WO2016068024A1 - 高強度鋼板 - Google Patents

高強度鋼板 Download PDF

Info

Publication number
WO2016068024A1
WO2016068024A1 PCT/JP2015/079874 JP2015079874W WO2016068024A1 WO 2016068024 A1 WO2016068024 A1 WO 2016068024A1 JP 2015079874 W JP2015079874 W JP 2015079874W WO 2016068024 A1 WO2016068024 A1 WO 2016068024A1
Authority
WO
WIPO (PCT)
Prior art keywords
amount
less
steel sheet
strength
pwht
Prior art date
Application number
PCT/JP2015/079874
Other languages
English (en)
French (fr)
Inventor
愛 尾上
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to EP15856045.8A priority Critical patent/EP3214200B1/en
Priority to CN201580058247.1A priority patent/CN107075641B/zh
Priority to KR1020177010756A priority patent/KR20170063760A/ko
Publication of WO2016068024A1 publication Critical patent/WO2016068024A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/50Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for welded joints
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Definitions

  • the present invention relates to a steel plate that is suitably used for the manufacture of storage tanks, offshore structures and the like. More specifically, the present invention relates to a high-strength steel sheet that can secure a strength of 550 MPa or more before and after heat treatment even after performing post-weld heat treatment to reduce residual stress in a welded portion after welding.
  • PWHT Post-Weld-Heat-Treatment
  • an object is held at a high temperature for a long time, so that the metal structure of the steel sheet may change and the strength may be lowered.
  • Patent Document 1 A technique for ensuring the strength after PWHT at a high level is disclosed in Patent Document 1.
  • the steel sheet disclosed in Patent Document 1 is adjusted so that the Nb content, V content, Mo content, and C content among the component compositions satisfy a predetermined relationship, and the bainite fraction is 90 area% or more. It is characterized by the metal structure.
  • Patent Document 1 describes that carbides of Nb and Mo are formed on a steel plate before PWHT to suppress a strength decrease after PWHT. Further, in order to obtain an extremely low C bainite structure, Cr is contained as an essential component in a range of 0.5 to 2.0%.
  • maintains board thickness (inch) x 1 hour is performed twice at 600 degreeC, and holding time is about 8 hours at the longest.
  • the thickness of steel plates used as raw materials has increased.
  • the plate thickness of the steel plate is increased, depending on the position of the welded structure, the time required to raise the temperature to the specified temperature during heat treatment increases. Moreover, when reworking etc. occur after welding, it is necessary to perform PWHT again, and the heat treatment time becomes longer.
  • the PWHT is performed at a high temperature or when the PWHT is prolonged, the strength of the steel sheet is significantly reduced. Therefore, the steel sheet is required to have a predetermined strength even if PWHT is performed for a long time. Specifically, it is desired that high strength can be ensured even if PWHT is performed for 15 hours or more.
  • Patent Document 1 only the change in tensile strength before and after heat treatment was measured for a steel sheet that was held for about 8 hours at the longest, and as described above, PWHT was performed for 15 hours or more. The change in tensile strength was not measured. Therefore, when PWHT is performed for a long time, the strength of the steel sheet is lowered, and there is a possibility that a predetermined strength cannot be ensured.
  • the present invention has been made paying attention to the above circumstances, and its object is to provide a high-strength steel sheet that can ensure high strength before and after PWHT even if PWHT is performed for a long time of, for example, 15 hours or longer. It is in.
  • the high-strength steel sheet according to the present invention that has solved the above-mentioned problems is the chemical composition in mass%, C: 0.02 to 0.07%, Si: 0.1 to 0.4%, Mn: 1 0.2 to 2%, P: more than 0% to 0.02% or less, S: more than 0% to 0.005% or less, Cu: 0.1 to 0.7%, Al: 0.01 to 0.08%, Ni: 0.45-0.85%, Mo: 0.01-0.25%, Nb: 0.015-0.05%, Ti: 0.005-0.025%, Ca: 0.0005- It contains 0.003% and N: 0.001 to 0.01%, with the balance being iron and inevitable impurities.
  • Nb amount, Mo amount, and determined from the C amount is the assumed amount of precipitated P 0 of the following formula (1) is 1.50 or more, metal structure, a ratio to all tissues, ferrite: 60 It has a gist in that it satisfies area% or more and bainite: 4 area% or more.
  • P 0 340 ⁇ (0.6 ⁇ [Mo] + 22 ⁇ [Nb]) ⁇ C 1 (1)
  • C 1 is obtained by the following formula (2) or formula (3), and in the formulas (1) to (3), [] indicates the content of each element in mass%. .
  • the high-strength steel sheet further includes, as other elements, Cr: more than 0% and 0.2% or less, V: more than 0% and 0.02% or less, and B: more than 0% and 0.001% or less. It may contain at least one selected.
  • the precipitation amount P 1 is calculated by the following formula (4) from the average interval ⁇ ( ⁇ m) between carbides containing at least one selected from the group consisting of Nb and Mo in the high-strength steel sheet, the assumed precipitation amount It is preferable that the solid solution equivalent A obtained from P 0 and the precipitation amount P 1 and obtained by the following formula (5) satisfies 0.50 or more.
  • P 1 0.7 / ⁇ (4)
  • A P 0 -P 1 (5)
  • the present invention includes a high-strength welded structure obtained by heat-treating the high-strength steel plate.
  • the strength is hardly reduced even if PWHT is performed for a long time of, for example, 15 hours or more, or rather the strength is improved.
  • a high-strength steel sheet having high strength before and after PWHT can be provided.
  • FIG. 1 is a graph showing the relationship between the solid solution equivalent A and the tensile strength (TS) after PWHT.
  • Patent Document 1 transformation strengthening utilizing a bainite structure is known as a means for securing the strength of a steel sheet.
  • Patent Document 1 is a technique using dislocations introduced at the time of transformation, if PWHT is performed for about 15 hours or more, the dislocations may coalesce and disappear, and the strength may decrease.
  • the present inventor examined a method that can ensure the strength even when the metal structure of the steel sheet is mainly composed of ferrite and PWHT is performed for a long time of, for example, 15 hours or more. This is because ferrite has a small number of dislocations introduced, and it is considered that a decrease in strength due to dislocations coalescing and disappearing can be avoided even if PWHT is performed for a long time.
  • the metal structure of the steel sheet is mainly composed of ferrite, and after a predetermined amount or more of bainite is generated, the PWHT is performed for a long time, and then selected from the group consisting of Nb and Mo.
  • the present inventors have found that a high strength can be secured before and after PWHT if the chemical composition is appropriately adjusted so that a predetermined amount or more of the carbide containing at least one kind is expected to precipitate.
  • Nb and Mo are dissolved in the stage before PWHT or dispersed as extremely fine carbides, by growing PWHT for a long time, it is grown to a size that contributes to strengthening of carbide dispersion. It was clarified that high strength can be secured by strengthening dispersion of carbide.
  • performing PWHT for a long time means performing PWHT for 15 hours or more, for example.
  • the high-strength steel sheet according to the present invention is in mass% with respect to chemical components, C: 0.02 to 0.07%, Si: 0.1 to 0.4%, Mn: 1.2 to 2%, P: 0 %: 0.02% or less, S: more than 0% and 0.005% or less, Cu: 0.1 to 0.7%, Al: 0.01 to 0.08%, Ni: 0.45 to 0.85 %, Mo: 0.01 to 0.25%, Nb: 0.015 to 0.05%, Ti: 0.005 to 0.025%, Ca: 0.0005 to 0.003%, and N: 0 0.001 to 0.01%, with the balance being iron and inevitable impurities.
  • Nb amount, Mo amount, and determined from the C amount is the assumed amount of precipitated P 0 of the following formula (1) is 1.50 or more, metal structure, a ratio to all tissues, ferrite: 60 Area% or more, bainite: 4 area% or more are satisfied.
  • P 0 340 ⁇ (0.6 ⁇ [Mo] + 22 ⁇ [Nb]) ⁇ C 1 (1)
  • C 1 is obtained by the following formula (2) or formula (3).
  • high strength means that the tensile strength is 550 MPa or more.
  • the metal structure of the high-strength steel sheet of the present invention is ferrite: 60 area% or more and bainite: 4 area% or more in a ratio to the entire structure.
  • the ferrite content is 60 area% or more, preferably 65 area% or more, more preferably 70 area% or more, and further preferably 75 area% or more.
  • the upper limit of the ferrite fraction is 96 area% or less in order to secure 4 area% or more of bainite.
  • the ferrite fraction is preferably 90 area% or less.
  • the metal structure of the steel sheet according to the present invention is 60% by area or more of ferrite, but if the ferrite fraction is too high, the strength of the steel sheet becomes too low. Therefore, in the present invention, in order to increase the strength of the steel sheet, the bainite fraction in the entire structure is 4 area% or more, preferably 5 area% or more, more preferably 10 area% or more. However, if the bainite fraction becomes too high, 60% by area or more of ferrite cannot be secured, and the strength after performing PWHT for a long time decreases due to an increase in bainite. Therefore, in the present invention, the bainite fraction is 40 area% or less, preferably 30 area% or less, more preferably 20 area% or less.
  • the metal structure of the steel sheet according to the present invention is basically composed of ferrite and bainite. However, other structures such as pearlite, island martensite (MA) can be used as long as the effects of the present invention are not impaired. ) And the like.
  • the fraction of the other organization in the entire organization is, for example, 10 area% or less.
  • the metallographic structure of the steel sheet according to the present invention when the thickness of the steel sheet is t (mm), the cross section at the t / 4 position is exposed, and after mirror polishing, a test piece is collected and etched with a nital solution. Thereafter, the ferrite fraction and the bainite fraction may be measured by observation with an optical microscope and image analysis. The observation magnification is 400 times, the number of observation fields is five, and the average values of the ferrite fraction and the bainite fraction measured in each field may be obtained.
  • the ferrite fraction in the metal structure may be measured by image analysis using the above-described optical microscope.
  • ferrite and bainite are basically generated.
  • a value obtained by subtracting the fraction may be regarded as the ferrite fraction.
  • the estimated precipitation amount P 0 can be precipitated as a carbide containing at least one selected from the group consisting of Nb and Mo based on the Mo amount, Nb amount, and C amount contained in the steel sheet, for example, by PWHT. The maximum amount of precipitates assumed is shown.
  • the estimated precipitation amount P 0 is a calculated value obtained from the Nb amount, the Mo amount, and the C amount based on the following formula (1).
  • the estimated precipitation amount P 0 is an index for predicting the strength after PWHT.
  • the carbide containing at least one selected from the group consisting of Nb and Mo is not particularly limited as long as it is a carbide containing at least Nb or Mo.
  • composite carbide containing both Nb and Mo can be used.
  • the carbides include carbonitrides in which nitrogen is bonded to carbides, and the composite carbides include complex carbonitrides in which nitrogen is bonded to composite carbides.
  • the carbide of Mo is MoC
  • the carbide of Nb is NbC
  • the precipitation amount of MoC and NbC is expressed by the following formula (a) based on the mass ratio of each element.
  • the C 1 is determined based on the relationship between the C amount [C] contained in the steel and the total amount of the Mo amount [Mo] and the Nb amount [Nb]. Value.
  • 12/95 is a coefficient determined in consideration of the atomic weights of C, Mo, and Nb.
  • the P 0 value is set to 1.50 or more.
  • the threshold value 1.50 of the P 0 value is a value determined based on various experimental results.
  • the P 0 value is preferably 2 or more, more preferably 3 or more.
  • the upper limit of the P 0 value is determined based on the maximum value of the Mo amount and the maximum value of the Nb amount, and is 29.75 or less.
  • the P 0 value is preferably 25 or less, more preferably 20 or less, still more preferably 15 or less, and particularly preferably 10 or less.
  • the solid solution equivalent A represented by the following formula (5) satisfies 0.50 or more.
  • the solid solution equivalent amount A is calculated when the precipitation amount P 1 is calculated by the following formula (4) from the average interval ⁇ ( ⁇ m) between carbides containing at least one selected from the group consisting of Nb and Mo:
  • the following formula (5) is obtained from the estimated precipitation amount P 0 and the precipitation amount P 1 .
  • P 1 0.7 / ⁇ (4)
  • A P 0 -P 1 (5)
  • the solid solution equivalent A indicates the total amount of Mo and Nb dissolved in the high-strength steel sheet, and is an index for predicting the strength after PWHT.
  • the threshold value 0.50 of the solid solution equivalent amount A is a value determined based on various experimental results. By setting the solid solution equivalent amount A to 0.50 or more, when PWHT is performed for a long time, solid solution Mo and solid solution Nb precipitate as carbides, and the strength of the welded structure can be increased by carbide dispersion strengthening. it can. On the other hand, if the solid solution equivalent A is less than 0.50, the amount of Mo, Nb, and C is insufficient, or Mo and Nb are already precipitated as carbides. Becomes coarse and aggregates, and the strength of the welded structure decreases.
  • the solid solution equivalent amount A is preferably 0.50 or more, more preferably 1 or more, and still more preferably 2 or more.
  • the upper limit of the solid solution equivalent A is not particularly limited, but is preferably 15 or less, more preferably 10 or less, for example.
  • the solid solution equivalent A includes fine Mo carbides and fine Nb carbides having a particle size of 10 nm or less. The fine carbide having a particle size of 10 nm or less exceeds the detection limit by observation using a transmission electron microscope described later, and is considered not to contribute to strengthening of carbide dispersion.
  • the precipitation amount P 1 is calculated by the above equation (4) from the average interval ⁇ ( ⁇ m) between carbides containing at least one selected from the group consisting of Nb and Mo
  • the solid solution equivalent amount A is assumed precipitation. This is a value obtained by subtracting the precipitation amount P 1 from the amount P 0 .
  • the precipitation amount P 1 indicates the amount of carbide of Nb and the amount of carbide of Mo that are actually precipitated in the steel sheet. Therefore, by subtracting the precipitation amount P 1 from the estimated precipitation amount P 0 , the total amount of Nb and Mo dissolved in the steel sheet can be calculated.
  • Solid solution Nb and solid solution Mo are precipitated as carbides by performing PWHT for a long time, and contribute to improving the strength of the welded structure after PWHT by carbide dispersion strengthening.
  • the precipitation amount P 1 can be calculated by the above formula (4).
  • is an average interval ( ⁇ m) between carbides containing at least one selected from the group consisting of Nb and Mo
  • f is an average volume fraction (volume%) of the carbides
  • d is The average particle diameter ( ⁇ m) of the metal structure is shown.
  • the above formula (c) is generally known as a formula for calculating the average interval ⁇ between carbides.
  • the average volume fraction f of carbide is a carbide measured by observing the cross section at the t / 4 position using, for example, a transmission electron microscope, where the thickness of the steel sheet is t (mm). And the number of carbides.
  • the observation magnification may be, for example, 30000 times, and the number of observation fields may be ten.
  • the average particle diameter d of the metal structure means the average value of the circle-equivalent diameter of the metal structure recognized in the observation field. For example, when a ferrite structure is observed in the observation field of view, it is only necessary to measure the particle size of ferrite. When a bainite structure is observed, the particle size of bainite is measured and an average value may be calculated. .
  • the observation magnification may be, for example, 30000 times, and the number of observation fields may be ten.
  • the average particle diameter d of the metal structure becomes substantially constant by performing controlled rolling described later. Therefore, based on the average volume fraction f of carbide and the average particle diameter d of the metal structure, the average interval ⁇ between the carbides can be obtained by the above formula (c).
  • precipitation amount P 1 of carbides per unit mass can be the average volume percentage of carbide, with an average volume fraction of the metal structure, and the mass per unit volume represented by the following formula (A).
  • P 1 f ⁇ n 1 / (f ⁇ n 1 + F ⁇ n 2 ) (A)
  • f is the average volume ratio (volume%) of carbide
  • F is the average volume ratio (volume%) of the metal structure
  • n 1 is the specific gravity of the carbide (kg / m 3 )
  • n 2 is the specific gravity of the metal structure (kg) / M 3 ).
  • n 1 of the carbide component analysis is performed on each carbide recognized in the observation field, the specific gravity of each carbide is obtained, and an average value may be substituted.
  • the specific gravity of iron may be substituted for the specific gravity n 2 of the metal structure.
  • the amount of Mo contained in the steel, and the amount of Nb, and the P 0 value calculated based on the C amount is 1.50 or more, the high-strength steel sheet, the chemical composition Need to be properly controlled.
  • chemical components of the high-strength steel plate will be described.
  • C is an element necessary for increasing the strength of the steel sheet. Moreover, it is an element required in order to precipitate a carbide
  • the amount of C is 0.02% or more, preferably 0.025% or more, more preferably 0.030% or more.
  • bainite is easily generated. When bainite is generated excessively, dislocations coalesce and disappear due to long-time PWHT, and the strength is greatly reduced.
  • the amount of C is 0.07% or less, preferably 0.065% or less, more preferably 0.06% or less, and particularly preferably 0.055% or less.
  • Si 0.1 to 0.4%
  • Si is an element that acts as a deoxidizer when melting steel and has the effect of increasing the strength of the steel.
  • the Si content is 0.1% or more, preferably 0.15% or more, more preferably 0.2% or more.
  • the Si amount is 0.4% or less, preferably 0.37% or less, and more preferably 0.35% or less.
  • Mn is an element that effectively acts to increase the strength of the steel sheet.
  • the amount of Mn is 1.2% or more, preferably 1.3% or more, more preferably 1.4% or more.
  • the amount of Mn is 2% or less, preferably 1.8% or less, more preferably 1.6% or less.
  • P is an inevitable impurity and is an element that segregates in crystal grains and lowers the ductility and toughness of the steel sheet.
  • the amount of P is 0.02% or less, preferably 0.015% or less, more preferably 0.01% or less, and particularly preferably 0.008% or less.
  • the amount of P is preferably as small as possible, but it is difficult to make it 0% industrially.
  • S is an unavoidable impurity and is an element that combines with alloy elements in steel to form various inclusions and lowers the ductility and toughness of the steel sheet.
  • the amount of S is 0.005% or less, preferably 0.004% or less, more preferably 0.003% or less.
  • the amount of S should be as small as possible, but it is difficult to make it 0% industrially.
  • Cu is an element that acts to increase the strength of the steel sheet.
  • the amount of Cu is 0.1% or more, preferably 0.12% or more, more preferably 0.15% or more. However, when the amount of Cu becomes excessive, cracks are likely to occur during hot working. In the present invention, the amount of Cu is 0.7% or less, preferably 0.65% or less, more preferably 0.5% or less.
  • Al 0.01 to 0.08%
  • Al is an element that acts as a deoxidizer when melting steel.
  • the amount of Al is 0.01% or more, preferably 0.015% or more, more preferably 0.020% or more.
  • the Al content is 0.08% or less, preferably 0.06% or less, more preferably 0.04% or less.
  • Ni is an element necessary for lowering the ferrite transformation start temperature, promoting the formation of bainite, and increasing the strength of the steel sheet.
  • the amount of Ni is 0.45% or more, preferably 0.5% or more.
  • the amount of Ni is 0.85% or less, preferably 0.75% or less, more preferably 0.65% or less.
  • Mo is an element necessary for generating bainite. Further, it is an important element that contributes to improving the strength of the steel sheet after PWHT by precipitating carbides after performing PWHT for a long time.
  • the Mo amount is 0.01% or more, preferably 0.1% or more, more preferably 0.15% or more. However, when the amount of Mo becomes excessive, bainite is excessively generated and the generation of ferrite is suppressed, so that the strength of the steel sheet decreases after PWHT is performed for a long time.
  • the Mo amount is 0.25% or less, preferably 0.23% or less, more preferably 0.20% or less.
  • Nb is an important element that contributes to improving the strength of the steel sheet after PWHT, by depositing carbides after PWHT has been performed for a long time, like Mo.
  • the Nb content is 0.015% or more, preferably 0.020% or more.
  • the Nb amount is 0.05% or less, preferably 0.048% or less, more preferably 0.045% or less.
  • Ti is an element that easily forms nitrides, and is an element that is necessary for precipitating fine TiN and refining crystal grains to increase the toughness of the steel sheet.
  • Ti is 0.005% or more, preferably 0.007% or more, more preferably 0.009% or more.
  • the Ti content is 0.025% or less, preferably 0.02% or less, more preferably 0.015% or less.
  • Ca is an element necessary for controlling the form of inclusions in the steel and improving the toughness of the steel sheet.
  • the Ca content is 0.0005% or more, preferably 0.0008% or more, more preferably 0.001% or more.
  • the Ca content is 0.003% or less, preferably 0.0027% or less, more preferably 0.0025% or less.
  • N is an element necessary for bonding with Ti to precipitate fine TiN and refining crystal grains to increase the toughness of the steel sheet.
  • the N amount is 0.001% or more, preferably 0.003% or more, more preferably 0.004% or more.
  • the amount of N becomes excessive TiN becomes coarse and HAZ toughness deteriorates.
  • it is 0.01% or less, preferably 0.008% or less, more preferably 0.007% or less.
  • the chemical components in the steel sheet of the present invention are as described above, and the balance is inevitable impurities such as iron and O (oxygen).
  • the steel plate of the present invention may contain the following elements as necessary.
  • Cr at least one selected from the group consisting of more than 0% and 0.2% or less, V: more than 0% and 0.02% or less, and B: more than 0% and 0.0010% or less
  • Cr is preferably 0.001% or more, more preferably 0.005% or more.
  • V is preferably 0.0001% or more, preferably 0.0005% or more.
  • B is preferably 0.0001% or more, more preferably 0.0005% or more.
  • Cr or V is contained excessively, the HAZ toughness decreases.
  • the Cr content is preferably 0.2% or less, more preferably 0.1% or less, and still more preferably 0.05% or less.
  • the V amount is preferably 0.02% or less, more preferably 0.01% or less, and still more preferably 0.005% or less.
  • the amount of B is preferably 0.001% or less, more preferably 0.0005% or less.
  • the steel sheet of the present invention is in a state where the component composition is appropriately controlled, and the production conditions are not particularly limited.
  • the above-described component composition is used. It is recommended that steel satisfying the above conditions be melted in accordance with a conventional method, and the resulting steel ingot be controlled and cooled. That is, when the solid solution equivalent amount A satisfies the predetermined range, the precipitation behavior of Mo and Nb is controlled, and high strength can be secured. Therefore, it is desirable to make effective use of controlled rolling and controlled cooling.
  • a manufacturing technique using both controlled rolling and controlled cooling is called a thermo-mechanical control process (hereinafter sometimes referred to as TMCP), and steel manufactured by this manufacturing technique is sometimes called a TMCP steel sheet.
  • TMCP thermo-mechanical control process
  • the thickness of the steel ingot is t (mm)
  • rolling is performed at a temperature of t / 4 position in the range of 900 to 800 ° C., and the cumulative rolling reduction is preferably 5 to 60%.
  • the temperature at the / 4 position is preferably higher than 670 ° C., and can be produced by cooling to room temperature.
  • the cumulative rolling reduction By setting the cumulative rolling reduction at a temperature at the t / 4 position in the range of 900 to 800 ° C. to preferably 5% or more, deformation bands serving as ferrite transformation nuclei can be introduced into the austenite grains, and the formation of ferrite is promoted. be able to.
  • the cumulative rolling reduction is more preferably 10% or more, and further preferably 15% or more. However, if the cumulative rolling reduction exceeds 60%, the time required for rolling becomes long, leading to a decrease in productivity.
  • the cumulative rolling reduction is preferably 60% or less, more preferably 50% or less, and still more preferably 45% or less.
  • the steel sheet obtained by rolling is started to cool at a temperature at the t / 4 position, preferably higher than 670 ° C., and cooled to room temperature.
  • a temperature at the t / 4 position preferably higher than 670 ° C.
  • the cooling start temperature is more preferably higher than 700 ° C.
  • the upper limit of the cooling start temperature is the same as the rolling end temperature, for example, 850 ° C.
  • the cooling rate from the cooling start temperature to room temperature is not particularly limited.
  • the cooling is performed at an average cooling rate of 5 to 30 ° C./second from the cooling start temperature to a temperature range higher than 300 ° C. and lower than 500 ° C., and the cooling is stopped. From room temperature to room temperature. What is necessary is just to water-cool from the said cooling start temperature to the temperature range above 300 degreeC and less than 500 degreeC, for example.
  • the thickness of the steel sheet of the present invention is not particularly limited, but may be, for example, 10 mm or more, further 20 mm or more, particularly 30 mm or more.
  • the upper limit of the thickness of the steel plate is not particularly limited, but may be, for example, 150 mm or less, further 120 mm or less, particularly 100 mm or less.
  • the steel sheet according to the present invention has a high strength of, for example, a tensile strength of 550 MPa or more.
  • the present invention also includes a welded structure in which the steel sheet is welded and then heat-treated.
  • the welded structure of the present invention is characterized in that the high strength of the steel sheet is maintained as it is even after heat treatment. For example, in the case of a steel plate having a tensile strength of 550 MPa or more, the high tensile strength can be maintained even in a welded structure.
  • a steel ingot was manufactured in accordance with a conventional method by melting steel containing the chemical components shown in Table 1 below, the balance being iron and inevitable impurities.
  • the obtained steel ingot was controlled-rolled and controlled-cooled to produce a TMCP steel plate having a plate thickness of 64 mm.
  • rolling in the temperature range of 900 to 800 ° C. at the t / 4 position has the cumulative reduction rate shown in Table 2 below. Went so. Controlled cooling started from the temperature shown in Table 2 below at the t / 4 position after rolling.
  • the water was cooled at an average cooling rate of about 7 ° C./second, and from the cooling stop temperature in the temperature range of 380 to 430 ° C. to room temperature.
  • the Z value is compared with the C amount [C] shown in Table 1.
  • [C] ⁇ Z the Z value is determined as the value of C 1
  • [C] ⁇ Z [C] It was defined as the value of C 1.
  • the determined C 1 values are shown in Table 2 below.
  • a cross section at a quarter position with respect to the thickness of the obtained TMCP steel sheet was observed at an observation magnification of 30000 using a transmission electron microscope.
  • the number and the area ratio of the carbide with respect to the area of the observation visual field were measured.
  • the number of observation fields was 10 fields.
  • the area ratio of the carbide is regarded as the volume ratio f (%) of the carbide.
  • the particle size of ferrite or bainite observed in the observation field of view was measured, and the average value d ( ⁇ m) of the particle sizes in the five fields of view was obtained.
  • Table 2 below also shows the value of P 1 calculated by dividing 0.7 by ⁇ .
  • a test piece for a tensile test specified in ASTM A370 is taken from a position of 1/4 of the sheet thickness in a direction perpendicular to the rolling direction, and a tensile test is performed. Tensile strength was measured. The measurement results are shown in Table 2 below as the tensile strength before PWHT.
  • test piece was heated to 595 ° C. and kept at this temperature for 19 hours to perform PWHT heat treatment.
  • the tensile strength was measured by the same procedure as described above. The measurement results are shown in Table 2 below as the tensile strength after PWHT.
  • FIG. 1 shows the relationship between the solid solution equivalent A calculated based on the above formula (5) and the tensile strength (TS) after PWHT.
  • TS tensile strength
  • Examples 1 to 8 are invention examples that satisfy the requirements of the present invention. That is, a predetermined metal structure is obtained, and the assumed precipitation amount P 0 also satisfies a predetermined range, so that a high strength with a tensile strength of 550 MPa or more can be achieved. Moreover, even if PWHT for a long time of 19 hours is performed, a tensile strength of 550 MPa or more can be secured after PWHT.
  • No. Reference numerals 9 to 15 are comparative examples that do not satisfy any of the requirements defined in the present invention.
  • No. No. 9 was an example in which ferrite was generated excessively because Mo was not contained, and the bainite fraction could not be secured, and the tensile strength of the steel sheet could not be secured. Moreover, since Mo and Nb are not contained, the tensile strength was further reduced by applying PWHT for a long time than before PWHT.
  • No. No. 10 is an example that does not contain Nb and the estimated precipitation amount P 0 does not satisfy the predetermined range. As a result, the tensile strength after performing PWHT for a long time was lowered.
  • No. No. 11 was an example in which ferrite was generated excessively because Mo was not contained, and the bainite fraction could not be secured, and the tensile strength of the steel sheet could not be secured. Moreover, since Mo and Nb are not contained, the tensile strength after PWHT became low by giving PWHT for a long time.
  • No. No. 14 is an example in which the amounts of Cu, Ni, and Nb are below the range defined in the present invention, and Mo is excessively contained. Therefore, ferrite was generated excessively and bainite was not generated. As a result, the tensile strength was low both before and after PWHT.
  • No. 15 is an example in which Ni is below the range defined in the present invention, the amount of Mo is excessive, and Nb is not contained. For this reason, ferrite was generated excessively and the bainite fraction could not be secured. As a result, the tensile strength after PWHT could not be secured.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

 PWHTを例えば、15時間以上長く行ってもPWHT前後において高い強度を確保できる高強度鋼板を提供する。 所定の成分組成を含有し、且つNb量、Mo量、およびC量から求められる想定析出量P0が1.50以上であり、金属組織は、全組織に対する比率で、フェライト:60面積%以上、ベイナイト:4面積%以上、を満足する高強度鋼板。

Description

高強度鋼板
 本発明は、備蓄用タンク、海洋構造物などの製造に好適に用いられる鋼板に関する。詳細には、溶接後の溶接部における残留応力を低減するための溶接後熱処理を行っても熱処理前後において550MPa以上の強度を確保できる高強度鋼板に関する。
 原油、エチレン、液化石油ガス(liquefied petroleum gas;LPG)などの備蓄用タンク、および海洋構造物などの溶接構造物を製造する際には、鋼板を溶接した後、溶接部の残留応力を低減するために、600℃前後で数時間保持する溶接後熱処理(Post Weld Heat Treatment;以下、PWHTということがある。)が行われることがある。PWHTでは、対象物を高温で長時間保持するため、鋼板の金属組織が変化し、強度が低下することがある。
 PWHT後の強度を高いレベルで確保する技術が特許文献1に開示されている。この特許文献1に開示されている鋼板は、成分組成のうち特にNb量、V量、Mo量、およびC量が所定の関係を満足するように調整すると共に、ベイナイト分率が90面積%以上の金属組織であるところに特徴がある。また、特許文献1には、PWHT前の鋼板にNbおよびMoの炭化物を形成して、PWHT後における強度低下を抑制することが記載されている。また、極低Cベイナイト組織を得るために、必須成分としてCrを0.5~2.0%の範囲で含有させている。そして、特許文献1の実施例では、600℃で、板厚(inch)×1時間の保持するPWHTを2回行っており、保持時間は最長で約8時間である。
特開2007-321228号公報
 溶接構造物の大型化に伴い、素材として用いられる鋼板の板厚は大きくなっている。鋼板の板厚が大きくなると、溶接構造物の位置によっては、熱処理する際に、規定温度に昇温するまでに要する時間が長くなる。また、溶接後に手直し等が発生した場合は、再度、PWHTを行う必要があり、熱処理時間は益々長くなる。一方、PWHTを高温で行うか、PWHTが長時間になると、鋼板の強度低下は顕著になる。従って鋼板には、PWHTを長時間行っても所定の強度を確保できることが要求される。具体的には、15時間以上のPWHTを行っても高い強度を確保できることが望まれる。
 ところが、上記特許文献1の実施例では、最長で8時間程度の保持を行った鋼板について熱処理前後における引張強度の変化代しか測定しておらず、上記のように、15時間以上のPWHTを行ったときの引張強度の変化代は測定していない。そのため、長時間のPWHTを行うと、鋼板の強度が低下し、所定の強度を確保できない可能性がある。
 本発明は上記の事情に着目してなされたものであって、その目的は、PWHTを、例えば、15時間以上もの長時間行ってもPWHT前後において高い強度を確保できる高強度鋼板を提供することにある。
 上記課題を解決することのできた本発明に係る高強度鋼板とは、化学成分について質量%で、C:0.02~0.07%、Si:0.1~0.4%、Mn:1.2~2%、P:0%超0.02%以下、S:0%超0.005%以下、Cu:0.1~0.7%、Al:0.01~0.08%、Ni:0.45~0.85%、Mo:0.01~0.25%、Nb:0.015~0.05%、Ti:0.005~0.025%、Ca:0.0005~0.003%、およびN:0.001~0.01%を含有し、残部が鉄および不可避不純物からなる。そして、Nb量、Mo量、およびC量から求められ、下記式(1)で表される想定析出量P0が1.50以上であり、金属組織は、全組織に対する比率で、フェライト:60面積%以上、ベイナイト:4面積%以上、を満足する点に要旨を有する。
0=340×(0.6×[Mo]+22×[Nb])×C1 ・・・(1)
 前記式(1)において、C1は、下記式(2)または式(3)で求められ、式(1)~式(3)において、[ ]は質量%で、各元素の含有量を示す。
[C]≧12/95×([Mo]+[Nb])のとき
 C1=12/95×([Mo]+[Nb]) ・・・(2)
[C]<12/95×([Mo]+[Nb])のとき
 C1=[C] ・・・(3)
 上記高強度鋼板は、更に、他の元素として、Cr:0%超0.2%以下、V:0%超0.02%以下、およびB:0%超0.001%以下よりなる群から選ばれる少なくとも1種を含有してもよい。
 上記高強度鋼板は、NbおよびMoよりなる群から選ばれる少なくとも1種を含有する炭化物同士の平均間隔λ(μm)から下記式(4)により析出量P1を算出したとき、前記想定析出量P0と前記析出量P1から求められ、下記式(5)で求められる固溶相当量Aが0.50以上を満足することが好ましい。
1=0.7/λ ・・・(4)
A=P0-P1 ・・・(5)
 本発明には、上記高強度鋼板に、熱処理を施して得られる高強度溶接構造物も包含される。
 本発明によれば、鋼板の成分組成、および金属組織を適切に制御しているため、PWHTを、例えば、15時間以上もの長時間行っても強度が低下しにくいか、むしろ強度が向上し、PWHT前後において高い強度を有する高強度鋼板を提供できる。
図1は、固溶相当量Aと、PWHT後における引張強度(TS)との関係を示すグラフである。
 上記特許文献1に開示されているように、鋼板の強度を確保する手段として、ベイナイト組織を活用した変態強化が知られている。しかし、特許文献1は変態時に導入される転位を利用した技術であるため、PWHTを約15時間以上行うと、転位が合体、消滅して強度が低下するおそれがある。
 そこで、本発明者は、鋼板の金属組織をフェライト主体とし、PWHTを、例えば、15時間以上もの長時間行っても強度を確保できる方法について検討を行った。フェライトは導入されている転位が少ないため、長時間のPWHTを行っても転位が合体、消滅することによる強度低下を避けられると考えられるからである。
 そして、本発明者は、PWHT後の強度を確保する手段として、NbおよびMoによる炭化物分散強化に着目した。しかし、上記特許文献1のように、PWHT前の鋼板にNbおよびMoの炭化物を析出させて強度を高める手法では、PWHTを長時間行うと、炭化物が粗大化、凝集するため、強度向上に寄与せず、強度低下は避けられない。
 そこで、本発明者が更に種々検討した結果、鋼板の金属組織をフェライト主体とすると共に、所定量以上のベイナイトを生成させたうえで、PWHTを長時間行うことによってNbおよびMoよりなる群から選ばれる少なくとも1種を含有する炭化物が所定量以上析出すると想定されるように化学成分組成を適切に調整すれば、PWHT前後において高い強度を確保できることを見出し、本発明を完成した。特に、NbとMoを、PWHT前の段階では、固溶させるか、或いは極めて微細な炭化物として分散させておけば、PWHTを長時間行うことによって、炭化物分散強化に寄与する大きさに成長させることができ、炭化物分散強化により高い強度を確保できることが明らかとなった。なお、本明細書において、PWHTを長時間行うとは、例えば、15時間以上のPWHTを行うことを意味する。
 以下、本発明に係る高強度鋼板について、詳細に説明する。
 本発明に係る高強度鋼板は、化学成分について質量%で、C:0.02~0.07%、Si:0.1~0.4%、Mn:1.2~2%、P:0%超0.02%以下、S:0%超0.005%以下、Cu:0.1~0.7%、Al:0.01~0.08%、Ni:0.45~0.85%、Mo:0.01~0.25%、Nb:0.015~0.05%、Ti:0.005~0.025%、Ca:0.0005~0.003%、およびN:0.001~0.01%を含有し、残部が鉄および不可避不純物で構成されている。そして、Nb量、Mo量、およびC量から求められ、下記式(1)で表される想定析出量P0が1.50以上であり、金属組織は、全組織に対する比率で、フェライト:60面積%以上、ベイナイト:4面積%以上、を満足している。
0=340×(0.6×[Mo]+22×[Nb])×C1 ・・・(1)
 前記式(1)において、C1は、下記式(2)または式(3)で求められる。
[C]≧12/95×([Mo]+[Nb])のとき
 C1=12/95×([Mo]+[Nb]) ・・・(2)
[C]<12/95×([Mo]+[Nb])のとき
 C1=[C] ・・・(3)
 上記式(1)~式(3)において、[ ]は質量%で、各元素の含有量を示す。
 まず、本発明に係る高強度鋼板の金属組織について説明する。なお、本明細書において、高強度とは引張強度が550MPa以上を意味する。
 本発明の高強度鋼板の金属組織は、全組織に対する比率で、フェライト:60面積%以上、ベイナイト:4面積%以上である。
 [フェライト:60面積%以上]
 全組織に占めるフェライトを60面積%以上とすることによって、PWHTを長時間行っても高強度を確保できる。フェライト量が低下し、全組織に占めるベイナイト分率が高くなり過ぎると、PWHTを長時間行うことによって、過剰な転位が合体、消滅することにより、強度が大きく低下するからである。そこで本発明では、フェライトは、60面積%以上、好ましくは65面積%以上、より好ましくは70面積%以上、更に好ましくは75面積%以上とする。フェライト分率の上限は、後述するように、ベイナイトを4面積%以上確保するために、96面積%以下である。フェライト分率は、好ましくは90面積%以下である。
 [ベイナイト:4面積%以上]
 本発明に係る鋼板の金属組織は、上述したように、フェライトが60面積%以上であるが、フェライト分率が高すぎると、鋼板の強度が低くなり過ぎる。そこで本発明では、鋼板の強度を高めるために、全組織に占めるベイナイト分率を4面積%以上、好ましくは5面積%以上、より好ましくは10面積%以上とする。しかしベイナイト分率が高くなり過ぎると、60面積%以上のフェライトを確保できなくなり、また、ベイナイトの増加によりPWHTを長時間行った後の強度が低下する。そこで本発明では、ベイナイト分率は、40面積%以下であり、好ましくは30面積%以下、より好ましくは20面積%以下である。
 本発明に係る鋼板の金属組織は、基本的にフェライトおよびベイナイトから構成されているが、本発明の効果を阻害しない範囲で、他の組織として、例えば、パーライト、島状マルテンサイト(M-A)などを含有してもよい。
 全組織に占める上記他の組織の分率は、例えば、10面積%以下であることが好ましい。
 本発明に係る鋼板の金属組織は、鋼板の板厚をt(mm)としたとき、t/4位置の断面を露出させ、鏡面研磨後、試験片を採取し、これをナイタール溶液でエッチングした後、光学顕微鏡で観察し、画像解析してフェライト分率およびベイナイト分率を測定すればよい。観察倍率は400倍とし、観察視野数は5視野とし、各視野で測定したフェライト分率およびベイナイト分率の平均値を求めればよい。
 上記金属組織に占めるフェライト分率は、上述した光学顕微鏡を用いた画像解析により測定すればよいが、本発明の高強度鋼板では、基本的にフェライトおよびベイナイトが生成するため、100%から上記ベイナイト分率を引いた値をフェライト分率と見なしてもよい。
 次に、想定析出量P0について説明する。
 上記想定析出量P0とは、例えばPWHTなどによって、鋼板に含まれるMo量、Nb量、およびC量に基づいて、NbおよびMoよりなる群から選ばれる少なくとも1種を含有する炭化物として析出できると想定される最大析出物量を示している。
 上記想定析出量P0は、下記式(1)に基づき、Nb量、Mo量、およびC量から求められる計算値である。想定析出量P0は、PWHT後の強度を予測する指標となる。このようにP0値が適切に制御された鋼板にPWHTを長時間施すことによって、NbおよびMoよりなる群から選ばれる少なくとも1種を含有する炭化物が析出し、炭化物分散強化により鋼板の強度を高めることができる。
 上記NbおよびMoよりなる群から選ばれる少なくとも1種を含有する炭化物とは、NbまたはMoを少なくとも含む炭化物であれば特に限定されない。例えば、Nbの炭化物およびMoの炭化物の他、NbとMoの両方を含有する複合炭化物が挙げられる。上記炭化物には、炭化物に窒素が結合した炭窒化物など、上記複合炭化物には、複合炭化物に窒素が結合した複合炭窒化物なども含まれる。
0=340×(0.6×[Mo]+22×[Nb])×C1 ・・・(1)
 上記式(1)で表される想定析出量P0を導出するに至った経緯は、次の通りである。
 Moの炭化物はMoC、Nbの炭化物はNbCで表され、MoCとNbCの析出量は、各元素の質量比に基づいて、下記式(a)で表される。
X=α×(β×[Mo]+γ×[Nb])×C1 ・・・(a)
 上記式(a)において、α、β、およびγは定数を示しており、[ ]は各元素の含有量(質量%)を示している。
 上記定数を定めるため、MoまたはNbの含有量のみを変化させて、他方の元素は同じにした鋼板を用いて、PWHT後の引張強度を測定した。引張強度の測定は、後述する実施例に記載の条件と同じとした。そして、NbまたはMoの含有量を横軸に、PWHT後の引張強度を縦軸にとる直線のグラフを作成し、この直線の傾きの比から、α=340、β=0.6、γ=22、と定め、下記式(b)で表されるパラメータxを定めた。
x=340×(0.6×[Mo]+22×[Nb]) ・・・(b)
 次に、上記式(a)において、上記C1は、鋼中に含まれるC量[C]と、Mo量[Mo]およびNb量[Nb]の合計量との関係に基づいて決定される値である。
 即ち、[C]≧12/95×([Mo]+[Nb])の場合は、鋼中に、MoCとNbCを生成させるために最低限必要なC量が含まれるため、上記C1は下記式(2)で導出される。
1=12/95×([Mo]+[Nb]) ・・・(2)
 一方、[C]<12/95×([Mo]+[Nb])の場合は、鋼中に含まれるC量が、MoCとNbCを生成させるために必要なC量を下回るため、上記C1は下記式(3)で導出される。
1=[C] ・・・(3)
 ここで、12/95は、C、Mo、およびNbの原子量を考慮して決定した係数である。
 このようにして導出されるパラメータxおよびC1に基づき、上記式(1)によりP0値が導出される。
 本発明では上記P0値を1.50以上とする。上記P0値の閾値1.50は、種々の実験結果に基づいて定めた値である。上記P0値は、好ましくは2以上、より好ましくは3以上とする。上記P0値の上限は、Mo量の最大値およびNb量の最大値に基づいて決定され、29.75以下である。上記P0値は、好ましくは25以下、より好ましくは20以下、更に好ましくは15以下、特に好ましくは10以下である。
 本発明に係る高強度鋼板は、更に、下記式(5)で表される固溶相当量Aが0.50以上を満足することが好ましい。ここで、固溶相当量Aは、NbおよびMoよりなる群から選ばれる少なくとも1種を含有する炭化物同士の平均間隔λ(μm)から下記式(4)により析出量P1を算出したとき、想定析出量P0と析出量P1から下記式(5)で求められる。
1=0.7/λ ・・・(4)
A=P0-P1 ・・・(5)
 上記固溶相当量Aは、高強度鋼板に固溶しているMo量およびNb量の合計量を示しており、PWHT後の強度を予測するための指標となる。固溶相当量Aの閾値0.50は、種々の実験結果に基づいて定めた値である。固溶相当量Aを0.50以上とすることによって、PWHTを長時間行ったときに、固溶Moおよび固溶Nbが炭化物として析出し、炭化物分散強化により溶接構造物の強度を高めることができる。一方、固溶相当量Aが0.50を下回ると、Mo量、Nb量、およびC量が不足しているか、MoおよびNbが既に炭化物として析出しているため、PWHTを長時間行うと炭化物が粗大化および凝集して溶接構造物の強度が低下する。上記固溶相当量Aは、好ましくは0.50以上、より好ましくは1以上、更に好ましくは2以上である。上記固溶相当量Aの上限は特に限定されないが、例えば、好ましくは15以下、より好ましくは10以下である。なお、固溶相当量Aには、粒径が10nm以下の微細なMoの炭化物と微細なNbの炭化物も含まれる。粒径が10nm以下の微細な炭化物は、後述する透過型電子顕微鏡を用いた観察による検出限界を超えており、また炭化物分散強化に寄与しないと考えられる。
 ここで、上記式(5)で表される固溶相当量Aを導出するに至った経緯は、次の通りである。
 上記固溶相当量Aは、NbおよびMoよりなる群から選ばれる少なくとも1種を含有する炭化物同士の平均間隔λ(μm)から上記式(4)により析出量P1を算出したとき、想定析出量P0から析出量P1を引いた値である。析出量P1は、鋼板中に実際に析出しているNbの炭化物量およびMoの炭化物量を示している。そのため、想定析出量P0から析出量P1を引くことによって、鋼板中に固溶しているNb量およびMo量の合計を算出できる。固溶Nbと固溶Moは、PWHTを長時間行うことによって炭化物として析出し、炭化物分散強化によりPWHT後における溶接構造物の強度向上に寄与する。
 上記析出量P1は、上記式(4)により算出できる。
 上記式(4)において、λは、下記式(c)に基づいて算出できる。
λ=(1.25×[(π/(6×f)]1/2-π/4)×d ・・・(c)
 上記式(c)において、λは、NbおよびMoよりなる群から選ばれる少なくとも1種を含有する炭化物同士の平均間隔(μm)、fは、上記炭化物の平均体積率(体積%)、dは、金属組織の平均粒径(μm)を示す。
 上記式(c)は、炭化物同士の平均間隔λを算出するための式として一般的に知られており、例えば、鉄と鋼 vol.91(2005)No.11、P.796~802に記載されている。
 上記式(c)において、炭化物の平均体積率fは、鋼板の厚みをt(mm)としたとき、t/4位置の断面を、例えば、透過型電子顕微鏡を用いて観察して測定した炭化物の面積および炭化物の個数に基づいて算出できる。観察倍率は、例えば、30000倍とすればよく、観察視野数は10視野とすればよい。
 上記式(c)において、金属組織の平均粒径dとは、観察視野内に認められる金属組織の円相当径の平均値を意味する。観察視野内に、例えば、フェライト組織が認められたときは、フェライトの粒径を測定すればよく、ベイナイト組織が認められたときは、ベイナイトの粒径を測定し、平均値を算出すればよい。観察倍率は、例えば、30000倍とすればよく、観察視野数は10視野とすればよい。
 金属組織の平均粒径dは、後述する制御圧延を実施することによってほぼ一定になると考えられる。そこで、炭化物の平均体積率fと、金属組織の平均粒径dに基づいて、上記式(c)により炭化物同士の平均間隔λを求めることができる。
 一方、単位質量あたりにおける炭化物の析出物量P1は、炭化物の平均体積率、金属組織の平均体積率、および単位体積当りの質量を用いて下記式(A)で表すことができる。
1=f×n1/(f×n1+F×n2) ・・・(A)
 ここで、fは炭化物の平均体積率(体積%)、Fは金属組織の平均体積率(体積%)、n1は炭化物の比重(kg/m3)、n2は金属組織の比重(kg/m3)である。炭化物の比重n1には、観察視野内に認められた各炭化物について成分分析を行い、各炭化物の比重を求め、平均した値を代入すればよい。金属組織の比重n2には、鉄の比重を代入すればよい。
 金属組織の平均体積率Fは、
F=100-f
で示されるため、上記式(A)は、下記式(B)に書き換えることができる。
1=f×n1/[f×n1+(100-f)×n2] ・・・(B)
 本発明者は、Mo量およびNb量を種々変化させた鋼板を作成し、炭化物の析出量を測定した結果、上記式(B)は炭化物同士の間隔λを用いて下記式(4)で表すことができることを突き止めた。
1=0.7/λ ・・・(4)
 本発明に係る高強度鋼板は、鋼中に含まれるMo量、Nb量、およびC量に基づいて算出される上記P0値が1.50以上であり、この高強度鋼板は、化学成分組成も適切に制御する必要がある。以下、高強度鋼板の化学成分について説明する。
 [C:0.02~0.07%]
 Cは、鋼板の強度を高めるために必要な元素である。また、炭化物を析出させてPWHT後の強度低下を抑えるために必要な元素である。本発明では、C量は、0.02%以上、好ましくは0.025%以上、より好ましくは0.030%以上である。しかし、Cを過剰に含有させると、ベイナイトが生成し易くなる。ベイナイトが過剰に生成すると、長時間のPWHTによって転位が合体および消滅し、強度が大きく低下する。本発明では、C量は、0.07%以下、好ましくは0.065%以下、より好ましくは0.06%以下、特に好ましくは0.055%以下である。
 [Si:0.1~0.4%]
 Siは、鋼を溶製する際に脱酸剤として作用し、鋼の強度を上昇させる効果を有する元素である。こうした作用を発揮させるために、本発明では、Si量は、0.1%以上、好ましくは0.15%以上、より好ましくは0.2%以上含有させる。しかし、Si量が過剰になるとHAZ靭性が劣化する。そこで本発明では、Si量は0.4%以下、好ましくは0.37%以下、より好ましくは0.35%以下である。
 [Mn:1.2~2%]
 Mnは、鋼板の強度上昇に有効に作用する元素である。本発明では、Mn量は、1.2%以上、好ましくは1.3%以上、より好ましくは1.4%以上である。しかし、Mn量が過剰になると、ベイナイトが過剰に生成するため、PWHTを長時間行った後の強度が低下する。本発明では、Mn量は、2%以下、好ましくは1.8%以下、より好ましくは1.6%以下である。
 [P:0%超0.02%以下]
 Pは、不可避不純物であり、結晶粒に偏析し、鋼板の延性や靭性を低下させる元素である。本発明では、P量は、0.02%以下、好ましくは0.015%以下、より好ましくは0.01%以下、特に好ましくは0.008%以下である。P量はできるだけ少ない方が良いが、工業的に0%にすることは困難である。
 [S:0%超0.005%以下]
 Sは、不可避不純物であり、鋼中の合金元素と結合して種々の介在物を形成し、鋼板の延性や靭性を低下させる元素である。本発明では、S量は、0.005%以下、好ましくは0.004%以下、より好ましくは0.003%以下である。S量はできるだけ少ない方が良いが、工業的に0%にすることは困難である。
 [Cu:0.1~0.7%]
 Cuは、鋼板の強度を高めるために作用する元素である。本発明ではCu量は、0.1%以上、好ましくは0.12%以上、より好ましくは0.15%以上である。しかし、Cu量が過剰になると、熱間加工の際に割れが発生しやすくなる。本発明では、Cu量は、0.7%以下、好ましくは0.65%以下、より好ましくは0.5%以下である。
 [Al:0.01~0.08%]
 Alは、鋼を溶製する際に脱酸剤として作用する元素である。本発明では、Al量は、0.01%以上、好ましくは0.015%以上、より好ましくは0.020%以上である。しかし、Al量が過剰になると、鋼板における清浄性が阻害され、強度が低下する。本発明では、Al量は、0.08%以下、好ましくは0.06%以下、より好ましくは0.04%以下である。
 [Ni:0.45~0.85%]
 Niは、フェライト変態開始温度を降下させ、ベイナイトの生成を促進し、鋼板の強度を高めるために必要な元素である。本発明では、Ni量は、0.45%以上、好ましくは0.5%以上である。しかし、Ni量が過剰になると、ベイナイトが過剰に生成し、フェライトの生成が抑制されるため、PWHTを長時間行った後に鋼板の強度が低下する。本発明では、Ni量は、0.85%以下、好ましくは0.75%以下、より好ましくは0.65%以下である。
 [Mo:0.01~0.25%]
 Moは、ベイナイトを生成させるために必要な元素である。また、PWHTを長時間行った後に炭化物を析出させ、PWHT後における鋼板の強度向上に寄与する重要な元素である。本発明では、Mo量は、0.01%以上、好ましくは0.1%以上、より好ましくは0.15%以上である。しかし、Mo量が過剰になると、ベイナイトが過剰に生成し、フェライトの生成が抑制されるため、PWHTを長時間行った後に鋼板の強度が低下する。本発明では、Mo量は、0.25%以下、好ましくは0.23%以下、より好ましくは0.20%以下である。
 [Nb:0.015~0.05%]
 Nbは、Moと同様、PWHTを長時間行った後に炭化物を析出させ、PWHT後における鋼板の強度向上に寄与する重要な元素である。本発明では、Nb量は、0.015%以上、好ましくは0.020%以上である。しかし、Nb量が過剰になるとHAZ靭性が劣化する。本発明では、Nb量は、0.05%以下、好ましくは0.048%以下、より好ましくは0.045%以下とする。
 [Ti:0.005~0.025%]
 Tiは、窒化物を形成し易い元素であり、微細なTiNを析出し、結晶粒を微細化して鋼板の靭性を高めるために必要な元素である。本発明では、Tiは、0.005%以上、好ましくは0.007%以上、より好ましくは0.009%以上である。しかし、Ti量が過剰になるとHAZ靭性が低下する。本発明では、Ti量は、0.025%以下、好ましくは0.02%以下、より好ましくは0.015%以下とする。
 [Ca:0.0005~0.003%]
 Caは、鋼中の介在物の形態を制御し、鋼板の靭性を向上させるために必要な元素である。本発明では、Ca量は、0.0005%以上、好ましくは0.0008%以上、より好ましくは0.001%以上である。しかし、Ca量が過剰になると、介在物が粗大化してHAZ靭性が低下する。本発明では、Ca量は、0.003%以下、好ましくは0.0027%以下、より好ましくは0.0025%以下である。
 [N:0.001~0.01%]
 Nは、Tiと結合して微細なTiNを析出し、結晶粒を微細化して鋼板の靭性を高めるために必要な元素である。本発明では、N量は、0.001%以上、好ましくは0.003%以上、より好ましくは0.004%以上である。しかし、N量が過剰になると、TiNが粗大化し、HAZ靭性が劣化する。本発明では、0.01%以下、好ましくは0.008%以下、より好ましくは0.007%以下である。
 本発明の鋼板における化学成分は上述した通りであり、残部は、鉄およびO(酸素)などの不可避不純物である。
 本発明の鋼板には、上述した化学成分に加えて、必要に応じて、以下の元素を含有させてもよい。
 [Cr:0%超0.2%以下、V:0%超0.02%以下、およびB:0%超0.0010%以下よりなる群から選ばれる少なくとも1種]
 Cr、V、およびBは、いずれも炭窒化物を析出させ、鋼板の強度向上に寄与する元素である。こうした作用を有効に発揮させるには、Crは、好ましくは0.001%以上、より好ましくは0.005%以上である。Vは、好ましくは0.0001%以上、好ましくは0.0005%以上である。Bは、好ましくは0.0001%以上、より好ましくは0.0005%以上である。しかし、CrまたはVを過剰に含有すると、HAZ靭性が低下する。本発明では、Cr量は、好ましくは0.2%以下、より好ましくは0.1%以下、更に好ましくは0.05%以下である。V量は、好ましくは0.02%以下、より好ましくは0.01%以下、更に好ましくは0.005%以下である。B量が過剰になると、ベイナイトが過剰に生成するため、PWHTを長時間行った後の強度が低下する。本発明では、B量は、好ましくは0.001%以下、より好ましくは0.0005%以下である。
 次に、本発明に係る高強度鋼板を製造する方法について説明する。
 本発明の鋼板は、上述したように、成分組成を適切に制御するところにあり、製造条件は特に限定されないが、上記固溶相当量Aが所定の範囲を満足させるには、上述した成分組成を満足する鋼を常法に従って溶製し、得られた鋼塊を制御圧延および制御冷却することが推奨される。即ち、上記固溶相当量Aが所定の範囲を満足することにより、MoおよびNbの析出挙動が制御され、高い強度を確保できる。そのため、制御圧延および制御冷却を有効に活用することが望ましい。制御圧延と制御冷却を併用した製造技術は、Thermo-mechanical control process(以下、TMCPということがある。)と呼ばれ、この製造技術により製造される鋼をTMCP鋼板と呼ぶことがある。
 具体的には、上記鋼塊の厚みをt(mm)としたとき、t/4位置における温度が900~800℃の範囲で累積圧下率を好ましくは5~60%とする圧延を行い、t/4位置における温度が好ましくは670℃より高い温度から冷却を開始し、室温まで冷却することにより製造できる。
 t/4位置における温度が900~800℃の範囲での累積圧下率を好ましくは5%以上とすることによって、オーステナイト粒内にフェライトの変態核となる変形帯を導入でき、フェライトの生成を促すことができる。上記累積圧下率は、より好ましくは10%以上、更に好ましくは15%以上である。しかし、上記累積圧下率が60%を超えると、圧延に要する時間が長くなり、生産性の低下を招く。本発明では、上記累積圧下率は好ましくは60%以下、より好ましくは50%以下、更に好ましくは45%以下である。
 上記圧延して得られた鋼板は、t/4位置における温度が好ましくは670℃より高い温度から冷却を開始し、室温まで冷却する。冷却開始温度を670℃超とすることによって、フェライトの粗大化を抑制できる。冷却開始温度は、より好ましくは700℃超とすればよい。冷却開始温度の上限は、圧延終了温度と同じであり、例えば、850℃である。
 上記冷却開始温度から室温までの冷却速度は特に限定されないが、例えば、冷却開始温度から300℃超500℃未満の温度域まで平均冷却速度5~30℃/秒で冷却し、冷却を停止した温度から室温まで空冷してもよい。上記冷却開始温度から300℃超500℃未満の温度域までは、例えば、水冷すればよい。
 本発明の鋼板の厚みは、特に限定されないが、例えば、10mm以上、更には20mm以上、特に30mm以上であってもよい。鋼板の板厚の上限も特に限定されないが、例えば、150mm以下、更には120mm以下、特に100mm以下であってもよい。
 本発明に係る鋼板は、例えば、引張強度が550MPa以上の高強度を有している。
 本発明には、上記鋼板を溶接した後、熱処理を施した溶接構造物も包含される。本発明の溶接構造物は、熱処理後においても、上記鋼板の高い強度がそのまま維持される点に特徴がある。例えば、引張強度が550MPa以上の鋼板の場合、溶接構造物においても当該高い引張強度を維持できる。
 本願は、2014年10月31日に出願された日本国特許出願第2014-223751号に基づく優先権の利益を主張するものである。上記日本国特許出願第2014-223751号の明細書の全内容が、本願に参考のため援用される。
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明は下記実施例によって制限を受けるものではなく、前記および後記の趣旨に適合し得る範囲で変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。
 下記表1に示す化学成分を含有し、残部が鉄および不可避不純物からなる鋼を溶製し、常法に従って鋼塊を製造した。得られた鋼塊を制御圧延および制御冷却して板厚が64mmのTMCP鋼板を製造した。具体的には、制御圧延は、鋼塊の厚みをt(mm)としたとき、t/4位置における温度が900~800℃の範囲での圧延を、下記表2に示す累積圧下率となるように行った。制御冷却は、圧延後、t/4位置における温度が下記表2に示す温度から冷却を開始した。冷却開始温度から380~430℃の温度域までを水冷により平均冷却速度を約7℃/秒で冷却し、380~430℃の温度域における冷却停止温度から室温までは空冷した。
 下記表1に示したMo量とNb量に基づいて、下記式(e)によりZ値を算出し、結果を下記表2に示す。
Z=12/95×([Mo]+[Nb]) ・・・(e)
 上記Z値と、表1に示したC量[C]を比較し、[C]≧Zのときは、Z値をC1の値と定め、[C]<Zのときは、[C]をC1の値と定めた。決定したC1の値を下記表2に示す。
 下記表1に示したMo量、Nb量、および上記C1の値に基づいて、下記式(1)によりP0値を算出した。算出結果を下記表2に示す。
0=340×(0.6×[Mo]+22×[Nb])×C1 ・・・(1)
 次に、得られたTMCP鋼板の板厚に対して1/4の位置における断面を、透過型電子顕微鏡を用いて観察倍率30000倍で観察した。観察視野内に観察されるNbおよびMoよりなる群から選ばれる少なくとも1種を含有する炭化物について、個数と、観察視野の面積に対する炭化物の面積率を測定した。観察視野数は10視野とした。なお、本明細書では、上記炭化物の面積率を、炭化物の体積率f(%)と見なした。
 次に、得られたTMCP鋼板の金属組織を測定した。
 鋼板の板厚に対して1/4の位置における断面を露出させ、鏡面研磨後、試験片を採取し、これをナイタール溶液でエッチングした。エッチング後、光学顕微鏡を用いて観察倍率400倍で観察し、画像解析してベイナイト分率を測定した。また、観察視野の面積を100%としたとき、100%から上記ベイナイト分率を引いた値をフェライト分率とした。観察視野数は5視野とし、各視野で測定したベイナイト分率とフェライト分率の平均値をそれぞれ求めた。結果を下記表2に示す。
 また、観察視野内に認められるフェライトまたはベイナイトについて粒径を測定し、5視野における粒径の平均値d(μm)を求めた。
 上記炭化物の体積率f(%)、粒径の平均値d(μm)に基づいて、下記式(c)により炭化物同士の間隔λ(μm)を算出した。
λ=(1.25×[π/(6×f)]1/2-π/4)×d ・・・(c)
 また、下記表2には、0.7をλで除して算出したP1の値も示した。
 P0値とP1値に基づいて、下記式(5)により固溶相当量Aを求めた。結果を下記表2に示す。
A=P0-P1 ・・・(5)
 次に、得られたTMCP鋼板について、圧延方向とは直角の方向において、板厚の1/4の位置から、ASTM A370に規定される引張試験用の試験片を採取し、引張試験を行って引張強度を測定した。測定結果を下記表2に、PWHT前の引張強度として示す。
 次に、上記試験片を595℃に加熱し、この温度で19時間保持してPWHTの熱処理を行った。熱処理後の試験片を用い、上記と同じ手順で引張強度を測定した。測定結果を下記表2に、PWHT後の引張強度として示す。
 本発明では、熱処理前後の両方で、引張強度が550MPa以上の場合を合格とし、熱処理前か熱処理後のどちらか一方でも引張強度が550MPa未満の場合を不合格とした。
 また、上記式(5)に基づいて算出した固溶相当量Aと、PWHT後における引張強度(TS)との関係を図1に示す。図1には、固溶相当量Aを規定した意義を示すために、表2に発明例として示したNo.1~8の結果をプロットすると共に、比較例として示したNo.9~15のうち、固溶相当量Aが本発明で推奨する範囲を外れているNo.9~11のみをプロットした。
 下記表2および図1から次のように考察できる。
 No.1~8は、本発明の要件を満足する発明例である。即ち、所定の金属組織が得られており、また想定析出量P0も所定の範囲を満足しているため、引張強度が550MPa以上の高強度を達成できている。また、19時間という長時間のPWHTを行っても、PWHT後において550MPa以上の引張強度を確保できている。
 これに対して、No.9~15は、本発明で規定するいずれかの要件を満足しない比較例である。
 これらのうち、No.9は、Moを含有しないため、フェライトが過剰に生成し、ベイナイト分率を確保できなかった例であり、鋼板の引張強度を確保できなかった。また、MoおよびNbを含有しないため、PWHTを長時間施すことにより、引張強度がPWHT前よりも一層小さくなった。
 No.10は、Nbを含有せず、想定析出量P0が所定の範囲を満足しない例である。その結果、PWHTを長時間行った後の引張強度が低くなった。
 No.11は、Moを含有しないため、フェライトが過剰に生成し、ベイナイト分率を確保できなかった例であり、鋼板の引張強度を確保できなかった。また、MoおよびNbを含有しないため、PWHTを長時間施すことにより、PWHT後における引張強度が低くなった。
 No.12は、Ni量が少ないため、フェライト変態開始温度が上昇し、フェライトが過剰に生成した。そのためベイナイト分率が低下した。その結果、PWHT前の強度は、目標とする強度の下限に近く、PWHTを長時間行うことによって強度が低下した。
 No.13は、Ni量が少ないため、フェライト変態開始温度が上昇し、フェライトが過剰に生成した。そのためベイナイト分率が低下した。その結果、PWHT前後において引張強度を確保できなかった。
 No.14は、Cu、Ni、およびNb量が本発明で規定する範囲を下回っており、Moを過剰に含有する例である。そのため、フェライトが過剰に生成し、ベイナイトが生成しなかった。その結果、PWHT前後の両方で引張強度が低くなった。
 No.15は、Niが本発明で規定する範囲を下回っており、Mo量が過剰で、Nbを含有しない例である。そのため、フェライトが過剰に生成し、ベイナイト分率を確保できなかった。その結果、PWHT後の引張強度を確保できなかった。
 また、No.9~11は、固溶相当量Aが本発明で推奨する範囲を下回っているため、PWHT後の引張強度が低下した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002

Claims (5)

  1.  化学成分について質量%で、
     C :0.02~0.07%、
     Si:0.1~0.4%、
     Mn:1.2~2%、
     P :0%超0.02%以下、
     S :0%超0.005%以下、
     Cu:0.1~0.7%、
     Al:0.01~0.08%、
     Ni:0.45~0.85%、
     Mo:0.01~0.25%、
     Nb:0.015~0.05%、
     Ti:0.005~0.025%、
     Ca:0.0005~0.003%、および
     N :0.001~0.01%を含有し、
     残部が鉄および不可避不純物からなり、
     Nb量、Mo量、およびC量から求められ、下記式(1)で表される想定析出量P0が1.50以上であり、
     金属組織は、全組織に対する比率で、
     フェライト:60面積%以上、
     ベイナイト:4面積%以上、
    を満足することを特徴とする高強度鋼板。
    0=340×(0.6×[Mo]+22×[Nb])×C1 ・・・(1)
     前記式(1)において、C1は、下記式(2)または式(3)で求められ、式(1)~式(3)において、[ ]は質量%で、各元素の含有量を示す。
    [C]≧12/95×([Mo]+[Nb])のとき
     C1=12/95×([Mo]+[Nb]) ・・・(2)
    [C]<12/95×([Mo]+[Nb])のとき
     C1=[C] ・・・(3)
  2.  更に、他の元素として、
     Cr:0%超0.2%以下、
     V :0%超0.02%以下、および
     B :0%超0.001%以下よりなる群から選ばれる少なくとも1種を含有する請求項1に記載の高強度鋼板。
  3.  NbおよびMoよりなる群から選ばれる少なくとも1種を含有する炭化物同士の平均間隔λ(μm)から下記式(4)により析出量P1を算出したとき、
     前記想定析出量P0と前記析出量P1から求められ、下記式(5)で表される固溶相当量Aが0.50以上を満足する請求項1または2に記載の高強度鋼板。
    1=0.7/λ ・・・(4)
    A=P0-P1 ・・・(5)
  4.  請求項1または2に記載の高強度鋼板に、熱処理を施して得られる高強度溶接構造物。
  5.  請求項3に記載の高強度鋼板に、熱処理を施して得られる高強度溶接構造物。
PCT/JP2015/079874 2014-10-31 2015-10-22 高強度鋼板 WO2016068024A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP15856045.8A EP3214200B1 (en) 2014-10-31 2015-10-22 High strength steel sheet
CN201580058247.1A CN107075641B (zh) 2014-10-31 2015-10-22 高强度钢板
KR1020177010756A KR20170063760A (ko) 2014-10-31 2015-10-22 고강도 강판

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014223751A JP6276163B2 (ja) 2014-10-31 2014-10-31 高強度鋼板
JP2014-223751 2014-10-31

Publications (1)

Publication Number Publication Date
WO2016068024A1 true WO2016068024A1 (ja) 2016-05-06

Family

ID=55857363

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/079874 WO2016068024A1 (ja) 2014-10-31 2015-10-22 高強度鋼板

Country Status (5)

Country Link
EP (1) EP3214200B1 (ja)
JP (1) JP6276163B2 (ja)
KR (1) KR20170063760A (ja)
CN (1) CN107075641B (ja)
WO (1) WO2016068024A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09256038A (ja) * 1996-03-22 1997-09-30 Nippon Steel Corp 厚鋼板の応力除去焼鈍処理前の熱処理方法
JP2001355038A (ja) * 2000-06-12 2001-12-25 Sumitomo Metal Ind Ltd Cu時効鋼およびその製造方法
CN102691007A (zh) * 2011-03-23 2012-09-26 宝山钢铁股份有限公司 抗高回火参数pwht脆化的低温用特厚钢板及制造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3718348B2 (ja) * 1998-07-31 2005-11-24 新日本製鐵株式会社 高強度高靱性圧延形鋼とその製造方法
JP2004176172A (ja) * 2002-10-01 2004-06-24 Sumitomo Metal Ind Ltd 耐水素誘起割れ性に優れた高強度継目無鋼管およびその製造方法
JP4878219B2 (ja) * 2006-06-05 2012-02-15 株式会社神戸製鋼所 Haz靱性に優れ、溶接後熱処理による強度低下が小さい鋼板
JP5857400B2 (ja) * 2009-11-25 2016-02-10 Jfeスチール株式会社 高圧縮強度ラインパイプ用溶接鋼管及びその製造方法
TWI432585B (zh) * 2011-09-27 2014-04-01 Nippon Steel & Sumitomo Metal Corp Pipeline heat coil and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09256038A (ja) * 1996-03-22 1997-09-30 Nippon Steel Corp 厚鋼板の応力除去焼鈍処理前の熱処理方法
JP2001355038A (ja) * 2000-06-12 2001-12-25 Sumitomo Metal Ind Ltd Cu時効鋼およびその製造方法
CN102691007A (zh) * 2011-03-23 2012-09-26 宝山钢铁股份有限公司 抗高回火参数pwht脆化的低温用特厚钢板及制造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3214200A4 *

Also Published As

Publication number Publication date
JP2016089211A (ja) 2016-05-23
EP3214200A1 (en) 2017-09-06
EP3214200A4 (en) 2018-03-28
JP6276163B2 (ja) 2018-02-07
CN107075641A (zh) 2017-08-18
CN107075641B (zh) 2020-03-06
KR20170063760A (ko) 2017-06-08
EP3214200B1 (en) 2020-03-25

Similar Documents

Publication Publication Date Title
KR100967498B1 (ko) 취성 균열 전파 정지 특성이 우수한 대입열 용접용 후강판
JP5950045B2 (ja) 鋼板およびその製造方法
JP5124988B2 (ja) 耐遅れ破壊特性に優れた引張強度900MPa以上の高張力鋼板およびその製造方法
WO2010150915A1 (ja) 耐硫化物応力割れ性に優れた油井用高強度継目無鋼管およびその製造方法
US10450627B2 (en) Thick steel plate having good multipass weld joint CTOD characteristics and method for manufacturing the same
TW201825694A (zh) 高錳鋼板及其製造方法
JPWO2014038200A1 (ja) 溶接熱影響部ctod特性に優れた厚肉高張力鋼およびその製造方法
JP2018009243A (ja) 脆性き裂伝播停止特性に優れた鋼板およびその製造方法
JP2017193759A (ja) 厚鋼板およびその製造方法
JP4356950B2 (ja) 耐応力除去焼鈍特性と溶接性に優れた高強度鋼板
JP2017150067A (ja) 脆性き裂伝播停止特性に優れた鋼板およびその製造方法
JP2007321228A (ja) Haz靱性に優れ、溶接後熱処理による強度低下が小さい鋼板
TW201823484A (zh) 高錳鋼板及其製造方法
JPWO2010038470A1 (ja) 母材および溶接熱影響部の低温靭性に優れかつ強度異方性の小さい鋼板およびその製造方法
KR20180132909A (ko) 후강판
JP6276163B2 (ja) 高強度鋼板
JP2018076573A (ja) 脆性き裂伝播停止特性に優れた鋼板およびその製造方法
JP6042265B2 (ja) 降伏強度と成形性に優れた高強度冷延鋼板およびその製造方法
JP2017002349A (ja) 高張力鋼板およびその製造方法
JP4586080B2 (ja) 耐応力除去焼鈍特性と低温靭性に優れた高強度鋼板
JP6642118B2 (ja) 耐サワー鋼板
JP2015054974A (ja) 靭性に優れた高強度熱延鋼板およびその製造方法
JP5858196B2 (ja) 鋼矢板及びその製造方法
JP2019081931A (ja) 靭性に優れた低温用ニッケル含有鋼板およびその製造方法
JP5695458B2 (ja) 靱性および歪時効特性に優れた厚鋼板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15856045

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177010756

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015856045

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE