WO2016068240A1 - 熱伝導材 - Google Patents
熱伝導材 Download PDFInfo
- Publication number
- WO2016068240A1 WO2016068240A1 PCT/JP2015/080564 JP2015080564W WO2016068240A1 WO 2016068240 A1 WO2016068240 A1 WO 2016068240A1 JP 2015080564 W JP2015080564 W JP 2015080564W WO 2016068240 A1 WO2016068240 A1 WO 2016068240A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat conductive
- conductive material
- antioxidant
- heat
- average particle
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L33/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
- C08L33/04—Homopolymers or copolymers of esters
- C08L33/06—Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
- C08L33/08—Homopolymers or copolymers of acrylic acid esters
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/13—Phenols; Phenolates
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K5/00—Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
- C09K5/08—Materials not undergoing a change of physical state when used
- C09K5/14—Solid materials, e.g. powdery or granular
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
- H01L23/373—Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
- H01L23/373—Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
- H01L23/3737—Organic materials with or without a thermoconductive filler
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/2217—Oxides; Hydroxides of metals of magnesium
- C08K2003/2224—Magnesium hydroxide
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/2227—Oxides; Hydroxides of metals of aluminium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Definitions
- the heat conductive material of one aspect of the present disclosure is a heat conductive material, including a polymer containing a heat conductive filler and an antioxidant, and the polymer is a polymer of a monomer containing an acrylate ester, It contains a hindered phenol antioxidant as an antioxidant, has a thermal conductivity of 3.2 W / m ⁇ K or more, and an initial Asker C hardness of 22 or less at room temperature.
- the thermal conductive material according to one aspect of the present disclosure includes a thermal conductivity filler and a hindered phenol-based antioxidant contained in a polymer obtained by polymerizing a monomer containing an acrylate ester, and has a thermal conductivity of 3.2 W. / M ⁇ K or more, and the initial Asker C hardness at room temperature is 22 or less. For this reason, even if it uses in a high temperature environment, the softness
- the hindered phenol-based antioxidant is a semi-hindered phenol-based antioxidant
- the antioxidant is contained in an amount of 0.04 vol% or more of the entire heat conductive material.
- the applicant of the present application has found that when the antioxidant is contained in an amount of 0.04 vol% or more of the entire heat conducting material, the hardness of the heat conducting material at room temperature is drastically reduced. For this reason, when the said antioxidant contains 0.04 vol% or more of the whole heat conductive material, the hardness of the said heat conductive material can be reduced further more favorably.
- the heat conductive material contains aluminum hydroxide and magnesium hydroxide as the heat conductive filler
- the flame retardancy is improved.
- the titanate treatment or the higher fatty acid treatment is performed on these heat conductive fillers, the effect of increasing the hardness of the heat conductive material is suppressed by the heat conductive filler.
- aluminum hydroxide having an average particle diameter of 1 to 10 ⁇ m treated with titanate and magnesium hydroxide having an average particle diameter of 0.5 to 1.5 ⁇ m treated with higher fatty acid is contained at a weight ratio of about 3: 1. It has been found that the highest thermal conductivity and low hardness can be achieved. Note that “about 3: 1” here may be a range that becomes 3: 1 when approximated by an integer ratio of one digit, for example.
- the thermal conductive filler further contains silicon carbide having an average particle size of 50 to 100 ⁇ m and spherical aluminum oxide having an average particle size of 5 to 15 ⁇ m, both of which are contained in the hydroxylated product.
- silicon carbide having an average particle size of 50 to 100 ⁇ m
- spherical aluminum oxide having an average particle size of 5 to 15 ⁇ m, both of which are contained in the hydroxylated product.
- the change in Asker C hardness is within +15 when the heat conducting material is held at 130 ° C. for 500 hours. In that case, the heat conductive material exhibits better heat resistance.
- the applicant of the present application contains silicon carbide 16, aluminum hydroxide 17, spherical aluminum oxide 18, and magnesium hydroxide 19 in polymer 11 obtained by polymerizing a monomer containing an acrylate ester.
- the heat conductive material 10 made was made and formed into a sheet shape. Further, a PET film 20 having a thickness of 5 ⁇ m was attached to one surface of the heat conductive material 10.
- the trade name HD-A218 (manufactured by Nippon Shokubai Co., Ltd.) was used as the acrylic polymer.
- trade name 1,6HX-A (manufactured by Kyoeisha Chemical Co., Ltd.) was used.
- PERKADOX registered trademark 16 was used.
- antioxidant the full hindered phenolic antioxidant shown to Formula (1) or the semi hindered phenolic antioxidant shown to Formula (2) was used.
- silicon carbide 16 a product name CGF180 (manufactured by Showa Denko) having an average particle size of 80 ⁇ m and a specific gravity of 3.5 was used.
- the aluminum hydroxide 17 one having an average particle diameter of 7 ⁇ m treated with titanate and a specific gravity of 2.42 or an untreated titanate (untreated) having an average particle diameter of 10 ⁇ m and having a specific gravity of 2.42 was used.
- the spherical aluminum oxide 18 one having an average particle diameter of 10 ⁇ m was used.
- Magnesium hydroxide 19 having an average particle size of 1.1 ⁇ m treated with a higher fatty acid and a specific gravity of 2.38 was used.
- an average particle diameter can be measured by methods, such as a laser diffraction method, a centrifugal sedimentation method, and image analysis
- the display of the commercial item was referred in this embodiment.
- the particle diameter measured with the laser diffraction method about aluminum hydroxide, aluminum oxide, and magnesium hydroxide and the particle diameter measured with the standard sieve (JISZ8801) about silicon carbide is made into the average particle diameter.
- Table 2 shows the characteristics of Samples 1 to 15 shown in Table 1.
- the heat resistance was evaluated as follows. A sample having a change in Asker C hardness of +15 or less when held at 130 ° C. for 500 hours was evaluated as ⁇ . When held at 130 ° C. for 500 hours, the change in Asker C hardness exceeds +15, but when held at 120 ° C. for 500 hours, the change in Asker C hardness is within +15. A sample having a change in Asker C hardness exceeding +15 when held at 120 ° C. for 500 hours was evaluated as x. In addition, the material curability was evaluated as ⁇ for a sample that was heat-cured satisfactorily, ⁇ for a sample that had some difficulty in heat-curing, and x for a sample that was not heat-cured.
- the samples 1 to 3 containing the semi-hindered phenolic antioxidant in an amount of 0.02 to 0.04 vol% were evaluated as ⁇ .
- the material curability was ⁇ . For this reason, it is more desirable that the content of the semi-hindered phenolic antioxidant is more than 0.03 vol% and less than 0.07 vol%.
- Samples 1 to 10 contain 22.1% by volume of silicon carbide 16 as a heat conductive filler. Samples 1 to 10 contain 16.0 vol% titanate-treated aluminum hydroxide 17. Samples 1 to 10 contain 19.5 or 19.4 vol% of spherical aluminum oxide (that is, spherical aluminum oxide 18). Samples 1 to 10 contain 5.4 vol% of magnesium hydroxide 19 treated with a higher fatty acid. These are considered to contribute to the thermal conductivity, hardness, and flame retardancy. For example, with respect to Sample 3 with a comprehensive evaluation of ⁇ , Sample 13 in which the aluminum hydroxide 17 was changed to an untreated product with the same composition, the Asker C hardness at room temperature increased from 20 to 25.
- the heat resistance becomes ⁇ or more, that is, it is used in a high temperature environment. It was also found that the flexibility of the heat conductive material 10 is maintained. It was also found that the overall evaluation can be made ⁇ or more by containing 0.04 to 0.29 vol% of a fully hindered phenol antioxidant. Further, when 0.04 to 0.29 vol% of the fully hindered phenol antioxidant is contained, the heat resistance becomes ⁇ or more, that is, the flexibility of the heat conducting material 10 even when used in a high temperature environment. It was found that it was maintained.
- Samples 1-9 and 13-15 the flexibility of the heat conducting material 10 in a high temperature environment can be maintained without containing a large amount of plasticizer as in Patent Document 1.
- the plasticizer is contained in the commercially available acrylic polymer to some extent from the beginning, and is also contained in samples 1 to 15. However, this amount is extremely small compared to the content in Patent Document 1. For this reason, Samples 1 to 9 and 13 to 15 can improve the thermal conductivity even when a relatively small amount of the heat conductive filler is contained. Compared with the sample of Patent Document 1, the samples have high thermal conductivity and low hardness. And both.
- the relationship between the content of the semi-hindered phenolic antioxidant (ie, the weighed value) and the Asker C hardness at room temperature is shown in FIG. . From this graph, it can be seen that when the antioxidant is contained in an amount of 0.04 vol% or more (that is, 0.024 g or more) of the entire heat conducting material, the Asker C hardness of the heat conducting material 10 at room temperature is drastically lowered. For this reason, when the said antioxidant is contained 0.04 vol% or more of the whole heat conductive material, the hardness of the said heat conductive material 10 can be reduced further more favorably.
- the heat conductive material of each sample contains aluminum hydroxide and magnesium hydroxide as heat conductive fillers. For this reason, as for the heat conductive material of each sample, flame retardancy equivalent to V-2 was obtained for all samples except Samples 11 and 12, which could not be measured.
- the heat conductive materials of Samples 1 to 9 are composed of aluminum hydroxide 17 having an average particle diameter of 7 ⁇ m treated with titanate and magnesium hydroxide 19 having an average particle diameter of 1.1 ⁇ m treated with higher fatty acid at a weight ratio of about 3: 1. Contains. For this reason, the heat conductive materials of Samples 1 to 9 have higher thermal conductivity and lower hardness.
- the heat conductive materials of Samples 1 to 9 contain silicon carbide 16 having an average particle diameter of 80 ⁇ m and spherical aluminum oxide 18 having an average particle diameter of 10 ⁇ m as the heat conductive filler.
- the contents of silicon carbide 16 and spherical aluminum oxide 18 are both greater in weight than the sum of the contents of aluminum hydroxide 17 and magnesium hydroxide 19. For this reason, the thermal conductive materials of Samples 1 to 9 have higher thermal conductivity.
- the thermal conductive material 10 of Samples 3, 5, 6, and 7 has an Asker C hardness of 20 or less and a material curability of ⁇ . Therefore, the thermal conductive material 10 of the samples 3, 5, 6, and 7 has good flexibility and good adhesion to a heat source such as an electronic component or the PET film 20. Therefore, heat generated by a heat source such as an electronic component can be released to a heat sink such as a heat sink.
- a heat source such as an electronic component
- the thermal conductive material 10 is an adhesive tape that inhibits heat conductivity. It can be easily mounted on an electronic component or the like without using any other means, and the thermal conductivity can be further improved.
- this indication is not limited to the said embodiment at all, A various form can be implemented in the range which does not deviate from the summary of this indication.
- the same experimental results can be obtained even if the average particle size of the silicon carbide 16 is changed in the range of 50 to 100 ⁇ m. It is considered that the same experimental results can be obtained even when the average particle size of the aluminum hydroxide 17 subjected to titanate treatment is changed within the range of 1 to 10 ⁇ m. It is considered that the same experimental results can be obtained even if the average particle diameter of the untreated aluminum hydroxide is changed in the range of 5 to 15 ⁇ m.
- the same experimental results can be obtained even when the average particle diameter of the spherical aluminum oxide 18 is changed within the range of 5 to 15 ⁇ m. It is considered that the same experimental results can be obtained even when the average particle size of the magnesium hydroxide 19 treated with the higher fatty acid is changed in the range of 0.5 to 1.5 ⁇ m. It is considered that the same experimental results can be obtained even if the blending amount of each heat conductive filler is changed by about ⁇ 10%. Further, in the heat conductive material of the present disclosure, other than the above may be used as the heat conductive filler.
- polymers can be used as long as they are polymers obtained by polymerizing a monomer containing an acrylate ester.
- the polymer 11 ethyl (meth) acrylate, n-propyl (meth) acrylate, i-propyl (meth) acrylate, n-butyl (meth) acrylate, i-butyl (meth) acrylate, 2-ethylhexyl (meta ) Acrylate, n-hexyl (meth) acrylate, n-amyl (meth) acrylate, i-amyl (meth) acrylate, octyl (meth) acrylate, i-octyl (meth) acrylate, i-myristyl (meth) acrylate, lauryl Acrylics such as (meth) acrylate, nonyl (meth) acrylate, i-nonyl (me
- 1,6-hexanediol diacrylate, ethylene glycol diacrylate, or the like can be used as the bifunctional acrylate-based polyfunctional monomer.
- Trimethylolpropane triacrylate, pentaerythritol hexaacrylate, dipentaerythritol hexaacrylate, or the like can be used as an acrylate-based polyfunctional monomer having three or more functional groups.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Polymers & Plastics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Medicinal Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Thermal Sciences (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Combustion & Propulsion (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Cooling Or The Like Of Electrical Apparatus (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
Description
16…炭化ケイ素 17…水酸化アルミニウム
18…球状酸化アルミニウム 19…水酸化マグネシウム
20…PETフィルム
次に、本開示の実施の形態を、図面と共に説明する。図1に模式的に示すように、本願出願人は、アクリル酸エステルを含むモノマーを重合してなるポリマー11に、炭化ケイ素16,水酸化アルミニウム17,球状酸化アルミニウム18,水酸化マグネシウム19を含有させた熱伝導材10を作成し、シート状に成形した。また、その熱伝導材10の片面には、厚さ5μmのPETフィルム20を貼着した。
表1,表2に示すように、試料1~12では熱伝導フィラーの配合(すなわち、炭化ケイ素~水酸化マグネシウムの秤量値)を固定して実験を行った。そのうち、セミヒンダードフェノール系酸化防止剤を熱伝導材全体の0.02~0.07vol%添加した試料1~4では、△以上の耐熱性が得られ、かつ、△以上の材料硬化性が得られた。ただし、セミヒンダードフェノール系酸化防止剤を0.04vol%又は0.07vol%含有させた試料3,4では耐熱性が○であった。これに対し、セミヒンダードフェノール系酸化防止剤を0.02vol%又は0.03vol%含有させた試料1,2では耐熱性が△であった。また、材料硬化性に関しては、セミヒンダードフェノール系酸化防止剤を0.02~0.04vol%含有させた試料1~3では○であった。これに対し、0.07vol%含有させた試料4では、材料硬化性が△であった。このため、セミヒンダードフェノール系酸化防止剤の含有量は、0.03vol%より多く、かつ、0.07vol%未満とするのがより望ましい。
なお、本開示は前記実施形態に何ら限定されるものではなく、本開示の要旨を逸脱しない範囲で種々の形態が実施されることができる。例えば、炭化ケイ素16の平均粒径は50~100μmの範囲で変更しても同様の実験結果が得られるものと考えられる。チタネート処理された水酸化アルミニウム17の平均粒径は1~10μmの範囲で変更しても同様の実験結果が得られるものと考えられる。未処理の水酸化アルミニウムの平均粒径は5~15μmの範囲で変更しても同様の実験結果が得られるものと考えられる。球状酸化アルミニウム18の平均粒径は5~15μmの範囲の範囲で変更しても同様の実験結果が得られるものと考えられる。高級脂肪酸処理された水酸化マグネシウム19の平均粒径は0.5~1.5μmの範囲で変化させても同様の実験結果が得られるものと考えられる。各熱伝導フィラーの配合量は±10%程度変更しても同様の実験結果が得られるものと考えられる。更に本開示の熱伝導材において、熱伝導フィラーとしては前記以外のものを利用してもよい。
Claims (6)
- 熱伝導材であって、
熱伝導フィラーと酸化防止剤とを含有したポリマーを含み、
前記ポリマーは、アクリル酸エステルを含むモノマーの重合体であり、
前記酸化防止剤として、ヒンダードフェノール系の酸化防止剤を含有し、
熱伝導率が3.2W/m・K以上で、
常温における初期のアスカーC硬度が22以下であることを特徴とする熱伝導材。 - 前記ヒンダードフェノール系の酸化防止剤が、セミヒンダードフェノール系の酸化防止剤であって、
当該酸化防止剤を、熱伝導材全体の0.02~0.07vol%含有したことを特徴とする請求項1に記載の熱伝導材。 - 前記ヒンダードフェノール系の酸化防止剤が、フルヒンダードフェノール系の酸化防止剤であって、
当該酸化防止剤を、熱伝導材全体の0.04~0.29vol%含有したことを特徴とする請求項1に記載の熱伝導材。 - 前記熱伝導フィラーとして、少なくとも、チタネート処理された平均粒径1~10μmの水酸化アルミニウムと高級脂肪酸処理された平均粒径0.5~1.5μmの水酸化マグネシウムとを含有し、両者の含有量の比が重量比で約3:1であることを特徴とする請求項1~3のいずれか1項に記載の熱伝導材。
- 前記熱伝導フィラーとして、平均粒径50~100μmの炭化ケイ素と平均粒径5~15μmの球状の酸化アルミニウムとを含有し、両者の含有量は、いずれも、前記水酸化アルミニウム及び水酸化マグネシウムの含有量の合計よりも重量において多いことを特徴とする請求項4に記載の熱伝導材。
- 130℃で500時間保持した場合に、アスカーC硬度の変化が+15以内であることを特徴とする請求項1~5のいずれか1項に記載の熱伝導材。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/523,006 US9976025B2 (en) | 2014-10-31 | 2015-10-29 | Thermally conductive material |
EP15854583.0A EP3214150B1 (en) | 2014-10-31 | 2015-10-29 | Thermally-conductive material |
JP2016556626A JP6586606B2 (ja) | 2014-10-31 | 2015-10-29 | 熱伝導材 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-222984 | 2014-10-31 | ||
JP2014222984 | 2014-10-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016068240A1 true WO2016068240A1 (ja) | 2016-05-06 |
Family
ID=55857575
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/080564 WO2016068240A1 (ja) | 2014-10-31 | 2015-10-29 | 熱伝導材 |
Country Status (4)
Country | Link |
---|---|
US (1) | US9976025B2 (ja) |
EP (1) | EP3214150B1 (ja) |
JP (1) | JP6586606B2 (ja) |
WO (1) | WO2016068240A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021065899A1 (ja) * | 2019-09-30 | 2021-04-08 | 積水化学工業株式会社 | 熱伝導性樹脂シート |
JP2021054968A (ja) * | 2019-09-30 | 2021-04-08 | 積水化学工業株式会社 | 熱伝導性樹脂シート |
WO2022075411A1 (ja) * | 2020-10-08 | 2022-04-14 | 北川工業株式会社 | 熱伝導シート |
WO2023074449A1 (ja) * | 2021-10-28 | 2023-05-04 | 北川工業株式会社 | 熱伝導シート |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114621511B (zh) * | 2022-04-18 | 2024-03-12 | 惠州量子导通新材料有限公司 | 一种非硅导热脂组合物及其制备方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009179743A (ja) * | 2008-01-31 | 2009-08-13 | Kaneka Corp | 放熱シート用組成物及びそれを硬化させてなる放熱シート |
WO2009133930A1 (ja) * | 2008-04-30 | 2009-11-05 | 旭化成イーマテリアルズ株式会社 | 樹脂組成物及びそれを用いたシート |
JP2011219511A (ja) * | 2010-04-02 | 2011-11-04 | Somar Corp | 熱伝導性粘着シート |
WO2013100174A1 (ja) * | 2011-12-27 | 2013-07-04 | パナソニック株式会社 | 熱伝導性樹脂組成物 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20060117961A (ko) * | 2003-12-02 | 2006-11-17 | 소니 가부시끼 가이샤 | 수지 조성물 및 이 수지 조성물을 이용한 성형품 및 수지조성물의 제조 방법 |
JP2005226007A (ja) * | 2004-02-13 | 2005-08-25 | Three M Innovative Properties Co | 難燃性アクリル系熱伝導性シート |
JP4679383B2 (ja) * | 2006-02-09 | 2011-04-27 | 北川工業株式会社 | 熱伝導性制振材 |
JP5460094B2 (ja) * | 2009-03-26 | 2014-04-02 | 古河電気工業株式会社 | 熱伝導性ゴム組成物および熱伝導性成形体 |
JP5223149B2 (ja) * | 2010-06-28 | 2013-06-26 | 北川工業株式会社 | 熱伝導材 |
JP5892734B2 (ja) | 2011-05-02 | 2016-03-23 | スリーエム イノベイティブ プロパティズ カンパニー | 熱伝導性シート |
-
2015
- 2015-10-29 EP EP15854583.0A patent/EP3214150B1/en active Active
- 2015-10-29 WO PCT/JP2015/080564 patent/WO2016068240A1/ja active Application Filing
- 2015-10-29 US US15/523,006 patent/US9976025B2/en active Active
- 2015-10-29 JP JP2016556626A patent/JP6586606B2/ja active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009179743A (ja) * | 2008-01-31 | 2009-08-13 | Kaneka Corp | 放熱シート用組成物及びそれを硬化させてなる放熱シート |
WO2009133930A1 (ja) * | 2008-04-30 | 2009-11-05 | 旭化成イーマテリアルズ株式会社 | 樹脂組成物及びそれを用いたシート |
JP2011219511A (ja) * | 2010-04-02 | 2011-11-04 | Somar Corp | 熱伝導性粘着シート |
WO2013100174A1 (ja) * | 2011-12-27 | 2013-07-04 | パナソニック株式会社 | 熱伝導性樹脂組成物 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3214150A4 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021065899A1 (ja) * | 2019-09-30 | 2021-04-08 | 積水化学工業株式会社 | 熱伝導性樹脂シート |
JP2021054968A (ja) * | 2019-09-30 | 2021-04-08 | 積水化学工業株式会社 | 熱伝導性樹脂シート |
JP7235633B2 (ja) | 2019-09-30 | 2023-03-08 | 積水化学工業株式会社 | 熱伝導性樹脂シート |
WO2022075411A1 (ja) * | 2020-10-08 | 2022-04-14 | 北川工業株式会社 | 熱伝導シート |
JP2022062343A (ja) * | 2020-10-08 | 2022-04-20 | 北川工業株式会社 | 熱伝導シート |
JP7370074B2 (ja) | 2020-10-08 | 2023-10-27 | 北川工業株式会社 | 熱伝導シート |
WO2023074449A1 (ja) * | 2021-10-28 | 2023-05-04 | 北川工業株式会社 | 熱伝導シート |
Also Published As
Publication number | Publication date |
---|---|
US20170321049A1 (en) | 2017-11-09 |
JP6586606B2 (ja) | 2019-10-09 |
JPWO2016068240A1 (ja) | 2017-09-14 |
EP3214150A4 (en) | 2018-06-20 |
EP3214150A1 (en) | 2017-09-06 |
US9976025B2 (en) | 2018-05-22 |
EP3214150B1 (en) | 2019-05-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6586606B2 (ja) | 熱伝導材 | |
US7527753B2 (en) | Acrylic-based thermally conductive composition and thermally conductive sheet | |
TWI549999B (zh) | 熱傳導性片狀物 | |
US7956116B2 (en) | Electronic device containing a thermally conductive sheet | |
JP5699556B2 (ja) | 熱伝導シート、熱伝導シートの製造方法、及び放熱装置 | |
JP2008111053A (ja) | シート形成性単量体組成物、熱伝導性シート及びその製法 | |
TW201026802A (en) | Acrylic thermal conductive sheet and method for producing the same | |
KR101956371B1 (ko) | 절연 성능이 보강된 방열 실리콘 시트 | |
JP5760397B2 (ja) | 熱伝導シート、熱伝導シートの製造方法、及び放熱装置 | |
JP2012224765A (ja) | 熱伝導性シート用組成物 | |
JP2005354002A (ja) | 多層熱伝導性シート | |
WO2013047145A1 (ja) | 熱伝導性感圧接着剤組成物、熱伝導性感圧接着性シート状成形体、これらの製造方法、及び電子部品 | |
JPWO2012132656A1 (ja) | 熱伝導性感圧接着剤組成物、熱伝導性感圧接着性シート状成形体、これらの製造方法、及び電子部品 | |
JP6365940B2 (ja) | 熱伝導電磁波吸収シート | |
US10287472B2 (en) | Thermally conductive material | |
JP7488636B2 (ja) | 熱伝導性樹脂シート | |
CN111511556B (zh) | 多层导热片 | |
JP3875664B2 (ja) | 放熱材料用樹脂組成物およびその硬化物 | |
JP2021054968A (ja) | 熱伝導性樹脂シート | |
JP2010077220A (ja) | 熱伝導用成形体および熱伝導性非シリコーン液状ゴム組成物 | |
JPWO2013061830A1 (ja) | 熱伝導性感圧接着剤組成物、熱伝導性感圧接着性シート状成形体、これらの製造方法、及び電子部品 | |
WO2020008567A1 (ja) | 熱伝導性樹脂組成物、熱伝導性シート、及び熱伝導性シートの製造方法 | |
JP2013127020A (ja) | 熱伝導シートおよびその製造方法 | |
WO2023074449A1 (ja) | 熱伝導シート | |
JP2015067637A (ja) | 熱伝導性感圧接着剤組成物、熱伝導性感圧接着性シート状成形体、これらの製造方法、及び電子機器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15854583 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
ENP | Entry into the national phase |
Ref document number: 2016556626 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15523006 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2015854583 Country of ref document: EP |