WO2016068169A1 - 異方性導電フィルム及び接続構造体 - Google Patents

異方性導電フィルム及び接続構造体 Download PDF

Info

Publication number
WO2016068169A1
WO2016068169A1 PCT/JP2015/080338 JP2015080338W WO2016068169A1 WO 2016068169 A1 WO2016068169 A1 WO 2016068169A1 JP 2015080338 W JP2015080338 W JP 2015080338W WO 2016068169 A1 WO2016068169 A1 WO 2016068169A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
conductive particles
particles
particle
conductive film
Prior art date
Application number
PCT/JP2015/080338
Other languages
English (en)
French (fr)
Inventor
怜司 塚尾
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Priority to US15/517,781 priority Critical patent/US9953947B2/en
Priority to CN201580055635.4A priority patent/CN106797082B/zh
Priority to KR1020177006076A priority patent/KR101937601B1/ko
Publication of WO2016068169A1 publication Critical patent/WO2016068169A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/16Non-insulated conductors or conductive bodies characterised by their form comprising conductive material in insulating or poorly conductive material, e.g. conductive rubber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/10Adhesives in the form of films or foils without carriers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/27Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R11/00Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts
    • H01R11/01Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts characterised by the form or arrangement of the conductive interconnection between the connecting locations
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/314Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier the adhesive layer and/or the carrier being conductive
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/40Additional features of adhesives in the form of films or foils characterized by the presence of essential components
    • C09J2301/408Additional features of adhesives in the form of films or foils characterized by the presence of essential components additives as essential feature of the adhesive layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/1354Coating
    • H01L2224/13599Material
    • H01L2224/136Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13644Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/27001Involving a temporary auxiliary member not forming part of the manufacturing apparatus, e.g. removable or sacrificial coating, film or substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/27001Involving a temporary auxiliary member not forming part of the manufacturing apparatus, e.g. removable or sacrificial coating, film or substrate
    • H01L2224/27003Involving a temporary auxiliary member not forming part of the manufacturing apparatus, e.g. removable or sacrificial coating, film or substrate for holding or transferring the layer preform
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/271Manufacture and pre-treatment of the layer connector preform
    • H01L2224/2711Shaping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/274Manufacturing methods by blanket deposition of the material of the layer connector
    • H01L2224/2746Plating
    • H01L2224/27462Electroplating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/274Manufacturing methods by blanket deposition of the material of the layer connector
    • H01L2224/2746Plating
    • H01L2224/27464Electroless plating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/2929Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29339Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29344Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29347Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29355Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29357Cobalt [Co] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29363Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/29364Palladium [Pd] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/2939Base material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29399Coating material
    • H01L2224/294Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29399Coating material
    • H01L2224/294Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29438Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29444Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29399Coating material
    • H01L2224/294Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29438Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29455Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29499Shape or distribution of the fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/831Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus
    • H01L2224/83101Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus as prepeg comprising a layer connector, e.g. provided in an insulating plate member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83851Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester being an anisotropic conductive adhesive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83855Hardening the adhesive by curing, i.e. thermosetting
    • H01L2224/83862Heat curing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83855Hardening the adhesive by curing, i.e. thermosetting
    • H01L2224/83874Ultraviolet [UV] curing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/04Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation using electrically conductive adhesives

Definitions

  • the present invention relates to an anisotropic conductive film and a connection structure connected using the anisotropic conductive film.
  • Anisotropic conductive films are widely used for mounting electronic components such as IC chips.
  • conductive particle capture efficiency and connection reliability have been improved, and the occurrence rate of short circuits has been reduced.
  • particle portions that is, conductive particle units
  • the interval between the conductive particle units is defined as an electrode pattern. It has been proposed to change it accordingly (Patent Document 1).
  • the distance between the conductive particle units is regulated by the distance between the transfer-type dents forming the unit, and therefore, the anisotropic conductive film is connected with the anisotropic conductive film. If the distance between the connection terminals of the electronic component is a fine pitch of about 10 ⁇ m, connection terminals that cannot sufficiently capture the conductive particles are generated or a short circuit occurs, which causes a problem in conduction reliability.
  • the present invention sufficiently captures the conductive particles at each connection terminal while suppressing the occurrence of short-circuiting, thereby improving conduction reliability.
  • the problem is to improve.
  • the present inventor regulates the distance between the conductive particle units as the distance between the transfer-type dents, and regulates the closest distance between adjacent conductive particles. Furthermore, the distance between the recesses of the transfer mold is not adapted to the fine pitch connection terminal, whereas the above problem can be solved by regulating the closest distance between the conductive particles of the adjacent conductive particle units. The inventor came up with the present invention.
  • the present invention provides an anisotropic structure in which conductive particle units in which conductive particles are arranged in a row, or a conductive particle unit in which conductive particles are arranged in a row and a single conductive particle are arranged in a lattice pattern in an insulating adhesive layer.
  • an anisotropic conductive film which is a conductive film, wherein the closest distance between conductive particles selected from adjacent conductive particle units and single conductive particles is 0.5 times or more the particle diameter of the conductive particles.
  • the present invention also provides a connection structure in which the connection terminal of the first electronic component and the connection terminal of the second electronic component are anisotropically conductively connected using the above-described anisotropic conductive film.
  • the conductive particles can be arranged at a higher density than the anisotropic conductive film in which the conductive particles are arranged in a lattice pattern.
  • the conductive particles selected from adjacent conductive particle units and single conductive particles are recently used.
  • FIG. 1A is an arrangement diagram of conductive particles in the anisotropic conductive film 1A of the example.
  • FIG. 1B is an AA cross-sectional view of the anisotropic conductive film 1A of the example.
  • FIG. 2A is a plan view of a mold used for manufacturing the anisotropic conductive film 1A of the example.
  • FIG. 2B is a BB cross-sectional view of a mold used for manufacturing the anisotropic conductive film 1A of the example.
  • FIG. 3 is an arrangement view of conductive particles in the anisotropic conductive film 1B of the example.
  • FIG. 4 is an arrangement view of conductive particles in the anisotropic conductive film 1C of the example.
  • FIG. 5 is an arrangement view of conductive particles in the anisotropic conductive film 1D of the example.
  • FIG. 6 is an arrangement view of conductive particles in the anisotropic conductive film 1E of the example.
  • FIG. 7 is an arrangement view of conductive particles in the anisotropic conductive film 1F of the example.
  • FIG. 8 is an arrangement view of conductive particles in the anisotropic conductive film 1G of the example.
  • FIG. 9 is an arrangement view of conductive particles in the anisotropic conductive film 1H of the example.
  • FIG. 10 is an arrangement view of conductive particles in the anisotropic conductive film 1I of the example.
  • FIG. 11 is an arrangement view of conductive particles in the anisotropic conductive film 1J of the example.
  • FIG. 12 is an arrangement view of conductive particles in the anisotropic conductive film 1K of the example.
  • FIG. 13A is an arrangement view of conductive particles in the anisotropic conductive film 1L of the example.
  • FIG. 13B is a CC cross-sectional view of the anisotropic conductive film 1L of the example.
  • FIG. 14A is an explanatory diagram of a method for producing the anisotropic conductive film 1L of the example.
  • FIG. 14B is an explanatory diagram of a method for producing the anisotropic conductive film 1L of the example.
  • FIG. 14C is an explanatory diagram of a method for producing the anisotropic conductive film 1L of the example.
  • FIG. 14A is an explanatory diagram of a method for producing the anisotropic conductive film 1L of the example.
  • FIG. 14B is an explanatory diagram of a method for producing the anisotropic conductive film 1L of the example.
  • FIG. 14C is an
  • FIG. 15A is an explanatory diagram of a preferred arrangement of the conductive particle units with respect to the connection terminals.
  • FIG. 15B is an explanatory diagram of a preferred arrangement of the conductive particle units with respect to the connection terminals.
  • FIG. 15C is an explanatory diagram of a preferred arrangement of the conductive particle units with respect to the connection terminals.
  • FIG. 1A is an arrangement view of conductive particles 2 in an anisotropic conductive film 1A according to an embodiment of the present invention.
  • anisotropic conductive film 1 ⁇ / b> A conductive particle units 3 in which two conductive particles 2 are arranged are arranged in a lattice pattern in the insulating adhesive layer 4. More specifically, the center of the conductive particle unit 3 is arranged at a lattice point of a square lattice indicated by a broken line.
  • each conductive particle unit 3 the conductive particles 2 may be in contact with each other and may be close to each other with a gap therebetween, but the total size of the gaps in each conductive particle unit 3 (one conductive particle unit 3 Is composed of an array of n conductive particles, the sum of the sizes of n-1 gaps) increases the effect of the present invention that the conductive particle units are arranged in a lattice shape. It is preferably smaller than the particle diameter Le of the particles 2 and less than 1/4 of the particle diameter Le. Note that the total size of the gaps in the conductive particle unit 3 is larger when the angle ⁇ in the longitudinal direction of the conductive particle unit with respect to the longitudinal direction of the anisotropic conductive film is larger than when the angle ⁇ is small. As shown in FIG. 3 to be described later, when the angle ⁇ is 90 °, the effect of the present invention can be obtained even when the particle diameter Le of the conductive particles 2 is 1 ⁇ 2.
  • the conductive particles 2 have the same particle diameter Le. Therefore, unless otherwise specified, in the present invention, the particle diameter Le of the conductive particles 2 means the average particle diameter of the conductive particles 2 constituting the anisotropic conductive film.
  • each conductive particle unit 3 is aligned and is inclined with respect to the longitudinal direction D1 of the anisotropic conductive film 1A. More specifically, the angle ⁇ in the longitudinal direction of the conductive particle unit 3 with respect to the longitudinal direction of the anisotropic conductive film 1A is 45 °. Further, the longitudinal direction of each conductive particle unit 3 overlaps with a straight line (a straight line indicated by a broken line in the drawing) that forms a grid-like arrangement of the conductive particle units 3. Thus, when the longitudinal direction of the conductive particle unit 3 is inclined with respect to the longitudinal direction of the anisotropic conductive film 1A, the connection terminal 20 is connected when connecting the connection terminal of the electronic component using the anisotropic conductive film 1A. The number of trapped conductive particles 2 can be increased.
  • FIG. 1B is an AA cross-sectional view of the anisotropic conductive film 1A cut along the longitudinal direction of the conductive particle unit 3. As shown in the figure, the conductive particles 2 are buried in the insulating adhesive layer 4 at a certain depth.
  • the closest distance La between the conductive particles of adjacent conductive particle units 3 (adjacent conductive particles when a single conductive particle is also present at a lattice point, as will be described later).
  • the closest distance La) between the conductive particles selected from the unit and single conductive particles increases the arrangement density of the conductive particles 2 in the anisotropic conductive film 1A as much as possible, and the first and first in the anisotropic conductive film 1A. From the point which prevents the short circuit between terminals at the time of anisotropic conductive connection of 2 electronic parts, it is 0.5 times or more of the particle diameter of conductive particles 2.
  • the closest distance La is 0.5 times or more the particle diameter of the conductive particles 2 for the following reason. That is, when the first and second electronic components are anisotropically conductively connected using the anisotropic conductive film 1A, the conductive particles 2 are crushed between the connection terminals of the first and second electronic components facing each other. As indicated by the broken-line circle, the particle diameter of the conductive particles 2 is 1.2 to 1.3 times the particle diameter before connection. Therefore, even if the conductive particles of adjacent conductive particle units 3 that are at the closest distance are both crushed at the time of anisotropic conductive connection, at least about 1 ⁇ 4 of the particle diameter is between them. In order to ensure that there is a gap and prevent occurrence of a short circuit, the closest distance La between adjacent conductive particle units is set to 0.5 times or more of the particle diameter.
  • the length La1 in the longitudinal direction D1 of the anisotropic conductive film having the closest distance La is preferably 10 times or less the particle diameter Le of the conductive particles 2. This is because setting the number density of the conductive particles to a certain value or more leads to stable capture of the conductive particles at the connection terminal 20 and contributes to the stability of the fine pitch connection.
  • the circumscribing line in the longitudinal direction D1 of the anisotropic conductive film of the conductive particle unit 3 overlaps the adjacent conductive particle unit 3 in the same direction D1 (external tangent line). Penetrating the conductive particles of adjacent units) is preferable because it contributes to the stability of the connection at a fine pitch by increasing the number density of the conductive particles.
  • the direction of the closest distance La is the longitudinal direction of the conductive particle unit 3.
  • the direction of the closest distance La is the conductive particle unit 3. It is not restricted to the longitudinal direction.
  • the longitudinal direction D1 of the anisotropic conductive film 1A is shown in FIG. It is preferable to match with the arrangement direction of the connection terminals 20 indicated by the two-dot chain line (the short direction of the connection terminals 20). In other words, the short direction D2 of the anisotropic conductive film 1A is matched with the longitudinal direction of the connection terminal 20.
  • the length Lb in the longitudinal direction D1 of the anisotropic conductive film 1A of each conductive particle unit 3 the distance Lx between the connection terminals 20 connected by the anisotropic conductive film 1A, and the particle diameter Le of the conductive particles.
  • the conductive particle 2 of the adjacent conductive particle unit 3 is the closest conductive particle that overlaps in the longitudinal direction D1 of the anisotropic conductive film 1A (that is, the conductive particle 2 is projected in the longitudinal direction of the anisotropic conductive film 1A.
  • the distance Lc in the longitudinal direction D1 between the conductive particles having the projected images overlapped with each other be 0.5 times or more the particle diameter of the conductive particles. That is, the distance Lc changes according to the angle ⁇ of the conductive particle unit 3 in the longitudinal direction with respect to the longitudinal direction D1 of the anisotropic conductive film 1A even if the grid-like arrangement of the conductive particle units 3 is the same. Therefore, in order to prevent a short circuit between the adjacent connection terminals 20 regardless of the size of the angle ⁇ , it is preferable to secure 0.5 times or more the particle diameter of the conductive particles as the distance Lc.
  • the particle diameter of the conductive particles 2 is preferably 1 to 10 ⁇ m, more preferably 2 to 4 ⁇ m, from the viewpoint of short circuit prevention and connection stability between the connection terminals.
  • the arrangement density of the conductive particles 2 is preferably 2000 to 250,000 pieces / mm 2 , more preferably 4000 to 100,000 pieces / mm 2 .
  • the arrangement density of the conductive particles is appropriately adjusted depending on the number of the conductive particles 2 constituting the conductive particle unit 3 and the arrangement of the conductive particle units 3.
  • the configuration of the conductive particles 2 itself, the layer configuration of the insulating adhesive layer 4 or the constituent resin is not particularly limited. That is, as the conductive particles 2, those used in known anisotropic conductive films can be appropriately selected and used. Examples thereof include metal particles such as nickel, cobalt, silver, copper, gold, and palladium, and metal-coated resin particles. Two or more kinds can be used in combination.
  • an insulating resin layer used in a known anisotropic conductive film can be appropriately adopted.
  • a photo radical polymerization type resin layer containing an acrylate compound and a photo radical polymerization initiator a heat radical polymerization type resin layer containing an acrylate compound and a heat radical polymerization initiator, a heat containing an epoxy compound and a heat cationic polymerization initiator
  • a cationic polymerization type resin layer, a thermal anion polymerization type resin layer containing an epoxy compound and a thermal anion polymerization initiator, or the like can be used.
  • these resin layers can be polymerized as necessary.
  • the insulating adhesive layer 4 may be formed from a plurality of resin layers.
  • an insulating filler such as silica fine particles, alumina, or aluminum hydroxide may be added to the insulating adhesive layer 4 as necessary.
  • the blending amount of the insulating filler is preferably 3 to 40 parts by mass with respect to 100 parts by mass of the resin forming the insulating adhesive layer.
  • a mold having a dent corresponding to the arrangement of the conductive particle unit 3 is machined, laser processed, photo Prepared by a known method such as lithography, put conductive particles in the mold, fill the composition for forming an insulating adhesive layer thereon, cure, take out from the mold, and further provide an insulating adhesive layer if necessary What is necessary is just to laminate.
  • type which puts the electrically-conductive particle 2 a mold
  • the length Li of the recess 11 in the longitudinal direction depends on the number of conductive particles 2 filled in the recess 11, but the longitudinal direction of the recess 11 in the gaps s 1, s 2, s 3 after the recess 11 is filled with the conductive particles 2. It is preferable that the total length Lj be less than 1 ⁇ 4 of the particle diameter of the conductive particles 2.
  • the conductive particle units are arranged in a grid, the conductive particles are arranged in a grid as a conductive particle unit without the conductive particles forming a unit. This is to make it possible to clearly distinguish the states arranged in a lattice pattern.
  • a member having through holes formed in a predetermined arrangement is provided on the insulating adhesive layer-forming composition layer.
  • the conductive particles 2 may be supplied from the through holes and passed through the through holes.
  • the anisotropic conductive film of the present invention can take various forms.
  • the anisotropic conductive film 1B shown in FIG. 3 and the anisotropic conductive film 1C shown in FIG. 4 are arranged in the same manner as the anisotropic conductive film 1A shown in FIG.
  • the conductive particle unit 3 is formed of two conductive particles 2, and the conductive particle units 3 are aligned in the longitudinal direction, and the conductive particle units 3 are arranged in a square lattice pattern.
  • the angle ⁇ in the longitudinal direction of the conductive particle unit 3 with respect to the longitudinal direction of the anisotropic conductive film 1B is 90 °.
  • the angle ⁇ in the longitudinal direction of the conductive particle unit 3 with respect to the longitudinal direction of the film 1C is 0 °.
  • the anisotropic conductive film 1D shown in FIG. 5 has the conductive particle unit 3 arranged so that the center point of the conductive particle unit 3 forms a hexagonal lattice in the anisotropic conductive film 1A shown in FIG. 1A.
  • the angle ⁇ of the longitudinal direction of the conductive particle unit 3 with respect to the longitudinal direction of the anisotropic conductive film 1D is set to 30 °.
  • the grid-like arrangement of the conductive particle units 3 can take various forms.
  • the conductive particle units 3 may be arranged in an oblique lattice shape, a rectangular lattice shape, or the like.
  • An anisotropic conductive film 1E shown in FIG. 6 is formed by forming each conductive particle unit 3 from three conductive particles 2 arranged in a line, and arranging each conductive particle unit 3 in an oblique array.
  • the angle ⁇ in the longitudinal direction of each conductive particle unit 3 with respect to the longitudinal direction of the conductive conductive film 1E is set to 45 °.
  • the number of the conductive particles 2 constituting the conductive particle unit 3 is not limited to two, and can be determined according to the conductive particle diameter, the distance between terminals to be connected, the size and layout of the terminals, etc., so there is no upper limit. . This is because even if the fine pitch and the area are reduced, the risk of occurrence of a short circuit is reduced if there is a sufficient distance between terminals according to the conductive particle diameter.
  • the number of conductive particles 2 constituting one conductive particle unit 3 can be 2 to 8, more preferably 2 to 5.
  • a plurality of conductive particle units 3i and 3k having different numbers of conductive particles forming conductive particle units are arranged in a lattice shape, and a single conductive material other than the lattice points is provided. You may arrange
  • a plurality of conductive particle units 3i and 3k having different numbers of conductive particles forming the conductive particle unit are arranged in a lattice shape, the centers of the respective conductive particle units 3i and 3k may be arranged at a lattice point.
  • each of the conductive particle units 3i, 3j, 3k is arranged like an anisotropic conductive film 1H shown in FIG.
  • the number of conductive particles of the conductive particle units arranged in the longitudinal direction and arranged in the short direction may be gradually increased or decreased.
  • the longitudinal direction of the three conductive particle units 3i, 3j, and 3k is the longitudinal direction of the anisotropic conductive film 1H, but the longitudinal directions of the conductive particle units 3i, 3j, and 3k are aligned. If so, the longitudinal direction can be set to an arbitrary direction.
  • the conductive particle unit and the single conductive particle may be arranged in a lattice shape.
  • single conductive particles may exist at lattice points.
  • three conductive particle units 3i, 3j, and 3k having different numbers of conductive particles forming conductive particle units and single conductive particles 2a are arranged in a lattice shape.
  • the closest distance La between the conductive particles selected from the conductive particle units 3i, 3j, 3k and the single conductive particle 2a is set to 0.5 times or more the conductive particle diameter of the conductive particles 2, 2a.
  • connection terminal Even when an anisotropic conductive film is attached, even if the attachment position of the film is slightly shifted in the longitudinal direction of the connection terminal (several tens of ⁇ m or more of the film width), it is captured by the connection terminal. This is preferable because the variation in the number of conductive particles is small, and the variation in the pressing force applied to the conductive particles between when there is no positional deviation and when there is no positional deviation is preferable.
  • the size of the connection surface is 4 to 60 ⁇ m wide and the length is 400 ⁇ m or less (the lower limit is equal to the width), or the width of the connection surface is 4 of the conductive particle diameter.
  • the conductive particle unit 3 is less than twice the length in the longitudinal direction, and the minimum distance between the connection terminals is, for example, 8 to 30 ⁇ m. Further, since the distance between the connection terminals may be relatively large when the area of the connection terminal is small, the distance between the terminals is not limited to the above-described distance.
  • reducing the terminal area has a merit in terms of cost because it reduces the metal (Au, etc.) used as a terminal, in addition to technical reasons such as high integration, and can accommodate a small terminal area.
  • the significance of the anisotropic conductive film is great.
  • the conductive particles are arranged in a line in each conductive particle unit 3 in order to improve the trapping property of the conductive particles at the fine pitch.
  • the conductive particles 2 in the conductive particle unit 3 are arranged in the first direction and the second direction which are different from each other. Can be made compatible.
  • a first mold 10p and a second conductive particle unit for arranging conductive particles in the first conductive particle unit 3p As a method for producing such an anisotropic conductive film 1L, for example, as shown in FIG. 14A, a first mold 10p and a second conductive particle unit for arranging conductive particles in the first conductive particle unit 3p.
  • the second mold 10q for arranging the conductive particles in 3q is used to fill the recesses 11 of the respective molds 10p, 10q with the conductive particles 2, and as shown in FIG. 14B, the respective molds 10p, 10q
  • the insulating adhesive layer forming composition layer 5 formed on the release sheet 6 is placed, and the insulating adhesive layer forming composition layer 5 is pushed into the recesses 11 of the molds 10p and 10q, and dried, heated, etc.
  • the arrangement pitch of the recesses 11 in each mold can be increased compared to the case of using a single mold.
  • the productivity of the anisotropic conductive film 1L can be improved.
  • the anisotropic conductive film of the present invention includes a connection terminal of a first electronic component such as an IC chip, an IC module, or an FPC, and a connection terminal of a second electronic component such as an FPC, a glass substrate, a plastic substrate, a rigid substrate, or a ceramic substrate. Can be preferably used in anisotropic conductive connection.
  • the connection structure thus obtained is also part of the present invention.
  • the first electronic components can be anisotropically conductively connected by stacking IC chips or IC modules.
  • the connection structure thus obtained is also part of the present invention.
  • the conductive particle 2 constituting the conductive particle unit 3 is attached to the edge of the connection terminal 20 as shown in FIG. Although it is preferable to connect at a position where it does not rest, as shown in FIG.
  • the inter-terminal distance Lx of the connection terminal 20 the length Ld of the conductive particle unit 3 in the direction of the inter-terminal distance
  • the relationship between the particle diameter Le of the particles 2 is Lx> (Ld + Le)
  • the length Ld of the conductive particle unit 3 and the particle diameter Le of the conductive particles 2 in the direction of the inter-terminal distance Lx may be adjusted with respect to the inter-terminal distance Lx of the connection terminals 20 so as to satisfy the above.
  • the above equation may be satisfied by reducing the particle diameter Le of the conductive particles 2.
  • Examples 1 to 11 and Comparative Examples 1 and 2 ⁇ Outline of manufacturing anisotropic conductive film>
  • the central arrangement of the conductive particle units forms a rectangular lattice, and the number of conductive particles per conductive particle unit (hereinafter referred to as the number of connected particles), the particle diameter of the conductive particles ( ⁇ m), the maximum length of the conductive particle unit ( ⁇ m), the angle ⁇ of the longitudinal direction of the conductive particle unit with respect to the longitudinal direction of the anisotropic conductive film, the closest distance La ( ⁇ m) between the conductive particles of adjacent conductive particle units, and the arrangement density of conductive particles (pieces / mm 2 ) Produced anisotropic conductive films having the numerical values shown in Table 1.
  • conductive particles particles (particle diameter 2 ⁇ m, 3 ⁇ m or 6 ⁇ m) prepared as follows were used as the conductive particles.
  • ⁇ Preparation of conductive particles (particle diameter 2 ⁇ m, 3 ⁇ m or 6 ⁇ m)> Benzoyl peroxide was added as a polymerization initiator to a solution adjusted for the mixing ratio of divinylbenzene, styrene, and butyl methacrylate, and the mixture was heated with uniform stirring at high speed to perform a polymerization reaction, thereby obtaining a fine particle dispersion. The fine particle dispersion was filtered and dried under reduced pressure to obtain a block body that was an aggregate of fine particles. Further, the block bodies were pulverized and classified to obtain divinylbenzene resin particles having an average particle size of 2 ⁇ m, 3 ⁇ m and 6 ⁇ m.
  • the palladium catalyst was supported on the divinylbenzene resin particles (5 g) thus obtained by an immersion method.
  • an electroless nickel plating solution pH 12, plating solution temperature 50 ° C.
  • nickel sulfate hexahydrate, sodium hypophosphite, sodium citrate, triethanolamine and thallium nitrate is applied to the resin particles.
  • Electroless nickel plating was used to obtain nickel-coated resin particles having a nickel plating layer (metal layer) formed on the surface as conductive particles.
  • the average particle diameter of the obtained conductive particles was 2 ⁇ m, 3 ⁇ m and 6 ⁇ m.
  • An aqueous suspension was prepared by mixing 12 g of the above-mentioned nickel-coated resin particles in a solution obtained by dissolving 10 g of sodium chloroaurate in 1000 mL of ion-exchanged water.
  • a gold plating bath was prepared by adding 15 g of ammonium thiosulfate, 80 g of ammonium sulfite, and 40 g of ammonium hydrogen phosphate to the obtained aqueous suspension. After adding 4 g of hydroxylamine to the obtained gold plating bath, the pH of the gold plating bath is adjusted to 9 using ammonia, and the bath temperature is maintained at 60 ° C. for about 15 to 20 minutes, so that the average particle diameter is 2 ⁇ m, 3 ⁇ m. And 6 ⁇ m gold / nickel-coated resin particles were obtained and used as conductive particles.
  • An anisotropic conductive film in which the conductive particles are contained in the insulating adhesive layer in the arrangement shown in Table 1 was produced as follows. First, 60 parts by mass of phenoxy resin (Nippon Steel & Sumikin Chemical Co., Ltd., YP-50), 40 parts by mass of epoxy resin (Mitsubishi Chemical Corporation, jER828), cationic polymerization initiator (latent curing agent) (Sanshin Chemical Industry Co., Ltd.) (Co., Ltd., SI-60L) A heat-polymerizable insulating resin composition containing 2 parts by mass was prepared, applied onto a PET film having a film thickness of 50 ⁇ m, and dried in an oven at 80 ° C. for 5 minutes. An adhesive layer having a thickness of 20 ⁇ m was formed on the PET film.
  • a mold in which the arrangement of the protrusions is the arrangement of the conductive particle units shown in Table 1 is prepared, and the pellets of the transparent resin are melted, poured into the mold, cooled, and hardened to form the depressions in Table 1.
  • a resin mold to be the arrangement of the conductive particle unit is prepared, and the resin mold is filled with the conductive particles, and the above-mentioned adhesive layer is covered thereon, the adhesive layer is cured by irradiation with ultraviolet rays, and peeled off from the mold. A conductive film was produced.
  • (a) Conduction resistance The conduction resistances of three types of connection objects for evaluation having different effective connection areas (areas where the bump and the substrate face each other) were connected.
  • the anisotropic conductive films of each Example and Comparative Example were sandwiched between a conductive resistance evaluation IC and a glass substrate, and heated and pressurized (180 ° C., 80 MPa, 5 seconds) to obtain each evaluation connection,
  • the conduction resistance of the connection object for evaluation was measured by a value when a current of 2 mA was applied by a four-terminal method using a digital multimeter. If it is less than 1 ⁇ , there is no practical problem.
  • each IC for evaluation and the glass substrate correspond to their terminal patterns, and the sizes are as follows.
  • the longitudinal direction of the anisotropic conductive film was match
  • the bump specifications of the conductive resistance evaluation IC are changed to the following, the alignment of the evaluation IC is intentionally shifted by 6 ⁇ m and 8 ⁇ m in the short (width) direction of the bump, and the effective connection area is set to 300 ⁇ m 2 or 200 ⁇ m 2 . Except for the above, connection was made in the same manner as in (a-1) to obtain an evaluation connection, and the conduction resistance was measured in the same manner as in (a-1). The results are shown in Table 1B. Table 1B shows numerical values of substantial bump sizes and IC bump-bump spaces (that is, horizontal conductor distances between bumps of the same IC). Bump specifications Gold plating, height 12 ⁇ m, size 12 ⁇ 50 ⁇ m, distance between bumps 10 ⁇ m
  • connection object for evaluation 100 bumps each was obtained, and in the same manner as described above, the minimum number of particles captured in each bump was determined. It was evaluated with. If it is more than C evaluation, there is no practical problem.
  • evaluation criteria A (very good): 10 or more B (good): 5 or more, less than 10 C (normal): 3 or more, less than 5 D (defect): less than 3
  • the conduction resistance is 0.4 to 0.6 ⁇ when the closest distance La of the conductive particle unit is in the range of 0.5 to 3 times the particle diameter of the conductive particles.
  • the conduction resistance is as high as 0.8 ⁇ , and short-circuits occur relatively frequently. I understand that.
  • Comparative Example 2 it can be seen from Comparative Example 2 that the number of shorts is significantly increased when the closest distance La of the conductive particle unit is less than 0.5 times the particle diameter of the conductive particles.
  • Comparative Example 1 and Comparative Example 2 it can be seen from the particle state between the bumps that the particle diameter of the conductive particles is too large with respect to the distance between the bumps, and therefore is not compatible with the bump layout.
  • Comparative Example 2 it can be seen that the minimum number of particles captured per bump is 0, the conductive particles are not captured by the bumps, and the anisotropic connection is not stable. Thereby, it turns out that it cannot respond to the anisotropic connection in a fine pitch only by enlarging the occupation area rate of an electrically-conductive particle by enlarging the particle diameter of an electrically-conductive particle.
  • the number of conductive particles connected in the conductive particle unit is not particularly limited in the short direction of the anisotropic conductive film (longitudinal direction of the bump) (Reference Examples 1 and 2).
  • the direction it can be seen that the number of shorts increases when the sum of the maximum length of the conductive particle unit and the diameter of the conductive particle is larger than the distance between the bumps (Reference Examples 3 to 5). Therefore, even when using the anisotropic conductive film of an Example, it turns out that it is preferable to adjust the direction of an anisotropic conductive film according to the maximum length of an electroconductive particle unit and the distance between terminals of a connection terminal.

Abstract

 ファインピッチの接続端子を接続する場合でも、ショートの発生を抑制しつつ各接続端子に導電粒子を十分に捕捉させ、導通信頼性を向上させることのできる異方性導電フィルムは、導電粒子2が一列に配列した導電粒子ユニット3、又は導電粒子2が一列に配列した導電粒子ユニット3と単独の導電粒子2aが、絶縁接着剤層4中に格子状に配置された構造を有する。隣接する導電粒子ユニット3及び単独の導電粒子2aから選ばれる導電粒子同士の最近接距離Laは、導電粒子2、2aの粒子径の0.5倍以上である。

Description

異方性導電フィルム及び接続構造体
 本発明は、異方性導電フィルム、及び異方性導電フィルムを用いて接続された接続構造体に関する。
 ICチップなどの電子部品の実装に異方性導電フィルムは広く使用されており、近年では、高密度実装への適用の観点から、導電粒子捕捉効率や接続信頼性を向上させ、ショート発生率を低下させるために、絶縁性接着剤層に、導電粒子を接触又は近接して配列させた粒子部位(即ち、導電粒子ユニット)を格子状に配置し、その導電粒子ユニット同士の間隔を電極パターンに応じて変えることが提案されている(特許文献1)。
特表2002-519473号公報
 しかしながら、特許文献1に記載の異方性導電フィルムでは、導電粒子ユニット同士の間隔を、該ユニットを形成する転写型の凹み同士の距離により規制しているため、異方性導電フィルムで接続する電子部品の接続端子間距離が10μm程度のファインピッチであると導電粒子を十分に捕捉できない接続端子が発生したり、ショートが発生したりし、導通信頼性に問題があった。
 これに対し、本発明は、異方性導電フィルムを用いてファインピッチの接続端子を接続する場合でも、ショートの発生を抑制しつつ各接続端子に導電粒子を十分に捕捉させ、導通信頼性を向上させることを課題とする。
 本発明者は、特許文献1に記載の異方性導電フィルムでは、導電粒子ユニット同士の間隔が転写型の凹みの間隔として規制されており、隣接する導電粒子の最近接距離を規制したものではなく、さらにこの転写型の凹みの間隔はファインピッチの接続端子に適応していないことに対し、隣接する導電粒子ユニットの導電粒子同士の最近接距離を規制することにより上述の課題を解決できることを見出し、本発明を想到した。
 即ち、本発明は、導電粒子が一列に配列した導電粒子ユニット、又は導電粒子が一列に配列した導電粒子ユニットと単独の導電粒子が、絶縁接着剤層中に格子状に配置された異方性導電フィルムであって、隣接する導電粒子ユニット及び単独の導電粒子から選ばれる導電粒子同士の最近接距離が、導電粒子の粒子径の0.5倍以上である異方性導電フィルムを提供する。
 また、本発明は、上述の異方性導電フィルムを用いて第1電子部品の接続端子と第2電子部品の接続端子とを異方性導電接続した接続構造体を提供する。
 本発明の異方性導電フィルムによれば、導電粒子が一列に配列した導電粒子ユニット、又は導電粒子が一列に配列した導電粒子ユニットと単独の導電粒子が格子状に配置されているので、単独の導電粒子を格子状に配列した異方性導電フィルムに比して導電粒子を高密度に配置することができ、特に、隣接する導電粒子ユニット及び単独の導電粒子から選ばれる導電粒子同士の最近接距離を特定の範囲とすることにより、ショートの発生を抑制しつつ、異方性導電フィルムにおける導電粒子の配置密度を最大限に高めることができる。よって、異方性導電フィルムで接続する接続端子がファインピッチであっても各接続端子で十分に導電粒子が捕捉されるので、導通信頼性を向上させることが可能となる。
図1Aは実施例の異方性導電フィルム1Aにおける導電粒子の配置図である。 図1Bは実施例の異方性導電フィルム1AのA-A断面図である。 図2Aは実施例の異方性導電フィルム1Aの製造に使用する型の平面図である。 図2Bは実施例の異方性導電フィルム1Aの製造に使用する型のB-B断面図である。 図3は実施例の異方性導電フィルム1Bにおける導電粒子の配置図である。 図4は実施例の異方性導電フィルム1Cにおける導電粒子の配置図である。 図5は実施例の異方性導電フィルム1Dにおける導電粒子の配置図である。 図6は実施例の異方性導電フィルム1Eにおける導電粒子の配置図である。 図7は実施例の異方性導電フィルム1Fにおける導電粒子の配置図である。 図8は実施例の異方性導電フィルム1Gにおける導電粒子の配置図である。 図9は実施例の異方性導電フィルム1Hにおける導電粒子の配置図である。 図10は実施例の異方性導電フィルム1Iにおける導電粒子の配置図である。 図11は実施例の異方性導電フィルム1Jにおける導電粒子の配置図である。 図12は実施例の異方性導電フィルム1Kにおける導電粒子の配置図である。 図13Aは実施例の異方性導電フィルム1Lにおける導電粒子の配置図である。 図13Bは実施例の異方性導電フィルム1LのC-C断面図である。 図14Aは実施例の異方性導電フィルム1Lの製造方法の説明図である。 図14Bは実施例の異方性導電フィルム1Lの製造方法の説明図である。 図14Cは実施例の異方性導電フィルム1Lの製造方法の説明図である。 図15Aは、接続端子に対する導電粒子ユニットの好ましい配置の説明図である。 図15Bは、接続端子に対する導電粒子ユニットの好ましい配置の説明図である。 図15Cは、接続端子に対する導電粒子ユニットの好ましい配置の説明図である。
 以下、図面を参照しつつ本発明を詳細に説明する。なお、各図中、同一符号は、同一又は同等の構成要素を表している。
 図1Aは、本発明の一実施例の異方性導電フィルム1Aにおける導電粒子2の配置図である。この異方性導電フィルム1Aでは、2個の導電粒子2が配列した導電粒子ユニット3が絶縁接着剤層4中に格子状に配置されている。より具体的には、導電粒子ユニット3の中心が破線で示した正方格子の格子点に配置されている。
 各導電粒子ユニット3内において、導電粒子2は接触していてもよく、間隙をあけて近接していてもよいが、各導電粒子ユニット3内における間隙の大きさの合計(一つの導電粒子ユニットがn個の導電粒子の配列で構成される場合、n-1個の間隙の大きさの合計)は、導電粒子ユニットが格子状に配列されているという本発明の効果をより高めるため、導電粒子2の粒子径Leよりも小さく、粒子径Leの1/4未満が好ましい。なお、導電粒子ユニット3内における間隙の大きさの合計は、異方性導電フィルムの長手方向に対する導電粒子ユニットの長手方向の角度θが大きい場合には、角度θが小さい場合に比して大きくすることができ、後述する図3で示すように、この角度θが90°の場合には、導電粒子2の粒子径Leの1/2であっても本発明の効果を得ることができる。
 また、本発明において、導電粒子2の粒子径Leは揃っている方が好ましい。そこで、特に断らない限り、本発明において導電粒子2の粒子径Leは、異方性導電フィルムを構成する導電粒子2の平均粒子径を意味する。
 各導電粒子ユニット3の長手方向の向きは揃っており、異方性導電フィルム1Aの長手方向D1に対して傾いている。より具体的には、異方性導電フィルム1Aの長手方向に対する導電粒子ユニット3の長手方向の角度θが45°となっている。また、各導電粒子ユニット3の長手方向が、導電粒子ユニット3の格子状配列を形成する直線(図中の破線で示した直線)と重なっている。このように導電粒子ユニット3の長手方向を異方性導電フィルム1Aの長手方向に対して傾斜させると、異方性導電フィルム1Aを用いて電子部品の接続端子を接続する場合に、接続端子20における導電粒子2の捕捉数を高めることができる。
 図1Bは、異方性導電フィルム1Aを導電粒子ユニット3の長手方向に切断したA-A断面図である。同図に示すように、導電粒子2は、絶縁接着剤層4中に一定の深さで埋まっている。
 本発明の異方性導電フィルム1Aでは、隣接する導電粒子ユニット3の導電粒子同士の最近接距離La(後述するように、格子点に単独の導電粒子も存在する場合には、隣接する導電粒子ユニット及び単独の導電粒子から選ばれる導電粒子同士の最近接距離La)が、異方性導電フィルム1Aにおける導電粒子2の配置密度をできる限り高め、かつ異方性導電フィルム1Aで第1、第2の電子部品を異方性導電接続した場合の端子間のショートを防止する点から、導電粒子2の粒子径の0.5倍以上である。ここで、最近接距離Laを導電粒子2の粒子径の0.5倍以上とするのは次の理由による。即ち、異方性導電フィルム1Aを用いて第1、第2の電子部品を異方性導電接続すると対向する第1、第2の電子部品の接続端子間で導電粒子2は潰れ、図1Aにおいて破線円で示すように導電粒子2の粒子径は接続前の粒子径の1.2~1.3倍になる。そこで、隣接する導電粒子ユニット3の導電粒子同士であって最近接距離にあるものが双方とも異方性導電接続時に最大限潰れたとしても、それらの間に少なくとも粒子径の約1/4の間隙があくことを確保してショートの発生を防止するため、隣接する導電粒子ユニット同士の最近接距離Laを粒子径の0.5倍以上とする。
 また、本発明においては、最近接距離Laの異方性導電フィルム長手方向D1の長さLa1を導電粒子2の粒子径Leの10倍以下とすることが好ましい。これは導電粒子の個数密度を一定値以上にすることが接続端子20で導電粒子の捕捉を安定して行えることにつながり、ファインピッチ接続の安定性に寄与するためである。
 さらに、導電粒子ユニット3の格子状の配列態様によっては、導電粒子ユニット3の異方性導電フィルム長手方向D1の外接線が、同方向D1で隣接する導電粒子ユニット3とオーバーラップする(外接線が隣接するユニットの導電粒子を貫く)ことが、導電粒子の個数密度を高めてファインピッチにおける接続の安定性に寄与するので好ましい。
 なお、図1Aに示した異方性導電フィルム1Aではこの最近接距離Laの方向が導電粒子ユニット3の長手方向となっているが、本発明において、最近接距離Laの方向は導電粒子ユニット3の長手方向に限られない。
 異方性導電フィルム1Aを接続端子間の異方性導電接続に使用する場合、接続前後の導電粒子の比較がし易くなる点から、異方性導電フィルム1Aの長手方向D1を、図1Aに二点鎖線で示した接続端子20の配列方向(接続端子20の短手方向)に合わせることが好ましい。言い換えると、異方性導電フィルム1Aの短手方向D2を接続端子20の長手方向に合わせる。この場合に、各導電粒子ユニット3の異方性導電フィルム1Aの長手方向D1の長さLbと、異方性導電フィルム1Aで接続する接続端子20間の距離Lxと、導電粒子の粒子径Leが、次式の関係を満たすようにすることが好ましい。
Lx>(Lb+Le)
 また、隣接する導電粒子ユニット3の導電粒子2であって、異方性導電フィルム1Aの長手方向D1で重なる最近接導電粒子(即ち、導電粒子2を異方性導電フィルム1Aの長手方向に投影した場合の投影像が重なる導電粒子であって最も近接したもの)同士の該長手方向D1の距離Lcが導電粒子の粒子径の0.5倍以上となるようにすることが好ましい。即ち、この距離Lcは、導電粒子ユニット3の格子状の配列自体は同じでも、異方性導電フィルム1Aの長手方向D1に対する導電粒子ユニット3の長手方向の角度θに応じて変化する。そのため、角度θの大きさによらず、隣接する接続端子20間のショートを防止するため、距離Lcとして導電粒子の粒子径の0.5倍以上を確保することが好ましい。
 本発明において、導電粒子2の粒子径は、短絡防止と接続端子間の接続の安定性の点から好ましくは1~10μm、より好ましくは2~4μmである。また、導電粒子2の配置密度は、好ましくは2000~250000個/mm2、より好ましくは4000~100000個/mm2である。導電粒子の配置密度は、導電粒子ユニット3を構成する導電粒子2の数と導電粒子ユニット3の配置によって適宜調整される。
 本発明において、導電粒子2自体の構成や、絶縁接着剤層4の層構成又は構成樹脂については特に制限がない。即ち、導電粒子2としては公知の異方性導電フィルムに用いられているものを適宜選択して使用することができる。例えば、ニッケル、コバルト、銀、銅、金、パラジウムなどの金属粒子、金属被覆樹脂粒子などが挙げられる。2種以上を併用することもできる。
 絶縁接着剤層4としては、公知の異方性導電フィルムで使用される絶縁性樹脂層を適宜採用することができる。例えば、アクリレート化合物と光ラジカル重合開始剤とを含む光ラジカル重合型樹脂層、アクリレート化合物と熱ラジカル重合開始剤とを含む熱ラジカル重合型樹脂層、エポキシ化合物と熱カチオン重合開始剤とを含む熱カチオン重合型樹脂層、エポキシ化合物と熱アニオン重合開始剤とを含む熱アニオン重合型樹脂層等を使用することができる。また、これらの樹脂層は、必要に応じて、それぞれ重合したものとすることができる。また、絶縁接着剤層4を、複数の樹脂層から形成してもよい。
 さらに、絶縁接着剤層4には、必要に応じてシリカ微粒子、アルミナ、水酸化アルミ等の絶縁性フィラーを加えても良い。絶縁性フィラーの配合量は、絶縁接着剤層を形成する樹脂100質量部に対して3~40質量部とすることが好ましい。これにより、異方性導電接続時に絶縁接着剤層4が溶融しても、溶融した樹脂で導電粒子2が不用に移動することを抑制することができる。
 絶縁接着剤層4に導電粒子2が上述の配置で固定されている異方性導電フィルムの製造方法としては、導電粒子ユニット3の配置に対応した凹みを有する型を機械加工やレーザー加工、フォトリソグラフィなど公知の方法で作製し、その型に導電粒子を入れ、その上に絶縁接着剤層形成用組成物を充填し、硬化させ、型から取り出し、必要に応じてさらに絶縁性接着剤層を積層すればよい。なお、導電粒子2を入れる型としては、一旦剛性の強い型を作製し、その型を利用して、剛性の低い材質で形成した型を使用してもよい。
 図2Aは、異方性導電フィルム1Aの製造において、導電粒子2を上述の配置で固定するために使用する型10の平面図であり、図2Bは型10に導電粒子2を充填した状態のB-B断面図である。この型10は、導電粒子2を2個充填し得る矩形の凹み11を有する。本実施例の異方性導電フィルム1Aでは凹み11の長手方向に隣接する凹み11同士の距離Lhが、隣接する導電粒子ユニット3同士の最近接距離Laに対応するため、この距離Lhは導電粒子2の粒子径の0.5倍以上とする。また、凹み11の長手方向の長さLiは、凹み11に充填する導電粒子2の数によるが、凹み11に導電粒子2を充填した後の間隙s1、s2、s3の、凹み11の長手方向の長さの合計Ljが導電粒子2の粒子径の1/4未満となる長さとなるようにすることが好ましい。これは、導電粒子ユニットが格子状に配列されているという本発明の効果をより高めるため、導電粒子が導電粒子ユニットとして格子状に配列されている状態を、導電粒子がユニットを形成せずに格子状に配列されている状態に対して明確に区別できるようにするためである。
 一方、絶縁接着剤層4に導電粒子2を上述の配置に置くために、絶縁接着剤層形成用組成物層の上に、貫通孔が所定の配置で形成されている部材を設け、その上から導電粒子2を供給し、貫通孔を通過させるなどの方法でもよい。
 本発明の異方性導電フィルムは種々の態様をとることができる。例えば、図3に示した異方性導電フィルム1B、及び図4に示した異方性導電フィルム1Cは、それぞれ導電粒子2自体の配列は図1Aに示した異方性導電フィルム1Aと同様に、導電粒子ユニット3が2個の導電粒子2から形成され、各導電粒子ユニット3の長手方向の向きが揃い、導電粒子ユニット3が正方格子状に配置されているが、図3に示した異方性導電フィルム1Bでは、異方性導電フィルム1Bの長手方向に対する導電粒子ユニット3の長手方向の角度θが90°であり、図4に示した異方性導電フィルム1Cでは、異方性導電フィルム1Cの長手方向に対する導電粒子ユニット3の長手方向の角度θが0°である。
 ショート防止の観点からは、角度θは90°に近い方が好ましい。また、異方性導電接続における導電粒子の捕捉の観点からは0°に近い方が好ましい。そのため、各導電粒子ユニット3を形成する導電粒子数と各導電粒子ユニット3の長手方向の角度θを揃える場合には、ショート防止と導電粒子の捕捉を両立させる観点から角度θは6~84°が好ましく、16~74°がより好ましい。
 図5に示した異方性導電フィルム1Dは、図1Aに示した異方性導電フィルム1Aにおいて、導電粒子ユニット3の中心点が6方格子を形成するように導電粒子ユニット3を配置し、異方性導電フィルム1Dの長手方向に対する導電粒子ユニット3の長手方向の角度θを30°にしたものである。
 この他、本発明において導電粒子ユニット3の格子状の配列は種々の態様をとることができる。例えば、導電粒子ユニット3を斜方格子状、長方格子状等に配置してもよい。
 図6に示した異方性導電フィルム1Eは、3個の導電粒子2を一列に配列したものから各導電粒子ユニット3を形成し、各導電粒子ユニット3を斜方配列に配置し、異方性導電フィルム1Eの長手方向に対する各導電粒子ユニット3の長手方向の角度θを45°にしたものである。
 このように導電粒子ユニット3を構成する導電粒子2の数は2個に限られず、導電粒子径、接続する端子間距離、端子のサイズおよびレイアウト等に応じて定めることができるため特に上限はない。ファインピッチ化や小面積化が進んでも、導電粒子径に応じた十分な端子間距離があればショート発生のリスクは減るからである。ショート発生リスクをより低減させて、接続構造体の製造時の品質を安定させる点から、格子状に配置されている導電粒子ユニットの間に、導電粒子ユニットを形成しない単独の導電粒子2aを存在させても良く、また、一つの導電粒子ユニット3を構成する導電粒子2を2~8個とすることができ、より好ましくは2~5個とする。
 例えば、図7に示す異方性導電フィルム1Fのように正方格子状に配置されている導電粒子ユニット3の単位格子の中心に、導電粒子ユニットを形成しない単独の導電粒子2aを存在させても良い。これにより、ファインピッチの接続端子で異方性導電フィルムを使用する場合でも、接続端子における導電粒子の捕捉性を向上させると共にショートの回避を可能とすることができる。
 また、図8に示す異方性導電フィルム1Gのように、導電粒子ユニットを形成する導電粒子数が異なる複数通りの導電粒子ユニット3i、3kを格子状に配置し、格子点以外に単独の導電粒子2aを配置してもよい。なお、導電粒子ユニットを形成する導電粒子数が異なる複数通りの導電粒子ユニット3i、3kを格子状に配置する場合、各導電粒子ユニット3i、3kの中心を格子点に配置すればよい。
 導電粒子ユニットを形成する導電粒子数が異なる複数通りの導電粒子ユニットを格子状に配置する場合に、図9に示す異方性導電フィルム1Hのように、各導電粒子ユニット3i、3j、3kの長手方向を揃え、かつその短手方向に配置される導電粒子ユニットの導電粒子数が、漸次増加又は減少を繰り返すようにしてもよい。なお、図9には、3通りの導電粒子ユニット3i、3j、3kの長手方向を異方性導電フィルム1Hの長手方向としたが、各導電粒子ユニット3i、3j、3kの長手方向が揃っていれば、その長手方向は任意の方向とすることができる。
 このように導電粒子ユニットを形成する導電粒子数が異なる複数通りの導電粒子ユニットを設けることにより、小面積のバンプにおける導電粒子の補足効率を向上させ、かつショートの発生を抑えることができるので、より一層ファインピッチの接続に対応させることができる。
 本発明においては、導電粒子ユニットと単独の導電粒子とが格子状に配置されてもよい。言い換えると、単独の導電粒子が格子点に存在してもよい。例えば、図10に示す異方性導電フィルム1Iのように、導電粒子ユニットを形成する導電粒子数が異なる3通りの導電粒子ユニット3i、3j、3kと、単独の導電粒子2aとを格子状に配置することができる。この場合、導電粒子ユニット3i、3j、3k及び単独の導電粒子2aから選ばれる導電粒子同士の最近接距離Laを導電粒子2、2aの導電粒子径の0.5倍以上とする。
 導電粒子数が異なる複数通りの導電粒子ユニットと単独の導電粒子とを格子状に配置するにあたり、図10に示した異方性導電フィルム1Iのように、異方性導電フィルムの短手方向に配列した導電粒子ユニット3i、3j、3k及び単独の導電粒子2aのそれぞれを形成する導電粒子数が、漸次増加及び減少を繰り返すようにしてもよく、図11に示した異方性導電フィルム1Jのように、漸次増加又は減少を繰り返すようにしてもよい。図11示すように導電粒子が漸次増加又は減少を繰り返す場合、異方性導電フィルム内の小領域における導電粒子の個数密度のばらつきが少なくなる。これにより、例えば異方性導電フィルムの貼り付け時にフィルムの貼り付け位置が接続端子の長手方向に微小に(フィルム幅の数%としても数十μm以上)ずれたとしても、接続端子に捕捉される導電粒子の個数のばらつきが少なくなり、位置ずれの無い場合とある場合との導電粒子にかかる押圧力のばらつきが少なくなるので好ましい。
 ここで、ファインピッチの接続端子としては、その接続面の大きさが、幅4~60μm、長さ400μm以下(下限は幅と等倍)のもの、もしくは接続面の幅が導電粒子径の4倍未満もしくは導電粒子ユニット3の長手方向の長さの2倍未満のもの、接続端子間の最小距離が、例えば8~30μmのものを挙げることができる。また、接続端子の面積が小さい場合に接続端子間距離が相対的に大きくなることがあるため、上述の端子間距離に限定されるものではない。なお、端子面積を小さくすることは、高集積化など技術上の理由以外に、端子として使用する金属(Auなど)の削減になるためコストの面でメリットがあるので、小さい端子面積に対応できる異方性導電フィルムの意義は大きい。
 導電粒子ユニット3を構成する導電粒子を3個以上とする場合、ファインピッチにおける導電粒子の捕捉性を向上させる点から、各導電粒子ユニット3において導電粒子は一列に配列させる。
 図12に示した異方性導電フィルム1Kは、導電粒子ユニット3の長手方向を、千鳥格子状に異ならせたものである。より具体的には、図3に示した異方性導電フィルム1Bと同様に導電粒子ユニット3(3a、3b)の中心点は正方格子状に配置されているが、導電粒子ユニット3内の導電粒子2の配列方向が、異方性導電フィルム1Gの長手方向に対して0°の導電粒子ユニット3aと、90°の導電粒子ユニット3bを千鳥格子状に配置したものである。
 このように導電粒子ユニット3における導電粒子2の配列方向が、互いに異なる第1の方向と第2の方向をとることによっても、ファインピッチの接続端子20における導電粒子の捕捉性の向上とショート回避を両立させることができる。
 図13Aに示した異方性導電フィルム1Lは、平面視では導電粒子2の配置が図1に示した異方性導電フィルム1Aと同様であるが、図13Bに示すC-C断面図のように、異方性導電フィルム1Lの厚み方向の第1の深さに導電粒子2が配置されている第1の導電粒子ユニット3pと、第2の深さに導電粒子2が配置されている第2の導電粒子ユニット3qとが、導電粒子ユニット3p、3qの短手方向に交互に配置されている。
 このような異方性導電フィルム1Lの製造方法としては、例えば図14Aに示すように、第1の導電粒子ユニット3pに導電粒子を配置するための第1の型10pと第2の導電粒子ユニット3qに導電粒子を配置するための第2の型10qとを使用して、それぞれの型10p、10qの凹み11に導電粒子2を充填し、図14Bに示すように、それぞれの型10p、10q上に、剥離シート6上に形成した絶縁接着剤層形成用組成物層5を配置してその絶縁接着剤層形成用組成物層5を型10p、10qの凹み11に押し込み、乾燥、加熱等により絶縁接着剤層形成用組成物層5を半硬化させる。次に、半硬化させた絶縁接着剤層形成用組成物層5を型10p、10qから外し、図14Cに示すようにそれらを対向させ、加圧し、加熱又は紫外線照射等により完全硬化させる。こうして図13Bに示す断面の異方性導電フィルム1Lを得ることができる。
 このように第1の型10pと第2の型10qを使用する製造方法によれば、単一の型を使用する場合に比して各型における凹み11の配置ピッチを広げることができるので、異方性導電フィルム1Lの生産性を向上させることができる。
 本発明の異方性導電フィルムは、ICチップ、ICモジュール、FPCなどの第1電子部品の接続端子と、FPC、ガラス基板、プラスチック基板、リジット基板、セラミック基板などの第2電子部品の接続端子とを異方性導電接続する際に好ましく使用することができる。このようにして得られる接続構造体も本発明の一部である。また、ICチップやICモジュールをスタックして第1電子部品同士を異方性導電接続することもできる。このようにして得られる接続構造体も本発明の一部である。
 本発明の異方性導電フィルムを用いて電子部品の接続端子を接続する場合、図15Aの(a)に示すように、導電粒子ユニット3を構成する導電粒子2が、接続端子20の縁に載らない位置で接続されることが好ましいが、同図(b)に示すように、接続端子20の端子間距離Lxと、該端子間距離の方向の導電粒子ユニット3の長さLdと、導電粒子2の粒子径Leとの関係が、
Lx>(Ld+Le)
を満たすように接続端子20の端子間距離Lxに対し、該端子間距離Lxの方向の導電粒子ユニット3の長さLdと導電粒子2の粒子径Leを調整すればよい。
 これに対し、図15Bの(a)に示すように、
Lx>(Ld+Le)
が満たされないと接続端子20間でショートが発生し易くなる。しかしながら、導電粒子ユニット3を構成する導電粒子2の粒子径Leや導電粒子2の配列数が等しくても、同図(b)に示すように、端子間距離Lxの方向に対して導電粒子ユニット3の長手方向を傾け、端子間距離Lxの方向の導電粒子ユニット3の長さLdを短くし、上述の式が満たされるようにすればよい。
 また、図15Cに示すように、導電粒子2の粒子径Leを小さくすることにより上述の式が満たされるようにしても良い。
 以下、実施例により本発明を具体的に説明する。
 実施例1~11及び比較例1、2
 <異方導性導電フィルムの製造の概要>
 導電粒子ユニットの中心の配列が長方格子を形成し、一つの導電粒子ユニットあたりの導電粒子の個数(以下、連結個数という)、導電粒子の粒子径(μm)、導電粒子ユニットの最大長(μm)、異方性導電フィルムの長手方向に対する導電粒子ユニットの長手方向の角度θ、隣接する導電粒子ユニットの導電粒子同士の最近接距離La(μm)、導電粒子の配置密度(個/mm)が表1に示す数値の異方性導電フィルムを製造した。
 この場合、導電粒子としては、次のように作製した導電粒子(粒子径2μm、3μm又は6μm)を使用した。
 <導電粒子(粒子径2μm、3μm又は6μm)の作製>
 ジビニルベンゼン、スチレン、ブチルメタクリレートの混合比を調整した溶液に、重合開始剤としてベンゾイルパーオキサイドを投入して高速で均一攪拌しながら加熱を行い、重合反応を行うことにより微粒子分散液を得た。前記微粒子分散液をろ過し減圧乾燥することにより微粒子の凝集体であるブロック体を得た。更に、前記ブロック体を粉砕し分級することにより、平均粒子径2μm、3μmおよび6μmのジビニルベンゼン系樹脂粒子を得た。
 このようにして得た、ジビニルベンゼン系樹脂粒子(5g)に、パラジウム触媒を浸漬法により担持させた。次いで、この樹脂粒子に対し、硫酸ニッケル六水和物、次亜リン酸ナトリウム、クエン酸ナトリウム、トリエタノールアミン及び硝酸タリウムから調製された無電解ニッケルメッキ液(pH12、メッキ液温50℃)を用いて無電解ニッケルメッキを行い、ニッケルメッキ層(金属層)が表面に形成されたニッケル被覆樹脂粒子を導電粒子として得た。得られた導電粒子の平均粒子径は2μm、3μmおよび6μmであった。
 塩化金酸ナトリウム10gをイオン交換水1000mLに溶解させた溶液に、上述のニッケル被覆樹脂粒子12gを混合して水性懸濁液を調整した。得られた水性懸濁液に、チオ硫酸アンモニウム15g、亜硫酸アンモニウム80g、及びリン酸水素アンモニウム40gを投入することにより金メッキ浴を調整した。得られた金メッキ浴にヒドロキシルアミン4gを投入後、アンモニアを用いて金メッキ浴のpHを9に調整し、そして浴温を60℃に15~20分程度維持することにより、平均粒子径2μm、3μmおよび6μmの金/ニッケル被覆樹脂粒子を得、これを導電粒子とした。
 <異方性導電フィルムの製造>
 この導電粒子が絶縁接着剤層中に表1の配列で含まれている異方性導電フィルムを次のようにして製造した。まず、フェノキシ樹脂(新日鉄住金化学(株)、YP-50)60質量部、エポキシ樹脂(三菱化学(株)、jER828)40質量部、カチオン重合開始剤(潜在性硬化剤)(三新化学工業(株)、SI-60L)2質量部を含有する熱重合性の絶縁性樹脂組成物を調製し、これをフィルム厚さ50μmのPETフィルム上に塗布し、80℃のオーブンにて5分間乾燥させ、PETフィルム上に厚み20μmの粘着層を形成した。
 次に、凸みの配置が、表1の導電粒子ユニットの配置となる金型を作製し、透明性樹脂のペレットを溶融させてその金型に流し込み、冷やして固めることで凹みが表1の導電粒子ユニットの配置となる樹脂型を作製し、この樹脂型に導電粒子を充填し、その上に上述の粘着層を被せ、その粘着層を紫外線照射により硬化させ、型から剥がし、異方性導電フィルムを製造した。
 評価
 (a)導通抵抗、(b)ショート数、(c)バンプ1個当たりの粒子最小捕捉数、(d)バンプ間の粒子状態を次のように評価した。結果を表1A及び表1Bに示す。
 (a)導通抵抗
 有効接続面積(バンプと基板とが対峙する面積)が異なる3通りの評価用接続物の導通抵抗を接続した。
(a-1)導通抵抗(有効接続面積400μm2
 各実施例及び比較例の異方性導電フィルムを、導通抵抗評価用ICとガラス基板の間に挟み、加熱加圧(180℃、80MPa、5秒)して各評価用接続物を得、この評価用接続物の導通抵抗はデジタルマルチメータを用いて4端子法で2mAの電流を通電したときの値で測定した。1Ω未満であれば、実用上問題はない。
 ここで、この各評価用ICとガラス基板は、それらの端子パターンが対応しており、サイズは次の通りである。
 また、異方性導電フィルムを用いて評価用ICとガラス基板を接続する場合、異方性導電フィルムの長手方向をバンプの短手方向(端子間距離の方向)に合わせた。結果を表1Aに示す。
 導通抵抗評価用IC
  外径 0.7×20mm
  厚み 0.2mm
  バンプ仕様 金メッキ、高さ12μm、サイズ10×40μm、バンプ間距離10μm
 ガラス基板
  ガラス材質 コーニング社製
  外径 30×50mm
  厚み 0.5mm
  電極 ITO配線 
(a-2)導通抵抗(有効接続面積300μm2)及び(a-3)導通抵抗(有効接続面積200μm2
 導通抵抗評価用ICのバンプ仕様を以下のものに変更し、評価用ICのアライメントをバンプの短手(幅)方向に6μmおよび8μm意図的にずらし、有効接続面積を300μm2又は200μm2とする以外は、(a-1)と同様にして接続して評価用接続物を得、その導通抵抗を(a-1)と同様に測定した。結果を表1Bに示す。なお、表1Bには、実質的なバンプの大きさとICのバンプ-バンプ間スペース(即ち、同一ICのバンプ間での水平方向の導体距離)の数値を示した。
  バンプ仕様 金メッキ、高さ12μm、サイズ12×50μm、バンプ間距離10μm
 (b)ショート数
 実施例1~11及び比較例1~2の導通抵抗評価用接続物のバンプ間100個においてショートしているチャンネル数を計測し、ショート数とした。
 なお、次のショート発生率評価用ICを用い、実施例1~11の異方性導電フィルムのショート発生率を測定したところ、全てが200ppm未満となり、実用上問題ない結果を示した。
 ショート発生率評価用IC
 櫛歯TEG(test element group))
 外径 1.5×13mm
 厚み 0.5mm
 バンプ仕様 金メッキ、高さ15μm、サイズ25×140μm、バンプ間距離7.5μm
 (c)バンプ1個当たりの粒子最小捕捉数
 各実施例及び比較例の異方性導電フィルムを用いて、(a-1)と同様にして評価用接続物(バンプ100個)を得、各バンプにおける粒子捕捉数を計測し、その最小数を求めた。なお、この接続においても、異方性導電フィルムの長手方向をバンプの短手方向(端子間距離の方向)に合わせた。結果を表1Aに示す。
 また、(a-2)、(a-3)と同様にして評価用接続物(バンプ100個ずつ)を得、上記と同様にして各バンプにおける粒子捕捉数の最小数を求め、以下の基準で評価した。C評価以上であれば実用上問題はない。結果を表1Bに示す。
(評価基準)
 A(非常に良好):10個以上
 B(良好):5個以上、10個未満
 C(普通):3個以上、5個未満
 D(不良):3個未満
 (d)バンプ間の粒子状態
 (c)の評価用接続物(即ち、(a-1)、(a-2)、(a-3)と同様にして得た評価用接続物)において、バンプ-バンプ間においてバンプと接続していない導電粒子が互いに連結することにより形成された導電粒子群の発生数をカウントした。表1Aに、(a-1)と同様にして得た評価用接続物について、バンプ-バンプ間の個数100あたりの、接続前の状態に対して導電粒子ユニットもしくは導電粒子が連結した導電粒子群のカウント値を示す。このカウント値により、異方性導電接続における導電粒子の移動のし易さ(即ち、導電粒子の接触によるショートの発生リスク)を評価することができる。
 (a-2)、(a-3)と同様にして得た評価用接続物では、意図的にアライメントをずらしているため、(a-1)と同様にして得た評価用接続物の評価と同じ尺度で比較はできないが、バンプ-バンプ間の個数100を観察したところ、著しく悪化していないことは確認できた。また、これらの評価用接続物について、ショートが発生していると見られる箇所をランダムに抽出し、接続物の断面状態を確認したところ、(a-1)と同様にして得た評価用接続物に比して、(a-2)、(a-3)と同様にして得た評価用接続物の断面形状が著しくが悪化しているとは認められなかった。
 
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 
 表1Aから、実施例1~11では、導電粒子ユニットの最近接距離Laが導電粒子の粒子径の0.5~3倍の範囲で導通抵抗が0.4~0.6Ωであるが、導電粒子ユニットが形成されていない比較例1では、導電粒子の最近接距離が導電粒子の粒子径の0.5倍であっても導通抵抗が0.8Ωと高く、ショートも比較的高い頻度で生じることがわかる。
 また、比較例2から、導電粒子ユニットの最近接距離Laが導電粒子の粒子径の0.5倍未満であるとショート数が顕著に多くなることがわかる。
 さらに、比較例1、比較例2では、バンプ間の粒子状態から、バンプ間距離に対して導電粒子の粒子径が大きすぎるため、バンプレイアウトと適合していないことが分かる。特に比較例2では、バンプ1個あたりの粒子最小捕捉数が0であり、導電粒子がバンプに捕捉されない状態が発生しており、異方性接続が安定していないことがわかる。これにより、導電粒子の粒子径を大きくすることにより導電粒子の占有面積率を大きくするだけでは、ファインピッチにおける異方性接続には対応できないことがわかる。
 さらに、実施例1~11から、導電粒子ユニットの最近接距離Laが互いに等しい場合、導電粒子ユニットの長手方向が異方性導電フィルムの長手方向に対して傾いているとバンプ1個当たりの粒子最小捕捉数が増加し、導通信頼性が高いことがわかる。
 一方、表1Bから、(a-2)及び(a-3)では(a-1)と同等以上の導通性能が得られ、バンプ1個当たりの粒子最小捕捉数も良好であったことがわかる。
 また、(a-1)、(a-2)及び(a-3)で得られた評価用接続物を、温度85℃、湿度85%RHの恒温槽に500時間おいた後の導通抵抗を(a-1)と同様に測定した。その結果、実施例の評価用接続物の全てにおいて導通抵抗が5Ω未満であることを確認し、実用上問題ないことを確認した。
 参考例1~5
 表2に示す導電粒子の連結個数と配置とし、実施例1と同様にして異方性導電フィルムを製造し、評価した。結果を表2に示す。
 表2から、導電粒子ユニットにおける導電粒子の連結個数は、異方性導電フィルムの短手方向(バンプの長手方向)については、特に制限はないが(参考例1、2)、バンプ間距離の方向については、導電粒子ユニットの最大長と導電粒子径の和がバンプ間距離の大きさよりも大きいとショート数が多くなることがわかる(参考例3~5)。したがって、実施例の異方性導電フィルムを使用する場合でも、導電粒子ユニットの最大長と接続端子の端子間距離に応じて異方性導電フィルムの向きを調整するのが好ましいことがわかる。
 参考例4、5のようにバンプ間距離に対して、ユニット長が90%以上になるとショートが発生し、また、バンプ間の粒子状態の評価結果から、バンプ間でユニット同士が接触しているものが増加していることがわかるので、バンプ間距離と平行なユニット長は、所定の個数と大きさに設定しなければならないことがわかる。
Figure JPOXMLDOC01-appb-T000003
 実施例1、12~14
 表3に示す導電粒子の連結個数の配置とし、実施例1と同様にして異方性導電フィルムを製造し、評価した。結果を表3に示す。
 表3から、導電粒子ユニットの長手方向と異方性導電フィルムの短手方向(接続端子の長手方向)とが揃っている場合、個々の導電粒子ユニット内の導電粒子の間隙をゼロから導電粒子の粒子径の1/2の大きさまで任意に変更しても導電粒子ユニットが格子状に配列した状態を形成することができ、ショート数を低減し導通信頼性を高められることがわかる。
Figure JPOXMLDOC01-appb-T000004
 
  1A、1B、1C、1D、1E、1F、1G、1H、1I、1J、1K、1L  異方性導電フィルム
  2、2a  導電粒子
  3、3a、3b、3p、3q、3i、3j、3k  導電粒子ユニット
  4  絶縁接着剤層
  5  絶縁接着剤層形成用組成物層
  6  剥離シート
 10、10p、10q  型
 11  凹み
 20  接続端子
  D1 異方性導電フィルムの長手方向
  D2 異方性導電フィルムの短手方向
  La 隣接する導電粒子ユニット及び単独の導電粒子から選ばれる導電粒子同士の最近接距離
  La1 隣接する導電粒子ユニットの最近接距離の異方性導電フィルムの長手方向の長さ
  Lb 導電粒子ユニットの異方性導電フィルムの長手方向の長さ
  Lc 隣接する導電粒子ユニットの導電粒子であって、異方性導電フィルムの長手方向で重なる最近接導電粒子同士の該長手方向の距離
  Ld 接続端子間距離の方向の導電粒子ユニットの長さ
  Le 導電粒子の粒子径
  Lh 型の凹みの長手方向に隣接する凹み同士の距離
  Li 型の凹みの、該凹みの長手方向の長さ
  Lj 型の凹みに導電粒子を充填した後の間隙の、該凹みの長手方向の長さの合計
  Lx 接続端子間距離
  s1、s2、s3 間隙
  θ  異方性導電フィルムの長手方向に対する導電粒子ユニットの長手方向の角度

Claims (7)

  1.  導電粒子が一列に配列した導電粒子ユニット、又は導電粒子が一列に配列した導電粒子ユニットと単独の導電粒子が、絶縁接着剤層中に格子状に配置された異方性導電フィルムであって、隣接する導電粒子ユニット及び単独の導電粒子から選ばれる導電粒子同士の最近接距離が導電粒子の粒子径の0.5倍以上である異方性導電フィルム
  2.  隣接する導電粒子ユニットの導電粒子であって、異方性導電フィルムの長手方向で重なる最近接導電粒子同士の該長手方向の距離が、導電粒子の粒子径の0.5倍以上である請求項1記載の異方性導電フィルム。
  3.  各導電粒子ユニットの長手方向が、異方性導電フィルムの長手方向に対して傾いている請求項1又は2に記載の異方性導電フィルム。
  4.  導電粒子ユニットを形成する導電粒子数が異なる複数通りの導電粒子ユニットが配置されている請求項1~3いずれかに記載の異方性導電フィルム。
  5.  導電粒子ユニットとして、該ユニットにおける導電粒子の配列方向が第1の方向の導電粒子ユニットと、第2の方向の導電粒子ユニットを有する請求項1~4のいずれかに記載の異方性導電フィルム。
  6.  請求項1~5のいずれかに記載の異方性導電フィルムを用いて第1電子部品の接続端子と第2電子部品の接続端子とを異方性導電接続した接続構造体。
  7.  接続端子間の距離が、該接続端子間の距離方向の導電粒子ユニットの長さと、導電粒子の粒子径との和よりも大きい請求項6記載の接続構造体。
PCT/JP2015/080338 2014-10-28 2015-10-28 異方性導電フィルム及び接続構造体 WO2016068169A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/517,781 US9953947B2 (en) 2014-10-28 2015-10-28 Anisotropic conductive film and connection structure
CN201580055635.4A CN106797082B (zh) 2014-10-28 2015-10-28 各向异性导电膜及连接结构体
KR1020177006076A KR101937601B1 (ko) 2014-10-28 2015-10-28 이방성 도전 필름 및 접속 구조체

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014219788 2014-10-28
JP2014-219788 2014-10-28

Publications (1)

Publication Number Publication Date
WO2016068169A1 true WO2016068169A1 (ja) 2016-05-06

Family

ID=55857504

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/080338 WO2016068169A1 (ja) 2014-10-28 2015-10-28 異方性導電フィルム及び接続構造体

Country Status (6)

Country Link
US (1) US9953947B2 (ja)
JP (1) JP6661969B2 (ja)
KR (1) KR101937601B1 (ja)
CN (1) CN106797082B (ja)
TW (1) TWI648913B (ja)
WO (1) WO2016068169A1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI613684B (zh) * 2012-08-01 2018-02-01 Dexerials Corp 異向性導電膜之製造方法、異向性導電膜、及連接結構體
CN104541417B (zh) * 2012-08-29 2017-09-26 迪睿合电子材料有限公司 各向异性导电膜及其制备方法
TWI732746B (zh) 2014-11-17 2021-07-11 日商迪睿合股份有限公司 異向性導電膜之製造方法
JP7274811B2 (ja) 2016-05-05 2023-05-17 デクセリアルズ株式会社 異方性導電フィルム
WO2017191772A1 (ja) * 2016-05-05 2017-11-09 デクセリアルズ株式会社 フィラー配置フィルム
CN113707361B (zh) * 2016-05-05 2023-08-22 迪睿合株式会社 各向异性导电膜
US20170338204A1 (en) * 2016-05-17 2017-11-23 Taiwan Semiconductor Manufacturing Company, Ltd. Device and Method for UBM/RDL Routing
JP7077963B2 (ja) * 2017-01-27 2022-05-31 昭和電工マテリアルズ株式会社 絶縁被覆導電粒子、異方導電フィルム、異方導電フィルムの製造方法、接続構造体及び接続構造体の製造方法
JP2019029135A (ja) * 2017-07-27 2019-02-21 日立化成株式会社 異方性導電フィルム及びその製造方法、並びに接続構造体及びその製造方法
KR102519126B1 (ko) * 2018-03-30 2023-04-06 삼성디스플레이 주식회사 표시 장치
TWI826476B (zh) * 2018-06-26 2023-12-21 日商力森諾科股份有限公司 各向異性導電膜及其製造方法以及連接結構體的製造方法
US20200156291A1 (en) * 2018-11-21 2020-05-21 Shin-Etsu Chemical Co., Ltd. Anisotropic film and method for manufacturing anisotropic film
TW202130748A (zh) * 2019-10-15 2021-08-16 國立大學法人京都大學 導電膜、分散體及其等之製造方法、以及含導電膜之裝置
JPWO2021193911A1 (ja) * 2020-03-26 2021-09-30

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0582199A (ja) * 1991-05-28 1993-04-02 Minato Electron Kk 異方導電性コネクタを有するコネクタ配置構造および異方導電性コネクタ
JPH09320345A (ja) * 1996-05-31 1997-12-12 Whitaker Corp:The 異方導電性フィルム
JP2002519473A (ja) * 1998-06-30 2002-07-02 ミネソタ マイニング アンド マニュファクチャリング カンパニー ファインピッチの異方導電性接着剤
JP2006049783A (ja) * 2004-06-29 2006-02-16 Yuji Suda 異方性導電接着フィルムの製造方法と電極接続方法
JP2007165052A (ja) * 2005-12-12 2007-06-28 Sumitomo Bakelite Co Ltd 異方導電性フィルム

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5502889A (en) * 1988-06-10 1996-04-02 Sheldahl, Inc. Method for electrically and mechanically connecting at least two conductive layers
US20070212521A1 (en) * 2004-03-30 2007-09-13 Tokai Rubber Industries, Ltd. Anisotropic Conductive Film and a Method of Manufacturing the Same
JP4887700B2 (ja) * 2005-09-09 2012-02-29 住友ベークライト株式会社 異方導電性フィルムおよび電子・電機機器
JP5145110B2 (ja) * 2007-12-10 2013-02-13 富士フイルム株式会社 異方導電性接合パッケージの製造方法
JP5226562B2 (ja) * 2008-03-27 2013-07-03 デクセリアルズ株式会社 異方性導電フィルム、並びに、接合体及びその製造方法
JP5049176B2 (ja) * 2008-03-27 2012-10-17 ソニーケミカル&インフォメーションデバイス株式会社 接合体及びその製造方法、並びに、異方性導電材料及びその製造方法
KR20120036721A (ko) * 2010-10-08 2012-04-18 제일모직주식회사 이방성 도전 필름
JP6245792B2 (ja) 2012-03-29 2017-12-13 デクセリアルズ株式会社 導電性粒子、回路接続材料、実装体、及び実装体の製造方法
JP6056700B2 (ja) * 2012-08-03 2017-01-11 デクセリアルズ株式会社 異方性導電フィルム及びその製造方法
KR102520294B1 (ko) * 2014-10-31 2023-04-10 데쿠세리아루즈 가부시키가이샤 이방성 도전 필름

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0582199A (ja) * 1991-05-28 1993-04-02 Minato Electron Kk 異方導電性コネクタを有するコネクタ配置構造および異方導電性コネクタ
JPH09320345A (ja) * 1996-05-31 1997-12-12 Whitaker Corp:The 異方導電性フィルム
JP2002519473A (ja) * 1998-06-30 2002-07-02 ミネソタ マイニング アンド マニュファクチャリング カンパニー ファインピッチの異方導電性接着剤
JP2006049783A (ja) * 2004-06-29 2006-02-16 Yuji Suda 異方性導電接着フィルムの製造方法と電極接続方法
JP2007165052A (ja) * 2005-12-12 2007-06-28 Sumitomo Bakelite Co Ltd 異方導電性フィルム

Also Published As

Publication number Publication date
TW201637290A (zh) 2016-10-16
US20170309590A1 (en) 2017-10-26
JP2016085983A (ja) 2016-05-19
KR101937601B1 (ko) 2019-01-10
US9953947B2 (en) 2018-04-24
TWI648913B (zh) 2019-01-21
JP6661969B2 (ja) 2020-03-11
KR20170039284A (ko) 2017-04-10
CN106797082A (zh) 2017-05-31
CN106797082B (zh) 2019-07-30

Similar Documents

Publication Publication Date Title
WO2016068169A1 (ja) 異方性導電フィルム及び接続構造体
JP6504307B1 (ja) 異方導電性フィルム
JP6380591B2 (ja) 異方導電性フィルム及び接続構造体
JP7176550B2 (ja) 異方導電性フィルム及び接続構造体
WO2015141830A1 (ja) 異方性導電フィルム及びその製造方法
CN107112314B (zh) 多层基板
CN110499119B (zh) 各向异性导电性膜及连接构造体
WO2016067828A1 (ja) 異方性導電フィルム及び接続構造体
JP2022097589A (ja) 異方性導電フィルム
CN107210287B (zh) 多层基板
JP2022069457A (ja) 異方性導電フィルム
WO2020032150A1 (ja) 異方性導電フィルム
CN112534650A (zh) 各向异性导电薄膜
WO2020121787A1 (ja) 異方性導電フィルム、接続構造体、接続構造体の製造方法
TWI838943B (zh) 各向異性導電膜、連接構造體、以及連接構造體的製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15854584

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 20177006076

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15517781

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15854584

Country of ref document: EP

Kind code of ref document: A1