery performance is hardly adversely affected.
  • the thickness of the separator is in the range of 3 to 25 ⁇ m, the effect of improving the battery performance including the cycle life performance is easily obtained.
  • the nonaqueous electrolyte battery contains at least one moisture adsorbent selected from the group consisting of molecular sieve, silica gel and alumina.
  • a moisture adsorbent selected from the group consisting of molecular sieve, silica gel and alumina.
  • the moisture adsorbent can be contained in the battery (cell), and the moisture scavenger can be contained in the nonaqueous electrolyte.
  • the moisture scavenger include, but are not limited to, trialkyl orthoformate, trialkyl orthoacetate, monoisocyanate compound, tetraethyl silicate, tri (trimethylsilyl) phosphate, tri (trimethylsilyl) borate, oxalic acid, Citric acid, toluenesulfonic acid and the like can be mentioned.
  • acquisition agent is not specifically limited, For example, it can arrange
  • an Shimadzu Autopore 9520 (Autopore 9520 model manufactured by Shimadzu Corporation) or an apparatus having an equivalent function is used.
  • the electrode is cut into a size of about 25 ⁇ 25 mm 2 , folded, and taken into a measurement cell.
  • the initial pressure is 20 kPa (the initial pressure of 20 kPa corresponds to about 3 psia, and the pore diameter is about 60 ⁇ m).
  • a maximum pressure of 414 Mpa maximum pressure 414 Mpa corresponds to about 59986 psia and corresponds to a pressure applied to a sample having a pore diameter of about 0.003 ⁇ m).
  • the average value of three samples is used as the measurement result.
  • the pore specific surface area is calculated assuming that the pore shape is cylindrical.
  • the analysis principle of the mercury intrusion method is based on Washburn's formula (B).
  • D ⁇ 4 ⁇ cos ⁇ / P (B) where P is the applied pressure, D is the pore diameter, ⁇ is the surface tension of mercury (480 dyne ⁇ cm ⁇ 1 ), and ⁇ is the contact angle between mercury and the pore wall surface. °. Since ⁇ and ⁇ are constants, the relationship between the applied pressure P and the pore diameter D can be obtained from the Washburn equation. By measuring the mercury intrusion volume at that time, the pore diameter and its volume distribution can be derived. Can do.
  • Non-Patent Document 1 Jinbo Motoni et al .: “Fine Particle Handbook” Asakura Shoten (1991)
  • Non-Patent Document 2 Hayakawa Sohakuro: “Powder Properties Measurement Method” Asakura Shoten ( (1973)).
  • This measurement is performed on the measurement sample described below. That is, the separator is taken out from the battery and immersed in ethyl methyl carbonate for 12 hours. At the time of immersion, if necessary, stirring is performed to remove the Li salt, and then dried to obtain a measurement sample. The drying temperature is in the range of room temperature to 60 ° C. This sample is also used when measuring the air permeability (JIS-P-8117) by the Gurley method.
  • the nonaqueous electrolyte battery according to the embodiment will be described in detail.
  • the nonaqueous electrolyte battery according to the embodiment includes a positive electrode, a negative electrode, a separator disposed between the positive electrode and the negative electrode, and a nonaqueous electrolyte.
  • the positive electrode can include a positive electrode current collector and a positive electrode material layer (positive electrode active material-containing layer) supported on one or both surfaces of the positive electrode current collector.
  • the positive electrode material layer can contain a positive electrode active material.
  • the positive electrode material layer can further contain a conductive agent and a binder as necessary.
  • the positive electrode current collector can also include a portion not carrying the positive electrode material layer on the surface.
  • the portion of the positive electrode current collector that does not carry the positive electrode material layer can serve as a positive electrode tab.
  • the positive electrode can include a positive electrode tab separate from the positive electrode current collector.
  • the negative electrode can include a negative electrode current collector and a negative electrode material layer (negative electrode active material-containing layer) carried on one or both sides of the negative electrode current collector.
  • the negative electrode material layer can contain a negative electrode active material.
  • the negative electrode material layer can further contain a conductive agent and a binder as necessary.
  • the negative electrode current collector can include a portion that does not carry the negative electrode material layer on the surface. This part can serve as a negative electrode tab. Alternatively, the negative electrode can include a negative electrode tab separate from the negative electrode current collector.
  • the separator is disposed between the positive electrode and the negative electrode. Thereby, the positive electrode material layer and the negative electrode material layer can be opposed to each other via the separator.
  • the positive electrode, the negative electrode, and the separator can constitute an electrode group.
  • the electrode group can have various structures.
  • the electrode group can have a stacked structure.
  • a stack type electrode group can be obtained, for example, by laminating a plurality of positive electrodes and negative electrodes with a separator interposed between a positive electrode material layer and a negative electrode material layer.
  • the electrode group can have a wound structure.
  • the wound electrode group is formed by laminating a separator, a positive electrode, a separator, and a negative electrode in this order to form a laminated body, and winding the laminated body so that the negative electrode is located outside, for example.
  • the non-aqueous electrolyte can be impregnated in such an electrode group.
  • the nonaqueous electrolyte battery according to the embodiment may further include a positive electrode terminal and a negative electrode terminal.
  • the positive electrode terminal can function as a conductor for electrons to move between the positive electrode and an external circuit by being partially connected to a part of the positive electrode.
  • the positive electrode terminal can be connected to, for example, a positive electrode current collector, particularly a positive electrode tab.
  • a part of the negative electrode terminal is electrically connected to a part of the negative electrode, whereby the negative electrode terminal can serve as a conductor for electrons to move between the negative electrode and the external terminal.
  • the negative electrode terminal can be connected to, for example, a negative electrode current collector, particularly a negative electrode tab.
  • the nonaqueous electrolyte battery according to the embodiment may further include an exterior member.
  • the exterior member can accommodate the electrode group and the nonaqueous electrolyte. A part of each of the positive electrode terminal and the negative electrode terminal can be extended from the exterior member.
  • Negative electrode For example, a metal foil or an alloy foil is used for the negative electrode current collector.
  • the thickness of the current collector is desirably 20 ⁇ m or less, more preferably 15 ⁇ m or less.
  • the metal foil include copper foil and aluminum foil.
  • the alloy foil include stainless steel foil and aluminum alloy foil.
  • the aluminum alloy in the aluminum alloy foil preferably contains at least one element selected from the group consisting of magnesium, zinc and silicon.
  • the content of transition metals such as iron, copper, nickel and chromium in the alloy components is preferably 1% by weight or less.
  • Examples of the negative electrode active material include carbonaceous materials capable of occluding and releasing lithium (eg, graphite, hard carbon, soft carbon, graphene), titanium-containing oxides, sulfides, lithium nitrides, and amorphous such as SnB 0.4 P 0.6 O 3.1. Examples thereof include tin oxides such as tin silicon oxides such as SnSiO 3 , silicon oxides such as SiO, and tungsten oxides such as WO 3 .
  • the type of the negative electrode active material can be one type or two or more types.
  • Titanium-containing oxides, amorphous tin oxides, tin silicon oxides, silicon oxides, and tungsten oxides do not contain lithium during oxide synthesis, but can contain lithium by charging.
  • titanium-containing oxides examples include spinel-type titanium-containing oxides, anatase-type titanium-containing oxides, rutile-type titanium-containing oxides, bronze-type titanium-containing oxides, ramsdellite-type titanium-containing oxides, Contains orthorhombic titanium-containing oxide, monoclinic niobium titanium-containing oxide, and at least one element selected from the group consisting of Ti and P, V, Sn, Cu, Ni, Nb, and Fe.
  • Metal composite oxides are included. Examples of the metal composite oxide containing Ti and at least one element selected from the group consisting of P, V, Sn, Cu, Ni, Nb, and Fe include TiO 2 —P 2 O 5 , TiO 2.
  • This metal composite oxide has a low crystallinity and preferably has a microstructure in which a crystal phase and an amorphous phase coexist or exist as an amorphous phase alone. With such a microstructure, cycle performance can be greatly improved.
  • composition of anatase-type, rutile-type, and bronze-type titanium-containing oxides can be represented by TiO 2 .
  • An example of the spinel type titanium-containing oxide is a spinel type lithium titanium composite oxide.
  • the spinel-type lithium titanium composite oxide include Li 4 + x Ti 5 O 12 (x varies in the range of 0 ⁇ x ⁇ 3 due to charge / discharge reaction).
  • a spinel type lithium titanium composite oxide may be used alone, or a plurality of other active materials may be mixed.
  • other negative electrode active materials to be mixed include lithium compounds capable of inserting and extracting lithium. Examples of such lithium compounds include lithium oxide, lithium sulfide, and lithium nitride. Among these, a metal compound that does not contain lithium in an uncharged state, but also includes a compound that contains lithium when charged.
  • Examples of the ramsdellite-type titanium-containing oxide include Li 2 + y Ti 3 O 7 (y changes within a range of ⁇ 1 ⁇ y ⁇ 3 due to charge / discharge reaction).
  • the sulfide examples include titanium sulfide such as TiS 2 , molybdenum sulfide such as MoS 2, and iron sulfide such as FeS, FeS 2 , and Li x FeS 2 (0 ⁇ x ⁇ 2).
  • lithium nitride examples include lithium cobalt nitride (for example, Li x Co y N, where 0 ⁇ x ⁇ 4 and 0 ⁇ y ⁇ 0.5).
  • the orthorhombic titanium-containing oxide is represented by the general formula Li 2 + w Na 2 ⁇ x M1 y Ti 6 ⁇ z M2 z O 14 + ⁇ , M1 is Cs and / or K, and M2 is Zr. , Sn, V, Nb, Ta, Mo, W, Fe, Co, Mn, and a compound containing at least one of Al, 0 ⁇ w ⁇ 4, 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 2 0 ⁇ z ⁇ 6 and ⁇ 0.50 ⁇ ⁇ ⁇ 0.5.
  • the monoclinic niobium titanium-containing oxide represented by the general formula Li x Ti 1-y M3 y Nb 2-z M4 z O 7 + ⁇ , M3 is Zr, Si, Sn, Fe, Co, Mn and Ni And a compound in which M4 is at least one selected from the group consisting of V, Nb, Ta, Mo, W and Bi, and 0 ⁇ x ⁇ 5, 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 2, ⁇ 0.3 ⁇ ⁇ ⁇ 0.3.
  • Preferred negative electrode active materials include spinel-type titanium-containing oxides, anatase-type titanium-containing oxides, rutile-type titanium-containing oxides, or bronze-type titanium-containing oxides.
  • a preferable example is a negative electrode active material containing an orthorhombic titanium-containing oxide and / or a monoclinic niobium titanium-containing oxide.
  • Examples of the conductive agent include carbon-containing materials (acetylene black, ketjen black, graphite, etc.) and metal powder.
  • binder examples include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), fluorine rubber, and styrene butadiene rubber.
  • the basis weight of the negative electrode material layer is desirably in the range of 10 g / m 2 to 300 g / m 2 .
  • a more preferable range is 20 g / m 2 or more and 200 g / m 2 or less.
  • the density of the negative electrode material layer is desirably in the range of 1.5 g / cm 3 or more and 3.2 g / cm 3 or less. A more preferable range is 1.8 g / cm 3 or more and 2.5 g / cm 3 or less.
  • the negative electrode is prepared by adding a conductive agent and a binder to a powdered negative electrode active material, suspending them in a suitable solvent, applying the suspension (slurry) to a current collector, drying, and pressing. It can be produced by forming a strip electrode.
  • the compounding ratio of the negative electrode active material, the conductive agent and the binder is preferably in the range of 73 to 98% by weight of the negative electrode active material, 0 to 20% by weight of the conductive agent, and 2 to 7% by weight of the binder.
  • Positive electrode is Li 1-x Ni 1-abc Co a Mn b M1 c O 2 (0.9 ⁇ x ⁇ 1.25, 0 ⁇ a ⁇ 0.4, 0 ⁇ b ⁇ 0.45. , 0 ⁇ c ⁇ 0.1, and M represents at least one element selected from the group consisting of Mg, Al, Si, Ti, Zn, Zr, Ca, and Sn.
  • the positive electrode active material may include only this oxide or may contain other types of active materials.
  • Examples of other types of active materials include various oxides and sulfides.
  • conductive polymer materials such as polyaniline and polypyrrole, disulfide-based polymer materials, organic materials such as sulfur (S) and carbon fluoride, and inorganic materials are also included.
  • the type of positive electrode active material can be one type or two or more types.
  • Examples of the conductive agent include carbon black, graphite (graphite), graphene, fullerenes, coke and the like. Of these, carbon black and graphite are preferred. Examples of carbon black include acetylene black, ketjen black, and furnace black.
  • binder examples include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), polyacrylic acid, and fluorine rubber.
  • the positive electrode current collector is preferably formed from an aluminum foil or an aluminum alloy foil.
  • the average crystal grain size of the aluminum foil and the aluminum alloy foil is preferably 50 ⁇ m or less. More preferably, it is 30 ⁇ m or less. More preferably, it is 5 ⁇ m or less.
  • the average crystal grain size is 50 ⁇ m or less, the strength of the aluminum foil or aluminum alloy foil can be dramatically increased, the positive electrode can be densified with a high press pressure, and the battery capacity is increased. Can be made.
  • the thickness of the current collector is 20 ⁇ m or less, more preferably 15 ⁇ m or less.
  • the purity of the aluminum foil is preferably 99% by weight or more.
  • As the aluminum alloy an alloy containing one or more elements selected from the group consisting of magnesium, zinc and silicon is preferable.
  • the content of transition metals such as iron, copper, nickel and chromium is preferably 1% by weight or less.
  • the basis weight of the positive electrode material layer is desirably in the range of 10 g / m 2 to 300 g / m 2 .
  • a more preferable range is 20 g / m 2 or more and 220 g / m 2 or less.
  • the density of the positive electrode material layer is desirably in the range of 2.0 g / cm 3 to 4.5 g / cm 3 .
  • a more preferable range is 2.8 g / cm 3 or more and 4.0 g / cm 3 or less.
  • a conductive agent and a binder are added to the positive electrode active material, these are suspended in a suitable solvent, and this suspension is applied to a current collector such as an aluminum foil, dried and pressed. It is produced by forming a strip electrode.
  • the compounding ratio of the positive electrode active material, the conductive agent and the binder is preferably in the range of 80 to 95% by weight of the positive electrode active material, 3 to 20% by weight of the conductive agent, and 2 to 7% by weight of the binder.
  • Nonaqueous electrolyte can contain a nonaqueous solvent and an electrolyte salt dissolved in the nonaqueous solvent. Further, the non-aqueous solvent may contain a polymer.
  • electrolyte salt examples include LiPF 6 , LiBF 4 , Li (CF 3 SO 2 ) 2 N (bistrifluoromethanesulfonylamide lithium; commonly known as LiTFSI), LiCF 3 SO 3 (commonly known as LiTFS), and Li (C 2 F 5 SO 2) 2 N (bis pentafluoroethanesulfonyl amide lithium; called LiBETI), LiClO 4, LiAsF 6 , LiSbF 6, bisoxalato Lato lithium borate (LiB (C 2 O 4) 2 ( known as LiBOB)), difluoro (oxalato) Lithium borate (LiF 2 BC 2 O 4 ), difluoro (trifluoro-2-oxide-2-trifluoro-methylpropionate (2-)-0,0) lithium borate (LiBF 2 (OCOOC (CF 3 ) 2) (aka LiBF 2 (HHIB))), lithium difluorophosphate (LiPO 2 2)
  • electrolyte salts may be used alone or in combination of two or more.
  • LiPF 6 LiBF 4 , lithium bisoxalatoborate (LiB (C 2 O 4 ) 2 (commonly called LiBOB)), lithium difluoro (oxalato) borate (LiF 2 BC 2 O 4 ), difluoro (trifluoro-2 -Oxide-2-trifluoro-methylpropionate (2-)-0,0) lithium borate (LiBF 2 (OCOOC (CF 3 ) 2 ) (commonly known as LiBF 2 (HHIB))), lithium difluorophosphate (LiPO 2 F 2 ) is preferred.
  • the electrolyte salt concentration is preferably in the range of 0.5M to 3M. Thereby, the performance when a high load current is passed can be improved.
  • the non-aqueous solvent is not particularly limited, but propylene carbonate (PC), ethylene carbonate (EC), 1,2-dimethoxyethane (DME), ⁇ -butyrolactone (GBL), tetrahydrofuran (THF), 2 -Methyltetrahydrofuran (2-MeHF), 1,3-dioxolane, sulfolane, acetonitrile (AN), diethyl carbonate (DEC), dimethyl carbonate (DMC), methyl ethyl carbonate (MEC), dipropyl carbonate (DPC), etc. It is done.
  • PC propylene carbonate
  • EC ethylene carbonate
  • DME 1,2-dimethoxyethane
  • GBL ⁇ -butyrolactone
  • THF tetrahydrofuran
  • 2-MeHF 2 -Methyltetrahydrofuran
  • 1,3-dioxolane 1,3-dioxolane
  • An additive may be added to this non-aqueous electrolyte.
  • Vinylene carbonate (VC) fluoro vinylene carbonate, methyl vinylene carbonate, fluoromethyl vinylene carbonate, ethyl vinylene carbonate, propyl vinylene carbonate, butyl vinylene carbonate, dimethyl vinylene carbonate, diethyl
  • VA vinylene acetate
  • VA vinylene butyrate
  • vinylene hexanate vinylene crotonate
  • catechol carbonate propane sultone
  • propane sultone propane sultone
  • butane sultone One kind or two or more kinds of additives can be used.
  • the nonaqueous electrolyte contains a moisture scavenger.
  • the separator contains polyester as a material.
  • the separator material may be polyester alone, or two or more types of polyester and materials other than polyester may be used in combination. Although it does not specifically limit as materials other than polyester, For example, at least 1 type of polymer chosen from the group which consists of polyolefin, a cellulose, polyester, polyvinyl alcohol, polyamide, a polyimide, polytetrafluoroethylene, and vinylon can be mentioned. Among materials other than polyester, cellulose, polyolefin, polyamide, polyimide, and polyvinyl alcohol are preferable.
  • the separator can be a porous film or non-woven fabric containing polyester. Inorganic particles may be contained in the porous film and the nonwoven fabric.
  • Exterior member As the exterior member, a laminate film having a thickness of 0.5 mm or less or a metal container having a thickness of 3 mm or less is used.
  • the metal container is more preferably 0.5 mm or less in thickness.
  • a resin container may also be used. Examples of the material forming the resin container include polyolefin, polyvinyl chloride, polystyrene resin, acrylic resin, phenol resin, polyphenylene resin, fluorine resin, and the like.
  • Examples of the shape of the exterior member that is, the battery shape, include a flat type (thin type), a square type, a cylindrical type, a coin type, and a button type.
  • the battery can be applied to, for example, a small-sized application loaded on a portable electronic device or the like, and a large-sized application loaded on a two-wheel to four-wheeled vehicle.
  • the laminate film a multilayer film in which a metal layer is interposed between resin layers is used.
  • the metal layer is preferably an aluminum foil or an aluminum alloy foil for weight reduction.
  • a polymer material such as polypropylene (PP), polyethylene (PE), nylon, polyethylene terephthalate (PET) can be used.
  • the laminate film can be formed into the shape of an exterior member by sealing by heat sealing.
  • Metal containers are made of aluminum or aluminum alloy.
  • the aluminum alloy preferably contains at least one element selected from the group consisting of magnesium, zinc and silicon.
  • transition metals such as iron, copper, nickel, and chromium, are contained in an alloy, it is preferable that the quantity shall be 100 ppm or less.
  • Negative electrode terminal can be formed from aluminum or an aluminum alloy containing at least one element selected from the group consisting of Mg, Ti, Zn, Mn, Fe, Cu, and Si. In order to reduce the contact resistance with the negative electrode current collector, the negative electrode terminal is preferably formed from the same material as the negative electrode current collector.
  • Positive electrode terminal is formed of aluminum or an aluminum alloy containing at least one element selected from the group consisting of Mg, Ti, Zn, Ni, Cr, Mn, Fe, Cu, and Si. It is preferable. In order to reduce the contact resistance with the positive electrode current collector, the positive electrode terminal is preferably formed of the same material as the positive electrode current collector.
  • the battery shown in FIG. 1 is a sealed square nonaqueous electrolyte battery.
  • the nonaqueous electrolyte battery includes an outer can 1, a lid 2, a positive external terminal 3, a negative external terminal 4, and an electrode group 5.
  • An exterior member is composed of the exterior can 1 and the lid 2.
  • the outer can 1 has a bottomed rectangular tube shape, and is formed of a metal such as aluminum, an aluminum alloy, iron, or stainless steel, for example.
  • the flat electrode group 5 has a positive electrode 6 and a negative electrode 7 wound in a flat shape with a separator 8 therebetween.
  • the positive electrode 6 is a positive electrode except for, for example, a strip-shaped positive electrode current collector made of a metal foil, a positive electrode current collector tab 6a having one end parallel to the long side of the positive electrode current collector, and at least the positive electrode current collector tab 6a. And a positive electrode material layer (positive electrode active material-containing layer) 6b formed on the current collector.
  • the negative electrode 7 excludes, for example, a strip-shaped negative electrode current collector made of a metal foil, a negative electrode current collector tab 7a having one end parallel to the long side of the negative electrode current collector, and at least a portion of the negative electrode current collector tab 7a. And a negative electrode material layer (negative electrode active material-containing layer) 7b formed on the negative electrode current collector.
  • the positive electrode current collecting tab 6 a protrudes from the separator 8 in the winding axis direction of the electrode group, and the negative electrode current collecting tab 7 a protrudes from the separator 8 in the opposite direction.
  • the positive electrode 6 and the negative electrode 7 are wound while being shifted in position.
  • the electrode group 5 has the positive electrode current collecting tab 6a wound in a spiral shape from one end face and is wound in a spiral form from the other end face.
  • the negative electrode current collection tab 7a protrudes.
  • An electrolytic solution (not shown) is impregnated in the electrode group 5.
  • the positive electrode current collecting tab 6a and the negative electrode current collecting tab 7a are each divided into two bundles with the vicinity of the winding center of the electrode group as a boundary.
  • the conductive clamping member 9 includes first and second clamping parts 9a and 9b that are substantially U-shaped, and a connecting part that electrically connects the first clamping part 9a and the second clamping part 9b. 9c.
  • first and second clamping parts 9a and 9b that are substantially U-shaped, and a connecting part that electrically connects the first clamping part 9a and the second clamping part 9b. 9c.
  • the positive electrode lead 10 includes a substantially rectangular support plate 10a, a through hole 10b opened in the support plate 10a, a bifurcated bifurcated branch from the support plate 10a, and a strip-shaped current collector 10c, 10d extending downward.
  • the negative electrode lead 11 includes a substantially rectangular support plate 11a, a through hole 11b opened in the support plate 11a, a bifurcated branch from the support plate 11a, and a strip-shaped current collector 11c extending downward. 11d.
  • the positive electrode lead 10 sandwiches the clamping member 9 between the current collectors 10c and 10d.
  • the current collector 10 c is disposed in the first clamping part 9 a of the clamping member 9.
  • the current collector 10d is disposed in the second clamping unit 9b.
  • the current collectors 10c and 10d, the first and second clamping parts 9a and 9b, and the positive electrode current collector tab 6a are joined by, for example, ultrasonic welding. Thereby, the positive electrode 6 and the positive electrode lead 10 of the electrode group 5 are electrically connected via the positive electrode current collection tab 6a.
  • the negative electrode lead 11 sandwiches the clamping member 9 between the current collectors 11c and 11d.
  • the current collector 11 c is disposed in the first clamping part 9 a of the clamping member 9.
  • the current collection part 11d is arrange
  • the current collectors 11c and 11d, the first and second sandwiching portions 9a and 9b, and the negative electrode current collector tab 7a are joined by, for example, ultrasonic welding. Thereby, the negative electrode 7 and the negative electrode lead 11 of the electrode group 5 are electrically connected via the negative electrode current collection tab 7a.
  • the materials of the positive and negative electrode leads 10 and 11 and the clamping member 9 are not particularly specified, it is desirable to use the same material as that of the positive and negative electrode external terminals 3 and 4.
  • the positive electrode external terminal 3 for example, aluminum or an aluminum alloy is used
  • the negative electrode external terminal 4 for example, aluminum, an aluminum alloy, copper, nickel, nickel-plated iron, or the like is used.
  • the lead material is preferably aluminum or an aluminum alloy.
  • the external terminal is copper, it is desirable that the material of the lead is copper.
  • the rectangular plate-shaped lid 2 is seam welded to the opening of the outer can 1 by, for example, a laser.
  • the lid 2 is made of a metal such as aluminum, aluminum alloy, iron or stainless steel, for example.
  • the lid 2 and the outer can 1 are preferably formed from the same type of metal.
  • the positive external terminal 3 is electrically connected to the support plate 10 a of the positive electrode lead 10
  • the negative external terminal 4 is electrically connected to the support plate 11 a of the negative electrode lead 11.
  • the insulating gasket 12 is disposed between the positive and negative external terminals 3 and 4 and the lid 2 and electrically insulates the positive and negative external terminals 3 and 4 and the lid 2.
  • the insulating gasket 12 is preferably a resin molded product.
  • the air permeability is in the range of 2 to 15 sec / 100 ml, and the separator containing polyester is provided, so that the charge / discharge cycle performance can be improved.
  • a battery pack including a nonaqueous electrolyte battery is provided.
  • the nonaqueous electrolyte battery according to the first embodiment is used for the nonaqueous electrolyte battery.
  • the number of nonaqueous electrolyte batteries (unit cells) included in the battery pack can be one or more. When a plurality of unit cells are provided, each unit cell is electrically connected in series or in parallel.
  • the plurality of unit cells 21 are electrically connected to each other in series to form an assembled battery 22.
  • the positive electrode side lead 23 is connected to the positive electrode terminal of the assembled battery 22, and the tip thereof is inserted into the positive electrode side connector 24 and electrically connected thereto.
  • the negative electrode side lead 25 is connected to the negative electrode terminal of the assembled battery 22, and the tip thereof is inserted into the negative electrode side connector 26 and electrically connected thereto.
  • These connectors 24 and 26 are connected to a protection circuit 29 through wirings 27 and 28.
  • the thermistor 30 detects the temperature of the unit cell 21, and the detection signal is transmitted to the protection circuit 29.
  • the protection circuit 29 can cut off the plus side wiring 32a and the minus side wiring 32b between the protection circuit 29 and the terminal 31 for energizing the external device under a predetermined condition.
  • the predetermined condition is, for example, when the temperature detected by the thermistor 30 is equal to or higher than a predetermined temperature.
  • the predetermined condition is when the overcharge, overdischarge, overcurrent, etc. of the cell 21 are detected. This detection of overcharge or the like is performed for each single cell 21 or the entire single cell 21.
  • the battery voltage may be detected, or the positive electrode potential or the negative electrode potential may be detected. In the latter case, a lithium electrode used as a reference electrode is inserted into each unit cell 21.
  • a voltage detection wiring 33 is connected to each single cell 21, and a detection signal is transmitted to the protection circuit 29 through the wiring 33.
  • FIG. 3 shows a configuration in which the cells 21 are connected in series, but in order to increase the battery capacity, they may be connected in parallel.
  • the assembled battery packs can be connected in series or in parallel.
  • the mode of the battery pack is appropriately changed depending on the application.
  • those in which cycle characteristics with large current characteristics are desired are preferable.
  • Specific examples include a power source for a digital camera, a vehicle for a two- to four-wheel hybrid electric vehicle, a two- to four-wheel electric vehicle, an assist bicycle, and the like.
  • the vehicle-mounted one is suitable.
  • the non-aqueous electrolyte battery of the first embodiment since the non-aqueous electrolyte battery of the first embodiment is included, a battery pack excellent in charge / discharge cycle performance can be provided.
  • Example A1 ⁇ Preparation of positive electrode> LiNi 0.5 Co 0.2 Mn 0.3 O 2 was prepared as a positive electrode active material.
  • graphite and acetylene black were prepared as conductive agents.
  • PVdF polyvinylidene fluoride
  • a positive electrode active material, graphite, acetylene black, and PVdF were mixed to obtain a mixture.
  • the graphite was added in a proportion of 2.5% by weight with respect to the entire positive electrode to be produced.
  • Acetylene black was added at a ratio of 2.5% by weight based on the whole positive electrode to be produced. PVdF was added so that it might become 5 weight% with respect to the whole positive electrode to produce.
  • NMP n-methylpyrrolidone
  • the obtained slurry was applied to an aluminum foil having a thickness of 15 ⁇ m so that the coating amount per unit area was 80 g / m 2 and dried. Next, the dried coating film was pressed.
  • a positive electrode having a basis weight of the positive electrode material layer of 80 g / m 2 and a density of 3 g / cm 3 was produced.
  • ⁇ Production of negative electrode> As a negative electrode active material, spinel type lithium titanium composite oxide Li 4 Ti 5 O 12 was prepared. Moreover, graphite was prepared as a conductive agent. And PVdF was prepared as a binder. Next, the negative electrode active material, graphite, and PVdF were mixed to obtain a mixture. At this time, graphite was added so as to be 3% by weight with respect to the entire negative electrode to be produced. PVdF was added so that it might become 2 weight% with respect to the whole negative electrode to produce. Next, a slurry was prepared by mixing the resulting mixture in an N-methylpyrrolidone (NMP) solution.
  • NMP N-methylpyrrolidone
  • the obtained slurry was applied to a current collector made of an aluminum foil having a thickness of 15 ⁇ m so that the coating amount per unit area was 120 g / m 2 and dried. Next, the dried coating film was pressed to form a negative electrode material layer on the current collector. Thus, a strip-shaped negative electrode having a negative electrode material layer weight per unit area of 120 g / m 2 and a density of 2.1 g / cm 3 was produced.
  • a separator made of a polyester nonwoven fabric having a thickness of 20 ⁇ m was prepared.
  • the pore volume in the pore diameter distribution measurement by mercury intrusion method of this separator was determined by the above-mentioned method, and it was 1.5 cm 3 / g, and the air permeability (JIS-P-8117) by Gurley method was 8 sec / 100 ml. Met.
  • This separator was impregnated with the previously prepared non-aqueous electrolyte.
  • the positive electrode prepared earlier was covered with this separator, and then the negative electrode prepared earlier was overlapped so as to face the positive electrode through the separator to obtain a laminate.
  • This laminate was wound in a spiral shape to produce a spiral electrode group. This electrode group was subjected to pressing and formed into a flat shape.
  • the flat electrode group was inserted into a bottomed rectangular cylindrical can made of 0.3 mm thick aluminum and sealed with a lid. In this manner, a flat type nonaqueous electrolyte secondary battery having a thickness of 5 mm, a width of 30 mm, a height of 25 mm, and a weight of 100 g was produced.
  • Tables 1 to 4 show the separator material, thickness, pore volume in pore size distribution measurement by mercury intrusion method, air permeability by Gurley method, electrolyte composition, presence or absence of moisture adsorbent in battery, and configuration of positive electrode.
  • a secondary battery was made in the same manner as in Example A1 except that what was shown was used.
  • Example 5 shows separator material, thickness, pore volume in pore size distribution measurement by mercury intrusion method, air permeability by Gurley method, electrolyte composition, presence or absence of moisture adsorbent in battery, positive electrode configuration and negative electrode configuration.
  • a secondary battery similar to Example A1 was produced except that the battery shown in Table 8 was used.
  • the moisture adsorbents of Examples A-7 to A-9 were placed in the cell by the following method.
  • the moisture adsorbent molecular sieve, silica gel, and alumina powder were vacuum dried at 200 ° C. to remove moisture.
  • the moisture adsorbent was placed in the cell.
  • the obtained secondary battery was placed in a state of 50% depth of discharge (DOD: Depth of Discharge), measured for resistance in a 25 ° C. environment, left in a 70 ° C. environment for 30 days, and then measured for resistance in a 25 ° C. environment. The resistance increase rate was measured.
  • DOD Depth of Discharge
  • Example A-1 and Comparative Example A-1 are shown in FIG.
  • the horizontal axis represents the pore diameter ( ⁇ m)
  • the vertical axis represents the pore volume (cm 3 g).
  • the separator used in the battery of Example A-1 had a larger volume of pores having a pore diameter of 1 ⁇ m or less than that of Comparative Example A-1.
  • the pore volume was 0 when the air permeability was a constant value in the range of 2 sec / 100 ml to 15 sec / 100 ml. According to .9cm 3 / g or more 3 cm 3 / g the following examples a-1 ⁇ a-3, the resistance after the high temperature storage pore volume than the Comparative example a-1 of less than 0.9 cm 3 / g It was found that the rate of increase was small. Further, Comparative Example A-2 having a pore volume exceeding 3 cm 3 / g caused an internal short circuit due to high temperature storage.
  • the pore volume is constant within a range of 0.9 cm 3 / g to 3 cm 3 / g.
  • the air permeability is 2 sec / 100 ml or more and 15 sec / 100 ml or less
  • the air permeability is higher than that of Comparative Example A-4 in which the air permeability exceeds 15 sec / 100 ml.
  • Comparative Example A-3 having an air permeability of less than 2 sec / 100 ml caused an internal short circuit due to high temperature storage.
  • a positive electrode containing Li x Ni 1-ab Co a Mn b M c O 2 and a pore volume of 0.9 cm 3 / g or more In the range of 3 cm 3 / g or less, the air permeability is in the range of 2 sec / 100 ml or more and 15 sec / 100 ml or less, and since the separator containing polyester is used, an increase in resistance after high-temperature storage can be suppressed. Long life can be obtained even in an environment.
  • SYMBOLS 1 ... Exterior can, 2 ... Cover, 3 ... Positive electrode external terminal, 4 ... Negative electrode external terminal, 5 ... Electrode group, 6 ... Positive electrode, 6a ... positive electrode current collecting tab, 6b ... positive electrode material layer, 7 ... negative electrode, 7a ... negative electrode current collecting tab, 7b ... negative electrode material layer, 8 ... separator, 9 ... clamping member, 10 ... positive electrode lead, 11 ... negative electrode lead, 12 Insulating gasket, 21 unit cell, 22 assembled battery, 29 protective circuit, 30 thermistor.

Abstract

 正極と、負極と、正極と負極の間に配置されるセパレータと、非水電解質とを含む非水電解質電池が提供される。正極は、LixNi1-a-bCoaMnbc2(0.9<x≦1.25、0<a≦0.4、0≦b≦0.45、0≦c≦0.1、MはMg,Al,Si,Ti,Zn,Zr,Ca及びSnよりなる群から選ばれる少なくとも1種の元素をあらわす)を含む正極活物質を含有する。セパレータは、水銀圧入法による細孔径分布における細孔体積が0.9cm3/g以上3cm3/g以下の範囲内で、ガーレー法による透気度(JIS-P-8117)が2sec/100ml以上15sec/100ml以下の範囲内で、かつポリエステルを含む。

Description

非水電解質電池及び電池パック
 本発明の実施形態は、非水電解質電池及び電池パックに関する。
 ポリエステルは、高い融点と耐酸化性を有し、かつ親水性が低いことから非水電解質電池用セパレータの材料として有効である。一方で、ポリエステル製のセパレータは、塩基性下において加水分解を起こすことから、残留アルカリ分を多く含む活物質との組み合わせにおいては、セパレータの加水分解による電池抵抗の増加が生じるという課題を有する。
特開2001-283821号公報 特開2002-190291号公報 特開2006-19191号公報
「微粒子ハンドブック」朝倉書店(1991年)神保元ニ等著 「粉体物性測定法」朝倉書店(1973年)早川宗八郎編
 本発明が解決しようとする課題は、寿命特性を改善することが可能な非水電解質電池と、該非水電解質電池を備えた電池パックを提供することにある。
 実施形態によれば、正極と、負極と、正極と負極の間に配置されるセパレータと、非水電解質とを含む非水電解質電池が提供される。正極は、LixNi1-a-bCoaMnbc2(0.9<x≦1.25、0<a≦0.4、0≦b≦0.45、0≦c≦0.1、MはMg,Al,Si,Ti,Zn,Zr,Ca及びSnよりなる群から選ばれる少なくとも1種の元素をあらわす)を含む正極活物質を含有する。セパレータは、水銀圧入法による細孔径分布における細孔体積が0.9cm3/g以上3cm3/g以下の範囲内で、ガーレー法による透気度(JIS-P-8117)が2sec/100ml以上15sec/100ml以下の範囲内で、かつポリエステルを含む。
 また、実施形態によれば、該非水電解質電池を含む電池パックが提供される。
実施形態に係る非水電解質電池の分解斜視図である。 図1の非水電解質電池に用いられる電極群の部分展開斜視図である。 実施形態に係る電池パックの電気回路を示すブロック図である。 実施例A-1及び比較例A-1で用いられるセパレータの水銀圧入法による細孔径分布を示す図である。
 以下、実施の形態について、図面を参照して説明する。
(第一の実施形態)
 発明者らは、LixNi1-a-bCoaMnbc2(0.9<x≦1.25、0<a≦0.4、0≦b≦0.45、0≦c≦0.1、MはMg,Al,Si,Ti,Zn,Zr,Ca及びSnよりなる群から選ばれる少なくとも1種の元素をあらわす)を含む正極活物質を含有する正極と、水銀圧入法による細孔径分布からの細孔体積が0.9~3cm3/gの範囲内で、ガーレー法による透気度(JIS-P-8117)が2~15sec/100mlの範囲内で、かつポリエステルを含むセパレータとを用いると、非水電解質電池の寿命特性が改善されることを見出した。
 ポリエステルは、セパレータ材料のひとつであるポリオレフィンと比べると融点が高いことから熱安定性に優れ、また、セパレータ材料のひとつであるセルロースよりも親水性が低いために電池内への水分持ち込み量が軽減し易いことから、非水電解質電池用セパレータの主成分として好適である。
 ここで、LixNi1-a-bCoaMnbc2で表される正極活物質は、残留アルカリ分が多いことが知られている。この正極活物質を用いた非水電解質電池のセパレータとしてポリエステルを含むものを用いると、セパレータの加水分解に起因すると考えられる電池抵抗の増加が起り易い。電池抵抗増加の主要因はセパレータの目詰まりである。セパレータの水銀圧入法による細孔径分布から得られる細孔体積を0.9~3cm3/gの範囲内とすることでセパレータの目詰まりを回避することができる。細孔体積が0.9cm3/gより小さいとポリエステルの加水分解によると考えられるセパレータの目詰まりに起因する電池抵抗増加が起り易い。一方、細孔体積が3cm3/gより大きいと、セパレータによる正極と負極の十分な絶縁効果が得られにくい。より好ましい範囲は1cm3/g~2cm3/gの範囲内である。また、セパレータのガーレー法による透気度(JIS-P-8117)は、2~15sec/100mlとすることが好ましい。この透気度は、セパレータ中の細孔比率および細孔径、セパレータの厚さ、セパレータのトーチオスティ(セパレータ厚さに対する実際のセパレータ中の経路長の比)によって決まることが知られている。したがって、セパレータの細孔比率、細孔径ならびに厚さが同じであればトーチオスティが変化しており、この場合に透気度が大きいことは、トーチオスティが大きくてセパレータ中を移動するイオンの経路が長く複雑になっていることを示唆していると考えられる。透気度が15sec/100mlより大きいと、細孔体積が0.9~3.0cm3/gの範囲内であっても目詰まりに起因する電池抵抗増加が起こりやすい。これは透気度が15sec/100mlより大きいとセパレータの目詰まりに起因する電池抵抗増加を生じる小さな細孔が存在するためであると推察される。一方、透気度が2sec/100mlより小さいとセパレータによる正極と負極の十分な絶縁効果が得られにくい。より好ましい範囲は3~10sec/100mlの範囲内である。
 従って、本実施形態の電池では、LixNi1-a-bCoaMnbc2で表される正極活物質の残留アルカリ分に起因するセパレータの加水分解が生じるが、この加水分解に起因するセパレータの目詰まりを抑えることができるため、電池抵抗の増加を抑制することができ、サイクル寿命性能を向上することができる。
また、セパレータはポリエステルのみで形成されるものであってもいいが、ポリエステル以外にセルロース、ポリオレフィン、ポリアミド、ポリイミド及びポリビニルアルコールよりなる群から選ばれる少なくとも1種類のポリマーを含むことが好ましい。これは、ポリエステルが加水分解された場合においてもそれ以外の成分によってセパレータとしての形状を維持しやすいことで電池性能への悪影響を及ぼしにくいからである。
 セパレータの厚さは3~25μmの範囲内である方が、サイクル寿命性能をはじめとする電池性能を改善する効果が得られやすい。
 また、非水電解質電池中にモレキュラーシーブ、シリカゲル及びアルミナよりなる群から選ばれる少なくとも一種類の水分吸着剤を含むことが好ましい。このような水分吸着剤を非水電解質電池内に配置すると、ポリエステルを含むセパレータの加水分解が起りにくくなる。水分吸着剤の配置は、特に限定されるものではないが、例えば、電池内の空隙部分に直接配置したり、電極や電解液または電池内の樹脂部品に混合させることで配置することができる。
 水分吸着剤の代わりに、あるいは水分吸着剤を電池(セル)内に含有させ、かつ非水電解質中に水分捕捉剤を含有させることができる。水分捕捉剤の例として、特に限定されるものではないが、オルトギ酸トリアルキル類、オルト酢酸トリアルキル類、モノイソシアネート化合物、テトラエチルシリケート、トリ(トリメチルシリル)ホスフェート、トリ(トリメチルシリル)ボレート、シュウ酸、クエン酸、トルエンスルホン酸等が挙げられる。水分捕捉剤の配置は、特に限定されるものではないが、例えば、電極または電解液に混合させることで配置することができる。
 水銀圧入法による細孔径分布における細孔体積の測定方法を以下に記載する。
 測定装置には、島津オートポア9520(Autopore 9520 model manufactured by Shimadzu Corporation)またはこれと同等の機能を有する装置を用いる。試料は、電極を約25×25mm2サイズに切断し、これを折りたたんで測定セルに採り、初期圧20kPa(初期圧20kPaは約3psiaに相当し、また、細孔直径が約60μmの試料に加わる圧力に相当する)及び最高圧414Mpa(最高圧414Mpaは約59986psiaに相当し、また、細孔直径が約0.003μmの試料に加わる圧力に相当する)の条件で測定する。3試料の平均値を測定結果として用いる。データ整理に当り、細孔比表面積は、細孔の形状を円筒形として計算する。
 なお、水銀圧入法の解析原理はWashburnの式(B)に基づく。
D=-4γcosθ/P   (B)式
 ここで、Pは加える圧力、Dは細孔直径、γは水銀の表面張力(480dyne・cm-1)、θは水銀と細孔壁面の接触角で140°である。γ、θは定数であるからWashburnの式より、加えた圧力Pと細孔直径Dの関係が求められ、そのときの水銀侵入体積を測定することにより、細孔直径とその体積分布を導くことができる。測定法・原理等の詳細は、非特許文献1(神保元ニら:「微粒子ハンドブック」朝倉書店(1991年))、非特許文献2(早川宗八郎編:「粉体物性測定法」朝倉書店(1973年))などを参照されたい。
 この測定は、以下に説明する測定サンプルを対象として行う。即ち、電池からセパレータを取り出し、エチルメチルカーボネートに12時間浸漬する。浸漬時、必要に応じて攪拌を行ってLi塩を除去した後に乾燥したものを測定サンプルとする。乾燥温度は室温以上60℃以下の範囲にする。なお、ガーレー法による透気度(JIS-P-8117)を測定する際も、このサンプルが使用される。
 実施形態に係る非水電解質電池について、詳細に説明する。
 実施形態に係る非水電解質電池は、正極と、負極と、正極及び負極の間に配置されるセ
パレータと、非水電解質とを具備する。
 正極は、正極集電体と、正極集電体の片面又は両面に担持された正極材料層(正極活物質含有層)とを含むことができる。
 正極材料層は、正極活物質を含むことができる。正極材料層は、必要に応じて、導電剤及び結着剤を更に含むこともできる。
 正極集電体は、表面に正極材料層を担持していない部分を含むこともできる。正極集電体のうち正極材料層無担持部分は、正極タブとして働くことができる。或いは、正極は、正極集電体とは別体の正極タブを含むこともできる。
 負極は、負極集電体と、負極集電体の片面又は両面に担持された負極材料層(負極活物質含有層)とを含むことができる。
 負極材料層は、負極活物質を含むことができる。負極材料層は、必要に応じて、導電剤及び結着剤を更に含むこともできる。
 負極集電体は、表面に負極材料層を担持していない部分を含むことができる。この部分は、負極タブとして働くことができる。或いは、負極は、負極集電体とは別体の負極タブを含むこともできる。
 セパレータは、正極と負極との間に配置される。それにより、正極材料層と負極材料層とは、セパレータを介して対向することができる。
 正極、負極及びセパレータは、電極群を構成することができる。電極群は、様々な構造を有することができる。例えば、電極群は、スタック型の構造を有することができる。スタック型構造の電極群は、例えば、複数の正極及び負極を、正極材料層と負極材料層との間にセパレータを挟んで積層することによって得ることができる。或いは、電極群は、巻回型の構造を有することができる。巻回型の電極群は、例えば、セパレータと、正極と、セパレータと、負極とをこの順で積層させて積層体を作り、この積層体を例えば負極が外側に位置するように巻回することによって得ることができる。
 非水電解質は、このような電極群に含浸され得る。
 実施形態に係る非水電解質電池は、正極端子及び負極端子を更に具備することができる。
 正極端子は、その一部が正極の一部に電気的に接続されることによって、正極と外部回路との間で電子が移動するための導体として働くことができる。正極端子は、例えば、正極集電体、特に正極タブに接続することができる。同様に、負極端子は、その一部が負極の一部に電気的に接続されることによって、負極と外部端子との間で電子が移動するための導体として働くことができる。負極端子は、例えば、負極集電体、特に負極タブに接続することができる。
 実施形態に係る非水電解質電池は、外装部材を更に具備することができる。外装部材は、電極群及び非水電解質を収容することができる。正極端子及び負極端子のそれぞれの一部は、外装部材から延出させることができる。
 以下、実施形態に係る非水電解質電池に含まれる各部材を説明する。
 1)負極 
 負極集電体には、例えば金属箔または合金箔が用いられる。集電体の厚さは、20μm以下、より好ましくは15μm以下であることが望ましい。金属箔としては銅箔、アルミニウム箔といったものが挙げられる。アルミニウム箔の場合、99重量%以上の純度を有することが好ましい。合金箔としてはステンレス箔、アルミニウム合金箔といったものが挙げられる。アルミニウム合金箔中のアルミニウム合金は、マグネシウム、亜鉛及びケイ素よりなる群から選ばれる少なくとも1種類の元素を含むことが好ましい。合金成分中の鉄、銅、ニッケル、クロムなどの遷移金属の含有量は1重量%以下にすることが好ましい。
 負極活物質としては、リチウムを吸蔵放出可能な炭素質物(例えば、グラファイト、ハードカーボン、ソフトカーボン、グラフェン)、チタン含有酸化物、硫化物、リチウム窒化物、例えばSnB0.40.63.1などのアモルファススズ酸化物、例えばSnSiO3などのスズ珪素酸化物、例えばSiOなどの酸化珪素、例えばWO3などのタングステン酸化物といったものが挙げられる。負極活物質の種類は1種類又は2種類以上にすることができる。
 チタン含有酸化物、アモルファススズ酸化物、スズ珪素酸化物、酸化珪素、タングステン酸化物は、酸化物合成時にリチウムを含まないが、充電によりリチウムを含むことができる。
 チタン含有酸化物の例には、スピネル型のチタン含有酸化物、アナターゼ型のチタン含有酸化物、ルチル型のチタン含有酸化物、ブロンズ型のチタン含有酸化物、ラムスデライト型のチタン含有酸化物、斜方晶型チタン含有酸化物、単斜晶型ニオブチタン含有酸化物、並びにTiとP、V、Sn、Cu、Ni、Nb及びFeよりなる群から選択される少なくとも1種類の元素とを含有する金属複合酸化物が含まれる。TiとP、V、Sn、Cu、Ni、Nb及びFeよりなる群から選択される少なくとも1種類の元素とを含有する金属複合酸化物としては、例えば、TiO2-P25、TiO2-V25、TiO2-P25-SnO2、TiO2-P25-MeO(Meは、Cu、Ni及びFeよりなる群から選択される少なくとも1種類の元素である)などを挙げることができる。この金属複合酸化物は、結晶性が低く、結晶相とアモルファス相とが共存もしくは、アモルファス相単独で存在したミクロ構造であることが好ましい。このようなミクロ構造であることによりサイクル性能を大幅に向上させることができる。
 アナターゼ型、ルチル型、ブロンズ型のチタン含有酸化物の組成は、TiO2で表すことができる。
 スピネル型のチタン含有酸化物の例に、スピネル型リチウムチタン複合酸化物が挙げられる。スピネル型リチウムチタン複合酸化物としては、Li4+xTi512(xは充放電反応により0≦x≦3の範囲で変化する)などを挙げることができる。スピネル型リチウムチタン複合酸化物を単独で用いてもいいし、他の活物質を複数種混合しても良い。混合される他の負極活物質としては、リチウムを吸蔵・放出することができるリチウム化合物が挙げられる。このようなリチウム化合物としては、リチウム酸化物、リチウム硫化物、リチウム窒化物などが挙げられる。これらの中には、未充電状態ではリチウムを含まない金属化合物であるが、充電によりリチウムを含むようになる化合物も含まれる。
 ラムスデライト型のチタン含有酸化物の例として、Li2+yTi37(yは充放電反応により-1≦y≦3の範囲で変化する)などが挙げられる。
 硫化物の例としては、例えばTiS2などの硫化チタン、例えばMoS2などの硫化モリブデン、例えば、FeS、FeS2、LixFeS2(0≦x≦2)などの硫化鉄などが挙げられる。
 リチウム窒化物としては、例えば、リチウムコバルト窒化物(例えば、LixCoyN、ここで、0<x<4であり、0<y<0.5である)などが挙げられる。
 斜方晶型チタン含有酸化物としては、一般式Li2+wNa2-xM1yTi6-zM2z14+δで表され、M1はCs及び/又はKであり、M2はZr,Sn,V,Nb,Ta,Mo,W,Fe,Co,Mn,及びAlのうち少なくとも1つを含む化合物が挙げられ、0≦w≦4、0≦x≦2、0≦y≦2、0≦z≦6、-0.50≦δ≦0.5である。
 単斜晶型ニオブチタン含有酸化物としては、一般式LixTi1-yM3yNb2-zM4z7+δで表され、M3はZr、Si、Sn、Fe、Co、Mn及びNiから成る群から選択される少なくとも1つであり、M4はV,Nb,Ta,Mo,W及びBiから成る群から選択される少なくとも1つである化合物が挙げられ、0≦x≦5、0≦y≦1、0≦z≦2、-0.3≦δ≦0.3である。
 好ましい負極活物質は、スピネル型のチタン含有酸化物、アナターゼ型のチタン含有酸化物、ルチル型のチタン含有酸化物又はブロンズ型のチタン含有酸化物を含むものである。また、斜方晶型チタン含有酸化物及び/又は単斜晶型ニオブチタン含有酸化物を含む負極活物質も好ましい例として挙げることができる。
 導電剤としては、例えば炭素含有材料(アセチレンブラック、ケッチェンブラック、黒鉛等)、金属粉末を挙げることができる。
 結着剤としては、例えばポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、フッ素系ゴム、スチレンブタジエンゴムなどが挙げられる。
 負極材料層の目付量は、10g/m2以上300g/m2以下の範囲にすることが望ましい。さらに好ましい範囲は、20g/m2以上200g/m2以下である。
 負極材料層の密度は、1.5g/cm3以上3.2g/cm3以下の範囲にすることが望ましい。さらに好ましい範囲は、1.8g/cm3以上2.5g/cm3以下である。
 負極は、例えば、粉末状の負極活物質に導電剤及び結着剤を添加し、これらを適当な溶媒に懸濁させ、この懸濁物(スラリー)を集電体に塗布、乾燥、プレスして帯状電極にすることにより作製することができる。
 負極活物質、導電剤及び結着剤の配合比は、負極活物質73~98重量%、導電剤0~20重量%、結着剤2~7重量%の範囲にすることが好ましい。
 2)正極
 正極活物質は、Li1-xNi1-a-b-cCoaMnbM1c2(0.9<x≦1.25、0<a≦0.4、0≦b≦0.45、0≦c≦0.1、MはMg,Al,Si,Ti,Zn,Zr,Ca及びSnよりなる群から選ばれる少なくとも1種の元素をあらわす)を含む。正極活物質は、この酸化物のみであっても、他の種類の活物質を含んでいても良い。
 他の種類の活物質の例に種々の酸化物、硫化物などが挙げられる。例えば、二酸化マンガン(MnO2)、酸化鉄、酸化銅、酸化ニッケル、リチウムマンガン複合酸化物(例えば、LixMn24またはLixMnO2)、リチウムニッケル複合酸化物(例えばLixNiO2)、リチウムコバルト複合酸化物(例えばLixCoO2)、リチウムニッケルコバルト複合酸化物(例えばLixNi1-y-zCoyz2(MはAl,CrおよびFeよりなる群から選択される少なくとも1種類の元素であり、0≦y≦0.5、0≦z≦0.1である))、リチウムマンガンコバルト複合酸化物(例えばLixMn1-y-zCoyz2(MはAl、CrおよびFeよりなる群から選択される少なくとも1種類の元素であり、0≦y≦0.5、0≦z≦0.1である))、リチウムマンガンニッケル複合化合物(例えばLixMn1/2Ni1/22)、スピネル型リチウムマンガンニッケル複合酸化物(例えばLixMn2-yNiy4)、オリビン構造を有するリチウムリン酸化物(例えば、LixFePO4、LixFe1-yMnyPO4、LixCoPO4など)、硫酸鉄(例えばFe2(SO43)、バナジウム酸化物(例えばV25)などが挙げられる。また、ポリアニリンやポリピロールなどの導電性ポリマー材料、ジスルフィド系ポリマー材料、イオウ(S)、フッ化カーボンなどの有機材料および無機材料も挙げられる。なお、上記に好ましい範囲の記載がないx、y及びzについては、0以上1以下の範囲であることが好ましい。
 正極活物質の種類は、1種類または2種類以上にすることができる。
 導電剤としては、例えばカーボンブラック、黒鉛(グラファイト)、グラフェン、フラーレン類、コークス等を挙げることができる。中でもカーボンブラック、黒鉛が好ましい。カーボンブラックとしてはアセチレンブラック、ケッチェンブラック、ファーネスブラック等が挙げられる。
 結着剤としては、例えばポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、ポリアクリル酸、フッ素系ゴムなどが挙げられる。
 正極集電体は、アルミニウム箔若しくはアルミニウム合金箔から形成されることが望ましい。アルミニウム箔及びアルミニウム合金箔の平均結晶粒径は50μm以下であることが好ましい。より好ましくは、30μm以下である。更に好ましくは5μm以下である。平均結晶粒径が50μm以下であることにより、アルミニウム箔またはアルミニウム合金箔の強度を飛躍的に増大させることができ、正極を高いプレス圧で高密度化することが可能になり、電池容量を増大させることができる。
 集電体の厚さは、20μm以下、より好ましくは15μm以下である。アルミニウム箔の純度は99重量%以上が好ましい。アルミニウム合金としては、マグネシウム、亜鉛及びケイ素よりなる群から選択される1種類以上の元素を含む合金が好ましい。一方、鉄、銅、ニッケル、クロムなどの遷移金属の含有量は1重量%以下にすることが好ましい。
 正極材料層の目付量は、10g/m2以上300g/m2以下の範囲にすることが望ましい。さらに好ましい範囲は、20g/m2以上220g/m2以下である。
 正極材料層の密度は、2.0g/cm3以上4.5g/cm3以下の範囲にすることが望ましい。さらに好ましい範囲は、2.8g/cm3以上4.0g/cm3以下である。
 この正極は、例えば、正極活物質に導電剤及び結着剤を添加し、これらを適当な溶媒に懸濁させ、この懸濁物をアルミニウム箔などの集電体に塗布、乾燥、プレスして帯状電極にすることにより作製される。
 正極活物質、導電剤及び結着剤の配合比は、正極活物質80~95重量%、導電剤3~20重量%、結着剤2~7重量%の範囲にすることが好ましい。
 3)非水電解質
 この非水電解質は、非水溶媒と、この非水溶媒に溶解される電解質塩とを含むことができる。また、非水溶媒中にはポリマーを含んでもよい。
 電解質塩の例としては、LiPF6、LiBF4、Li(CF3SO22N(ビストリフルオロメタンスルホニルアミドリチウム;通称LiTFSI)、LiCF3SO3(通称LiTFS)、Li(C25SO22N(ビスペンタフルオロエタンスルホニルアミドリチウム;通称LiBETI)、LiClO4、LiAsF6、LiSbF6、ビスオキサラトホウ酸リチウム(LiB(C242(通称LiBOB))、ジフルオロ(オキサラト)ホウ酸リチウム(LiF2BC24)、ジフルオロ(トリフルオロ-2-オキシド-2-トリフルオロ-メチルプロピオナト(2-)-0,0)ホウ酸リチウム(LiBF2(OCOOC(CF32)(通称LiBF2(HHIB)))、ジフルオロリン酸リチウム(LiPO22)等のリチウム塩が挙げられる。これらの電解質塩は一種類で使用してもよいし又は二種類以上を混合して用いてもよい。特に、LiPF6、LiBF4、ビスオキサラトホウ酸リチウム(LiB(C242(通称LiBOB))、ジフルオロ(オキサラト)ホウ酸リチウム(LiF2BC24)、ジフルオロ(トリフルオロ-2-オキシド-2-トリフルオロ-メチルプロピオナト(2-)-0,0)ホウ酸リチウム(LiBF2(OCOOC(CF32)(通称LiBF2(HHIB)))、ジフルオロリン酸リチウム(LiPO22)が好ましい。
 電解質塩濃度は、0.5M以上、3M以下の範囲内とすることが好ましい。これにより、高負荷電流を流した場合の性能を向上することができる。
 非水溶媒としては、特に限定されるものではないが、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、1,2-ジメトキシエタン(DME)、γ-ブチロラクトン(GBL)、テトラヒドロフラン(THF)、2-メチルテトラヒドロフラン(2-MeHF)、1,3-ジオキソラン、スルホラン、アセトニトリル(AN)、ジエチルカーボネート(DEC)、ジメチルカーボネイト(DMC)、メチルエチルカーボネート(MEC)、ジプロピルカーボネート(DPC)等が挙げられる。これらの溶媒は1種類で使用してもよいし又は2種類以上を混合して用いてもよい。また、溶媒を二種類以上組み合わせる場合、全ての溶媒に誘電率が20以上のものの中から選ぶことが好ましい。
 この非水電解質に、添加剤を添加してもよい。添加剤としては、特に限定されるものではないが、ビニレンカーボネイト(VC)、フルオロビニレンカーボネート、メチルビニレンカーボネート、フルオロメチルビニレンカーボネート、エチルビニレンカーボネート、プロピルビニレンカーボネート、ブチルビニレンカーボネート、ジメチルビニレンカーボネート、ジエチルビニレンカーボネート、ジプロピルビニレンカーボネート、ビニレンアセテート(VA)、ビニレンブチレート、ビニレンヘキサネート、ビニレンクロトネート、カテコールカーボネート、プロパンスルトン、ブタンスルトン等が挙げられる。添加剤の種類は、1種類又は2種類以上にすることができる。
 また、この非水電解質中には水分捕捉剤を含むことが好ましい。
 4)セパレータ
 セパレータは、材料としてポリエステルを含んでいる。セパレータの材料は、ポリエステルのみであってもよく、あるいはポリエステルとポリエステル以外の材料との2種類以上を組み合わせて用いてもよい。ポリエステル以外の材料としては特に限定されないが、例えば、ポリオレフィン、セルロース、ポリエステル、ポリビニルアルコール、ポリアミド、ポリイミド、ポリテトラフルオロエチレン及びビニロンよりなる群から選ばれる少なくとも1種類のポリマーを挙げることができる。ポリエステル以外の材料のうち好ましいのは、セルロース、ポリオレフィン、ポリアミド、ポリイミド、ポリビニルアルコールである。
 セパレータには、ポリエステルを含む多孔質フィルム又は不織布を用いることができる。この多孔質フィルム、不織布中に無機粒子が含まれてもよい。
 5)外装部材
 外装部材は、厚さ0.5mm以下のラミネートフィルム又は厚さ3mm以下の金属製容器が用いられる。金属製容器は、厚さ0.5mm以下であることがより好ましい。また、樹脂製容器を用いてもよい。樹脂製容器を形成する材料の例に、ポリオレフィン、ポリ塩化ビニル、ポリスチレン系樹脂、アクリル樹脂、フェノール樹脂、ポリフェニレン系樹脂、フッ素系樹脂等が含まれる。
 外装部材の形状、すなわち電池形状としては、扁平型(薄型)、角型、円筒型、コイン型、ボタン型等が挙げられる。また、電池は、例えば携帯用電子機器等に積載される小型用途、二輪乃至四輪の自動車等に積載される大型用途のいずれにも適用することができる。
 ラミネートフィルムは、樹脂層間に金属層を介在した多層フィルムが用いられる。金属層は、軽量化のためにアルミニウム箔若しくはアルミニウム合金箔が好ましい。樹脂層は、例えばポリプロピレン(PP)、ポリエチレン(PE)、ナイロン、ポリエチレンテレフタレート(PET)等の高分子材料を用いることができる。ラミネートフィルムは、熱融着によりシールを行って外装部材の形状に成形することができる。
 金属製容器は、アルミニウム又はアルミニウム合金等から作られる。アルミニウム合金は、マグネシウム、亜鉛及びケイ素よりなる群から選ばれる少なくとも1種類の元素等を含むことが好ましい。合金中に鉄、銅、ニッケル、クロム等の遷移金属が含まれる場合、その量は100ppm以下にすることが好ましい。
 6)負極端子
 負極端子は、アルミニウム、又は、Mg、Ti、Zn、Mn、Fe、Cu及びSiよりなる群から選択される少なくとも1種類の元素を含有するアルミニウム合金から形成することができる。負極集電体との接触抵抗を低減するために、負極端子は負極集電体と同様の材料から形成されることが好ましい。
 7)正極端子
 正極端子は、アルミニウム、又は、Mg、Ti、Zn、Ni、Cr、Mn、Fe、Cu及びSiよりなる群から選択される少なくとも1種類の元素を含有するアルミニウム合金から形成されることが好ましい。正極集電体との接触抵抗を低減するために、正極端子は正極集電体と同様の材料から形成されることが好ましい。
 実施形態の非水電解質電池の一例を図1に示す。図1に示す電池は、密閉型の角型非水電解質電池である。非水電解質電池は、外装缶1と、蓋2と、正極外部端子3と、負極外部端子4と、電極群5とを備える。外装缶1と蓋2とから外装部材が構成されている。
 外装缶1は、有底角筒形状をなし、例えば、アルミニウム、アルミニウム合金、鉄あるいはステンレスなどの金属から形成される。
 図2に示すように、偏平型の電極群5は、正極6と負極7がその間にセパレータ8を介して偏平形状に捲回されたものである。正極6は、例えば金属箔からなる帯状の正極集電体と、正極集電体の長辺に平行な一端部からなる正極集電タブ6aと、少なくとも正極集電タブ6aの部分を除いて正極集電体に形成された正極材料層(正極活物質含有層)6bとを含む。一方、負極7は、例えば金属箔からなる帯状の負極集電体と、負極集電体の長辺に平行な一端部からなる負極集電タブ7aと、少なくとも負極集電タブ7aの部分を除いて負極集電体に形成された負極材料層(負極活物質含有層)7bとを含む。
 このような正極6、セパレータ8及び負極7は、正極集電タブ6aが電極群の捲回軸方向にセパレータ8から突出し、かつ負極集電タブ7aがこれとは反対方向にセパレータ8から突出するよう、正極6及び負極7の位置をずらして捲回されている。このような捲回により、電極群5は、図2に示すように、一方の端面から渦巻状に捲回された正極集電タブ6aが突出し、かつ他方の端面から渦巻状に捲回された負極集電タブ7aが突出している。電解液(図示しない)は、電極群5に含浸されている。
 図1に示すように、正極集電タブ6a及び負極集電タブ7aは、それぞれ、電極群の捲回中心付近を境にして二つの束に分けられている。導電性の挟持部材9は、略コの字状をした第1,第2の挟持部9a,9bと、第1の挟持部9aと第2の挟持部9bとを電気的に接続する連結部9cとを有する。正負極集電タブ6a,7aは、それぞれ、一方の束が第1の挟持部9aによって挟持され、かつ他方の束が第2の挟持部9bによって挟持される。
 正極リード10は、略長方形状の支持板10aと、支持板10aに開口された貫通孔10bと、支持板10aから二股に分岐し、下方に延出した短冊状の集電部10c、10dとを有する。一方、負極リード11は、略長方形状の支持板11aと、支持板11aに開口された貫通孔11bと、支持板11aから二股に分岐し、下方に延出した短冊状の集電部11c、11dとを有する。
 正極リード10は、集電部10c、10dの間に挟持部材9を挟む。集電部10cは、挟持部材9の第1の挟持部9aに配置されている。集電部10dは、第2の挟持部9bに配置されている。集電部10c、10dと、第1,第2の挟持部9a,9bと、正極集電タブ6aとは、例えば超音波溶接によって接合される。これにより、電極群5の正極6と正極リード10が正極集電タブ6aを介して電気的に接続される。
 負極リード11は、集電部11c、11dの間に挟持部材9を挟んでいる。集電部11cは、挟持部材9の第1の挟持部9aに配置されている。一方、集電部11dは、第2の挟持部9bに配置される。集電部11c、11dと、第1,第2の挟持部9a,9bと、負極集電タブ7aとは、例えば超音波溶接によって接合される。これにより、電極群5の負極7と負極リード11が負極集電タブ7aを介して電気的に接続される。
 正負極リード10,11および挟持部材9の材質は、特に指定しないが、正負極外部端子3,4と同じ材質にすることが望ましい。正極外部端子3には、例えば、アルミニウムあるいはアルミニウム合金が使用され、負極外部端子4には、例えば、アルミニウム、アルミニウム合金、銅、ニッケル、ニッケルメッキされた鉄などが使用される。例えば、外部端子の材質がアルミニウム又はアルミニウム合金の場合は、リードの材質をアルミニウム、アルミニウム合金にすることが好ましい。また、外部端子が銅の場合は、リードの材質を銅などにすることが望ましい。
 矩形板状の蓋2は、外装缶1の開口部に例えばレーザでシーム溶接される。蓋2は、例えば、アルミニウム、アルミニウム合金、鉄あるいはステンレスなどの金属から形成される。蓋2と外装缶1は、同じ種類の金属から形成されることが望ましい。正極外部端子3は、正極リード10の支持板10aと電気的に接続され、負極外部端子4は、負極リード11の支持板11aと電気的に接続されている。絶縁ガスケット12は、正負極外部端子3,4と蓋2との間に配置され、正負極外部端子3,4と蓋2とを電気的に絶縁している。絶縁ガスケット12は、樹脂成形品であることが望ましい。
 以上説明した第1の実施形態の非水電解質電池によれば、Li1-xNi1-a-b-cCoaMnbc2を含む正極と、細孔体積が0.9~3cm3/gの範囲内で、透気度が2~15sec/100mlの範囲内で、かつポリエステルを含むセパレータとを備えるため、充放電サイクル性能を向上することができる。
(第2の実施形態)
 第2の実施形態によれば、非水電解質電池を含む電池パックが提供される。非水電解質電池には、第1の実施形態に係る非水電解質電池が使用される。電池パックに含まれる非水電解質電池(単電池)の数は、1個または複数にすることができる。複数の単電池を備える場合、各単電池は電気的に直列もしくは並列に接続されている。
 このような電池パックを図3を参照して詳細に説明する。複数の単電池21は、互いに電気的に直列に接続され、組電池22を構成している。正極側リード23は、組電池22の正極端子に接続され、その先端は正極側コネクタ24に挿入されて電気的に接続されている。負極側リード25は、組電池22の負極端子に接続され、その先端は負極側コネクタ26に挿入されて電気的に接続されている。これらのコネクタ24,26は、配線27,28を通して保護回路29に接続されている。
 サーミスタ30は、単電池21の温度を検出し、その検出信号は保護回路29に送信される。保護回路29は、所定の条件で保護回路29と外部機器への通電用端子31との間のプラス側配線32aおよびマイナス側配線32bを遮断できる。所定の条件とは、例えばサーミスタ30の検出温度が所定温度以上になったときである。また、所定の条件とは単電池21の過充電、過放電、過電流等を検出したときである。この過充電等の検出は、個々の単電池21もしくは単電池21全体について行われる。個々の単電池21を検出する場合、電池電圧を検出してもよいし、正極電位もしくは負極電位を検出してもよい。後者の場合、個々の単電池21中に参照極として用いるリチウム電極が挿入される。図3の場合、単電池21それぞれに電圧検出のための配線33を接続し、これら配線33を通して検出信号が保護回路29に送信される。
 図3では単電池21を直列接続した形態を示したが、電池容量を増大させるためには並列に接続してもよい。組み上がった電池パックを直列、並列に接続することもできる。
 また、電池パックの態様は用途により適宜変更される。電池パックの用途としては、大電流特性でのサイクル特性が望まれるものが好ましい。具体的には、デジタルカメラの電源用や、二輪乃至四輪のハイブリッド電気自動車、二輪乃至四輪の電気自動車、アシスト自転車等の車載用が挙げられる。特に、車載用が好適である。
 以上詳述した第2の実施形態の電池パックによれば、第1の実施形態の非水電解質電池を含むため、充放電サイクル性能に優れた電池パックを提供することができる。
 [実施例]
 以下に実施例を説明するが、本発明の主旨を超えない限り、本発明は以下に記載される実施例に限定されるものではない。
(実施例A1)
 <正極の作製>
 正極活物質として、LiNi0.5Co0.2Mn0.32を準備した。また、導電剤として、グラファイト及びアセチレンブラックを準備した。そして、結着剤としてポリフッ化ビニリデン(PVdF)を準備した。次に、正極活物質、グラファイト、アセチレンブラック及びPVdFを混合して混合物を得た。この際、グラファイトは、作製する正極全体に対して2.5重量%の割合になるように添加した。アセチレンブラックは、作製する正極全体に対して2.5重量%の割合になるように添加した。PVdFは、作製する正極全体に対して5重量%となるように添加した。次に、得られた混合物をn-メチルピロリドン(NMP)溶媒中に分散して、スラリーを調製した。得られたスラリーを、厚さ15μmのアルミニウム箔に単位面積当たりの塗布量が80g/m2になるように塗布し、乾燥させた。次いで、乾燥させた塗膜をプレスした。かくして、正極材料層の目付量が80g/m2で、密度が3g/cm3である正極を作製した。
 <負極の作製>
 負極活物質として、スピネル型リチウムチタン複合酸化物Li4Ti512を準備した。また、導電剤としてグラファイトを準備した。そして、結着剤としてPVdFを準備した。次に、負極活物質、グラファイト、及びPVdFを混合して混合物を得た。この際、グラファイトは、作製する負極全体に対して3重量%になるように添加した。PVdFは、作製する負極全体に対して2重量%となるように添加した。次に、得られた混合物を、N-メチルピロリドン(NMP)溶液中で混合することによりスラリーを調製した。得られたスラリーを、厚さ15μmのアルミニウム箔からなる集電体に単位面積当たりの塗布量が120g/m2になるように塗布し、乾燥させた。次いで、乾燥させた塗膜をプレスして、集電体上に負極材料層を形成した。かくして、負極材料層の目付量が120g/m2で、密度が2.1g/cm3である帯状の負極を作製した。
 <非水電解質の調製>
 33体積%のエチレンカーボネート(EC)及び67体積%のジエチルカーボネート(DEC)からなる非水溶媒中に、1MのLiPF6を混合して溶解させて、非水電解質として非水電解液を調製した。
 <電池の組み立て>
 厚さが20μmのポリエステルの不織布からなるセパレータを用意した。このセパレータの水銀圧入法による細孔径分布測定における細孔体積を前述の方法で求めたところ、1.5cm3/gであり、ガーレー法による透気度(JIS-P-8117)は8sec/100mlであった。
 このセパレータに、先に調製した非水電解質を含浸させた。次いで、このセパレータで先に作製した正極を覆い、次に、先に作製した負極をセパレータを介して正極と対向するように重ねて積層体を得た。この積層体を、渦巻状に捲回し、渦巻状の電極群を作製した。この電極群をプレスに供して、扁平状に成形した。
 この扁平状電極群を、厚さ0.3mmのアルミニウムからなる有底矩形筒形状の缶に挿入して、蓋体で封止した。このようにして、厚さ5mm、幅30mm、高さ25mm、重量100gの扁平型非水電解質二次電池を作製した。
 (実施例A2~A12、B1~B9、比較例A1~4、B1~B9)
 セパレータの材質、厚さ、水銀圧入法による細孔径分布測定における細孔体積、ガーレー法による透気度、電解液組成、電池中の水分吸着剤の有無、正極の構成を表1~表4に示すものを用いた以外が実施例A1と同様の二次電池を作製した。
 (実施例B10~B17、比較例B10~B17)
 セパレータの材質、厚さ、水銀圧入法による細孔径分布測定における細孔体積、ガーレー法による透気度、電解液組成、電池中の水分吸着剤の有無、正極の構成及び負極の構成を表5~表8に示すものを用いた以外が実施例A1と同様の二次電池を作製した。
 なお、実施例A-7~A-9の水分吸着剤は、以下の方法によりセル内に配置した。水分吸着剤であるモレキュラーシーブ、シリカゲル、アルミナの粉末を200℃で真空乾燥を行い水分を除去した。この水分を除去した水分吸着剤を露点管理(露点マイナス60℃未満に管理)されたグローブボックス中で電解液に対して2wt%添加し、この水分吸着剤混合電解液をセルに注液することで水分吸着剤をセル内に配置した。
 得られた二次電池を放電深度(DOD:Depth of Discharge)50%の状態とし25℃環境で抵抗測定を行った後に70℃環境で30日間放置し、次いで、25℃環境で抵抗測定を行いその抵抗上昇率を測定した。測定結果を表2及び表4に示す。
 実施例A-1及び比較例A-1の細孔径分布を図4に示す。図4において、横軸は細孔径(μm)、縦軸は細孔体積(cm3g)を示す。
 図4から明らかなように、実施例A-1の電池で用いるセパレータは、細孔径1μm以下の細孔の体積が、比較例A-1に比して多いものであった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 実施例A-1~A-3及び比較例A-1、A-2の比較により、透気度を2sec/100ml以上15sec/100ml以下の範囲内の一定値とした場合、細孔体積が0.9cm3/g以上3cm3/g以下の実施例A-1~A-3によると、細孔体積が0.9cm3/g未満の比較例A-1に比して高温貯蔵後の抵抗上昇率が小さくなることがわかった。また、細孔体積が3cm3/gを超える比較例A-2は、高温貯蔵により内部短絡を生じた。
 また、実施例A-1,A-4~A-5及び比較例A-3、A-4の比較により、細孔体積を0.9cm3/g以上3cm3/g以下の範囲内の一定値とした場合、透気度が2sec/100ml以上15sec/100ml以下の実施例A-1,A-4~A-5によると、透気度が15sec/100mlを超える比較例A-4に比して高温貯蔵後の抵抗上昇率が小さくなることがわかった。また、透気度が2sec/100ml未満の比較例A-3は、高温貯蔵により内部短絡を生じた。
 実施例A-6~A-12及びB-1~B-9の結果から、非水電解質にトリメチルフォスフェートを含有させるか、水分吸着剤を用いると、高温貯蔵後の抵抗上昇率をさらに小さくすることができることがわかった。また、ポリエステル以外の材料を含むセパレータを用いたり、正極活物質の組成を異ならせた場合にも、高温貯蔵後の抵抗上昇率を抑えられることがわかった。
 比較例B-1~B-9の結果から、細孔体積が0.9cm3/g以上3cm3/g以下の範囲から外れている場合、透気度が2sec/100ml以上15sec/100ml以下の範囲内であっても、高温貯蔵後の抵抗上昇率が大きくなることがわかった。
 正極活物質の組成を異ならせた場合に、高温貯蔵後の抵抗上昇率を抑えられることは、実施例B-10~B-14の結果からもわかる。また、B-15~B-17の結果から、負極活物質を異ならせた場合に、高温貯蔵後の抵抗上昇率を抑えられることが確認された。
 実施例B-10~B-17と比較例B-10~B-17とを比較することにより、細孔体積が0.9cm3/g以上3cm3/g以下の範囲から外れている比較例B-10~B-17は、透気度が2sec/100ml以上15sec/100ml以下の範囲内であっても、高温貯蔵後の抵抗上昇率が実施例B-10~B-17よりも大きくなることが確認された。
 以上説明した少なくとも一つの実施形態及び実施例の非水電解質電池によれば、LixNi1-a-bCoaMnbc2を含む正極と、細孔体積が0.9cm3/g以上3cm3/g以下の範囲内で、透気度が2sec/100ml以上15sec/100ml以下の範囲内で、かつポリエステルを含むセパレータとを用いるため、高温貯蔵後の抵抗上昇を抑えることができ、高温環境下においても長寿命を得ることができる。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
 1…外装缶、2…蓋、3…正極外部端子、4…負極外部端子、5…電極群、6…正極、
6a…正極集電タブ、6b…正極材料層、7…負極、7a…負極集電タブ、7b…負極材
料層、8…セパレータ、9…挟持部材、10…正極リード、11…負極リード、12…絶
縁ガスケット、21…単電池、22…組電池、29…保護回路、30…サーミスタ。

Claims (8)

  1.  LixNi1-a-bCoaMnbc2(0.9<x≦1.25、0<a≦0.4、0≦b≦0.45、0≦c≦0.1、MはMg,Al,Si,Ti,Zn,Zr,Ca及びSnよりなる群から選ばれる少なくとも1種の元素をあらわす)を含む正極活物質を含有する正極と、
     負極と、
     前記正極と前記負極の間に配置され、水銀圧入法による細孔径分布における細孔体積が0.9cm3/g以上3cm3/g以下の範囲内で、ガーレー法による透気度(JIS-P-8117)が2sec/100ml以上15sec/100ml以下の範囲内で、かつポリエステルを含むセパレータと、
     非水電解質と
    を含む、非水電解質電池。
  2.  前記セパレータは、セルロース、ポリオレフィン、ポリアミド、ポリイミド及びポリビニルアルコールよりなる群から選ばれる少なくとも1種類のポリマーを含む、請求項1に記載の非水電解質電池。
  3.  前記セパレータの厚さが3μm以上25μm以下の範囲内である、請求項2に記載の非水電解質電池。
  4.  モレキュラーシーブ、シリカゲル及びアルミナよりなる群から選ばれる少なくとも一種類の水分吸着剤をさらに含む、請求項2に記載の非水電解質電池。
  5.  前記非水電解質は水分捕捉剤を含む、請求項2に記載の非水電解質電池。
  6.  前記負極は、スピネル型のチタン含有酸化物、アナターゼ型のチタン含有酸化物、ルチル型のチタン含有酸化物及びブロンズ型のチタン含有酸化物よりなる群から選ばれる少なくとも一種類の負極活物質を含む、請求項2に記載の非水電解質電池。
  7.  前記負極は、スピネル型のチタン含有酸化物、アナターゼ型のチタン含有酸化物、ルチル型のチタン含有酸化物、ブロンズ型のチタン含有酸化物、斜方晶型チタン含有酸化物及び単斜晶型ニオブチタン含有酸化物よりなる群から選ばれる少なくとも一種類の負極活物質を含む、請求項2に記載の非水電解質電池。
  8.  請求項1~7のいずれか1項に記載の非水電解質電池を含む電池パック。
PCT/JP2015/080725 2014-10-31 2015-10-30 非水電解質電池及び電池パック WO2016068286A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
AU2015337606A AU2015337606B2 (en) 2014-10-31 2015-10-30 Nonaqueous electrolyte battery and battery pack
EP18210404.2A EP3474365B1 (en) 2014-10-31 2015-10-30 Electrode group comprising a positive electrode
CN201580041257.4A CN106663832B (zh) 2014-10-31 2015-10-30 非水电解质电池及电池包
EP15855003.8A EP3214689B1 (en) 2014-10-31 2015-10-30 Nonaqueous electrolyte battery and battery pack
JP2016556654A JP6226407B2 (ja) 2014-10-31 2015-10-30 非水電解質電池及び電池パック
US15/453,623 US10541398B2 (en) 2014-10-31 2017-03-08 Nonaqueous electrolyte battery, battery pack and positive electrode
US16/708,559 US11362398B2 (en) 2014-10-31 2019-12-10 Nonaqueous electrolyte battery, battery pack and positive electrode

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-223068 2014-10-31
JP2014223068 2014-10-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/453,623 Continuation US10541398B2 (en) 2014-10-31 2017-03-08 Nonaqueous electrolyte battery, battery pack and positive electrode

Publications (1)

Publication Number Publication Date
WO2016068286A1 true WO2016068286A1 (ja) 2016-05-06

Family

ID=55857619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/080725 WO2016068286A1 (ja) 2014-10-31 2015-10-30 非水電解質電池及び電池パック

Country Status (6)

Country Link
US (2) US10541398B2 (ja)
EP (2) EP3214689B1 (ja)
JP (2) JP6226407B2 (ja)
CN (1) CN106663832B (ja)
AU (1) AU2015337606B2 (ja)
WO (1) WO2016068286A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109196694A (zh) * 2016-07-29 2019-01-11 株式会社东芝 非水电解质电池及电池包
CN109417193A (zh) * 2016-07-29 2019-03-01 株式会社东芝 非水电解质电池及电池包
CN110024197A (zh) * 2016-12-26 2019-07-16 株式会社东芝 非水电解质电池及电池包
JP2020528643A (ja) * 2017-09-19 2020-09-24 エルジー・ケム・リミテッド リチウム二次電池用正極材、この製造方法、これを含むリチウム二次電池用正極、及びリチウム二次電池
CN111801832A (zh) * 2018-04-04 2020-10-20 株式会社东芝 非水电解质电池及电池包

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107431233B (zh) * 2015-03-24 2020-09-08 日本电气株式会社 二次电池、二次电池的制造方法、电动车辆和蓄电系统
CN107959053B (zh) * 2017-11-28 2020-08-04 南开大学 改善高镍正极材料循环稳定性的功能性电解液及制备方法
JP7163600B2 (ja) 2018-03-16 2022-11-01 ヤマハ株式会社 楽器用ピックアップ及び楽器
CN108896618B (zh) * 2018-06-28 2023-06-09 桑顿新能源科技(长沙)有限公司 一种检测锂离子电池正极极片残碱变化的方法及应用
CN109265157B (zh) * 2018-10-29 2022-01-21 惠州嘉科实业有限公司 具有v型引脚的低阻ntc热敏电阻及其制备方法
US11121408B2 (en) 2019-03-14 2021-09-14 Medtronic, Inc. Lithium-ion battery
US20230095171A1 (en) * 2021-09-01 2023-03-30 Enevate Corporation Organic acid additives for silicon-based li ion batteries
CN116259927B (zh) * 2023-05-15 2023-08-04 蔚来电池科技(安徽)有限公司 二次电池和装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58155651A (ja) * 1982-02-02 1983-09-16 エムハート インダストリーズ インコーポレーテッド 電池用セパレ−タ
JP2001126766A (ja) * 1999-10-22 2001-05-11 Sony Corp 非水電解液二次電池
JP2002319434A (ja) * 2001-04-20 2002-10-31 Sharp Corp リチウムポリマー二次電池
JP2008004536A (ja) * 2006-05-22 2008-01-10 Matsushita Electric Ind Co Ltd セパレータおよび非水電解質二次電池
JP2010065088A (ja) * 2008-09-09 2010-03-25 Toray Ind Inc 多孔性フィルムおよび蓄電デバイス
JP2011233354A (ja) * 2010-04-27 2011-11-17 Nissan Motor Co Ltd セパレータ
JP2014063753A (ja) * 2013-12-03 2014-04-10 Toshiba Corp 非水電解質電池
JP2014225372A (ja) * 2013-05-16 2014-12-04 三菱製紙株式会社 電池用セパレータ

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4529677A (en) 1982-02-02 1985-07-16 Texon Incorporated Battery separator material
US4618401A (en) 1982-02-02 1986-10-21 Texon, Inc. Battery separator material
JPH11322988A (ja) * 1998-05-18 1999-11-26 Nitto Denko Corp 多孔質フィルム並びにその製造と用途
JP2001283821A (ja) 2000-04-03 2001-10-12 Mitsubishi Paper Mills Ltd 非水電解液電池用セパレーターおよびそれを用いてなる非水電解液電池
WO2001093350A1 (fr) * 2000-05-29 2001-12-06 Mitsubishi Paper Mills Limited Separateur pour dispositif electrochimique, procede de production de ce dernier et dispositif electrochimique
JP2002190291A (ja) 2000-12-22 2002-07-05 Sumitomo Chem Co Ltd セパレータおよびリチウムイオン二次電池
JP2002280068A (ja) * 2001-03-21 2002-09-27 Matsushita Electric Ind Co Ltd 非水電解質二次電池
JP3765396B2 (ja) 2001-08-20 2006-04-12 ソニー株式会社 電池
JP2006004536A (ja) 2004-06-18 2006-01-05 Seiko Epson Corp 強誘電体メモリ装置及び電子機器
JP2006019191A (ja) 2004-07-02 2006-01-19 Japan Vilene Co Ltd リチウムイオン二次電池用セパレータ及びリチウムイオン二次電池
FR2873497B1 (fr) 2004-07-23 2014-03-28 Accumulateurs Fixes Accumulateur electrochimique au lithium fonctionnant a haute temperature
CN1744348A (zh) * 2004-08-30 2006-03-08 北京东皋膜技术有限公司 用于锂离子二次电池的复合隔膜和具有该隔膜的锂离子二次电池
KR101716907B1 (ko) * 2008-08-19 2017-03-15 데이진 가부시키가이샤 비수계 2 차 전지용 세퍼레이터
JP2011016973A (ja) * 2009-07-07 2011-01-27 Kee:Kk 耐熱性複合ポリオレフィン微多孔膜及びその製造方法。
EP2544290B1 (en) * 2010-03-04 2018-04-25 Kabushiki Kaisha Toshiba Non-aqueous electrolyte cell, cell pack, and automobile
JP5575537B2 (ja) * 2010-05-10 2014-08-20 日立マクセル株式会社 非水電解質電池
JP5364801B2 (ja) 2010-12-20 2013-12-11 日立マクセル株式会社 非水二次電池
CN103314471B (zh) * 2011-02-18 2015-11-25 株式会社东芝 正极、非水电解质电池及电池包
KR101858968B1 (ko) * 2012-03-30 2018-05-17 도레이 카부시키가이샤 폴리올레핀 다층 미다공막
JP2014053259A (ja) * 2012-09-10 2014-03-20 Mitsubishi Paper Mills Ltd リチウム二次電池用セパレータ及びリチウム二次電池
JP2014192146A (ja) 2013-03-28 2014-10-06 Fujifilm Corp 非水二次電池および非水二次電池用電解液
JP6258082B2 (ja) 2014-03-10 2018-01-10 株式会社東芝 非水電解質電池及び電池パック

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58155651A (ja) * 1982-02-02 1983-09-16 エムハート インダストリーズ インコーポレーテッド 電池用セパレ−タ
JP2001126766A (ja) * 1999-10-22 2001-05-11 Sony Corp 非水電解液二次電池
JP2002319434A (ja) * 2001-04-20 2002-10-31 Sharp Corp リチウムポリマー二次電池
JP2008004536A (ja) * 2006-05-22 2008-01-10 Matsushita Electric Ind Co Ltd セパレータおよび非水電解質二次電池
JP2010065088A (ja) * 2008-09-09 2010-03-25 Toray Ind Inc 多孔性フィルムおよび蓄電デバイス
JP2011233354A (ja) * 2010-04-27 2011-11-17 Nissan Motor Co Ltd セパレータ
JP2014225372A (ja) * 2013-05-16 2014-12-04 三菱製紙株式会社 電池用セパレータ
JP2014063753A (ja) * 2013-12-03 2014-04-10 Toshiba Corp 非水電解質電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3214689A4 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109417193B (zh) * 2016-07-29 2021-10-15 株式会社东芝 非水电解质电池及电池包
CN109417193A (zh) * 2016-07-29 2019-03-01 株式会社东芝 非水电解质电池及电池包
EP3493302A4 (en) * 2016-07-29 2020-04-15 Kabushiki Kaisha Toshiba BATTERY WITH WATER-FREE ELECTROLYTE AND BATTERY PACK
CN109196694B (zh) * 2016-07-29 2021-05-04 株式会社东芝 非水电解质电池及电池包
CN109196694A (zh) * 2016-07-29 2019-01-11 株式会社东芝 非水电解质电池及电池包
US11239462B2 (en) 2016-07-29 2022-02-01 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery and battery pack
CN110024197A (zh) * 2016-12-26 2019-07-16 株式会社东芝 非水电解质电池及电池包
EP3561935A4 (en) * 2016-12-26 2020-07-22 Kabushiki Kaisha Toshiba CELL WITH WATER-FREE ELECTROLYTE AND CELL PACKAGE
US10964926B2 (en) 2016-12-26 2021-03-30 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery and battery pack
CN110024197B (zh) * 2016-12-26 2022-05-31 株式会社东芝 非水电解质电池及电池包
JP2020528643A (ja) * 2017-09-19 2020-09-24 エルジー・ケム・リミテッド リチウム二次電池用正極材、この製造方法、これを含むリチウム二次電池用正極、及びリチウム二次電池
US11637275B2 (en) 2017-09-19 2023-04-25 Lg Energy Solution, Ltd. Positive electrode material for lithium secondary battery, method of preparing the same, and positive electrode for lithium secondary battery and lithium secondary battery which include the positive electrode material
CN111801832A (zh) * 2018-04-04 2020-10-20 株式会社东芝 非水电解质电池及电池包

Also Published As

Publication number Publication date
EP3474365B1 (en) 2020-07-01
US20170179486A1 (en) 2017-06-22
JPWO2016068286A1 (ja) 2017-04-27
CN106663832B (zh) 2019-06-21
CN106663832A (zh) 2017-05-10
EP3214689A4 (en) 2018-05-02
AU2015337606A1 (en) 2017-03-30
JP2018049828A (ja) 2018-03-29
US20200112011A1 (en) 2020-04-09
AU2015337606B2 (en) 2019-01-31
US10541398B2 (en) 2020-01-21
JP6606144B2 (ja) 2019-11-13
EP3474365A1 (en) 2019-04-24
JP6226407B2 (ja) 2017-11-08
US11362398B2 (en) 2022-06-14
EP3214689B1 (en) 2019-01-23
EP3214689A1 (en) 2017-09-06

Similar Documents

Publication Publication Date Title
JP6606144B2 (ja) 非水電解質電池用電極群
US9406973B2 (en) Nonaqueous electrolyte battery and battery pack
JP6441125B2 (ja) 非水電解質電池及び電池パック
JP6250998B2 (ja) 非水電解質電池及び電池パック
JP6305112B2 (ja) 非水電解質電池及び電池パック
US10461314B2 (en) Nonaqueous electrolyte battery and battery pack
WO2015137138A1 (ja) 非水電解質電池及び電池パック
WO2016143123A1 (ja) 非水電解質電池及び電池パック
US11239457B2 (en) Nonaqueous electrolyte battery and battery pack comprising a spinel type lithium-manganese composite oxide
JP2014207238A (ja) 非水電解質電池及び電池パック
WO2019193690A1 (ja) 非水電解質電池及び電池パック
JP6054540B2 (ja) 正極活物質、非水電解質電池及び電池パック
JP5558498B2 (ja) 非水電解質電池及び電池パック

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15855003

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016556654

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015855003

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015855003

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015337606

Country of ref document: AU

Date of ref document: 20151030

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE