WO2016068213A1 - 圧力測定部を有する血液回路 - Google Patents

圧力測定部を有する血液回路 Download PDF

Info

Publication number
WO2016068213A1
WO2016068213A1 PCT/JP2015/080456 JP2015080456W WO2016068213A1 WO 2016068213 A1 WO2016068213 A1 WO 2016068213A1 JP 2015080456 W JP2015080456 W JP 2015080456W WO 2016068213 A1 WO2016068213 A1 WO 2016068213A1
Authority
WO
WIPO (PCT)
Prior art keywords
housing
flexible membrane
blood
pressure
cylindrical
Prior art date
Application number
PCT/JP2015/080456
Other languages
English (en)
French (fr)
Inventor
増田 利明
健志 山口
Original Assignee
ニプロ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ニプロ株式会社 filed Critical ニプロ株式会社
Priority to US15/522,642 priority Critical patent/US10646123B2/en
Priority to EP15854357.9A priority patent/EP3213782A4/en
Priority to JP2016556609A priority patent/JP6828436B2/ja
Publication of WO2016068213A1 publication Critical patent/WO2016068213A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3621Extra-corporeal blood circuits
    • A61M1/3639Blood pressure control, pressure transducers specially adapted therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/02141Details of apparatus construction, e.g. pump units or housings therefor, cuff pressurising systems, arrangements of fluid conduits or circuits
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/022Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers
    • A61B5/02233Occluders specially adapted therefor
    • A61B5/02241Occluders specially adapted therefor of small dimensions, e.g. adapted to fingers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/02007Evaluating blood vessel condition, e.g. elasticity, compliance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3331Pressure; Flow

Definitions

  • the present invention relates to a blood circuit having a pressure measuring unit, and more particularly, to a blood circuit having a pressure measuring unit utilizing a flexible membrane.
  • Patent Document 1 Japanese Utility Model Publication No. 58-153841
  • Patent Document 2 Japanese Patent Application Laid-Open No. 61-143069
  • Patent Document 3 Japanese Patent Application Laid-Open No. 61-143069
  • Patent Document 4 Japanese Patent Application Laid-Open No. 9-24026
  • Patent Document 6 Japanese Patent Application Laid-Open No. 8,092,414
  • the blood circuit described in Patent Document 1 is provided with a pressure detection chamber.
  • the pressure sensing chamber has a flexible membrane that divides the chamber into two spaces.
  • the fluid conduit communicates with one space, and one space is isolated from the other space.
  • the other space is connected to the pressure measuring device.
  • the present invention has been made to solve the above-described problems, and an object thereof is to provide a blood circuit capable of measuring blood pressure with high accuracy.
  • a blood circuit is a blood circuit having a pressure measurement unit connected to a pressure measurement device, and includes a first measurement unit provided downstream of a pumping segment to which blood is pressurized. , A second measuring part provided upstream of the pumping segment, the first measuring part being a cylindrical first housing and a cylindrical first flexible part provided in the cylindrical first housing Blood flow into the cylinder of the first flexible membrane, and the first flexible membrane can be displaced according to the blood pressure to measure the blood pressure fluctuation, the second measurement The portion includes a cylindrical second housing and a cylindrical second flexible membrane provided in the cylindrical second housing, and blood flows into the cylinder of the second flexible membrane. The second flexible membrane is displaced according to the pressure of the blood, so that blood pressure fluctuations can be measured. In to the initial state before, the gap between the first flexible film and the first housing is larger than the gap between the second flexible membrane and the second housing.
  • the deformable part of the flexible film can be lengthened in the axial direction, so that the blood can hardly be retained.
  • the pressure measuring unit can be downsized by configuring the pressure measuring unit to have a different gap volume for positive pressure measurement and negative pressure measurement.
  • the cylindrical flexible membrane is reduced in size, the contact area between the flexible membrane and blood is reduced, and pressure loss due to friction is reduced. Pressure fluctuations can be measured with higher accuracy than conventional structural products. If the pressure loss is large, the pressure on the line and the pressure on the measurement section change, and the difference between the pressure value on the line near the pump that is the worst pressure value and the pressure value measured by the pressure measurement section. May increase, or the flow rate returned to the patient may decrease.
  • the cross-sectional area of the cylindrical flexible membrane can be made smaller than that of the conventional structure product, the retention of blood can be reduced.
  • the first flexible membrane has a cylindrical shape provided with a gap between the first housing and at least a part of the cross section having a non-circular portion, and the first flexible membrane is provided in the cylinder of the first flexible membrane. It is possible to measure blood pressure fluctuation by flowing blood and reducing the gap between the first housing and the non-circular portion of the first flexible membrane deforms in the cylinder direction according to the blood pressure.
  • the second flexible membrane can be provided proximate to the housing.
  • the positive pressure is measured by the first measuring part having the first flexible film having a non-circular cross section, and the second flexible part close to the second housing is measured.
  • the negative pressure is measured at the second measuring part having a membrane.
  • Each flexible membrane has a shape suitable for positive pressure and negative pressure measurement, so that pressure fluctuations can be measured with higher accuracy than when positive pressure and negative pressure are measured with a single flexible membrane. be able to.
  • a cylindrical flexible membrane having a circular cross section it expands only by elastic deformation. Then, since the elastic force partially absorbs the pressure in the liquid chamber, a pressure error occurs.
  • Such a pressure error can be suppressed with a cylindrical flexible membrane having at least a part of a non-circular cross section. Furthermore, since the cylindrical flexible membrane and the housing in the negative pressure measuring pressure measuring unit are close to each other, the size of the pressure measuring unit can be suppressed as much as possible.
  • the pressure error means that a pressure different from the actual pressure is generated due to pressure absorption by elastic force.
  • the pressure loss means that something interferes with the fluid in the flow path, and the pressure on the line and the pressure on the pressure measurement unit are different.
  • a blood circuit according to still another aspect of the present invention is a blood circuit having a pressure measuring unit connected to a pressure measuring device, and is provided in a cylindrical housing and in the cylindrical housing in the vicinity of the housing.
  • the flexible membrane is made to flow into the cylinder of the flexible membrane, and the flexible membrane is deformed in the cylinder in accordance with the blood pressure, leaving a gap between the housing and the housing.
  • the blood circuit having the pressure measuring unit configured as described above can make the housing compact because the flexible membrane is close to the housing. Proximity refers to a state of close contact or slightly separated. Furthermore, the negative pressure can be accurately measured in the negative pressure measurement.
  • the flexible membrane has a cylindrical shape having a constant inner diameter and outer diameter in the axial direction in an initial state before flowing blood.
  • the blood circuit having the pressure measuring unit configured as described above has a low flow resistance against blood and can prevent blood from staying.
  • the flexible membrane has a substantially circular cross-sectional shape in an initial state before flowing blood
  • the housing has a substantially circular cross-sectional shape having a constant inner diameter and outer diameter in the axial direction.
  • the shape is cylindrical.
  • the blood circuit having the pressure measuring unit configured as described above has a pressure measuring unit that is as small as possible while preventing the blood from staying.
  • the axial length in the initial state before flowing blood of the deformable portion of the flexible membrane is X
  • the outer diameter in the initial state before flowing blood of the deformable portion of the flexible membrane is In the case of Y
  • the axial length X and the outer diameter Y satisfy the condition of 4.0 ⁇ X / Y ⁇ 8.0
  • the initial state before flowing the blood of the deformable portion of the flexible membrane When the thickness in T is T, the thickness T satisfies the condition of 0.2 mm ⁇ T ⁇ 0.6 mm, and the Shore A hardness of the flexible film is 20 or more and 60 or less.
  • the blood circuit having a pressure measuring unit configured in this manner has a cross section that is displaced by the cylindrical flexible membrane being displaced toward the in-cylinder direction when blood flows inside the flexible membrane. Since the shape is deformed into a substantially triangular shape with a recessed side, a large variable volume can be secured. In addition, since the flexible film is deformed so as to have the substantially triangular cross section, a gap is always left in the central portion of the cross section, so that the flexible film can be prevented from being blocked. , Can ensure blood flow.
  • the apparatus further includes a first joint component assembled to one end of the housing in the axial direction and a second joint component assembled to the other axial end of the housing. At least one of the joint parts is fixed by sandwiching the end portion of the cylindrical flexible membrane with the housing in the axial direction.
  • the sealing performance can be secured in the portion. Further, compared to the case where the end of the flexible membrane is compressed and fixed in the radial direction, it is not necessary to perform so-called forced fitting at least at the end, and the housing, the first joint component, and the second joint component can be used. It is possible to reduce a risk that a displacement occurs in the assembly position of the flexible film.
  • the first joint component is fixed by sandwiching one end of the cylindrical flexible membrane in the axial direction with the housing, and the second joint component is made of the cylindrical flexible membrane. The other end is fixed by being sandwiched by the housing in the radial direction.
  • a blood circuit having a pressure measuring unit configured as described above is press-fitted into a housing with a first joint component assembled at one end of a flexible membrane during its manufacture. Since the second joint component can be assembled by a simple method of assembling to the housing, the manufacturing cost can be reduced.
  • a blood circuit having a pressure measurement unit is a blood circuit having a pressure measurement unit connected to a pressure measurement device, and includes a cylindrical housing and a housing in the cylindrical housing And a flexible membrane having a non-circular cross section at least partly provided with a gap formed between the blood and the blood according to the pressure of the blood.
  • the non-circular portion of the flexible membrane is deformed in the direction outside the cylinder to reduce the gap between the housing and the blood pressure fluctuation can be measured.
  • the non-circular portion is deformed in the direction outside the cylinder so as to be substantially circular.
  • the strength is lower than that of a cylindrical flexible film having a perfect circular cross section, and the flexible film can be easily deformed in the direction outside the cylinder.
  • the flexible membrane is easily deformed in the direction outside the cylinder, and a minute change in pressure can be accurately measured.
  • a plurality of recesses are formed on the surface of the flexible film, and the plurality of recesses extend in parallel to each other.
  • the blood circuit having the pressure measuring unit configured as described above has a low flow resistance against blood and can prevent blood from staying.
  • the cross-section orthogonal to the axial direction of the housing and in any cross-section including the deformable portion of the flexible membrane Preferably, in an initial state before flowing blood, the cross-section orthogonal to the axial direction of the housing and in any cross-section including the deformable portion of the flexible membrane,
  • the length of the outer peripheral edge is equal to or shorter than the length of the inner peripheral edge of the housing.
  • the blood circuit having the pressure measuring unit configured as described above has a substantially cylindrical shape by deforming a deformable portion of the flexible membrane toward the outside of the cylinder by blood flowing inside the flexible membrane. Therefore, a large variable volume can be secured.
  • the deformation of the flexible film can be prevented from being hindered by the flexible film itself and the housing, the flexible film smoothly deforms into a substantially cylindrical shape, thereby preventing the retention of blood. be able to.
  • the number of recesses extending in parallel with each other is any one of 2 to 4.
  • the blood circuit having the pressure measuring unit configured as described above has a particularly large variable volume.
  • the flexible membrane in the initial state before flowing the blood, is configured such that the inner peripheral surface thereof is non-contact in any part.
  • the blood circuit having the pressure measuring unit configured as described above does not have a narrow blood flow path caused by the contact between the inner peripheral surfaces of the flexible membranes even in the initial state. Can be prevented.
  • each of the cross-sectional areas in the tube of the flexible membrane at both ends of the deformable portion of the flexible membrane is the center of the deformable portion of the flexible membrane. It is larger than the cross-sectional area in the cylinder of the flexible membrane in the part.
  • the cross-sectional area in the tube of the flexible membrane is from both ends of the deformable portion of the flexible membrane to the central portion of the deformable portion of the flexible membrane. It gets smaller gradually as you get closer.
  • the blood circuit having the pressure measuring unit configured as described above is particularly reliable because there is no portion where the flow path is larger than the pair of ends between the pair of ends of the flexible membrane. Can be prevented.
  • the apparatus further includes a first joint component assembled to one end of the housing in the axial direction and a second joint component assembled to the other axial end of the housing. At least one of the joint parts is fixed by sandwiching the end portion of the cylindrical flexible membrane with the housing in the axial direction.
  • the sealing performance can be secured in the portion. Further, compared to the case where the end of the flexible membrane is compressed and fixed in the radial direction, it is not necessary to perform so-called forced fitting at least at the end, and the housing, the first joint component, and the second joint component can be used. It is possible to reduce a risk that a displacement occurs in the assembly position of the flexible film.
  • the first joint component is fixed by sandwiching one end of the cylindrical flexible membrane in the axial direction with the housing, and the second joint component is made of the cylindrical flexible membrane. The other end is fixed by being sandwiched by the housing in the radial direction.
  • a blood circuit having a pressure measuring unit configured as described above is press-fitted into a housing with a first joint component assembled at one end of a flexible membrane during its manufacture. Since the second joint component can be assembled by a simple method of assembling to the housing, the manufacturing cost can be reduced.
  • a blood circuit having a pressure measuring unit is a blood circuit having a pressure measuring unit connected to a pressure measuring device, and has a cylindrical housing having one end and the other end in the axial direction.
  • a cylindrical flexible membrane provided in the cylindrical housing, a first joint component assembled to one end of the housing, and a second joint component assembled to the other end of the housing, It is possible to measure blood pressure fluctuations by flowing blood into the tube of the flexible membrane and displacing the flexible membrane according to the blood pressure. At least one of the ends of the cylindrical flexible membrane is fixed by being sandwiched in the axial direction by the housing.
  • the sealing performance can be secured in the portion. Further, compared to the case where the end of the flexible membrane is compressed and fixed in the radial direction, it is not necessary to perform so-called forced fitting at least at the end, and the housing, the first joint component, and the second joint component can be used. It is possible to reduce a risk that a displacement occurs in the assembly position of the flexible film.
  • the first joint component is fixed by sandwiching one end of the cylindrical flexible membrane in the axial direction with the housing, and the second joint component is made of the cylindrical flexible membrane. The other end is fixed by being sandwiched by the housing in the radial direction.
  • a blood circuit having a pressure measuring unit configured as described above is press-fitted into a housing with a first joint component assembled at one end of a flexible membrane during its manufacture. Since the second joint component can be assembled by a simple method of assembling to the housing, the manufacturing cost can be reduced.
  • a blood circuit capable of measuring blood pressure with high accuracy can be provided.
  • FIG. 3 is a front view of a pressure measuring unit for measuring negative pressure according to Embodiment 1.
  • FIG. 3 is a plan view of a pressure measuring unit for measuring negative pressure according to Embodiment 1.
  • FIG. 4 is a cross-sectional view taken along line IV-IV in FIG. 3. It is sectional drawing which expands and shows the part enclosed by V in FIG. 3 is a side view of a pressure measurement unit for measuring negative pressure according to Embodiment 1.
  • FIG. 3 is an exploded perspective view of a pressure measurement unit for measuring negative pressure according to Embodiment 1.
  • FIG. 3 is a plan view of a housing of a pressure measuring unit for measuring negative pressure according to Embodiment 1.
  • FIG. FIG. 9 is a cross-sectional view taken along line IX-IX in FIG. 3 is a side view of a housing of a pressure measurement unit for measuring negative pressure according to Embodiment 1.
  • FIG. 6 is a front view of a joint component of a pressure measuring unit for measuring negative pressure according to Embodiment 1.
  • FIG. 12 is a sectional view taken along line XII-XII in FIG. 6 is a side view of a joint component of a pressure measurement unit for measuring negative pressure according to Embodiment 1.
  • FIG. 6 is a front view of a flexible film of a pressure measuring unit for measuring negative pressure according to Embodiment 1.
  • FIG. FIG. 15 is a cross-sectional view taken along line XV-XV in FIG. FIG.
  • FIG. 6 is an enlarged cross-sectional view showing a fitting portion of a housing, a flexible membrane, and a joint part in a pressure measuring unit for measuring negative pressure according to a second embodiment.
  • 10 is a plan view of a pressure measuring unit for measuring negative pressure according to Embodiment 3.
  • FIG. 18 is a cross-sectional view taken along line XVIII-XVIII in FIG.
  • FIG. 19 is a cross-sectional view taken along line XIX-XIX in FIG. 10 is a front view of a flexible film of a pressure measuring unit for measuring negative pressure according to Embodiment 3.
  • FIG. FIG. 21 is a cross-sectional view taken along line XXI-XXI in FIG. 20.
  • FIG. 10 is a plan view of a pressure measuring unit for measuring negative pressure according to a fourth embodiment.
  • FIG. 23 is a cross-sectional view taken along line XXIII-XXIII in FIG.
  • FIG. 10 is a front view of a joint component of a pressure measuring unit for measuring negative pressure according to a fourth embodiment.
  • FIG. 10 is a side view of a joint component of a pressure measurement unit for measuring negative pressure according to a fourth embodiment.
  • FIG. 10 is a perspective view of a joint component of a pressure measuring unit for measuring negative pressure according to a fourth embodiment.
  • FIG. 10 is a front view of a joint component of a pressure measurement unit for measuring negative pressure according to a fifth embodiment.
  • FIG. 10 is a side view of a joint component of a pressure measurement unit for measuring negative pressure according to a fifth embodiment.
  • FIG. 10 is a perspective view of a joint component of a pressure measuring unit for measuring negative pressure according to a fifth embodiment.
  • FIG. 16 is a front view of a joint component of a pressure measuring unit for measuring negative pressure according to a sixth embodiment. It is a side view of the joint component of the pressure measurement part for negative pressure measurement according to Embodiment 6. It is a perspective view of the joint component of the pressure measurement part for negative pressure measurement according to Embodiment 6.
  • FIG. 16 is a front view of a joint component of a pressure measuring unit for measuring negative pressure according to a seventh embodiment.
  • FIG. 20 is a perspective view of a joint component of a pressure measuring unit for measuring negative pressure according to a seventh embodiment.
  • FIG. 20 is a front view of a pressure measuring unit for measuring negative pressure according to an eighth embodiment.
  • FIG. 10 is a plan view of a pressure measuring unit for measuring negative pressure according to an eighth embodiment.
  • FIG. 38 is a sectional view taken along line XXXVIII-XXXVIII in FIG. 37.
  • FIG. 20 is a front view of a pressure measuring unit for measuring negative pressure according to a ninth embodiment.
  • FIG. 24 is a front view of a pressure measuring unit for measuring negative pressure according to the tenth embodiment.
  • FIG. 38 is a plan view of a pressure measuring unit for measuring negative pressure according to the tenth embodiment.
  • FIG. 42 is a cross-sectional view taken along line XLII-XLII in FIG. 41. It is a front view of the pressure measurement part for positive pressure measurement according to a comparative example. It is a top view of the pressure measurement part for positive pressure measurement according to a comparative example.
  • FIG. 45 is a cross-sectional view taken along line XLV-XLV in FIG. 44.
  • (A) is a front view of the flexible membrane of the pressure measurement unit for positive pressure measurement according to the eleventh embodiment
  • (B) is the flexibility of the pressure measurement unit for positive pressure measurement according to the eleventh embodiment. It is a side view of a conductive film.
  • FIG. 23 is a perspective view of a flexible film of a pressure measurement unit for positive pressure measurement according to the eleventh embodiment.
  • FIG. 23 is a front view of a flexible film of a pressure measurement unit for positive pressure measurement according to a twelfth embodiment.
  • FIG. 23 is a side view of a flexible membrane of a pressure measurement unit for positive pressure measurement according to a twelfth embodiment.
  • FIG. 24 is a perspective view of a flexible film of a pressure measurement unit for positive pressure measurement according to the twelfth embodiment.
  • FIG. 23 is a side view of a flexible membrane of a pressure measurement unit for positive pressure measurement according to a thirteenth embodiment.
  • FIG. 23 is a side view of a flexible membrane of a pressure measurement unit for positive pressure measurement according to a fourteenth embodiment.
  • FIG. 25 is a side view of a flexible film of a pressure measurement unit for positive pressure measurement according to the fifteenth embodiment.
  • FIG. 23 is a side view of a flexible film of a pressure measurement unit for positive pressure measurement according to a sixteenth embodiment.
  • FIG. 23 is a side view of a flexible membrane of a pressure measurement unit for positive pressure measurement according to a seventeenth embodiment.
  • FIG. 23 is a side view of a flexible membrane of a pressure measurement unit for positive pressure measurement according to a seventeenth embodiment.
  • FIG. 38 is a plan view of a pressure measuring unit for measuring negative pressure according to an eighteenth embodiment.
  • FIG. 58 is a cross-sectional view taken along line LVIII-LVIII in FIG. 57.
  • FIG. 77 is an enlarged cross-sectional view of a portion surrounded by LIX in FIGS. 58 and 76.
  • FIG. 59 is an enlarged cross-sectional view of a portion surrounded by LX in FIG. 58.
  • FIG. 38 is a plan view of a housing of a pressure measuring unit for measuring negative pressure according to an eighteenth embodiment.
  • FIG. 62 is a cross-sectional view taken along line LXII-LXII in FIG. 61.
  • FIG. 63 is an enlarged cross-sectional view of a portion surrounded by LXIII in FIG. 62.
  • FIG. 63 is an enlarged cross-sectional view of a portion surrounded by LXIV in FIG. 62.
  • FIG. 38 is a plan view of a flexible film of a pressure measuring unit for measuring negative pressure according to an eighteenth embodiment.
  • FIG. 66 is a cross-sectional view taken along line LXVI-LXVI in FIG. 65. It is an expanded sectional view of the part enclosed with LXVII in FIG. It is an expanded sectional view of the part enclosed with LXVIII in FIG.
  • FIG. 38 is a plan view of a joint component on the inlet side of a pressure measuring unit for measuring negative pressure according to the eighteenth embodiment.
  • FIG. 70 is a cross-sectional view taken along line LXX-LXX in FIG. 69. It is an expanded sectional view of the part enclosed by LXXI in FIG.
  • FIG. 38 is a plan view of a joint component on the outlet side of a pressure measuring unit for measuring negative pressure according to the eighteenth embodiment.
  • FIG. 73 is a cross-sectional view taken along line LXXIII-LXXIII in FIG. 72.
  • FIG. 74 is an enlarged cross-sectional view of a portion surrounded by LXXIV in FIG. 73.
  • FIG. 38 is a plan view of a pressure measuring unit for measuring negative pressure according to the nineteenth embodiment.
  • FIG. 76 is a cross sectional view taken along line LXXVI-LXXVI in FIG. 75.
  • FIG. 32 is a side view of a flexible film of a pressure measurement unit for positive pressure measurement according to a twentieth embodiment.
  • FIG. 38 is a side view of a flexible membrane of a pressure measurement unit for positive pressure measurement according to a modification according to the twentieth embodiment.
  • FIG. 38 is a side view of a flexible membrane of a pressure measurement unit for positive pressure measurement according to still another modification example according to the twentieth embodiment.
  • FIG. 38 is a side view of a flexible membrane of a pressure measurement unit for positive pressure measurement according to still another modification example according to the twentieth embodiment.
  • FIG. 38 is a plan view of a pressure measuring unit for measuring negative pressure according to Embodiment 21.
  • (A) is a cross-sectional view in the initial state along line LXXXII-LXXII in FIG. 81
  • (B) is a cross-sectional view at the time of pressure measurement along line LXXII-LXXII in FIG. 81
  • (A) is a perspective view of the flexible membrane in the state shown in FIG. 82 (A)
  • (B) is a perspective view of the flexible membrane in the state shown in FIG. 82 (B).
  • (A1) to (A3) are cross-sectional views taken along lines LXXXIVA1-LXXXIVA1 to LXXXIVA3-LXXXIVA3 in FIG.
  • FIG. 4 is a sectional view taken along lines LXXXIVB1-LXXXIVB1 to LXXXIVB3-LXXXIVB3. It is a graph which shows the result of a verification test. It is sectional drawing which expands and shows the part enclosed by LXXXVI in FIG. 82 (A). It is sectional drawing which expands and shows the part enclosed with LXXXVII in FIG. 82 (A). (A) to (C) are schematic diagrams for explaining a method of assembling the pressure measuring unit for measuring negative pressure shown in FIG. FIG.
  • FIG. 38 is a cross sectional view showing an assembly structure on one end side of a pressure measuring unit for measuring negative pressure according to a modification according to the twenty-first embodiment.
  • FIG. 38 is a cross sectional view showing an assembly structure on the other end side of a pressure measuring unit for measuring negative pressure according to a modification according to the twenty-first embodiment.
  • FIG. 38 is a plan view of a pressure measuring unit for measuring positive pressure according to a twenty-second embodiment.
  • (A) is a cross-sectional view in the initial state along the line XCII-XCII in FIG. 91
  • (B) is a cross-sectional view at the time of pressure measurement along the line XCII-XCII in FIG.
  • (A) is a perspective view of the flexible membrane in the state shown in FIG.
  • FIG. 92 (A), and (B) is a perspective view of the flexible membrane in the state shown in FIG. 92 (B).
  • (A1) to (A3) are sectional views taken along lines XCIVA1-XCIVA1 to XCIVA3-XCIVA3 in FIG. 92 (A), respectively, and (B1) to (B3) are respectively shown in FIG. 92 (B).
  • FIG. 5 is a cross-sectional view taken along lines XCIVB1-XCIVB1 to XCIVB3-XCIVB3.
  • FIG. 38 is a cross sectional view of a pressure measurement unit for positive pressure measurement according to a first modification example according to the twenty-second embodiment.
  • FIG. 38 is a cross sectional view of a pressure measurement unit for positive pressure measurement according to a second modification example according to the twenty-second embodiment.
  • FIG. 93 is an enlarged cross-sectional view of a portion surrounded by XCVII in FIG. 92 (A).
  • FIG. 93 is an enlarged cross-sectional view of a portion surrounded by XCIVI II in FIG. 92 (A).
  • (A) to (C) are schematic views for explaining a method of assembling the pressure measuring unit for measuring positive pressure shown in FIG.
  • FIG. 38 is a cross-sectional view showing an assembly structure on one end side of a pressure measuring unit for measuring negative pressure according to a modification according to the twenty-second embodiment.
  • FIG. 38 is a cross-sectional view showing an assembly structure on the other end side of a pressure measurement unit for negative pressure measurement according to a modification according to the twenty-second embodiment.
  • a blood circuit includes a blood introduction port 1 for taking out blood from a patient, a blood pressure removal measurement site 2 connected to the blood introduction port 1, and a pressure transducer that measures blood pressure at the blood pressure removal measurement site 2.
  • the blood pressure discharged from the transducer 6 and the PD pressure measurement site 5 is received through the dialyzer blood introduction port 7a, the dialyzer 8, the venous pressure measurement site 11 located downstream of the dialyzer blood outlet 7b of the dialyzer 8, and the venous pressure measurement. It has a pressure transducer 12 for measuring the blood pressure of the region 11 and a blood outlet 13 for returning blood to the patient.
  • the dialyzer 8 is connected to the dialyzer main body 10 via the dialysate outlet 9a and the dialysate inlet 9b, and removes waste products in the blood and adjusts the moisture in the blood using the dialysate.
  • the pressure measurement unit 100 is provided in the blood pressure removal measurement site 2 in FIG. 1, which is a negative pressure site.
  • the pressure measurement unit 100 includes a housing 110 and blood lines 210 and 220 connected to the housing 110.
  • the housing 110 is connected to an inlet side joint part 111 into which blood is introduced and an outlet side joint part 112 from which blood is discharged.
  • a blood line 210 is inserted into the joint part 111 on the inlet side, and a blood line 220 is inserted into the joint part 112 on the outlet side.
  • the housing is formed by one member, but two half-shaped members may be formed together.
  • the housing 110 is provided with a pressure measurement port 140, and a pressure monitor line 240 is connected to the pressure measurement port 140.
  • a connector 241 at the tip of the pressure monitor line 240 is connected to the pressure transducer.
  • a clip 242 is attached to the pressure monitor line 240 so that the pressure monitor line 240 can be closed.
  • the inlet-side joint part 111 and the outlet-side joint part 112 provided in the housing 110 are provided on the same straight line, and are directed from the inlet-side joint part 111 to the outlet-side joint part 112. Blood can flow smoothly.
  • the cylindrical housing 110 is long along the direction from the joint component 111 on the inlet side to the joint component 112 on the outlet side.
  • the housing 110 is provided with a pressure measurement port 140 extending so as to be orthogonal to a direction from the joint component 111 on the inlet side to the joint component 112 on the outlet side.
  • the pressure measuring port 140 is arranged non-parallel to the joint part 111 on the inlet side and the joint part 112 on the outlet side.
  • the housing 110 is hollow, and the space extends from the joint component 111 on the inlet side to the joint component 112 on the outlet side.
  • Engaging portions 113 and 114 that engage with the joint parts 111 and 112 on the inlet side and the outlet side are provided at both ends of the housing 110.
  • the distance between the inner peripheral surface of the housing 110 and the flexible membrane 120 is approximately 0 to 2 mm.
  • the flexible membrane 120 divides the chamber 102 constituted by the housing into two spaces.
  • the chamber 102 is divided into a blood chamber 150 through which blood passes and an air chamber 160 in which air for pressure measurement exists.
  • Blood is introduced into the blood chamber 150 from the joint component 111 on the inlet side, and the blood in the blood chamber 150 is discharged from the joint component 112 on the outlet side. Since the flexible membrane 120 has elasticity and can be deformed, the volume of the blood chamber 150 is variable.
  • the air chamber 160 is formed in a slight gap between the flexible membrane 120 and the housing 110 in FIG. Since the flexible membrane 120 can be deformed in the in-cylinder direction, the volume of the air chamber 160 is also variable.
  • the central axis of the cylindrical flexible membrane 120 is parallel to a line 111a from the joint component 111 on the inlet side to the joint component 112 on the outlet side.
  • the pressure measurement port 140 communicates with the air chamber 160 but does not communicate with the blood chamber 150.
  • the flexible membrane 120 is displaced according to the blood flow in the blood chamber 150 and the volume of the air chamber 160 is changed, this volume change is transmitted to the transducer, so that the blood pressure can be measured by the transducer. Is possible.
  • a plurality of ribs may be provided on the inner peripheral surface of the housing 110.
  • the rib has a function of increasing the strength of the housing 110 and stabilizing the posture of the housing 110.
  • the flexible membrane 120 is close to the inner peripheral surface of the housing 110 and is not in close contact.
  • the joint part 112 on the outlet side is engaged with the engaging portion 114 of the housing 110.
  • a flexible membrane 120 is sandwiched between the joint part 112 on the outlet side and the cylindrical portion of the housing 110.
  • the flexible membrane 120 is fixed to the housing 110.
  • the merit of the fixing method of FIG. 5 is that there are many sealing surfaces and there is little risk of leakage.
  • the joint component 111 on the inlet side is fitted with the engaging portion 113.
  • the pressure measurement port 140 protrudes to the outer peripheral side from the engaging portion 113.
  • the outer shape of the engaging portion 113 is circular, but it may be polygonal.
  • the flexible membrane 120 is inserted into the chamber 102 in the housing 110.
  • the natural length of the flexible membrane 120 is longer than the length of the housing 110, and the end portion of the flexible membrane 120 is folded back so that the engagement portion 113 and the joint component 111 on the inlet side are connected, and the engagement portion 114. And the joint part 112 on the outlet side.
  • the housing 110 has a shape in which ring-shaped engaging portions 113 and 114 are attached to both ends of the cylindrical member.
  • a pressure measurement port 140 is disposed between the engaging portion 113 and the engaging portion 114.
  • a cylindrical pressure measurement port 140 communicates with the chamber 102 of the housing 110, and the pressure in the chamber 102 can be measured from the pressure measurement port 140.
  • the joint component 111 on the inlet side is provided with a partition wall 111w, and the partition wall 111w is provided with a through hole 111h.
  • the joint component 111 on the inlet side and the blood chamber communicate with each other through a through hole 111h.
  • a similar partition wall and through hole are provided in the joint component on the outlet side.
  • the flexible membrane 120 has a substantially cylindrical shape, and blood flows through the inside thereof.
  • the flexible membrane 120 has a cylindrical shape, but it does not necessarily have to be a cylinder, and may be a square tube. Furthermore, an elliptic cylinder may be sufficient.
  • the outer diameter and the inner diameter of the flexible membrane 120 are constant, but it is not necessarily constant, and the outer diameter and the inner diameter may be configured non-uniformly.
  • the housing 110 and the outlet side joint part 112 according to the second embodiment are provided with ribs 119 for securely fixing and holding the flexible membrane 120 to enhance the sealing performance. ing.
  • the rib 119 is provided in each of the housing 110 and the outlet side joint part 112, but the rib 119 may be provided only in the housing 110 or only in the outlet side joint part 112. .
  • a rib 119 may be provided on the joint component 111 on the inlet side.
  • the end portion of flexible film 120 is three-dimensionally formed to provide thick film unit 121.
  • the thickness of the thick film part 121 is thicker than the thickness of other parts.
  • the presence of the thick film portion 121 makes it easy for the end of the flexible membrane 120 to engage with the inlet and outlet joint parts 111 and 112 and the housing 110. As a result, the sealing performance at the end can be improved.
  • the merit of the fixing method of FIG. 17 is that it is easier to assemble than that of FIG.
  • the rib 110 is provided on the housing 110 and the thick film portion 121 is pressed by the rib 119, thereby further improving the sealing performance.
  • Ribs 119 may be provided on the joint parts 111 and 112 on the inlet side and the outlet side.
  • a blocking member 115 is provided on flexible film 120.
  • the blocking suppression member 115 extends from the joint component 111 on the inlet side to the joint component 112 on the outlet side.
  • the occlusion suppressing member 115 is for preventing the flexible membrane 120 from blocking the flow of blood. Since the blocking suppression member 115 exists between the flexible films 120, a gap is generated between the flexible films 120 facing each other. Since blood flows through this gap, the retention of blood can be prevented. When blood stays, platelets are destroyed, so it is necessary to suppress blood stay.
  • the joint member 111 on the inlet side is provided with a blockage suppressing member 115, and the blockage suppressing member 115 is inserted into the flexible membrane 120, and the joint component 112 on the outlet side is blocked.
  • a suppression member 115 is provided, and the occlusion suppression member 115 is inserted into the flexible membrane 120.
  • three plate-like members 116 extend in the radial direction from the central portion, and blood is interposed between plate-like members 116.
  • the flow path is formed.
  • Two occlusion suppression members 115 are inserted into the flexible membrane 120, but only one occlusion suppression member 115 is provided in the flexible membrane 120 by extending one of the occlusion suppression members 115. It may be.
  • each plate-like member 116 has a planar shape, but may have a curved surface shape.
  • the wall surface 115a may be a flat surface or a curved surface.
  • the wall surface 115a is in contact with the flexible membrane 120 to ensure a blood flow path, and thus has a shape that does not damage the flexible membrane 120.
  • the outlet side joint part 112 may also employ the wall surface 115a shown in FIGS.
  • the blockage suppressing member 115 has four plate-like members 116, and each plate-like member 116 has an angle of 90 degrees. Are arranged apart from each other.
  • the plate-like member 116 may have a planar shape or a curved surface shape. Note that the plate-like member 116 shown in FIGS. 30 to 32 may also be adopted in the joint component 112 on the outlet side. Furthermore, a plate-like member 116 having a shape different from that shown in FIGS.
  • a wall surface 115a extending in the circumferential direction is provided at the outer peripheral end of plate-like member 116 of blocking suppression member 115. ing.
  • the wall surface 115a may be a flat surface or a curved surface.
  • the wall surface 115a is in contact with the flexible membrane 120 to ensure a blood flow path, and thus has a shape that does not damage the flexible membrane 120.
  • the outlet side joint part 112 may also employ a wall surface 115a shown in FIGS.
  • pressure measurement port 140 forms an acute angle with line 111a connecting joint component 111 on the inlet side and joint component 112 on the outlet side. Yes. By providing the pressure measurement port 140 with an inclination, the pressure measurement port 140 can be downsized.
  • liquid level adjustment line 250 is connected to pressure monitor line 240, and the liquid level in pressure monitor line 240 can be adjusted.
  • the liquid level adjustment line 250 is provided with a clip 252 and a connector 251.
  • liquid level adjustment port 141 is provided in housing 110.
  • a liquid level adjustment line 250 shown in FIG. 39 is connected to the liquid level adjustment port 141, and the liquid level in the pressure monitor line 240 can be adjusted.
  • the liquid level adjustment line 250 includes a clip 252 and a connector 251. Is provided.
  • (Embodiment 11) 43 to 45 which are comparative examples, in the pressure measuring unit 1100 for measuring positive pressure, the flexible membrane 120 having a cylindrical shape and a circular cross section expands. A large gap is formed between the air chambers 160. In order for the flexible membrane 120 to expand, the flexible membrane 120 needs to be stretched. If the positive pressure is high, the flexible membrane 120 can be stretched with this positive pressure. However, part of the positive pressure is used to stretch the flexible membrane 120, and the correct positive pressure cannot be measured without correction.
  • the central portion of the flexible membrane 120 is formed in a cross shape.
  • the flexible membrane 120 is deformed by pressure, but returns to its original shape when the pressure disappears. In addition, even if it deform
  • the flexible film 120 longer than the housing 110 may be attached to the housing 110 instead of being addictive.
  • a flexible membrane longer than the housing 110 is positioned in the housing 110 with the flexible membrane 120 deformed. Since the flexible membrane 120 is deformed in advance, the flexible membrane 120 can be easily deformed by positive pressure.
  • the diameter of the cross portion of the flexible membrane 120 is constant at the central portion and the end portion of the flexible membrane 120.
  • the diameter may be small at the center and large at the end.
  • the shape of the flexible film 120 is not limited to this, and may be a shape having a large diameter at the center and a large diameter at the end.
  • the flexible membrane 120 may be twisted and stored in the housing 110.
  • the length of the flexible film 120 can be adjusted by the twisting angle.
  • the pressure measuring unit 1100 for measuring positive pressure is provided in the PD (Pre-dialyzer) pressure measuring part 5 or the venous pressure measuring part 11 in FIG.
  • flexible film 120 in the pressure measurement unit according to the fourteenth embodiment is provided with convex part 126 and concave part 127, and concave part 127 of flexible film 120 is possible.
  • the positive pressure inside the flexible film 120 can be easily deformed in the direction outside the cylinder. As a result, the positive pressure can be measured with high accuracy.
  • the concave portion 127 and the convex portion 126 extend along the axial direction from one end of the flexible membrane 120 to the other end, but the concave portion 127 and the convex portion 126 are formed on at least a part of the flexible membrane 120. However, it is not always necessary to extend to the end.
  • the volume of the air chamber is not increased and the pressure measuring portion can be configured in a compact manner.
  • the flexible film 120 in the pressure measurement unit according to the thirteenth embodiment is provided with two convex portions 126 and two concave portions 127, respectively. Different from the flexible membrane 120.
  • the flexible film 120 in the pressure measurement unit according to the fourteenth embodiment is provided with one convex portion 126 and one concave portion 127. Different from the flexible membrane 120.
  • flexible film 120 in the pressure measurement unit according to the sixteenth embodiment is provided with two convex portions 126 and two concave portions 127 as in the sixteenth embodiment. It differs from the flexible film 120 according to the fourteenth embodiment in that a shallow concave portion 127 is formed as compared with the sixteenth embodiment.
  • flexible film 120 in the pressure measurement unit according to the sixteenth embodiment is provided with two convex portions 126 and two concave portions 127 as in the fifteenth embodiment. It differs from the flexible membrane 120 according to the thirteenth embodiment in that the widths of the two concave portions 127 are different.
  • the flexible film 120 in the pressure measurement unit according to the seventeenth embodiment is provided with four convex portions 126 and four concave portions 127 unequally.
  • the most preferred embodiment is the twelfth embodiment (triangular type) in consideration of volume fluctuation and retention.
  • the variation rate tends to be the best.
  • the fluctuation rate is large, so it can be made compact (short).
  • a symmetrical cross section provides a better blood flow and a retention preventing effect.
  • the shape of the joint component 111 on the inlet side and the joint component 112 on the outlet side is different.
  • the joint component 111 can be inserted into the housing 110 after the rib 122 of the flexible membrane 120 is inserted into the groove 111b of the joint component 111. It is a simple shape.
  • a rib 112a for supporting the flexible membrane 120 is provided in the joint component 112 (second joint component) on the outlet side. Furthermore, the presence of the thick film portion 121 of the flexible film 120 prevents the flexible film 120 from being displaced and the sealing performance from being deteriorated.
  • the housing 110 is provided with a convex portion 110a for fitting with the joint component 112.
  • the protrusion 110a is prevented from being fitted and detached from the joint part 112.
  • No convex portion is provided on the side on which the joint component 111 on the inlet side is fitted.
  • a rib 122 is provided on the joint component 111 side on the inlet side, and a thick film portion 121 is provided on the joint component 112 on the outlet side. Yes.
  • the rib 122 protrudes to the inner peripheral side, and the thick film portion 121 protrudes to the outer peripheral side.
  • the joint component 111 on the inlet side is formed with an annular groove 111b for fitting with the rib 122 of the flexible membrane 120.
  • the flexible membrane 120 can be prevented from falling off the joint component 111.
  • the joint part 112 on the outlet side is provided with a rib 112a.
  • the rib 112a is provided in an annular shape, and the rib 112a can be prevented from coming into contact with the thick film portion 121 and the thick film portion 121 falling to the inner peripheral side.
  • the joint part 111 on the inlet side is the first joint part and the joint part on the outlet side is the second joint part, but the inlet side is the second joint part and the outlet side is the first joint part. It may be a part.
  • both the joint component 111 on the inlet side and the joint component 112 on the outlet side are the second joint components.
  • the joint part can be unified with the second joint part to reduce the types of joint parts.
  • the joint component 111 on the inlet side and the joint component 112 on the outlet side may be both used as the second joint component.
  • the arc of recess 127 and the arc of housing 1110 are symmetric with respect to straight line 4000.
  • the straight line 4000 connects one end of the recess 127 and the other end. Since the arc of the recess 127 and the arc of the housing 1110 are symmetrical with respect to the straight line 4000, the flexible film 1120 constituting the recess 127 can smoothly spread to the outer peripheral side.
  • the arc of the recess 127 and the arc of the housing 1110 are asymmetric with respect to the straight line 4000.
  • the straight line 4000 connects one end of the recess 127 and the other end. Since the arc of the recess 127 and the arc of the housing 1110 are asymmetric with respect to the straight line 4000 and the area on the housing 1110 side is larger than the straight line 4000, the recess 127 contacts the housing 1110 even if it expands to the housing 1110 side. I can't. Moreover, since the blood flow path in the flexible membrane 1120 is narrow, blood retention is likely to occur.
  • the arc of the recess 127 and the arc of the housing 1110 are symmetric with respect to the straight line 4000.
  • the straight line 4000 connects one end of the recess 127 and the other end. Since the arc of the recess 127 and the arc of the housing 1110 are symmetrical with respect to the straight line 4000, the flexible film 1120 constituting the recess 127 can smoothly spread to the outer peripheral side.
  • the length of the arc of the deformed recess 127 is short, and it is difficult to receive excessive stress.
  • the volume fluctuation rate of the blood flow path constituted by the flexible membrane 1120 is small, and it is necessary to increase the tube length. As shown in FIGS. 77 and 79, when the width of the convex portion 126 of the flexible membrane 1120 is wide, blood retention is unlikely to occur.
  • the arc of recess 127 and the arc of housing 1110 are asymmetric with respect to straight line 4000.
  • the straight line 4000 connects one end of the recess 127 and the other end. Since the arc of the recess 127 and the arc of the housing 1110 are asymmetric with respect to the straight line 4000 and the area on the housing 1110 side is narrower than the straight line 4000, the recess 127 extends toward the housing 1110 and contacts the housing 1110. At this time, the housing 1110 and the flexible film 1120 may interfere with each other, and extra stress may be generated.
  • the flexible membrane 1120 for positive pressure measurement has a concave shape, and as shown in FIGS. 77, 79 and 80, until the flexible membrane 1120 comes into contact with the housing 1110, it does not elastically deform at a level that affects the measurement. , Pressure error is less likely to occur. Therefore, it is possible to measure with high accuracy.
  • the thickness of the flexible membranes 120 and 1120 is preferably 2 mm or less, more preferably 1 mm so as not to affect the pressure measurement.
  • a pedestal may be provided on the lower surface side of the pressure measuring unit to provide stability.
  • a blood circuit having only a positive pressure measurement unit or a negative pressure measurement unit may be used.
  • a specification for fitting and fixing the joint and the housing may be used, or a specification for bonding and fixing using ultrasonic welding or an adhesive may be used.
  • the pressure measurement unit in this embodiment is suitably provided in the blood pressure removal measurement site 2 in FIG. 1 which is a negative pressure site.
  • the pressure measuring unit 100 includes a housing 110, a joint part 111 as a first joint part, a joint part 112 as a second joint part, and a flexible membrane 120. ing.
  • the housing 110 is provided with a pressure measurement port 140.
  • the joint component 111 is assembled to one end in the axial direction of the housing 110 which is an end portion on the blood introduction side, and the joint component 112 is an axis of the housing 110 which is an end portion on the blood discharge side. It is assembled at the other end of the direction.
  • the housing 110 is substantially cylindrical, and the flexible membrane 120 is also substantially cylindrical, as in the case of the first embodiment.
  • the deformable portion of the flexible membrane 120 has a constant inner diameter and outer diameter in the axial direction, and has a substantially circular cylindrical shape in cross section.
  • the portion of the housing 110 corresponding to the portion also has a constant inner diameter and outer diameter in the axial direction, and has a cylindrical shape with a substantially circular cross section.
  • the housing 110 is hollow, and the space extends from the joint component 111 on the entrance side to the joint component 112 on the exit side.
  • the flexible membrane 120 is disposed in a space within the housing 110.
  • the flexible membrane 120 is provided close to the housing 110 such that the outer peripheral surface thereof faces the inner peripheral surface of the housing 110.
  • the distance between the inner peripheral surface of the housing 110 and the outer peripheral surface of the flexible membrane 120 is in the range of approximately 0 to 2 mm.
  • the distance is in the range of 0.5 mm or more and 1 mm or less, and is 1 mm in the present embodiment.
  • the range in which the flexible membrane 120 can be deformed in the in-cylinder direction is increased. Can be secured.
  • the flexible membrane 120 divides the inside of the housing 110 into a blood chamber 150 and an air chamber 160, and can be deformed in the in-cylinder direction according to the pressure of blood flowing through the blood chamber 150.
  • the flexible membrane 120 has a substantially cylindrical shape as described above in the initial state before flowing blood, and the inflow of blood.
  • a cylindrical portion 120a that is a portion that can be deformed along with, a rib 122 (see FIG. 86) provided at one end thereof, and a thick film portion 121 provided at the other end. Is included.
  • An annular protrusion 121 a that protrudes along the axial direction of the flexible film 120 is provided on the end surface of the thick film portion 121.
  • the flexible film 120 can be formed using various materials as will be described later, but is preferably formed by injection molding using a resin material. As the resin material, a styrene elastomer is particularly used. It can be suitably used.
  • the flexible membrane 120 is disposed inside the flexible membrane 120 when the blood pump 4 (see FIG. 1), which is a pumping segment, operates.
  • the blood pump 4 see FIG. 1
  • the pressure of the blood chamber 150 becomes lower than the pressure of the air chamber 160 by the action of the blood pump 4 described above, and accordingly, in the cylinder Deform in the direction.
  • the cylindrical portion 120a undergoes a shape change such that three recess portions 128 extending in parallel with each other are formed.
  • the three recessed portions 128 are formed substantially evenly along the circumferential direction of the cylindrical portion 120a, and each of them is formed so as to extend along the axial direction of the cylindrical portion 120a.
  • the three depressions 128 naturally occur with a pressure difference between the blood chamber 150 and the air chamber 160 by satisfying a condition derived from a verification test described later.
  • FIGS. 84A1 and 84B1 show the shape change before and after the inflow of blood in the vicinity of the above-described one end of the flexible membrane (that is, in the vicinity of the blood inflow side).
  • 84 (A2) and (B2) show the shape change before and after the inflow of blood at the axial central portion of the flexible membrane.
  • FIGS. 84 (A3) and (B3) show the shape of the flexible membrane. The figure shows the shape change before and after the inflow of blood in the vicinity of the other end (that is, in the vicinity of the blood discharge side).
  • the flexible membrane 120 As shown in FIGS. 84 (A1) to (A3), the flexible membrane 120, which was cylindrical in the initial state before the inflow of blood, has a structure as shown in FIGS. 84 (B1) to (B3). At the time of pressure measurement after inflow, it is deformed so as to be recessed toward the in-cylinder direction (that is, in the direction of the arrow shown in the drawing) at three circumferential positions. Along with this, the volume of the blood chamber 150 decreases and the volume of the air chamber 160 increases. At that time, since the flexible membrane 120 is disposed close to the inner peripheral surface of the housing 110 in the initial state before blood flows in, a large deformation margin of the flexible membrane 120 can be secured, and the blood chamber A large variable volume of 150 can be secured.
  • the deformation of the flexible film 120 is maximum at the central portion in the axial direction of the flexible film 120, is minimum at both ends of the flexible film 120, and both ends of the flexible film 120 in the axial direction. Gradually increases from the center toward the center. Therefore, an extreme change in the cross-sectional area along the axial direction does not occur inside the flexible film 120, so that the retention of blood can be prevented.
  • the recesses 128 are formed substantially evenly along the circumferential direction of the flexible film 120. Therefore, the flexible film 120 is deformed into a substantially triangular shape whose cross section is recessed on each side. As a result, a gap (portion R in the drawing) always remains at the center of the cross section, so that the flexible membrane 120 can be prevented from being blocked and blood flow can be ensured. You can also.
  • the ratio X / Y when the ratio X / Y is 3.0, the deformability of the flexible film is low, and when the ratio X / Y is 4.0 or more and 10.0 or less. It was confirmed that the deformability of the flexible film was increased.
  • the ratio X / Y when the ratio X / Y is 3.0 or more and 8.0 or less, the deformed shape of the flexible film has a substantially triangular shape in which the cross section is recessed on each side (that is, the three recesses described above).
  • the ratio X / Y is 8.0 or more and 10.0 or less, it is confirmed that the flexible film is almost completely occluded. It was done.
  • the film thickness of the flexible film that is, the thickness indicated by T in FIG. 82A
  • the Shore A hardness of the flexible film in the above verification test are further described. The same verification was performed with respect to the above. As a result, it is confirmed that when the film thickness T satisfies the condition of 0.2 mm ⁇ T ⁇ 0.6 mm, the above-described three depressions 128 appear with good reproducibility, and the Shore A hardness is 20 or more and 60. In the following cases, it was confirmed that the above-described three depressions 128 appeared with good reproducibility.
  • the joint part 111 on the inlet side is provided with an annular groove 111b extending in the circumferential direction at a predetermined position on the outer peripheral surface.
  • An annular rib 122 that protrudes in the in-cylinder direction and extends in the circumferential direction is provided at the portion (that is, the end portion on the blood inflow side).
  • the rib 122 of the flexible membrane 120 is fitted in the groove 111 b of the joint component 111.
  • the joint component 111 is fitted to the above-described one end of the housing 110 (that is, the end portion on the blood introduction side).
  • the vicinity of the one end portion of the flexible membrane 120 is in contact with the inner peripheral surface of the housing 110 and the outer peripheral surface of the joint component 111, and is sandwiched between the housing 110 and the joint component 111. ing.
  • An annular convex portion 110c that protrudes radially inward is provided at a predetermined position on the inner peripheral surface of the housing 110, and an annular shape is provided at a predetermined position on the outer peripheral surface of the joint component 111 on the inlet side.
  • a concave portion 111c having a shape is provided.
  • An annular convex portion 110 c provided on the housing 110 is fitted into an annular concave portion 111 c provided on the joint component 111. Thereby, it is restricted that the housing 110 and the joint part 111 move relatively in the axial direction, and the drop-off is prevented.
  • an anti-rotation mechanism 170 is provided at a portion on the inner side in the axial direction from the portion where the engaging portion including the annular convex portion 110c and the annular concave portion 111c is located.
  • the anti-rotation mechanism 170 is constituted by a knurling composed of an uneven portion provided on the inner peripheral surface of the housing 110 and an uneven portion provided on the outer peripheral surface of the joint component 111 so as to fit therewith.
  • Each of these concavo-convex portions is arranged such that each of the concavo-convex portions extends along the axial direction, and the concavo-convex portions are alternately positioned along the circumferential direction, whereby the concavo-convex portions engage with each other. This restricts relative rotation of the housing 110 and the joint part 111.
  • the joint part 112 on the outlet side overlaps with the outer peripheral surface of the other end of the housing 110 (that is, the end on the blood discharge side) and the other end of the housing 110 described above.
  • a covering portion 112b is provided so as to cover the end surface of the flexible membrane 120, and the other end portion (that is, the end portion on the blood discharge side) of the flexible membrane 120 protrudes radially outward and in the circumferential direction.
  • An annular thick film portion 121 extending along the line is provided.
  • the covering portion 112b of the joint part 112 is fitted to the other end of the housing 110 described above.
  • the thick film portion 121 of the flexible membrane 120 is in contact with the end surface of the other end of the housing 110 described above and the inner surface of the covering portion 112b of the joint component 112, and the housing 110 and the joint component 112 It is pinched.
  • An annular convex portion 110d that protrudes radially inward is provided at a predetermined position on the inner peripheral surface of the housing 110, and an annular shape is provided at a predetermined position on the outer peripheral surface of the joint part 112 on the outlet side.
  • a concave portion 112d having a shape is provided.
  • An annular convex portion 110 d provided on the housing 110 is fitted into an annular concave portion 112 d provided on the joint component 112. Thereby, it is restricted that the housing 110 and the joint component 112 move relatively in the axial direction, and the drop-off is prevented.
  • an anti-rotation mechanism 180 is provided at a portion on the inner side in the axial direction from the portion where the engaging portion including the annular convex portion 110d and the annular concave portion 112d is located.
  • the rotation preventing mechanism 180 is configured by a knurling composed of an uneven portion provided on the inner peripheral surface of the housing 110 and an uneven portion provided on the outer peripheral surface of the joint part 112 so as to fit therewith.
  • Each of these concavo-convex portions is arranged such that each of the concavo-convex portions extends along the axial direction, and the concavo-convex portions are alternately positioned along the circumferential direction, whereby the concavo-convex portions engage with each other. This restricts relative rotation of the housing 110 and the joint part 112.
  • the above-described one end portion of the flexible membrane 120 is fixed by being sandwiched between the housing 110 and the joint component 111 in the radial direction, and the above-described other end portion of the flexible membrane 120 is fixed to the shaft. It is fixed by being sandwiched between the housing 110 and the joint part 112 in the direction.
  • annular protrusion 121a (see FIG. 83) provided on the thick film portion 121 of the flexible membrane 120 is crushed by the inner surface of the covering portion 112b of the joint component 112, and the sealing performance of the portion is thereby increased. It is secured. Also, as shown in FIG. 87, an annular rib 119 protrudes outwardly in the axial direction on the end face of the other end of the housing 110 described above, and the rib 119 is the thickness of the flexible film 120. By biting into the film part 121, the sealing performance of the part is ensured.
  • the joint part 111 is assembled to the flexible film 120 by fitting the rib 122 of the flexible film 120 into the groove 111b of the joint part 111. This is inserted into the housing 110 as shown in FIG. At that time, the flexible membrane 120 and the joint component 111 are press-fitted into the above-described one end of the housing 110 from the inside of the housing.
  • the joint part is connected to the other end of the housing 110 so that the thick film portion 121 of the flexible film 120 is sandwiched between the end face of the other end of the housing 110. 112 is inserted.
  • the convex and concave portions constituting the knurling as the rotation preventing mechanism 180 described above are meshed with each other, and the annular convex portion 110d is fitted into the annular concave portion 112d, whereby the flexible film is formed.
  • the joint component 112 is fixed to the housing 110 without causing a positional shift of the 120.
  • the pressure measurement unit 100 can be manufactured by a very simple assembly method, and thus the manufacturing cost can be reduced. It becomes possible.
  • the assembly structure on one end side of the housing 110 is in accordance with the assembly structure shown in FIG.
  • the other end of the housing 110 overlaps with the outer peripheral surface of the outlet-side joint component 112, and the joint component.
  • a covering portion 110b is provided to cover the end surface on the inlet side of 112, and the other end portion (that is, the end portion on the blood discharge side) of the flexible membrane 120 projects outward in the radial direction.
  • an annular thick film portion 121 extending along the circumferential direction is provided.
  • the joint part 112 is fitted in the covering portion 110b of the housing 110.
  • the thick film portion 121 of the flexible membrane 120 is in contact with the axial end surface of the housing 110 on the inner side of the above-described covered portion 110 b and the end surface on the inlet side of the joint part 112. And the joint part 112.
  • An annular convex portion 110d that protrudes radially inward is provided at a predetermined position on the inner peripheral surface of the cover 110b of the housing 110, and a predetermined position on the outer peripheral surface of the joint component 112 on the outlet side. Is provided with an annular recess 112d.
  • An annular convex portion 110 d provided on the housing 110 is fitted into an annular concave portion 112 d provided on the joint component 112. Thereby, it is restricted that the housing 110 and the joint component 112 move relatively in the axial direction, and the drop-off is prevented.
  • an anti-rotation mechanism 180 is provided at a portion on the outer side in the axial direction from a portion where the engaging portion including the annular convex portion 110d and the annular concave portion 112d is located.
  • the rotation preventing mechanism 180 is configured by a knurling composed of an uneven portion provided on the inner peripheral surface of the housing 110 and an uneven portion provided on the outer peripheral surface of the joint part 112 so as to fit therewith.
  • Each of these concavo-convex portions is arranged such that each of the concavo-convex portions extends along the axial direction, and the concavo-convex portions are alternately positioned along the circumferential direction, whereby the concavo-convex portions engage with each other. This restricts relative rotation of the housing 110 and the joint part 112.
  • the pressure measuring unit in this embodiment is suitably provided in the PD (Pre-dialyzer) pressure measuring part 5 or the venous pressure measuring part 11 in FIG.
  • the pressure measuring unit 1100 includes a housing 1110, a joint part 111 as a first joint part, a joint part 112 as a second joint part, and a flexible membrane 1120. ing.
  • the housing 1110 is provided with a pressure measurement port 140.
  • the joint part 111 is assembled at one end in the axial direction of the housing 1110 which is an end part on the blood introduction side, and the joint part 112 is an axis of the housing 1110 which is an end part on the blood discharge side. It is assembled at the other end of the direction.
  • the housing 1110 has a substantially cylindrical shape
  • the flexible film 1120 has three concave portions 127 extending parallel to each other on the surface thereof. It is cylindrical.
  • the inside of the housing 1110 is a cavity, and the space extends from the joint component 111 on the inlet side to the joint component 112 on the outlet side.
  • the flexible membrane 1120 is disposed in a space inside the housing 1110.
  • the flexible membrane 1120 divides the inside of the housing 1110 into a blood chamber 150 and an air chamber 160, and can be deformed in an out-cylinder direction according to the pressure of blood flowing through the blood chamber 150.
  • the flexible membrane 1120 has three concave portions 127 extending parallel to each other as described above.
  • a cylindrical portion 120b that is a portion that can be deformed with the inflow of blood, and a rib 122 (see FIG. 97) provided at one end thereof, And a thick film portion 121 provided at the other end.
  • An annular protrusion 121 a that protrudes along the axial direction of the flexible film 1120 is provided on the end face of the thick film portion 121.
  • the flexible film 1120 can be formed using various materials as will be described later, but is preferably formed by injection molding using a resin material. As the resin material, a styrene elastomer is particularly used. It can be suitably used.
  • the flexible membrane 1120 is formed in the flexible membrane 1120 by operating the blood pump 4 (see FIG. 1), which is a pumping segment.
  • the blood pump 4 see FIG. 1
  • the pressure of the blood chamber 150 becomes higher than the pressure of the air chamber 160 by the action of the blood pump 4 described above. Deform in the direction.
  • the cylindrical portion 120b undergoes a shape change so that the three concave portions 127 extending in parallel with each other are reduced or eliminated so as to be deformed into a shape closer to a cylindrical shape.
  • the shape changes so that the three concave portions 127 extending in parallel with each other disappear will be described as an example.
  • FIGS. 94A1 and 94B1 show the shape change before and after the inflow of blood in the vicinity of one end of the flexible membrane described above (that is, in the vicinity of the blood inflow side).
  • 94 (A2) and (B2) show the shape change before and after the inflow of blood at the axial central portion of the flexible membrane.
  • FIGS. 94 (A3) and (B3) show the shape of the flexible membrane. The figure shows the shape change before and after the inflow of blood in the vicinity of the other end (that is, in the vicinity of the blood discharge side).
  • the flexible membrane 1120 has a substantially triangular shape in which the cross section is recessed on each side before blood flows.
  • the cylinder of the flexible film 1120 at both ends of the cylindrical part 120b of the flexible film 1120 are larger than the in-cylinder cross-sectional area of the flexible membrane 1120 at the center of the cylindrical portion 120b of the flexible membrane 1120. Further, the cross-sectional area of the flexible film 1120 in the cylinder gradually decreases from the both end portions toward the central portion.
  • FIGS. 94 (A1) to (A3) in the initial state before the inflow of blood, the flexible membrane 1120 having a cylindrical shape having three recesses 127 extending in parallel to each other is shown in FIG. 94 (B1).
  • the portion defining these three recesses expands in the direction toward the outside of the cylinder (that is, in the direction of the arrow shown in the figure). Deform.
  • the volume of the blood chamber 150 increases and the volume of the air chamber 160 decreases.
  • an arbitrary section including a cylindrical portion 120b which is a cross section orthogonal to the axial direction of the housing 1110 and is a deformable portion of the flexible membrane 1120 is used.
  • the length of the outer peripheral edge of the tubular portion 120b of the flexible membrane 1120 is the length of the inner peripheral edge of the housing 1110 (the length indicated by reference numeral L0 in the figure). Or less) (ie, L1 ⁇ L0).
  • the number of the recesses 127 formed in the flexible film 1120 extending in parallel with each other is 2 to 4.
  • the retention of blood can be prevented while securing a variable volume of the blood chamber 150 by satisfying the above-described condition of L1 ⁇ L0.
  • the blood chamber 150 can be changed while satisfying the above-described condition of L1 ⁇ L0. Since it is difficult to secure a sufficient volume, it is difficult to sufficiently prevent blood from staying.
  • the flexible membrane 1120 in the initial state, is configured such that the inner peripheral surface thereof is non-contact in any part. That is, in the case where the concave portions 127 extending in parallel with each other are formed in the tubular flexible membrane 1120, a part of the inner peripheral surface of the flexible membrane 1120 and a part of the inner peripheral surface different from each other. Although it is possible to make a configuration in which a part of the peripheral surface is brought into contact, such a configuration is not preferable. This is because, when the inner peripheral surfaces of the flexible film 1120 are in contact with each other at any part, there is a possibility that blood stays in the part.
  • the distance of the space between the concave portions 127 formed in the flexible film 1120 extending in parallel with each other is secured to about 0.5 to 2.0 mm.
  • the distance is secured to 1.0 mm.
  • the joint component 111 on the inlet side is provided with an annular groove 111b extending in the circumferential direction at a predetermined position on the outer peripheral surface, and the above-described one end of the flexible membrane 1120 is provided.
  • An annular rib 122 that protrudes radially inward and extends in the circumferential direction is provided at the portion (that is, the end portion on the blood inflow side).
  • the rib 122 of the flexible membrane 1120 is fitted in the groove 111b of the joint component 111.
  • the joint component 111 is fitted to the above-described one end of the housing 1110 (that is, the end portion on the blood introduction side).
  • the vicinity of one end of the flexible membrane 1120 described above is in contact with the inner peripheral surface of the housing 1110 and the outer peripheral surface of the joint component 111, and is sandwiched between the housing 1110 and the joint component 111. ing.
  • An annular convex portion 110c that protrudes radially inward is provided at a predetermined position on the inner peripheral surface of the housing 1110, and an annular shape is provided at a predetermined position on the outer peripheral surface of the joint component 111 on the inlet side.
  • a concave portion 111c having a shape is provided.
  • An annular convex portion 110 c provided on the housing 1110 is fitted into an annular concave portion 111 c provided on the joint component 111. Thereby, it is restricted that the housing 1110 and the joint part 111 move relatively in the axial direction, and the drop-off is prevented.
  • an anti-rotation mechanism 170 is provided at a portion on the inner side in the axial direction from the portion where the engaging portion including the annular convex portion 110c and the annular concave portion 111c is located.
  • the anti-rotation mechanism 170 is constituted by a knurling composed of an uneven portion provided on the inner peripheral surface of the housing 1110 and an uneven portion provided on the outer peripheral surface of the joint component 111 so as to fit therewith.
  • Each of these concavo-convex portions is arranged such that each of the concavo-convex portions extends along the axial direction, and the concavo-convex portions are alternately positioned along the circumferential direction, whereby the concavo-convex portions engage with each other. This restricts relative rotation of the housing 1110 and the joint part 111.
  • the joint component 112 on the outlet side overlaps with the outer peripheral surface of the other end of the housing 1110 (that is, the end on the blood discharge side) and the other end of the housing 1110 described above.
  • a covering portion 112b is provided to cover the end surface of the flexible membrane 1120, and the other end portion (that is, the end portion on the blood discharge side) of the flexible membrane 1120 protrudes radially outward and circumferentially.
  • An annular thick film portion 121 extending along the line is provided.
  • the covering portion 112b of the joint part 112 is fitted to the other end of the housing 1110 described above.
  • the thick film portion 121 of the flexible membrane 1120 is in contact with the above-described end surface of the other end of the housing 1110 and the inner surface of the covering portion 112b of the joint component 112, and the housing 1110 and the joint component 112 It is pinched.
  • An annular convex portion 110d that protrudes radially inward is provided at a predetermined position on the inner peripheral surface of the housing 1110, and an annular shape is provided at a predetermined position on the outer peripheral surface of the joint part 112 on the outlet side.
  • a concave portion 112d having a shape is provided.
  • An annular convex portion 110 d provided on the housing 1110 is fitted in an annular concave portion 112 d provided on the joint component 112. Thereby, it is restricted that the housing 1110 and the joint part 112 move relatively in the axial direction, and the drop-off is prevented.
  • an anti-rotation mechanism 180 is provided at a portion on the inner side in the axial direction from the portion where the engaging portion including the annular convex portion 110d and the annular concave portion 112d is located.
  • the rotation prevention mechanism 180 is configured by a knurling composed of an uneven portion provided on the inner peripheral surface of the housing 1110 and an uneven portion provided on the outer peripheral surface of the joint part 112 so as to fit therewith.
  • Each of these concavo-convex portions is arranged such that each of the concavo-convex portions extends along the axial direction, and the concavo-convex portions are alternately positioned along the circumferential direction, whereby the concavo-convex portions engage with each other. This restricts the relative rotation of the housing 1110 and the joint part 112.
  • the above-described one end portion of the flexible membrane 1120 is fixed by being sandwiched between the housing 1110 and the joint component 111 in the radial direction, and the above-described other end portion of the flexible membrane 1120 is fixed to the shaft. It is fixed by being sandwiched between the housing 1110 and the joint part 112 in the direction.
  • annular protrusion 121a (see FIG. 93) provided on the thick film part 121 of the flexible film 1120 is crushed by the inner surface of the covering part 112b of the joint part 112, and the sealing performance of the part is thereby increased. It is secured.
  • an annular rib 119 protrudes outward from the end surface of the other end of the housing 1110 in the axial direction, and the rib 119 has a thickness of the flexible film 1120.
  • the joint part 111 is assembled to the flexible film 1120 by fitting the rib 122 of the flexible film 1120 into the groove 111b of the joint part 111. This is inserted into the housing 1110 as shown in FIG. At that time, the flexible membrane 1120 and the joint part 111 are press-fitted into the above-described one end of the housing 1110 from the inside of the housing.
  • the concave and convex portions constituting the knurling as the anti-rotation mechanism 170 described above are meshed with each other, and the annular convex portion 110c is fitted into the annular concave portion 111c, whereby the joint to the housing 1110 is obtained.
  • the component 111 is fixed.
  • the joint part is connected to the other end of the housing 1110 so that the thick film portion 121 of the flexible film 1120 is sandwiched between the end surface of the other end of the housing 1110. 112 is inserted.
  • the convex and concave portions constituting the knurling as the rotation preventing mechanism 180 described above are meshed with each other, and the annular convex portion 110d is fitted into the annular concave portion 112d, whereby the flexible film is formed.
  • the joint component 112 is fixed to the housing 1110 without causing a position shift of the 1120.
  • the pressure measurement unit 1100 can be manufactured by a very simple assembly method, so that the manufacturing cost can be reduced. It becomes possible.
  • the assembly structure on one end side of the housing 1110 conforms to the assembly structure shown in FIG.
  • the other end of the housing 1110 overlaps with the outer peripheral surface of the joint component 112 on the outlet side.
  • a covering portion 110b is provided to cover the end surface on the inlet side of 112, and the other end portion (that is, the end portion on the blood discharge side) of the flexible membrane 120 projects outward in the radial direction.
  • an annular thick film portion 121 extending along the circumferential direction is provided.
  • the joint part 112 is fitted in the covering portion 110b of the housing 1110.
  • the thick film portion 121 of the flexible membrane 120 is in contact with the axial end surface of the housing 1110 on the inner side of the above-described covered portion 110b and the end surface on the inlet side of the joint component 112, and these housings 1110 are in contact with each other.
  • An annular convex portion 110d that protrudes radially inward is provided at a predetermined position on the inner peripheral surface of the cover portion 110b of the housing 1110, and a predetermined position on the outer peripheral surface of the joint part 112 on the outlet side. Is provided with an annular recess 112d.
  • An annular convex portion 110 d provided on the housing 1110 is fitted in an annular concave portion 112 d provided on the joint component 112. Thereby, it is restricted that the housing 1110 and the joint part 112 move relatively in the axial direction, and the drop-off is prevented.
  • an anti-rotation mechanism 180 is provided at a portion on the outer side in the axial direction from a portion where the engaging portion including the annular convex portion 110d and the annular concave portion 112d is located.
  • the rotation prevention mechanism 180 is configured by a knurling composed of an uneven portion provided on the inner peripheral surface of the housing 1110 and an uneven portion provided on the outer peripheral surface of the joint part 112 so as to fit therewith.
  • Each of these concavo-convex portions is arranged such that each of the concavo-convex portions extends along the axial direction, and the concavo-convex portions are alternately positioned along the circumferential direction, whereby the concavo-convex portions engage with each other. This restricts the relative rotation of the housing 1110 and the joint part 112.
  • the pressure measuring unit 100 for measuring negative pressure and the pressure measuring unit 1100 for measuring positive pressure have been described separately, but the pressure measuring units 100 and 1100 in the present application are included in one blood circuit. It may be provided.
  • the blood circuit includes a pressure measuring unit 1100 (Embodiments 11-17, 20, and 22) as a first measuring unit provided downstream of the pumping segment to which blood is pressurized, and the pumping segment. Both are provided with a pressure measurement unit 100 (Embodiments 1-10, 18, 19, 21) as a second measurement unit provided on the upstream side.
  • the gap between the flexible membrane 1120 and the housing 1110 is larger than the gap between the flexible membrane 120 and the housing 110.
  • the flexible films 120 and 1120 preferably have a Shore A hardness of 80 or less.
  • the constituent material is not particularly limited.
  • various rubber materials such as natural rubber, butyl rubber, isoprene rubber, butadiene rubber, styrene-butadiene rubber, and silicone rubber, polyurethane, polyester, polyamide, olefin, styrene
  • thermoplastic elastomers such as polyvinyl chloride, polyethylene, polypropylene, ethylene-propylene copolymers, ethylene-vinyl acetate copolymers, polyolefins such as cross-linked ethylene-vinyl acetate copolymers, polyesters such as polyethylene terephthalate
  • various resins such as polyurethane and polyamide, which can be used alone or in any combination.
  • the molding method is not particularly limited and includes injection molding, extrusion molding, compression molding, and transfer molding, and an appropriate method is used. Silicone rubber is easy to produce for extrusion molding, and styrene elastomer is easy to produce for injection molding.
  • the negative pressure tube is a tube that is deformed in the in-cylinder direction.
  • the deformation in the in-cylinder direction and the in-cylinder deformation in the in-cylinder direction are less likely to generate elastic force, so the negative pressure positive tube can be accurately measured even in a cylindrical shape with a circular cross section. is there.
  • the negative pressure tube As for the negative pressure tube, the negative pressure tube according to the above embodiment has a circular cross section. In the case of this embodiment, only negative pressure is measured with a negative pressure tube. Since conventional tubes measure negative pressure and positive pressure, it is necessary to expand outward from the cylinder when measuring positive pressure, and when the diameter is small, the tube cannot sufficiently expand. Therefore, there has been a problem that the diameter becomes large. In contrast, the negative pressure tube according to the embodiment can be reduced in diameter. It is possible to prevent fluid turbulence in various places, suppress interference between fluids, and reduce pressure loss.
  • the pressure measuring unit for measuring negative pressure according to the embodiment has the following effects as a point superior to Patent Document 1 in addition to downsizing.
  • the negative pressure measurement range is large because there is no large space between the housing and the membrane.
  • the central part is not swelled like the housing of Patent Document 1, so that the retention of blood hardly occurs.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Cardiology (AREA)
  • Vascular Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Medical Informatics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Physiology (AREA)
  • Hematology (AREA)
  • Anesthesiology (AREA)
  • Dentistry (AREA)
  • Ophthalmology & Optometry (AREA)
  • External Artificial Organs (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

 圧力測定装置(3,6,12)と接続される圧力測定部を有する血液回路は、ポンピングセグメント(4)の下流側に設けられる第一測定部(5,11)と、ポンピングセグメントの上流側に設けられる第二測定部(2)とを備える。第一測定部(5,11)は、筒状の第一ハウジングと、第一ハウジング内に設けられた筒状の第一可撓性膜とを備える。第二測定部(2)は、筒状の第二ハウジングと、第二ハウジング内に設けられた筒状の第二可撓性膜とを備える。血液を流す前の初期状態においては、第一可撓性膜と第一ハウジングとの間の隙間が、第二可撓性膜と第二ハウジングとの間の隙間よりも大きい。

Description

圧力測定部を有する血液回路
 この発明は、圧力測定部を有する血液回路に関して、より特定的には、可撓性膜を利用した圧力測定部を有する血液回路に関するものである。
 従来、血液回路は、たとえば実開昭58-153841号公報(特許文献1)、特開昭61-143069号公報(特許文献2)、米国特許第6526357号明細書(特許文献3)、特開平5-23393号公報(特許文献4)、特開平9-24026号公報(特許文献5)および米国特許第8092414号明細書(特許文献6)において開示されている。
実開昭58-153841号公報 特開昭61-143069号公報 米国特許第6526357号明細書 特開平5-23393号公報 特開平9-24026号公報 米国特許第8092414号明細書
 特許文献1に記載の血液回路には、圧力検知チャンバが設けられる。圧力検知チャンバは、可撓性膜を有しており、可撓性膜はチャンバ内を2つの空間に分割する。流体管路は、一方の空間に連通し、一方の空間は他方の空間から隔離されている。他方の空間が圧力測定装置と接続される。
 特許文献1のように1つの膜で陽圧・陰圧を測定しようとすると膜の変動可能な容積が必然的に大きくなり、圧力測定部自体のサイズが大きくなってしまうという問題があった。
 そこで、この発明は上記の問題点を解決するためになされたものであり、高精度で血圧を測定することが可能な血液回路を提供することを目的とする。
 この発明の1つの局面に従った血液回路は、圧力測定装置と接続される圧力測定部を有する血液回路であって、血液が加圧されるポンピングセグメントの下流側に設けられる第一測定部と、ポンピングセグメントの上流側に設けられる第二測定部とを備え、第一測定部は、筒状の第一ハウジングと、筒状の第一ハウジング内に設けられた筒状の第一可撓性膜とを備え、第一可撓性膜の筒内に血液を流し、血液の圧力に応じて第一可撓性膜が変位することで血液の圧力変動を測定することができ、第二測定部は、筒状の第二ハウジングと、筒状の第二ハウジング内に設けられた筒状の第二可撓性膜とを備え、第二可撓性膜の筒内に血液を流し、血液の圧力に応じて第二可撓性膜が変位することで血液の圧力変動を測定することができ、血液を流す前の初期状態において、第一可撓性膜と第一ハウジングとの間の隙間は、第二可撓性膜と第二ハウジングとの間の隙間よりも大きい。
 このように、筒状の可撓性部膜を用いることで、可撓性膜の変形可能な部分を軸方向に長くすることができるため、血液の滞留が生じ難い構成とすることができる。また、このように、圧力測定部を陽圧測定用と陰圧測定用とで隙間容積が異なる構成にすることで、圧力測定部を小型化することができる。
 圧力測定部が小型化されることで、取り回し改善、輸送コストや樹脂削減などのコスト効果が見込める。
 また、筒状の可撓性膜が小型化されることで、可撓性膜と血液の接触面積が小さくなり、摩擦による圧力損失が減少される。従来構造品に比べ精度よく圧力変動を測定することができる。なお、圧力損失が大きい場合、ライン上の圧力と測定部上の圧力とが変わってしまい、ワースト圧力値であるポンプ付近のライン上の圧力値と圧力測定部によって測定される圧力値との差が大きくなってしまったり、患者に戻される流量が低下してしまったりする。
 さらに、従来構造品に比べ筒状の可撓性膜の断面積が小さくできるため、血液の滞留を減少させることができる。
 好ましくは第一可撓性膜は、第一ハウジングとの間に隙間を形成して設けられた筒状で少なくとも一部の断面が非円形部分を備え、第一可撓性膜の筒内に血液を流し、血液の圧力に応じて第一可撓性膜の非円形部分が筒外方向に変形して第一ハウジングとの間の隙間を減少させることで血液の圧力変動を測定することができ、第二可撓性膜はハウジングに近接して設けられている。
 このように構成された圧力測定部を有する血液回路では、断面が非円形の第一可撓性膜を有する第一測定部で陽圧を測定し、第二ハウジングに近接する第二可撓性膜を有する第二測定部で陰圧を測定する。各々の可撓性膜を陽圧および陰圧測定に適した形状とすることで、一つの可撓性膜で陽圧および陰圧を測定する場合と比較して、精度よく圧力変動を測定することができる。円形断面からなる筒状可撓性膜の場合、弾性変形でしか膨らまない。すると、弾性力が液室の圧力を一部吸収してしまうので、圧力誤差が生じてしまう。非円形断面を少なくとも一部有する筒状可撓性膜であれば、このような圧力誤差を抑えることができる。さらに、陰圧測定用圧力測定部における筒状可撓性膜とハウジングとが近接していることで、圧力測定部のサイズを極力抑えることができる。圧力誤差とは、弾性力による圧力吸収により実際の圧力と違う圧力が出てしまうことをいう。圧力損失とは、流路内で流体と何かが干渉し合い、ライン上の圧力と圧力測定部上の圧力とが異なってしまうことをいう。
 この発明のさらに別の局面に従った血液回路は、圧力測定装置と接続される圧力測定部を有する血液回路であって、筒状のハウジングと、筒状のハウジング内にハウジングに近接して設けられた筒状の可撓性膜とを備え、可撓性膜の筒内に血液を流し、血液の圧力に応じて可撓性膜が筒内方向に変形してハウジングとの間に隙間を増加させることで血液の圧力変動を測定することができる。
 このように構成された圧力測定部を有する血液回路は、可撓性膜がハウジングに近接しているため、ハウジングをコンパクトにすることができる。近接とは、密着或いは若干離れている状態を示す。さらに、陰圧測定において、精度よく陰圧を測定することができる。
 好ましくは、可撓性膜は、血液を流す前の初期状態において、軸方向に一定の内径および外径を有する円筒状である。
 このように構成された圧力測定部を有する血液回路は、血液に対する流動抵抗が小さくなり、血液の滞留が防止できることになる。
 好ましくは、可撓性膜は、血液を流す前の初期状態において、断面形状が略真円形状であり、かつ、ハウジングは、軸方向に一定の内径および外径を有する断面形状が略真円形状の円筒状である。
 このように構成された圧力測定部を有する血液回路は、血液の滞留を防止しつつ圧力測定部が可能な限り小型化されたものとなる。
 好ましくは、可撓性膜の変形可能な部分の血液を流す前の初期状態における軸方向長さをXとし、可撓性膜の変形可能な部分の血液を流す前の初期状態における外径をYとした場合に、軸方向長さXおよび外径Yは、4.0≦X/Y≦8.0の条件を満たし、可撓性膜の変形可能な部分の血液を流す前の初期状態における厚みをTとした場合に、厚みTは、0.2mm≦T≦0.6mmの条件を満たし、可撓性膜のショアA硬度は、20以上60以下である。
 このように構成された圧力測定部を有する血液回路は、可撓性膜の内部を血液が流れるに際して、円筒状の可撓性膜が筒内方向に向けて変位することで、その断面が各辺が凹んだ略三角形状に変形することになるため、変動可能な容積が大きく確保できる。また、可撓性膜が上記略三角形状の断面を有するように変形することで、その断面における中心部において必ず隙間が残ることになるため、可撓性膜が閉塞されてしまうことが防止でき、血液の流れを確保することができる。
 好ましくは、ハウジングの軸方向の一端に組付けられた第一ジョイント部品と、ハウジングの軸方向の他端に組付けられた第二ジョイント部品とをさらに備えており、第一ジョイント部品および第二ジョイント部品の少なくとも一方は、筒状の可撓性膜の端部をハウジングとによって軸方向に挟み込むことで固定している。
 このように構成された圧力測定部を有する血液回路にあっては、可撓性膜の少なくとも一方の端部が軸方向において圧縮されることになるため、当該部分においてシール性が確保できる。また、可撓性膜の当該端部を径方向に圧縮して固定した場合に比べ、少なくとも当該端部においていわゆる無理嵌めを行なう必要がなくなり、ハウジングおよび第一ジョイント部品ならびに第二ジョイント部品に対する可撓性膜の組付け位置に位置ずれが生じるリスクを低減することができる。
 好ましくは、第一ジョイント部品は、筒状の可撓性膜の一方の端部をハウジングとによって軸方向に挟み込むことで固定しており、第二ジョイント部品は、筒状の可撓性膜の他方の端部をハウジングとによって径方向に挟み込むことで固定している。
 このように構成された圧力測定部を有する血液回路は、その製造の際に、可撓性膜の一方の端部に第一ジョイント部品を組付けた状態でこれをハウジングに圧入し、さらにその後、第二ジョイント部品をハウジングに組付けるという簡便な方法にて組み立てができるものとなるため、製造コストの削減が可能になる。
 この発明のさらに別の局面に従った圧力測定部を有する血液回路は、圧力測定装置と接続される圧力測定部を有する血液回路であって、筒状のハウジングと、筒状のハウジング内にハウジングとの間に隙間を形成して設けられた筒状で少なくとも一部の断面が非円形の可撓性膜と、を備え、可撓性膜の筒内に血液を流し、血液の圧力に応じて可撓性膜の非円形部分が筒外方向に変形してハウジングとの間の隙間を減少させることで血液の圧力変動を測定することができる。
 このように構成された血液回路では、可撓性膜の断面が非円形状であるため、当該非円形部分が略円形となるように筒外方向に変形することになる。その際、当該構成を採用することにより、断面が真円形状の円筒状の可撓性膜より強度が低下して可撓性膜を筒外方向へ変形しやすくすることができる。その結果、可撓性膜が容易に筒外方向に変形し、微小な圧の変化を精度よく測定することができる。
 好ましくは、可撓性膜の表面には複数の凹部が形成されており、複数の凹部が互いに平行に延びる。
 このように構成された圧力測定部を有する血液回路は、血液に対する流動抵抗が小さくなり、血液の滞留が防止できることになる。
 好ましくは、血液を流す前の初期状態において、ハウジングの軸方向と直交する断面であってかつ可撓性膜の変形可能な部分を含む任意の断面において、可撓性膜の変形可能な部分の外周縁の長さは、ハウジングの内周縁の長さと同じかそれ以下である。
 このように構成された圧力測定部を有する血液回路は、可撓性膜の内部を血液が流れることによって可撓性膜の変形可能な部分が筒外方向に向けて変形することで略円筒状になるため、変動可能な容積が大きく確保できる。また、可撓性膜の変形が可撓性膜自体およびハウジングによって阻害されてしまうことが防止できるため、可撓性膜がスムーズに略円筒状に変形することになり、血液の滞留を防止することができる。
 好ましくは、互いに平行に延びる凹部の数は、2個から4個のいずれかである。
 このように構成された圧力測定部を有する血液回路は、特に、変動可能な容積が大きく確保されたものとなる。
 好ましくは、可撓性膜が、血液を流す前の初期状態において、その内周面がいずれの部分においても非接触に構成されている。
 このように構成された圧力測定部を有する血液回路は、初期状態においても可撓性膜の内周面同士が接触することで生じる狭小な血液の流路を有さないため、血液の滞留を防止することができる。
 好ましくは、血液を流す前の初期状態において、可撓性膜の変形可能な部分の両端部における可撓性膜の筒内の断面積の各々は、可撓性膜の変形可能な部分の中央部における可撓性膜の筒内の断面積よりも大きい。
 好ましくは、血液を流す前の初期状態において、可撓性膜の筒内の断面積は、可撓性膜の変形可能な部分の両端部から可撓性膜の変形可能な部分の中央部に近づくにつれて徐々に小さくなる。
 このように構成された圧力測定部を有する血液回路は、特に、可撓性膜の一対の端部間において、当該一対の端部よりも流路が大きくなる部分がないため、より確実に血液の滞留が防止できる。
 好ましくは、ハウジングの軸方向の一端に組付けられた第一ジョイント部品と、ハウジングの軸方向の他端に組付けられた第二ジョイント部品とをさらに備えており、第一ジョイント部品および第二ジョイント部品の少なくとも一方は、筒状の可撓性膜の端部をハウジングとによって軸方向に挟み込むことで固定している。
 このように構成された圧力測定部を有する血液回路にあっては、可撓性膜の少なくとも一方の端部が軸方向において圧縮されることになるため、当該部分においてシール性が確保できる。また、可撓性膜の当該端部を径方向に圧縮して固定した場合に比べ、少なくとも当該端部においていわゆる無理嵌めを行なう必要がなくなり、ハウジングおよび第一ジョイント部品ならびに第二ジョイント部品に対する可撓性膜の組付け位置に位置ずれが生じるリスクを低減することができる。
 好ましくは、第一ジョイント部品は、筒状の可撓性膜の一方の端部をハウジングとによって軸方向に挟み込むことで固定しており、第二ジョイント部品は、筒状の可撓性膜の他方の端部をハウジングとによって径方向に挟み込むことで固定している。
 このように構成された圧力測定部を有する血液回路は、その製造の際に、可撓性膜の一方の端部に第一ジョイント部品を組付けた状態でこれをハウジングに圧入し、さらにその後、第二ジョイント部品をハウジングに組付けるという簡便な方法にて組み立てができるものとなるため、製造コストの削減が可能になる。
 この発明のさらに別の局面に従った圧力測定部を有する血液回路は、圧力測定装置と接続される圧力測定部を有する血液回路であって、軸方向に一端および他端を有する筒状のハウジングと、筒状のハウジング内に設けられた筒状の可撓性膜と、ハウジングの一端に組付けられた第一ジョイント部品と、ハウジングの他端に組付けられた第二ジョイント部品と、を備え、可撓性膜の筒内に血液を流し、血液の圧力に応じて可撓性膜が変位することで血液の圧力変動を測定することができ、第一ジョイント部品および第二ジョイント部品の少なくとも一方は、筒状の可撓性膜の端部をハウジングとによって軸方向に挟み込むことで固定している。
 このように構成された圧力測定部を有する血液回路にあっては、可撓性膜の少なくとも一方の端部が軸方向において圧縮されることになるため、当該部分においてシール性が確保できる。また、可撓性膜の当該端部を径方向に圧縮して固定した場合に比べ、少なくとも当該端部においていわゆる無理嵌めを行なう必要がなくなり、ハウジングおよび第一ジョイント部品ならびに第二ジョイント部品に対する可撓性膜の組付け位置に位置ずれが生じるリスクを低減することができる。
 好ましくは、第一ジョイント部品は、筒状の可撓性膜の一方の端部をハウジングとによって軸方向に挟み込むことで固定しており、第二ジョイント部品は、筒状の可撓性膜の他方の端部をハウジングとによって径方向に挟み込むことで固定している。
 このように構成された圧力測定部を有する血液回路は、その製造の際に、可撓性膜の一方の端部に第一ジョイント部品を組付けた状態でこれをハウジングに圧入し、さらにその後、第二ジョイント部品をハウジングに組付けるという簡便な方法にて組み立てができるものとなるため、製造コストの削減が可能になる。
 本発明によれば、高精度で血圧を測定することが可能な血液回路を提供することができる。
この発明の実施の形態に従った圧力測定部が設けられる血液回路の模式図である。 実施の形態1に従った陰圧測定用の圧力測定部の正面図である。 実施の形態1に従った陰圧測定用の圧力測定部の平面図である。 図3中のIV-IV線に沿った断面図である。 図4中のVで囲んだ部分を拡大して示す断面図である。 実施の形態1に従った陰圧測定用の圧力測定部の側面図である。 実施の形態1に従った陰圧測定用の圧力測定部の分解斜視図である。 実施の形態1に従った陰圧測定用の圧力測定部のハウジングの平面図である。 図8中のIX-IX線に沿った断面図である。 実施の形態1に従った陰圧測定用の圧力測定部のハウジングの側面図である。 実施の形態1に従った陰圧測定用の圧力測定部のジョイント部品の正面図である。 図11中のXII-XII線に沿った断面図である。 実施の形態1に従った陰圧測定用の圧力測定部のジョイント部品の側面図である。 実施の形態1に従った陰圧測定用の圧力測定部の可撓性膜の正面図である。 図14中のXV-XV線に沿った断面図である。 実施の形態2に従った陰圧測定用の圧力測定部におけるハウジング、可撓性膜およびジョイント部品の嵌合部分を拡大して示す断面図である。 実施の形態3に従った陰圧測定用の圧力測定部の平面図である。 図17中のXVIII-XVIII線に沿った断面図である。 図18中のXIX-XIX線に沿った断面図である。 実施の形態3に従った陰圧測定用の圧力測定部の可撓性膜の正面図である。 図20中のXXI-XXI線に沿った断面図である。 実施の形態4に従った陰圧測定用の圧力測定部の平面図である。 図22中のXXIII-XXIII線に沿った断面図である。 実施の形態4に従った陰圧測定用の圧力測定部のジョイント部品の正面図である。 実施の形態4に従った陰圧測定用の圧力測定部のジョイント部品の側面図である。 実施の形態4に従った陰圧測定用の圧力測定部のジョイント部品の斜視図である。 実施の形態5に従った陰圧測定用の圧力測定部のジョイント部品の正面図である。 実施の形態5に従った陰圧測定用の圧力測定部のジョイント部品の側面図である。 実施の形態5に従った陰圧測定用の圧力測定部のジョイント部品の斜視図である。 実施の形態6に従った陰圧測定用の圧力測定部のジョイント部品の正面図である。 実施の形態6に従った陰圧測定用の圧力測定部のジョイント部品の側面図である。 実施の形態6に従った陰圧測定用の圧力測定部のジョイント部品の斜視図である。 実施の形態7に従った陰圧測定用の圧力測定部のジョイント部品の正面図である。 実施の形態7に従った陰圧測定用の圧力測定部のジョイント部品の側面図である。 実施の形態7に従った陰圧測定用の圧力測定部のジョイント部品の斜視図である。 実施の形態8に従った陰圧測定用の圧力測定部の正面図である。 実施の形態8に従った陰圧測定用の圧力測定部の平面図である。 図37中のXXXVIII-XXXVIII線に沿った断面図である。 実施の形態9に従った陰圧測定用の圧力測定部の正面図である。 実施の形態10に従った陰圧測定用の圧力測定部の正面図である。 実施の形態10に従った陰圧測定用の圧力測定部の平面図である。 図41中のXLII-XLII線に沿った断面図である。 比較例に従った陽圧測定用の圧力測定部の正面図である。 比較例に従った陽圧測定用の圧力測定部の平面図である。 図44中のXLV-XLV線に沿った断面図である。 (A)は実施の形態11に従った陽圧測定用の圧力測定部の可撓性膜の正面図、(B)は実施の形態11に従った陽圧測定用の圧力測定部の可撓性膜の側面図である。 (A)は実施の形態11に従った陽圧測定用の圧力測定部の可撓性膜の平面図、(B)は図47(A)中のXLVIIB-XLVIIB線に沿った断面図、(C)は図47(A)中のXLVIIC-XLVIIC線に沿った断面図である。 実施の形態11に従った陽圧測定用の圧力測定部の可撓性膜の斜視図である。 実施の形態12に従った陽圧測定用の圧力測定部の可撓性膜の正面図である。 実施の形態12に従った陽圧測定用の圧力測定部の可撓性膜の側面図である。 実施の形態12に従った陽圧測定用の圧力測定部の可撓性膜の斜視図である。 実施の形態13に従った陽圧測定用の圧力測定部の可撓性膜の側面図である。 実施の形態14に従った陽圧測定用の圧力測定部の可撓性膜の側面図である。 実施の形態15に従った陽圧測定用の圧力測定部の可撓性膜の側面図である。 実施の形態16に従った陽圧測定用の圧力測定部の可撓性膜の側面図である。 実施の形態17に従った陽圧測定用の圧力測定部の可撓性膜の側面図である。 実施の形態18に従った陰圧測定用の圧力測定部の平面図である。 図57中のLVIII-LVIII線に沿った断面図である。 図58および76中のLIXで囲んだ部分の拡大断面図である。 図58中のLXで囲んだ部分の拡大断面図である。 実施の形態18に従った陰圧測定用の圧力測定部のハウジングの平面図である。 図61中のLXII-LXII線に沿った断面図である。 図62中のLXIIIで囲んだ部分の拡大断面図である。 図62中のLXIVで囲んだ部分の拡大断面図である。 実施の形態18に従った陰圧測定用の圧力測定部の可撓性膜の平面図である。 図65中のLXVI-LXVI線に沿った断面図である。 図66中のLXVIIで囲んだ部分の拡大断面図である。 図66中のLXVIIIで囲んだ部分の拡大断面図である。 実施の形態18に従った陰圧測定用の圧力測定部の入口側のジョイント部品の平面図である。 図69中のLXX-LXX線に沿った断面図である。 図70中のLXXIで囲んだ部分の拡大断面図である。 実施の形態18に従った陰圧測定用の圧力測定部の出口側のジョイント部品の平面図である。 図72中のLXXIII-LXXIII線に沿った断面図である。 図73中のLXXIVで囲んだ部分の拡大断面図である。 実施の形態19に従った陰圧測定用の圧力測定部の平面図である。 図75中のLXXVI-LXXVI線に沿った断面図である。 実施の形態20に従った陽圧測定用の圧力測定部の可撓性膜の側面図である。 実施の形態20に従った変形例に係る陽圧測定用の圧力測定部の可撓性膜の側面図である。 実施の形態20に従ったさらに他の変形例に係る陽圧測定用の圧力測定部の可撓性膜の側面図である。 実施の形態20に従ったさらに他の変形例に係る陽圧測定用の圧力測定部の可撓性膜の側面図である。 実施の形態21に従った陰圧測定用の圧力測定部の平面図である。 (A)は、図81中のLXXXII-LXXXII線に沿った初期状態における断面図であり、(B)は、図81中のLXXXII-LXXXII線に沿った圧力測定時における断面図である。 (A)は、図82(A)に示す状態における可撓性膜の斜視図であり、(B)は、図82(B)に示す状態における可撓性膜の斜視図である。 (A1)~(A3)は、それぞれ図82(A)中のLXXXIVA1-LXXXIVA1線~LXXXIVA3-LXXXIVA3線に沿った断面図であり、(B1)~(B3)は、それぞれ図82(B)中のLXXXIVB1-LXXXIVB1線~LXXXIVB3-LXXXIVB3線に沿った断面図である。 検証試験の結果を示すグラフである。 図82(A)中のLXXXVIで囲んだ部分を拡大して示す断面図である。 図82(A)中のLXXXVIIで囲んだ部分を拡大して示す断面図である。 (A)~(C)は、図81に示す陰圧測定用の圧力測定部の組み立て方法を説明するための模式図である。 実施の形態21に従った変形例に係る陰圧測定用の圧力測定部の一端側の組付構造を示す断面図である。 実施の形態21に従った変形例に係る陰圧測定用の圧力測定部の他端側の組付構造を示す断面図である。 実施の形態22に従った陽圧測定用の圧力測定部の平面図である。 (A)は、図91中のXCII-XCII線に沿った初期状態における断面図であり、(B)は、図91中のXCII-XCII線に沿った圧力測定時における断面図である。 (A)は、図92(A)に示す状態における可撓性膜の斜視図であり、(B)は、図92(B)に示す状態における可撓性膜の斜視図である。 (A1)~(A3)は、それぞれ図92(A)中のXCIVA1-XCIVA1線~XCIVA3-XCIVA3線に沿った断面図であり、(B1)~(B3)は、それぞれ図92(B)中のXCIVB1-XCIVB1線~XCIVB3-XCIVB3線に沿った断面図である。 実施の形態22に従った第1変形例に係る陽圧測定用の圧力測定部の断面図である。 実施の形態22に従った第2変形例に係る陽圧測定用の圧力測定部の断面図である。 図92(A)中のXCVIIで囲んだ部分を拡大して示す断面図である。 図92(A)中のXCIVIIで囲んだ部分を拡大して示す断面図である。 (A)~(C)は、図92に示す陽圧測定用の圧力測定部の組み立て方法を説明するための模式図である。 実施の形態22に従った変形例に係る陰圧測定用の圧力測定部の一端側の組付構造を示す断面図である。 実施の形態22に従った変形例に係る陰圧測定用の圧力測定部の他端側の組付構造を示す断面図である。
 (実施の形態1)
 図1を参照して、血液回路は、血液を患者から取り出すための血液導入口1、血液導入口1に接続される脱血圧測定部位2、脱血圧測定部位2の血圧を測定する圧力トランスデューサー3、脱血圧測定部位2から排出された血液を加圧する血液ポンプ4、血液ポンプ4の下流側に位置するPD圧測定部位5、PD(Pre-dialyzer)圧測定部位5の血圧を測定する圧力トランスデューサー6、PD圧測定部位5から排出された血液を、ダイアライザー血液導入口7aを経て受け入れるダイアライザー8、ダイアライザー8のダイアライザー血液導出口7bの下流側に位置する静脈圧測定部位11、静脈圧測定部位11の血圧を測定する圧力トランスデューサー12、血液を患者に戻すための血液導出口13を有する。
 ダイアライザー8は、透析液導出口9aおよび透析液導入口9bを経由して透析装置本体10と接続されており、透析液を用いて血液中の老廃物の除去、血液中の水分調整を行う。
 図2を参照して、圧力測定部100は、陰圧部位である図1における脱血圧測定部位2に設けられる。圧力測定部100は、ハウジング110と、ハウジング110に接続される血液ライン210,220とを備える。
 ハウジング110は、血液が導入される入口側のジョイント部品111と、血液が排出される出口側のジョイント部品112とが接続されている。入口側のジョイント部品111には血液ライン210が、出口側のジョイント部品112には血液ライン220が各々挿入されている。なお、実施形態においては、一部材でハウジングが形成されているが、半割れ状の二部材を合わせて形成してもよい。
 ハウジング110には圧力測定ポート140が設けられており、圧力測定ポート140には圧力モニターライン240が接続されている。圧力モニターライン240の先端のコネクタ241は圧力トランスデューサーに接続される。圧力モニターライン240にはクリップ242が取り付けられており、圧力モニターライン240を閉塞させることが可能である。
 図3を参照して、ハウジング110に設けられる入口側のジョイント部品111および出口側のジョイント部品112は同一直線上に設けられており、入口側のジョイント部品111から出口側のジョイント部品112へ向かってスムーズに血液が流れることができる。
 円筒形状のハウジング110は、入口側のジョイント部品111から出口側のジョイント部品112に向かう方向にそって長い。ハウジング110には、入口側のジョイント部品111から出口側のジョイント部品112へ向かう方向と直交するように延在する圧力測定ポート140が設けられている。圧力測定ポート140が入口側のジョイント部品111および出口側のジョイント部品112と非平行に配置される。
 図4を参照して、ハウジング110内は空洞であり、その空間は、入口側のジョイント部品111から出口側のジョイント部品112まで延びている。ハウジング110の両端には、入口側および出口側のジョイント部品111,112と係合する係合部113,114が設けられている。
 ハウジング110の内周面と可撓性膜120との距離は、およそ0~2mmの間にある。可撓性膜120は、ハウジングにより構成されるチャンバ102を2つの空間に分割する。チャンバ102は血液が通過する血液室150と、圧力測定用の空気が存在する空気室160とに分割される。
 血液室150には、入口側のジョイント部品111から血液が導入され、血液室150の血液は出口側のジョイント部品112から排出される。可撓性膜120は弾性を有しており、変形が可能であるため、血液室150の体積は可変である。
 空気室160は、図4では可撓性膜120とハウジング110との間にわずかな隙間に形成されている。可撓性膜120は、筒内方向に変形可能であるため、空気室160の体積も可変である。
 円筒形状の可撓性膜120の中心軸は、入口側のジョイント部品111から出口側のジョイント部品112へ向かう線111aと平行である。
 圧力測定ポート140は、空気室160に連通しているが、血液室150には連通していない。血液室150内の血液の流れに応じて可撓性膜120が変位して空気室160の体積が変化すると、この体積変化はトランスデューサーに伝達されるため、トランスデューサーにより血圧を測定することが可能である。
 ハウジング110の内周面には、複数のリブが設けられていてもよい。このリブは、ハウジング110の強度を高めてハウジング110の姿勢を安定させる働きを有する。
 さらに、リブを設けることで可撓性膜120をハウジング110に挿入しやすくなる。可撓性膜120はハウジング110の内周面に近接しており密着していない。
 図5を参照して、出口側のジョイント部品112は、ハウジング110の係合部114と係合している。出口側のジョイント部品112とハウジング110の筒状部分との間には、可撓性膜120が挟みこまれる。これによって、可撓性膜120がハウジング110に固定される。図5の固定方法のメリットは、シール面が多くリークリスクが少ない点である。
 図6を参照して、入口側のジョイント部品111は係合部113と嵌りあっている。係合部113よりも外周側へ圧力測定ポート140が突出している。この図では、係合部113の外形は円形であるが、多角形状であってもよい。
 図7を参照して、ハウジング110内のチャンバ102に可撓性膜120が挿入される。可撓性膜120の自然長はハウジング110の長さよりも長く、可撓性膜120の端部は折り返されて係合部113と入口側のジョイント部品111との間、および、係合部114と出口側のジョイント部品112との間に挟まれて固定される。
 図8から10を参照して、ハウジング110は、筒状部材の両端側にリング状の係合部113,114が取り付けられた形状を有する。そして、係合部113と係合部114との間に圧力測定ポート140が配置されている。筒状の圧力測定ポート140がハウジング110のチャンバ102に連通しており、圧力測定ポート140からチャンバ102内の圧力を測定することができる。
 図11から13を参照して、入口側のジョイント部品111には隔壁111wが設けられており、隔壁111wには貫通穴111hが設けられている。入口側のジョイント部品111と血液室とは貫通穴111hにより連通している。出口側のジョイント部品にも同様の隔壁および貫通穴が設けられている。
 図14および15を参照して、可撓性膜120はほぼ円筒形状であり、その内部を血液が流れる。この実施の形態では、可撓性膜120は円筒形状であるが、必ずしも円筒である必要はなく、角筒であってもよい。さらに楕円筒であってもよい。
 さらに、この実施の形態では可撓性膜120の外径および内径は一定であるが、必ずしも一定である必要はなく、外径および内径が不均一に構成されていてもよい。
 (実施の形態2)
 図16を参照して、実施の形態2に従ったハウジング110および出口側のジョイント部品112には、可撓性膜120を確実に固定および保持してシール性を高めるためのリブ119が設けられている。
 この実施の形態では、リブ119は、ハウジング110および出口側のジョイント部品112の各々に設けられているが、ハウジング110のみ、または出口側のジョイント部品112のみにリブ119が設けられていてもよい。なお、入口側のジョイント部品111にリブ119が設けられていてもよい。
 (実施の形態3)
 図17から21を参照して、実施の形態3に従った圧力測定部100では、可撓性膜120の端部が立体的に成形されて厚膜部121が設けられている。厚膜部121の厚みは他の部分の厚みよりも厚い。厚膜部121が存在することで、可撓性膜120の端部が入口および出口のジョイント部品111,112ならびにハウジング110と係合しやすくなる。その結果、端部におけるシール性を向上させることができる。図17の固定方法のメリットは、図5に比べ組立易い点である。
 なお、この実施の形態では、ハウジング110にリブ119を設けてリブ119で厚膜部121を押圧することで、シール性をさらに高めている。入口側および出口側のジョイント部品111,112にリブ119を設けてもよい。
 (実施の形態4)
 図22および23を参照して、実施の形態4に従った圧力測定部100では、可撓性膜120に閉塞抑制部材115が設けられている。
 ハウジング110には、入口側のジョイント部品111から出口側のジョイント部品112まで閉塞抑制部材115延在する。閉塞抑制部材115は、可撓性膜120が血液の流れを遮ることを防止するためのものである。可撓性膜120間に閉塞抑制部材115が存在するために、対向する可撓性膜120間に隙間が生じる。この隙間を血液が流れるため、血液の滞留を防止することができる。血液が滞留すると血小板が破壊されるため血液の滞留を抑制する必要がある。
 図23で示されるように、入口側のジョイント部品111には閉塞抑制部材115が設けられており、閉塞抑制部材115が可撓性膜120内に挿入され、出口側のジョイント部品112には閉塞抑制部材115が設けられており、閉塞抑制部材115が可撓性膜120内に挿入されている。
 図24から26を参照して、この実施の形態に従った閉塞抑制部材115では、中心部から3枚の板状部材116が半径方向に延在しており、板状部材116の間に血液の流路が形成されている。
 可撓性膜120の中に2つの閉塞抑制部材115が挿入されているが、一方の閉塞抑制部材115を延長することで、一つの閉塞抑制部材115のみが可撓性膜120内に設けられていてもよい。
 さらに、入口側のジョイント部品111に設けられる閉塞抑制部材115と出口側のジョイント部品に設けられる閉塞抑制部材115の長さが図23では等しく記載されているが、これに限られず、一方の閉塞抑制部材115が他方の閉塞抑制部材115よりも長く形成されていてもよい。各々の板状部材116は平面形状であるが、曲面形状であってもよい。
 (実施の形態5)
 図27から29を参照して、実施の形態5で用いられる入口側のジョイント部品111では、閉塞抑制部材115の板状部材116の外周端に、円周方向に延在する壁面115aが設けられている。
 壁面115aは平面であってもよく、曲面であってもよい。壁面115aは可撓性膜120に当接して血液の流路を確保するものであるから、可撓性膜120にダメージを与えない形状とされる。なお、出口側のジョイント部品112でも図27から29で示す壁面115aを採用してもよい。
 (実施の形態6)
 図30から32を参照して、実施の形態6で用いられる入口側のジョイント部品111では、閉塞抑制部材115は4つの板状部材116を有し、各々の板状部材116が90度の角度を隔てて配置されている。
 板状部材116は平面形状であってもよく、曲面形状であってもよい。なお、出口側のジョイント部品112でも図30から32で示す板状部材116を採用してもよい。さらに、出口側のジョイント部品では図30から32と異なる形状の板状部材116を採用してもよい。
 (実施の形態7)
 図33から35を参照して、実施の形態7で用いられる入口側のジョイント部品111では、閉塞抑制部材115の板状部材116の外周端に、円周方向に延在する壁面115aが設けられている。
 壁面115aは平面であってもよく、曲面であってもよい。壁面115aは可撓性膜120に当接して血液の流路を確保するものであるから、可撓性膜120にダメージを与えない形状とされる。なお、出口側のジョイント部品112でも図33から35で示す壁面115aを採用してもよい。
 (実施の形態8)
 図36から38を参照して、実施の形態8に従った圧力測定部100では、圧力測定ポート140が入口側のジョイント部品111および出口側のジョイント部品112とを結ぶ線111aと鋭角をなしている。圧力測定ポート140が傾斜して設けられることにより、圧力測定ポート140の小型化が可能である。
 (実施の形態9)
 図39を参照して、実施の形態9に従った圧力測定部100では液面調整ライン250が圧力モニターライン240に接続されており、圧力モニターライン240内の液面を調整することができる。液面調整ライン250にはクリップ252およびコネクタ251が設けられている。
 (実施の形態10)
 図40から42を参照して、実施の形態10に従った圧力測定部100ではハウジング110に液面調整ポート141が設けられている。図39で示す液面調整ライン250が液面調整ポート141に接続されており、圧力モニターライン240内の液面を調整することができ、かつ、液面調整ライン250にはクリップ252およびコネクタ251が設けられている。
 (実施の形態11)
 比較例である図43から45を参照して、陽圧測定用の圧力測定部1100では円筒形状かつ断面が円形である可撓性膜120が膨張するため可撓性膜120とハウジング110との間に大きな隙間が形成されて空気室160を構成している。可撓性膜120が膨張するためには、可撓性膜120を引き伸ばす必要がある。陽圧が大きい場合であればこの陽圧で可撓性膜120を引き伸ばすことができる。しかしながら陽圧の一部が可撓性膜120を引き伸ばすために用いられており、補正なしでは正しい陽圧を測定することができない。
 図46および47を参照して、可撓性膜120の中央部が十字形状にされている。可撓性膜120は、圧力で変形するが、その圧力がなくなれば元の形状に再び戻る。なお、変形した場合にもとに戻らないものであってもよい。
 なおクセ付けするのではなく、ハウジング110よりも長い可撓性膜120がハウジング110に取り付けられてもよい。ハウジング110よりも長い可撓性膜は、ハウジング110内で可撓性膜120が変形した状態で位置決めされる。可撓性膜120があらかじめ変形しているため、陽圧により容易に可撓性膜120を変形させることができる。
 図48を参照して、可撓性膜120の十字部分の径は可撓性膜120の中央部および端部で一定である。なお、中央部で径が小さく、端部で径が大きい形状とされていてもよい。可撓性膜120の形状はこれに限られるものではなく、中央部で径が大きく端部で径が大きい形状とされていてもよい。
 さらに、ハウジング110よりも長い可撓性膜120を容易にハウジング110内に収納するために可撓性膜120を捩じってハウジング110内に収納してもよい。この場合、捩じりの角度により可撓性膜120の長さを調整することができる。
 陽圧測定用の圧力測定部1100は陽圧部位である図1におけるPD(Pre-dialyzer)圧測定部位5または静脈圧測定部位11に設けられる。
 (実施の形態12)
 図49から51を参照して、実施の形態14に従った圧力測定部における可撓性膜120には凸部126と凹部127とが設けられており、可撓性膜120の凹部127が可撓性膜120内の陽圧により容易に筒外方向に変形することができる。その結果、高い精度で陽圧を測定することが可能となる。この実施の形態では凹部127および凸部126は、可撓性膜120の一方端から他方端まで軸方向にそって延びているが、可撓性膜120の少なくとも一部分に凹部127および凸部126が設けられていればよく、必ずしも端部まで延びている必要はない。
 凸部126の頂点をハウジング110に近接させると空気室の容積が大きくならずコンパクトに圧力測定部を構成することができる。
 (実施の形態13)
 図52を参照して、実施の形態13に従った圧力測定部における可撓性膜120には凸部126と凹部127とがそれぞれ2つずつ設けられている点で、実施の形態12に従った可撓性膜120と異なる。
 (実施の形態14)
 図53を参照して、実施の形態14に従った圧力測定部における可撓性膜120には凸部126と凹部127とがそれぞれ1ずつ設けられている点で、実施の形態12に従った可撓性膜120と異なる。
 (実施の形態15)
 図54を参照して、実施の形態16に従った圧力測定部における可撓性膜120には実施の形態16と同様に凸部126と凹部127とがそれぞれ2つずつ設けられているが、実施の形態16と比較して浅い凹部127が形成されている点で、実施の形態14に従った可撓性膜120と異なる。
 (実施の形態16)
 図55を参照して、実施の形態16に従った圧力測定部における可撓性膜120には実施の形態15と同様に凸部126と凹部127とがそれぞれ2つずつ設けられているが、2つの凹部127の幅が異なる点で、実施の形態13に従った可撓性膜120と異なる。
 (実施の形態17)
 図56を参照して、実施の形態17に従った圧力測定部における可撓性膜120には凸部126と凹部127とがそれぞれ4つずつ不均等に設けられている。
 実施の形態12~17の中で最も好ましい形態は、体積変動と滞留性を考慮すると実施の形態12(三角タイプ)である。実施の形態13についても変動率は最も良い傾向になる。メリットとしては変動率が大きいのでコンパクト(短く)にできる。また、図50や52のように、左右対称の断面となる方が、血液の流れがよく、滞留防止効果がある。
 (実施の形態18)
 図57から60を参照して、実施の形態18に従った陰圧測定用の圧力測定部100では、入口側のジョイント部品111と出口側のジョイント部品112との形状が異なる。入口側のジョイント部品111(第一ジョイント部品)では組み立てを簡単にするために、ジョイント部品111の溝111bに可撓性膜120のリブ122を挿入した後、ハウジング110にジョイント部品111を挿入可能な形状とされている。これに対して、出口側のジョイント部品112(第二ジョイント部品)では、可撓性膜120を支えるためのリブ112aが設けられている。さらに、可撓性膜120の厚膜部121が存在することにより、可撓性膜120が位置ずれしてシール性が低下してしまうことを防止している。
 図61から64を参照して、ハウジング110には、ジョイント部品112と嵌合するための凸部110aが設けられている。凸部110aがジョイント部品112と嵌合して外れることを防止する。入口側のジョイント部品111が嵌合する側には、凸部が設けられていない。
 図65から68を参照して、可撓性膜120において、入口側のジョイント部品111側にはリブ122が設けられており、出口側のジョイント部品112には、厚膜部121が設けられている。リブ122は内周側に突出しており、厚膜部121は外周側に突出している。
 図69から71を参照して、入口側のジョイント部品111には、可撓性膜120のリブ122と嵌合するための環状の溝111bが形成されている。環状の溝111bに可撓性膜120のリブ122が嵌りあうことで、可撓性膜120がジョイント部品111から脱落することを防止できる。
 図72から74を参照して、出口側のジョイント部品112には、リブ112aが設けられている。リブ112aは環状に設けられており、リブ112aが厚膜部121と当接して厚膜部121が内周側へ落ち込むことを防止できる。
 なお、この実施の形態では入口側のジョイント部品111が第一ジョイント部品であり、出口側のジョイント部品が第二ジョイント部品であったが、入口側が第二ジョイント部品であり、出口側が第一ジョイント部品であってもよい。
 (実施の形態19)
 図75および76を参照して、実施の形態19では、入口側のジョイント部品111および出口側のジョイント部品112がともに第二ジョイント部品である。この場合には、ジョイント部品にチューブを挿入しにくいが、ジョイント部品を第二ジョイント部品で統一してジョイント部品の種類を減らすことができる。なお、入口側のジョイント部品111および出口側のジョイント部品112をともに第二ジョイント部品としてもよい。
 (実施の形態20)
 図77を参照して、陽圧測定用の圧力測定部1100では、凹部127の円弧とハウジング1110の円弧とは、直線4000に対して対称である。直線4000は、凹部127の一方の端部と他方の端部とを結んでいる。凹部127の円弧とハウジング1110の円弧とが直線4000に対して対称であるため、凹部127を構成する可撓性膜1120が外周側へスムーズに広がることができる。
 図78を参照して、陽圧測定用の圧力測定部1100では、凹部127の円弧とハウジング1110の円弧とは、直線4000に対して非対称である。直線4000は、凹部127の一方の端部と他方の端部とを結んでいる。凹部127の円弧とハウジング1110の円弧とが直線4000に対して非対称であり、直線4000よりもハウジング1110側の面積が広いため、凹部127はハウジング1110側へ広がったとしてもハウジング1110に接触することができない。また、可撓性膜1120内の血液の流路が狭いため、血液滞留が生じやすい。
 図79を参照して、陽圧測定用の圧力測定部1100では、凹部127の円弧とハウジング1110の円弧とは、直線4000に対して対称である。直線4000は、凹部127の一方の端部と他方の端部とを結んでいる。凹部127の円弧とハウジング1110の円弧とが直線4000に対して対称であるため、凹部127を構成する可撓性膜1120が外周側へスムーズに広がることができる。変形する凹部127の円弧の長さが短く、余分な応力をうけにくい。しかしながら、可撓性膜1120で構成される血液流路の体積変動率が小さく、チューブ長を長くする必要がある。図77および79のように可撓性膜1120の凸部126の幅が広いと、血液滞留が生じにくい。
 図80を参照して、陽圧測定用の圧力測定部1100では、凹部127の円弧とハウジング1110の円弧とは、直線4000に対して非対称である。直線4000は、凹部127の一方の端部と他方の端部とを結んでいる。凹部127の円弧とハウジング1110の円弧とが直線4000に対して非対称であり、直線4000よりもハウジング1110側の面積が狭いため、凹部127はハウジング1110側へ広がってハウジング1110に接触する。この時ハウジング1110と可撓性膜1120とが干渉して、余計な応力が生じる可能性がある。
 陽圧測定用の可撓性膜1120は凹んだ形状とされており、図77、79、80の通り、ハウジング1110に可撓性膜1120接するまでは測定に影響がでるレベルでは弾性変形せず、圧力誤差が生じにくい。よって、精度良く測定可能である。可撓性膜120,1120の肉厚は、圧力測定に影響しないように、2mm以下、より好ましくは1mmが好適である。
 (実施の形態1~20の変形例)
 圧力測定部の下面側に台座を設け、安定性をもたせてもよい。陽圧用圧力測定部或いは陰圧用圧力測定部のみを備えた血液回路であってもよい。ジョイント、ハウジング、可撓性膜の組み立てにおいて、ジョイントとハウジングとを嵌合固定させる仕様でもよいし、超音波溶着や接着剤を用いて接合固定させる仕様であってもよい。
 (実施の形態21)
 この実施の形態における圧力測定部は、陰圧部位である図1における脱血圧測定部位2に好適に設けられるものである。
 図81および図82に示すように、圧力測定部100は、ハウジング110と、第一ジョイント部品としてのジョイント部品111と、第二ジョイント部品としてのジョイント部品112と、可撓性膜120とを備えている。ハウジング110には、圧力測定ポート140が設けられている。ジョイント部品111は、血液が導入される側の端部であるハウジング110の軸方向の一端に組付けられており、ジョイント部品112は、血液が排出される側の端部であるハウジング110の軸方向の他端に組付けられている。
 この実施の形態においても、上述した実施の形態1の場合と同様に、ハウジング110は略円筒状であり、可撓性膜120も略円筒状である。特に、可撓性膜120の変形可能な部分は、軸方向に一定の内径および外径を有しており、断面が略真円形状の円筒状であり、可撓性膜120の変形可能な部分に対応する部分のハウジング110も、軸方向に一定の内径および外径を有しており、断面が略真円形状の円筒状である。
 図82に示すように、ハウジング110内は空洞であり、その空間は、入り口側のジョイント部品111から出口側のジョイント部品112まで延びている。可撓性膜120は、ハウジング110内の空間に配置されている。可撓性膜120は、その外周面がハウジング110の内周面に対向するようにハウジング110に近接して設けられている。
 ここで、ハウジング110の内周面と可撓性膜120の外周面との間の距離は、おおよそ0~2mmの範囲である。好適には、当該距離は、0.5mm以上1mm以下の範囲とされ、本実施の形態においては1mmとされている。ここで、ハウジング110の内周面と可撓性膜120の外周面との間の距離が上記範囲を満たすことにより、可撓性膜120の筒内方向に向けての変形可能な範囲を大きく確保することができる。
 可撓性膜120は、その一方の端部がハウジング110とジョイント部品111とによって挟持されており、その他方の端部がハウジング110とジョイント部品112とによって挟持されている。これにより、可撓性膜120は、ハウジング110内を血液室150と空気室160とに区画しており、血液室150を流れる血液の圧力に応じて筒内方向に変形することができる。
 図82(A)および図83(A)に示すように、可撓性膜120は、血液を流す前の初期状態において、上述したように略円筒状の形状を有しており、血液の流入に伴って変形することが可能な部分である円筒状部120aと、その一方の端部に設けられたリブ122(図86参照)と、その他方の端部に設けられた厚膜部121とを含んでいる。厚膜部121の端面には、可撓性膜120の軸方向に沿って突出する環状突起121aが設けられている。なお、可撓性膜120は、後述するように各種の材料を用いて形成することができるが、好適には樹脂材料を用いた射出成形によって形成され、樹脂材料としては、スチレン系エラストマーが特に好適に利用できる。
 図82(B)および図83(B)に示すように、可撓性膜120は、ポンピングセグメントである血液ポンプ4(図1参照)が動作することによって、当該可撓性膜120の内部の空間である血液室150に血液が流入した状態において、上述した血液ポンプ4の作用によって血液室150の圧力が空気室160の圧力よりも低い圧力となることにより、この圧力差に伴って筒内方向に変形する。その際、円筒状部120aには、互いに平行に延びる3つの窪み部128が形成されるように形状変化が発生する。
 この3つの窪み部128は、円筒状部120aの周方向に沿って略均等に形成されるものであり、そのそれぞれが円筒状部120aの軸方向に沿って延びるように形成される。ここで、この3つの窪み部128は、後述する検証試験から導き出された条件を満たすことにより、血液室150と空気室160との間の圧力差に伴って自然発生するものである。
 上述した3つの窪み部128が形成されることにより、可撓性膜120には、図84において示す如くの形状変化が発生する。ここで、図84(A1)および(B1)は、可撓性膜の上述した一方の端部近傍(すなわち、血液の流入側近傍)における血液の流入前後での形状変化を示しており、図84(A2)および(B2)は、可撓性膜の軸方向の中央部における血液の流入前後での形状変化を示しており、図84(A3)および(B3)は、可撓性膜の上述した他方の端部近傍(すなわち、血液の排出側近傍)における血液の流入前後での形状変化を示している。
 図84(A1)~(A3)に示すように、血液の流入前の初期状態において円筒状であった可撓性膜120は、図84(B1)~(B3)に示すように、血液の流入後の圧力測定時において周方向の3カ所で筒内方向に向けて(すなわち、図中に示す矢印方向に向けて)窪むように変形する。これに伴い、血液室150の容積が減少し、空気室160の容積が増大する。その際、血液が流入する前の初期状態において可撓性膜120がハウジング110の内周面に近接配置されていることにより、可撓性膜120の変形しろが大きく確保できることになり、血液室150の変動可能な容積が大きく確保できることになる。
 なお、可撓性膜120の変形は、可撓性膜120の軸方向の中央部において最大となり、可撓性膜120の両端部において最小となり、また可撓性膜120の軸方向の両端部から中央部に向かうにつれて徐々に大きくなる。そのため、可撓性膜120の内部に軸方向に沿って極端な断面積の変化が生じないことになるため、血液の滞留が発生することが防止できる。
 ここで、図84(B1)~(B3)に示すように、窪み部128は、可撓性膜120の周方向に沿って略均等に形成される。そのため、可撓性膜120は、その断面が各辺が凹んだ略三角形状に変形することになる。これにより、当該断面における中心部において必ず隙間(図中において符号Rで示す部分)が残ることになるため、可撓性膜120が閉塞されてしまうことが防止でき、血液の流れを確保することもできる。
 検証試験においては、可撓性膜の寸法を種々変更した場合に可撓性膜の変形性や変形形状にどのような違いが生じるかを確認し、これに基づいて、上述した3つの窪み部が再現性良く現われる条件を導き出した。当該検証試験においては、可撓性膜として、図83(A)において示す円筒状部120aの軸方向長さXと外径Yとの比率が異なるサンプルを準備した。なお、当該サンプルは、いずれもスチレン系エラストマー製のものである。
 図85に示すように、比率X/Yが3.0である場合には、可撓性膜の変形性が低くなり、比率X/Yが4.0以上10.0以下である場合には、可撓性膜の変形性が高くなることが確認された。また、比率X/Yが3.0以上8.0以下である場合には、可撓性膜の変形形状が上述したその断面が各辺が凹んだ略三角形状(すなわち、上述した3つの窪み部128が生じた形状)になり、比率X/Yが8.0以上10.0以下である場合には、可撓性膜がほぼ完全に閉塞してしまう一文字状の形状になることが確認された。
 なお、ここではその詳細については説明を省略するが、上記検証試験においてさらに可撓性膜の膜厚(すなわち、図82(A)において符号Tで示す厚み)や可撓性膜のショアA硬度についても、これを種々変化させて同様の検証を行なった。その結果、上記膜厚Tが0.2mm≦T≦0.6mmの条件を満たすことで上述した3つの窪み部128が再現性良く現われることが確認されるとともに、上記ショアA硬度が20以上60以下である場合に上述した3つの窪み部128が再現性良く現われることが確認された。
 以上の結果に基づけは、図85において総合評価として示すように、比率X/Yが、4.0≦X/Y≦8.0の条件を満たすことにより、上述した3つの窪み部128が再現性良く現われることが分かる。したがって、当該条件を満たすことにより、血液室の変動可能な容積が大きく確保できるとともに血液の滞留の発生が防止でき、さらには血液の流れを確保することが可能になることが理解される。
 図86および図87に示すように、この実施の形態における圧力測定部においては、以下において説明する組付構造が採用されている。
 図86に示すように、入口側のジョイント部品111には、外周面の所定位置に周方向に沿って延びる環状形状の溝111bが設けられており、可撓性膜120の上述した一方の端部(すなわち、血液の流入側の端部)には、筒内方向に向けて突出するとともに周方向に沿って延びる環状形状のリブ122が設けられている。可撓性膜120のリブ122は、ジョイント部品111の溝111bに嵌合している。
 ここで、ジョイント部品111は、ハウジング110の上述した一端(すなわち、血液の導入側の端部)に嵌まっている。これにより、可撓性膜120の上述した一方の端部近傍は、ハウジング110の内周面とジョイント部品111の外周面とにそれぞれ当接しており、これらハウジング110とジョイント部品111とによって挟持されている。
 また、ハウジング110の内周面の所定位置には、径方向内側に向けて突出する環状形状の凸部110cが設けられており、入口側のジョイント部品111の外周面の所定位置には、環状形状の凹部111cが設けられている。ハウジング110に設けられた環状形状の凸部110cは、ジョイント部品111に設けられた環状形状の凹部111cに嵌合している。これにより、ハウジング110およびジョイント部品111が相対的に軸方向に移動してしまうことが制限されており、その脱落が防止されている。
 さらに、上述した環状形状の凸部110cおよび環状形状の凹部111cからなる係合部が位置する部分よりも軸方向内側の部分には、回転防止機構170が設けられている。回転防止機構170は、ハウジング110の内周面に設けられた凹凸部と、これに嵌り合うようにジョイント部品111の外周面に設け有れた凹凸部とからなるローレットによって構成されている。これら凹凸部は、いずれも、軸方向に沿って当該凹凸のそれぞれが延在するとともに、周方向に沿って当該凹凸が交互に位置するように配置されており、これにより互いの凹凸部が噛み合うことにより、ハウジング110およびジョイント部品111が相対的に回転してしまうことが制限されている。
 また、図87に示すように、出口側のジョイント部品112には、ハウジング110の上述した他端(すなわち、血液の排出側の端部)の外周面に重なるとともに、ハウジング110の上述した他端の端面を覆う被せ部112bが設けられており、可撓性膜120の上述した他方の端部(すなわち、血液の排出側の端部)には、径方向外側に向けて突出するとともに周方向に沿って延びる環状形状の厚膜部121が設けられている。
 ここで、ジョイント部品112の被せ部112bは、ハウジング110の上述した他端に嵌まっている。これにより、可撓性膜120の厚膜部121は、ハウジング110の上述した他端の端面とジョイント部品112の被せ部112bの内面とに当接しており、これらハウジング110とジョイント部品112とによって挟持されている。
 また、ハウジング110の内周面の所定位置には、径方向内側に向けて突出する環状形状の凸部110dが設けられており、出口側のジョイント部品112の外周面の所定位置には、環状形状の凹部112dが設けられている。ハウジング110に設けられた環状形状の凸部110dは、ジョイント部品112に設けられた環状形状の凹部112dに嵌合している。これにより、ハウジング110およびジョイント部品112が相対的に軸方向に移動してしまうことが制限されており、その脱落が防止されている。
 さらに、上述した環状形状の凸部110dおよび環状形状の凹部112dからなる係合部が位置する部分よりも軸方向内側の部分には、回転防止機構180が設けられている。回転防止機構180は、ハウジング110の内周面に設けられた凹凸部と、これに嵌り合うようにジョイント部品112の外周面に設け有れた凹凸部とからなるローレットによって構成されている。これら凹凸部は、いずれも、軸方向に沿って当該凹凸のそれぞれが延在するとともに、周方向に沿って当該凹凸が交互に位置するように配置されており、これにより互いの凹凸部が噛み合うことにより、ハウジング110およびジョイント部品112が相対的に回転してしまうことが制限されている。
 以上により、可撓性膜120の上述した一方の端部は、径方向においてハウジング110とジョイント部品111とによって挟み込まれることで固定され、可撓性膜120の上述した他方の端部は、軸方向においてハウジング110とジョイント部品112とによって挟み込まれることで固定されている。
 なお、可撓性膜120の厚膜部121に設けられた環状突起121a(図83参照)は、ジョイント部品112の被せ部112bの内面によって押し潰されており、これにより当該部分のシール性が確保されている。また、図87に示すように、ハウジング110の上述した他端の端面には、軸方向外側に向けて環状形状のリブ119が突設されており、当該リブ119が可撓性膜120の厚膜部121に食い込むことにより、当該部分のシール性が確保されている。
 以上において説明した組付構造を採用することにより、以下において説明するように、組み立て作業が容易化する効果が得られる。
 すなわち、まず図88(A)に示すように、可撓性膜120のリブ122をジョイント部品111の溝111bに嵌合させることで可撓性膜120にジョイント部品111を組付け、さらに図88(B)に示すように、これをハウジング110の内部に挿入する。その際、可撓性膜120およびジョイント部品111をハウジング110の上述した一端にハウジングの内部からから圧入するようにする。
 その際、上述した回転防止機構170としてのローレットを構成する凹凸部同士を互いに噛み合わせつつ、環状形状の凸部110cが環状形状の凹部111cに嵌まり合うようにすることにより、ハウジング110に対するジョイント部品111の固定が行なわれる。
 次に図88(C)に示すように、可撓性膜120の厚膜部121をハウジング110の上述した他端の端面との間で挟み込むように、ハウジング110の上述した他端にジョイント部品112を嵌め込む。
 その際、上述した回転防止機構180としてのローレットを構成する凹凸部同士を互いに噛み合わせつつ、環状形状の凸部110dが環状形状の凹部112dに嵌まり合うようにすることにより、可撓性膜120が位置ずれを起こすことなく、ハウジング110に対するジョイント部品112の固定が行なわれる。以上により、圧力測定部100の製造が完了する。
 このように、この実施の形態における圧力測定部100の如くの組付構造を採用することにより、非常に簡便な組み立て方法にて圧力測定部100の製造が可能になるため、製造コストの削減が可能になる。
 なお、上述したように、この実施の形態においては、回転防止機構180をハウジング110とジョイント部品112との係合部よりも軸方向内側に設けた場合を例示して説明を行なったが、これとは逆に、ハウジング110とジョイント部品112との係合部よりも軸方向外側に回転防止機構180を設けることも可能である。その場合の態様の一例を図89および図90において変形例として示している。
 図89に示すように、本変形例においては、ハウジング110の一端側における組付構造は、図86において示した組付構造に準じている。
 一方、図90に示すように、本変形例においては、ハウジング110の上述した他端(すなわち、血液の排出側の端部)に、出口側のジョイント部品112の外周面に重なるとともに、ジョイント部品112の入口側の端面を覆う被せ部110bが設けられており、可撓性膜120の上述した他方の端部(すなわち、血液の排出側の端部)には、径方向外側に向けて突出するとともに周方向に沿って延びる環状形状の厚膜部121が設けられている。
 ここで、ハウジング110の被せ部110bには、ジョイント部品112が嵌まっている。これにより、可撓性膜120の厚膜部121は、ハウジング110の上述した被せ部110bの内側に位置する軸方向端面とジョイント部品112の入口側の端面とに当接しており、これらハウジング110とジョイント部品112とによって挟持されている。
 また、ハウジング110の被せ部110bの内周面の所定位置には、径方向内側に向けて突出する環状形状の凸部110dが設けられており、出口側のジョイント部品112の外周面の所定位置には、環状形状の凹部112dが設けられている。ハウジング110に設けられた環状形状の凸部110dは、ジョイント部品112に設けられた環状形状の凹部112dに嵌合している。これにより、ハウジング110およびジョイント部品112が相対的に軸方向に移動してしまうことが制限されており、その脱落が防止されている。
 さらに、上述した環状形状の凸部110dおよび環状形状の凹部112dからなる係合部が位置する部分よりも軸方向外側の部分には、回転防止機構180が設けられている。回転防止機構180は、ハウジング110の内周面に設けられた凹凸部と、これに嵌り合うようにジョイント部品112の外周面に設け有れた凹凸部とからなるローレットによって構成されている。これら凹凸部は、いずれも、軸方向に沿って当該凹凸のそれぞれが延在するとともに、周方向に沿って当該凹凸が交互に位置するように配置されており、これにより互いの凹凸部が噛み合うことにより、ハウジング110およびジョイント部品112が相対的に回転してしまうことが制限されている。
 このように構成した場合にも、組み立て作業が容易化する等の上述した効果と同様の効果を得ることができる。
 (実施の形態22)
 この実施の形態における圧力測定部は、陽圧部位である図1におけるPD(Pre-dialyzer)圧測定部位5または静脈圧測定部位11に好適に設けられるものである。
 図91および図92に示すように、圧力測定部1100は、ハウジング1110と、第一ジョイント部品としてのジョイント部品111と、第二ジョイント部品としてのジョイント部品112と、可撓性膜1120とを備えている。ハウジング1110には、圧力測定ポート140が設けられている。ジョイント部品111は、血液が導入される側の端部であるハウジング1110の軸方向の一端に組付けられており、ジョイント部品112は、血液が排出される側の端部であるハウジング1110の軸方向の他端に組付けられている。
 この実施の形態においても、上述した実施の形態12の場合と同様に、ハウジング1110は略円筒状であり、可撓性膜1120は、その表面に互いに平行に延びる3つの凹部127が形成された筒状である。
 図92に示すように、ハウジング1110内は空洞であり、その空間は、入り口側のジョイント部品111から出口側のジョイント部品112まで延びている。可撓性膜1120は、ハウジング1110内の空間に配置されている。
 可撓性膜1120は、その一方の端部がハウジング1110とジョイント部品111とによって挟持されており、その他方の端部がハウジング1110とジョイント部品112とによって挟持されている。これにより、可撓性膜1120は、ハウジング1110内を血液室150と空気室160とに区画しており、血液室150を流れる血液の圧力に応じて筒外方向に変形することができる。
 図92(A)および図93(A)に示すように、可撓性膜1120は、血液を流す前の初期状態において、上述したようにその表面に互いに平行に延びる3つの凹部127が形成された筒状の形状を有しており、血液の流入に伴って変形することが可能な部分である筒状部120bと、その一方の端部に設けられたリブ122(図97参照)と、その他方の端部に設けられた厚膜部121とを含んでいる。厚膜部121の端面には、可撓性膜1120の軸方向に沿って突出する環状突起121aが設けられている。なお、可撓性膜1120は、後述するように各種の材料を用いて形成することができるが、好適には樹脂材料を用いた射出成形によって形成され、樹脂材料としては、スチレン系エラストマーが特に好適に利用できる。
 図92(B)および図93(B)に示すように、可撓性膜1120は、ポンピングセグメントである血液ポンプ4(図1参照)が動作することによって、当該可撓性膜1120の内部の空間である血液室150に血液が流入した状態において、上述した血液ポンプ4の作用によって血液室150の圧力が空気室160の圧力よりも高い圧力となることにより、この圧力差に伴って筒外方向に変形する。その際、筒状部120bには、より円筒状に近い形に変形するように、互いに平行に延びる3つの凹部127が減少または消滅するように形状変化が発生する。なお、以下の説明においては、理解を容易とするために、互いに平行に延びる3つの凹部127が消滅するように形状変化する場合を特に例示して説明を行なう。
 上述した3つの凹部127が消滅することにより、可撓性膜1120には、図92において示す如くの形状変化が発生する。ここで、図94(A1)および(B1)は、可撓性膜の上述した一方の端部近傍(すなわち、血液の流入側近傍)における血液の流入前後での形状変化を示しており、図94(A2)および(B2)は、可撓性膜の軸方向の中央部における血液の流入前後での形状変化を示しており、図94(A3)および(B3)は、可撓性膜の上述した他方の端部近傍(すなわち、血液の排出側近傍)における血液の流入前後での形状変化を示している。
 図94(A1)~(A3)に示すように、可撓性膜1120は、血液の流入前において、その断面が各辺が凹んだ略三角形状を有している。ここで、図92(A)、図93(A)および図94(A1)~(A3)に示すように、可撓性膜1120の筒状部120bの両端部における可撓性膜1120の筒内の断面積の各々は、可撓性膜1120の筒状部120bの中央部における可撓性膜1120の筒内の断面積よりも大きい。また、可撓性膜1120の筒内の断面積は、上記両端部から上記中央部に近づくにつれて徐々に小さくなっている。
 このように構成することにより、可撓性膜1120の内部に軸方向に沿って極端な断面積の変化が生じないことになるため、血液の滞留が発生することが防止できる。
 図94(A1)~(A3)に示すように、血液の流入前の初期状態において、互いに平行に延びる3つの凹部127を有する筒状であった可撓性膜1120は、図94(B1)~(B3)に示すように、血液の流入後の圧力測定時において、これら3つの凹部を規定する部分が筒外方向に向けて(すなわち、図中に示す矢印方向に向けて)膨らむ方向に変形する。これに伴い、血液室150の容積が増大し、空気室160の容積が減少する。その際、血液が流入する前の初期状態において可撓性膜1120に上述した3つの凹部127が形成されていることにより、可撓性膜1120の変形しろが大きく確保できることになり、血液室150の変動可能な容積が大きく確保できることになる。
 ここで、図94(A1)~(A3)に示すように、ハウジング1110の軸方向と直交する断面であってかつ可撓性膜1120の変形可能な部分である筒状部120bを含む任意の断面において、可撓性膜1120の上記筒状部120bの外周縁の長さ(図中において符号L1で示す長さ)は、ハウジング1110の内周縁の長さ(図中において符号L0で示す長さ)と同じかそれ以下である(すなわち、L1≦L0)。
 このように構成することにより、可撓性膜1120の変形が可撓性膜1120自体およびハウジング1110によって阻害されてしまうことが防止できるため、可撓性膜1120がスムーズに略円筒状に変形することになり、結果として血液の滞留を防止することができる。換言すれば、仮に、上記筒状部120bの外周縁の長さL1と上記ハウジング1110の内周縁の長さL0とが、L1>L0の条件を満たした場合には、圧力測定時において可撓性膜1120に余剰の膨張部分が発生することになり、これが可撓性膜1120の他の部分やハウジング1110に干渉することで可撓性膜1120の形状が歪な形となり、血液の流動抵抗が大きくなって血液の滞留が発生してしまう。
 このように可撓性膜1120の変形が可撓性膜1120自体およびハウジング1110によって阻害されてしまうことを防止しつつ、血液室150の変動可能な容積を確保するためには、初期状態において可撓性膜1120に形成されている互いに平行に延びる凹部127の数が2から4個であることが好ましい。
 図95に示す第1変形例は、当該凹部127が2個である場合を示しており、図96に示す第2変形例は、当該凹部127が4個である場合を示している。これら第1変形例および第2変形例の場合においても、上述したL1≦L0の条件を満たすことにより、血液室150の変動可能な容積を確保しつつ、血液の滞留を防止することができる。
 なお、初期状態において可撓性膜1120に形成されている互いに平行に延びる凹部127の数が5個以上である場合には、上述したL1≦L0の条件を満たしつつ、血液室150の変動可能な容積を十分に確保することが困難になるため、血液の滞留を十分に防止することが困難になる。
 図94(A)~(C)および図95ならびに図96を参照して、初期状態において可撓性膜1120は、その内周面がいずれの部分においても非接触に構成されている。すなわち、筒状の可撓性膜1120に互いに平行に延びる凹部127を形成する場合においては、可撓性膜1120の内周面の一部と当該内周面の一部とは異なる部分の内周面の一部とを接触させるように構成することも可能ではあるが、そのように構成することは好ましくない。これは、可撓性膜1120の内周面同士がいずれかの部分において接触している場合に、当該部分において血液の滞留が発生する可能性があるためである。
 そのため、可撓性膜1120に形成されている互いに平行に延びる凹部127間に位置する部分の空間の距離は、0.5~2.0mm程度確保されていることが好ましく、本実施の形態においては、当該距離が1.0mm確保されている。
 図97および図98に示すように、この実施の形態における圧力測定部においては、以下において説明する組付構造が採用されている。
 図97に示すように、入口側のジョイント部品111には、外周面の所定位置に周方向に沿って延びる環状形状の溝111bが設けられており、可撓性膜1120の上述した一方の端部(すなわち、血液の流入側の端部)には、径方向内側に向けて突出するとともに周方向に沿って延びる環状形状のリブ122が設けられている。可撓性膜1120のリブ122は、ジョイント部品111の溝111bに嵌合している。
 ここで、ジョイント部品111は、ハウジング1110の上述した一端(すなわち、血液の導入側の端部)に嵌まっている。これにより、可撓性膜1120の上述した一方の端部近傍は、ハウジング1110の内周面とジョイント部品111の外周面とにそれぞれ当接しており、これらハウジング1110とジョイント部品111とによって挟持されている。
 また、ハウジング1110の内周面の所定位置には、径方向内側に向けて突出する環状形状の凸部110cが設けられており、入口側のジョイント部品111の外周面の所定位置には、環状形状の凹部111cが設けられている。ハウジング1110に設けられた環状形状の凸部110cは、ジョイント部品111に設けられた環状形状の凹部111cに嵌合している。これにより、ハウジング1110およびジョイント部品111が相対的に軸方向に移動してしまうことが制限されており、その脱落が防止されている。
 さらに、上述した環状形状の凸部110cおよび環状形状の凹部111cからなる係合部が位置する部分よりも軸方向内側の部分には、回転防止機構170が設けられている。回転防止機構170は、ハウジング1110の内周面に設けられた凹凸部と、これに嵌り合うようにジョイント部品111の外周面に設け有れた凹凸部とからなるローレットによって構成されている。これら凹凸部は、いずれも、軸方向に沿って当該凹凸のそれぞれが延在するとともに、周方向に沿って当該凹凸が交互に位置するように配置されており、これにより互いの凹凸部が噛み合うことにより、ハウジング1110およびジョイント部品111が相対的に回転してしまうことが制限されている。
 また、図98に示すように、出口側のジョイント部品112には、ハウジング1110の上述した他端(すなわち、血液の排出側の端部)の外周面に重なるとともに、ハウジング1110の上述した他端の端面を覆う被せ部112bが設けられており、可撓性膜1120の上述した他方の端部(すなわち、血液の排出側の端部)には、径方向外側に向けて突出するとともに周方向に沿って延びる環状形状の厚膜部121が設けられている。
 ここで、ジョイント部品112の被せ部112bは、ハウジング1110の上述した他端に嵌まっている。これにより、可撓性膜1120の厚膜部121は、ハウジング1110の上述した他端の端面とジョイント部品112の被せ部112bの内面とに当接しており、これらハウジング1110とジョイント部品112とによって挟持されている。
 また、ハウジング1110の内周面の所定位置には、径方向内側に向けて突出する環状形状の凸部110dが設けられており、出口側のジョイント部品112の外周面の所定位置には、環状形状の凹部112dが設けられている。ハウジング1110に設けられた環状形状の凸部110dは、ジョイント部品112に設けられた環状形状の凹部112dに嵌合している。これにより、ハウジング1110およびジョイント部品112が相対的に軸方向に移動してしまうことが制限されており、その脱落が防止されている。
 さらに、上述した環状形状の凸部110dおよび環状形状の凹部112dからなる係合部が位置する部分よりも軸方向内側の部分には、回転防止機構180が設けられている。回転防止機構180は、ハウジング1110の内周面に設けられた凹凸部と、これに嵌り合うようにジョイント部品112の外周面に設け有れた凹凸部とからなるローレットによって構成されている。これら凹凸部は、いずれも、軸方向に沿って当該凹凸のそれぞれが延在するとともに、周方向に沿って当該凹凸が交互に位置するように配置されており、これにより互いの凹凸部が噛み合うことにより、ハウジング1110およびジョイント部品112が相対的に回転してしまうことが制限されている。
 以上により、可撓性膜1120の上述した一方の端部は、径方向においてハウジング1110とジョイント部品111とによって挟み込まれることで固定され、可撓性膜1120の上述した他方の端部は、軸方向においてハウジング1110とジョイント部品112とによって挟み込まれることで固定されている。
 なお、可撓性膜1120の厚膜部121に設けられた環状突起121a(図93参照)は、ジョイント部品112の被せ部112bの内面によって押し潰されており、これにより当該部分のシール性が確保されている。また、図98に示すように、ハウジング1110の上述した他端の端面には、軸方向外側に向けて環状形状のリブ119が突設されており、当該リブ119が可撓性膜1120の厚膜部121に食い込むことにより、当該部分のシール性が確保されている。
 以上において説明した組付構造を採用することにより、以下において説明するように、組み立て作業が容易化する効果が得られる。
 すなわち、まず図99(A)に示すように、可撓性膜1120のリブ122をジョイント部品111の溝111bに嵌合させることで可撓性膜1120にジョイント部品111を組付け、さらに図99(B)に示すように、これをハウジング1110の内部に挿入する。その際、可撓性膜1120およびジョイント部品111をハウジング1110の上述した一端にハウジングの内部からから圧入するようにする。
 その際、上述した回転防止機構170としてのローレットを構成する凹凸部同士を互いに噛み合わせつつ、環状形状の凸部110cが環状形状の凹部111cに嵌まり合うようにすることにより、ハウジング1110に対するジョイント部品111の固定が行なわれる。
 次に図99(C)に示すように、可撓性膜1120の厚膜部121をハウジング1110の上述した他端の端面との間で挟み込むように、ハウジング1110の上述した他端にジョイント部品112を嵌め込む。
 その際、上述した回転防止機構180としてのローレットを構成する凹凸部同士を互いに噛み合わせつつ、環状形状の凸部110dが環状形状の凹部112dに嵌まり合うようにすることにより、可撓性膜1120が位置ずれを起こすことなく、ハウジング1110に対するジョイント部品112の固定が行なわれる。以上により、圧力測定部1100の製造が完了する。
 このように、この実施の形態における圧力測定部1100の如くの組付構造を採用することにより、非常に簡便な組み立て方法にて圧力測定部1100の製造が可能になるため、製造コストの削減が可能になる。
 なお、上述したように、この実施の形態においては、回転防止機構180をハウジング1110とジョイント部品112との係合部よりも軸方向内側に設けた場合を例示して説明を行なったが、これとは逆に、ハウジング1110とジョイント部品112との係合部よりも軸方向外側に回転防止機構180を設けることも可能である。その場合の態様の一例を図100および図101において変形例として示している。
 図100に示すように、本変形例においては、ハウジング1110の一端側における組付構造は、図97において示した組付構造に準じている。
 一方、図101に示すように、本変形例においては、ハウジング1110の上述した他端(すなわち、血液の排出側の端部)に、出口側のジョイント部品112の外周面に重なるとともに、ジョイント部品112の入口側の端面を覆う被せ部110bが設けられており、可撓性膜120の上述した他方の端部(すなわち、血液の排出側の端部)には、径方向外側に向けて突出するとともに周方向に沿って延びる環状形状の厚膜部121が設けられている。
 ここで、ハウジング1110の被せ部110bには、ジョイント部品112が嵌まっている。これにより、可撓性膜120の厚膜部121は、ハウジング1110の上述した被せ部110bの内側に位置する軸方向端面とジョイント部品112の入口側の端面とに当接しており、これらハウジング1110とジョイント部品112とによって挟持されている。
 また、ハウジング1110の被せ部110bの内周面の所定位置には、径方向内側に向けて突出する環状形状の凸部110dが設けられており、出口側のジョイント部品112の外周面の所定位置には、環状形状の凹部112dが設けられている。ハウジング1110に設けられた環状形状の凸部110dは、ジョイント部品112に設けられた環状形状の凹部112dに嵌合している。これにより、ハウジング1110およびジョイント部品112が相対的に軸方向に移動してしまうことが制限されており、その脱落が防止されている。
 さらに、上述した環状形状の凸部110dおよび環状形状の凹部112dからなる係合部が位置する部分よりも軸方向外側の部分には、回転防止機構180が設けられている。回転防止機構180は、ハウジング1110の内周面に設けられた凹凸部と、これに嵌り合うようにジョイント部品112の外周面に設け有れた凹凸部とからなるローレットによって構成されている。これら凹凸部は、いずれも、軸方向に沿って当該凹凸のそれぞれが延在するとともに、周方向に沿って当該凹凸が交互に位置するように配置されており、これにより互いの凹凸部が噛み合うことにより、ハウジング1110およびジョイント部品112が相対的に回転してしまうことが制限されている。
 このように構成した場合にも、組み立て作業が容易化する等の上述した効果と同様の効果を得ることができる。
 なお、上記の実施の形態では、陰圧測定用の圧力測定部100および陽圧測定用の圧力測定部1100をそれぞれ単独で説明したが、一つの血液回路に本願における圧力測定部100,1100が設けられていてもよい。その場合には、血液回路は、血液が加圧されるポンピングセグメントの下流側に設けられる第一測定部としての圧力測定部1100(実施の形態11-17,20,22)と、ポンピングセグメントの上流側に設けられる第二測定部としての圧力測定部100(実施の形態1-10、18,19,21)との両方を備える。血液を流す前の初期状態において血液が流れていない状態では、可撓性膜1120とハウジング1110との間の隙間は、可撓性膜120とハウジング110との間の隙間よりも大きい。
 可撓性膜120,1120は、ショアA硬度80以下が好ましい。構成材料としては、特に限定されず、例えば、天然ゴム、ブチルゴム、イソプレンゴム、ブタジエンゴム、スチレン-ブタジエンゴム、シリコーンゴムのような各種ゴム材料、ポリウレタン系、ポリエステル系、ポリアミド系、オレフィン系、スチレン系等の各種熱可塑性エラストマー等、ポリ塩化ビニル、ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体、エチレン-酢酸ビニル共重合体、架橋型エチレン-酢酸ビニル共重合体等のポリオレフィン、ポリエチレンテレフタレート等のポリエステル、ポリウレタン、ポリアミド等の各種樹脂が挙げられ、これらを単独であるいは任意に組み合わせて用いることができる。成形方法は特に限定されず射出成形、押出成形、コンプレッション成形、トランスファー成形が挙げられ、適当な方法を用いる。押出成形であればシリコーンゴム、射出成形であればスチレン系エラストマーが製造しやすい。
 陰圧用チューブ(可撓性膜120)は、陽圧用チューブ(可撓性膜1120)と違い、筒内方向に変形されるチューブである。筒外方向への変形と筒内方向への変形とでは筒内方向への変形の方が弾性力が生じにくいので、陰圧陽用チューブは断面が円形状の円筒状でも精度良く測定可能である。
 陰圧チューブについては、上記の実施の形態に従った陰圧用チューブは断面が円形状である。本実施形態の場合、陰圧チューブで陰圧のみを測定する。従来のチューブは陰圧および陽圧を測定するため、陽圧測定時に筒外方向へ膨張する必要があり、径が小さい場合には十分に膨張することができない。そのため径が大きくなるという問題があった。これに対して、実施の形態に従った陰圧用チューブは小径化することができる。各所で流体の乱流を防止し、流体どうしの干渉を抑制し、圧力損失を低減することができる。
 実施の形態に従った陰圧測定用の圧力測定部において、特許文献1より優れた点として、小型化以外に、下記効果がある。
 第一に、ハウジングと膜との間に大きな空間がないため、陰圧測定範囲が大きくなっている。
 第二に、実施の形態に従った圧力測定部では、特許文献1のハウジングのように中央が膨らんだかたちではないので、血液の滞留が生じにくい。
 第三に、測定部における流路が円筒状なので、特許文献6に比べてプライミング時の気泡抜けが良い。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1 血液導入口、2 脱血圧測定部位、3,6,12 圧力トランスデューサー、4 血液ポンプ、5 圧測定部位、7a ダイアライザー血液導入口、7b ダイアライザー血液導出口、8 ダイアライザー、9a 透析液導出口、9b 透析液導入口、10 透析装置本体、11 静脈圧測定部位、13 血液導出口、100,1100 圧力測定部、102 チャンバ、110,1110 ハウジング、110b 被せ部、110c,110d 凸部、111,112 ジョイント部品、111a 線、111b 溝、111c 凹部、111h 貫通穴、111w 隔壁、112b 被せ部、112d 凹部、113,114 係合部、115 閉塞抑制部材、115a 壁面、116 板状部材、119 リブ、120,1120 可撓性膜、120a 円筒状部、120b 筒状部、121 厚膜部、121a 環状突起、122 リブ、126 凸部、127 凹部、128 窪み部、140 圧力測定ポート、141 液面調整ポート、150 血液室、160 空気室、170,180 回転防止機構、210,220 血液ライン、240 圧力モニターライン、241,251 コネクタ、242,252 クリップ、250 液面調整ライン。

Claims (19)

  1.  圧力測定装置と接続される圧力測定部を有する血液回路であって、
     血液が加圧されるポンピングセグメントの下流側に設けられる第一測定部と、
     前記ポンピングセグメントの上流側に設けられる第二測定部とを備え、
     前記第一測定部は、
     筒状の第一ハウジングと、
     筒状の前記第一ハウジング内に設けられた筒状の第一可撓性膜とを備え、
     前記第一可撓性膜の筒内に血液を流し、血液の圧力に応じて前記第一可撓性膜が変位することで血液の圧力変動を測定することができ、
     前記第二測定部は、
     筒状の第二ハウジングと、
     筒状の前記第二ハウジング内に設けられた筒状の第二可撓性膜とを備え、
     前記第二可撓性膜の筒内に血液を流し、血液の圧力に応じて前記第二可撓性膜が変位することで血液の圧力変動を測定することができ、
     血液を流す前の初期状態においては、前記第一可撓性膜と前記第一ハウジングとの間の隙間は、前記第二可撓性膜と前記第二ハウジングとの間の隙間よりも大きい、圧力測定部を有する血液回路。
  2.  前記第一可撓性膜は前記第一ハウジングとの間に隙間を形成して設けられた筒状で少なくとも一部の断面が非円形部分を備え、
     前記第一可撓性膜の筒内に血液を流し、血液の圧力に応じて前記第一可撓性膜の非円形部分が筒外方向に変形して前記第一ハウジングとの間の隙間を減少させることで血液の圧力変動を測定することができ、
     前記第二可撓性膜は前記ハウジングに近接して設けられている、請求項1に記載の圧力測定部を有する血液回路。
  3.  圧力測定装置と接続される圧力測定部を有する血液回路であって、
     筒状のハウジングと、
     前記筒状のハウジング内に前記ハウジングに近接して設けられた筒状の可撓性膜と、を備え、
     前記可撓性膜の筒内に血液を流し、血液の圧力に応じて前記可撓性膜が筒内方向に変形して前記ハウジングとの間に隙間を増加させることで血液の圧力変動を測定することができる、圧力測定部を有する血液回路。
  4.  前記可撓性膜が、血液を流す前の初期状態において、軸方向に一定の内径および外径を有する円筒状である、請求項3に記載の圧力測定部を有する血液回路。
  5.  前記可撓性膜が、血液を流す前の初期状態において、断面形状が略真円形状であり、
     前記ハウジングが、軸方向に一定の内径および外径を有する断面形状が略真円形状の円筒状である、請求項4に記載の圧力測定部を有する血液回路。
  6.  前記可撓性膜の変形可能な部分の血液を流す前の初期状態における軸方向長さをXとし、前記可撓性膜の変形可能な部分の血液を流す前の初期状態における外径をYとした場合に、前記軸方向長さXおよび前記外径Yが、4.0≦X/Y≦8.0の条件を満たし、
     前記可撓性膜の変形可能な部分の血液を流す前の初期状態における厚みをTとした場合に、前記厚みTが、0.2mm≦T≦0.6mmの条件を満たし、
     前記可撓性膜のショアA硬度が、20以上60以下である、請求項4または5に記載の圧力測定部を有する血液回路。
  7.  前記ハウジングの軸方向の一端に組付けられた第一ジョイント部品と、
     前記ハウジングの軸方向の他端に組付けられた第二ジョイント部品と、をさらに備え、
     前記第一ジョイント部品および前記第二ジョイント部品の少なくとも一方が、前記筒状の可撓性膜の端部をハウジングとによって軸方向に挟み込むことで固定している、請求項3から6のいずれか1項に記載の圧力測定部を有する血液回路。
  8.  前記第一ジョイント部品が、前記筒状の可撓性膜の一方の端部をハウジングとによって軸方向に挟み込むことで固定し、
     前記第二ジョイント部品が、前記筒状の可撓性膜の他方の端部をハウジングとによって径方向に挟み込むことで固定している、請求項7に記載の圧力測定部を有する血液回路。
  9.  圧力測定装置と接続される圧力測定部を有する血液回路であって、
     筒状のハウジングと、
     前記筒状のハウジング内に前記ハウジングとの間に隙間を形成して設けられた筒状で少なくとも一部の断面が非円形の可撓性膜と、を備え、
     前記可撓性膜の筒内に血液を流し、血液の圧力に応じて前記可撓性膜の非円形部分が筒外方向に変形して前記ハウジングとの間の隙間を減少させることで血液の圧力変動を測定することができる、圧力測定部を有する血液回路。
  10.  前記可撓性膜の表面には複数の凹部が形成されており、複数の前記凹部が互いに平行に延びる、請求項9に記載の圧力測定部を有する血液回路。
  11.  血液を流す前の初期状態において、前記ハウジングの軸方向と直交しかつ前記可撓性膜の変形可能な部分の断面において、前記可撓性膜の外周縁の長さが、前記ハウジングの内周縁の長さと同じかそれ以下である、請求項10に記載の圧力測定部を有する血液回路。
  12.  前記凹部の数が、2個から4個のいずれかである、請求項10または11に記載の圧力測定部を有する血液回路。
  13.  前記可撓性膜が、血液を流す前の初期状態において、その内周面がいずれの部分においても非接触に構成されている、請求項11または12に記載の圧力測定部を有する血液回路。
  14.  血液を流す前の初期状態において、前記可撓性膜の変形可能な部分の両端部における前記可撓性膜の筒内の断面積の各々が、前記可撓性膜の変形可能な部分の中央部における前記可撓性膜の筒内の断面積よりも大きい、請求項9から13のいずれか1項に記載の圧力測定部を有する血液回路。
  15.  前記初期状態において、前記可撓性膜の筒内の断面積が、前記両端部から前記中央部に近づくにつれて徐々に小さくなる、請求項14に記載の圧力測定部を有する血液回路。
  16.  前記ハウジングの軸方向の一端に組付けられた第一ジョイント部品と、
     前記ハウジングの軸方向の他端に組付けられた第二ジョイント部品と、をさらに備え、
     前記第一ジョイント部品および前記第二ジョイント部品の少なくとも一方が、前記筒状の可撓性膜の端部をハウジングとによって軸方向に挟み込むことで固定している、請求項9から15のいずれか1項に記載の圧力測定部を有する血液回路。
  17.  前記第一ジョイント部品が、前記筒状の可撓性膜の一方の端部をハウジングとによって軸方向に挟み込むことで固定し、
     前記第二ジョイント部品が、前記筒状の可撓性膜の他方の端部をハウジングとによって径方向に挟み込むことで固定している、請求項16に記載の圧力測定部を有する血液回路。
  18.  圧力測定装置と接続される圧力測定部を有する血液回路であって、
     軸方向に一端および他端を有する筒状のハウジングと、
     前記筒状のハウジング内に設けられた筒状の可撓性膜と、
     前記ハウジングの前記一端に組付けられた第一ジョイント部品と、
     前記ハウジングの前記他端に組付けられた第二ジョイント部品と、を備え、
     前記可撓性膜の筒内に血液を流し、血液の圧力に応じて前記可撓性膜が変位することで血液の圧力変動を測定することができ、
     前記第一ジョイント部品および前記第二ジョイント部品の少なくとも一方が、前記筒状の可撓性膜の端部をハウジングとによって軸方向に挟み込むことで固定している、圧力測定部を有する血液回路。
  19.  前記第一ジョイント部品が、前記筒状の可撓性膜の一方の端部をハウジングとによって軸方向に挟み込むことで固定し、
     前記第二ジョイント部品が、前記筒状の可撓性膜の他方の端部をハウジングとによって径方向に挟み込むことで固定している、請求項18に記載の圧力測定部を有する血液回路。
PCT/JP2015/080456 2014-10-28 2015-10-28 圧力測定部を有する血液回路 WO2016068213A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/522,642 US10646123B2 (en) 2014-10-28 2015-10-28 Blood circuit having pressure measurement portion
EP15854357.9A EP3213782A4 (en) 2014-10-28 2015-10-28 Blood circuit having pressure measurement part
JP2016556609A JP6828436B2 (ja) 2014-10-28 2015-10-28 圧力測定部を有する血液回路

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014219469 2014-10-28
JP2014-219469 2014-10-28

Publications (1)

Publication Number Publication Date
WO2016068213A1 true WO2016068213A1 (ja) 2016-05-06

Family

ID=55857548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/080456 WO2016068213A1 (ja) 2014-10-28 2015-10-28 圧力測定部を有する血液回路

Country Status (4)

Country Link
US (1) US10646123B2 (ja)
EP (1) EP3213782A4 (ja)
JP (1) JP6828436B2 (ja)
WO (1) WO2016068213A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022518993A (ja) * 2018-11-01 2022-03-18 テルモ株式会社 生体成分採取システムおよび回路内圧取得方法
JP2022518992A (ja) * 2019-02-01 2022-03-18 テルモ株式会社 生体成分移送システム

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL234337B1 (pl) * 2018-02-21 2020-02-28 Politechnika Wroclawska Wielofunkcyjny czujnik ciśnienia krwi
WO2019164702A1 (en) 2018-02-22 2019-08-29 Srs Medical Systems, Llc Urodynamic investigation apparatus, system, & methods
US20190374116A1 (en) * 2018-06-12 2019-12-12 Edwards Lifesciences Corporation Finger cuff blood pressure measurement system including a heart reference sensor
WO2021094144A1 (en) 2019-11-12 2021-05-20 Fresenius Medical Care Deutschland Gmbh Blood treatment systems
CA3160967A1 (en) 2019-11-12 2021-05-20 Fresenius Medical Care Deutschland Gmbh Blood treatment systems
WO2021094140A1 (en) 2019-11-12 2021-05-20 Fresenius Medical Care Deutschland Gmbh Blood treatment systems
EP4058094A1 (en) 2019-11-12 2022-09-21 Fresenius Medical Care Deutschland GmbH Blood treatment systems

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61106252U (ja) * 1984-12-17 1986-07-05
JPH08500252A (ja) * 1992-03-13 1996-01-16 タマリ,イェフーダ 体外循環ポンピング用の圧力検知装置
JPH08510812A (ja) * 1992-12-31 1996-11-12 タマリ,ユェフダ 蠕動ポンプ用の革新的ポンピングシステム
JP2010121964A (ja) * 2008-11-17 2010-06-03 Asahi Kasei Kuraray Medical Co Ltd 圧力センサの使用方法
JP2010125131A (ja) * 2008-11-28 2010-06-10 Asahi Kasei Kuraray Medical Co Ltd 圧力測定部のキャリブレーション方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58153841U (ja) 1982-04-10 1983-10-14 株式会社ニツシヨ− 体外循環血液圧力測定装置
JPS61143069A (ja) 1984-12-18 1986-06-30 日本メデイカルエンジニアリング株式会社 血液透析装置の血液回路における血液循環装置
JPH041948Y2 (ja) * 1986-06-20 1992-01-23
JPH01147330A (ja) * 1987-12-04 1989-06-09 Yasushi Ishii 圧力センサ
US5813842A (en) * 1989-09-22 1998-09-29 Tamari; Yehuda Pressure sensitive valves for extracorporeal pumping-3
JPH0523393A (ja) 1991-07-18 1993-02-02 Joji Oshima 血圧測定装置
JPH0924026A (ja) 1995-07-10 1997-01-28 Otsuka Pharmaceut Factory Inc 血液回路の圧力測定装置
US6526357B1 (en) 1999-08-09 2003-02-25 Gambro, Inc. Associated parameter measuring and/or monitoring such as in the evaluation of pressure differences
US8092414B2 (en) 2005-11-09 2012-01-10 Nxstage Medical, Inc. Diaphragm pressure pod for medical fluids
US9415150B2 (en) 2007-11-09 2016-08-16 Baxter Healthcare S.A. Balanced flow dialysis machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61106252U (ja) * 1984-12-17 1986-07-05
JPH08500252A (ja) * 1992-03-13 1996-01-16 タマリ,イェフーダ 体外循環ポンピング用の圧力検知装置
JPH08510812A (ja) * 1992-12-31 1996-11-12 タマリ,ユェフダ 蠕動ポンプ用の革新的ポンピングシステム
JP2010121964A (ja) * 2008-11-17 2010-06-03 Asahi Kasei Kuraray Medical Co Ltd 圧力センサの使用方法
JP2010125131A (ja) * 2008-11-28 2010-06-10 Asahi Kasei Kuraray Medical Co Ltd 圧力測定部のキャリブレーション方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022518993A (ja) * 2018-11-01 2022-03-18 テルモ株式会社 生体成分採取システムおよび回路内圧取得方法
JP7404357B2 (ja) 2018-11-01 2023-12-25 テルモ株式会社 生体成分採取システムおよび生体成分採取システムの作動方法
JP2022518992A (ja) * 2019-02-01 2022-03-18 テルモ株式会社 生体成分移送システム
US11786905B2 (en) 2019-02-01 2023-10-17 Terumo Kabushiki Kaisha Blood component separation apparatus with internal pressure monitor
JP7461938B2 (ja) 2019-02-01 2024-04-04 テルモ株式会社 生体成分移送システム

Also Published As

Publication number Publication date
JP6828436B2 (ja) 2021-02-10
EP3213782A1 (en) 2017-09-06
US10646123B2 (en) 2020-05-12
EP3213782A4 (en) 2018-06-13
US20170319086A1 (en) 2017-11-09
JPWO2016068213A1 (ja) 2017-10-05

Similar Documents

Publication Publication Date Title
WO2016068213A1 (ja) 圧力測定部を有する血液回路
AU2003218078B2 (en) Disc check valve
US5088522A (en) Pump hose for a peristaltic pump
JP6444313B2 (ja) エミッタおよび点滴灌漑用チューブ
US9164008B2 (en) Pressure detector
CN102575786B (zh) 保压阀
JP2019146994A (ja) 折り畳み弁を備える無針コネクタ
JPH10122921A (ja) フローセンサ
KR20120091071A (ko) 액체 분배 장치
US10105726B2 (en) Fluid flow sinker
US10495085B2 (en) Pump arrangements for pumping fluid
US20140318664A1 (en) Non-Kinking Fluid Delivery Hose
US20220065671A1 (en) Physical quantity measurement device for measuring a physical quantity of a fluid
JP2021021408A (ja) 流量調整弁
TWI720232B (zh) 旋塞閥、液體供給方法、液體供給裝置以及塗佈裝置
JP6772447B2 (ja) 圧力測定部を有する血液回路
JP6417705B2 (ja) 弁付ハブ
CN106908107B (zh) 具有高动态范围的流量传感组件
JP6737373B2 (ja) 圧力測定部を有する血液回路
US20200141778A1 (en) Pulsation damper for a thermal flow sensor
WO2021039624A1 (ja) エミッタおよび点滴灌漑用チューブ
JPH0444958Y2 (ja)
JP2019063449A (ja) 流量調節デバイス、フラッシュデバイスおよびイリゲーションライン
JP2019056411A (ja) 逆止弁
JPH0735277A (ja) パイプ継手

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15854357

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016556609

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15522642

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015854357

Country of ref document: EP