WO2016064039A1 - 저 지연을 지원하는 무선 통신 시스템에서 데이터 송수신 방법 및 이를 위한 장치 - Google Patents

저 지연을 지원하는 무선 통신 시스템에서 데이터 송수신 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2016064039A1
WO2016064039A1 PCT/KR2015/002137 KR2015002137W WO2016064039A1 WO 2016064039 A1 WO2016064039 A1 WO 2016064039A1 KR 2015002137 W KR2015002137 W KR 2015002137W WO 2016064039 A1 WO2016064039 A1 WO 2016064039A1
Authority
WO
WIPO (PCT)
Prior art keywords
tti
frame structure
spdsch
carrier
short tti
Prior art date
Application number
PCT/KR2015/002137
Other languages
English (en)
French (fr)
Inventor
이은종
정재훈
한진백
김진민
최국헌
노광석
이상림
Original Assignee
엘지전자(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자(주) filed Critical 엘지전자(주)
Priority to US15/521,108 priority Critical patent/US10560245B2/en
Publication of WO2016064039A1 publication Critical patent/WO2016064039A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0087Timing of allocation when data requirements change
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/34TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames

Definitions

  • the present invention relates to a wireless communication system, and more particularly, to a method for transmitting and receiving data in a wireless communication system supporting low latency and an apparatus for supporting the same.
  • the mobile communication system has been developed to provide voice service while ensuring the user 's activity.
  • the mobile communication system not only the voice but also the data service are extended.
  • due to the increase of the explosive traffic there is a shortage of resources and users require higher speed service, have.
  • next-generation mobile communication system largely depend on the acceptance of explosive data traffic, the dramatic increase in the rate per user, the acceptance of a significantly increased number of connected devices, very low end-to-end latency, Should be able to.
  • a dual connectivity a massive multiple input multiple output (MIMO), an in-band full duplex, a non-orthogonal multiple access (NOMA) wideband support, and device networking.
  • MIMO massive multiple input multiple output
  • NOMA non-orthogonal multiple access
  • the conventional LTE / LTE-A system is designed with a frame structure having a transmission time interval (TTI) of 1 ms, and a data request delay time for a video application is 10 ms.
  • TTI transmission time interval
  • a frame structure having a 1 ms TTI has a problem that a 1 ms data request delay can not be satisfied.
  • 5G aims to provide a data delay that is about 10 times lower than the conventional one. To solve this problem, 5G is expected to propose a new frame structure communication system with shorter TTI.
  • the 5G system is expected to coexist with applications having various requirements such as low latency, high capacity, low energy consumption, low cost, and high user data rate.
  • 5G needs to evolve into a system with a structure different from the conventional one in order to support various types of applications from applications requiring Ultra Low Latency to applications requiring high data rates.
  • a new frame structure different from the conventional one needs to be defined, and the influence of the legacy terminal due to the new frame structure should be minimized.
  • Future 5G adopts a new structure of frame structure for low delay communication, so that a method of aggregating carriers having different frame structures can be applied.
  • This specification is intended to provide a short TTI frame structure for low latency communication.
  • the present invention also aims to provide an efficient short TTI scheduling in a secondary carrier having a short TTI frame structure when using cross carrier scheduling.
  • a method for transmitting and receiving data in a wireless communication system supporting low latency comprising the steps of: receiving a TTI indication field indicating a transmission time interval (TTI) in which low latency data is scheduled from a base station Receiving downlink control information including uplink control information including uplink control information through a downlink physical channel; And receiving the low latency data from the base station through the short TTI based on the received TTI indication field.
  • TTI transmission time interval
  • the TTI indication field is represented by a bitmap, and each bit of the bitmap indicates whether to perform scheduling in each short TTI.
  • the downlink physical channel is an sPDCCH (short PDCCH).
  • the short TTI is composed of one or more short Physical Downlink Shared Channel (sPDSCH) or one sPDCCH and one or more sPDSCHs.
  • sPDSCH Short Physical Downlink Shared Channel
  • the downlink control information and the low latency data are received through a specific carrier band
  • the specific carrier band is a short TTI frame structure including at least one short TTI in a specific unit.
  • the specific carrier band is a subband-wise 2-level frame structure having a short TTI frame structure in a specific subband.
  • the TTI indication field is received through a first carrier band, and the low latency data is received via a second carrier band.
  • the first carrier band has a frame structure of an LTE / LTE-A system
  • the second carrier band has a short TTI frame structure for low latency communication.
  • the downlink physical channel is a physical downlink control channel (PDCCH).
  • PDCH physical downlink control channel
  • the second carrier band is a subband-wise 2-level frame structure having a short TTI frame structure in a specific subband.
  • the present invention is characterized by further comprising receiving from the base station a PDSCH start field associated with a PDSCH start position of the second carrier band.
  • the present invention further includes receiving from the base station at least one of sPDSCH setting information related to sPDSCH setting of the short TTI frame structure of the second carrier band or sPDSCH start field associated with the sPDSCH start position of the second carrier band .
  • the sPDSCH setup information and the sPDSCH start field may be received from the base station through a system information block (SIB), assigning the second carrier band from the base station, and is received in the activation process of the carrier band.
  • SIB system information block
  • the present invention relates to a terminal for transmitting and receiving data in a wireless communication system supporting low latency
  • the terminal comprising: a radio frequency (RF) unit for transmitting and receiving a radio signal; And a processor for receiving downlink control information including a TTI indication field indicating a short transmission time interval (TTI) in which low latency data is scheduled from a base station through a downlink physical channel; And control to receive the low latency data from the base station through the short TTI based on the received TTI indication field.
  • RF radio frequency
  • TTI transmission time interval
  • This specification has an effect of minimizing the delay in data transmission and reception by newly defining a short TTI frame structure.
  • the present invention has an effect of performing efficient TTI scheduling in a carrier band having a short TTI frame structure through a TTI indication field indicating scheduling of a short TTI.
  • the present invention has an effect of providing cross carrier scheduling in carrier aggregation having different frame structure through information related to a TTI indication field, a start position of a data physical channel, and the like.
  • FIG. 1 is a view for explaining a physical channel used in a 3GPP LTE / LTE-A system to which the present invention can be applied and a general signal transmission method using the same.
  • FIG. 2 shows a structure of a radio frame in a wireless communication system to which the present invention can be applied.
  • FIG. 3 is a diagram illustrating a resource grid for one downlink slot in a wireless communication system to which the present invention can be applied.
  • FIG. 4 illustrates a structure of a downlink subframe in a wireless communication system to which the present invention can be applied.
  • FIG. 5 shows a structure of a UL subframe in a wireless communication system to which the present invention can be applied.
  • FIG. 6 illustrates a radio frame structure for transmission of a synchronization signal in a wireless communication system to which the present invention can be applied.
  • FIG. 7 illustrates a radio frame structure for transmission of a synchronization signal in a wireless communication system to which the present invention can be applied.
  • FIG. 8 shows an example of component carriers and carrier merging in a wireless communication system to which the present invention may be applied.
  • FIG. 9 shows an example of carrier merging in a wireless communication system to which the present invention can be applied.
  • FIG. 10 shows an example of a subframe structure according to cross carrier scheduling in a wireless communication system to which the present invention can be applied.
  • FIG. 11 is a diagram illustrating a radio transmission / reception delay in a 3GPP LTE / LTE-A system to which the present invention can be applied.
  • FIG. 12 is a diagram for explaining a radio frame structure according to an embodiment of the present invention.
  • FIG. 13 is a diagram for explaining a radio frame structure according to an embodiment of the present invention.
  • FIG. 14 is a diagram for explaining a radio frame structure according to an embodiment of the present invention.
  • 15 is a diagram for explaining a radio frame structure according to an embodiment of the present invention.
  • 16 is a diagram for explaining a radio frame structure according to an embodiment of the present invention.
  • 17 is a diagram for explaining a radio frame structure according to an embodiment of the present invention.
  • FIG. 18 is a view for explaining a radio frame structure according to an embodiment of the present invention.
  • FIG. 19 is a diagram illustrating a method of transmitting information on a short TTI frame structure according to an embodiment of the present invention.
  • 20 is a diagram illustrating a method for establishing carrier merging for a carrier side two-level frame structure in accordance with an embodiment of the present invention.
  • 21 is a diagram illustrating a method for establishing carrier merging for a carrier side two-level frame structure.
  • 22 is a diagram illustrating a data transmission / reception method according to an embodiment of the present invention.
  • FIG. 23 is a diagram illustrating a data transmission / reception method according to an embodiment of the present invention.
  • 24 is a diagram illustrating a wireless transmission / reception delay in a short TTI radio frame structure according to an embodiment of the present invention.
  • 25 to 28 illustrate an example of a short TTI scheduling method according to an embodiment of the present invention.
  • 29 and 30 are flowcharts illustrating an example of a short TTI scheduling method according to an embodiment of the present invention.
  • FIG. 31 illustrates a block diagram of a wireless communication apparatus according to an embodiment of the present invention.
  • a base station has a meaning as a terminal node of a network that directly communicates with a terminal.
  • the specific operation described herein as performed by the base station may be performed by an upper node of the base station, as the case may be. That is, it is apparent that various operations performed for communication with a terminal in a network composed of a plurality of network nodes including a base station can be performed by a network node other than the base station or the base station.
  • a 'base station (BS)' may be replaced by terms such as a fixed station, a Node B, an evolved NodeB (eNB), a base transceiver system (BTS), an access point (AP) .
  • eNB evolved NodeB
  • BTS base transceiver system
  • AP access point
  • a 'terminal' may be fixed or mobile and may be a mobile station (UE), a mobile station (MS), a user terminal (UT), a mobile subscriber station (MSS), a subscriber station (SS) Advanced Mobile Station (WT), Wireless Terminal (WT), Machine-Type Communication (MTC), Machine-to-Machine (M2M), and Device-to-Device (D2D) devices.
  • UE mobile station
  • MS mobile station
  • UT user terminal
  • MSS mobile subscriber station
  • SS Subscriber station
  • WT Wireless Terminal
  • MTC Machine-Type Communication
  • M2M Machine-to-Machine
  • D2D Device-to-Device
  • a downlink means communication from a base station to a terminal
  • an uplink means communication from a terminal to a base station.
  • the transmitter may be part of the base station, and the receiver may be part of the terminal.
  • the transmitter may be part of the terminal and the receiver may be part of the base station.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC- single carrier frequency division multiple access
  • CDMA can be implemented with radio technology such as universal terrestrial radio access (UTRA) or CDMA2000.
  • TDMA can be implemented with wireless technologies such as global system for mobile communications (GSM) / general packet radio service (GPRS) / enhanced data rates for GSM evolution (EDGE).
  • OFDMA can be implemented with wireless technologies such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, and evolved UTRA (E-UTRA).
  • UTRA is part of the universal mobile telecommunications system (UMTS).
  • 3GPP (3rd Generation Partnership Project) LTE (Long Term Evolution) is part of E-UMTS (evolved UMTS) using E-UTRA, adopting OFDMA in downlink and SC-FDMA in uplink.
  • LTE-A (advanced) is the evolution of 3GPP LTE.
  • Embodiments of the present invention may be supported by standard documents disclosed in at least one of the wireless access systems IEEE 802, 3GPP and 3GPP2. That is, the steps or portions of the embodiments of the present invention that are not described in order to clearly illustrate the technical idea of the present invention can be supported by the documents. In addition, all terms disclosed in this document may be described by the standard document.
  • 3GPP LTE / LTE-A is mainly described, but the technical features of the present invention are not limited thereto.
  • FIG. 1 is a view for explaining a physical channel used in a 3GPP LTE / LTE-A system to which the present invention can be applied and a general signal transmission method using the same.
  • step S101 an initial cell search operation such as synchronizing with a base station is performed.
  • a mobile station receives a primary synchronization channel (P-SCH) and a secondary synchronization channel (S-SCH) from a base station and synchronizes with the base station and acquires information such as a cell ID do.
  • P-SCH primary synchronization channel
  • S-SCH secondary synchronization channel
  • the terminal can receive the physical broadcast channel (PBCH) signal from the base station and obtain the in-cell broadcast information. Meanwhile, the UE can receive a downlink reference signal (DL RS) in the initial cell search step to check the DL channel status.
  • PBCH physical broadcast channel
  • DL RS downlink reference signal
  • the UE Upon completion of the initial cell search, the UE receives the PDSCH according to the PDCCH and PDCCH information in step S102 and obtains more specific system information.
  • the terminal can perform a random access procedure such as steps S103 to S106 in order to complete the connection to the base station.
  • the UE transmits a preamble through a physical random access channel (PRACH) (S103), and receives a response message for the preamble on the PDCCH and the corresponding PDSCH (S104) .
  • PRACH physical random access channel
  • the terminal may perform a contention resolution procedure such as transmission of an additional PRACH signal (S105) and reception of a PDCCH signal and a corresponding PDSCH signal (S106).
  • the UE having performed the procedure described above transmits / receives PDCCH signal and / or PDSCH signal (S107) and physical uplink shared channel (PUSCH) signal and / or physical uplink control channel (PUCCH) signal (S108).
  • S107 PDCCH signal and / or PDSCH signal
  • PUSCH physical uplink shared channel
  • PUCCH physical uplink control channel
  • the UCI includes HARQ-ACK / NACK, a scheduling request (SR), a channel quality indicator (CQI), a precoding matrix indicator (PMI), and rank indication information.
  • SR scheduling request
  • CQI channel quality indicator
  • PMI precoding matrix indicator
  • the UCI is periodically transmitted through the PUCCH in general, but may be transmitted through the PUSCH when the control information and the traffic data are to be simultaneously transmitted.
  • UCI can be transmitted non-periodically through the PUSCH according to the request / instruction of the network.
  • FIG. 2 shows a structure of a radio frame in a wireless communication system to which the present invention can be applied.
  • a method of distinguishing radio resources between downlink transmission and uplink transmission is defined as 'duplex'.
  • a frequency band When a frequency band is divided into a downlink transmission band and an uplink transmission band and bidirectional transmission and reception is performed, it is expressed as a frequency division duplex (FDD).
  • FDD frequency division duplex
  • uplink transmission and downlink transmission occupy different frequency bands.
  • time division duplex When a time domain radio resource is divided into a downlink time duration resource and an uplink duration duration resource in the same frequency band, it is referred to as a time division duplex (TDD) do.
  • TDD time division duplex
  • uplink transmission and downlink transmission occupy the same frequency band and are performed at different times.
  • the channel response of the TDD scheme is substantially reciprocal. This means that the downlink channel response and the uplink channel response are almost the same in a given frequency domain. Therefore, in the TDD-based wireless communication system, the downlink channel response has an advantage that it can be obtained from the uplink channel response.
  • the TDD scheme can not simultaneously perform downlink transmission by a base station and uplink transmission by a UE because the uplink transmission and the downlink transmission are time-divided in the entire frequency band. In a TDD system in which uplink transmission and downlink transmission are divided into subframe units, uplink transmission and downlink transmission are performed in different subframes.
  • the 3GPP LTE / LTE-A standard supports a Type 1 radio frame structure applicable to Frequency Division Duplex (FDD) and a Type 2 radio frame structure applicable to TDD (Time Division Duplex).
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • a radio frame is composed of 10 subframes.
  • One subframe consists of two slots in the time domain.
  • the time taken to transmit one subframe is called a transmission time interval (TTI).
  • TTI transmission time interval
  • one subframe may have a length of 1 ms and the length of one slot may be 0.5 ms.
  • One slot includes a plurality of orthogonal frequency division multiplexing (OFDM) symbols in the time domain, and includes a plurality of resource blocks (RBs) in the frequency domain. Since 3GPP LTE uses OFDMA in the downlink, an OFDM symbol is intended to represent one symbol period. The OFDM symbol may be one SC-FDMA symbol or a symbol interval.
  • a resource block is a resource allocation unit and includes a plurality of consecutive subcarriers in one slot.
  • FIG. 2B shows a type 2 frame structure.
  • the Type 2 radio frame is composed of two half frames. Each half frame includes five subframes, a downlink pilot time slot (DwPTS), a guard period (GP), an uplink pilot time slot (UpPTS) One of the subframes is composed of two slots.
  • the DwPTS is used for initial cell search, synchronization, or channel estimation in the UE.
  • UpPTS is used to synchronize the channel estimation at the base station and the uplink transmission synchronization of the UE.
  • the guard interval is a period for eliminating the interference occurring in the uplink due to the multi-path delay of the downlink signal between the uplink and the downlink.
  • the uplink-downlink configuration is a rule indicating whether the uplink and the downlink are allocated (or reserved) for all the subframes.
  • Table 1 shows an uplink-downlink configuration.
  • Uplink-Downlink configuration Downlink-to-Uplink Switch-point periodicity Subframe number 0 One 2 3 4 5 6 7 8 9 0 5ms D S U U U D S U U U One 5ms D S U U D D S U U D 2 5ms D S U D D D S U D D 3 10ms D S U U U D D D D D D 4 10ms D S U U D D D D D D 5 10ms D S U D D D D D D D 6 5ms D S U U U D S U U D S U U D
  • 'D' denotes a subframe for downlink transmission
  • 'U' denotes a subframe for uplink transmission
  • 'S' denotes a DwPTS
  • GP UpPTS Represents a special subframe consisting of three fields.
  • the uplink-downlink structure can be classified into seven types, and the positions and / or the numbers of the downlink subframe, the special subframe, and the uplink subframe are different for each structure.
  • Switch-point periodicity refers to a period in which the uplink subframe and the downlink subframe are switched in the same manner, and both 5ms or 10ms are supported.
  • the special sub-frame S exists for each half-frame when a 5-ms downlink-uplink switching point has a period, and exists only in the first half-frame when a 5-ms downlink-uplink switching point has a period.
  • the 0th and 5th subframes and the DwPTS are only for downlink transmission.
  • UpPTS and subframes immediately following a subframe subframe are always intervals for uplink transmission.
  • the uplink-downlink configuration is system information, and both the base station and the terminal can know it.
  • the base station can inform the terminal of the change of the uplink-downlink allocation state of the radio frame by transmitting only the index of the configuration information every time the uplink-downlink configuration information is changed.
  • the configuration information may be transmitted as a kind of downlink control information through a physical downlink control channel (PDCCH) like other scheduling information, and may be transmitted to all terminals in a cell through a broadcast channel as broadcast information .
  • PDCCH physical downlink control channel
  • the structure of the radio frame is merely an example, and the number of subcarriers included in a radio frame, the number of slots included in a subframe, and the number of OFDM symbols included in a slot can be variously changed.
  • FIG. 3 is a diagram illustrating a resource grid for one downlink slot in a wireless communication system to which the present invention can be applied.
  • one downlink slot includes a plurality of OFDM symbols in a time domain.
  • one downlink slot includes 7 OFDM symbols, and one resource block includes 12 subcarriers in the frequency domain.
  • the present invention is not limited thereto.
  • Each element on the resource grid is a resource element, and one resource block (RB) contains 12 ⁇ 7 resource elements.
  • the number of resource blocks NDL included in the downlink slot is dependent on the downlink transmission bandwidth.
  • the structure of the uplink slot may be the same as the structure of the downlink slot.
  • FIG. 4 illustrates a structure of a downlink subframe in a wireless communication system to which the present invention can be applied.
  • a maximum of three OFDM symbols preceding a first slot in a subframe are control regions to which control channels are assigned, and the remaining OFDM symbols are allocated to a data region (PDSCH) to which a Physical Downlink Shared Channel data region).
  • Examples of the downlink control channel used in 3GPP LTE include a Physical Control Format Indicator Channel (PCFICH), a Physical Downlink Control Channel (PDCCH), and a Physical Hybrid-ARQ Indicator Channel (PHICH).
  • PCFICH Physical Control Format Indicator Channel
  • PDCCH Physical Downlink Control Channel
  • PHICH Physical Hybrid-ARQ Indicator Channel
  • the PCFICH is carried in the first OFDM symbol of the subframe and carries information about the number of OFDM symbols (i.e., the size of the control region) used for transmission of control channels in the subframe.
  • the PHICH is a response channel for the uplink and carries an ACK (Acknowledgment) / NACK (Not-Acknowledgment) signal for HARQ (Hybrid Automatic Repeat Request).
  • the control information transmitted through the PDCCH is referred to as downlink control information (DCI).
  • the downlink control information includes uplink resource allocation information, downlink resource allocation information, or an uplink transmission (Tx) power control command for an arbitrary terminal group.
  • PDCCH includes resource allocation and transmission format (also referred to as downlink grant) of DL-SCH (Downlink Shared Channel), resource allocation information of UL-SCH (also referred to as uplink grant), PCH Resource allocation for an upper-layer control message such as paging information in a paging channel, system information in a DL-SCH, and a random access response transmitted on a PDSCH, A set of transmission power control commands for individual terminals in the group, and activation of VoIP (Voice over IP).
  • the plurality of PDCCHs can be transmitted in the control domain, and the UE can monitor a plurality of PDCCHs.
  • the PDCCH consists of a set of one or a plurality of consecutive control channel elements (CCEs).
  • the CCE is a logical allocation unit used to provide a coding rate according to the state of the radio channel to the PDCCH.
  • the CCE corresponds to a plurality of resource element groups.
  • the format of the PDCCH and the number of bits of the available PDCCH are determined according to the association between the number of CCEs and the coding rate provided by the CCEs.
  • the base station determines the PDCCH format according to the DCI to be transmitted to the UE, and attaches a CRC (Cyclic Redundancy Check) to the control information.
  • the CRC is masked with a unique identifier (called a Radio Network Temporary Identifier (RNTI)) according to the owner or use of the PDCCH.
  • RNTI Radio Network Temporary Identifier
  • the unique identifier of the UE e.g., C-RNTI (Cell-RNTI)
  • Cell-RNTI C-RNTI
  • a PDCCH for a paging message a paging indication identifier, e.g., a Paging-RNTI (P-RNTI), may be masked to the CRC.
  • P-RNTI Paging-RNTI
  • SI-RNTI System information RNTI
  • SIB system information block
  • RA-RNTI random access-RNTI
  • FIG. 5 shows a structure of a UL subframe in a wireless communication system to which the present invention can be applied.
  • an uplink subframe can be divided into a control region and a data region in a frequency domain.
  • a PUCCH Physical Uplink Control Channel
  • a data area is assigned a physical uplink shared channel (PUSCH) for carrying user data.
  • PUSCH physical uplink shared channel
  • one terminal may not transmit PUCCH and PUSCH at the same time in order to maintain a single carrier characteristic.
  • a resource block (RB) pair is allocated to a PUCCH for one UE in a subframe. RBs belonging to the RB pair occupy different subcarriers in each of the two slots. It is assumed that the RB pair assigned to the PUCCH is frequency hopped at the slot boundary.
  • FIG. 6 illustrates a radio frame structure for transmission of a synchronization signal (SS) in a wireless communication system to which the present invention can be applied.
  • SS synchronization signal
  • FIG. 6 illustrates a radio frame structure for transmission of a synchronous signal and a PBCH in a frequency division duplex (FDD).
  • FIG. 6A illustrates an SS and a PBCH in a radio frame configured with a normal CP (normal cyclic prefix)
  • FIG. 6B shows transmission positions of the SS and the PBCH in a radio frame configured by an extended CP (CP).
  • CP extended CP
  • the UE acquires time and frequency synchronization with the cell when the power is turned on or enters a new cell and performs an initial cell search process such as detecting a physical cell identity of the cell .
  • the UE receives a synchronization signal, for example, a Primary Synchronization Signal (PSS) and a Secondary Synchronization Signal (SSS) from the eNB and synchronizes with the eNB, : identity) can be obtained.
  • a synchronization signal for example, a Primary Synchronization Signal (PSS) and a Secondary Synchronization Signal (SSS) from the eNB and synchronizes with the eNB, : identity
  • PSS is used to obtain time domain synchronization and / or frequency domain synchronization such as OFDM symbol synchronization, slot synchronization, and the like.
  • SSS is used for frame synchronization, cell group ID, and / or cell CP configuration Information).
  • PSS and SSS are transmitted in two OFDM symbols of each radio frame, respectively.
  • the SS considers a 4.6 ms long GSM (Global System for Mobile communication) frame length, so that the first slot of subframe 0 and the first slot of subframe 5 Respectively.
  • the PSS is transmitted in the last OFDM symbol of the first slot of subframe 0 and the last OFDM symbol of the first slot of subframe 5, respectively, and the SSS is transmitted from the end of the first slot of subframe 0 to the second OFDM symbol, Are transmitted in the second OFDM symbol from the end of the first slot of frame 5, respectively.
  • the boundary of the corresponding radio frame can be detected through the SSS.
  • the PSS is transmitted in the last OFDM symbol of the slot and the SSS is transmitted in the OFDM symbol immediately before the PSS.
  • SS's transmit diversity scheme uses only a single antenna port and is not defined in the standard. That is, a single antenna port transmission or a UE transparent transmission scheme (e.g., Precoding Vector Switching (PVS), Time Switched Diversity (TSTD), and CDD (cyclic delay diversity)) can be used for SS transmission diversity .
  • PVS Precoding Vector Switching
  • TSTD Time Switched Diversity
  • CDD cyclic delay diversity
  • the UE since the PSS is transmitted every 5 ms, the UE can detect that the corresponding subframe is one of the subframe 0 and the subframe 5 by detecting the PSS. However, if the corresponding subframe is one of the subframe 0 and the subframe 5 I do not know what it is. Therefore, the UE can not recognize the boundary of the radio frame only by the PSS. That is, frame synchronization can not be obtained with only PSS.
  • the UE detects an SSS transmitted twice in one radio frame but transmitted as a different sequence and detects the boundary of the radio frame.
  • FIG. 7 illustrates a radio frame structure for transmission of a synchronization signal SS in a wireless communication system to which the present invention can be applied.
  • PSS and SSS are mapped to six RBs located at the center of the downlink system bandwidth.
  • the number of all RBs may be composed of the number of RBs (for example, 6 RB to 110 RB) different depending on the system bandwidth.
  • the PSS and the SSS may be configured in six RBs located at the center of the downlink system bandwidth The UE can detect the PSS and the SSS in the same manner regardless of the downlink system bandwidth.
  • Both PSS and SSS are composed of a sequence of length 62. Therefore, among the 6 RBs, it is mapped to 62 middle subcarriers located on both sides of the DC subcarrier, and the DC subcarriers and five subcarriers located at both ends are not used.
  • the UE can acquire the physical layer cell ID by a specific sequence of the PSS and the SSS. That is, the SS can represent a total of 504 unique physical layer cell IDs through a combination of 3 PSSs and 168 SSs.
  • the UE may detect the PSS to know one of the three unique physical-layer identifiers and may detect the SSS to identify one of the 168 physical layer cell IDs associated with the physical-layer identifier.
  • the PSS is generated based on the ZC (Zadoff-Chu) sequence. Three ZS PSSs corresponding to the three physical-layer identifiers in each physical-layer cell-ID group are used.
  • the SSS is generated based on an M-sequence.
  • Each SSS sequence is generated as a sequence by alternately inserting two SSC 1 sequences and a SSC 2 sequence having a length of 31 in the frequency domain.
  • the SSC 1 sequence and the SSC 2 sequence are generated by applying different cyclic shift values to the M sequence of length 31.
  • the cyclic shift index is determined by the function of the physical-layer cell ID group.
  • the communication environment considered in the embodiments of the present invention includes all the multi-carrier supporting environments. That is, the multi-carrier system or the carrier aggregation (CA) system used in the present invention refers to a system in which one or more carriers having a bandwidth smaller than a target bandwidth when configuring a target wide- And a component carrier (CC) is aggregated and used.
  • CA carrier aggregation
  • a multi-carrier refers to the merging of carriers (or carrier aggregation), where the merging of carriers means both merging between contiguous carriers as well as merging between non-contiguous carriers.
  • the number of component carriers aggregated between the downlink and the uplink may be set differently.
  • a case in which the number of downlink component carriers (hereinafter, referred to as 'DL CC') and an uplink component carrier (hereinafter referred to as 'UL CC') are the same is referred to as symmetric aggregation, It is called asymmetric aggregation.
  • Such carrier merging can be used interchangeably with terms such as carrier aggregation, bandwidth aggregation, spectrum aggregation, and the like.
  • Carrier merging in which two or more component carriers are combined is aimed at supporting up to 100 MHz bandwidth in the LTE-A system.
  • the bandwidth of the combining carrier can be limited to the bandwidth used in the existing system to maintain backward compatibility with the existing IMT system.
  • the carrier merging system used in the present invention may define a new bandwidth to support carrier merging regardless of the bandwidth used in the existing system.
  • the LTE-A system uses the concept of a cell to manage radio resources.
  • the carrier merging environment described above may be referred to as a multiple cells environment.
  • a cell is defined as a combination of a downlink resource (DL CC) and a pair of uplink resources (UL CC), but the uplink resource is not essential. Therefore, the cell can be composed of downlink resources alone or downlink resources and uplink resources.
  • DL CC downlink resource
  • UL CC uplink resources
  • the cell can be composed of downlink resources alone or downlink resources and uplink resources.
  • DL CC downlink resource
  • UL CC uplink resources
  • DL CC and UL CC may be configured. That is, a carrier merging environment in which UL CC is larger than the number of DL CCs can also be supported when a specific UE has a plurality of set serving cells. That is, carrier aggregation can be understood as the merging of two or more cells, each having a different carrier frequency (center frequency of the cell).
  • the term 'cell' should be distinguished from a 'cell' as an area covered by a commonly used base station.
  • Cells used in the LTE-A system include a primary cell (PCell) and a secondary cell (SCell).
  • PCell primary cell
  • SCell secondary cell
  • P and S cells can be used as Serving Cells.
  • the serving cell (P-cell and S-cell) can be set via the RRC parameter.
  • PhysCellId is the physical layer identifier of the cell and has an integer value from 0 to 503.
  • SCellIndex is a short identifier used to identify the S cell and has an integer value from 1 to 7.
  • ServCellIndex is a short identifier used to identify a serving cell (P-cell or S-cell) and has an integer value from 0 to 7. A value of 0 is applied to P cell, and SCellIndex is given in advance for application to S cell. That is, the cell having the smallest cell ID (or cell index) in the ServCellIndex becomes the P cell.
  • P cell refers to a cell operating on the primary frequency (or primary CC).
  • the UE may be used to perform an initial connection establishment process or to perform a connection re-establishment process, and may refer to a cell indicated in the handover process.
  • P cell means a cell that is the center of control-related communication among the serving cells set in the carrier merging environment. That is, the UE can transmit and receive PUCCHs only in its own P-cell, and can use only P-cells to acquire system information or change the monitoring procedure.
  • Evolved Universal Terrestrial Radio Access uses a RRC connection re-establishment message (RRConnectionReconfiguration) message of an upper layer including mobility control information (mobilityControlInfo) to a UE supporting a carrier merging environment to change only P cells It is possible.
  • RRConnectionReconfiguration RRC connection re-establishment message
  • mobilityControlInfo mobility control information
  • the S-cell may refer to a cell operating on a secondary frequency (or secondary CC). Only one P-cell is allocated to a specific terminal, and one or more S-cells can be allocated.
  • the S-cell is configurable after the RRC connection is established and can be used to provide additional radio resources.
  • the serving cells set in the carrier merging environment there are no PUCCHs in the remaining cells except for the P cell, i.e., the S cell.
  • the E-UTRAN adds an S-cell to a terminal supporting a carrier merging environment, it can provide all the system information related to the operation of the associated cell in the RRC_CONNECTED state through a dedicated signal.
  • the change of the system information can be controlled by releasing and adding the related S cell, and the RRC connection re-establishment message of the upper layer can be used at this time.
  • the E-UTRAN may perform dedicated signaling with different parameters for each UE rather than broadcast within the associated S-cell.
  • the E-UTRAN may configure a network including one or more S cells in addition to the P cell initially configured in the connection establishment process.
  • P-cells and S-cells can operate as respective component carriers.
  • the primary component carrier (PCC) may be used in the same sense as the P cell
  • the secondary component carrier (SCC) may be used in the same meaning as the S cell.
  • FIG. 8 shows an example of component carriers and carrier merging in a wireless communication system to which the present invention may be applied.
  • the component carriers have DL CC and UL CC.
  • One component carrier may have a frequency range of 20 MHz.
  • FIG. 8 (b) shows a carrier merging structure used in the LTE_A system.
  • three component carriers having a frequency magnitude of 20 MHz are combined.
  • the UE can simultaneously monitor three CCs, receive downlink signals / data, and transmit uplink signals / data.
  • the network can allocate M (M? N) DL CCs to the UE. At this time, the terminal can monitor only M restricted DL CCs and receive DL signals. In addition, the network can assign a priority DL CC to a terminal by giving priority to L (L? M? N) DL CCs. In this case, the terminal must monitor L DL CCs. This scheme can be equally applied to uplink transmission.
  • the linkage between the carrier frequency (or DL CC) of the downlink resource and the carrier frequency (or UL CC) of the uplink resource may be indicated by an upper layer message or system information such as an RRC message.
  • a combination of a DL resource and a UL resource may be configured by a linkage defined by SIB2 (System Information Block Type 2).
  • SIB2 System Information Block Type 2
  • the linkage may refer to a mapping relationship between a DL CC to which the PDCCH carrying the UL grant is transmitted and a UL CC that uses the UL grant.
  • the DL CC (or UL CC) and the HARQ ACK Or a mapping relationship between the UL CC (or DL CC) to which the / NACK signal is transmitted.
  • FIG. 9 shows an example of carrier merging in a wireless communication system to which the present invention can be applied.
  • FIG. 9A illustrates merging between contiguous carriers (i.e., F1, F2, and F3) and FIG. 9B illustrates merging between non-contiguous carriers (i.e., F1, F2, and F3) Merge is illustrated.
  • the component carriers set for carrier merging need not be contiguous on frequency.
  • the network operator can provide a high data rate service based on wideband using fragmented spectrum even though a single broadband spectrum allocation is not possible.
  • carrier merging can be classified into intra-band aggregation and inter-band aggregation, which can be understood as a concept collectively.
  • Conjugation between contiguous carriers may correspond to intra-band aggregation.
  • non-contiguous inter-merging may correspond to inter-band aggregation as well as intra-band aggregation.
  • Carrier merging defines the capability for a carrier to be cell-specific and available per cell. Thus, how to use the available carriers can be set in a user-specific manner. That is, when there are three carriers F1, F2 and F4 in the available carriers in the cell, it means that the specific terminal can use F1 and F2 in combination and the other terminal can use F2 and F4 in combination.
  • P cells and S cells are defined for the corresponding UE to operate corresponding carriers. That is, a carrier set to P-cell must always operate in an activated state, and a carrier set to S-cell can be activated or deactivated if necessary.
  • the scheduling for data transmitted to the S-cell for one or more S-activated terminals can be performed as follows.
  • Cross-carrier scheduling may be referred to as Cross Component Carrier Scheduling or Cross Cell Scheduling.
  • the PDCCH (DL Grant) and the PDSCH are transmitted in different DL CCs, or the PUSCH transmitted according to the PDCCH (UL Grant) transmitted in the DL CC is UL CC linked with the DL CC receiving the UL grant But is transmitted via a different UL CC.
  • the cross-carrier scheduling can be UE-specific activated or deactivated and can be semi-staticly informed for each UE through upper layer signaling (e.g., RRC signaling).
  • upper layer signaling e.g., RRC signaling
  • a carrier indicator field (CIF: Carrier Indicator Field) is required to notify which DL / UL CC the PDSCH / PUSCH indicated by the corresponding PDCCH is transmitted on the PDCCH.
  • the PDCCH may assign a PDSCH resource or a PUSCH resource to one of a plurality of component carriers using a CIF. That is, the CIF is set when the PDCCH on the DL CC allocates PDSCH or PUSCH resources to one of the DL / UL CCs that are multi-aggregated.
  • the DCI format of LTE-A Release-8 can be extended according to CIF.
  • the set CIF may be fixed to the 3-bit field or the position of the set CIF may be fixed regardless of the DCI format size.
  • the PDCCH structure (same coding and resource mapping based on the same CCE) of LTE-A Release-8 can be reused.
  • CIF is not set.
  • the same PDCCH structure (same coding and same CCE-based resource mapping) and DCI format as LTE-A Release-8 can be used.
  • the UE When cross-carrier scheduling is possible, the UE needs to monitor the PDCCHs for a plurality of DCIs in the control region of the monitoring CC according to the transmission mode and / or bandwidth for each CC. Therefore, the configuration of the search space and PDCCH monitoring that can support it are needed.
  • a terminal DL CC aggregation represents a set of DL CCs scheduled to receive a PDSCH by a UE
  • a UL CC aggregation represents a set of UL CCs scheduled for a UE to transmit a PUSCH.
  • the PDCCH monitoring set represents a set of at least one DL CC that performs PDCCH monitoring.
  • the PDCCH monitoring set may be the same as the terminal DL CC set or may be a subset of the terminal DL CC set.
  • the PDCCH monitoring set may include at least one of the DL CCs in the terminal DL CC set. Or the PDCCH monitoring set can be defined independently of the terminal DL CC set.
  • the DL CC included in the PDCCH monitoring set can be set to always enable self-scheduling for the linked UL CC.
  • the terminal DL CC set, the terminal UL CC set, and the PDCCH monitoring set may be UE-specific, UE group-specific, or cell-specific.
  • the PDCCH monitoring set is always the same as the terminal DL CC set. In this case, an instruction such as separate signaling for the PDCCH monitoring set is not required.
  • the PDCCH monitoring set is defined within the terminal DL CC set. That is, in order to schedule the PDSCH or the PUSCH to the UE, the BS transmits the PDCCH only through the PDCCH monitoring set.
  • FIG. 10 shows an example of a subframe structure according to cross carrier scheduling in a wireless communication system to which the present invention can be applied.
  • three DL CCs are combined in the DL subframe for the LTE-A UE, and DL CC 'A' is set to the PDCCH monitoring DL CC.
  • each DL CC can send a PDCCH scheduling its PDSCH without CIF.
  • the CIF is used through upper layer signaling, only one DL CC 'A' can transmit a PDCCH that schedules its PDSCH or another CC's PDSCH using the CIF.
  • the DL CC 'B' and 'C' not set to the PDCCH monitoring DL CC do not transmit the PDCCH.
  • the LTE / LTE-A system is designed with a frame structure with a transmission time interval (TTI) of 1 ms, and the requested delay time of data for video applications is generally about 10 ms.
  • TTI transmission time interval
  • Future 5G technology requires lower latency data transmission due to the emergence of new applications such as real-time control and tactile internet, It is expected to be lowered to about 1ms.
  • the conventional frame structure having a 1 ms TTI has a problem that the 1 ms data request delay can not be satisfied.
  • FIG. 11 is a diagram illustrating a radio transmission / reception delay in a 3GPP LTE / LTE-A system to which the present invention can be applied.
  • 11 illustrates the reference of the radio transmission / reception delay in terms of the downlink transmission / reception implementation of the 3GPP LTE system having 1 ms subframe.
  • a propagation delay occurs from the time when the base station eNB starts transmission of the downlink subframe until the UE starts receiving the downlink subframe. Then, the UE buffers the DL subframe before decoding the downlink subframe, and a buffering delay occurs.
  • the spread delay due to the DL subframe transmission and the delay due to the buffering at the UE take about 0.5 ms in total.
  • the UE decodes the PDCCH in the downlink subframe and decodes the PDSCH based on the PDCCH decoding information.
  • the processing delay due to PDCCH decoding (about 0.5 ms) and PDSCH decoding (less than about 2 ms) takes less than about 2.5 ms.
  • the one-way over-to-air latency from the base station to the terminal takes less than about 3 ms.
  • the delay for the A / N (ACK / NACK) preparation (e.g., ACK / NACK encoding) and the spreading delay (PD) .
  • the total roundtrip OTA latency from the transmitting side (e.g., the base station) to the ACK / NACK reception from the receiving side (e.g., the terminal) for unidirectional data transmission is generally about 4 ms .
  • the 5G wireless communication system aims at providing about 10 times less data delay than the existing wireless communication system.
  • a 5G wireless communication system using a new frame structure having a shorter TTI for example, 0.2ms
  • the 5G system offers a variety of requirements, such as low latency, high capacity, low energy consumption, low cost, and high user data rate. It is expected that the applications will coexist together. As such, 5G is expected to evolve into a system different from the conventional one to support various types of applications from applications requiring Ultra Low Latency to applications requiring high data rates.
  • the present invention proposes a system for providing one or more frame structures for a specific terminal in order to provide users with various services having different requirements.
  • one or more service-specific subbands may be set by setting a frame structure for each sub-band (or subband group or band / .
  • a conventional 1 ms TTI frame structure for general data transmission and a short TTI (short TTI) frame structure for data transmission requiring low latency can be configured for a specific terminal.
  • a short TTI can be understood to have the same meaning as a short TTI subframe (or a short subframe). That is, when both the control region and the data region are defined in one short subframe, the short TTI has a size including both the control region and the data region, and when only the data region within the short subframe is defined, And has a size including only the data area.
  • the present invention is applied to a radio frame structure in which a general CP of the FDD type is applied.
  • the present invention is not limited thereto, and the present invention can also be applied to a radio frame structure of a TDD type or a radio frame structure to which an extended CP is applied.
  • a subband is defined as a bundle of resource blocks (RBs). Represents the size of each subband and is expressed by the number of RBs. Can be calculated by the following equation (1).
  • Equation (1) Represents the number of subbands, and is set by an upper layer.
  • Indicates an uplink bandwidth configuration and indicates a resource block size (i.e., the number of subcarriers per resource block, ).
  • a hopping mode related parameter (i.e., an inter-subframe or an intra and an inter-subframe) are set by an upper layer.
  • subbands are calculated in the uplink bandwidth.
  • one or more subbands may be defined in the downlink bandwidth and / or the uplink bandwidth.
  • one downlink and / or uplink band i.e., carrier or cell
  • one downlink and / or uplink band can be divided into a plurality of subbands.
  • a method of configuring one or more subbands (or subband group or band / carrier) in a downlink and / or uplink band with a structure of a short TTI frame will be described.
  • a downlink band that is, a carrier or a cell
  • a downlink band that is, a carrier or a cell
  • FIG. 12 is a diagram for explaining a radio frame structure according to an embodiment of the present invention.
  • the existing PDCCH 1201 is allocated to up to four symbols in each legacy subframe. That is, it can be transmitted over the full band of the band from the maximum # 0 to # 3 symbols of each subframe.
  • FIG. 12 illustrates a case where a PDCCH 1201 is allocated over all bands of symbols # 0 and # 1 of each subframe.
  • the PDCCH 1201 is mapped to the preceding two symbols in each subframe.
  • the PDSCH 1202 used for normal data transmission is allocated to the remaining symbols to which the PDCCH 1201 is not mapped.
  • 12 illustrates a case where the PDSCH 1202 is allocated to the remaining frequency regions except the subbands for low latency in the symbols # 3 to # 13.
  • one or more subbands (or subband groups) for low latency in any band can be configured with a structure of a short TTI frame.
  • one or more subbands (or subband groups) in the legacy subframe are short symbols except for the symbols to which the PDCCH 1201 is mapped (i.e., symbols excluding PDCCH allocated symbols in the entire symbols of the legacy subframe) (SPDSCH) 1203 divided by n symbols (e.g., 2 to 4 symbols) corresponding to the TTI size.
  • SPDSCH symbols excluding PDCCH allocated symbols in the entire symbols of the legacy subframe
  • n symbols e.g., 2 to 4 symbols
  • a short resource block can be newly defined as a resource allocation unit for a low latency terminal.
  • a short RB may be defined as 12 subcarriers in the frequency domain, and n symbols (i.e., a short TTI size) in the time domain.
  • a short RB may be composed of less than x subcarriers (x ⁇ 12) even in the frequency domain.
  • mapping of data to resource elements in the sPDSCH domain may be mapped in order of increasing frequency index, and then mapped in increasing order of symbol index.
  • the number of symbols (or the number of symbols) to which the PDCCH 1201 and the sPDSCH 1203 are mapped and the number of short TTIs set in one legacy subframe are merely examples, and the present invention is not limited thereto no.
  • the control information for the downlink data transmitted in the short TTI subframe (sPDSCH) 1203 (for example, frequency / time resources for downlink data of the sPDSCH)
  • MCS modulation and coding scheme
  • NDI new data indicator
  • RV redundancy version
  • TPC transmit power control
  • the PDCCH 1201 transmits not only the PDSCH 1202 but also the control information associated with the sPDSCH 1203 do. Accordingly, the UE must be aware of the downlink data to be transmitted to itself in the PDSCH 1202 or the short TTI sub-frame (sPDSCH) 1203.
  • sPDSCH short TTI sub-frame
  • the downlink control information (DCI) format associated with downlink data transmission may include a 'sPDSCH indicator field'.
  • the DCI format related to the downlink data transmission includes a 'TTI number field' indicating the scheduling for data transmitted in the short TTI sub-frame 1203 among 12 / n short TTI sub-frames 1203 .
  • the DCI associated with the downlink data transmitted in the sPDSCH includes an sPDSCH indicator (for example, 1 bit).
  • an sPDSCH indicator (e.g., one bit) may be added to the DCI format (i.e., DCI formats 1, 1A, 1B, and 1C) for downlink data scheduling of the conventional PDCCH.
  • the UE In order to receive data transmitted through the sPDSCH of short TTI, the UE must decode the data using the short subframe structure, .
  • the UE when the UE receives the PDCCH, it must be able to distinguish whether the corresponding data is transmitted through the conventional PDSCH or the sPDSCH, so that the UE can successfully receive the data.
  • the DCI format transmitted via the PDCCH may include one bit of the sPDSCH indicator.
  • TTI number (m bits, for example, 2 bits for TTI of 3 symbols)
  • the UE When one TTI is composed of n (for example, 3) symbols, the UE must be able to distinguish the area (i.e., TTI / s PDSCH) in which the downlink data of the UE is transmitted.
  • the DCI associated with the downlink data transmitted in the sPDSCH includes a TTI number field for identifying DCI for downlink data transmitted in a few TTI among 12 / n (for example, four) short TTIs .
  • a TTI number field may be included in the DCI format (i.e., DCI format 1, 1A, 1B, 1C) for downlink data scheduling of the conventional PDCCH.
  • TTI number field of 2 bits in length can be included in the DL grant to distinguish it. That is, the values of the corresponding fields are 0b00: 0th sPDSCH, 0b01: 1st sPDSCH, 0b10: 2nd sPDSCH, and 0b11: 3rd sPDSCH.
  • the sPDSCH indicator information and the TTI number information described above may be composed of one field.
  • both the sPDSCH indicator information and the above TTI number information can be transmitted in the sPDSCH indication and the TTI number field defined in the bitmap format.
  • a 4-bit sPDSCH indication and TTI number field may be included in the DL grant of the conventional PDCCH. That is, the values of the corresponding fields are 1000: 0 sPDSCH, 0100: 1st sPDSCH, 0010: 2nd sPDSCH, 0001: 3rd sPDSCH. If the value of the sPDSCH indication and the TTI number field are set to any one of these values, the UE can know that the downlink data is transmitted on the sPDSCH.
  • both the sPDSCH indication and the TTI number field are configured to be '0000', this indicates that the downlink data for the corresponding terminal is not transmitted through the sPDSCH but through the PDSCH.
  • FIG. 13 is a diagram for explaining a radio frame structure according to an embodiment of the present invention.
  • a PDCCH 1301 is allocated to a maximum of four symbols in each subframe. That is, it can be transmitted over the full band of the band from the maximum # 0 to # 3 symbols of each subframe. 13 illustrates a case where the PDCCH 1301 is configured over the entire band in the symbols # 0 and # 1 of each subframe.
  • the PDSCH 1302 used for normal data transmission may be allocated to the remaining symbols to which the PDCCH 1301 is not mapped. 13 illustrates a case where the PDSCH 1302 is allocated over the remaining frequency regions except the subbands for low latency in symbols # 3 to # 13.
  • At least one subband (or subband group) for low latency is configured with a short TTI frame structure.
  • one or more subbands (or subband groups) in the legacy subframe are symbols excluding the region to which the PDCCH 1301 is mapped (i.e., symbols except for the symbols allocated to the PDCCH 1301 in the entire symbols of the legacy subframe) (SPDCCH 1303 and sPDSCH 1304) divided by n symbols (for example, two to four, etc.) corresponding to a short TTI size.
  • the sPDCCH 1303 is allocated in the previous certain symbol (e.g., one or two symbols) and the sPDSCH 1304 is allocated in the remaining symbols.
  • the number of symbols of the sPDCCH 1303 is not limited. However, if the short TTI subframe is composed of three symbols, the sPDCCH 1303 is preferably composed of one symbol.
  • sPDCCH 1303 and sPDSCH 1304 are configured .
  • the sPDCCH 1303 may be allocated to one preceding symbol and the sPDSCH 1304 may be allocated to the remaining two symbols in every short TTI subframe.
  • a short resource block can also be newly defined as a resource allocation unit for a low latency terminal.
  • a short RB may be defined as 12 subcarriers in the frequency domain, and n symbols (i.e., a short TTI size) in the time domain.
  • a short RB may be composed of less than x subcarriers (x ⁇ 12) even in the frequency domain.
  • mapping of data to resource elements in the sPDSCH region may be mapped in order of increasing frequency index, and may be mapped in order of increasing symbol index.
  • the number of symbols (or the number of symbols) to which the PDCCH 1301, the sPDCCH 1303, the sPDSCH 1304 are mapped, the number of short TTIs set in one legacy subframe, and the like are only one example, But is not limited thereto.
  • downlink control information for downlink data transmitted in the sPDSCH 1304 may be transmitted on the newly defined sPDCCH 1303 in the short TTI subframe. That is, the sPDCCH 1303 is transmitted over a subband full-band from a predetermined symbol in a short TTI subframe.
  • the PDCCH 1001 is transmitted as a set of one or more consecutive Control Channel Elements (CCEs).
  • CCE corresponds to nine resource element groups (REG), and REG consists of four resource elements (RE).
  • the format of the sPDCCH 1303 may be the same as the format of the PDCCH 1301, but may be defined in another format.
  • one CCE may be composed of REGs of x (x ⁇ 9), or REGs mapped to the sPDCCH 1303 region may be composed of REs of y (y ⁇ 4) have.
  • the present invention in addition to the new radio frame structure for low latency, the present invention can be applied to a 1 ms subframe structure defined in the conventional LTE / LTE-A and another purpose (for example, And data transmission in applications requiring latency) can be used in the same band. This will be described with reference to the following drawings.
  • FIG. 14 is a diagram for explaining a radio frame structure according to an embodiment of the present invention.
  • a physical channel having the same frame structure can be designed for each subband (or subband group).
  • the PDCCH is configured for each subband (or subband group).
  • the PDCCH allocated to the corresponding subband (or subband group) may include control information for the PDSCH allocated to the corresponding subband (or subband group) (for example, frequency / time for downlink data of PDSCH or sPDSCH Resource allocation information, MCS, NDI, RV, TPC command, etc.).
  • control information for the PDSCH allocated to the corresponding subband (or subband group) for example, frequency / time for downlink data of PDSCH or sPDSCH Resource allocation information, MCS, NDI, RV, TPC command, etc.
  • This scheme can be used when the wireless frame structure of the conventional LTE / LTE-A is used as it is and data generated in a service for low latency is transmitted through a specific subband.
  • a subband (or a subband group) # 1 is a subband for transmitting general data and a subband (or a subband group) # 2 is a subband for transmitting data generated in an application requiring low latency. It can be defined as a subband.
  • a control channel allocated to a control region of a subband (or subband group) for transmitting data generated in an application requiring low latency is referred to as sPDCCH
  • a data channel allocated to the data region is referred to as a PDSCH It is possible.
  • PDCCHs (or subband groups) transmitted in subbands (or subband groups) for transmitting data generated in applications requiring low latency may be the same as that of the existing PDCCH, but may be defined in another format.
  • PDCCH (or sPDCCH) transmitted in a subband group (or a subband group) for transmitting data generated in an application requiring low latency one CCE is divided into x (x ⁇ 9) REG , Or REG may be composed of REs of y (y ⁇ 4).
  • the present invention can also be applied to a carrier-wise 2-level frame structure rather than a subband-wise.
  • a carrier of a conventional LTE / LTE-A frame structure and a carrier of a new radio frame structure for low latency can be allocated for a specific user.
  • the Pcell is a cell of a conventional LTE / LTE-A frame structure, but it is also possible to set a cell of a new frame structure to operate as a P cell according to the terminal characteristics.
  • a terminal requiring low latency may be set to operate by merely merging two cells of different frame structures so that both cells operate as P cells.
  • 15 is a diagram for explaining a radio frame structure according to an embodiment of the present invention.
  • the band (or carrier / cell) 1 is composed of a legacy frame structure
  • the band (or carrier / cell) 2 is composed of a short TTI frame structure proposed by the present invention
  • a case where a carrier is merged (CA) with respect to a terminal will be exemplified.
  • PDCCH 1501 and PDSCH 1502 in band 1 may be mapped according to the definition of an existing LTE / LTE-A system. That is, the PDCCH 1501 is allocated to the preceding four symbols in each legacy subframe. That is, it can be transmitted over the entire band of band 1 from the maximum # 0 to # 3 symbols of each subframe.
  • FIG. 15 illustrates a case where the PDCCH 1501 is allocated over the entire band of band 1 in the # 0 and # 1 symbols of each subframe.
  • the PDSCH 1502 used for the general data transmission in the remaining symbols to which the PDCCH 1501 is not mapped can be allocated to the entire band 1.
  • FIG. 15 illustrates a case where the PDSCH 1502 is allocated over the entire band of band 1 in symbols # 3 to # 13.
  • Band 2 which is composed of a short TTI frame structure, may be composed of one or more special symbols 1503 in one legacy subframe (i.e., 1 ms) and one or more sPDSCHs 1504 having n symbol sizes.
  • the short TTI radio frame structure has four short TTIs within one legacy subframe (i.e., 1 ms), and one short TTI has three symbols (i.e., sPDSCH length) of about 0.2 ms.
  • the order in which the special symbol 1503 and the sPDSCH 1504 are mapped on the time axis may be different from that in Fig.
  • control information for downlink data transmitted in the sPDSCH 1504 may be transmitted on the PDCCH 1501 of another band (band 1 in FIG. That is, cross carrier scheduling can be applied.
  • the PDCCH 1501 transmits not only the PDSCH 1502 in the band 1 but also the sPDSCH 1504 in the band 2, And transmits the related control information. Therefore, the UE must know which of the PDSCH 1502 or the sPDSCH 1504 the downlink data is transmitted to.
  • the downlink control information (DCI) format associated with downlink data transmission may include a sPDSCH indicator field and / or some sPDSCH 1504 among 12 / n s PDSCH 1504, And a 'TTI number field' indicating whether the data to be transmitted to the UE is scheduling.
  • DCI downlink control information
  • the sPDSCH indicator information and the TTI number information may be composed of one field. That is, both the sPDSCH indicator information and the above TTI number information can be transmitted in the sPDSCH indication and the TTI number field defined in the bitmap format.
  • a short resource block can also be newly defined as a resource allocation unit for a low latency terminal.
  • a short RB may be defined as 12 subcarriers in the frequency domain, and n symbols (i.e., a short TTI size) in the time domain.
  • a short RB may be composed of less than x subcarriers (x ⁇ 12) even in the frequency domain.
  • mapping of data to resource elements in the sPDSCH region may be mapped in order of increasing frequency index, and may be mapped in order of increasing symbol index.
  • an sPDCCH 1503 for transmitting control information related to the sPDSCH 1504 may be allocated.
  • the sPDCCH 1503 may be mapped to one or more sPDSCHs 1504.
  • the first and second sPDSCH 1504 are mapped to the first sPDCCH 1503 and the third and fourth sPDSCH 1504 are mapped to the second sPDCCH 1503 from the left in one legacy subframe.
  • control information e.g., frequency / time resource allocation information, downlink resource allocation information, MCS, NDI, RV, TPC command, etc.
  • control information for downlink data transmitted in the sPDSCH 1504 is transmitted to the sPDSCH 1504 (I.e., the most recently transmitted sPDCCH prior to the corresponding sPDSCH) mapped to the sPDCCH 1503.
  • the sPDCCH 1503 is transmitted over the entire band.
  • the sPDCCH 1503 format of the band having the short TTI frame structure may be the same as the format of the existing PDCCH 1501, but may be defined in another format.
  • one CCE may be composed of REGs of x (x ⁇ 9), or REGs mapped to sPDCCH 1503 may be composed of REs of y (y ⁇ 4) .
  • the band 1 constituted by the legacy frame structure or the band 2 constituted by the short TTI frame structure can operate as the P cell. Further, it is also possible to set the band 1 of the legacy frame structure and the band 2 of the short TTI frame structure to be merged to the terminal requesting low latency, so that the band 1 and the band 2 can be set to operate as the P cell.
  • the number of symbols (or the number of symbols) to which the PDCCH 1501, the sPDCCH 1503, and the sPDSCH 1504 are mapped and the number of short TTIs set in one legacy subframe are only one example. But is not limited thereto.
  • the size n (the number of symbols) of the short TTI is smaller than 7.
  • 16 is a diagram for explaining a radio frame structure according to an embodiment of the present invention.
  • a band (or a carrier / cell) 1 is constituted by a legacy frame structure
  • a band (or a carrier / cell) 2 is constituted by a short TTI frame structure proposed by the present invention
  • a case where a carrier is merged (CA) with respect to a terminal will be exemplified.
  • band 1 is the same as the example of FIG. 15, description thereof will be omitted.
  • Band 2 which is composed of a short TTI frame structure, may be composed of one or more special symbols 1603 in one legacy subframe (i.e., 1 ms) and one or more sPDSCHs 1604 having a size of n symbols.
  • the short TTI radio frame structure has four short TTIs within one legacy subframe (i.e., 1 ms), and one short TTI has three symbols (i.e., sPDSCH length) of about 0.2 ms.
  • the order in which the special symbol 1603 and the sPDSCH 1604 are mapped on the time axis may be different from that of FIG.
  • control information for downlink data transmitted in the sPDSCH 1604 may be transmitted on the PDCCH 1601 of another band (band 1 in FIG. 16). That is, cross carrier scheduling can be applied.
  • the PDCCH 1601 transmits not only the PDSCH 1602 in the band 1 but also the sPDSCH 1604 in the band 2, And transmits the related control information. Accordingly, the UE must know which of the PDSCH 1602 or the sPDSCH 1604 the downlink data is transmitted to.
  • the downlink control information (DCI) format associated with the downlink data transmission is transmitted to some sPDSCH 1604 out of the 'sPDSCH indicator field' and / or 12 / n s PDSCH 1604 And a 'TTI number field' indicating that the data is scheduled for data.
  • DCI downlink control information
  • the sPDSCH indicator information and the TTI number information may be composed of one field. That is, both the sPDSCH indicator information and the above TTI number information can be transmitted in the sPDSCH indication and the TTI number field defined in the bitmap format.
  • a short resource block can also be newly defined as a resource allocation unit for a low latency terminal.
  • a short RB may be defined as 12 subcarriers in the frequency domain, and n symbols (i.e., a short TTI size) in the time domain.
  • a short RB may be composed of less than x subcarriers (x ⁇ 12) even in the frequency domain.
  • mapping of data to resource elements in the sPDSCH region may be mapped in order of increasing frequency index, and may be mapped in order of increasing symbol index.
  • an SPDCCH 1603 for transmitting control information related to the sPDSCH 1604 may be allocated instead of the special symbol 1603.
  • the sPDCCH 1603 may be mapped to one or more sPDSCHs 1604.
  • the first through fourth sPDSCHs 1604 from the left in one legacy subframe are mapped to the first sPDCCH 1603.
  • the control information (e.g., frequency / time resource allocation information, downlink resource allocation information, MCS, NDI, RV, TPC command, etc. for downlink data of the sPDSCH) transmitted on the sPDSCH 1604 is transmitted to the sPDSCH 1604 (I.e., the most recently transmitted sPDCCH prior to the corresponding sPDSCH) that is mapped to the sPDCCH 1603.
  • the sPDCCH 1603 is transmitted over the entire band.
  • the sPDCCH 1603 format of the band having the short TTI frame structure may be the same as the format of the existing PDCCH 1601, but may be defined in another format.
  • one CCE may be composed of REGs of x (x ⁇ 9), or REGs mapped to the sPDCCH 1603 region may be composed of REs of y (y ⁇ 4) .
  • the band 1 constituted by the legacy frame structure or the band 2 constituted by the short TTI frame structure can operate as the P cell. Further, it is also possible to set the band 1 of the legacy frame structure and the band 2 of the short TTI frame structure to be merged to the terminal requesting low latency, so that the band 1 and the band 2 can be set to operate as the P cell.
  • the number of symbols (or the number of symbols) to which the sPDCCH 1603 and the sPDSCH 1604 are mapped and the number of short TTIs set in one legacy subframe are only examples, and the present invention is not limited thereto no.
  • the size n (the number of symbols) of the short TTI is smaller than 7.
  • 17 is a diagram for explaining a radio frame structure according to an embodiment of the present invention.
  • a band (or a carrier / cell) 1 is constituted by a legacy frame structure
  • a band (or a carrier / cell) 2 is constituted by a short TTI frame structure proposed by the present invention
  • a case where a carrier is merged (CA) with respect to a terminal will be exemplified.
  • band 1 is the same as the example of FIG. 15, description thereof will be omitted.
  • band 2 which is composed of a short TTI frame structure
  • sPDCCH 1703 and sPDSCH 1704 in one or more legacy subframes can be alternately configured.
  • sPDCCH 1703 having a size of one symbol and sPDSCH 1704 having a size of two symbols (n 2) are alternately mapped in three legacy subframes of band 2.
  • a short TTI radio frame structure has 14 short TTIs within 3 legacy subframes (i.e., 1 ms), one short TTI has 3 symbols (i.e., sPDCCH and sPDSCH length), a length of about 0.2 ms I have.
  • a short resource block can also be newly defined as a resource allocation unit for a low latency terminal.
  • a short RB may be defined as 12 subcarriers in the frequency domain, and n symbols (i.e., a short TTI size) in the time domain.
  • a short RB may be composed of less than x subcarriers (x ⁇ 12) even in the frequency domain.
  • mapping of data to resource elements in the sPDSCH region may be mapped in order of increasing frequency index, and may be mapped in order of increasing symbol index.
  • control information (e.g., frequency / time resource allocation information, downlink resource allocation information, MCS, NDI, RV, TPC command, etc. for downlink data of the sPDSCH) transmitted from the sPDSCH 1704 is transmitted to the sPDSCH 1704 May be transmitted on the sPDCCH 1703 (i.e., the most recently transmitted sPDCCH before the sPDSCH) to be mapped. At this time, the sPDCCH 1703 is transmitted over the entire band band.
  • sPDCCH 1703 i.e., the most recently transmitted sPDCCH before the sPDSCH
  • the sPDCCH 1703 format of the band having the short TTI frame structure may be the same as the format of the existing PDCCH 1701, but may be defined in another format.
  • one CCE may be composed of REGs of x (x ⁇ 9), or REGs mapped to the sPDCCH 1603 region may be composed of REs of y (y ⁇ 4) .
  • the band 1 constituted by the legacy frame structure or the band 2 constituted by the short TTI frame structure can operate as the P cell. Further, it is also possible to set the band 1 of the legacy frame structure and the band 2 of the short TTI frame structure to be merged to the terminal requesting low latency, so that the band 1 and the band 2 can be set to operate as the P cell.
  • the number of symbols (or the number of symbols) to which the sPDCCH 1703 and the sPDSCH 1704 are mapped and the number of short TTIs set in one legacy subframe are merely examples, and the present invention is not limited thereto no.
  • the size n (the number of symbols) of the short TTI is smaller than 7.
  • a carrier-wise 2-level frame structure may be applied to the subband side and the carrier / cell side as described above. This will be described with reference to the following drawings.
  • FIG. 18 is a view for explaining a radio frame structure according to an embodiment of the present invention.
  • the band (or carrier / cell) 1 is constituted by a legacy frame structure
  • the band (or carrier / cell) 2 is constituted by a short TTI frame structure proposed by the present invention
  • And 2 are carrier merged (CA) for a specific terminal.
  • band 1 is the same as the example of FIG. 15, description thereof will be omitted.
  • Band 2 is divided into a plurality of subbands (or subband groups), and at least one of the subbands (or subband groups) may be configured with a short TTI frame structure.
  • the PDCCH 1811 is allocated to the preceding symbol in each subframe and allocated to the preceding four symbols. That is, it can be transmitted over the full band of the band from the maximum # 0 to # 3 symbols of each subframe.
  • FIG. 18 illustrates a case where the PDCCH 1811 is configured over the entire band in the symbols # 0 and # 1 of each subframe.
  • the PDSCH 1812 used for normal data transmission may be allocated to the remaining symbols to which the PDCCH 1811 is not mapped.
  • 18 illustrates a case where the PDSCH 1812 is allocated to the remaining # 3 to # 13 symbols except the subband for low latency.
  • At least one subband (or subband group) for low latency is configured with a short TTI frame structure.
  • one or more subbands (or subband groups) in the legacy subframe are symbols excluding the region to which the PDCCH 1811 is mapped (i.e., symbols except for the symbols allocated to the PDCCH 1811 in the entire symbols of the legacy subframe) (SPDCCH 1813 and sPDSCH 1814) divided by n symbols (e.g., 2 to 4, etc.) corresponding to a short TTI size.
  • the sPDCCH 1813 is allocated in the previous certain symbol (e.g., one or two symbols) in each short TTI subframe, and the sPDSCH 1814 is allocated in the remaining symbols.
  • the number of symbols of the sPDCCH 1813 is not limited. However, if the short TTI subframe is composed of three symbols, the sPDCCH 1813 is preferably composed of one symbol.
  • sPDCCH 1813 and sPDSCH 1814 are configured . Further, the sPDCCH 1813 may be allocated to the preceding symbol and the sPDSCH 1814 may be allocated to the remaining two symbols in every short TTI subframe.
  • the short TTI radio frame structure has four short TTIs within one legacy subframe (i.e., 1 ms), and one short TTI represents three data symbols and a data channel having a length of about 0.2 ms.
  • a short resource block can also be newly defined as a resource allocation unit for a low latency terminal.
  • a short RB may be defined as 12 subcarriers in the frequency domain, and n symbols (i.e., a short TTI size) in the time domain.
  • a short RB may be composed of less than x subcarriers (x ⁇ 12) even in the frequency domain.
  • mapping of data to resource elements in the sPDSCH region may be mapped in order of increasing frequency index, and may be mapped in order of increasing symbol index.
  • control information for downlink data transmitted in the sPDSCH 1814 may be transmitted on the sPDCCH 1813 (sPDCCH transmitted before the corresponding sPDSCH) mapped to the sPDSCH 1814. That is, control information for downlink data transmitted in the first s PDSCH 1814 from the left in FIG. 18 is transmitted in the first s PDCCH 1813, and control information for downlink data transmitted in the second s PDSCH 1814 Is transmitted in the second sPDCCH 1813, and is otherwise the same.
  • the sPDCCH 1813 format of the band having the short TTI frame structure may be the same as the format of the existing PDCCH 1811, but may be defined in another format.
  • one CCE may be composed of REGs of x (x ⁇ 9), or REGs mapped to sPDCCH 1813 may be composed of REs of y (y ⁇ 4) .
  • band 1 constituted by the legacy frame structure or the band 2 constituted by the short TTI frame structure of some subbands can operate as the P cell. Also, for the terminal requiring low latency, band 1 of a legacy frame structure and band 2 of a short TTI frame structure are necessarily merged so that band 1 and band 2 are set to operate as P cells It is possible.
  • the number of symbols (or the number of symbols) to which the PDCCH 1811, the sPDCCH 1813, and the sPDSCH 1814 are mapped and the number of short TTIs set in one legacy subframe are only one example, But is not limited thereto.
  • Configuration Information ( configuration information ) send Way
  • the radio resource information for the short TTI frame structure proposed in the present invention can be transmitted through an RRC message for transmitting cell information.
  • FIG. 19 is a diagram illustrating a method of transmitting information on a short TTI frame structure according to an embodiment of the present invention.
  • a BS transmits radio resource information (hereinafter referred to as 'short TTI radio resource information') for a short TTI frame structure to a terminal through an RRC message in step S 1901.
  • radio resource information hereinafter referred to as 'short TTI radio resource information'
  • a system information message may be applied as an example of the RRC message.
  • an RRC connection setup message may be applied as an example of the RRC connection setup message.
  • an RRC connection reconfiguration message may be applied as an example of the RRC connection reestablishment message.
  • the short TTI radio resource information may be transmitted to the UE through a cell-specific RRC message.
  • the short TTI radio resource information may include a radio resource common setting ('RadioResourceConfigCommon') information element used for specifying a common radio resource configuration in system information or mobility control information, (IE: Information Element).
  • 'RadioResourceConfigCommon' radio resource common setting
  • IE Information Element
  • the 'RadioResourceConfigCommon' IE can be transmitted in the mobility control information IE or system information block type 2 (SIB-2) (or the newly defined SIB-x).
  • SIB-2 system information block type 2
  • the 'MobilityControlInfo' IE is an IE that contains parameters related to network controlled mobility within the E-UTRA.
  • the mobility control information ('MobilityControlInfo') IE may be transmitted via an RRC Connection Reconfiguration message.
  • the RRC Connection Reconfiguration message is a command message for modifying the RRC connection.
  • SIB-2 (or SIB-x) may be transmitted through a System Information message.
  • the system information message is a message used to transmit one or more system information blocks (SIBs).
  • short TTI radio resource information is information for a low latency terminal, it may be transmitted to a low latency terminal through a UE-specific RRC message.
  • short TTI radio resource information may be included in a dedicated PDSCH setting IE ('pdschConfigDedicated') or a dedicated physical resource setting ('physicalConfigDedicated') IE used to specify a UE specific physical channel configuration.
  • a dedicated PDSCH setting IE 'pdschConfigDedicated'
  • a dedicated physical resource setting 'physicalConfigDedicated'
  • the dedicated PDSCH setting ('pdschConfigDedicated') IE or dedicated physical resource setting ('physicalConfigDedicated') IE can be transmitted in the dedicated radio resource configuration ('RadioResourceConfigDedicated') IE.
  • the RadioResourceConfigDedicated IE is used to modify the MAC main configuration for the setup, modification or release of a radio bearer (RB) It is used to modify Semi-Persistent Scheduling (SPS) settings and to modify the dedicated physical configuration.
  • the dedicated radio resource setting ('RadioResourceConfigDedicated') IE may be transmitted through an RRC Connection Setup message, an RRC Connection Reconfiguration message or an RRC Connection Reestablishment message.
  • the RRC Connection Setup message is a message used to establish a Signaling Radio Bearer (SRB), and the RRC Connection Reestablishment message is a message used to re-establish the SRB.
  • SRB Signaling Radio Bearer
  • Frequency information for a subband to which a short TTI is applied in a frequency band If the subband side and / or carrier side two level radio frame structure is used, this information may be included in the short TTI radio resource information.
  • Frequency resource information for a short TTI subframe may be expressed in subcarrier or RB units.
  • index information for the start and / or end resource i.e., subcarrier or RB. It can also be represented by the number of indexes and resources (i.e., subcarriers or RBs) for the start or end resource (i.e., subcarrier or RB).
  • frequency resource information for a specific subband constituted by a short TTI frame structure in a specific band is shown.
  • the number of symbols for a short TTI sub-frame (the number of symbols for a short TTI sub-frame)
  • short short TTI subframes may be set to '3' consisting of three symbols.
  • this information may be included in the short TTI radio resource information.
  • this information can be included in the short TTI radio resource information.
  • Means the number of special symbols existing within a legacy subframe i.e., 1 ms). For example, it may include information indicating two pieces of information of '1' or '2'.
  • this information can be included in the short TTI radio resource information.
  • the UE requesting low latency can confirm the radio resource information for the short TTI in the corresponding band by receiving the short TTI radio resource information transmitted through the RRC message as shown in FIG. 19, and use the short TTI structure So that data can be transmitted / received.
  • the carrier / cell-wise 2-level frame structure described above can be set for a terminal using a carrier merging (CA).
  • CA carrier merging
  • the low latency terminal needs to set up the P cell and the S cell in a manner different from that of the legacy terminal. This will be described with reference to the following drawings.
  • 20 is a diagram illustrating a method for establishing carrier merging for a carrier side two-level frame structure in accordance with an embodiment of the present invention.
  • a BS transmits radio resource information (hereinafter referred to as 'short TTI radio resource information') for a short TTI frame structure to an MS through an RRC message (S2001).
  • radio resource information hereinafter referred to as 'short TTI radio resource information'
  • the method of transmitting / receiving the short TTI radio resource information and the information included therein are the same as those of FIG. 19, so that the description thereof will be omitted.
  • the base station transmits the RRC Connection Reconfiguration message to the RRC Connection Reconfiguration message terminal in order to set up the carrier merging (S2002).
  • the base station When a terminal performs an attach procedure to a network through a carrier / cell having a short TTI frame structure, the base station adds a cell having a legacy frame structure to the terminal through an RRC Connection Reconfiguration (RRC Connection Reconfiguration) message as an S cell can do. That is, the carrier / cell having the legacy frame structure can be set to the S-cell.
  • RRC Connection Reconfiguration RRC Connection Reconfiguration
  • the RRC Connection Reconfiguration message includes a dedicated radio resource configuration field ('radioResourceConfigDedicatedSCell').
  • a dedicated S-cell radio resource setting ('radioResourceConfigDedicatedSCell') field includes an S-cell addition ('SCellToAddMod') field.
  • the S-cell addition ('SCellToAddMod') field is a field used to add an S-cell.
  • the " SCellToAddMod " field includes an S cell index ('sCellIndex') field and a cell identifier ('cellIdentification') field.
  • the cell identifier ('cellIdentification') field includes a physical cell identifier ('physCellId') field and a downlink carrier frequency ('dl-CarrierFreq') field.
  • the S cell index ('sCellIndex') field indicates a short identifier used to identify the S cell, and may include a carrier / cell index configured in a legacy frame structure.
  • a physical cell identifier ('physCellId') field is a field indicating a physical layer identifier of a cell, and may include a physical layer identifier of a carrier / cell configured in a legacy frame structure.
  • the 'DL-CarrierFreq' field is a field for indicating frequency information of a cell, and may include frequency information of a carrier / cell configured in a legacy frame structure.
  • 21 is a diagram illustrating a method for establishing carrier merging for a carrier side two-level frame structure.
  • a BS transmits radio resource information (hereinafter referred to as 'short TTI radio resource information') for a short TTI frame structure to a terminal through an RRC message (S2101).
  • radio resource information hereinafter referred to as 'short TTI radio resource information'
  • the method of transmitting / receiving the short TTI radio resource information and the information included therein are the same as those of FIG. 19, so that the description thereof will be omitted.
  • the base station transmits the RRC connection reconfiguration message to the RRC connection reconfiguration message terminal (S2102) in order to set up the carrier merging.
  • the BS transmits a cell having a short TTI frame structure to the secondary P cell through a RRC Connection Reconfiguration (RRC Connection Reconfiguration) (sPCell: secondary PCell). That is, both the carrier / cell of the legacy frame structure and the carrier / cell of the short TTI frame structure can be set as the P cell.
  • RRC Connection Reconfiguration RRC Connection Reconfiguration
  • control for each carrier / cell is preferably performed according to the service characteristic. That is, in the case of a carrier / cell having a short TTI frame structure, it is possible to perform only specialized control for a service requiring low latency.
  • the two P cells indicate that even if the UE enters an IDLE state or a dormant state, both of the two carriers / cells are monitored (i.e., PDCCH or sPDCCH or a paging interval, etc.) ). Therefore, they may be defined as S cells having the same meaning or performing the same operation.
  • the RRC Connection Reconfiguration message includes a dedicated radio resource configuration field ('radioResourceConfigDedicatedSCell').
  • the dedicated radio resource setting ('radioResourceConfigDedicatedSCell') field includes a secondary P-cell addition ('sPCellToAddMod') field.
  • the secondary P-cell addition ('sPCellToAddMod') field is a field used to add a secondary P-cell.
  • the P-cell addition ('sPCellToAddMod') field includes a secondary P-cell index ('sCellIndex') field and a cell identifier ('cellIdentification') field.
  • the cell identifier ('cellIdentification') field includes a physical cell identifier ('physCellId') field and a downlink carrier frequency ('dl-CarrierFreq') field.
  • the secondary P cell index ('sPCellIndex') field indicates a short identifier used for identifying a secondary P cell, and may include a carrier / cell index composed of a short TTI frame structure.
  • the physical cell identifier ('physCellId') field includes a physical layer identifier of a carrier / cell configured with a short TTI frame structure and a downlink carrier frequency ('dl-CarrierFreq') field includes a carrier / And may include frequency information.
  • the BS may transmit information on a cell configured with a short TTI radio frame structure to the UE.
  • the short TTI radio resource information described in the example of FIG. 19 may be transmitted to the mobile station in step S2002 of FIG. 20 or S2102 of FIG. In this case, step S2001 of FIG. 20 or step S2101 of FIG. 21 may be omitted.
  • 22 is a diagram illustrating a data transmission / reception method according to an embodiment of the present invention.
  • the BS maps first downlink data to a PDSCH region according to a first TTI-based radio frame structure (S2201).
  • the base station maps general downlink data not requiring low latency to a PDSCH according to a legacy radio frame structure.
  • the first TTI may be an existing legacy TTI (i.e., 1 ms).
  • the base station maps the second downlink data to the sPDSCH region according to the second TTI-based radio frame structure (S2202).
  • the base station maps the downlink data requiring low latency to the PDSCH according to the short TTI radio frame structure proposed in the present invention, as described above with reference to FIG. 12 to FIG.
  • the second TTI may be equal to the number of symbols of the sPDSCH region proposed in the present invention or may be equal to the number of symbols (e.g., 3 symbols) of the sPDCCH and sPDSCH regions.
  • it can be configured as a subband-wise 2-level radio frame structure in one band and a 2-level radio frame structure in the side of the carrier in different bands -wise 2-level radio frame structure.
  • a cell composed of a short TTI radio frame structure can be set as a P-cell.
  • both cells constituted by a legacy radio frame structure and cells constituted by a short TTI radio frame structure may be set as P cells.
  • the control information for the first downlink data mapped to the PDSCH region and the control information for the second downlink data mapped to the sPDSCH region may be transmitted on the PDCCH according to the legacy radio frame structure.
  • control information for the first downlink data mapped to the PDSCH region is transmitted on the PDCCH according to the legacy radio frame structure, but the control information for the second downlink data mapped to the sPDSCH region may be short And can be transmitted over the sPDCCH according to the TTI radio frame structure.
  • control information for downlink data can be transmitted through one sPDCCH.
  • the description of the downlink control information transmitted through the PDCCH or the sPDCCH is the same as that of FIGS. 12 to 18, and thus description thereof is omitted.
  • the base station Before transmitting the first downlink data and the second downlink data, the base station may transmit short TTI radio resource information through a cell-specific RRC message or a UE-specific RRC message as shown in FIG.
  • step S2201 is performed earlier than the step S2202 for the convenience of description, the step S2202 may be performed before the step S2201.
  • steps S2201 and S2202 may be performed simultaneously in time.
  • FIG. 23 is a diagram illustrating a downlink data transmission method according to an embodiment of the present invention.
  • the UE receives the first downlink data in the PDSCH region according to the first TTI-based radio frame structure (S2301).
  • the UE blindly decodes the PDCCH region and obtains downlink control information transmitted to the UE. Then, based on the acquired downlink control information, downlink data transmitted to itself in the PDSCH region is decoded.
  • the UE receives the second downlink data in the sPDSCH region according to the second TTI-based radio frame structure (S2302).
  • the UE blind-decodes the PDCCH region or the sPDCCH region to obtain downlink control information transmitted to the UE. Then, the base station decodes the downlink data transmitted to itself in the sPDSCH region based on the obtained downlink control information.
  • FIG. 23 is a diagram illustrating a subband-wise 2-level radio frame structure on the terminal side or a carrier-wise 2-level radio frame structure on the carrier band side in different bands. A method of receiving downlink data through a base station is illustrated.
  • the UE may receive the short TTI radio resource information from the base station as shown in FIG. 19 prior to steps S2301 and S2302.
  • short TTI radio resource information can be received from the base station when carrier merging is set by the base station in step S2002 of FIG. 20 or step S2102 of FIG. 21 (i.e., addition of S cells or addition of sP cells).
  • the present invention can be applied to the uplink band in the same manner.
  • n 3 4
  • n symbols 14 / n
  • 14% n special symbols 14% n special symbols can be designed to be used as a contention-based resource capable of transmitting uplink data through competition between terminals without UL grant from the base station.
  • the 2-level frame structure proposed in the present invention has an effect of transmitting and receiving low latency data using a new frame structure that minimizes the influence on the legacy terminal.
  • the legacy terminal operating in the bands proposed in the present invention blindly decodes the full-band PDCCH of each subframe for data reception. If there is control information to be transmitted to the legacy terminal, the legacy terminal receives the data corresponding thereto based on the information received via the PDCCH.
  • the base station since the base station does not perform data scheduling for a legacy terminal as a subband allocated for low latency, it does not request a legacy terminal to perform a new operation. In addition, if there is no data to be transmitted in the subband for the low latency in the corresponding 1 ms subframe, the base station can use the same resource allocation scheme for data transmission of the legacy terminal as the subband resource for low latency have. Since the PDSCH resource allocation for the PDCCH is performed by the base station control, the legacy terminal can be used as it is.
  • the 5G terminal requesting low latency can receive data more quickly by using a short TTI by receiving data in the sPDSCH resource region.
  • the data reception delay may have a somewhat different effect, but it is possible to receive data with a shorter delay than the delay in data transmission using the conventional 1ms subframe structure It is effective.
  • 24 is a diagram illustrating a wireless transmission / reception delay in a short TTI radio frame structure according to an embodiment of the present invention.
  • a propagation delay occurs from the time when the base station eNB starts transmission of downlink data until the UE starts receiving downlink data. Then, the UE buffers the downlink data before decoding the downlink data, and a buffering delay occurs.
  • the delay due to buffering in the terminal may take a total of about 0.071 ms.
  • the processing delay due to downlink data (and control information) decoding in the UE may take less than about 0.525 ms.
  • the one-way over-to-air latency from the base station to the terminal may take less than about 0.6 ms.
  • the delay for the A / N (ACK / NACK) preparation preparation of preparation
  • ACK / NACK encoding for example, ACK / NACK encoding
  • PD spreading delay
  • the roundtrip OTA latency from the transmitting side (for example, the base station) to the ACK / NACK receiving from the receiving side (for example, have.
  • the roundtrip OTA latency can be reduced by about 3 ms as compared with the example of FIG.
  • a short TTI frame structure (hereinafter referred to as a short TTI frame structure) is used for low latency communication proposed in the present specification, an efficient scheduling method for data transmitted through a short TTI 25 to 30, a detailed description will be given.
  • the Short TTI refers to a TTI having a transmission time interval shorter than a TTI defined by a 1 ms subframe of the LTE / LTE-A system.
  • the Short TTI may be represented by a short subframe, a sPDSCH, a new TTI, or the like.
  • short TTI frame structure A detailed description of the short TTI frame structure will be made by referring to the short TTI frame structure shown in FIGS. 12 to 18, that is, the carrier-wise 2-level frame structure and / or the subband-wise 2-level frame structure.
  • the Short TTI scheduling method includes: (1) a flexible TTI (Transmission Time Interval) scheduling method for scheduling data transmitted in a short TTI using a TTI indication field; and (2) There may be a method of scheduling data transmitted in a short TTI by fixing the start position of the PDSCH / s PDSCH.
  • TTI Transmission Time Interval
  • a flexible TTI scheduling method refers to a scheduling method of data transmitted in a short TTI, i.e., s PDSCH, in a structure in which a plurality of s PDSCHs (multi-s PDSCHs) are mapped to one short PDCCH.
  • a carrier including a short TTI (or a short TTI) (or a short TTI is used) operates in a first stand alone manner and a second carrier operates as a secondary carrier by cross-carrier scheduling Are all available.
  • the carrier with short TTI frame structure operates as the primary cell or the non-cross carrier scheduling is used on the secondary carrier.
  • the primary carrier can be represented by a primary component carrier (PCC), a primary cell (Pcell), a first component carrier, a first carrier, a first serving cell, a secondary cell (Scell), a second component carrier, a second carrier, a second serving cell, or the like.
  • PCC primary component carrier
  • Pcell primary cell
  • Scell secondary cell
  • second component carrier a second carrier
  • second serving cell or the like.
  • a TTI indication field is newly defined to schedule one or more sPDSCHs in one sPDCCH.
  • the TTI indication field indicates whether data to be transmitted from a base station to a mobile station or from a mobile station to a base station is transmitted through a multiple short TTI in the same subframe (1 ms subframe or legacy subframe) Indication information or indicator.
  • the TTI indication field transmits scheduling information for data transmitted in one or more short TTIs via one DL grant (for a specific UE).
  • the TTI indication field may be included in a DL grant transmitted through the sPDCCH.
  • the TTI indication field may be newly defined in a DCI format including data scheduling information such as DL grant or UL grant of the sPDCCH.
  • the DCI format may be a DCI format 0, 1, 1A, 1B, 1C defined in LTE / LTE-A or a newly defined DCI format for transmitting a TTI indication field.
  • the TTI indication field may have a bitmap size corresponding to the number of sPDSCHs mapped to one sPDCCH, and each bit value of the bitmap may be mapped (sequentially) by scheduling in each short TTI.
  • each bit of the bitmap is set to '1', it means that different (or the same) data is transmitted in multiple short TTI using the same resource information scheduled in the DL grant of the sPDCCH.
  • each bit of the bitmap is set to '0', it means that data transmission is not scheduled in the short TTI corresponding to the corresponding bit.
  • the TTI indication field may use a method other than the bitmap format to represent short TTIs (four TTIs in the case of 3 symbols) within a specific unit (e.g., 1 ms subframe).
  • a specific unit e.g. 1 ms subframe.
  • 25 is a diagram illustrating an example of a short TTI scheduling method proposed in the present specification.
  • the short TTI frame structure can be divided into specific units (1 ms subframe unit, 2501) for backward compatibility with the legacy frame structure of LTE / LTE-A. That is, the short TTI frame structure may include one sPDCCH and one or more sPDSCHs in the specific unit.
  • the specific unit may include 14 symbols.
  • one sPDCCH (2 symbols, 2502) and four sPDSCHs (3 symbols per sPDSCH, 2503) can be configured in a 1 ms subframe.
  • the base station can inform the scheduling information for a specific short TTI through which data is transmitted in the DL grant of the sPDCCH through the TTI indication field.
  • the TTI indication field is transmitted as '1011' (2504) or '1010' (2505) in bitmap format through the DL grant of the sPDCCH.
  • the data may be transmitted in a first short TTI, a third short TTI and a fourth short TTI.
  • data transmitted through each short TTI may be the same or different.
  • the TTI indication field may be preferably used when a plurality of s PDSCHs are mapped to one s PDCCH.
  • scheduling information for a short TTI existing within a specific time is defined in the first sPDCCH within a time (eg, 1 to 1.2 ms) during which the base station predicts continuous transmission of data and the channel information does not change abruptly Can be used.
  • 26 is a diagram illustrating another example of the short TTI scheduling method proposed in the present specification.
  • the short TTI frame structure of FIG. 26 includes five short TTIs (or short subframes) 2602 within a specific unit (1ms subframe 2601).
  • the one short TTI includes one sPDCCH 2603 and one sPDSCH 2604 (mapped thereto).
  • the short TTI is composed of 3 symbols, the sPDCCH is 1 symbol, and the sPDSCH is composed of 2 symbols.
  • the TTI indication bitmap for transmitting the scheduling for the data transmitted in the short TTI within the specific unit (x ms) on the first s PDCCH has a length corresponding to the number of short TTIs within the specific unit (or a specific time).
  • the length of the TTI indication bitmap is 5 bits, and each bit of the TTI indication bitmap can indicate whether data is transmitted in each short TTI.
  • the TTI indication bitmap may be repeatedly transmitted in the sPDCCH defined in each short TTI.
  • the transmitted data may be scheduled in the first, third and fourth short TTIs.
  • the BS uses the cross carrier scheduling to schedule data to the UE .
  • the UE can not receive the CIF, and consequently, the UE can not receive the PDSCH.
  • the BS does not transmit the CIF to the UE through the PCFICH, but transmits PDSCH starting position (i.e., 1 to 4 symbols) to be received by the terminal.
  • the method is a scheduling method in a case where a carrier (band) to which a short TTI frame structure is applied is used as a secondary carrier for a specific UE, and cross carrier scheduling in which the scheduling information for the secondary carrier is transmitted from a primary carrier It says.
  • the short TTI scheduling method using cross carrier scheduling can efficiently perform short TTI scheduling on data transmitted through a short TTI frame structure by using the previously described TTI indication field and fixed PDSCH / s PDSCH starting position information to be described later. .
  • FIG. 27 is a diagram illustrating another example of the short TTI scheduling method proposed in the present specification.
  • carrier 2 is a primary carrier and carrier 1 is a secondary carrier.
  • a primary carrier (carrier 2,2701) for a specific terminal has a 1 ms TTI frame structure (legacy frame structure) of an LTE / LTE-A system (legacy system) , 2702) has a frame structure of a short TTI of 0.2ms (a new frame structure for low latency communication).
  • scheduling of data transmitted in short TTI of secondary carrier uses cross-carrier scheduling performed only through primary carrier.
  • bitmap TTI indication field defined above may include scheduling information on data transmitted in the short TTI of the secondary carrier.
  • the bitmap TTI indication field may be transmitted on the PDCCH that transmits the DL grant of the primary carrier.
  • the TTI indication bitmap transmitted through the PDCCH of the second 1 ms subframe unit of the carrier 2 is set to '1011' (2705). This can indicate that the short TTIs scheduled in the second 1 ms subframe unit of the corresponding carrier 1 are the first, third and fourth short TTIs.
  • the TTI indication bitmap when the TTI indication bitmap is set to '1011', it indicates that (same or different) data is transmitted through the first, third and fourth s PDSCHs of carrier 1.
  • the sPDSCH starting position value in the secondary carrier can be defined to have a fixed value without signaling in the RRC message. That is, the starting position of the sPDSCH can be defined such that the sPDSCH at the secondary carrier starts at a fixed position.
  • the sPDSCH starting position may be defined to be fixed after x symbol (s) from the sPDCCH starting symbol of the corresponding frame.
  • the information on the x symbols can be transmitted from the base station to the mobile station in the process of the base station transmitting to the mobile station through the SIB or activating the secondary carrier for carrier aggregation.
  • the base station can set a fixed value of the sPDSCH starting position of the carrier band to the SIB information in which the physical structure information of a specific carrier band is transmitted, and transmit the fixed value to the terminal.
  • the base station may set a fixed value of the sPDSCH starting position through an RRC message to assign or activate a secondary carrier to the terminal, and transmit the fixed value to the terminal.
  • the base station If the base station transmits information on the sPDSCH starting position to the mobile station via the SIB or RRC message, the base station defines a new information element (IE) or a field to transmit information on the sPDSCH starting position to the mobile station Can be informed.
  • IE new information element
  • the RadioResourceConfigCommon information element may include a spdsch-Config field and a spdsch-Start field to inform the sPDSCH starting position.
  • the spdsch-Config field indicates the setting information of the sPDSCH for the short TTI frame structure.
  • the spdsch-Config field may be defined as a new information element or may be defined as a new field in a conventional information element.
  • the spdsch-Start field is a field indicating a sPDSCH start (OFDM) symbol in a secondary carrier to which a short TTI frame structure is applied.
  • the spdsch-start field value may be 1 or 2.
  • the reason why the spdsch-Start field value is 1 or 2 is that the value of the spdsch-start field can be changed according to the number of symbols occupied by the sPDCCH.
  • the value of the spdsch-Start field is 1. If the number of symbols occupied by the sPDCCH is 2, the value of the spdsch-Start field may indicate 2.
  • the value n1 of the spdsch-Start field corresponds to 1 of the spdsch-Start field value
  • the value n2 of the spdsch-Start field corresponds to 2 of the spdsch-Start field value
  • the spdsch-Config field and the spdsch-Start field can be included in the PDSCH-Config information element, and the spdsch-Config field and the spdsch-Start field included in the PDSCH-
  • An example can be expressed as in Table 2 below.
  • PDSCH-Config information element sPDSCH-Config :: SEQUENCE ⁇ ... . spdsch-Start INTEGER (0..1) ... . ⁇
  • the sPDSCH starting position of the secondary carrier is 2 symbols later It can be set to be fixed.
  • a short TTI frame structure using secondary carrier using cross-carrier scheduling and a 1ms subframe frame structure (legacy frame structure) of LTE / LTE-A system are mixed with a subband-wise 2-level frame structure
  • the TTI scheduling method will be described in detail.
  • the previously defined TTI indication field, the 1ms TTI PDSCH start position, and the start position of each s PDSCH within a short TTI are defined.
  • sPDSCH short TTI
  • the TTI indication bitmap transmitted on the PDCCH of the primary carrier (carrier 2,2801) is set to '1010' (2803), which is a short TTI in the short TTI frame structure of the secondary carrier (carrier 1,2802) , That is, data is transmitted in first and third short TTIs in four short TTIs.
  • the PDSCH start position 2804 of the secondary carrier can be defined to be fixed after a certain symbol (s).
  • sPDCCH and sPDSCH in a short TTI divided into n symbols in subframes of remaining symbols except for PDCCH can be defined to be mapped.
  • the PDCCH of the secondary carrier is 2 symbols, the remaining symbols except PDCCH are 12 symbols, and the sPDCCH (1 symbol) and sPDSCH (2 symbols) in short TTI (4 short TTI) Is mapped.
  • the following information or fields should be defined to indicate the PDSCH start position and the start position (2805) of the sPDSCH in the secondary carrier.
  • the pdsch-Start field indicating the PDSCH start position can be newly defined in the PDSCH-ConfigCommon information element.
  • the spdsch-Start field indicating the start point of the sPDSCH can be newly defined in the sPDSCH-Config information element.
  • the base station can transmit the start position of the PDSCH and the start position of the sPDSCH to the UE.
  • the PDSCH start position for the secondary carrier can be defined to always use a fixed value of 2 symbols.
  • the PDSCH start position value of the secondary carrier is included as a pdsch-Start field in the PDSCH-ConfigCommon information element as shown in Table 3 below and can be transmitted from the BS to the MS.
  • PDSCH-ConfigCommon :: SEQUENCE ⁇ referenceSignalPower INTEGER (-60..50), pb INTEGER (0..3), pdsch-Start INTEGER (0..1) ⁇
  • the pdsch-Start field indicating the PDSCH start position in the secondary carrier of the subband-wise 2-level frame structure indicates whether the start OFDM symbol of the PDSCH for the secondary carrier is floating or fixed.
  • the value of the pdsch-Start field may be set to one.
  • the pdsch-Start position in the short TTI frame structure can indicate that the fixed value is used after 2 symbols.
  • the value of the pdsch-Start field is 0 (value n0), it means that the LTE / LTE-A method flexible PDCCH is used.
  • the PDSCH means that it can have a flexible start position for every subframe according to the value transmitted from the PCFICH.
  • the value of the pdsch-Start field is 1 (value n1), it means that the PDSCH starts from the fixed 2 symbols, and it can indicate that it has a fixed PDSCH start value.
  • the sPDSCH configuration information can be defined to inform the sPDSCH start position of the corresponding carrier.
  • the sPDSCH configuration information is a field for informing the sPDSCH start symbol for each short TTI. It can be defined and used in the sPDSCH-Config information element.
  • the spdsch-Start field indicates the start (OFDM) symbol of the sPDSCH for the secondary carrier.
  • the spdsch-Start value can be 1 (value n1) or 2 (value n2).
  • 29 is a flowchart illustrating an example of a short TTI scheduling method proposed in the present specification.
  • a BS transmits a DL grant or an UL grant including a TTI indication field to a UE through a downlink physical channel of a specific carrier band.
  • the TTI indication field indicates an indicator or indicator indicating a short TTI in which data is scheduled, and may be expressed in a bitmap format.
  • the downlink physical channel may be a short PDCCH (sPDCCH).
  • sPDCH short PDCCH
  • the specific carrier band is a short TTI frame structure for low latency communication, and may be a primary carrier or a secondary carrier.
  • the short TTI frame structure in the specific carrier band may be a subband-wise 2-level frame structure.
  • the short TTI frame structure may be a form in which one or more sPDSCHs are mapped to one sPDCCH in a specific unit.
  • the TTI indication field may be repeatedly transmitted in each sPDCCH.
  • the UE can receive low latency data from the base station or transmit it to the base station through a short TTI (sPDSCH) scheduled based on the received TTI indication field.
  • sPDSCH short TTI
  • FIG. 30 is a flowchart illustrating an example of a short TTI scheduling method proposed in the present specification.
  • 30 is a flowchart illustrating a method of performing short TTI scheduling through cross carrier scheduling.
  • a BS transmits a DL grant or an UL grant including a TTI indication field to a UE through a downlink physical channel of a first carrier band.
  • the first carrier band may be expressed as a primary carrier, a first component carrier, a first carrier, a primary cell, or the like, and may be a frame structure of an LTE / LTE-A system (legacy frame structure).
  • the TTI indication field indicates an indicator or indicator indicating a short TTI (sPDSCH) in which data of the second carrier band is scheduled, and may be expressed in a bitmap format.
  • sPDSCH short TTI
  • the downlink physical channel may be a PDCCH.
  • the BS may transmit control information related to the PDSCH and the sPDSCH scheduled in the second carrier band to the MS.
  • the control information associated with the PDSCH scheduled in the second carrier band includes a pdsch-start field associated with the start position of the PDSCH in the second carrier band.
  • the control information associated with the PDSCH scheduled in the second carrier band may be a PDSCH-config information element in the RadioResourceConfigCommon information element.
  • the pdsch-start field value may be a value indicating whether the start symbol (s) of the PDSCH is flexible or fixed.
  • the PDSCH in the second carrier band may indicate that the PDSCH has a floating start position value every subframe (1 ms) by the value transmitted from the PCFICH.
  • the PDSCH in the second carrier band may have a fixed start position value and may include the fixed start position value.
  • control information related to the sPDSCH scheduled in the second carrier band may be transmitted through the SIB or through an RRC message for assigning or activating the second carrier band between the BS and the MS. have.
  • control information associated with the sPDSCH may be the sPDSCH-config information element in the RadioResourceConfigCommon information element.
  • the sPDSCH-config information element indicates setting information of the sPDSCH for the short TTI frame structure.
  • control information related to the sPDSCH scheduled in the second carrier band includes a spdsch-start field related to the start position of the sPDSCH in the second carrier band.
  • the spdsch-start field indicates a start symbol (s) of the sPDSCH of the second carrier band.
  • the UE receives low latency data from the BS through the short TTI (sPDSCH) scheduled in the second carrier band based on the TTI indication field received on the downlink physical channel of the first carrier band, Lt; / RTI >
  • sPDSCH short TTI
  • the second carrier band may be represented as a secondary carrier, a second component carrier, a second carrier, a secondary cell, or the like, to which a short TTI frame structure is applied for low latency communication.
  • the short TTI frame structure in the second carrier band may be a subband-wise 2-level frame structure.
  • the short TTI frame structure may be a form in which one or more sPDSCHs are mapped to one sPDCCH in a specific unit.
  • the TTI indication field may be repeatedly transmitted in each sPDCCH.
  • the BS transmits the scheduling information for the short TTI of the second carrier to the UE through the downlink physical channel of the first carrier band using cross carrier scheduling.
  • FIG. 31 illustrates a block diagram of a wireless communication apparatus according to an embodiment of the present invention.
  • a wireless communication system includes a base station 3110 and a plurality of terminals 3120 located within a base station 3110 area.
  • the base station 3110 includes a processor 3111, a memory 3112, and a radio frequency unit 3113.
  • the processor 3111 implements the functions, processes and / or methods suggested in Figs. 1 to 30 above.
  • the layers of the air interface protocol may be implemented by the processor 3111.
  • the memory 3112 is connected to the processor 3111 and stores various information for driving the processor 3111.
  • the RF unit 3113 is connected to the processor 3111 to transmit and / or receive a radio signal.
  • the terminal 3120 includes a processor 3121, a memory 3122, and an RF unit 3123.
  • the processor 3121 implements the functions, processes, and / or methods suggested earlier in FIGS. 1-30.
  • the layers of the air interface protocol may be implemented by the processor 3121.
  • the memory 3122 is connected to the processor 3121 and stores various information for driving the processor 3121.
  • the RF unit 3123 is connected to the processor 3121 to transmit and / or receive a radio signal.
  • the memories 3112 and 3122 may be internal or external to the processors 3111 and 3121 and may be coupled to the processors 3111 and 3121 in various well known means. Also, the base station 3110 and / or the terminal 3120 may have a single antenna or multiple antennas.
  • Embodiments in accordance with the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof.
  • an embodiment of the present invention may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs) field programmable gate arrays, processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • an embodiment of the present invention may be implemented in the form of a module, a procedure, a function, or the like which performs the functions or operations described above.
  • the software code can be stored in memory and driven by the processor.
  • the memory is located inside or outside the processor and can exchange data with the processor by various means already known.
  • the data transmission / reception scheme in the wireless communication system of the present invention can be applied to various wireless communication systems such as the 3GPP LTE / LTE-A system and the future 5G system for low latency communication.

Abstract

본 명세서는 Low latency를 지원하는 무선 통신 시스템에서 데이터를 송수신하기 위한 방법에 있어서, 단말에 의해 수행되는 상기 방법은, 기지국으로부터 low latency 데이터가 스케쥴링되는 short TTI(Transmission Time Interval)를 나타내는 TTI indication 필드를 포함하는 하향링크 제어정보를 하향링크 물리채널을 통해 수신하는 단계; 및 상기 수신된 TTI indication 필드에 기초하여 상기 low latency 데이터를 스케쥴링된 short TTI를 통해 기지국으로부터 수신하는 단계를 포함하여 이루어지는 것을 특징으로 한다.

Description

저 지연을 지원하는 무선 통신 시스템에서 데이터 송수신 방법 및 이를 위한 장치
본 발명은 무선 통신 시스템에 관한 것으로서, 보다 상세하게 저 지연(Low latency)를 지원하는 무선 통신 시스템에서 데이터를 송수신하기 위한 방법 및 이를 지원하는 장치에 관한 것이다.
이동 통신 시스템은 사용자의 활동성을 보장하면서 음성 서비스를 제공하기 위해 개발되었다. 그러나 이동통신 시스템은 음성뿐 아니라 데이터 서비스까지 영역을 확장하였으며, 현재에는 폭발적인 트래픽의 증가로 인하여 자원의 부족 현상이 야기되고 사용자들이 보다 고속의 서비스에 대한 요구하므로, 보다 발전된 이동 통신 시스템이 요구되고 있다.
차세대 이동 통신 시스템의 요구 조건은 크게 폭발적인 데이터 트래픽의 수용, 사용자 당 전송률의 획기적인 증가, 대폭 증가된 연결 디바이스 개수의 수용, 매우 낮은 단대단 지연(End-to-End Latency), 고에너지 효율을 지원할 수 있어야 한다. 이를 위하여 이중 연결성(Dual Connectivity), 대규모 다중 입출력(Massive MIMO: Massive Multiple Input Multiple Output), 전이중(In-band Full Duplex), 비직교 다중접속(NOMA: Non-Orthogonal Multiple Access), 초광대역(Super wideband) 지원, 단말 네트워킹(Device Networking) 등 다양한 기술들이 연구되고 있다.
종래의 LTE/LTE-A 시스템은 1ms TTI(Transmission Time Interval)를 가지는 frame 구조로 디자인 되었으며, video 어플리케이션을 위해 데이터 요구 지연 시간은 10ms이었다.
그러나, 미래 5G 기술은 실시간 제어(real-time control) 및 촉감 인터넷(tactile internet)과 같은 새로운 application의 등장으로 더욱 낮은 지연의 데이터 전송을 요구하고 있으며, 5G 데이터 요구 지연은 1ms까지 낮춰질 것으로 예상하고 있다.
그러나, 종래 1ms TTI를 가지는 frame structure로는 1ms 데이터 요구 지연을 만족시킬 수 없는 문제가 있다.
5G는 종래 대비 약 10배 감소된 데이터 지연 제공을 목표로 하고 있다. 이와 같은 문제를 해결하기 위해 5G는 더 짧은 TTI를 가지는 새로운 frame 구조의 통신 시스템이 제안될 것으로 예상된다.
또한, 5G 시스템은 low latency뿐만 high capacity, low energy consumption, low cost, high user data rate 등과 같이 다양한 요구 사항을 가지는 응용이 함께 공존할 것으로 예상된다.
이와 같이 5G는 Ultra Low Latency를 요구하는 응용부터 높은 데이터 전송율을 요구하는 응용까지 다양한 종류의 응용을 함께 지원하기 위해 종래와는 다른 구조의 시스템으로 진화될 필요가 있다. 단말의 데이터 수신 지연을 최소화하기 위해서는 종래와는 다른 새로운 프레임 구조가 정의될 필요가 있으며, 새로운 프레임 구조로 인한 legacy 단말의 영향은 최소화되어야 한다.
또한, 미래 5G는 저지연 통신을 위한 새로운 구조의 frame 구조가 도입됨에 따라 서로 다른 구조의 frame structure를 가지는 carrier들을 aggregation하는 방법이 적용될 수 있다.
이 경우, 서로 다른 구조를 가지는 프레임에 대한 cross-carrier scheduling 방법에 대해 새롭게 정의될 필요가 있다.
본 명세서는 low latency 통신을 위한 short TTI frame 구조를 제공함에 목적이 있다.
또한, 본 명세서는 short TTI frame 구조를 가지는 carrier band에서 short TTI로 전송되는 데이터에 대한 효율적인 TTI 스케쥴링을 제공함에 목적이 있다.
또한, 본 명세서는 cross carrier scheduling을 이용하는 경우, short TTI frame 구조를 가지는 secondary carrier에서의 효율적인 short TTI 스케쥴링을 제공함에 목적이 있다.
본 명세서는 Low latency를 지원하는 무선 통신 시스템에서 데이터를 송수신하기 위한 방법에 있어서, 단말에 의해 수행되는 상기 방법은, 기지국으로부터 low latency 데이터가 스케쥴링되는 short TTI(Transmission Time Interval)를 나타내는 TTI indication 필드를 포함하는 하향링크 제어정보를 하향링크 물리채널을 통해 수신하는 단계; 및 상기 수신된 TTI indication 필드에 기초하여 상기 low latency 데이터를 스케쥴링된 short TTI를 통해 기지국으로부터 수신하는 단계를 포함하여 이루어지는 것을 특징으로 한다.
또한, 본 명세서에서 상기 TTI indication 필드는 bitmap으로 표현되며,상기 bitmap의 각 bit는 각 short TTI에서의 스케쥴링 여부를 나타내는 것을 특징으로 한다.
또한, 본 명세서에서 상기 하향링크 물리채널은 sPDCCH(short PDCCH)인 것을 특징으로 한다.
또한, 본 명세서에서 상기 short TTI는 하나 이상의 sPDSCH(short Physical Downlink Shared Channel)로 구성되거나 또는 하나의 sPDCCH 및 하나 이상의 sPDSCH로 구성되는 것을 특징으로 한다.
또한, 본 명세서에서 상기 하향링크 제어 정보 및 상기 low latency 데이터는 특정 carrier band를 통해 수신되며, 상기 특정 carrier band는 특정 단위 내 하나 이상의 short TTI를 포함하는 short TTI frame 구조인 것을 특징으로 한다.
또한, 본 명세서에서 상기 특정 carrier band는 특정 subband 내 short TTI frame 구조를 가지는 subband-wise 2-level frame 구조인 것을 특징으로 한다.
또한, 본 명세서에서 상기 TTI indication 필드는 제 1 carrier band를 통해 수신되고, 상기 low latency 데이터는 제 2 carrier band를 통해 수신되는 것을 특징으로 한다.
또한, 본 명세서에서 상기 제 1 carrier band는 LTE/LTE-A 시스템의 frame 구조를 가지며, 상기 제 2 carrier band는 low latency 통신을 위한 short TTI frame 구조를 가지는 것을 특징으로 한다.
또한, 본 명세서에서 상기 하향링크 물리채널은 PDCCH(Physical Downlink Control Channel)인 것을 특징으로 한다.
또한, 본 명세서에서 상기 제 2 carrier band는 특정 subband 내 short TTI frame 구조를 가지는 subband-wise 2-level frame 구조인 것을 특징으로 한다.
또한, 본 명세서는 상기 기지국으로부터 상기 제 2 carrier band의 PDSCH start position과 관련된 PDSCH start 필드를 수신하는 단계를 더 포함하는 것을 특징으로 한다.
또한, 본 명세서는 상기 기지국으로부터 상기 제 2 carrier band의 short TTI frame 구조의 sPDSCH 설정과 관련된 sPDSCH 설정 정보 또는 상기 제 2 carrier band의 sPDSCH start position과 관련된 sPDSCH start 필드 중 적어도 하나를 수신하는 단계를 더 포함하는 것을 특징으로 한다.
또한, 본 명세서에서 상기 sPDSCH 설정 정보 및 상기 sPDSCH start 필드는 상기 기지국으로부터 SIB(System Information Block)를 통해 수신되거나, 상기 기지국으로부터 상기 제 2 carrier band를 할당(assign)받거나 또는 상기 기지국과 상기 제 2 carrier band를 활성화(activation) 과정에서 수신되는 것을 특징으로 한다.
또한, 본 명세서는 Low latency를 지원하는 무선 통신 시스템에서 데이터를 송수신하기 위한 단말에 있어서, 상기 단말은 무선 신호를 송수신하기 위한 RF(Radio Frequency) 유닛; 및 프로세서를 포함하고, 상기 프로세서는 기지국으로부터 low latency 데이터가 스케쥴링되는 short TTI(Transmission Time Interval)를 나타내는 TTI indication 필드를 포함하는 하향링크 제어정보를 하향링크 물리채널을 통해 수신하고; 및 상기 수신된 TTI indication 필드에 기초하여 상기 low latency 데이터를 스케쥴링된 short TTI를 통해 기지국으로부터 수신하도록 제어하는 것을 특징으로 한다.
본 명세서는 short TTI frame 구조를 새롭게 정의함으로써, 데이터 송수신의 지연을 최소화할 수 있는 효과가 있다.
또한, 본 명세서는 short TTI의 스케쥴링을 나타내는 TTI indication 필드 등을 통해 short TTI frame 구조를 가지는 carrier band에서 효율적인 TTI 스케쥴링을 수행할 수 있는 효과가 있다.
또한, 본 명세서는 TTI indication 필드, 데이터 물리 채널의 start position과 관련된 정보 등을 통해 서로 다른 frame 구조를 가지는 carrier aggregation에서 cross carrier scheduling을 제공할 수 있는 효과가 있다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 특징을 설명한다.
도 1은 본 발명이 적용될 수 있는 3GPP LTE/LTE-A 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 설명하기 위한 도면이다.
도 2는 본 발명이 적용될 수 있는 무선 통신 시스템에서 무선 프레임의 구조를 나타낸다.
도 3은 본 발명이 적용될 수 있는 무선 통신 시스템에서 하나의 하향링크 슬롯에 대한 자원 그리드(resource grid)를 예시한 도면이다.
도 4는 본 발명이 적용될 수 있는 무선 통신 시스템에서 하향링크 서브 프레임의 구조를 나타낸다.
도 5는 본 발명이 적용될 수 있는 무선 통신 시스템에서 상향링크 서브 프레임의 구조를 나타낸다.
도 6은 본 발명이 적용될 수 있는 무선 통신 시스템에서 동기 신호(Synchronization Signal)의 전송을 위한 무선 프레임 구조를 예시한 것이다.
도 7은 본 발명이 적용될 수 있는 무선 통신 시스템에서 동기 신호의 전송을 위한 무선 프레임 구조를 예시한 것이다.
도 8은 본 발명이 적용될 수 있는 무선 통신 시스템에서 컴포넌트 캐리어 및 캐리어 병합의 일례를 나타낸다.
도 9는 본 발명이 적용될 수 있는 무선 통신 시스템에서 캐리어 병합의 일례를 나타낸다.
도 10은 본 발명이 적용될 수 있는 무선 통신 시스템에서 크로스 캐리어 스케줄링에 따른 서브 프레임 구조의 일례를 나타낸다.
도 11은 본 발명이 적용될 수 있는 3GPP LTE/LTE-A 시스템에서 무선 송수신 지연을 예시하는 도면이다.
도 12는 본 발명의 일 실시예에 따른 무선 프레임 구조를 설명하기 위한 도면이다.
도 13은 본 발명의 일 실시예에 따른 무선 프레임 구조를 설명하기 위한 도면이다.
도 14는 본 발명의 일 실시예에 따른 무선 프레임 구조를 설명하기 위한 도면이다.
도 15는 본 발명의 일 실시예에 따른 무선 프레임 구조를 설명하기 위한 도면이다.
도 16은 본 발명의 일 실시예에 따른 무선 프레임 구조를 설명하기 위한 도면이다.
도 17은 본 발명의 일 실시예에 따른 무선 프레임 구조를 설명하기 위한 도면이다.
도 18은 본 발명의 일 실시예에 따른 무선 프레임 구조를 설명하기 위한 도면이다.
도 19는 본 발명의 일 실시예에 따른 짧은 TTI 프레임 구조에 대한 정보를 전송하는 방법을 예시하는 도면이다.
도 20은 본 발명의 일 실시예에 따른 캐리어 측면 2 레벨 프레임 구조를 위한 캐리어 병합을 설정하는 방법을 예시하는 도면이다.
도 21은 캐리어 측면 2 레벨 프레임 구조를 위한 캐리어 병합을 설정하는 방법을 예시하는 도면이다.
도 22는 본 발명의 일 실시예에 따른 데이터 송수신 방법을 예시하는 도면이다.
도 23은 본 발명의 일 실시예에 따른 데이터 송수신 방법을 예시하는 도면이다.
도 24는 본 발명의 일 실시예에 따른 짧은 TTI 무선 프레임 구조에서의 무선 송수신 지연을 예시하는 도면이다.
도 25 내지 도 28은 본 발명의 일 실시 예에 따른 짧은 TTI 스케쥴링 방법의 일 예를 나타낸 도이다.
도 29 및 도 30은 본 발명의 일 실시 예에 따른 짧은 TTI 스케쥴링 방법의 일 예를 나타낸 순서도이다.
도 31은 본 발명의 일 실시예에 따른 무선 통신 장치의 블록 구성도를 예시한다.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다. 이하의 상세한 설명은 본 발명의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나, 당업자는 본 발명이 이러한 구체적 세부사항 없이도 실시될 수 있음을 안다.
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다.
본 명세서에서 기지국은 단말과 직접적으로 통신을 수행하는 네트워크의 종단 노드(terminal node)로서의 의미를 갖는다. 본 문서에서 기지국에 의해 수행되는 것으로 설명된 특정 동작은 경우에 따라서는 기지국의 상위 노드(upper node)에 의해 수행될 수도 있다. 즉, 기지국을 포함하는 다수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. '기지국(BS: Base Station)'은 고정국(fixed station), Node B, eNB(evolved-NodeB), BTS(base transceiver system), 액세스 포인트(AP: Access Point) 등의 용어에 의해 대체될 수 있다. 또한, '단말(Terminal)'은 고정되거나 이동성을 가질 수 있으며, UE(User Equipment), MS(Mobile Station), UT(user terminal), MSS(Mobile Subscriber Station), SS(Subscriber Station), AMS(Advanced Mobile Station), WT(Wireless terminal), MTC(Machine-Type Communication) 장치, M2M(Machine-to-Machine) 장치, D2D(Device-to-Device) 장치 등의 용어로 대체될 수 있다.
이하에서, 하향링크(DL: downlink)는 기지국에서 단말로의 통신을 의미하며, 상향링크(UL: uplink)는 단말에서 기지국으로의 통신을 의미한다. 하향링크에서 송신기는 기지국의 일부이고, 수신기는 단말의 일부일 수 있다. 상향링크에서 송신기는 단말의 일부이고, 수신기는 기지국의 일부일 수 있다.
이하의 설명에서 사용되는 특정 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access), NOMA(non-orthogonal multiple access) 등과 같은 다양한 무선 접속 시스템에 이용될 수 있다. CDMA는 UTRA(universal terrestrial radio access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(global system for mobile communications)/GPRS(general packet radio service)/EDGE(enhanced data rates for GSM evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(universal mobile telecommunications system)의 일부이다. 3GPP(3rd generation partnership project) LTE(long term evolution)은 E-UTRA를 사용하는 E-UMTS(evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(advanced)는 3GPP LTE의 진화이다.
본 발명의 실시예들은 무선 접속 시스템들인 IEEE 802, 3GPP 및 3GPP2 중 적어도 하나에 개시된 표준 문서들에 의해 뒷받침될 수 있다. 즉, 본 발명의 실시예들 중 본 발명의 기술적 사상을 명확히 드러내기 위해 설명하지 않은 단계들 또는 부분들은 상기 문서들에 의해 뒷받침될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다.
설명을 명확하게 하기 위해, 3GPP LTE/LTE-A를 위주로 기술하지만 본 발명의 기술적 특징이 이에 제한되는 것은 아니다.

시스템 일반
도 1은 본 발명이 적용될 수 있는 3GPP LTE/LTE-A 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 설명하기 위한 도면이다.
전원이 꺼진 상태에서 다시 전원이 켜지거나, 새로이 셀에 진입한 단말은 S101 단계에서 기지국과 동기를 맞추는 등의 초기 셀 탐색(initial cell search) 작업을 수행한다. 이를 위해 단말은 기지국으로부터 주 동기 채널(P-SCH: primary synchronization channel) 및 부 동기 채널(S-SCH: secondary synchronization channel)을 수신하여 기지국과 동기를 맞추고, 셀 ID(identifier) 등의 정보를 획득한다.
그 후, 단말은 기지국으로부터 물리 방송 채널(PBCH: physical broadcast channel) 신호를 수신하여 셀 내 방송 정보를 획득할 수 있다. 한편, 단말은 초기 셀 탐색 단계에서 하향링크 참조 신호(DL RS: downlink reference signal)를 수신하여 하향링크 채널 상태를 확인할 수 있다.
초기 셀 탐색을 마친 단말은 S102 단계에서 PDCCH 및 PDCCH 정보에 따른 PDSCH 을 수신하여 조금 더 구체적인 시스템 정보를 획득할 수 있다.
이후, 단말은 기지국에 접속을 완료하기 위해 이후 단계 S103 내지 단계 S106과 같은 랜덤 액세스 절차(random access procedure)을 수행할 수 있다. 이를 위해 단말은 물리 랜덤 액세스 채널(PRACH: physical random access channel)을 통해 프리앰블(preamble)을 전송하고(S103), PDCCH 및 이에 대응하는 PDSCH을 통해 프리앰블에 대한 응답 메시지를 수신할 수 있다(S104). 경쟁 기반 랜덤 액세스의 경우, 단말은 추가적인 PRACH 신호의 전송(S105) 및 PDCCH 신호 및 이에 대응하는 PDSCH 신호의 수신(S106)과 같은 충돌 해결 절차(contention resolution procedure)를 수행할 수 있다.
상술한 바와 같은 절차를 수행한 단말은 이후 일반적인 상/하향링크 신호 전송 절차로서 PDCCH 신호 및/또는 PDSCH 신호의 수신(S107) 및 물리 상향링크 공유 채널(PUSCH) 신호 및/또는 물리 상향링크 제어 채널(PUCCH) 신호의 전송(S108)을 수행할 수 있다.
단말이 기지국으로 전송하는 제어정보를 통칭하여 상향링크 제어정보(UCI: uplink control information)라고 지칭한다. UCI는 HARQ-ACK/NACK, 스케줄링 요청(SR: scheduling request), 채널 품질 지시자(CQI), 프리코딩 행렬 지시자(PMI: precoding matrix indicator), 랭크 지시자(RI: rank indication) 정보 등을 포함한다.
LTE/LTE-A 시스템에서 UCI는 일반적으로 PUCCH를 통해 주기적으로 전송되지만, 제어정보와 트래픽 데이터가 동시에 전송되어야 할 경우 PUSCH를 통해 전송될 수 있다. 또한, 네트워크의 요청/지시에 의해 PUSCH를 통해 UCI를 비주기적으로 전송할 수 있다.
도 2는 본 발명이 적용될 수 있는 무선 통신 시스템에서 무선 프레임의 구조를 나타낸다.
하향 링크 전송과 상향 링크 전송 간의 무선 자원을 구분하는 방식을 '듀플렉스(duplex)'라고 정의한다.
주파수 밴드를 하향 링크 전송 밴드와 상향 링크 전송 밴드로 구분하여 양방향 송수신하는 경우 주파수 분할 듀플렉스(FDD Frequency Division Duplex)라고 표현한다. FDD 방식에 의하면 상향링크 전송과 하향링크 전송이 서로 다른 주파수 대역을 차지하면서 이루어진다.
동일 주파수 밴드에서 시간 영역(time domain) 무선 자원을 하향 링크 시구간(time duration) 자원과 상향링크 시구간(time duration) 자원으로 구분하여 송수신하는 경우 시간 분할 듀플렉스(TDD: Time Division Duplex)라고 표현한다.
TDD 방식에 의하면 상향링크 전송과 하향링크 전송이 같은 주파수 대역을 차지하면서 서로 다른 시간에 이루어진다. TDD 방식의 채널 응답은 실질적으로 상호적(reciprocal)이다. 이는 주어진 주파수 영역에서 하향링크 채널 응답과 상향링크 채널 응답이 거의 동일하다는 것을 의미한다. 따라서, TDD에 기반한 무선통신 시스템에서 하향링크 채널 응답은 상향링크 채널 응답으로부터 얻어질 수 있는 장점이 있다. TDD 방식은 전체 주파수 대역을 상향링크 전송과 하향링크 전송이 시분할되므로 기지국에 의한 하향링크 전송과 단말에 의한 상향링크 전송이 동시에 수행될 수 없다. 상향링크 전송과 하향링크 전송이 서브프레임 단위로 구분되는 TDD 시스템에서, 상향링크 전송과 하향링크 전송은 서로 다른 서브프레임에서 수행된다.
3GPP LTE/LTE-A 표준에서는 FDD(Frequency Division Duplex)에 적용 가능한 타입 1 무선 프레임(radio frame) 구조와 TDD(Time Division Duplex)에 적용 가능한 타입 2의 무선 프레임 구조를 지원한다.
도 2의 (a)는 타입 1 무선 프레임의 구조를 예시한다. 무선 프레임(radio frame)은 10개의 서브프레임(subframe)으로 구성된다. 하나의 서브프레임은 시간 영역(time domain)에서 2개의 슬롯(slot)으로 구성된다. 하나의 서브프레임을 전송하는데 걸리는 시간을 TTI(transmission time interval)이라 한다. 예를 들어, 하나의 서브 프레임은 길이는 1ms이고, 하나의 슬롯의 길이는 0.5ms일 수 있다.
하나의 슬롯은 시간 영역에서 복수의 OFDM(orthogonal frequency division multiplexing) 심볼을 포함하고, 주파수 영역에서 다수의 자원블록(RB: Resource Block)을 포함한다. 3GPP LTE는 하향링크에서 OFDMA를 사용하므로 OFDM 심볼은 하나의 심볼 구간(symbol period)을 표현하기 위한 것이다. OFDM 심볼은 하나의 SC-FDMA 심볼 또는 심볼 구간이라고 할 수 있다. 자원 블록(resource block)은 자원 할당 단위이고, 하나의 슬롯에서 복수의 연속적인 부 반송파(subcarrier)를 포함한다.
도 2의 (b)는 타입 2 프레임 구조(frame structure type 2)를 나타낸다. 타입 2 무선 프레임은 2개의 하프 프레임(half frame)으로 구성되며, 각 하프 프레임은 5개의 서브프레임과 DwPTS(Downlink Pilot Time Slot), 보호구간(GP: Guard Period), UpPTS(Uplink Pilot Time Slot)로 구성되며, 이 중 1개의 서브프레임은 2개의 슬롯으로 구성된다. DwPTS는 단말에서의 초기 셀 탐색, 동기화 또는 채널 추정에 사용된다. UpPTS는 기지국에서의 채널 추정과 단말의 상향링크 전송 동기를 맞추는 데 사용된다. 보호구간은 상향링크와 하향링크 사이에 하향링크 신호의 다중경로 지연으로 인해 상향링크에서 생기는 간섭을 제거하기 위한 구간이다.
TDD 시스템의 타입 2 프레임 구조에서 상향링크-하향링크 구성(uplink-downlink configuration)은 모든 서브프레임에 대하여 상향링크와 하향링크가 할당(또는 예약)되는지 나타내는 규칙이다. 표 1은 상향링크-하향링크 구성을 나타낸다.
Uplink-Downlink configuration Downlink-to-Uplink Switch-point periodicity Subframe number
0 1 2 3 4 5 6 7 8 9
0 5ms D S U U U D S U U U
1 5ms D S U U D D S U U D
2 5ms D S U D D D S U D D
3 10ms D S U U U D D D D D
4 10ms D S U U D D D D D D
5 10ms D S U D D D D D D D
6 5ms D S U U U D S U U D
표 1을 참조하면, 무선 프레임의 각 서브프레임 별로, 'D'는 하향링크 전송을 위한 서브프레임을 나타내고, 'U'는 상향링크 전송을 위한 서브프레임을 나타내며, 'S'는 DwPTS, GP, UpPTS 3가지의 필드로 구성되는 스페셜 서브프레임(special subframe)을 나타낸다. 상향링크-하향링크 구성은 7가지로 구분될 수 있으며, 각 구성 별로 하향링크 서브프레임, 스페셜 서브프레임, 상향링크 서브프레임의 위치 및/또는 개수가 다르다.
하향링크에서 상향링크로 변경되는 시점 또는 상향링크에서 하향링크로 전환되는 시점을 전환 시점(switching point)이라 한다. 전환 시점의 주기성(Switch-point periodicity)은 상향링크 서브프레임과 하향링크 서브프레임이 전환되는 양상이 동일하게 반복되는 주기를 의미하며, 5ms 또는 10ms가 모두 지원된다. 5ms 하향링크-상향링크 전환 시점의 주기를 가지는 경우에는 스페셜 서브프레임(S)은 하프-프레임 마다 존재하고, 5ms 하향링크-상향링크 전환 시점의 주기를 가지는 경우에는 첫번째 하프-프레임에만 존재한다.
모든 구성에 있어서, 0번, 5번 서브프레임 및 DwPTS는 하향링크 전송만을 위한 구간이다. UpPTS 및 서브프레임 서브프레임에 바로 이어지는 서브프레임은 항상 상향링크 전송을 위한 구간이다.
이러한, 상향링크-하향링크 구성은 시스템 정보로써 기지국과 단말이 모두 알고 있을 수 있다. 기지국은 상향링크-하향링크 구성 정보가 바뀔 때마다 구성 정보의 인덱스만을 전송함으로써 무선 프레임의 상향링크-하향링크 할당상태의 변경을 단말에 알려줄 수 있다. 또한, 구성 정보는 일종의 하향링크 제어정보로서 다른 스케줄링 정보와 마찬가지로 PDCCH(Physical Downlink Control Channel)를 통해 전송될 수 있으며, 방송 정보로서 브로드캐스트 채널(broadcast channel)을 통해 셀 내의 모든 단말에 공통으로 전송될 수도 있다.
무선 프레임의 구조는 하나의 예시에 불과하며, 무선 프레임에 포함되는 부 반송파의 수 또는 서브 프레임에 포함되는 슬롯의 수, 슬롯에 포함되는 OFDM 심볼의 수는 다양하게 변경될 수 있다.
도 3은 본 발명이 적용될 수 있는 무선 통신 시스템에서 하나의 하향링크 슬롯에 대한 자원 그리드(resource grid)를 예시한 도면이다.
도 3을 참조하면, 하나의 하향링크 슬롯은 시간 영역에서 복수의 OFDM 심볼을 포함한다. 여기서, 하나의 하향링크 슬롯은 7개의 OFDM 심볼을 포함하고, 하나의 자원 블록은 주파수 영역에서 12개의 부 반송파를 포함하는 것을 예시적으로 기술하나, 이에 한정되는 것은 아니다.
자원 그리드 상에서 각 요소(element)를 자원 요소(resource element)하고, 하나의 자원 블록(RB: resource block)은 12 × 7 개의 자원 요소를 포함한다. 하향링크 슬롯에 포함되는 자원 블록들의 수 NDL은 하향링크 전송 대역폭(bandwidth)에 종속한다.
상향링크 슬롯의 구조는 하향링크 슬롯의 구조와 동일할 수 있다.
도 4는 본 발명이 적용될 수 있는 무선 통신 시스템에서 하향링크 서브 프레임의 구조를 나타낸다.
도 4를 참조하면, 서브 프레임내의 첫번째 슬롯에서 앞의 최대 3개의 OFDM 심볼들은 제어 채널들이 할당되는 제어 영역(control region)이고, 나머지 OFDM 심볼들은 PDSCH(Physical Downlink Shared Channel)이 할당되는 데이터 영역(data region)이다. 3GPP LTE에서 사용되는 하향링크 제어 채널의 일례로 PCFICH(Physical Control Format Indicator Channel), PDCCH(Physical Downlink Control Channel), PHICH(Physical Hybrid-ARQ Indicator Channel) 등이 있다.
PCFICH는 서브 프레임의 첫번째 OFDM 심볼에서 전송되고, 서브 프레임 내에 제어 채널들의 전송을 위하여 사용되는 OFDM 심볼들의 수(즉, 제어 영역의 크기)에 관한 정보를 나른다. PHICH는 상향 링크에 대한 응답 채널이고, HARQ(Hybrid Automatic Repeat Request)에 대한 ACK(Acknowledgement)/NACK(Not-Acknowledgement) 신호를 나른다. PDCCH를 통해 전송되는 제어 정보를 하향링크 제어정보(DCI: downlink control information)라고 한다. 하향링크 제어정보는 상향링크 자원 할당 정보, 하향링크 자원 할당 정보 또는 임의의 단말 그룹에 대한 상향링크 전송(Tx) 파워 제어 명령을 포함한다.
PDCCH는 DL-SCH(Downlink Shared Channel)의 자원 할당 및 전송 포맷(이를 하향링크 그랜트라고도 한다.), UL-SCH(Uplink Shared Channel)의 자원 할당 정보(이를 상향링크 그랜트라고도 한다.), PCH(Paging Channel)에서의 페이징(paging) 정보, DL-SCH에서의 시스템 정보, PDSCH에서 전송되는 랜덤 액세스 응답(random access response)과 같은 상위 레이어(upper-layer) 제어 메시지에 대한 자원 할당, 임의의 단말 그룹 내 개별 단말들에 대한 전송 파워 제어 명령들의 집합, VoIP(Voice over IP)의 활성화 등을 나를 수 있다. 복수의 PDCCH들은 제어 영역 내에서 전송될 수 있으며, 단말은 복수의 PDCCH들을 모니터링할 수 있다. PDCCH는 하나 또는 복수의 연속적인 CCE(control channel elements)의 집합으로 구성된다. CCE는 무선 채널의 상태에 따른 부호화율(coding rate)을 PDCCH에 제공하기 위하여 사용되는 논리적 할당 단위이다. CCE는 복수의 자원 요소 그룹(resource element group)들에 대응된다. PDCCH의 포맷 및 사용 가능한 PDCCH의 비트 수는 CCE들의 수와 CCE들에 의해 제공되는 부호화율 간의 연관 관계에 따라 결정된다.
기지국은 단말에게 전송하려는 DCI에 따라 PDCCH 포맷을 결정하고, 제어 정보에 CRC(Cyclic Redundancy Check)를 붙인다. CRC에는 PDCCH의 소유자(owner)나 용도에 따라 고유한 식별자(이를 RNTI(Radio Network Temporary Identifier)라고 한다.)가 마스킹된다. 특정의 단말을 위한 PDCCH라면 단말의 고유한 식별자, 예를 들어 C-RNTI(Cell-RNTI)가 CRC에 마스킹될 수 있다. 또는 페이징 메시지를 위한 PDCCH라면 페이징 지시 식별자, 예를 들어 P-RNTI(Paging-RNTI)가 CRC에 마스킹될 수 있다. 시스템 정보, 더욱 구체적으로 시스템 정보 블록(SIB: system information block)를 위한 PDCCH라면 시스템 정보 식별자, SI-RNTI(system information RNTI)가 CRC에 마스킹될 수 있다. 단말의 랜덤 액세스 프리앰블의 전송에 대한 응답인 랜덤 액세스 응답을 지시하기 위하여, RA-RNTI(random access-RNTI)가 CRC에 마스킹될 수 있다.
도 5는 본 발명이 적용될 수 있는 무선 통신 시스템에서 상향링크 서브 프레임의 구조를 나타낸다.
도 5를 참조하면, 상향링크 서브 프레임은 주파수 영역에서 제어 영역과 데이터 영역으로 나눌 수 있다. 제어 영역에는 상향링크 제어 정보를 나르는 PUCCH(Physical Uplink Control Channel)이 할당된다. 데이터 영역은 사용자 데이터를 나르는 PUSCH(Physical Uplink Shared Channel)이 할당된다. 일반적으로, 단일 반송파 특성을 유지하기 위해 하나의 단말은 PUCCH와 PUSCH을 동시에 전송하지 않을 수 있다.
하나의 단말에 대한 PUCCH에는 서브 프레임 내에 자원 블록(RB: Resource Block) 쌍이 할당된다. RB 쌍에 속하는 RB들은 2개의 슬롯들의 각각에서 서로 다른 부 반송파를 차지한다. 이를 PUCCH에 할당된 RB 쌍은 슬롯 경계(slot boundary)에서 주파수 도약(frequency hopping)된다고 한다.
도 6은 본 발명이 적용될 수 있는 무선 통신 시스템에서 동기 신호(SS: Synchronization Signal)의 전송을 위한 무선 프레임 구조를 예시한 것이다.
특히, 도 6은 주파수 분할 듀플렉스(FDD)에서 동기 신호 및 PBCH의 전송을 위한 무선 프레임 구조를 예시한 것으로서, 도 6의 (a)는 일반 CP(normal cyclic prefix)로써 구성된 무선 프레임에서 SS 및 PBCH의 전송 위치를 도시한 것이고 도 6의 (b)는 확장 CP(extended CP)로써 구성된 무선 프레임에서 SS 및 PBCH의 전송 위치를 도시한 것이다.
UE는 전원이 켜지거나 새로이 셀에 진입한 경우 상기 셀과의 시간 및 주파수 동기를 획득하고 상기 셀의 물리 셀 식별자(physical cell identity)를 검출(detect)하는 등의 셀 탐색(initial cell search) 과정(procedure)을 수행한다. 이를 위해, UE는 eNB로부터 동기신호, 예를 들어, 1차 동기신호(PSS: Primary Synchronization Signal) 및 2차 동기신호(SSS: Secondary Synchronization Signal)를 수신하여 eNB와 동기를 맞추고, 셀 식별자(ID: identity) 등의 정보를 획득할 수 있다.
도 6을 참조하여, SS를 조금 더 구체적으로 설명하면, 다음과 같다.
SS는 PSS와 SSS로 구분된다. PSS는 OFDM 심볼 동기, 슬롯 동기 등의 시간 도메인 동기 및/또는 주파수 도메인 동기를 얻기 위해 사용되며, SSS는 프레임 동기, 셀 그룹 ID 및/또는 셀의 CP 구성(즉, 일반 CP 또는 확장 CP의 사용 정보)를 얻기 위해 사용된다.
도 6을 참조하면, 시간 영역에서 PSS와 SSS는 매 무선 프레임의 2개의 OFDM 심볼에서 각각 전송된다. 구체적으로 SS는 인터-RAT(inter radio access technology) 측정의 용이함을 위해 GSM(Global System for Mobile communication) 프레임 길이인 4.6 ms를 고려하여 서브프레임 0의 첫 번째 슬롯과 서브프레임 5의 첫 번째 슬롯에서 각각 전송된다. 특히, PSS는 서브프레임 0의 첫 번째 슬롯의 마지막 OFDM 심볼과 서브프레임 5의 첫 번째 슬롯의 마지막 OFDM 심볼에서 각각 전송되고, SSS는 서브프레임 0의 첫 번째 슬롯의 마지막에서 두 번째 OFDM 심볼과 서브프레임 5의 첫 번째 슬롯의 마지막에서 두 번째 OFDM 심볼에서 각각 전송된다.
해당 무선 프레임의 경계는 SSS를 통해 검출될 수 있다. PSS는 해당 슬롯의 맨 마지막 OFDM 심볼에서 전송되고 SSS는 PSS 바로 앞 OFDM 심볼에서 전송된다. SS의 전송 다이버시티(diversity) 방식은 단일 안테나 포트(single antenna port)만을 사용하며 표준에서는 따로 정의하고 있지 않다. 즉, 단일 안테나 포트 전송 혹은 UE에 투명한(transparent) 전송 방식(예, PVS(Precoding Vector Switching), TSTD(Time Switched Diversity), CDD(cyclic delay diversity))이 SS의 전송 다이버시티를 위해 사용될 수 있다.
도 6을 참조하면, PSS는 5ms마다 전송되므로 UE는 PSS를 검출함으로써 해당 서브프레임이 서브프레임 0와 서브프레임 5 중 하나임을 알 수 있으나, 해당 서브프레임이 서브프레임 0와 서브프레임 5 중 구체적으로 무엇인지는 알 수 없다. 따라서, UE는 PSS만으로는 무선 프레임의 경계를 인지하지 못한다. 즉, PSS만으로는 프레임 동기가 획득될 수 없다. UE는 일 무선 프레임 내에서 두 번 전송되되 서로 다른 시퀀스로서 전송되는 SSS를 검출하여 무선 프레임의 경계를 검출한다.
도 7은 본 발명이 적용될 수 있는 무선 통신 시스템에서 동기 신호(SS)의 전송을 위한 무선 프레임 구조를 예시한 것이다.
도 7을 참조하면, 주파수 영역에서 PSS 및 SSS는 하향링크 시스템 대역폭(system bandwidth)의 중심에 위치하는 6개 RB에 맵핑된다. 하향링크에서 전체 RB의 개수는 시스템 대역폭에 따라 상이한 RB의 개수(예를 들어, 6 RB 내지 110 RB)로 구성될 수 있으나, PSS와 SSS는 하향링크 시스템 대역폭의 중심에 위치하는 6개의 RB에 매핑되므로, 하향링크 시스템 대역폭과 무관하게 UE는 동일한 방법으로 PSS와 SSS를 검출할 수 있다.
PSS와 SSS는 모두 길이 62의 시퀀스로 구성된다. 따라서, 6 RB 중 DC 서브캐리어 양 옆에 위치하는 가운데의 62개의 서브캐리어에 매핑되고, DC 서브캐리어와 양 쪽 끝에 위치하는 각각 5개의 서브캐리어는 사용되지 않는다.
PSS와 SSS의 특정 시퀀스에 의하여 UE는 물리 계층 셀 ID를 획득할 수 있다. 즉, SS는 3개의 PSS와 168개의 SS의 조합을 통해 총 504개의 고유한 물리 계층 셀 식별자(physical layer cell ID)를 나타낼 수 있다.
다시 말해, 상기 물리 계층 셀 ID들은 각 물리 계층 셀 ID가 오직 하나의 물리-계층 셀-식별자 그룹의 부분이 되도록 각 그룹이 3개의 고유한 식별자들을 포함하는 168개의 물리-계층 셀-식별자 그룹들로 그룹핑된다. 따라서, 물리 계층 셀 식별자 Ncell ID = 3N(1) ID + N(2) ID는 물리-계층 셀-식별자 그룹을 나타내는 0부터 167까지의 범위 내 번호 N(1) ID와 상기 물리-계층 셀-식별자 그룹 내 상기 물리-계층 식별자를 나타내는 0부터 2까지의 번호 N(2) ID에 의해 고유하게 정의된다.
UE는 PSS를 검출하여 3개의 고유한 물리-계층 식별자들 중 하나를 알 수 있고, SSS를 검출하여 상기 물리-계층 식별자에 연관된 168개의 물리 계층 셀 ID들 중 하나를 식별할 수 있다.
PSS는 ZC(Zadoff-Chu) 시퀀스에 기반하여 생성된다. 각 물리-계층 셀-ID 그룹 내 세 개의 물리-계층 식별자에 각각 대응되는 세 개의 ZS PSS가 사용된다.
SSS는 M 시퀀스(M-sequence)에 기반하여 생성된다. 각 SSS 시퀀스는 주파수 영역에서 길이가 31인 두 개의 SSC 1 시퀀스와 SSC 2 시퀀스를 교대로 삽입하여 하나의 시퀀스로 생성된다. 이때, SSC 1 시퀀스와 SSC 2 시퀀스는 길이 31의 M 시퀀스에 서로 다른 순환 쉬프트 값이 적용되어 생성된다. 이때, 순환 쉬프트 인덱스는 물리-계층 셀 ID 그룹의 함수에 의해 정해진다.

캐리어 병합 (Carrier Aggregation) 일반
본 발명의 실시예들에서 고려하는 통신 환경은 멀티 캐리어(Multi-carrier) 지원 환경을 모두 포함한다. 즉, 본 발명에서 사용되는 멀티 캐리어 시스템 또는 캐리어 병합(CA: Carrier Aggregation) 시스템이라 함은 광대역을 지원하기 위해서, 목표로 하는 광대역을 구성할 때 목표 대역보다 작은 대역폭(bandwidth)을 가지는 1개 이상의 컴포넌트 캐리어(CC: Component Carrier)를 병합(aggregation)하여 사용하는 시스템을 말한다.
본 발명에서 멀티 캐리어는 캐리어의 병합(또는, 반송파 집성)을 의미하며, 이때 캐리어의 병합은 인접한(contiguous) 캐리어 간의 병합뿐 아니라 비 인접한(non-contiguous) 캐리어 간의 병합을 모두 의미한다. 또한, 하향링크와 상향링크 간에 집성되는 컴포넌트 캐리어들의 수는 다르게 설정될 수 있다. 하향링크 컴포넌트 캐리어(이하, 'DL CC'라 한다.) 수와 상향링크 컴포넌트 캐리어(이하, 'UL CC'라 한다.) 수가 동일한 경우를 대칭적(symmetric) 집성이라고 하고, 그 수가 다른 경우를 비대칭적(asymmetric) 집성이라고 한다. 이와 같은 캐리어 병합은 반송파 집성, 대역폭 집성(bandwidth aggregation), 스펙트럼 집성(spectrum aggregation) 등과 같은 용어와 혼용되어 사용될 수 있다.
두 개 이상의 컴포넌트 캐리어가 결합되어 구성되는 캐리어 병합은 LTE-A 시스템에서는 100MHz 대역폭까지 지원하는 것을 목표로 한다. 목표 대역보다 작은 대역폭을 가지는 1개 이상의 캐리어를 결합할 때, 결합하는 캐리어의 대역폭은 기존 IMT 시스템과의 호환성(backward compatibility) 유지를 위해서 기존 시스템에서 사용하는 대역폭으로 제한할 수 있다. 예를 들어서 기존의 3GPP LTE 시스템에서는 {1.4, 3, 5, 10, 15, 20}MHz 대역폭을 지원하며, 3GPP LTE-advanced 시스템(즉, LTE-A)에서는 기존 시스템과의 호환을 위해 상기의 대역폭들만을 이용하여 20MHz보다 큰 대역폭을 지원하도록 할 수 있다. 또한, 본 발명에서 사용되는 캐리어 병합 시스템은 기존 시스템에서 사용하는 대역폭과 상관없이 새로운 대역폭을 정의하여 캐리어 병합을 지원하도록 할 수도 있다.
LTE-A 시스템은 무선 자원을 관리하기 위해 셀(cell)의 개념을 사용한다.
상술한 캐리어 병합 환경은 다중 셀(multiple cells) 환경으로 일컬을 수 있다. 셀은 하향링크 자원(DL CC)과 상향링크 자원(UL CC) 한 쌍의 조합으로 정의되나, 상향링크 자원은 필수 요소는 아니다. 따라서, 셀은 하향링크 자원 단독, 또는 하향링크 자원과 상향링크 자원으로 구성될 수 있다. 특정 단말이 단 하나의 설정된 서빙 셀(configured serving cell)을 가지는 경우 1개의 DL CC와 1개의 UL CC를 가질 수 있으나, 특정 단말이 2개 이상의 설정된 서빙 셀을 가지는 경우에는 셀의 수만큼의 DL CC를 가지며 UL CC의 수는 그와 같거나 그보다 작을 수 있다.
또는, 그 반대로 DL CC와 UL CC가 구성될 수도 있다. 즉, 특정 단말이 다수의 설정된 서빙 셀을 가지는 경우 DL CC의 수보다 UL CC가 더 많은 캐리어 병합 환경도 지원될 수 있다. 즉, 캐리어 병합(carrier aggregation)은 각각 캐리어 주파수(셀의 중심 주파수)가 서로 다른 둘 이상의 셀들의 병합으로 이해될 수 있다. 여기서, 말하는 '셀(Cell)'은 일반적으로 사용되는 기지국이 커버하는 영역으로서의 '셀'과는 구분되어야 한다.
LTE-A 시스템에서 사용되는 셀은 프라이머리 셀(PCell: Primary Cell) 및 세컨더리 셀(SCell: Secondary Cell)을 포함한다. P셀과 S셀은 서빙 셀(Serving Cell)로 사용될 수 있다. RRC_CONNECTED 상태에 있지만 캐리어 병합이 설정되지 않았거나 캐리어 병합을 지원하지 않는 단말의 경우, P셀로만 구성된 서빙 셀이 단 하나 존재한다. 반면, RRC_CONNECTED 상태에 있고 캐리어 병합이 설정된 단말의 경우 하나 이상의 서빙 셀이 존재할 수 있으며, 전체 서빙 셀에는 P셀과 하나 이상의 S셀이 포함된다.
서빙 셀(P셀과 S셀)은 RRC 파라미터를 통해 설정될 수 있다. PhysCellId는 셀의 물리 계층 식별자로 0부터 503까지의 정수값을 가진다. SCellIndex는 S셀을 식별하기 위하여 사용되는 간략한(short) 식별자로 1부터 7까지의 정수값을 가진다. ServCellIndex는 서빙 셀(P셀 또는 S셀)을 식별하기 위하여 사용되는 간략한(short) 식별자로 0부터 7까지의 정수값을 가진다. 0값은 P셀에 적용되며, SCellIndex는 S셀에 적용하기 위하여 미리 부여된다. 즉, ServCellIndex에서 가장 작은 셀 ID (또는 셀 인덱스)을 가지는 셀이 P셀이 된다.
P셀은 프라이머리 주파수(또는, primary CC) 상에서 동작하는 셀을 의미한다. 단말이 초기 연결 설정(initial connection establishment) 과정을 수행하거나 연결 재-설정 과정을 수행하는데 사용될 수 있으며, 핸드오버 과정에서 지시된 셀을 지칭할 수도 있다. 또한, P셀은 캐리어 병합 환경에서 설정된 서빙 셀 중 제어관련 통신의 중심이 되는 셀을 의미한다. 즉, 단말은 자신의 P셀에서만 PUCCH를 할당 받아 전송할 수 있으며, 시스템 정보를 획득하거나 모니터링 절차를 변경하는데 P셀만을 이용할 수 있다. E-UTRAN(Evolved Universal Terrestrial Radio Access)은 캐리어 병합 환경을 지원하는 단말에게 이동성 제어 정보(mobilityControlInfo)를 포함하는 상위 계층의 RRC 연결 재설정(RRCConnectionReconfigutaion) 메시지를 이용하여 핸드오버 절차를 위해 P셀만을 변경할 수도 있다.
S셀은 세컨더리 주파수(또는, Secondary CC) 상에서 동작하는 셀을 의미할 수 있다. 특정 단말에 P셀은 하나만 할당되며, S셀은 하나 이상 할당될 수 있다. S셀은 RRC 연결이 설정이 이루어진 이후에 구성 가능하고 추가적인 무선 자원을 제공하는데 사용될 수 있다. 캐리어 병합 환경에서 설정된 서빙 셀 중에서 P셀을 제외한 나머지 셀들, 즉 S셀에는 PUCCH가 존재하지 않는다. E-UTRAN은 S셀을 캐리어 병합 환경을 지원하는 단말에게 추가할 때, RRC_CONNECTED 상태에 있는 관련된 셀의 동작과 관련된 모든 시스템 정보를 특정 시그널(dedicated signal)을 통해 제공할 수 있다. 시스템 정보의 변경은 관련된 S셀의 해제 및 추가에 의하여 제어될 수 있으며, 이 때 상위 계층의 RRC 연결 재설정 (RRCConnectionReconfigutaion) 메시지를 이용할 수 있다. E-UTRAN은 관련된 S셀 안에서 브로드캐스트하기 보다는 단말 별로 상이한 파라미터를 가지는 특정 시그널링(dedicated signaling) 할 수 있다.
초기 보안 활성화 과정이 시작된 이후에, E-UTRAN은 연결 설정 과정에서 초기에 구성되는 P셀에 부가하여 하나 이상의 S셀을 포함하는 네트워크를 구성할 수 있다. 캐리어 병합 환경에서 P셀 및 S셀은 각각의 컴포넌트 캐리어로서 동작할 수 있다. 이하의 실시 예에서는 프라이머리 컴포넌트 캐리어(PCC)는 P셀과 동일한 의미로 사용될 수 있으며, 세컨더리 컴포넌트 캐리어(SCC)는 S셀과 동일한 의미로 사용될 수 있다.
도 8은 본 발명이 적용될 수 있는 무선 통신 시스템에서 컴포넌트 캐리어 및 캐리어 병합의 일례를 나타낸다.
도 8의 (a)는 LTE 시스템에서 사용되는 단일 캐리어 구조를 나타낸다. 컴포넌트 캐리어에는 DL CC와 UL CC가 있다. 하나의 컴포넌트 캐리어는 20MHz의 주파수 범위를 가질 수 있다.
도 8의 (b)는 LTE_A 시스템에서 사용되는 캐리어 병합 구조를 나타낸다. 도 8의 (b)의 경우에 20MHz의 주파수 크기를 갖는 3 개의 컴포넌트 캐리어가 결합된 경우를 나타낸다. DL CC와 UL CC가 각각 3 개씩 있으나, DL CC와 UL CC의 개수에 제한이 있는 것은 아니다. 캐리어 병합의 경우 단말은 3개의 CC를 동시에 모니터링할 수 있고, 하향링크 신호/데이터를 수신할 수 있고 상향링크 신호/데이터를 송신할 수 있다.
만약, 특정 셀에서 N개의 DL CC가 관리되는 경우에는, 네트워크는 단말에 M (M≤N)개의 DL CC를 할당할 수 있다. 이때, 단말은 M 개의 제한된 DL CC 만을 모니터링하고 DL 신호를 수신할 수 있다. 또한, 네트워크는 L (L≤M≤N)개의 DL CC에 우선순위를 주어 주된 DL CC를 단말에 할당할 수 있으며, 이러한 경우 단말은 L 개의 DL CC는 반드시 모니터링해야 한다. 이러한 방식은 상향링크 전송에도 똑같이 적용될 수 있다.
하향링크 자원의 반송파 주파수(또는 DL CC)와 상향링크 자원의 반송파 주파수(또는, UL CC) 사이의 링키지(linkage)는 RRC 메시지와 같은 상위계층 메시지나 시스템 정보에 의해 지시될 수 있다. 예를 들어, SIB2(System Information Block Type2)에 의해서 정의되는 링키지에 의해서 DL 자원과 UL 자원의 조합이 구성될 수 있다. 구체적으로, 링키지는 UL 그랜트를 나르는 PDCCH가 전송되는 DL CC와 상기 UL 그랜트를 사용하는 UL CC간의 맵핑 관계를 의미할 수 있으며, HARQ를 위한 데이터가 전송되는 DL CC(또는 UL CC)와 HARQ ACK/NACK 신호가 전송되는 UL CC(또는 DL CC)간의 맵핑 관계를 의미할 수도 있다.
도 9는 본 발명이 적용될 수 있는 무선 통신 시스템에서 캐리어 병합의 일례를 나타낸다.
도 9(a)는 인접한(contiguous) 캐리어(즉, F1, F2 및 F3) 간의 병합을 예시하고, 도 9(b)는 비 인접한(non-contiguous) 캐리어(즉, F1, F2 및 F3) 간의 병합을 예시한다.
도 9를 참조하면, 캐리어 병합에 설정되는 컴포넌트 캐리어는 주파수 상에서 인접할 필요가 없다. 따라서, 네트워크 운영자는 단일의 광대역 스펙트럼 할당을 가능하지 않더라도 조각난 스펙트럼을 이용하여 광대역에 기반한 고 데이터율(high data rate) 서비스를 제공할 수 있다.
또한, 캐리어 병합은 동일한 밴드 내에서의 병합(intra-band aggregation)과 서로 다른 밴드 간 병합(inter-band aggregation)로 구분될 수 있으며, 이를 통칭하는 개념으로 이해할 수 있다.
인접한 캐리어(contiguous) 간 병합은 동일한 밴드 내에서의 병합(intra-band aggregation)에 해당될 수 있다. 반면, 비 인접한(non-contiguous) 간 병합은 동일한 밴드 내에서의 병합(intra-band aggregation)뿐만 아니라 서로 다른 밴드 간 병합(inter-band aggregation)에 해당될 수 있다.
캐리어 병합은 셀 특정(cell-specific)하게 셀마다 사용할 수 있는 캐리어에 대한 능력(capability)이 정의된다. 이와 같이 가용 캐리어들을 어떻게 사용할지 단말 특정(user-specific)한 방법으로 설정될 수 있다. 즉, 셀 내의 가용 캐리어로 F1, F2, F4 3개의 캐리어가 있는 경우, 특정 단말은 F1, F2를 병합하여 사용하고, 또 다른 단말은 F2, F4를 병합하여 사용할 수 있음을 의미한다.

크로스 캐리어 스케줄링 (Cross Carrier Scheduling)
특정 단말이 하나 이상의 캐리어를 병합하는 경우, 해당 단말에 대해 P셀과 S셀을 정의하여 해당 캐리어들을 운용하도록 한다. 즉, P셀로 설정된 캐리어는 항상 활성화(activated) 상태로 동작해야 하며, S셀로 설정된 캐리어는 필요에 따라 활성화(activation) 또는 비활성화(deactivation) 될 수 있음을 의미한다. 여기서, 하나 이상의 S셀이 활성화된 단말에 대하여 S셀로 전송되는 데이터에 대한 스케줄링은 다음과 같이 수행될 수 있다.
캐리어 병합 시스템에서는 캐리어(또는 반송파) 또는 서빙 셀(Serving Cell)에 대한 스케줄링 관점에서 자가 스케줄링(Self-Scheduling) 방법 및 크로스 캐리어 스케줄링(Cross Carrier Scheduling) 방법의 두 가지가 있다. 크로스 캐리어 스케줄링은 크로스 컴포넌트 캐리어 스케줄링(Cross Component Carrier Scheduling) 또는 크로스 셀 스케줄링(Cross Cell Scheduling)으로 일컬을 수 있다.
크로스 캐리어 스케줄링은 PDCCH(DL Grant)와 PDSCH가 각각 다른 DL CC로 전송되거나, DL CC에서 전송된 PDCCH(UL Grant)에 따라 전송되는 PUSCH가 UL 그랜트를 수신한 DL CC와 링크되어 있는 UL CC가 아닌 다른 UL CC를 통해 전송되는 것을 의미한다.
크로스 캐리어 스케줄링 여부는 단말 특정(UE-specific)하게 활성화 또는 비활성화될 수 있으며, 상위계층 시그널링(예를 들어, RRC signaling)을 통해서 반정적(semi-static)으로 각 단말 별로 알려질 수 있다.
크로스 캐리어 스케줄링이 활성화된 경우, PDCCH에 해당 PDCCH가 지시하는 PDSCH/PUSCH가 어느 DL/UL CC를 통해서 전송되는지를 알려주는 캐리어 지시자 필드(CIF: Carrier Indicator Field)가 필요하다. 예를 들어, PDCCH는 PDSCH 자원 또는 PUSCH 자원을 CIF를 이용하여 다수의 컴포넌트 캐리어들 중 하나에 할당할 수 있다. 즉, DL CC 상에서의 PDCCH가 다중 집성된 DL/UL CC 중 하나에 PDSCH 또는 PUSCH 자원을 할당하는 경우 CIF가 설정된다. 이 경우, LTE-A Release-8의 DCI 포맷은 CIF에 따라 확장될 수 있다. 이때 설정된 CIF는 3bit 필드로 고정되거나, 설정된 CIF의 위치는 DCI 포맷 크기와 무관하게 고정될 수 있다. 또한, LTE-A Release-8의 PDCCH 구조(동일 코딩 및 동일한 CCE 기반의 자원 매핑)를 재사용할 수도 있다.
반면, DL CC 상에서의 PDCCH가 동일한 DL CC 상에서의 PDSCH 자원을 할당하거나 단일 링크된 UL CC 상에서의 PUSCH 자원을 할당하는 경우에는 CIF가 설정되지 않는다. 이 경우, LTE-A Release-8과 동일한 PDCCH 구조(동일 코딩 및 동일한 CCE 기반의 자원 매핑)와 DCI 포맷이 사용될 수 있다.
크로스 캐리어 스케줄링이 가능할 때, 단말은 CC별 전송 모드 및/또는 대역폭에 따라 모니터링 CC의 제어영역에서 복수의 DCI에 대한 PDCCH를 모니터링하는 것이 필요하다. 따라서, 이를 지원할 수 있는 검색 공간의 구성과 PDCCH 모니터링이 필요하다.
캐리어 병합 시스템에서, 단말 DL CC 집합은 단말이 PDSCH를 수신하도록 스케줄링된 DL CC의 집합을 나타내고, 단말 UL CC 집합은 단말이 PUSCH를 전송하도록 스케줄링된 UL CC의 집합을 나타낸다. 또한, PDCCH 모니터링 집합(monitoring set)은 PDCCH 모니터링을 수행하는 적어도 하나의 DL CC의 집합을 나타낸다. PDCCH 모니터링 집합은 단말 DL CC 집합과 같거나, 단말 DL CC 집합의 부집합(subset)일 수 있다. PDCCH 모니터링 집합은 단말 DL CC 집합내의 DL CC들 중 적어도 어느 하나를 포함할 수 있다. 또는 PDCCH 모니터링 집합은 단말 DL CC 집합에 상관없이 별개로 정의될 수 있다. PDCCH 모니터링 집합에 포함되는 DL CC는 링크된 UL CC에 대한 자기-스케줄링(self-scheduling)은 항상 가능하도록 설정될 수 있다. 이러한, 단말 DL CC 집합, 단말 UL CC 집합 및 PDCCH 모니터링 집합은 단말 특정(UE-specific), 단말 그룹 특정(UE group-specific) 또는 셀 특정(Cell-specific)하게 설정될 수 있다.
크로스 캐리어 스케줄링이 비활성화된 경우에는 PDCCH 모니터링 집합이 항상 단말 DL CC 집합과 동일하다는 것을 의미하며, 이러한 경우에는 PDCCH 모니터링 집합에 대한 별도의 시그널링과 같은 지시가 필요하지 않다. 그러나, 크로스 캐리어 스케줄링이 활성화된 경우에는 PDCCH 모니터링 집합이 단말 DL CC 집합 내에서 정의되는 것이 바람직하다. 즉, 단말에 대하여 PDSCH 또는 PUSCH를 스케줄링하기 위하여 기지국은 PDCCH 모니터링 집합만을 통해 PDCCH를 전송한다.
도 10은 본 발명이 적용될 수 있는 무선 통신 시스템에서 크로스 캐리어 스케줄링에 따른 서브 프레임 구조의 일례를 나타낸다.
도 10을 참조하면, LTE-A 단말을 위한 DL 서브프레임은 3개의 DL CC가 결합되어 있으며, DL CC 'A'는 PDCCH 모니터링 DL CC로 설정된 경우를 나타낸다. CIF가 사용되지 않는 경우, 각 DL CC는 CIF 없이 자신의 PDSCH를 스케줄링하는 PDCCH를 전송할 수 있다. 반면, CIF가 상위 계층 시그널링을 통해 사용되는 경우, 단 하나의 DL CC 'A'만이 CIF를 이용하여 자신의 PDSCH 또는 다른 CC의 PDSCH를 스케줄링하는 PDCCH를 전송할 수 있다. 이때, PDCCH 모니터링 DL CC로 설정되지 않은 DL CC 'B' 와 'C'는 PDCCH를 전송하지 않는다.

2- 레벨 (2-level) 무선 프레임 구조 데이터 송수신 방법
LTE/LTE-A 시스템은 1ms TTI(transmission time interval)를 가지는 프레임 구조로 설계되었으며, 일반적으로 비디오 어플리케이션을 위한 데이터의 요구 지연 시간(requested delay time)은 약 10ms이다.
그러나, 미래 5G(Generation) 기술은 실시간 제어(real-time control) 및 촉감 인터넷(tactile internet)과 같은 새로운 어플리케이션의 등장으로 인하여 더욱 낮은 지연의 데이터 전송을 요구하고 있으며, 5G 데이터의 요구 지연 시간은 약 1ms까지 낮춰질 것으로 예상하고 있다.
그러나, 종래 1ms TTI를 가지는 프레임 구조로는 1ms 데이터 요구 지연을 만족시킬 수 없는 문제가 있다.
도 11은 본 발명이 적용될 수 있는 3GPP LTE/LTE-A 시스템에서 무선 송수신 지연을 예시하는 도면이다.
도 11에서는 무선 송수신 지연의 레퍼런스를 1ms 서브프레임을 가지는 3GPP LTE 시스템의 하향링크 송수신 구현 관점으로 예시한다.
도 11을 참조하면, 기지국(eNB)이 하향링크 서브프레임의 전송을 시작한 시점에서부터 단말(UE)이 하향링크 서브프레임의 수신을 시작하기까지 확산 지연(PD: Propagation Delay)이 발생한다. 그리고, 단말이 하향링크 서브프레임의 디코딩 전에 하향링크 서브프레임을 버퍼링(Buff: Buffering)하게 되면서, 버퍼링 지연이 발생한다. 하향링크 서브프레임 전송에 대한 확산 지연과 단말에서의 버퍼링으로 인한 지연은 총 약 0.5ms 소요된다. 그리고, 단말에서는 하향링크 서브프레임에서 PDCCH를 디코딩하고, PDCCH 디코딩 정보를 기반으로 PDSCH를 디코딩한다. PDCCH 디코딩(약 0.5ms)과 PDSCH 디코딩(약 2ms 미만)으로 인한 프로세싱 지연(processing delay)은 약 2.5ms 미만이 소요된다.
이처럼, 기지국에서 단말로의 단 방향 무선 레이턴시(one-way OTA(Over-To-Air) Latency)는 약 3ms 미만이 소요된다.
그리고, 단말에서 A/N(ACK/NACK) 준비(Prep: Preparation)(예를 들어, ACK/NACK 인코딩 등)를 위한 지연과 A/N의 전송 시 발생되는 확산 지연(PD)은 총 약 1ms 미만이 소요된다.
위와 같이, 단 방향 데이터 전송에 대하여 송신측(예를 들어, 기지국)에서 수신측(예를 들어, 단말)으로부터 ACK/NACK 수신까지의 총 왕복 무선 레이턴시(Roundtrip OTA Latency)에 일반적으로 약 4ms가 소요된다.
5G 무선 통신 시스템은 기존의 무선 통신 시스템 대비 약 10배 감소된 데이터 지연 제공을 목표로 하고 있다. 이와 같은 문제를 해결하기 위해 5G는 더 짧은 TTI(예를 들어, 0.2ms)를 가지는 새로운 프레임 구조를 이용하는 무선 통신 시스템이 제안될 것으로 예상된다.
또한, 5G 시스템은 저 레이턴시(low latency) 뿐만 아니라 고용량(high capacity), 저 에너지 소비(low energy consumption), 저비용(low cost), 고 사용자 데이터율(high user data rate) 등과 같이 다양한 요구 사항을 가지는 어플리케이션이 함께 공존할 것으로 예상된다. 이와 같이 5G는 초 저 레이턴시(Ultra Low Latency)를 요구하는 응용부터 높은 데이터 전송율을 요구하는 응용까지 다양한 종류의 응용을 함께 지원하기 위해 종래와는 다른 구조의 시스템으로 진화할 것으로 예상된다.
따라서, 단말의 데이터 수신 지연을 최소화하기 위해서는 기존의 무선 통신 시스템과는 다른 새로운 프레임 구조가 정의될 필요가 있으며, 새로운 프레임 구조로 인한 레가시(legacy) 단말의 영향은 최소화되어야 한다.
본 발명에서는 이와 같이 서로 다른 요구 조건을 가지는 다양한 서비스를 사용자에게 제공하기 위해, 특정 단말에 대해 하나 이상의 프레임 구조를 제공하기 위한 시스템을 제안한다.
즉, 본 발명에서는 서브밴드(sub-band)(또는 서브밴드 그룹 또는 밴드/캐리어) 별로 프레임 구조를 설정함으로써, 하나 이상의 서비스 특정(service-specific) 서브밴드(또는 서브밴드 그룹 또는 밴드/캐리어)를 정의한다. 예를 들어, 일반 데이터 전송을 위한 종래의 1ms TTI 프레임 구조와 저 레이턴시(low latency)를 요구하는 데이터 전송을 위한 짧은 TTI(short TTI) 프레임 구조가 특정 단말에 대해 구성될 수 있도록 한다.
이하, 본 명세서에서 짧은 TTI(short TTI)는 하나의 짧은 TTI 서브프레임(short TTI subframe)(또는, 짧은 서브프레임)과 동일한 의미로 이해될 수 있다. 즉, 하나의 짧은 서브프레임 내 제어 영역과 데이터 영역이 모두 정의되는 경우, 짧은 TTI는 제어 영역과 데이터 영역을 모두 포함하는 크기를 가지고, 짧은 서브프레임 내 데이터 영역만이 정의되는 경우, 짧은 TTI는 데이터 영역만을 포함하는 크기를 가진다.
이하, 설명의 편의를 위해 FDD 타입의 일반 CP가 적용된 무선 프레임 구조에서 본 발명이 적용되는 실시예를 설명한다. 다만, 본 발명이 이에 한정되는 것은 아니며 TDD 타입의 무선 프레임 구조 또는 확장 CP가 적용된 무선 프레임 구조에서도 본 발명이 동일하게 적용될 수 있다.

서브밴드 측면에서 2 레벨 프레임 구조 (Subband-wise 2-level frame structure)
3GPP LTE/LTE-A 시스템에서 서브밴드는 자원 블록(RB: Resource Block)의 묶음으로 정의된다.
Figure PCTKR2015002137-appb-I000001
는 각 서브밴드의 크기를 나타내며, RB의 개수로 표현된다.
Figure PCTKR2015002137-appb-I000002
는 아래 수학식 1에 의해 산출될 수 있다.
Figure PCTKR2015002137-appb-M000001
수학식 1에서,
Figure PCTKR2015002137-appb-I000003
는 서브밴드의 수를 나타내며, 상위 계층에 의해 설정된다.
Figure PCTKR2015002137-appb-I000004
는 상향링크 대역폭 구성(uplink bandwidth configuration)을 나타내며, 자원 블록 크기(즉, 자원 블록 당 서브캐리어 수,
Figure PCTKR2015002137-appb-I000005
)로 표현된다.
Figure PCTKR2015002137-appb-I000006
는 PUSCH 주파수 호핑(hopping)을 위해 사용되는 오프셋)('pusch-HoppingOffset')을 나타내며, 자원 블록의 개수로 표현된다.
Figure PCTKR2015002137-appb-I000007
와 호핑 모드 관련 파라미터(즉, 인터-서브프레임(inter-subframe) 또는 인트라 및 인터 서브프레임(intra and inter-subframe))는 상위 계층에 의해 설정된다.
위의 수학식에서는 상향링크 대역폭에서 서브밴드가 산출되는 예를 나타내었으나, 본 발명에서는 이와 유사하게 하향링크 대역폭 및/또는 상향링크 대역폭에서 하나 이상의 서브밴드가 정의될 수 있다.
위와 같이, 하나의 하향링크 및/또는 상향링크 밴드(즉, 캐리어 또는 셀)는 복수의 서브밴드로 구분될 수 있다. 이하, 하나의 하향링크 및/또는 상향링크 밴드 내에서 하나 이상의 서브밴드(또는 서브밴드 그룹 또는 밴드/캐리어)를 짧은 TTI 프레임의 구조로 구성하는 방법에 대하여 설명한다.
이하, 설명의 편의를 위해 하향링크 밴드(즉, 캐리어 또는 셀)를 가정하여 설명한다.
도 12는 본 발명의 일 실시예에 따른 무선 프레임 구조를 설명하기 위한 도면이다.
도 12를 참조하면, 기존의 PDCCH(1201)는 매 레가시 서브프레임에서 최대 4개의 심볼에 할당된다. 즉, 매 서브프레임의 최대 #0 내지 #3번 심볼에서 밴드(band) 전대역에 걸쳐 전송될 수 있다. 도 12에서는 매 서브프레임의 #0, #1번 심볼에서 밴드(band) 전대역에 걸쳐 PDCCH(1201)가 할당되는 경우를 예시한다.
이하, 설명의 편의를 위해 PDCCH(1201)는 매 서브프레임에서 앞의 2개의 심볼에 매핑된다고 가정하여 설명한다.
그리고, 저 레이턴시를 위한 서브밴드를 제외한 나머지 주파수 영역에서, PDCCH(1201)가 매핑되지 않은 나머지 심볼에서는 일반 데이터 전송을 위해 사용하는 PDSCH(1202)가 할당된다. 도 12에서는 #3~#13번 심볼에서 저 레이턴시를 위한 서브밴드를 제외한 나머지 주파수 영역에 걸쳐 PDSCH(1202)가 할당되는 경우를 예시한다.
그리고, 임의의 밴드에서 저 레이턴시를 위한 하나 이상의 서브밴드(또는 서브밴드 그룹)는 짧은 TTI 프레임의 구조로 구성될 수 있다.
즉, 레가시 서브프레임에서 하나 이상의 서브밴드(또는 서브밴드 그룹)는 PDCCH(1201)가 매핑된 심볼을 제외한 심볼(즉, 레가시 서브프레임의 전체 심볼에서 PDCCH가 할당된 심볼을 제외한 나머지 심볼)을 짧은 TTI 크기에 해당하는 심볼 n 개(예를 들어, 2개 내지 4개 심볼 등)로 나누어 짧은 TTI 서브프레임(sPDSCH, 1203)으로 구성된다. 이 경우, 짧은 TTI 서브프레임에서는 sPDSCH만이 할당되므로, 짧은 TTI 서브프레임과 sPDSCH는 동일한 의미로 이해될 수 있다.
도 12와 같이, PDCCH(1201)가 레가시 서브프레임의 앞의 2개의 심볼에 할당되는 경우, 4개(=12/3)의 짧은 서브프레임(sPDSCH, 1203)이 구성될 수 있다.
이와 같이, 짧은 TTI 프레임 구조로 구성되는 경우, 저 레이턴시(low latency) 단말을 위한 자원 할당 단위로 짧은 자원 블록(short RB) 또한 새롭게 정의될 수 있다. 예를 들어, 짧은 RB는 주파수 영역에서는 기존과 동일하게 12개의 서브캐리어로 구성되고, 시간 영역에서는 n개의 심볼(즉, 짧은 TTI 크기)로 정의할 수 있다. 또한, 짧은 RB는 주파수 영역에서도 기존 보다 적은 x개(x<12)의 서브캐리어로 구성될 수도 있다.
레가시 PDSCH와 마찬가지로 sPDSCH 영역에서 데이터의 자원 요소에의 매핑은 먼저 주파수 인덱스가 증가하는 순서로 매핑되고, 그리고 심볼 인덱스가 증가하는 순서로 매핑될 수 있다.
앞서 설명한 PDCCH(1201), sPDSCH(1203)가 매핑되는 심볼(또는 심볼의 개수), 하나의 레가시 서브프레임 내 설정되는 짧은 TTI의 개수 등은 하나의 예시에 불과하며, 본 발명이 이에 한정되는 것은 아니다.
도 12의 예시와 같이 짧은 TTI 프레임 구조로 구성되는 경우, 짧은 TTI 서브프레임(sPDSCH, 1203)에서 전송되는 하향링크 데이터에 대한 제어 정보(예를 들어, sPDSCH의 하향링크 데이터에 대한 주파수/시간 자원 할당 정보, 복조 및 코딩 방식(MCS: Modulation and Coding Scheme), 새로운 데이터 지시자(NDI: New Data Indicator), 리던던시 버전(RV: Redundancy Version), 전송 파워 제어(TPC: Transmit Power Control) 명령 등)는 PDCCH(1201)을 통해 전송될 수 있다.
이처럼 기지국이 PDCCH(1201)를 통해 sPDSCH(1203)에서 전송되는 하향링크 데이터에 대한 제어 정보를 전송하는 경우, PDCCH(1201)는 PDSCH(1202)뿐만 아니라 sPDSCH(1203)와 관련된 제어 정보를 전송하게 된다. 따라서, 단말은 PDSCH(1202) 또는 짧은 TTI 서브프레임(sPDSCH, 1203) 중 어느 영역에서 자신에게 하향링크 데이터가 전송되는 것을 알 수 있어야 한다.
이를 위해, 하향링크 데이터 전송과 관련된 DCI(Downlink Control Information) 포맷은 'sPDSCH 지시자 필드'를 포함할 수 있다.
또한, 하향링크 데이터 전송과 관련된 DCI 포맷은 12/n개 짧은 TTI 서브프레임(1203) 중에서 몇 번째 짧은 TTI 서브프레임(1203)으로 전송되는 데이터에 대한 스케줄링인지를 알리는 'TTI 번호 필드'를 포함할 수 있다.
본 발명에서 제안하는 각 필드에 대한 자세한 내용은 아래와 같다.
1) sPDSCH 지시자 (1 비트)
본 발명에서는 sPDSCH에서 전송되는 하향링크 데이터와 관련된 DCI가 sPDSCH 지시자(예를 들어, 1 비트)를 포함하는 것을 제안한다.
또한, 종래 PDCCH의 하향링크 데이터 스케줄링을 위한 DCI 포맷(즉, DCI 포맷 1, 1A, 1B, 1C)에 sPDSCH 지시자(예를 들어, 1 비트)가 추가될 수도 있다.
특정 밴드가 본 발명에서 제안하는 서브밴드 측면 2 레벨 프레임 구조로 구성되는 경우, 짧은 TTI의 sPDSCH를 통해 전송되는 데이터를 수신하기 위해서 단말은 짧은 서브프레임 구조를 이용하여 데이터를 디코딩해야 성공적으로 데이터를 수신할 수 있다.
따라서, 단말이 PDCCH를 수신할 때 해당 데이터가 종래의 PDSCH를 통해 전송되는 데이터인지, 또는 sPDSCH를 통해 전송되는 데이터인지를 구별할 수 있어야 해당 데이터를 성공적으로 수신할 수 있다. 이를 구분하기 위해 PDCCH를 통해 전송되는 DCI 포맷은 sPDSCH 지시자 1 비트를 포함할 수 있다.
2) TTI 번호 (m 비트, 예를 들어, 3 심볼의 TTI의 경우 2 비트)
하나의 TTI가 n(예를 들어, 3)개의 심볼로 구성되는 경우, 단말은 자신의 하향링크 데이터가 전송되는 영역(즉, TTI/sPDSCH)를 구별할 수 있어야 한다.
이를 위하여, sPDSCH에서 전송되는 하향링크 데이터와 관련된 DCI는 12/n 개(예를 들어, 4개)의 짧은 TTI 중 몇 번째 TTI로 전송되는 하향링크 데이터에 대한 DCI인지 구별하기 위한 TTI 번호 필드를 포함할 수 있다.
또한, 종래 PDCCH의 하향링크 데이터 스케줄링을 위한 DCI 포맷(즉, DCI 포맷 1, 1A, 1B, 1C)에 TTI 번호 필드가 포함될 수도 있다.
TTI 번호 필드는 m 비트(예를 들어, n=3인 경우, 4개의 TTI 구별을 위해 TTI 번호 필드의 길이는 2 비트) 길이로 구성될 수 있다. 이는 1ms 이내(즉, 레가시 서브프레임)에 있는 sPDSCH의 번호를 알리는 값으로 사용될 수 있다.
만약, 하나의 TTI가 3 심볼인 경우, 1ms 내에 4개의 sPDSCH가 존재하고, 이를 구별하기 위해 2 비트 길이의 TTI 번호 필드가 하향링크 그랜트(DL grant)에 포함될 수 있다. 즉, 해당 필드의 값은 각각 0b00: 0번째 sPDSCH, 0b01: 1번째 sPDSCH, 0b10: 2번째 sPDSCH, 0b11: 3번째 sPDSCH를 의미한다.
한편, 앞서 설명한 sPDSCH 지시자 정보와 TTI 번호 정보가 하나의 필드로 구성될 수도 있다.
즉, 비트맵 형식으로 정의된 sPDSCH 지시 및 TTI 번호 필드에서 위의 sPDSCH 지시자 정보와 위의 TTI 번호 정보를 모두 전달할 수도 있다.
예를 들어, TTI가 3 심볼인 경우, 1ms 내에 4개의 sPDSCH가 존재하고, 이를 구별하기 위해 4 비트 길이의 sPDSCH 지시 및 TTI 번호 필드가 종래 PDCCH의 하향링크 그랜트(DL grant)에 포함될 수 있다. 즉, 해당 필드의 값은 각각 1000: 0번째 sPDSCH, 0100: 1번째 sPDSCH, 0010: 2번째 sPDSCH, 0001: 3번째 sPDSCH를 의미한다. 이러한 값 중 어느 하나로 sPDSCH 지시 및 TTI 번호 필드의 값이 셋팅되면 단말은 하향링크 데이터가 sPDSCH로 전송되는 것을 알 수 있다.
반면, sPDSCH 지시 및 TTI 번호 필드가 모두 '0000'로 구성되면, 이는 해당 단말에 대한 하향링크 데이터는 sPDSCH를 통해 전송되지 않고, PDSCH를 통해 전송되는 것을 지시할 수 있다.
도 13은 본 발명의 일 실시예에 따른 무선 프레임 구조를 설명하기 위한 도면이다.
도 13을 참조하면, PDCCH(1301)는 매 서브프레임에서 앞의 최대 4개의 심볼에 할당된다. 즉, 매 서브프레임의 최대 #0 내지 #3번 심볼에서 밴드(band) 전대역에 걸쳐 전송될 수 있다. 도 13에서는 매 서브프레임의 #0, #1번 심볼에서 밴드(band) 전대역에 걸쳐 PDCCH(1301)가 구성되는 경우를 예시한다.
이하, 설명의 편의를 위해 PDCCH(1301)는 매 서브프레임에서 앞의 2개의 심볼에 매핑된다고 가정하여 설명한다.
그리고, 저 레이턴시를 위한 서브밴드를 제외한 나머지 주파수 영역에서, PDCCH(1301)가 매핑되지 않은 나머지 심볼에서는 일반 데이터 전송을 위해 사용하는 PDSCH(1302)가 할당될 수 있다. 도 13에서는 #3~#13번 심볼에서 저 레이턴시를 위한 서브밴드를 제외한 나머지 주파수 영역에 걸쳐 PDSCH(1302)가 할당되는 경우를 예시한다.
그리고, 저 레이턴시를 위한 하나 이상의 서브밴드(또는 서브밴드 그룹)는 짧은 TTI 프레임 구조로 구성된다. 구체적으로, 레가시 서브프레임에서 하나 이상의 서브밴드(또는 서브밴드 그룹)는 PDCCH(1301)가 매핑된 영역을 제외한 심볼(즉, 레가시 서브프레임의 전체 심볼에서 PDCCH(1301)가 할당된 심볼을 제외한 나머지 심볼)을 짧은 TTI 크기에 해당하는 심볼 n개(예를 들어, 2개 내지 4개 등)로 나누어 짧은 TTI 서브프레임(sPDCCH(1303) 및 sPDSCH(1304))으로 구성된다.
즉, 매 짧은 TTI 서브프레임에서 앞의 일정 심볼(예를 들어, 1개 혹은 2개 심볼)에서 sPDCCH(1303)이 할당되고, 나머지 심볼에서 sPDSCH(1304)가 할당된다.
sPDCCH(1303)의 심볼 개수를 제한되지 않으나, 만약 짧은 TTI 서브프레임이 3개의 심볼로 구성되는 경우, sPDCCH(1303)는 1개의 심볼로 구성되는 것이 바람직하다.
도 13과 같이 PDCCH(1301)가 레가시 서브프레임의 앞의 2개의 심볼에 할당되는 경우, 4개(=12/3)의 짧은 TTI 서브프레임(sPDCCH(1303) 및 sPDSCH(1304))이 구성될 수 있다. 그리고, 매 짧은 TTI 서브프레임마다 앞의 1개의 심볼에 sPDCCH(1303)가 할당되고, 나머지 2개의 심볼에 sPDSCH(1304)가 할당될 수 있다.
상술한 바와 같이, 짧은 TTI 프레임 구조로 구성되는 경우, 저 레이턴시(low latency) 단말을 위한 자원 할당 단위로 짧은 자원 블록(short RB) 또한 새롭게 정의될 수 있다. 예를 들어, 짧은 RB는 주파수 영역에서는 기존과 동일하게 12개의 서브캐리어로 구성되고, 시간 영역에서는 n개의 심볼(즉, 짧은 TTI 크기)로 정의할 수 있다. 또한, 짧은 RB는 주파수 영역에서도 기존 보다 적은 x개(x<12)의 서브캐리어로 구성될 수도 있다.
또한, 레가시 PDSCH와 마찬가지로 sPDSCH 영역에서 데이터의 자원 요소에의 매핑은 먼저 주파수 인덱스가 증가하는 순서로 매핑되고, 그리고 심볼 인덱스가 증가하는 순서로 매핑될 수 있다.
앞서 설명한 PDCCH(1301), sPDCCH(1303), sPDSCH(1304)가 매핑되는 심볼(또는 심볼의 개수), 하나의 레가시 서브프레임 내 설정되는 짧은 TTI의 개수 등은 하나의 예시에 불과하며, 본 발명이 이에 한정되는 것은 아니다.
도 13의 예시와 같이 짧은 TTI 서브프레임(sPDCCH(1303) 및 sPDSCH(1304))이 구성되는 경우, sPDSCH(1304)에서 전송되는 하향링크 데이터에 대한 하향링크 제어 정보(예를 들어, sPDSCH의 하향링크 데이터에 대한 주파수/시간 자원 할당 정보, MCS, NDI, RV, TPC 명령 등)은 짧은 TTI 서브프레임 내에 새롭게 정의된 sPDCCH(1303)을 통해 전송될 수 있다. 즉, sPDCCH(1303)은 짧은 TTI 서브프레임 내 소정의 심볼에서 서브밴드 전대역에 걸쳐 전송된다.
PDCCH(1001)은 하나 이상의 연속적인 제어 채널 요소(CCE: Control Channel Element)의 집합으로 전송된다. CCE는 9개의 자원 요소 그룹(REG: Resource Element Group)에 해당되고, REG는 4개의 자원 요소(RE)로 구성된다.
다만, 도 13과 같이 sPDCCH(1303)이 구성되는 경우, sPDCCH(1303)의 포맷은 PDCCH(1301)의 포맷과 동일할 수 있으나, 다른 포맷으로 정의될 수도 있다. 예를 들어, sPDCCH(1303) 포맷에서 하나의 CCE는 x개(x<9)의 REG로 구성되거나, sPDCCH(1303) 영역에 매핑되는 REG는 y개(y<4)의 RE로 구성될 수 있다.
한편, 본 발명은 앞서 도 12 및 도 13의 예시와 같이 저 레이턴시(low latency)를 위한 새로운 무선 프레임 구조 외에도 종래 LTE/LTE-A에서 정의된 1ms 서브프레임 구조와 다른 목적(예를 들어, 저 레이턴시를 요구하는 어플리케이션에서 발생된 데이터 전송)으로 개발된 프레임 구조를 동일 밴드에서 사용할 수 있다. 이에 대하여 아래 도면을 참조하여 설명한다.
도 14는 본 발명의 일 실시예에 따른 무선 프레임 구조를 설명하기 위한 도면이다.
도 14를 참조하면, 동일한 프레임 구조의 물리 채널이 서브밴드(또는 서브밴드 그룹) 별로 설계될 수 있다. 이 경우, PDCCH는 서브 밴드(또는 서브밴드 그룹) 별로 구성된다.
즉, 해당 서브밴드(또는 서브밴드 그룹)에 할당되는 PDCCH는 해당 서브밴드(또는 서브밴드 그룹)에 할당되는 PDSCH를 위한 제어 정보(예를 들어, PDSCH 또는 sPDSCH의 하향링크 데이터에 대한 주파수/시간 자원 할당 정보, MCS, NDI, RV, TPC 명령 등)를 전달한다.
이러한 방안은 종래 LTE/LTE-A의 무선 프레임 구조를 그대로 사용하고, 저 레이턴시를 위한 서비스에서 발생된 데이터를 특정 서브밴드를 통해 전송하는 경우에 사용될 수 있다.
예를 들어, 서브밴드(또는 서브밴드 그룹) #1은 일반 데이터를 전송하기 위한 서브밴드이고, 서브밴드(또는 서브밴드 그룹) #2는 저 레이턴시가 요구되는 어플리케이션에서 발생된 데이터를 전송하기 위한 서브밴드로 정의할 수 있다.
여기서, 저 레이턴시가 요구되는 어플리케이션에서 발생된 데이터를 전송하기 위한 서브밴드(또는 서브밴드 그룹)의 제어 영역에 할당되는 제어 채널을 sPDCCH로 지칭하고, 데이터 영역에 할당되는 데이터 채널을 PDSCH로 지칭할 수도 있다.
도 14와 같이 서브밴드(또는 서브밴드 그룹) 별로 서로 다른 목적을 위한 데이터를 전송하는 경우, 저 레이턴시가 요구되는 어플리케이션에서 발생된 데이터를 전송하기 위한 서브밴드(또는 서브밴드 그룹)에서 전송되는 PDCCH(또는 sPDCCH)의 포맷은 기존의 PDCCH의 포맷과 동일할 수 있으나, 다른 포맷으로 정의될 수도 있다. 예를 들어, 저 레이턴시가 요구되는 어플리케이션에서 발생된 데이터를 전송하기 위한 서브밴드 그룹(또는 서브밴드 그룹)에서 전송되는 PDCCH(또는 sPDCCH)에서 하나의 CCE는 x개(x<9)의 REG로 구성되거나, REG는 y개(y<4)의 RE로 구성될 수 있다.

캐리어 / 측면에서 2 레벨 프레임 구조 (Carrier/Cell-wise 2-level frame structure)
본 발명은 서브밴드 측면(subband-wise)이 아닌 캐리어/셀 측면 2 레벨 프레임 구조(carrier-wise 2-level frame structure)로도 적용될 수 있다.
즉, 종래 LTE/LTE-A 프레임 구조의 캐리어와 저 레이턴시를 위한 새로운 무선 프레임 구조의 캐리어를 특정 사용자를 위해 할당할 수 있다.
이는 캐리어 병합(carrier aggregation)의 또 다른 방법으로 사용될 수 있다. 이 경우 P셀(PCell: Primary Cell)은 종래 LTE/LTE-A 프레임 구조의 셀이 되는 것이 바람직하나, 단말 특성에 따라 새로운 프레임 구조의 셀이 P셀로 동작하도록 설정할 수도 있다. 또는, 저 레이턴시를 요구하는 단말에게는 서로 다른 프레임 구조의 셀 2개를 반드시 병합하여 동작하도록 설정함으로써, 두 개의 셀이 모두 P셀로써 동작하도록 설정할 수도 있다.
도 15는 본 발명의 일 실시예에 따른 무선 프레임 구조를 설명하기 위한 도면이다.
도 15를 참조하면, 밴드(또는 캐리어/셀) 1은 레가시 프레임 구조로 구성되고, 밴드(또는 캐리어/셀) 2는 본 발명에서 제안하는 짧은 TTI 프레임 구조로 구성되며, 밴드 1 및 2가 특정 단말에 대하여 캐리어 병합(CA)된 경우를 예시한다.
밴드 1에서 PDCCH(1501) 및 PDSCH(1502)는 기존의 LTE/LTE-A 시스템의 정의에 따라 매핑될 수 있다. 즉, PDCCH(1501)는 매 레가시 서브프레임에서 앞의 최대 4개의 심볼에 할당된다. 즉, 매 서브프레임의 최대 #0 내지 #3번 심볼에서 밴드 1의 전대역에 걸쳐 전송될 수 있다. 도 15에서는 매 서브프레임의 #0, #1번 심볼에서 밴드 1의 전대역에 걸쳐 PDCCH(1501)가 할당되는 경우를 예시한다.
그리고, PDCCH(1501)가 매핑되지 않은 나머지 심볼에서는 일반 데이터 전송을 위해 사용하는 PDSCH(1502)가 밴드 1의 전대역에 할당될 수 있다. 도 15에서는 #3~#13번 심볼에서 밴드 1의 전대역에 걸쳐 PDSCH(1502)가 할당되는 경우를 예시한다.
짧은 TTI 프레임 구조로 구성되는 밴드 2에서는 1개의 레가시 서브프레임(즉, 1ms) 내 하나 이상의 스페셜 심볼(1503) 및 n 개 심볼의 크기를 가지는 하나 이상의 sPDSCH(1504)로 구성될 수 있다.
도 15에서는 밴드 2의 한 개의 레가시 서브프레임에서 1 심볼의 크기를 가지는 스페셜 심볼(1503)과 3 심볼의 크기(n=3)를 가지는 sPDSCH(1504) 2개가 매핑되고, 이어서 1 심볼의 크기를 가지는 스페셜 심볼(1503)과 3 심볼의 크기(n=3)를 가지는 sPDSCH(1504) 2개가 매핑되어 구성되는 경우를 예시한다.
즉, 짧은 TTI 무선 프레임 구조는 1 레가시 서브프레임(즉, 1ms) 이내에 4개의 짧은 TTI가 존재하는 구조로써, 하나의 짧은 TTI는 3 심볼(즉, sPDSCH 길이), 약 0.2ms의 길이를 가진다.
여기서, 스페셜 심볼(1503)은 레가시 서브프레임의 전체 심볼의 개수에서 짧은 TTI의 크기(도 15에서 3 심볼)로 나눈 나머지 심볼(2=14%3)에 구성될 수 있다. 이때, 스페셜 심볼(1503)과 sPDSCH(1504)가 시간 축 상으로 매핑되는 순서는 도 15와 상이할 수 있다.
도 15와 같이 하나의 밴드에 스페셜 심볼(1503)과 sPDSCH(1504)만으로 구성되는 경우, sPDSCH(1504)에서 전송되는 하향링크 데이터에 대한 제어 정보(예를 들어, sPDSCH의 하향링크 데이터에 대한 주파수/시간 자원 할당 정보, MCS, NDI, RV, TPC명령 등)는 다른 밴드(도 15에서 밴드 1)의 PDCCH(1501)을 통해 전송될 수 있다. 즉, 크로스 캐리어 스케줄링(cross carrier scheduling)이 적용될 수 있다.
이처럼 기지국이 PDCCH(1501)를 통해 sPDSCH(1504)에서 전송되는 하향링크 데이터에 대한 제어 정보를 전송하는 경우, PDCCH(1501)는 밴드 1의 PDSCH(1502)뿐만 아니라 밴드 2의 sPDSCH(1504)와 관련된 제어 정보를 전송하게 된다. 따라서, 단말은 PDSCH(1502) 또는 sPDSCH(1504) 중 어느 영역에서 자신에게 하향링크 데이터가 전송되는 것을 알 수 있어야 한다.
이를 위해, 앞서 도 12의 예시에 설명한 바와 같이, 하향링크 데이터 전송과 관련된 DCI(Downlink Control Information) 포맷은 'sPDSCH 지시자 필드' 및/또는 12/n개 sPDSCH(1504) 중에서 몇 번째 sPDSCH(1504)으로 전송되는 데이터에 대한 스케줄링인지를 알리는 'TTI 번호 필드'를 포함할 수 있다.
또한, sPDSCH 지시자 정보와 TTI 번호 정보가 하나의 필드로 구성될 수도 있다. 즉, 비트맵 형식으로 정의된 sPDSCH 지시 및 TTI 번호 필드에서 위의 sPDSCH 지시자 정보와 위의 TTI 번호 정보를 모두 전달할 수도 있다.
상술한 바와 같이, 짧은 TTI 프레임 구조로 구성되는 경우, 저 레이턴시(low latency) 단말을 위한 자원 할당 단위로 짧은 자원 블록(short RB) 또한 새롭게 정의될 수 있다. 예를 들어, 짧은 RB는 주파수 영역에서는 기존과 동일하게 12개의 서브캐리어로 구성되고, 시간 영역에서는 n개의 심볼(즉, 짧은 TTI 크기)로 정의할 수 있다. 또한, 짧은 RB는 주파수 영역에서도 기존 보다 적은 x개(x<12)의 서브캐리어로 구성될 수도 있다.
또한, 레가시 PDSCH와 마찬가지로 sPDSCH 영역에서 데이터의 자원 요소에의 매핑은 먼저 주파수 인덱스가 증가하는 순서로 매핑되고, 그리고 심볼 인덱스가 증가하는 순서로 매핑될 수 있다.
한편, 도 15에서 스페셜 심볼(special symbol)(1503) 대신에 sPDSCH(1504)와 관련된 제어 정보를 전송하는 sPDCCH(1503)가 할당될 수도 있다.
이 경우, 짧은 TTI 프레임 구조로 구성되는 밴드 2에서는 하나 이상의 sPDSCH(1504)에 대하여 sPDCCH(1503)이 매핑될 수 있다. 도 15에서 하나의 레가시 서브프레임 내에서 좌측부터 1, 2 번째 sPDSCH(1504)는 1 번째 sPDCCH(1503)에 매핑되고, 3, 4 번째 sPDSCH(1504)는 2 번째 sPDCCH(1503)에 매핑된다.
따라서, sPDSCH(1504)에서 전송되는 하향링크 데이터에 대한 제어 정보(예를 들어, sPDSCH의 하향링크 데이터에 대한 주파수/시간 자원 할당 정보, MCS, NDI, RV, TPC 명령 등)는 해당 sPDSCH(1504)와 매핑되는 sPDCCH(1503)(즉, 해당 sPDSCH 이전 가장 최근에 전송된 sPDCCH)을 통해 전송될 수 있다. 이때, sPDCCH(1503)은 밴드 전대역에 걸쳐 전송된다.
짧은 TTI 프레임 구조로 구성되는 밴드의 sPDCCH(1503) 포맷은 기존의 PDCCH(1501)의 포맷과 동일할 수 있으나, 다른 포맷으로 정의될 수도 있다. 예를 들어, sPDCCH(1503) 포맷에서 하나의 CCE는 x개(x<9)의 REG로 구성되거나 sPDCCH(1503) 영역에 매핑되는 REG는 y개(y<4)의 RE로 구성될 수 있다.
상술한 바와 같이, 레가시 프레임 구조로 구성되는 밴드 1 또는 짧은 TTI 프레임 구조로 구성되는 밴드 2가 P셀로써 동작할 수 있다. 또한, 저 레이턴시를 요구하는 단말에게는 레가시 프레임 구조로 구성되는 밴드 1 및 짧은 TTI 프레임 구조로 구성되는 밴드 2를 반드시 병합하도록 설정함으로써, 밴드 1 및 밴드 2 모두 P셀로써 동작하도록 설정할 수도 있다.
앞서 설명한 PDCCH(1501), sPDCCH(1503), sPDSCH(1504)가 매핑되는 심볼(또는 심볼의 개수), 하나의 레가시 서브프레임 내 설정되는 짧은 TTI의 개수 등은 하나의 예시에 불과하며, 본 발명이 이에 한정되는 것은 아니다.
다만, 저 레이턴시를 위한 프레임 구조 설계를 위해서 짧은 TTI의 크기 n(심볼 개수)은 7보다 작은 값을 가지는 것이 바람직하다.
도 16은 본 발명의 일 실시예에 따른 무선 프레임 구조를 설명하기 위한 도면이다.
도 16을 참조하면, 밴드(또는 캐리어/셀) 1은 레가시 프레임 구조로 구성되고, 밴드(또는 캐리어/셀) 2는 본 발명에서 제안하는 짧은 TTI 프레임 구조로 구성되며, 밴드 1 및 2가 특정 단말에 대하여 캐리어 병합(CA)된 경우를 예시한다.
밴드 1은 앞서 도 15의 예시와 동일하므로 설명을 생략한다.
짧은 TTI 프레임 구조로 구성되는 밴드 2에서는 1개의 레가시 서브프레임(즉, 1ms) 내 하나 이상의 스페셜 심볼(1603) 및 n 개 심볼의 크기를 가지는 하나 이상의 sPDSCH(1604)로 구성될 수 있다.
도 16에서는 밴드 2의 1개의 레가시 서브프레임 내 2 심볼의 크기를 가지는 스페셜 심볼(1603)과 3 심볼의 크기(n=3)를 가지는 sPDSCH(1604) 4개가 연속적으로 매핑되어 구성되는 경우를 예시한다.
즉, 짧은 TTI 무선 프레임 구조는 1 레가시 서브프레임(즉, 1ms) 이내에 4개의 짧은 TTI가 존재하는 구조로써, 하나의 짧은 TTI는 3 심볼(즉, sPDSCH 길이), 약 0.2ms의 길이를 가진다.
여기서, 스페셜 심볼(1603)은 레가시 서브프레임의 전체 심볼의 개수에서 짧은 TTI의 크기(도 16에서 3 심볼)로 나눈 나머지 심볼(2=14%3)에 구성될 수 있다. 이때, 스페셜 심볼(1603)과 sPDSCH(1604)가 시간 축 상으로 매핑되는 순서는 도 16과 상이할 수 있다.
도 16과 같이 하나의 밴드에 스페셜 심볼(1603)과 sPDSCH(1604)만으로 구성되는 경우, sPDSCH(1604)에서 전송되는 하향링크 데이터에 대한 제어 정보(예를 들어, sPDSCH의 하향링크 데이터에 대한 주파수/시간 자원 할당 정보, MCS, NDI, RV, TPC명령 등)는 다른 밴드(도 16에서 밴드 1)의 PDCCH(1601)을 통해 전송될 수 있다. 즉, 크로스 캐리어 스케줄링(cross carrier scheduling)이 적용될 수 있다.
이처럼 기지국이 PDCCH(1601)를 통해 sPDSCH(1604)에서 전송되는 하향링크 데이터에 대한 제어 정보를 전송하는 경우, PDCCH(1601)는 밴드 1의 PDSCH(1602)뿐만 아니라 밴드 2의 sPDSCH(1604)와 관련된 제어 정보를 전송하게 된다. 따라서, 단말은 PDSCH(1602) 또는 sPDSCH(1604) 중 어느 영역에서 자신에게 하향링크 데이터가 전송되는 것을 알 수 있어야 한다.
이를 위해, 앞서 도 12에서 설명한 바와 같이, 하향링크 데이터 전송과 관련된 DCI(Downlink Control Information) 포맷은 'sPDSCH 지시자 필드' 및/또는 12/n개 sPDSCH(1604) 중에서 몇 번째 sPDSCH(1604)으로 전송되는 데이터에 대한 스케줄링인지를 알리는 'TTI 번호 필드'를 포함할 수 있다.
또한, sPDSCH 지시자 정보와 TTI 번호 정보가 하나의 필드로 구성될 수도 있다. 즉, 비트맵 형식으로 정의된 sPDSCH 지시 및 TTI 번호 필드에서 위의 sPDSCH 지시자 정보와 위의 TTI 번호 정보를 모두 전달할 수도 있다.
상술한 바와 같이, 짧은 TTI 프레임 구조로 구성되는 경우, 저 레이턴시(low latency) 단말을 위한 자원 할당 단위로 짧은 자원 블록(short RB) 또한 새롭게 정의될 수 있다. 예를 들어, 짧은 RB는 주파수 영역에서는 기존과 동일하게 12개의 서브캐리어로 구성되고, 시간 영역에서는 n개의 심볼(즉, 짧은 TTI 크기)로 정의할 수 있다. 또한, 짧은 RB는 주파수 영역에서도 기존 보다 적은 x개(x<12)의 서브캐리어로 구성될 수도 있다.
또한, 레가시 PDSCH와 마찬가지로 sPDSCH 영역에서 데이터의 자원 요소에의 매핑은 먼저 주파수 인덱스가 증가하는 순서로 매핑되고, 그리고 심볼 인덱스가 증가하는 순서로 매핑될 수 있다.
한편, 도 16에서 스페셜 심볼(special symbol)(1603) 대신에 sPDSCH(1604)와 관련된 제어 정보를 전송하는 sPDCCH(1603)가 할당될 수도 있다.
이 경우, 짧은 TTI 프레임 구조로 구성되는 밴드 2에서는 하나 이상의 sPDSCH(1604)에 대하여 sPDCCH(1603)이 매핑될 수 있다. 도 16에서 하나의 레가시 서브프레임 내에서 좌측부터 1 내지 4 번째 sPDSCH(1604)는 1 번째 sPDCCH(1603)에 매핑된다.
따라서, sPDSCH(1604)에서 전송되는 하향링크 데이터에 대한 제어 정보(예를 들어, sPDSCH의 하향링크 데이터에 대한 주파수/시간 자원 할당 정보, MCS, NDI, RV, TPC 명령 등)는 해당 sPDSCH(1604)와 매핑되는 sPDCCH(1603)(즉, 해당 sPDSCH 이전 가장 최근에 전송된 sPDCCH)을 통해 전송될 수 있다. 이때, sPDCCH(1603)은 밴드 전대역에 걸쳐 전송된다.
짧은 TTI 프레임 구조로 구성되는 밴드의 sPDCCH(1603) 포맷은 기존의 PDCCH(1601)의 포맷과 동일할 수 있으나, 다른 포맷으로 정의될 수도 있다. 예를 들어, sPDCCH(1603) 포맷에서 하나의 CCE는 x개(x<9)의 REG로 구성되거나 sPDCCH(1603) 영역에 매핑되는 REG는 y개(y<4)의 RE로 구성될 수 있다.
상술한 바와 같이, 레가시 프레임 구조로 구성되는 밴드 1 또는 짧은 TTI 프레임 구조로 구성되는 밴드 2가 P셀로써 동작할 수 있다. 또한, 저 레이턴시를 요구하는 단말에게는 레가시 프레임 구조로 구성되는 밴드 1 및 짧은 TTI 프레임 구조로 구성되는 밴드 2를 반드시 병합하도록 설정함으로써, 밴드 1 및 밴드 2 모두 P셀로써 동작하도록 설정할 수도 있다.
앞서 설명한 sPDCCH(1603), sPDSCH(1604)가 매핑되는 심볼(또는 심볼의 개수), 하나의 레가시 서브프레임 내 설정되는 짧은 TTI의 개수 등은 하나의 예시에 불과하며, 본 발명이 이에 한정되는 것은 아니다.
다만, 저 레이턴시를 위한 프레임 구조 설계를 위해서 짧은 TTI의 크기 n(심볼 개수)은 7보다 작은 값을 가지는 것이 바람직하다.
도 17은 본 발명의 일 실시예에 따른 무선 프레임 구조를 설명하기 위한 도면이다.
도 17을 참조하면, 밴드(또는 캐리어/셀) 1은 레가시 프레임 구조로 구성되고, 밴드(또는 캐리어/셀) 2는 본 발명에서 제안하는 짧은 TTI 프레임 구조로 구성되며, 밴드 1 및 2가 특정 단말에 대하여 캐리어 병합(CA)된 경우를 예시한다.
밴드 1은 앞서 도 15의 예시와 동일하므로 설명을 생략한다.
짧은 TTI 프레임 구조로 구성되는 밴드 2에서는 하나 이상의 레가시 서브프레임(즉, 3ms) 내 sPDCCH(1703) 및 sPDSCH(1704)가 교대로 구성될 수 있다.
도 17에서는 밴드 2의 3 개의 레가시 서브프레임 내 1 심볼의 크기를 가지는 sPDCCH(1703)과 2 심볼의 크기(n=2)를 가지는 sPDSCH(1704)가 교대로 매핑되어 구성되는 경우를 예시한다.
즉, 짧은 TTI 무선 프레임 구조는 3 레가시 서브프레임(즉, 1ms) 이내에 14개의 짧은 TTI가 존재하는 구조로써, 하나의 짧은 TTI는 3 심볼(즉, sPDCCH 및 sPDSCH 길이), 약 0.2ms의 길이를 가진다.
상술한 바와 같이, 짧은 TTI 프레임 구조로 구성되는 경우, 저 레이턴시(low latency) 단말을 위한 자원 할당 단위로 짧은 자원 블록(short RB) 또한 새롭게 정의될 수 있다. 예를 들어, 짧은 RB는 주파수 영역에서는 기존과 동일하게 12개의 서브캐리어로 구성되고, 시간 영역에서는 n개의 심볼(즉, 짧은 TTI 크기)로 정의할 수 있다. 또한, 짧은 RB는 주파수 영역에서도 기존 보다 적은 x개(x<12)의 서브캐리어로 구성될 수도 있다.
또한, 레가시 PDSCH와 마찬가지로 sPDSCH 영역에서 데이터의 자원 요소에의 매핑은 먼저 주파수 인덱스가 증가하는 순서로 매핑되고, 그리고 심볼 인덱스가 증가하는 순서로 매핑될 수 있다.
sPDSCH(1704)에서 전송되는 하향링크 데이터에 대한 제어 정보(예를 들어, sPDSCH의 하향링크 데이터에 대한 주파수/시간 자원 할당 정보, MCS, NDI, RV, TPC 명령 등)는 해당 sPDSCH(1704)와 매핑되는 sPDCCH(1703)(즉, 해당 sPDSCH 이전 가장 최근에 전송된 sPDCCH)을 통해 전송될 수 있다. 이때, sPDCCH(1703)은 밴드 전대역에 걸쳐 전송된다.
짧은 TTI 프레임 구조로 구성되는 밴드의 sPDCCH(1703) 포맷은 기존의 PDCCH(1701)의 포맷과 동일할 수 있으나, 다른 포맷으로 정의될 수도 있다. 예를 들어, sPDCCH(1703) 포맷에서 하나의 CCE는 x개(x<9)의 REG로 구성되거나 sPDCCH(1603) 영역에 매핑되는 REG는 y개(y<4)의 RE로 구성될 수 있다.
상술한 바와 같이, 레가시 프레임 구조로 구성되는 밴드 1 또는 짧은 TTI 프레임 구조로 구성되는 밴드 2가 P셀로써 동작할 수 있다. 또한, 저 레이턴시를 요구하는 단말에게는 레가시 프레임 구조로 구성되는 밴드 1 및 짧은 TTI 프레임 구조로 구성되는 밴드 2를 반드시 병합하도록 설정함으로써, 밴드 1 및 밴드 2 모두 P셀로써 동작하도록 설정할 수도 있다.
앞서 설명한 sPDCCH(1703), sPDSCH(1704)가 매핑되는 심볼(또는 심볼의 개수), 하나의 레가시 서브프레임 내 설정되는 짧은 TTI의 개수 등은 하나의 예시에 불과하며, 본 발명이 이에 한정되는 것은 아니다.
다만, 저 레이턴시를 위한 프레임 구조 설계를 위해서 짧은 TTI의 크기 n(심볼 개수)은 7보다 작은 값을 가지는 것이 바람직하다.

서브밴드 캐리어 / 측면에서 2 레벨 프레임 구조
한편, 앞서 설명한 서브밴드 측면과 캐리어/셀 측면에서 2 레벨 프레임 구조(Carrier-wise 2-level frame structure)가 함께 적용될 수도 있다. 이에 대하여 아래 도면을 참조하여 설명한다.
도 18은 본 발명의 일 실시예에 따른 무선 프레임 구조를 설명하기 위한 도면이다.
도 18을 참조하면, 밴드(또는 캐리어/셀) 1은 레가시 프레임 구조로 구성되고, 밴드(또는 캐리어/셀) 2는 본 발명에서 제안하는 서브밴드 측면의 짧은 TTI 프레임 구조로 구성되며, 밴드 1 및 2가 특정 단말에 대하여 캐리어 병합(CA)된 경우를 예시한다.
밴드 1은 앞서 도 15의 예시와 동일하므로 설명을 생략한다.
밴드 2는 복수의 서브밴드(또는 서브밴드 그룹)으로 구분되고, 그 중 하나 이상의 서브밴드(또는 서브밴드 그룹)가 짧은 TTI 프레임 구조로 구성될 수 있다.
보다 구체적으로 살펴보면, PDCCH(1811)는 매 서브프레임에서 앞의 심볼에 할당되고, 앞의 최대 4개의 심볼에 할당된다. 즉, 매 서브프레임의 최대 #0 내지 #3번 심볼에서 밴드(band) 전대역에 걸쳐 전송될 수 있다. 도 18에서는 매 서브프레임의 #0, #1번 심볼에서 밴드(band) 전대역에 걸쳐 PDCCH(1811)가 구성되는 경우를 예시한다.
이하, 설명의 편의를 위해 PDCCH(1811)는 매 서브프레임에서 앞의 2개의 심볼에 매핑된다고 가정하여 설명한다.
그리고, 저 레이턴시를 위한 서브밴드를 제외한 나머지 주파수 영역에서, PDCCH(1811)가 매핑되지 않은 나머지 심볼에서는 일반 데이터 전송을 위해 사용하는 PDSCH(1812)가 할당될 수 있다. 도 18에서는 #3~#13번 심볼에서 저 레이턴시를 위한 서브밴드를 제외한 나머지 주파수 영역에 걸쳐 PDSCH(1812)가 할당되는 경우를 예시한다.
그리고, 저 레이턴시를 위한 하나 이상의 서브밴드(또는 서브밴드 그룹)는 짧은 TTI 프레임 구조로 구성된다. 구체적으로, 레가시 서브프레임에서 하나 이상의 서브밴드(또는 서브밴드 그룹)는 PDCCH(1811)가 매핑된 영역을 제외한 심볼(즉, 레가시 서브프레임의 전체 심볼에서 PDCCH(1811)가 할당된 심볼을 제외한 나머지 심볼)을 짧은 TTI 크기에 해당하는 심볼 n개(예를 들어, 2개 내지 4개 등)로 나누어 짧은 TTI 서브프레임(sPDCCH(1813) 및 sPDSCH(1814))으로 구성된다.
즉, 매 짧은 TTI 서브프레임에서 앞의 일정 심볼(예를 들어, 1개 혹은 2개 심볼)에서 sPDCCH(1813)이 할당되고, 나머지 심볼에서 sPDSCH(1814)가 할당된다.
sPDCCH(1813)의 심볼 개수를 제한되지 않으나, 만약 짧은 TTI 서브프레임이 3개의 심볼로 구성되는 경우, sPDCCH(1813)는 1개의 심볼로 구성되는 것이 바람직하다.
도 18과 같이 PDCCH(1811)가 레가시 서브프레임의 앞의 2개의 심볼에 할당되는 경우, 4개(=12/3)의 짧은 TTI 서브프레임(sPDCCH(1813) 및 sPDSCH(1814))이 구성될 수 있다. 그리고, 매 짧은 TTI 서브프레임마다 앞의 1개의 심볼에 sPDCCH(1813)가 할당되고, 나머지 2개의 심볼에 sPDSCH(1814)가 할당될 수 있다.
즉, 짧은 TTI 무선 프레임 구조는 1 레가시 서브프레임(즉, 1ms) 이내에 4개의 짧은 TTI가 존재하는 구조로써, 하나의 짧은 TTI는 3 심볼, 약 0.2ms의 길이를 가지는 데이터 채널을 나타낸다.
상술한 바와 같이, 짧은 TTI 프레임 구조로 구성되는 경우, 저 레이턴시(low latency) 단말을 위한 자원 할당 단위로 짧은 자원 블록(short RB) 또한 새롭게 정의될 수 있다. 예를 들어, 짧은 RB는 주파수 영역에서는 기존과 동일하게 12개의 서브캐리어로 구성되고, 시간 영역에서는 n개의 심볼(즉, 짧은 TTI 크기)로 정의할 수 있다. 또한, 짧은 RB는 주파수 영역에서도 기존 보다 적은 x개(x<12)의 서브캐리어로 구성될 수도 있다.
또한, 레가시 PDSCH와 마찬가지로 sPDSCH 영역에서 데이터의 자원 요소에의 매핑은 먼저 주파수 인덱스가 증가하는 순서로 매핑되고, 그리고 심볼 인덱스가 증가하는 순서로 매핑될 수 있다.
도 18의 예시와 같이 특정 밴드의 일부 서브밴드가 짧은 TTI 프레임 구조로 구성되는 경우, sPDSCH(1814)에서 전송되는 하향링크 데이터에 대한 제어 정보(예를 들어, sPDSCH의 하향링크 데이터에 대한 주파수/시간 자원 할당 정보, MCS, NDI, RV, TPC 명령 등)는 해당 sPDSCH(1814)와 매핑되는 sPDCCH(1813)(해당 sPDSCH 이전 가장 최근에 전송된 sPDCCH)을 통해 전송될 수 있다. 즉, 도 18에서 좌측부터 1 번째 sPDSCH(1814)에서 전송되는 하향링크 데이터에 대한 제어 정보는 1 번째 sPDCCH(1813)에서 전송되고, 2 번째 sPDSCH(1814)에서 전송되는 하향링크 데이터에 대한 제어 정보는 2 번째 sPDCCH(1813)에서 전송되고, 그 외에도 동일하다.
짧은 TTI 프레임 구조로 구성되는 밴드의 sPDCCH(1813) 포맷은 기존의 PDCCH(1811)의 포맷과 동일할 수 있으나, 다른 포맷으로 정의될 수도 있다. 예를 들어, sPDCCH(1813) 포맷에서 하나의 CCE는 x개(x<9)의 REG로 구성되거나 sPDCCH(1813) 영역에 매핑되는 REG는 y개(y<4)의 RE로 구성될 수 있다.
상술한 바와 같이, 레가시 프레임 구조로 구성되는 밴드 1 또는 일부 서브밴드가 짧은 TTI 프레임 구조로 구성되는 밴드 2가 P셀로써 동작할 수 있다. 또한, 저 레이턴시를 요구하는 단말에게는 레가시 프레임 구조로 구성되는 밴드 1 및 일부 서브밴드가 짧은 TTI 프레임 구조로 구성되는 밴드 2를 반드시 병합하도록 설정함으로써, 밴드 1 및 밴드 2 모두 P셀로써 동작하도록 설정할 수도 있다.
앞서 설명한 PDCCH(1811), sPDCCH(1813), sPDSCH(1814)가 매핑되는 심볼(또는 심볼의 개수), 하나의 레가시 서브프레임 내 설정되는 짧은 TTI의 개수 등은 하나의 예시에 불과하며, 본 발명이 이에 한정되는 것은 아니다.

짧은 TTI 프레임 구조에 대한 구성 정보 ( configuration information ) 전송 방법
본 발명에서 제안하는 짧은 TTI 프레임 구조에 대한 무선 자원 정보는 셀 정보를 전송하기 위한 RRC 메시지를 통해 전송될 수 있다.
도 19는 본 발명의 일 실시예에 따른 짧은 TTI 프레임 구조에 대한 정보를 전송하는 방법을 예시하는 도면이다.
도 19를 참조하면, 기지국은 단말에 짧은 TTI 프레임 구조에 대한 무선 자원 정보(이하, '짧은 TTI 무선 자원 정보')를 RRC 메시지를 통해 단말에 전송한다(S1901).
여기서, RRC 메시지의 일례로 시스템 정보(System Information) 메시지, RRC 연결 설정(RRC Connection Setup) 메시지, RRC 연결 재설정(RRC Connection Reconfiguration) 메시지 또는 RRC 연결 재확립(RRC Connection Reestablishment) 메시지가 해당될 수 있다.
보다 구체적으로 살펴보면 다음과 같다.
1) 짧은 TTI 무선 자원 정보는 셀 특정(cell-specific) RRC 메시지를 통해 단말에 전송될 수 있다.
예를 들어, 짧은 TTI 무선 자원 정보는 시스템 정보(system information) 또는 이동성 제어 정보(mobility control information) 내에서 각각 공통적인 무선 자원 구성을 특정하기 위하여 사용되는 무선 자원 공통 설정('RadioResourceConfigCommon') 정보 요소(IE: Information Element)에 포함되어 전송될 수 있다.
'RadioResourceConfigCommon' IE는 이동성 제어 정보('MobilityControlInfo') IE 또는 시스템 정보 블록 타입 2(SIB-2: System Information Block Type 2)(또는, 새롭게 정의된 SIB-x)에 포함되어 전송될 수 있다. 이동성 제어 정보('MobilityControlInfo') IE는 E-UTRA 내에서 네트워크가 제어하는 이동성(network controlled mobility)과 관련된 파라미터를 포함하는 IE이다.
이동성 제어 정보('MobilityControlInfo') IE는 RRC 연결 재설정(RRC Connection Reconfiguration) 메시지를 통해 전송될 수 있다. RRC 연결 재설정(RRC Connection Reconfiguration) 메시지는 RRC 연결을 수정하기 위한 명령 메시지이다.
SIB-2(또는 SIB-x)는 시스템 정보(System Information) 메시지를 통해 전송될 수 있다. 시스템 정보 메시지는 하나 이상의 시스템 정보 블록(SIB)을 전송하기 위하여 사용되는 메시지이다.
2) 짧은 TTI 무선 자원 정보는 저 레이턴시(low latency) 단말을 위한 정보이므로 단말 특정(uesr-specific) RRC 메시지를 통해 저 레이턴시(low latency) 단말에게 전송될 수도 있다.
예를 들어, 짧은 TTI 무선 자원 정보는 단말 특정 물리 채널 구성을 특정하기 위하여 사용되는 전용 PDSCH 설정('pdschConfigDedicated') IE 또는 전용 물리 자원 설정('physicalConfigDedicated') IE에 포함되어 전송될 수 있다.
전용 PDSCH 설정('pdschConfigDedicated') IE 또는 전용 물리 자원 설정('physicalConfigDedicated') IE는 전용 무선 자원 설정('RadioResourceConfigDedicated') IE에 포함되어 전송될 수 있다. 전용 무선 자원 설정('RadioResourceConfigDedicated') IE는 무선 베어러(RB: radio bearer)의 셋업(setup), 수정(modify) 또는 해제(release)를 위해, MAC 메인 설정(MAC main configuration)을 수정하기 위해, 반정적 스케줄링(SPS: Semi-Persistent Scheduling) 설정을 수정하기 위해, 그리고 전용 물리 설정(dedicated physical configuration)을 수정하기 위해 이용된다.
전용 무선 자원 설정('RadioResourceConfigDedicated') IE는 RRC 연결 설정(RRC Connection Setup) 메시지, RRC 연결 재설정(RRC Connection Reconfiguration) 메시지 또는 RRC 연결 재확립(RRC Connection Reestablishment) 메시지를 통해 전송될 수 있다.
RRC 연결 설정(RRC Connection Setup) 메시지는 SRB(Signalling Radio Bearer)를 확립하기 위하여 사용되는 메시지이고, RRC 연결 재확립(RRC Connection Reestablishment) 메시지는 SRB를 재확립하기 위하여 사용되는 메시지이다.
이하, 짧은 TTI 무선 자원 정보에 포함되는 정보들을 살펴본다.
- 짧은 TTI 서브프레임을 위한 주파수 자원 정보(Frequency resource information for short TTI sub-frame)
주파수 밴드 내에서 짧은 TTI가 적용되는 서브밴드에 대한 주파수 정보를 의미한다. 서브밴드 측면 및/또는 캐리어 측면 2 레벨 무선 프레임 구조가 이용되는 경우, 이 정보가 짧은 TTI 무선 자원 정보에 포함될 수 있다.
짧은 TTI 서브프레임을 위한 주파수 자원 정보는 서브캐리어 또는 RB 단위로 표현될 수 있다. 예를 들어, 시작 및/또는 끝 자원(즉, 서브캐리어 또는 RB)에 대한 인덱스 정보로 표현될 수 있다. 또한, 시작 또는 끝 자원(즉, 서브캐리어 또는 RB)에 대한 인덱스와 자원(즉, 서브캐리어 또는 RB)의 개수로 표현될 수 있다.
서브밴드 측면의 2 레벨 프레임 구조의 경우(도 12 내지 도 14, 도 18), 특정 밴드 내 짧은 TTI 프레임 구조로 구성되는 특정 서브밴드에 대한 주파수 자원 정보를 나타낸다.
반면, 특정 밴드의 전 밴드에서 짧은 TTI가 적용되는 경우(도 15 내지 도 17), 가장 높은/낮은 자원(즉, 서브캐리어 또는 RB) 인덱스로 표현되거나, 미리 정해진 특정 값(예를 들어, '0')로 셋팅될 수 있다.
- 짧은 TTI 서브프레임을 위한 심볼 수(The number of symbols for a short TTI sub-frame)
하나의 짧은 TTI 서브프레임에 대한 심볼 수를 의미한다. 예를 들어, 짧은 각 짧은 TTI 서브프레임이 3개의 심볼로 구성되는 '3'으로 셋팅될 수 있다.
서브밴드 측면 및/또는 캐리어 측면에서 2 레벨 무선 프레임 구조가 이용되는 경우, 이 정보가 짧은 TTI 무선 자원 정보에 포함될 수 있다.
- sPDCCH를 위한 심볼 수(The number of symbols for a sPDCCH)
각 짧은 TTI 서브프레임 내에서 sPDCCH에 대한 심볼 수를 의미한다.
짧은 TTI 서브프레임 내 sPDCCH가 존재한다면(도 13, 도 17 및 도 18), 이 정보가 짧은 TTI 무선 자원 정보에 포함될 수 있다.
- 스페셜 심볼 수(The number of special symbols)
레가시 서브프레임(즉, 1ms) 이내에 존재하는 스페셜 심볼의 수를 의미한다. 예를 들어, '1' 또는 '2'의 2가지 정보를 나타내는 정보를 포함할 수 있다.
짧은 TTI 서브프레임 내 스페셜 심볼이 존재한다면(도 15 및 도 16), 이 정보가 짧은 TTI 무선 자원 정보에 포함될 수 있다.
저 레이턴시(Low latency)를 요구하는 단말은 앞서 도 19와 같이 RRC 메시지를 통해 전송되는 짧은 TTI 무선 자원 정보를 수신함으로써 해당 밴드에서의 짧은 TTI에 대한 무선 자원 정보를 확인하고, 짧은 TTI 구조를 이용하여 데이터를 송/수신할 수 있다.
한편, 앞서 설명한 캐리어/셀 측면 2 레벨 프레임 구조(carrier/cell-wise 2-level frame structure)는 캐리어 병합(CA)를 이용하는 단말에 대해 설정될 수 있다.
이때, 저 레이턴시(Low Latency) 단말은 레가시 단말과는 다른 방법으로 P셀 및 S셀을 설정할 필요가 있다. 이에 대하여 아래 도면을 참조하여 설명한다.
도 20은 본 발명의 일 실시예에 따른 캐리어 측면 2 레벨 프레임 구조를 위한 캐리어 병합을 설정하는 방법을 예시하는 도면이다.
도 20을 참조하면, 기지국은 단말에 짧은 TTI 프레임 구조에 대한 무선 자원 정보(이하, '짧은 TTI 무선 자원 정보')를 RRC 메시지를 통해 단말에 전송한다(S2001).
짧은 TTI 무선 자원 정보를 송수신 방법 및 이에 포함되는 정보는 앞서 도 19의 설명과 동일하므로 이하 설명을 생략한다.
기지국은 캐리어 병합을 설정하기 위하여 RRC 연결 재설정(RRC Connection Reconfiguration) 메시지 단말로 전송한다(S2002).
단말이 짧은 TTI 프레임 구조를 가지는 캐리어/셀을 통해 네트워크에 접속(attach) 절차를 수행한 경우, 기지국은 RRC 연결 재설정(RRC Connection Reconfiguration) 메시지를 통해 단말에 레가시 프레임 구조를 가지는 셀을 S셀로 추가할 수 있다. 즉, 레가시 프레임 구조를 가지는 캐리어/셀이 S셀로 설정될 수 있다.
RRC 연결 재설정(RRC Connection Reconfiguration) 메시지는 전용 S셀 무선 자원 설정('radioResourceConfigDedicatedSCell') 필드를 포함한다.
전용 S셀 무선 자원 설정('radioResourceConfigDedicatedSCell') 필드는 S셀 추가('SCellToAddMod') 필드를 포함한다. S셀 추가('SCellToAddMod') 필드는 S셀을 추가하기 위하여 이용되는 필드이다.
S셀 추가('SCellToAddMod') 필드는 S셀 인덱스('sCellIndex') 필드 및 셀 식별자('cellIdentification') 필드를 포함한다.
그리고, 셀 식별자('cellIdentification') 필드는 물리 셀 식별자('physCellId') 필드 및 하향링크 캐리어 주파수('dl-CarrierFreq') 필드를 포함한다.
S셀 인덱스('sCellIndex') 필드는 S셀을 식별하기 위하여 사용되는 간략한(short) 식별자를 지시하는 필드로써, 레가시 프레임 구조로 구성된 캐리어/셀의 인덱스를 포함할 수 있다.
물리 셀 식별자('physCellId') 필드는 셀의 물리 계층 식별자를 지시하는 필도로써, 레가시 프레임 구조로 구성된 캐리어/셀의 물리 계층 식별자를 포함할 수 있다. 그리고, 하향링크 캐리어 주파수('dl-CarrierFreq') 필드는 셀의 주파수 정보를 지시하는 필드로써, 레가시 프레임 구조로 구성된 캐리어/셀의 주파수 정보를 포함할 수 있다.
도 21은 캐리어 측면 2 레벨 프레임 구조를 위한 캐리어 병합을 설정하는 방법을 예시하는 도면이다.
도 21을 참조하면, 기지국은 단말에 짧은 TTI 프레임 구조에 대한 무선 자원 정보(이하, '짧은 TTI 무선 자원 정보')를 RRC 메시지를 통해 단말에 전송한다(S2101).
짧은 TTI 무선 자원 정보를 송수신 방법 및 이에 포함되는 정보는 앞서 도 19의 설명과 동일하므로 이하 설명을 생략한다.
기지국은 캐리어 병합을 설정하기 위하여 RRC 연결 재설정(RRC Connection Reconfiguration) 메시지 단말로 전송한다(S2102).
단말이 레가시 프레임 구조를 가지는 캐리어/셀을 통해 네트워크에 접속(attach) 절차를 수행한 경우, 기지국은 RRC 연결 재설정(RRC Connection Reconfiguration) 메시지를 통해 단말에 짧은 TTI 프레임 구조를 가지는 셀을 세컨더리 P셀(sPCell: secondary PCell)로 추가할 수 있다. 즉, 레가시 프레임 구조의 캐리어/셀과 짧은 TTI 프레임 구조의 캐리어/셀이 모두 P셀로 설정될 수 있다.
이와 같이 2개의 캐리어/셀이 P셀로 설정되는 경우, 각 캐리어/셀에 대한 제어는 서비스 특성에 따라 구분되어 수행되는 것이 바람직하다. 즉, 짧은 TTI 프레임 구조를 가지는 캐리어/셀의 경우에는 저 레이턴시(low latency)를 요구하는 서비스를 위해 특화된 제어만을 수행하도록 할 수 있다.
여기서, P셀이 2개라는 하는 것은, 단말이 유휴(IDLE) 상태 또는 도먼트(dormant) 상태에 진입하더라도 두 개의 캐리어/셀을 모두 모니터링(즉, PDCCH 또는 sPDCCH 또는 페이징 구간(paging interval) 등)하는 것을 의미한다. 따라서, 동일한 의미를 가지거나 동일한 동작을 수행하는 S셀로 정의될 수도 있다.
RRC 연결 재설정(RRC Connection Reconfiguration) 메시지는 전용 S셀 무선 자원 설정('radioResourceConfigDedicatedSCell') 필드를 포함한다.
전용 S셀 무선 자원 설정('radioResourceConfigDedicatedSCell') 필드는 세컨더리 P셀 추가('sPCellToAddMod') 필드를 포함한다. 세컨더리 P셀 추가('sPCellToAddMod') 필드는 세컨더리 P셀을 추가하기 위하여 이용되는 필드이다.
P셀 추가('sPCellToAddMod') 필드는 세컨더리 P셀 인덱스('sCellIndex') 필드 및 셀 식별자('cellIdentification') 필드를 포함한다.
그리고, 셀 식별자('cellIdentification') 필드는 물리 셀 식별자('physCellId') 필드 및 하향링크 캐리어 주파수('dl-CarrierFreq') 필드를 포함한다.
세컨더리 P셀 인덱스('sPCellIndex') 필드는 세컨더리 P셀을 식별하기 위하여 사용되는 간략한(short) 식별자를 지시하는 필드로써, 짧은 TTI 프레임 구조로 구성된 캐리어/셀의 인덱스를 포함할 수 있다.
물리 셀 식별자('physCellId') 필드는 짧은 TTI 프레임 구조로 구성된 캐리어/셀의 물리 계층 식별자를 포함하고, 하향링크 캐리어 주파수('dl-CarrierFreq') 필드는 짧은 TTI 프레임 구조로 구성된 캐리어/셀의 주파수 정보를 포함할 수 있다.
한편, 기지국은 도 20 및 도 21과 같이 단말에게 S셀 또는 sP셀을 추가할 때, 단말에게 짧은 TTI 무선 프레임 구조로 구성되는 셀에 대한 정보를 전송할 수도 있다.
즉, 앞서 도 19의 예시에서 설명한 짧은 TTI 무선 자원 정보는 앞서 도 20의 S2002 단계 또는 도 21의 S2102 단계에서 단말에게 전송될 수 있다. 이 경우, 도 20의 S2001 단계 또는 도 21의 S2101 단계는 생략될 수 있다.
도 22는 본 발명의 일 실시예에 따른 데이터 송수신 방법을 예시하는 도면이다.
도 22를 참조하면, 기지국은 제1 TTI 기반 무선 프레임 구조에 따른 PDSCH 영역에 제1 하향링크 데이터 매핑한다(S2201).
기지국은 앞서 도 12 내지 도 18에서 설명한 바와 같이, 저 레이턴시(low latency)가 요구되지 않는 일반 하향링크 데이터를 레가시 무선 프레임 구조에 따른 PDSCH에 매핑한다. 여기서 제1 TTI는 기존의 레가시 TTI(즉, 1ms)일 수 있다.
기지국은 제2 TTI 기반 무선 프레임 구조에 따른 sPDSCH 영역에 제2 하향링크 데이터 매핑한다(S2202).
기지국은 앞서 도 12 내지 도 18에서 설명한 바와 같이, 저 레이턴시(low latency)가 요구되는 하향링크 데이터를 본 발명에서 제안하는 짧은 TTI 무선 프레임 구조에 따른 PDSCH에 매핑한다. 여기서 제2 TTI는 본 발명에서 제안하는 sPDSCH 영역의 심볼 개수와 동일하거나 또는 sPDCCH 및 sPDSCH 영역의 심볼 개수(예를 들어, 3 심볼)와 동일할 수 있다.
상술한 바와 같이, 하나의 밴드 내에서 서브밴드 측면의 2 레벨 무선 프레임 구조(subband-wise 2-level radio frame structure)로 구성될 수 있으며, 서로 다른 밴드에서 캐리어 측면의 2 레벨 무선 프레임 구조(carrier-wise 2-level radio frame structure)로 구성될 수도 있다.
서로 다른 밴드에서 캐리어 측면의 2 레벨 무선 프레임 구조(carrier-wise 2-level radio frame structure)로 구성되는 경우, 짧은 TTI 무선 프레임 구조로 구성되는 셀이 P셀로 설정될 수 있다. 또한, 레가시 무선 프레임 구조로 구성되는 셀과 짧은 TTI 무선 프레임 구조로 구성되는 셀 모두 P셀로 설정될 수도 있다.
PDSCH 영역에 매핑되는 제1 하향링크 데이터에 대한 제어 정보와 sPDSCH 영역에 매핑되는 제2 하향링크 데이터에 대한 제어 정보 모두 레가시 무선 프레임 구조에 따른 PDCCH을 통해 전송될 수 있다.
또한, PDSCH 영역에 매핑되는 제1 하향링크 데이터에 대한 제어 정보는 레가시 무선 프레임 구조에 따른 PDCCH을 통해 전송되나, sPDSCH 영역에 매핑되는 제2 하향링크 데이터에 대한 제어 정보는 본 발명에서 제안하는 짧은 TTI 무선 프레임 구조에 따른 sPDCCH을 통해 전송될 수 있다. 이 경우, 복수의 sPDSCH 영역에서 전송되는 경우(예를 들어, 도 15 및 도 16의 경우), 하향링크 데이터에 대한 제어 정보가 하나의 sPDCCH을 통해 전송될 수 있다.
PDCCH 또는 sPDCCH를 통해 전송되는 하향링크 제어 정보에 대한 설명은 앞서 도 12 내지 도 18과 동일하므로 설명을 생략한다.
제1 하향링크 데이터 및 제2 하향링크 데이터를 전송하기 이전에 기지국은 앞서 도 19의 예시와 같이 셀 특정한 RRC 메시지 또는 단말 특정한 RRC 메시지를 통해 짧은 TTI 무선 자원 정보를 전송할 수 있다.
한편, 도 22에서는 설명의 편의를 위해 앞서 S2201 단계가 S2202 단계 보다 앞서서 수행되는 것으로 설명하였으나, S2202 단계가 S2201 단계 보다 앞서서 수행될 수 있다.
또한, S2201 단계와 S2202 단계가 시간 상으로 동시에 수행될 수도 있다.
도 23은 본 발명의 일 실시예에 따른 하향링크 데이터 전송 방법을 예시하는 도면이다.
도 23을 참조하면, 단말은 제1 TTI 기반 무선 프레임 구조에 따른 PDSCH 영역에서 제1 하향링크 데이터를 수신한다(S2301).
단말은 PDCCH 영역을 블라인드 디코딩하여 자신에게 전송되는 하향링크 제어 정보를 획득한다. 그리고, 획득한 하향링크 제어 정보를 기반으로 PDSCH 영역에서 자신에게 전송되는 하향링크 데이터를 디코딩한다.
단말은 제2 TTI 기반 무선 프레임 구조에 따른 sPDSCH 영역에서 제2 하향링크 데이터 수신한다(S2302).
단말은 PDCCH 영역 또는 sPDCCH 영역을 블라인드 디코딩하여 자신에게 전송되는 하향링크 제어 정보를 획득한다. 그리고, 획득한 하향링크 제어 정보를 기반으로 sPDSCH 영역에서 자신에게 전송되는 하향링크 데이터를 디코딩한다.
도 23은 단말 측면에서 서브밴드 측면의 2 레벨 무선 프레임 구조(subband-wise 2-level radio frame structure) 또는 서로 다른 밴드에서 캐리어 측면의 2 레벨 무선 프레임 구조(carrier-wise 2-level radio frame structure)를 통해 하향링크 데이터를 수신하는 방법을 예시한다.
단말은 S2301 단계 및 S2302 단계 이전에 앞서 도 19의 예시와 같이 짧은 TTI 무선 자원 정보를 기지국으로부터 수신할 수 있다. 또한, 도 20의 S2002 단계 또는 도 21의 S2102 단계에서 기지국에 의해 캐리어 병합이 설정될 때(즉, S셀 추가 또는 sP셀 추가), 짧은 TTI 무선 자원 정보를 기지국으로부터 수신할 수 있다.
한편, 본 발명은 상향링크 밴드에서도 동일한 방법으로 적용될 수 있다.
예를 들어, n 심볼의 TTI(예를 들어, 3 심볼)를 통해 하나의 레가지 서브프레임에 14/n개(일반 CP 적용된 경우)의 짧은 서브프레임(정수값, n=3인 경우, 4개의 짧은 서브프레임)과 14%n개의 스페셜 심볼(n=3인 경우, 2개의 스케셜 심볼)이 존재하는 구조로 동작하도록 한다. 여기서 14%n개의 스페셜 심볼은 기지국으로부터 상향링크 자원 할당(UL grant) 없이 단말 간의 경쟁을 통해 상향링크 데이터를 전송할 수 있는 경쟁 기반 자원(contention-based resource)으로 사용하도록 설계할 수 있다.
본 발명에서 제안하는 2-레벨 프레임 구조는 레가시 단말에게 끼치는 영향을 최소화하는 새로운 프레임 구조를 사용하여 저 레이턴시(low latency) 데이터를 송수신할 수 있도록 하는 효과를 가진다.
구체적으로, 본 발명에서 제안하는 밴드에서 동작하는 레가시 단말은 데이터 수신을 위해 매 서브프레임의 전대역 PDCCH를 블라인드 디코딩한다. 그리고, 레가시 단말은 자신에게 전송되는 제어 정보가 있는 경우, 그에 해당하는 데이터를 PDCCH를 통해 수신한 정보를 바탕으로 수신한다.
다만, 기지국은 저 레이턴시를 위해 할당된 서브밴드로 레가시 단말을 위한 데이터 스케줄링을 수행하지 않기 때문에, 레가시 단말에게 어떤 새로운 동작의 수행을 요구하지 않는다. 뿐만 아니라 만약 해당 1ms 서브프레임에서 저 레이턴시를 위한 서브밴드로 전송되는 데이터가 존재하지 않는 경우, 기지국은 저 레이턴시를 위한 서브밴드 자원을 레가시 단말의 데이터 전송을 위해 기존과 동일한 자원 할당 방식을 이용할 수 있다. 이와 같은 PDCCH에 대한 PDSCH 자원 할당은 기지국 제어에 의해 수행되므로 레가시 단말을 위해서는 레가시 방식을 그대로 사용할 수 있는 장점이 있다.
여기서, 저 레이턴시를 요구하는 5G 단말은 sPDSCH 자원 영역에서 데이터를 수신함으로써, 짧은 TTI를 이용하여 더욱 빠르게 데이터를 수신할 수 있게 된다. 그러나, 앞서 다양한 실시예에서 sPDSCH에 대한 PDCCH 매핑 방법에 따라 데이터 수신 지연은 다소 다른 효과를 가질 수 있지만, 종래의 1ms 서브프레임 구조를 이용한 데이터 전송 시 지연보다는 모두 짧은 지연으로 데이터를 수신할 수 있는 효과가 있다.
도 24는 본 발명의 일 실시예에 따른 짧은 TTI 무선 프레임 구조에서의 무선 송수신 지연을 예시하는 도면이다.
도 24에서는 1 TTI가 3 심볼(즉, 0.213ms)로 설정되는 경우, 하향링크 송수신 구현 관점으로 무선 송수신 지연을 예시한다.
도 24를 참조하면, 기지국(eNB)이 하향링크 데이터의 전송을 시작한 시점에서부터 단말(UE)이 하향링크 데이터의 수신을 시작하기까지 확산 지연(PD: Propagation Delay)이 발생한다. 그리고, 단말이 하향링크 데이터의 디코딩 전에 하향링크 데이터를 버퍼링(Buff: Buffering)하게 되면서, 버퍼링 지연이 발생한다. 단말에서의 버퍼링으로 인한 지연은 총 약 0.071ms 소요될 수 있다. 단말에서 하향링크 데이터(및 제어 정보) 디코딩으로 인한 프로세싱 지연(processing delay)은 약 0.525ms 미만이 소요될 수 있다.
이처럼, 기지국에서 단말로의 단 방향 무선 레이턴시(one-way OTA(Over-To-Air) Latency)는 약 0.6ms 미만이 소요될 수 있다.
그리고, 단말에서 A/N(ACK/NACK) 준비(Prep: Preparation)(예를 들어, ACK/NACK 인코딩 등)를 위한 지연과 A/N의 전송 시 발생되는 확산 지연(PD)은 총 약 0.3ms 미만이 소요된다.
위와 같이, 단 방향 데이터 전송에 대하여 송신측(예를 들어, 기지국)에서 수신측(예를 들어, 단말)으로부터 ACK/NACK 수신까지의 총 왕복 무선 레이턴시(Roundtrip OTA Latency)에 약 1ms가 소요될 수 있다.
결국, 본 발명의 짧은 TTI 프레임 구조를 이용함으로써 앞서 도 11의 예시와 비교하면 총 왕복 무선 레이턴시(Roundtrip OTA Latency)은 약 3ms가 감소되는 효과를 가질 수 있다.

Short TTI Scheduling Scheme
이하에서, 본 명세서에서 제안하는 low latency 통신을 위해 short TTI를 포함하는 frame 구조(이하 ‘short TTI frame 구조’라 한다)가 사용되는 경우, short TTI를 통해 전송되는 데이터에 대한 효율적인 스케줄링 방법에 대해 도 25 내지 도 30을 참조하여 구체적으로 살펴보기로 한다.
상기 Short TTI는 LTE/LTE-A 시스템의 1ms subframe으로 정의되는 TTI보다 짧은 전송 시간 간격을 가지는 TTI를 말한다.
상기 Short TTI는 short subframe, sPDSCH, 새로운 TTI 등으로 표현될 수 있다.
short TTI frame 구조에 대한 자세한 설명은 앞서 살핀 도 12 내지 도 18의 short TTI frame 구조 즉, carrier-wise 2-level frame 구조 및/또는 subband-wise 2-level frame 구조를 참조하기로 한다.
또한, 이하에서 설명할 short TTI의 효율적인 스케쥴링 방법은 도 12 내지 도 18의 frame 구조뿐만 아니라 low latency 통신을 위해 새롭게 정의될 수 있는 frame 구조에 대해서도 적용될 수 있음은 물론이다.
Short TTI 스케쥴링 방법에는 (1) TTI indication 필드를 사용하여 short TTI로 전송되는 데이터에 대해 스케쥴링하는 유연한(flexible) TTI(Transmission Time Interval) 스케쥴링 방법과, (2) short TTI frame 구조가 적용되는 carrier에서 PDSCH/sPDSCH의 start position을 고정함으로써 short TTI로 전송되는 데이터에 대해 스케쥴링하는 방법이 있을 수 있다.
먼저, 유연한 TTI(Transmission Time Interval) 스케쥴링 방법에 대해 살펴보기로 한다.
유연한(Flexible) TTI 스케쥴링 방법이란 하나의 sPDCCH(short PDCCH)에 대해 다수의 sPDSCH(multi-sPDSCH)가 매핑되는 구조에서 short TTI 즉, sPDSCH로 전송되는 데이터의 스케줄링 방법을 말한다.
상기 유연한 TTI 스케쥴링 방법은 short TTI(또는 short subframe)를 포함하는(또는 short TTI가 적용된) carrier가 첫 번째, stand alone 방식으로 동작하는 경우와 두 번째, cross-carrier scheduling에 의해 secondary carrier로 동작하는 경우에 모두 이용 가능하다.
Carrier가 stand-alone 방식으로 동작하는 경우는 short TTI frame 구조가 적용된 carrier가 primary cell로 동작하거나 또는 secondary carrier에서 non-cross carrier scheduling을 사용하는 경우를 말한다.
앞서도 살핀 것처럼, primary carrier는 primary component carrier(PCC), primary cell(Pcell), 제 1 컴포넌트 캐리어, 제 1 캐리어, 제 1 서빙 셀 등으로 표현될 수 있으며, secondary carrier는 secondary component carrier(SCC), secondary cell(Scell), 제 2 컴포넌트 캐리어, 제 2 캐리어, 제 2 서빙 셀 등으로 표현될 수 있다.
상기 유연한 TTI 스케쥴링 방법에 대해서는 후술할 도 25 및 도 26을 참조하여 구체적으로 살펴보기로 한다.
또한, 상기 유연한 TTI 스케쥴링 방법에서는 하나의 sPDCCH에서 하나 이상의 sPDSCH를 스케쥴링하기 위해 TTI indication 필드가 새롭게 정의된다.
상기 TTI indication 필드는 기지국에서 단말로 또는 단말에서 기지국으로 스케줄링되는 데이터가 동일 subframe(1ms 서브프레임 또는 레거시 서브프레임) 내의 multiple short TTI를 통해 전송되는 경우, 어떤 short TTI를 통해 데이터가 전송되는지를 나타내는 지시 정보 또는 지시자를 의미한다.
상기 TTI indication 필드는 (특정 단말을 위한) 하나의 DL grant를 통해 하나 이상의 short TTI로 전송되는 데이터에 대한 스케줄링 정보를 전송한다.
상기 TTI indication 필드는 sPDCCH를 통해 전송되는 DL grant에 포함될 수 있다.
즉, 상기 TTI indication 필드는 sPDCCH의 DL grant 또는 UL grant와 같은 데이터 스케줄링 정보를 담는 DCI format에서 새롭게 정의될 수 있다.
상기 DCI format은 LTE/LTE-A에서 정의되는 DCI format 0, 1, 1A, 1B, 1C 일 수도 있으며, TTI indication 필드를 전송하기 위해 새롭게 정의되는 DCI format일 수도 있다.
또한, 상기 TTI indication 필드는 하나의 sPDCCH에 대해 매핑된 sPDSCH 수만큼의 bitmap 크기를 가질 수 있으며, 상기 비트맵의 각 bit 값은 (순차적으로) 각 short TTI에서의 스케쥴링 여부로 매핑될 수 있다.
상기 bitmap의 각 bit가 ‘1’로 설정된(set) 경우, sPDCCH의 DL grant에서 스케줄링되는 동일 자원 정보를 이용하여 multiple short TTI에서 다른(또는 동일) data가 전송됨을 의미할 수 있다.
상기 bitmap의 각 bit가 ‘0’으로 설정된(set) 경우, 해당 bit에 대응하는 short TTI에서는 데이터의 전송이 스케쥴링 되지 않음을 의미할 수 있다.
또한, 상기 TTI indication 필드는 특정 단위(e.g., 1ms Subframe) 이내의 short TTI(3 symbols인 경우 4개의 TTI)를 표현하기 위해 bitmap 형식 이외의 다른 방법을 사용할 수도 있다. 다만, 이하에서는 설명의 편의를 위해 TTI indication 필드는 bitmap 형태로 표현되는 것으로 가정한다.

도 25는 본 명세서에서 제안하는 short TTI 스케쥴링 방법의 일 예를 나타낸 도이다.
도 25에 도시된 바와 같이, short TTI frame 구조는 LTE/LTE-A의 legacy frame 구조와의 backward compatibility를 위해 특정 단위(1ms subframe 단위,2501)로 구분될 수 있다. 즉, 상기 short TTI frame 구조는 상기 특정 단위 내 하나의 sPDCCH와 하나 이상의 sPDSCH를 포함할 수 있다. 여기서, 상기 특정 단위는 14개의 symbols를 포함할 수 있다.
즉, 1ms subframe 내에는 1개의 sPDCCH(2 symbols,2502)와 4개의 sPDSCH(sPDSCH 당 3 symbols,2503)로 구성될 수 있다.
여기서, 하나의 sPDCCH가 4개의 sPDSCH(3 symbols TTI)에 매핑되는 경우, 기지국은 sPDCCH의 DL grant에서 데이터가 전송되는 특정 short TTI에 대한 스케줄링 정보를 TTI indication 필드를 통해 알릴 수 있다.
도 25에 도시된 바와 같이, TTI indication 필드는 sPDCCH의 DL grant를 통해 비트맵 형식으로 ‘1011’(2504) 또는 ‘1010’(2505)으로 전송되는 것을 볼 수 있다.
TTI indication 비트맵이 ‘1011’ 로 설정된 경우, 데이터는 1번째 short TTI, 3번째 short TTI 및 4번째 short TTI로 스케쥴링 되어 전송됨을 나타낼 수 있다.
여기서, 각 short TTI를 통해 전송되는 데이터는 동일할 수도 있고 다를 수도 있다.

다음으로, 도 26을 참조하여 하나의 sPDCCH가 하나의 sPDSCH에 대해 매핑된 short TTI frame 구조에서 sPDCCH의 DL grant를 통해 TTI indication 필드를 전송하는 방법에 대해 살펴보기로 한다.
도 25에서 살핀 것처럼, TTI indication 필드는 하나의 sPDCCH에 다수의 sPDSCH가 매핑된 경우에 사용하는 것이 바람직할 수 있다. 다만, 기지국이 데이터의 연속적인 전송을 예측하고, 채널 정보가 급격하게 변화하지 않는 시간 이내(e.g., 1~1.2ms)에서는 특정 시간 이내에 존재하는 short TTI에 대한 스케줄링 정보를 첫 번째 sPDCCH에서 정의할 수 있도록 하는 방법을 사용할 수 있다.
도 26은 본 명세서에서 제안하는 short TTI 스케쥴링 방법의 또 다른 일 예를 나타낸 도이다.
도 26의 short TTI frame 구조는 특정 단위(1ms subframe,2601) 내에 5개의 short TTI(또는 short subframe,2602)를 포함한다.
상기 1개의 short TTI는 1개의 sPDCCH(2603)와 (이에 매핑되는) 1개의 sPDSCH(2604)를 포함한다.
상기 short TTI는 3 symbols로 구성되고, 상기 sPDCCH는 1 symbol로, 상기 sPDSCH는 2개의 symbols로 구성되어 있는 것을 볼 수 있다.
특정 단위(x ms) 이내 short TTI로 전송되는 데이터에 대한 스케줄링을 1번째 sPDCCH에서 전송하기 위한 TTI indication bitmap은 상기 특정 단위(또는 특정 시간) 이내의 short TTI 개수만큼의 길이를 가진다.
도 26에 도시된 바와 같이, short TTI frame 구조가 3 symbols short TTI(0.2ms, 3symbols,2602)가 반복되는 경우, 특정 단위 이내(1ms)의 데이터(즉, sPDCCH가 전송되는 TTI를 포함한 5 short TTI로 전송되는 데이터)에 대한 스케쥴링을 TTI indication 비트맵을 이용할 수 있다.
특정 단위 이내 short TTI가 5개인 경우, TTI indication bitmap의 길이는 5bits이며, 상기 TTI indication bitmap의 각 bit는 매 short TTI에서 데이터의 전송 여부를 나타낼 수 있다.
또한, 상기 TTI indication bitmap은 매 short TTI 내 정의된 sPDCCH에서 반복적으로 전송될 수도 있다.
도 26에서 1번째 sPDCCH의 DL grant에서 전송되는 TTI indication bitmap이 ‘10110’(2605)으로 설정된 경우, 전송되는 데이터는 1번째, 3번째 및 4번째 short TTI에서 스케쥴링되는 것을 의미할 수 있다.

현재 LTE/LTE-A 시스템의 carrier aggregation 과정에서 interference로 인해 단말이 SCC(secondary component carrier)에서 PCFICH을 수신하지 못할 확률이 높다고 판단되는 경우, 기지국은 cross carrier scheduling을 사용하여 단말로 데이터의 스케쥴링을 수행할 수 있도록 하고 있다.
즉, 단말이 SCC에서 PCFICH를 수신하지 못하는 경우, 단말은 CIF를 수신할 수 없게 되어, 결과적으로 단말은 PDSCH를 수신할 수 없는 수신 오류가 발생하게 된다.
따라서, LTE/LTE-A 시스템에서 이러한 PDSCH의 수신 오류를 해결하기 위해 cross-carrier scheduling을 사용하는 경우, 기지국은 PCFICH를 통해 CIF를 단말로 전송하지 않고, RRC 시그널링을 통해 PDSCH starting position(i.e., 1~4 symbols)을 단말이 수신할 수 있도록 정의하고 있다.
하지만, 미래 5G는 low latency 통신을 위해 새로운 형태(또는 구조)의 frame 구조를 도입함에 따라 서로 다른 형태의 frame 구조를 가지는 carrier들을 carrier aggregation하는 방법이 적용될 수 있다.
따라서, 이 경우 서로 다른 형태의 frame 구조에 대한 cross-carrier scheduling을 새롭게 정의할 필요가 있다.

이하에서는, 앞서 살펴본 carrier-wise 2-level frame 구조가 적용되는 경우 cross carrier scheduling을 통해 short TTI scheduling을 효율적으로 수행하는 방법에 대해 구체적으로 살펴보기로 한다.
즉, 해당 방법은 short TTI frame 구조가 적용된 carrier (band)가 특정 단말에 대해 secondary carrier로 사용되고, 상기 secondary carrier에 대한 스케줄링 정보가 primary carrier로부터 전송되는 cross carrier scheduling을 이용하는 경우에 있어서의 스케줄링 방법을 말한다.
cross carrier scheduling을 이용하는 short TTI scheduling 방법은 앞서 살핀 TTI indication 필드와 후술할 고정된(Fixed) PDSCH/sPDSCH starting position 정보를 사용함으로써 short TTI frame 구조를 통해 전송되는 데이터에 대한 효율적인 short TTI 스케쥴링 수행을 가능하게 한다.
따라서, 도 27 및 도 28을 참조하여 TTI indication 필드 및 고정된(Fixed) PDSCH/sPDSCH starting position 정보를 사용하여 short TTI 스케쥴링을 수행하는 방법에 대해 구체적으로 살펴보기로 한다.

도 27은 본 명세서에서 제안하는 short TTI 스케쥴링 방법의 또 다른 일 예를 나타낸 도이다.
도 27에서 carrier 2는 primary carrier이고, carrier 1은 secondary carrier라고 한다.
도 27에 도시된 바와 같이, 특정 단말에 대해 primary carrier(carrier 2,2701)는 LTE/LTE-A 시스템(legacy 시스템)의 1ms TTI의 frame 구조(legacy frame 구조)를 가지며, secondary carrier(carrier 1,2702)는 0.2ms의 short TTI의 frame 구조(low latency 통신을 위한 새로운 frame 구조)를 가진다.
또한, secondary carrier의 short TTI로 전송되는 데이터에 대한 스케줄링은 primary carrier를 통해서만 수행되는 cross-carrier scheduling을 사용한다.
여기서, 앞서 정의된 bitmap 형태의 TTI indication 필드는 secondary carrier의 short TTI로 전송되는 데이터에 대한 스케줄링 정보를 포함할 수 있다.
즉, legacy frame 구조를 가지는 carrier(carrier 2, primary carrier)의 PDCCH(2703)를 통해 전송되는 TTI indication 필드는 low latency 통신을 위해 새로운 frame 구조(short TTI frame 구조)를 가지는 carrier(carrier 1)을 통해 전송되는 sPDSCH(2704)에 대한 스케쥴링을 수행할 수 있다.
상기 bitmap 형태의 TTI indication 필드는 primary carrier의 DL grant를 전송하는 PDCCH를 통해 전송될 수 있다.
도 27에 도시된 바와 같이, carrier 2의 2번째 1ms subframe 단위의 PDCCH를 통해 전송되는 TTI indication 비트맵이 ‘1011’(2705)로 설정된 것을 볼 수 있다. 이는, 이에 대응하는 carrier 1의 2번째 1ms subframe 단위 내 스케쥴링되는 short TTI가 1번째, 3번째 및 4번째 short TTI임을 나타낼 수 있다.
즉, TTI indication bitmap이 ‘1011’로 설정된 경우, carrier 1의 1번째, 3번째 및 4번째 sPDSCH를 통해 (동일 또는 다른) 데이터가 전송됨을 나타낸다.
또한, 도 27에 도시된 바와 같이, secondary carrier에서의 sPDSCH starting position 값을 RRC 메시지로 시그널링 하지 않고, 고정된 값을 가지도록 정의할 수 있다. 즉, secondary carrier에서의 sPDSCH가 고정된 위치에서 시작하도록 sPDSCH의 starting position을 정의할 수 있다.
일 예로서, short TTI frame 구조에서 sPDSCH starting position은 해당 frame의 sPDCCH 시작 symbol로부터 x symbol(s) 이후로 고정되도록 정의할 수 있다.
도 27에서는 상기 x symbol(s)가 2 symbols인 것을 알 수 있다.
또한, 상기 x symbols에 대한 정보 즉, sPDSCH starting position에 대한 정보는 기지국이 SIB를 통해 단말로 전송하거나 또는 carrier aggregation을 위해 secondary carrier를 activation하는 과정에서 기지국에서 단말로 전송할 수 있다.
즉, 기지국은 특정 carrier band의 물리 구조 정보가 전송되는 SIB 정보에 상기 carrier band의 sPDSCH starting position의 고정된 값을 설정하여 단말로 전송할 수 있다.
또는, 기지국은 단말에게 secondary carrier를 할당(assign) 또는 활성화(activate)하기 위해 전송하는 RRC 메시지를 통해 상기 sPDSCH starting position의 고정된 값을 설정하여 단말로 전송할 수도 있다.
살핀 것처럼, 기지국이 상기 sPDSCH starting position에 대한 정보를 SIB, RRC 메시지 등을 통해 단말로 전송하는 경우, 기지국은 새로운 IE(information element) 또는 필드를 정의함으로써, 상기 sPDSCH starting position에 대한 정보를 단말로 알릴 수 있다.
일 예로서, 상기 sPDSCH starting position에 대한 정보를 알리기 위해 RadioResourceConfigCommon information element는 spdsch-Config 필드와 spdsch-Start 필드를 포함할 수 있다.
상기 spdsch-Config 필드는 short TTI frame 구조에 대한 sPDSCH의 설정 정보를 나타내는 필드이다.
상기 spdsch-Config 필드는 새로운 information element로 정의되거나 또는 종래 information element에서 새로운 필드로 정의될 수 있다.
상기 spdsch-Start 필드는 short TTI frame 구조가 적용된 (secondary) carrier에서의 sPDSCH 시작 (OFDM) symbol을 나타내는 필드이다.
일 예로, 도 27에 도시된 바와 같이, secondary carrier에 3 symbols 크기의 sPDSCH(short TTI, short subframe)가 설정되어 있는 경우, spdsch-Start 필드 값은 1 또는 2일 수 있다.
여기서, 상기 spdsch-Start 필드 값이 1 또는 2인 이유는 sPDCCH가 차지하는 심볼의 수에 따라 그 값이 달라질 수 있기 때문이다.
즉, sPDCCH가 차지하는 심볼의 수가 1인 경우, spdsch-Start 필드 값은 1이며, sPDCCH가 차지하는 심볼의 수가 2인 경우, spdsch-Start 필드 값은 2를 나타낼 수 있다.
여기서, spdsch-Start 필드의 value n1은 spdsch-Start 필드 값의 1에 상응하고, spdsch-Start 필드의 value n2는 spdsch-Start 필드 값의 2에 상응한다.
살핀 것처럼, 상기 spdsch-Config 필드와 상기 spdsch-Start 필드는 PDSCH-Config information element에 포함되어 전송될 수 있으며, 상기 PDSCH-Config information element에 포함되는 spdsch-Config 필드와 spdsch-Start 필드의 포맷의 일 예는 아래 표 2와같이 표현될 수 있다.
PDSCH-Config information element
sPDSCH-Config ::= SEQUENCE {
….
spdsch-Start INTEGER (0..1)
….
}

도 27에 도시된 바와 같이, secondary carrier가 1ms subframe 이내에 4개의 sPDSCH를 가지고, 상기 4개의 sPDSCH에 대해 하나의 sPDCCH를 가지는 short TTI frame 구조인 경우, 상기 secondary carrier의 sPDSCH starting position은 2 symbols 이후로 고정되도록 설정할 수 있다.

다음으로, 크로스 캐리어 스케쥴링(cross-carrier scheduling)을 사용하는 secondary carrier가 short TTI frame 구조와 LTE/LTE-A 시스템의 1ms subfrmae frame 구조(legacy frame 구조)가 subband-wise 2-level frame 구조로 혼재되어 구성되는 경우, 효율적인 TTI scheduling 방법에 대해 살펴보기로 한다.
해당 방법에서는 앞서 살핀 TTI indication 필드, 1ms TTI의 PDSCH start position 및 short TTI 내 각 sPDSCH의 start position을 정의한다.
이에 대해서는, 도 28을 참고하여 구체적으로 살펴보기로 한다.

도 28은 본 명세서에서 제안하는 short TTI 스케쥴링 방법의 또 다른 일 예를 나타낸 도이다.
도 28에 도시된 바와 같이, subband-wise 2-level frame 구조가 secondary carrier에서 적용되고, 상기 secondary carrier에서의 데이터에 대한 스케줄링이 primary carrier를 통해 수행되는 cross-carrier scheduling이 사용되는 경우, primary carrier의 PDCCH를 통해 전송되는 TTI indication 필드에 의해 secondary carrier로 전송되는 데이터에 대한 short TTI(sPDSCH)의 scheduling이 수행된다.
도 28에서, primary carrier(carrier 2,2801)의 PDCCH로 전송되는 TTI indication bitmap은 ‘1010’(2803)으로 설정되며, 이는 secondary carrier(carrier 1,2802)의 short TTI frame 구조에서의 short TTI에 대한 스케쥴링 즉, 4개의 short TTI에 있어서, 1번째 및 3번째 short TTI에서 데이터가 전송됨을 나타낸다.
또한, secondary carrier의 PDSCH start position(2804)은 언제나 특정 symbol(s) 이후로 고정되도록 정의할 수 있다.
또한, secondary carrier에서 subband-wise short TTI frame 구조가 정의된 경우, PDCCH(예: 2 symbols)를 제외한 나머지 symbols(예: 12 symbols)의 subframe 내에서 n개의 symbols로 나누어진 short TTI 내에 sPDCCH와 sPDSCH가 매핑되도록 정의할 수 있다.
도 28의 경우, secondary carrier의 PDCCH는 2 symbols이며, PDCCH를 제외한 나머지 symbols는 12 symbols이고, 3개의 symbols로 나누어진 short TTI(4개의 short TTI) 내 sPDCCH(1 symbol)와 sPDSCH(2 symbols)가 매핑되는 것을 볼 수 있다.
또한, 도 28에서 secondary carrier의 2번째 1ms subframe에서는 primary carrier의 PDCCH에 의해 secondary carrier로 전송되는 데이터에 대한 sPDSCH가 PDSCH 내에 스케쥴링된 것을 볼 수 있다.
도 28에서 살핀 바와 같이, secondary carrier에서 PDSCH start position 및 sPDSCH의 start position(2805)을 나타내기 위해 아래의 정보들 또는 필드들이 포함되도록 정의되어야 한다.
즉, PDSCH start position을 나타내는 pdsch-Start 필드가 PDSCH-ConfigCommon information element 내 새롭게 정의될 수 있다.
또한, sPDSCH의 start 지점을 나타내는 spdsch-Start 필드가 sPDSCH-Config information element 내 새롭게 정의될 수 있다.
따라서, 도 28의 subband-wise 2-level frame 구조로 구성되는 secondary carrier에서 기지국은 단말로 PDSCH가 시작되는 위치와 sPDSCH 가 시작되는 위치를 알 수 있도록 전송할 수 있다.
도 28에 도시된 바와 같이, secondary carrier에 대한 PDSCH start position이 언제나 2 symbols로 고정된 값을 사용하도록 정의할 수 있다.
secondary carrier의 PDSCH start position 값은 아래 표3에 나타난 바와 같이, PDSCH-ConfigCommon information element 내에 pdsch-Start 필드로 포함되어 기지국에서 단말로 전송될 수 있다.
PDSCH-ConfigCommon ::= SEQUENCE {
referenceSignalPower INTEGER (-60..50),
p-b INTEGER (0..3),
pdsch-Start INTEGER (0..1)
}

subband-wise 2-level frame 구조의 secondary carrier에서 PDSCH start position을 나타내는 pdsch-Start 필드는 상기 secondary carrier에 대한 PDSCH의 시작 OFDM symbol이 유동적인지 또는 고정적인지를 알려준다.
도 28에서와 같이, secondary carrier에서 PDSCH의 특정 subband가 short TTI frame 구조로 설정되어 있는 경우, pdsch-Start 필드 값은 1로 설정될 수 있다.
이 경우 short TTI frame 구조에서 pdsch-Start position은 2 symbols 이후로 고정된 값을 사용함을 나타낼 수 있다.
또한, 상기 pdsch-Start 필드 값이 0(value n0)인 경우, LTE/LTE-A 방식의 flexible PDCCH를 사용함을 의미할 수 있다.
즉, PDSCH는 PCFICH에서 전송되는 값에 의해 매 subframe 마다 유동적인 start position을 가질 수 있음을 의미한다.
상기 pdsch-Start 필드 값이 1(value n1)인 경우, 고정된 2 symbols부터 PDSCH가 시작됨을 의미하는 것으로, 고정된 PDSCH start 값을 가짐을 나타낼 수 있다.
또한, subband-wise 2-level frame 구조가 적용된 carrier band를 secondary carrier로 사용하는 경우, 해당 carrier에 대한 sPDSCH start position을 알려주기 위해 sPDSCH configuration 정보가 정의될 수 있다.
도 28을 참조하면, 상기 sPDSCH configuration 정보는 2 symbols 외의 12symbols에 대한 PDSCH 내에서 특정 subband에 대해서만 short TTI를 적용하는 경우, 각 short TTI에 대한 sPDSCH 시작 심볼을 알려주기 위한 필드로 spdsch-Start 필드를 sPDSCH-Config information element 내에 정의하여 사용할 수 있다.
상기 spdsch-Start 필드는 해당 secondary carrier에 대한 sPDSCH의 시작 (OFDM) symbol을 알려준다.
만약, 3 symbols 크기의 sPDSCH가 해당 secondary carrier에 대해 설정되어 있다면, spdsch-Start 값은 1(value n1) 또는 2(value n2)가 적용될 수 있다.

도 29는 본 명세서에서 제안하는 short TTI scheduling 방법의 일 예를 나타낸 순서도이다.
먼저, 기지국은 TTI indication 필드를 포함하는 DL grant 또는 UL grant를 특정 carrier band의 하향링크 물리 채널을 통해 단말로 전송한다.
상기 TTI indication 필드는 데이터가 스케쥴링되는 short TTI를 나타내는 지시 정보 또는 지시자를 나타내며, bitmap 형태로 표현될 수 있다.
상기 하향링크 물리 채널은 sPDCCH(short PDCCH)일 수 있다.
또한, 상기 특정 carrier band는 low latency 통신을 위해 short TTI frame 구조가 적용되며, primary carrier 또는 secondary carrier일 수 있다.
또한, 상기 특정 carrier band 내 short TTI frame 구조는 앞서 살핀 subband-wise 2-level frame 구조일 수 있다.
상기 short TTI frame 구조는 특정 단위 내 하나의 sPDCCH에 하나 또는 하나 이상의 sPDSCH가 매핑되는 형태일 수 있다.
여기서, 상기 특정 단위 내 상기 sPDCCH가 다수 개 존재하는 경우, 상기 TTI indication 필드는 각 sPDCCH에서 반복적으로 전송될 수 있다.
이후, 상기 단말은 상기 수신된 TTI indication 필드에 기초하여 스케쥴링된 short TTI(sPDSCH)를 통해 low latency의 데이터를 기지국으로부터 수신하거나 기지국으로 전송할 수 있다.

도 30은 본 명세서에서 제안하는 short TTI scheduling 방법의 일 예를 나타낸 순서도이다.
도 30의 경우, cross carrier scheduling을 통해 short TTI scheduling을 수행하는 방법을 나타낸 순서도이다.
먼저, 기지국은 TTI indication 필드를 포함하는 DL grant 또는 UL grant를 제 1 carrier band의 하향링크 물리 채널을 통해 단말로 전송한다.
상기 제 1 carrier band는 primary carrier, 제 1 컴포넌트 캐리어, 제 1 carrier, primary cell 등으로 표현될 수 있으며, LTE/LTE-A 시스템의 frame 구조(legacy frame 구조)일 수 있다.
상기 TTI indication 필드는 제 2 carrier band의 데이터가 스케쥴링되는 short TTI(sPDSCH)를 나타내는 지시 정보 또는 지시자를 나타내며, bitmap 형태로 표현될 수 있다.
상기 하향링크 물리 채널은 PDCCH일 수 있다.
또한, 상기 기지국은 상기 단말로 상기 제 2 carrier band에서 스케쥴링되는 PDSCH 및 sPDSCH와 관련된 제어 정보를 전송할 수 있다.
상기 제 2 carrier band에서 스케쥴링되는 PDSCH와 관련된 제어 정보는 상기 제 2 carrier band에서 PDSCH의 start position과 관련된 pdsch-start 필드를 포함한다.
상기 제 2 carrier band에서 스케쥴링되는 PDSCH와 관련된 제어 정보는 RadioResourceConfigCommon information element 내 PDSCH-config information element일 수 있다.
상기 pdsch-start 필드 값은 PDSCH의 시작 symbol(s)이 유동적인지 또는 고정적인지를 나타내는 값일 수 있다.
일 예로, 상기 pdsch-start 필드 값이 ‘0’인 경우, 제 2 carrier band에서 PDSCH는 PCFICH에서 전송되는 값에 의해 매 subframe(1ms)마다 유동적인 start position 값을 가짐을 나타낼 수 있다.
또한, 상기 pdsch-start 필드 값이 ‘1’인 경우, 제 2 carrier band에서 PDSCH는 고정된 start position 값을 가짐을 나타낼 수 있으며, 상기 고정된 start position 값을 포함할 수 있다.
또한, 상기 제 2 carrier band에서 스케쥴링되는 sPDSCH와 관련된 제어 정보는 SIB를 통해 전송되거나 또는 기지국과 단말 간 상기 제 2 carrier band를 할당(assign) 또는 활성화(activate)하기 위한 RRC 메시지를 통해 전송될 수 있다.
일 예로, 상기 sPDSCH와 관련된 제어 정보는RadioResourceConfigCommon information element 내 sPDSCH-config information element일 수 있다.
이 경우, 상기 sPDSCH-config information element는 short TTI frame 구조에 대한 sPDSCH의 설정 정보를 나타낸다.
또한, 상기 제 2 carrier band에서 스케쥴링되는 sPDSCH와 관련된 제어 정보는 상기 제 2 carrier band에서 sPDSCH의 start position과 관련된 spdsch-start 필드를 포함한다.
상기 spdsch-start 필드는 상기 제 2 carrier band의 sPDSCH의 시작 symbol(s)을 나타내는 필드이다.
이후, 상기 단말은 상기 제 1 carrier band의 하향링크 물리채널을 통해 수신된 TTI indication 필드에 기초하여 제 2 carrier band에서 스케쥴링된 short TTI(sPDSCH)를 통해 low latency의 데이터를 기지국으로부터 수신하거나 기지국으로 전송할 수 있다.
상기 제 2 carrier band는 low latency 통신을 위해 short TTI frame 구조가 적용되며, secondary carrier, 제 2 컴포넌트 캐리어, 제 2 carrier, secondary cell 등으로 표현될 수 있다.
또한, 상기 제 2 carrier band 내 short TTI frame 구조는 앞서 살핀 subband-wise 2-level frame 구조일 수 있다.
상기 short TTI frame 구조는 특정 단위 내 하나의 sPDCCH에 하나 또는 하나 이상의 sPDSCH가 매핑되는 형태일 수 있다.
여기서, 상기 특정 단위 내 상기 sPDCCH가 다수 개 존재하는 경우, 상기 TTI indication 필드는 각 sPDCCH에서 반복적으로 전송될 수 있다.
요약하면, 도 30의 경우, 기지국은 cross carrier scheduling을 사용하여 제 2 carrier의 short TTI에 대한 스케쥴링 정보를 제 1 carrier band의 하향링크 물리채널을 통해 단말로 전송한다.

발명이 적용될 있는 장치 일반
도 31은 본 발명의 일 실시예에 따른 무선 통신 장치의 블록 구성도를 예시한다.
도 31을 참조하면, 무선 통신 시스템은 기지국(3110)과 기지국(3110) 영역 내에 위치한 다수의 단말(3120)을 포함한다.
기지국(3110)은 프로세서(processor, 3111), 메모리(memory, 3112) 및 RF부(radio frequency unit, 3113)을 포함한다. 프로세서(3111)는 앞서 도 1 내지 도 30에서 제안된 기능, 과정 및/또는 방법을 구현한다. 무선 인터페이스 프로토콜의 계층들은 프로세서(3111)에 의해 구현될 수 있다. 메모리(3112)는 프로세서(3111)와 연결되어, 프로세서(3111)를 구동하기 위한 다양한 정보를 저장한다. RF부(3113)는 프로세서(3111)와 연결되어, 무선 신호를 송신 및/또는 수신한다.
단말(3120)은 프로세서(3121), 메모리(3122) 및 RF부(3123)을 포함한다. 프로세서(3121)는 앞서 도 1 내지 도 30에서 제안된 기능, 과정 및/또는 방법을 구현한다. 무선 인터페이스 프로토콜의 계층들은 프로세서(3121)에 의해 구현될 수 있다. 메모리(3122)는 프로세서(3121)와 연결되어, 프로세서(3121)를 구동하기 위한 다양한 정보를 저장한다. RF부(3123)는 프로세서(3121)와 연결되어, 무선 신호를 송신 및/또는 수신한다.
메모리(3112, 3122)는 프로세서(3111, 3121) 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서(3111, 3121)와 연결될 수 있다. 또한, 기지국(3110) 및/또는 단말(3120)은 한 개의 안테나(single antenna) 또는 다중 안테나(multiple antenna)를 가질 수 있다.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 발명에 따른 실시예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 본 발명의 일 실시예는 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시예는 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차, 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리는 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
본 발명은 본 발명의 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상술한 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니 되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
본 발명의 무선 통신 시스템에서 데이터 송수신 방안은 3GPP LTE/LTE-A 시스템, low latency 통신을 위한 미래 5G 시스템 등 다양한 무선 통신 시스템에 적용하는 것이 가능하다.

Claims (15)

  1. Low latency를 지원하는 무선 통신 시스템에서 데이터를 송수신하기 위한 방법에 있어서, 단말에 의해 수행되는 상기 방법은,
    기지국으로부터 low latency 데이터가 스케쥴링되는 short TTI(Transmission Time Interval)를 나타내는 TTI indication 필드를 포함하는 하향링크 제어정보를 하향링크 물리채널을 통해 수신하는 단계; 및
    상기 수신된 TTI indication 필드에 기초하여 상기 low latency 데이터를 스케쥴링된 short TTI를 통해 기지국으로부터 수신하는 단계를 포함하여 이루어지는 것을 특징으로 하는 방법.
  2. 제 1항에 있어서,
    상기 TTI indication 필드는 bitmap으로 표현되며,
    상기 bitmap의 각 bit는 각 short TTI에서의 스케쥴링 여부를 나타내는 것을 특징으로 하는 방법.
  3. 제 1항에 있어서,
    상기 하향링크 물리채널은 sPDCCH(short PDCCH)인 것을 특징으로 하는 방법.
  4. 제 1항에 있어서,
    상기 short TTI는 하나 이상의 sPDSCH(short Physical Downlink Shared Channel)로 구성되거나 또는 하나의 sPDCCH 및 하나 이상의 sPDSCH로 구성되는 것을 특징으로 하는 방법.
  5. 제 1항에 있어서,
    상기 하향링크 제어 정보 및 상기 low latency 데이터는 특정 carrier band를 통해 수신되며,
    상기 특정 carrier band는 특정 단위 내 하나 이상의 short TTI를 포함하는 short TTI frame 구조인 것을 특징으로 하는 방법.
  6. 제 5항에 있어서,
    상기 특정 carrier band는 특정 subband 내 short TTI frame 구조를 가지는 subband-wise 2-level frame 구조인 것을 특징으로 하는 방법.
  7. 제 1항에 있어서,
    상기 TTI indication 필드는 제 1 carrier band를 통해 수신되고,
    상기 low latency 데이터는 제 2 carrier band를 통해 수신되는 것을 특징으로 하는 방법.
  8. 제 7항에 있어서,
    상기 제 1 carrier band는 LTE/LTE-A 시스템의 frame 구조를 가지며,
    상기 제 2 carrier band는 low latency 통신을 위한 short TTI frame 구조를 가지는 것을 특징으로 하는 방법.
  9. 제 7항에 있어서,
    상기 하향링크 물리채널은 PDCCH(Physical Downlink Control Channel)인 것을 특징으로 하는 방법.
  10. 제 7항에 있어서,
    상기 제 2 carrier band는 특정 subband 내 short TTI frame 구조를 가지는 subband-wise 2-level frame 구조인 것을 특징으로 하는 방법.
  11. 제 7항에 있어서,
    상기 기지국으로부터 상기 제 2 carrier band의 PDSCH start position과 관련된 PDSCH start 필드를 수신하는 단계를 더 포함하는 것을 특징으로 하는 방법.
  12. 제 7항에 있어서,
    상기 기지국으로부터 상기 제 2 carrier band의 short TTI frame 구조의 sPDSCH 설정과 관련된 sPDSCH 설정 정보 또는 상기 제 2 carrier band의 sPDSCH start position과 관련된 sPDSCH start 필드 중 적어도 하나를 수신하는 단계를 더 포함하는 것을 특징으로 하는 방법.
  13. 제 12항에 있어서,
    상기 sPDSCH 설정 정보 및 상기 sPDSCH start 필드는,
    상기 기지국으로부터 SIB(System Information Block)를 통해 수신되거나, 상기 기지국으로부터 상기 제 2 carrier band를 할당(assign)받거나 또는 상기 기지국과 상기 제 2 carrier band를 활성화(activation) 과정에서 수신되는 것을 특징으로 하는 방법.
  14. Low latency를 지원하는 무선 통신 시스템에서 데이터를 송수신하기 위한 단말에 있어서, 상기 단말은,
    무선 신호를 송수신하기 위한 RF(Radio Frequency) 유닛; 및
    프로세서를 포함하고, 상기 프로세서는,
    기지국으로부터 low latency 데이터가 스케쥴링되는 short TTI(Transmission Time Interval)를 나타내는 TTI indication 필드를 포함하는 하향링크 제어정보를 하향링크 물리채널을 통해 수신하고; 및
    상기 수신된 TTI indication 필드에 기초하여 상기 low latency 데이터를 스케쥴링된 short TTI를 통해 기지국으로부터 수신하도록 제어하는 것을 특징으로 하는 단말.
  15. 제 14항에 있어서,
    상기 TTI indication 필드는 제 1 carrier band를 통해 수신되고,
    상기 low latency 데이터는 제 2 carrier band를 통해 수신되는 것을 특징으로 하는 단말.
PCT/KR2015/002137 2014-10-21 2015-03-05 저 지연을 지원하는 무선 통신 시스템에서 데이터 송수신 방법 및 이를 위한 장치 WO2016064039A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/521,108 US10560245B2 (en) 2014-10-21 2015-03-05 Data transmission/reception method in wireless communication system that supports low latency, and apparatus therefor

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201462066860P 2014-10-21 2014-10-21
US62/066,860 2014-10-21
US201462073033P 2014-10-31 2014-10-31
US62/073,033 2014-10-31
US201462074097P 2014-11-03 2014-11-03
US62/074,097 2014-11-03

Publications (1)

Publication Number Publication Date
WO2016064039A1 true WO2016064039A1 (ko) 2016-04-28

Family

ID=55761062

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/KR2015/002137 WO2016064039A1 (ko) 2014-10-21 2015-03-05 저 지연을 지원하는 무선 통신 시스템에서 데이터 송수신 방법 및 이를 위한 장치
PCT/KR2015/003457 WO2016064049A1 (en) 2014-10-21 2015-04-07 Method for transmitting and receiving data in wireless communication system and apparatus for the same
PCT/KR2015/004996 WO2016064059A1 (en) 2014-10-21 2015-05-19 Method for transmitting and receiving data in wireless communication system and apparatus for the same

Family Applications After (2)

Application Number Title Priority Date Filing Date
PCT/KR2015/003457 WO2016064049A1 (en) 2014-10-21 2015-04-07 Method for transmitting and receiving data in wireless communication system and apparatus for the same
PCT/KR2015/004996 WO2016064059A1 (en) 2014-10-21 2015-05-19 Method for transmitting and receiving data in wireless communication system and apparatus for the same

Country Status (6)

Country Link
US (5) US10560245B2 (ko)
EP (1) EP3210320B1 (ko)
JP (1) JP6781152B2 (ko)
KR (1) KR102225638B1 (ko)
CN (1) CN106797248B (ko)
WO (3) WO2016064039A1 (ko)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017193300A1 (zh) * 2016-05-11 2017-11-16 华为技术有限公司 一种时分双工通信的定时方法、基站及用户设备
WO2018010586A1 (zh) * 2016-07-13 2018-01-18 上海朗帛通信技术有限公司 一种无线通信中的方法和装置
CN107645777A (zh) * 2016-07-22 2018-01-30 上海朗帛通信技术有限公司 一种无线传输中的方法和装置
CN107708219A (zh) * 2016-08-08 2018-02-16 普天信息技术有限公司 低时延通信制式的子帧上行调度定时方法
WO2018062961A1 (ko) * 2016-09-29 2018-04-05 삼성전자 주식회사 무선 셀룰라 통신 시스템에서 상향링크 제어 및 데이터 신호 전송 방법 및 장치
KR20180035641A (ko) * 2016-09-29 2018-04-06 삼성전자주식회사 무선 셀룰라 통신 시스템에서 상향링크 제어 및 데이터 신호 전송 방법 및 장치
WO2018208134A1 (ko) * 2017-05-12 2018-11-15 엘지전자 주식회사 무선 통신 시스템에서 전송 전력 제어를 위한 방법 및 이를 위한 장치
CN109565760A (zh) * 2016-08-10 2019-04-02 松下电器(美国)知识产权公司 终端及通信方法
CN109691005A (zh) * 2016-09-16 2019-04-26 高通股份有限公司 用于在低延时无线通信中分配资源的技术
CN109891795A (zh) * 2016-08-11 2019-06-14 夏普株式会社 用于频分双工传输时间间隔操作的系统和方法
US10356778B2 (en) 2016-05-12 2019-07-16 Asustek Computer Inc. Facilitating detection of control channels with different transmission time intervals in a wireless communication system
CN110192421A (zh) * 2017-01-24 2019-08-30 高通股份有限公司 用于使用多个传输时间间隔持续时间进行交叉载波调度的技术
TWI670982B (zh) * 2016-11-04 2019-09-01 電信科學技術研究院 一種短傳輸時間間隔的監聽指示及監聽方法、裝置
CN110545585A (zh) * 2016-07-28 2019-12-06 上海朗帛通信技术有限公司 一种无线通信中的方法和装置
CN110583073A (zh) * 2017-05-05 2019-12-17 高通股份有限公司 基于用户设备能力的缩短的传输时间间隔配置
US10805913B2 (en) 2016-06-17 2020-10-13 Lg Electronics Inc. Method and user equipment for receiving donwlink signal, method and base station for transmitting downlink signal
CN114785470A (zh) * 2017-01-09 2022-07-22 瑞典爱立信有限公司 使用nr tdd进行控制的无线设备、网络节点和方法

Families Citing this family (115)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11452121B2 (en) * 2014-05-19 2022-09-20 Qualcomm Incorporated Apparatus and method for synchronous multiplexing and multiple access for different latency targets utilizing thin control
US10278178B2 (en) 2014-05-19 2019-04-30 Qualcomm Incorporated Apparatus and method for inter-band pairing of carriers for time division duplex transmit- and receive-switching
WO2016064039A1 (ko) 2014-10-21 2016-04-28 엘지전자(주) 저 지연을 지원하는 무선 통신 시스템에서 데이터 송수신 방법 및 이를 위한 장치
US10104683B2 (en) * 2015-02-06 2018-10-16 Qualcomm Incorporated Parallel low latency awareness
EP3262887B1 (en) * 2015-02-26 2019-03-27 Intel IP Corporation Systems, methods and devices for radio access technology coordination
US10075970B2 (en) * 2015-03-15 2018-09-11 Qualcomm Incorporated Mission critical data support in self-contained time division duplex (TDD) subframe structure
US9936519B2 (en) 2015-03-15 2018-04-03 Qualcomm Incorporated Self-contained time division duplex (TDD) subframe structure for wireless communications
EP3273618B1 (en) * 2015-03-20 2019-12-11 LG Electronics Inc. Method, computer-readable medium and device for receiving resources dynamically allocated to a frequency band with short tti
CN113765630B (zh) 2015-04-02 2024-02-27 三星电子株式会社 无线通信系统中的终端和基站及其执行的方法
KR102316775B1 (ko) * 2015-04-02 2021-10-26 삼성전자 주식회사 무선 셀룰라 통신 시스템에서 전송시간구간 감소를 위한 송수신 방법 및 장치
WO2016167211A1 (ja) * 2015-04-17 2016-10-20 京セラ株式会社 通信装置
US20160345311A1 (en) * 2015-05-22 2016-11-24 Qualcomm Incorporated Techniques for scheduling data communications with shortened time duration
JP6759237B2 (ja) * 2015-06-01 2020-09-23 アップル インコーポレイテッドApple Inc. 無線アクセスネットワーク関連事例のためのレイテンシ低減技術
US10863492B2 (en) 2015-07-16 2020-12-08 Qualcomm Incorporated Low latency device-to-device communication
US9992790B2 (en) 2015-07-20 2018-06-05 Qualcomm Incorporated Time division duplex (TDD) subframe structure supporting single and multiple interlace modes
WO2017018758A1 (ko) * 2015-07-24 2017-02-02 엘지전자 주식회사 하향링크 제어 정보 수신 방법 및 사용자기기와, 하향링크 제어 정보 전송 방법 및 기지국
CN106413106B (zh) * 2015-07-28 2019-09-17 电信科学技术研究院 一种上行数据的传输方法及装置
WO2017026159A1 (ja) * 2015-08-11 2017-02-16 三菱電機株式会社 通信システム
CN112087802A (zh) * 2015-08-12 2020-12-15 华为技术有限公司 一种数据传输方法、装置及系统
WO2017038895A1 (ja) * 2015-09-02 2017-03-09 株式会社Nttドコモ ユーザ端末、無線基地局、無線通信方法及び無線通信システム
EP3340714B1 (en) * 2015-09-15 2020-05-06 Huawei Technologies Co., Ltd. Method and apparatus for sending or receiving control information
CN106550459B (zh) * 2015-09-18 2020-03-13 中兴通讯股份有限公司 一种下行控制方法及装置
US10973078B2 (en) * 2015-09-25 2021-04-06 Apple Inc. Supporting semi-persistent scheduling for varied transmission time intervals
CN106571901B (zh) * 2015-10-13 2020-03-27 华为技术有限公司 媒体接入控制实体创建的方法、设备及系统
WO2017074520A1 (en) * 2015-10-30 2017-05-04 Intel IP Corporation Detecting puncturing of first pdsch with second pdsch having shorter tti
US11419110B2 (en) * 2015-11-03 2022-08-16 Apple Inc. Short transmission time interval (TTI)
PL3372034T3 (pl) * 2015-11-03 2021-06-14 Telefonaktiebolaget Lm Ericsson (Publ) Sposoby i aparatura do szeregowania na łączu w górę
EP3372036A1 (en) * 2015-11-04 2018-09-12 Interdigital Patent Holdings, Inc. Device and methods for multiplexing transmissions with different tti duration
US10367579B2 (en) * 2015-11-20 2019-07-30 Htc Corporation Device and method of handling communication operation
WO2017099461A1 (ko) 2015-12-07 2017-06-15 엘지전자 주식회사 상향링크 채널 전송 방법 및 사용자기기와, 상향링크 채널 수신 방법 및 기지국
RU2697267C1 (ru) * 2015-12-18 2019-08-13 Фраунхофер-Гезелльшафт Цур Фердерунг Дер Ангевандтен Форшунг Е.Ф. Передача сигнала данных в системе беспроводной связи с уменьшенной сквозной задержкой
CN106937383B (zh) * 2015-12-30 2021-12-21 北京三星通信技术研究有限公司 确定缩短子帧调度的方法及设备
WO2017130490A1 (ja) * 2016-01-26 2017-08-03 ソニー株式会社 端末装置、基地局装置および通信方法
US11329856B2 (en) * 2016-01-29 2022-05-10 Ntt Docomo, Inc. User terminal, radio base station, and radio communication method
EP3413655B1 (en) * 2016-02-03 2020-09-23 Sony Corporation Wireless communication device, communication method, computer program, and wireless communication system
JP6676994B2 (ja) * 2016-02-03 2020-04-08 ソニー株式会社 無線通信装置、通信方法、コンピュータプログラム及び無線通信システム
JP6490308B2 (ja) * 2016-02-05 2019-03-27 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 基地局、端末及び通信方法
EP3419359A4 (en) * 2016-02-19 2019-01-16 Ntt Docomo, Inc. USER UNIT, WIRELESS BASE STATION AND WIRELESS COMMUNICATION PROCESS
JP6707892B2 (ja) * 2016-02-22 2020-06-10 ソニー株式会社 基地局装置及び基地局装置の制御方法
EP3424174A1 (en) * 2016-03-04 2019-01-09 Telefonaktiebolaget LM Ericsson (PUBL) Short tti within special subframes of ttd communication systems
CN106714325B (zh) * 2016-03-15 2019-04-05 北京展讯高科通信技术有限公司 Tti可变的无线通信方法及装置
CN112260806A (zh) * 2016-03-18 2021-01-22 Oppo广东移动通信有限公司 数据传输的方法、终端设备及网络设备
CN108293250B (zh) 2016-03-18 2020-11-03 Oppo广东移动通信有限公司 通信方法、终端设备和网络设备
US10568081B2 (en) * 2016-03-21 2020-02-18 Samsung Electronics Co., Ltd. Scheduling uplink transmissions
CN108886708B (zh) * 2016-03-25 2022-07-05 株式会社Ntt都科摩 用户终端、无线基站以及无线通信方法
AU2017244128A1 (en) * 2016-03-30 2018-11-01 Interdigital Patent Holdings, Inc. Method and procedures for downlink physical channels to reduce latency in an LTE advanced system
WO2017169004A1 (ja) * 2016-03-31 2017-10-05 ソニー株式会社 端末装置、基地局装置および通信方法
US10912082B2 (en) * 2016-04-19 2021-02-02 Lg Electronics Inc. Ways for supporting multiple TTIs
CN109076585B (zh) * 2016-04-28 2022-05-10 株式会社Ntt都科摩 用户终端及无线通信方法
US11310809B2 (en) * 2016-05-04 2022-04-19 Qualcomm Incorporated Techniques for using a portion of a transmission time interval to transmit a transmission that is shorter than a duration of the transmission time interval
WO2017195479A1 (ja) * 2016-05-11 2017-11-16 ソニー株式会社 端末装置、基地局装置、通信方法
JP6805541B2 (ja) * 2016-05-11 2020-12-23 ソニー株式会社 端末装置、通信方法
CN107371257B (zh) * 2016-05-12 2020-04-28 华硕电脑股份有限公司 改善短传输时间间隔的控制信道结构的方法及装置
WO2017193349A1 (en) 2016-05-12 2017-11-16 Panasonic Intellectual Property Corporation Of America Base station, user equipment and wireless communication method
CN109076512B (zh) * 2016-05-13 2021-02-23 华为技术有限公司 控制信息发送、接收方法和设备
WO2017194022A1 (zh) * 2016-05-13 2017-11-16 中兴通讯股份有限公司 下行控制信息的传输方法、装置及系统
JP7028798B2 (ja) * 2016-05-13 2022-03-02 テレフオンアクチーボラゲット エルエム エリクソン(パブル) ワイヤレスデバイスへのリソースの割当て
CN109076541B (zh) 2016-05-13 2023-01-24 瑞典爱立信有限公司 用于在tdd中引入短tti的子框架选择
CN107371267B (zh) * 2016-05-13 2019-09-17 电信科学技术研究院 一种数据传输方法及终端
KR102202612B1 (ko) * 2016-05-13 2021-01-13 텔레호낙티에볼라게트 엘엠 에릭슨(피유비엘) 다운링크 송신들의 구성
US10404823B2 (en) 2016-05-27 2019-09-03 Home Box Office, Inc. Multitier cache framework
WO2017208286A1 (ja) * 2016-06-03 2017-12-07 富士通株式会社 無線通信装置、および無線通信方法
US10420088B2 (en) * 2016-06-06 2019-09-17 Qualcomm Incorporated Downlink slot structure, channel placement, and processing timeline options
RU2705227C1 (ru) * 2016-06-15 2019-11-06 ЭлДжи ЭЛЕКТРОНИКС ИНК. Способ и устройство для передачи и приема беспроводного сигнала в системе беспроводной связи
PT3493623T (pt) * 2016-07-29 2022-06-09 Ntt Docomo Inc Terminal de utilizador e método de comunicação sem fios
CN107689851B (zh) 2016-08-04 2021-01-22 电信科学技术研究院 一种动态确定上行dmrs的传输位置的方法及设备
US20190190763A1 (en) * 2016-08-04 2019-06-20 Ntt Docomo, Inc. User terminal and radio communication method
JP7046810B2 (ja) * 2016-08-04 2022-04-04 株式会社Nttドコモ 端末、無線通信方法及び基地局
US10368345B2 (en) * 2016-08-10 2019-07-30 Qualcomm Incorporated Low latency physical downlink control channel and physical downlink shared channel
US10200990B2 (en) 2016-08-10 2019-02-05 Nokia Technologies Oy Method and apparatus for implementing dynamic signaling of downlink control usage
CN107734666B (zh) * 2016-08-11 2021-07-06 中国移动通信有限公司研究院 控制信道传输指示方法、检测方法、基站及用户设备
KR102493234B1 (ko) * 2016-08-11 2023-01-30 프라운호퍼 게젤샤프트 쭈르 푀르데룽 데어 안겐반텐 포르슝 에. 베. 단축된 프레임 구조들을 이용한 사운딩 피드백
KR102203707B1 (ko) 2016-08-12 2021-01-18 베이징 시아오미 모바일 소프트웨어 컴퍼니 리미티드 자원 스케줄링 방법, 스케줄러, 기지국, 단말기, 시스템, 프로그램 및 기록매체
US10278167B2 (en) 2016-08-12 2019-04-30 Qualcomm Incorporated Downlink control channel structure for low latency applications
US10602567B2 (en) * 2016-08-12 2020-03-24 Motorola Mobility Llc Methods, devices, and systems for discontinuous reception for a shortened transmission time interval and processing time
WO2018027942A1 (zh) * 2016-08-12 2018-02-15 华为技术有限公司 一种信息传输的方法及装置
US11051208B2 (en) 2016-08-25 2021-06-29 Huawei Technologies Co., Ltd. Co-existence of low latency and latency tolerant downlink communication
US11071136B2 (en) 2016-08-25 2021-07-20 Huawei Technologies Co., Ltd. System and method for multiplexing traffic
US20180063858A1 (en) * 2016-08-25 2018-03-01 Huawei Technologies Co., Ltd. System and Method for Co-existence of Low-Latency and Latency-Tolerant Communication Resources
US11252717B2 (en) 2016-09-02 2022-02-15 Huawei Technologies Co., Ltd. Co-existence of latency tolerant and low latency communications
US10432387B2 (en) 2016-09-26 2019-10-01 Qualcomm Incorporated Dynamic time division duplexing
EP3520465A1 (en) * 2016-09-28 2019-08-07 IDAC Holdings, Inc. 5g nr data delivery for flexible radio services
US10306630B2 (en) 2016-09-29 2019-05-28 Sharp Kabushiki Kaisha Systems and methods for determining frame structure and association timing
CN106254038B (zh) * 2016-09-29 2020-02-14 华为技术有限公司 通信方法与设备
JP6882462B2 (ja) 2016-09-30 2021-06-02 華為技術有限公司Huawei Technologies Co.,Ltd. ハイブリッド自動再送要求・確認応答情報フィードバック方法、端末機器およびネットワーク機器
CN108024340B (zh) * 2016-11-03 2022-02-11 华为技术有限公司 控制信息的检测方法与发送方法及设备
EP3536082B1 (en) 2016-11-04 2021-08-25 Telefonaktiebolaget LM Ericsson (publ) Semi-persistent scheduling in sub-subframe operation
CN109863798A (zh) * 2016-11-04 2019-06-07 华为技术有限公司 物理下行控制信道的传输方法、终端设备和基站
DK3491770T3 (da) 2016-11-04 2020-04-14 Ericsson Telefon Ab L M Kort spdcch (physical downlink control channel)-mapping-design
CN108023713B (zh) * 2016-11-04 2021-01-22 电信科学技术研究院 一种导频映射方法及装置
US10397915B2 (en) * 2016-11-09 2019-08-27 Qualcomm Incorporated Latency reduction in shared or unlicensed spectrum
WO2018087585A1 (en) * 2016-11-12 2018-05-17 Nokia Technologies Oy Mixed latency communications
WO2018086121A1 (zh) * 2016-11-14 2018-05-17 北京小米移动软件有限公司 获取、传输harq反馈信息的方法及装置
US20190036644A1 (en) * 2016-11-29 2019-01-31 Telefonaktiebolaget Lm Ericsson (Publ) Systems and Methods for Reliable Communication for Short Transmission Time Interval in Long Term Evolution Through Repetitions
CN114364044A (zh) * 2016-12-16 2022-04-15 华为技术有限公司 一种用于无线通信网络的基站和用户设备
MX2019007209A (es) * 2016-12-26 2019-08-16 Guangdong Oppo Mobile Telecommunications Corp Ltd Procedimiento de comunicaciones inalambricas, dispositivo de red y dispositivo terminal.
US11601820B2 (en) * 2017-01-27 2023-03-07 Qualcomm Incorporated Broadcast control channel for shared spectrum
EP3577989A4 (en) * 2017-01-31 2020-12-30 Nokia Technologies Oy MULTIPLEXING OF UPLINK CONTROL CHANNEL SIGNALING
US11516747B2 (en) 2017-05-12 2022-11-29 Lg Electronics Inc. Method for controlling transmit power in wireless communication system and apparatus therefor
EP3637928B1 (en) 2017-05-15 2022-04-06 LG Electronics Inc. Method and device for receiving downlink signal in wireless communication system
US10624072B2 (en) * 2017-06-10 2020-04-14 Qualcomm Incorporated Shortened transmission time interval (STTI) configuration for low latency communications
US11019642B2 (en) * 2017-06-23 2021-05-25 Beijing Xiaomi Mobile Software Co., Ltd. Method and apparatus for data transmission, user equipment and base station
CN109218244B (zh) * 2017-07-04 2022-04-26 展讯通信(上海)有限公司 数据传输方法、装置、用户终端及计算机可读存储介质
US11272546B2 (en) * 2017-08-08 2022-03-08 Samsung Electronics Co., Ltd. Methods and apparatus for transmitting and receiving uplink control information and for requesting random access in wireless communication system
WO2019032343A1 (en) 2017-08-09 2019-02-14 Intel IP Corporation TIME ADVANCE ADJUSTMENT DELAY FOR SHORTCUT TRANSMISSION TIME INTERVAL IN CARRIER AGGREGATION OR DOUBLE CONNECTIVITY
CN117202362A (zh) * 2017-09-28 2023-12-08 诺基亚技术有限公司 指示连续的资源分配
CN109699076B (zh) * 2017-10-20 2023-11-10 华为技术有限公司 下行控制信息的传输、盲检测次数的获取方法和装置
US20190141730A1 (en) * 2017-11-09 2019-05-09 Qualcomm Incorporated Uplink transmission techniques in low-latency wireless communication
US11930534B2 (en) 2018-04-11 2024-03-12 Electronics And Telecommunications Research Institute Method and device for low latency communication in communication system
US10587390B2 (en) 2018-04-27 2020-03-10 Lg Electronics Inc. Method for transmitting and receiving reference signal and apparatus therefor
US11653340B2 (en) 2018-08-07 2023-05-16 Panasonic Intellectual Property Corporation Of America User equipment, base station and wireless communication method
US10911919B2 (en) 2018-12-24 2021-02-02 Industrial Technology Research Institute Wireless access method, wireless receiving method for a communication system and a base station therefor with a low-latency mechanism
US10805942B1 (en) * 2019-06-10 2020-10-13 Qualcomm Incorporated Multiplexing communications of user equipment that support different transmission time interval lengths
US11463227B2 (en) 2019-08-16 2022-10-04 Mediatek Inc. Activated secondary cells transition between dormancy behavior and active behavior in 5G NR system
WO2022040984A1 (zh) * 2020-08-26 2022-03-03 华为技术有限公司 一种通信方法与装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013110683A1 (en) * 2012-01-26 2013-08-01 Nokia Siemens Networks Oy Method and apparatus for determining the transmission time interval length
US20140098799A1 (en) * 2007-09-21 2014-04-10 Samsung Electronics Co., Ltd. Apparatus and method for transmitting time interval reconfiguration in a mobile communication system

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4732808B2 (ja) * 2005-06-14 2011-07-27 株式会社エヌ・ティ・ティ・ドコモ 無線パラメータ群を生成する装置
US20100017242A1 (en) * 2008-07-15 2010-01-21 International Business Machines Corporation Power standard compliance method and system
US20100097937A1 (en) * 2008-10-16 2010-04-22 Interdigital Patent Holdings, Inc. Method and apparatus for wireless transmit/receive unit specific pilot signal transmission and wireless transmit/receive unit specific pilot signal power boosting
CN102273252B (zh) * 2008-12-30 2015-02-11 交互数字专利控股公司 针对多个下行链路载波操作的控制信道反馈
JP4656610B2 (ja) * 2009-03-31 2011-03-23 Toto株式会社 固体電解質型燃料電池
JP5396238B2 (ja) * 2009-11-02 2014-01-22 株式会社Nttドコモ 無線通信制御方法、基地局装置及び移動端末装置
KR101907528B1 (ko) * 2011-02-18 2018-10-12 삼성전자 주식회사 이동 통신 시스템 및 그 이동 통신 시스템에서 채널 송수신 방법
US8837304B2 (en) 2011-04-08 2014-09-16 Sharp Kabushiki Kaisha Devices for multi-group communications
US20130003604A1 (en) * 2011-06-30 2013-01-03 Research In Motion Limited Method and Apparatus for Enhancing Downlink Control Information Transmission
US9503239B2 (en) * 2011-08-11 2016-11-22 Telefonaktiebolaget Lm Ericsson (Publ) Radio network node, user equipment and methods therein
US20140226607A1 (en) * 2011-09-21 2014-08-14 Nokia Solutions And Networks Oy Apparatus and Method for Communication
US9491781B2 (en) 2012-02-01 2016-11-08 Broadcom Corporation Random access channel enhancement for carrier aggregation with different uplink/downlink configuration
GB2511714B (en) * 2012-02-10 2017-12-27 Deere & Co Method of material handling using one or more imaging devices on the transferring vehicle and on the receiving vehicle to control the material distribution
JP2013183299A (ja) * 2012-03-02 2013-09-12 Sharp Corp 移動局装置、基地局装置、通信方法、集積回路および無線通信システム
US8922922B2 (en) * 2012-07-20 2014-12-30 HGST Netherlands B.V. Method to reduce written-in errors in storage media
US9131498B2 (en) * 2012-09-12 2015-09-08 Futurewei Technologies, Inc. System and method for adaptive transmission time interval (TTI) structure
US9621310B2 (en) * 2013-12-23 2017-04-11 Apple Inc. TTI bundling for downlink communication
US10200137B2 (en) * 2013-12-27 2019-02-05 Huawei Technologies Co., Ltd. System and method for adaptive TTI coexistence with LTE
JP2017053362A (ja) 2014-01-21 2017-03-16 ジヤトコ株式会社 無段変速機構
US20150231673A1 (en) * 2014-02-14 2015-08-20 Milton Dallas Medication Disposal System
JP2017513202A (ja) 2014-04-07 2017-05-25 ライト フレックス テクノロジー エス.エル.Light Flex Technology, S.L. コンパクトな薄層状のエレクトロルミネセンス素子
US10278178B2 (en) * 2014-05-19 2019-04-30 Qualcomm Incorporated Apparatus and method for inter-band pairing of carriers for time division duplex transmit- and receive-switching
US11452121B2 (en) * 2014-05-19 2022-09-20 Qualcomm Incorporated Apparatus and method for synchronous multiplexing and multiple access for different latency targets utilizing thin control
EP3840264A1 (en) 2014-09-08 2021-06-23 Interdigital Patent Holdings, Inc. Controlling the operation of dci based reception
US20160088594A1 (en) * 2014-09-18 2016-03-24 Gang Xiong Device and method of supporting reduced data transmission bandwidth
US10117268B2 (en) 2014-09-22 2018-10-30 Qualcomm Incorporated Ultra-low latency LTE downlink frame structure
US11212779B2 (en) * 2014-09-22 2021-12-28 Qualcomm Incorporated Ultra-low latency LTE downlink communications
US9794922B2 (en) * 2014-09-26 2017-10-17 Qualcomm Incorporated Downlink channel design for LTE with low latency
US9955462B2 (en) * 2014-09-26 2018-04-24 Qualcomm Incorporated Ultra-low latency LTE control data communication
US9980257B2 (en) * 2014-09-26 2018-05-22 Qualcomm Incorporated Ultra-low latency LTE reference signal transmission
JP2016072843A (ja) 2014-09-30 2016-05-09 Kddi株式会社 基地局装置、通信方法、および通信システム
US10064165B2 (en) * 2014-10-03 2018-08-28 Qualcomm Incorporated Downlink and uplink channel with low latency
US10149293B2 (en) * 2014-10-16 2018-12-04 Qualcomm Incorporated Transmission preemption for enhanced component carriers
WO2016064039A1 (ko) 2014-10-21 2016-04-28 엘지전자(주) 저 지연을 지원하는 무선 통신 시스템에서 데이터 송수신 방법 및 이를 위한 장치
AU2017244128A1 (en) 2016-03-30 2018-11-01 Interdigital Patent Holdings, Inc. Method and procedures for downlink physical channels to reduce latency in an LTE advanced system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140098799A1 (en) * 2007-09-21 2014-04-10 Samsung Electronics Co., Ltd. Apparatus and method for transmitting time interval reconfiguration in a mobile communication system
WO2013110683A1 (en) * 2012-01-26 2013-08-01 Nokia Siemens Networks Oy Method and apparatus for determining the transmission time interval length

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DAVIDE CATANIA ET AL.: "The Potential of Flexible UL/DL Slot Assignment in 5G systems", 2014 IEEE 80TH VEHICULAR TECHNOLOGY CONFERENCE (VTC FALL, 17 September 2014 (2014-09-17), XP032694827, Retrieved from the Internet <URL:http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6960202> *
HUALEI WANG ET AL.: "Perspectives on New Waveform Design for 5G Small Cell", 2014 URSI GENERAL ASSEMBLY AND SCIENTIFIC SYMPOSIUM (URSI GASS, 23 August 2014 (2014-08-23), XP032663786, Retrieved from the Internet <URL:http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6929311> *
PREBEN MOGENSEN ET AL.: "5G small cell optimized radio design", IEEE GLOBECOM WORKSHOPS., 13 December 2013 (2013-12-13), pages 111 - 116, XP032599888, Retrieved from the Internet <URL:http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6824971> *

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017193300A1 (zh) * 2016-05-11 2017-11-16 华为技术有限公司 一种时分双工通信的定时方法、基站及用户设备
US10813114B2 (en) 2016-05-11 2020-10-20 Huawei Technologies Co., Ltd. Timing method for time division duplex communication, base station, and user equipment
US10356778B2 (en) 2016-05-12 2019-07-16 Asustek Computer Inc. Facilitating detection of control channels with different transmission time intervals in a wireless communication system
US11563609B2 (en) 2016-06-17 2023-01-24 Lg Electronics Inc. Method and user equipment for receiving downlink signal, method and base station for transmitting downlink signal
US10805913B2 (en) 2016-06-17 2020-10-13 Lg Electronics Inc. Method and user equipment for receiving donwlink signal, method and base station for transmitting downlink signal
WO2018010586A1 (zh) * 2016-07-13 2018-01-18 上海朗帛通信技术有限公司 一种无线通信中的方法和装置
CN107645777A (zh) * 2016-07-22 2018-01-30 上海朗帛通信技术有限公司 一种无线传输中的方法和装置
CN110545585B (zh) * 2016-07-28 2023-02-24 上海朗帛通信技术有限公司 一种无线通信中的方法和装置
CN110545585A (zh) * 2016-07-28 2019-12-06 上海朗帛通信技术有限公司 一种无线通信中的方法和装置
CN107708219A (zh) * 2016-08-08 2018-02-16 普天信息技术有限公司 低时延通信制式的子帧上行调度定时方法
CN109565760B (zh) * 2016-08-10 2022-02-01 松下电器(美国)知识产权公司 终端及通信方法
CN109565760A (zh) * 2016-08-10 2019-04-02 松下电器(美国)知识产权公司 终端及通信方法
CN109891795A (zh) * 2016-08-11 2019-06-14 夏普株式会社 用于频分双工传输时间间隔操作的系统和方法
CN109891795B (zh) * 2016-08-11 2022-04-19 夏普株式会社 用于频分双工传输时间间隔操作的系统和方法
CN109691005B (zh) * 2016-09-16 2020-03-20 高通股份有限公司 用于在低延时无线通信中分配资源的方法和装置
CN109691005A (zh) * 2016-09-16 2019-04-26 高通股份有限公司 用于在低延时无线通信中分配资源的技术
US10966198B2 (en) 2016-09-16 2021-03-30 Qualcomm Incorporated Techniques for allocating resources in low latency wireless communications
KR102288064B1 (ko) * 2016-09-29 2021-08-11 삼성전자 주식회사 무선 셀룰라 통신 시스템에서 상향링크 제어 및 데이터 신호 전송 방법 및 장치
KR20180035641A (ko) * 2016-09-29 2018-04-06 삼성전자주식회사 무선 셀룰라 통신 시스템에서 상향링크 제어 및 데이터 신호 전송 방법 및 장치
WO2018062961A1 (ko) * 2016-09-29 2018-04-05 삼성전자 주식회사 무선 셀룰라 통신 시스템에서 상향링크 제어 및 데이터 신호 전송 방법 및 장치
US10833833B2 (en) 2016-11-04 2020-11-10 China Academy of Telecommunications Technolgoy Monitoring instructing and monitoring method and apparatus with short transmission time interval
TWI670982B (zh) * 2016-11-04 2019-09-01 電信科學技術研究院 一種短傳輸時間間隔的監聽指示及監聽方法、裝置
CN114785470A (zh) * 2017-01-09 2022-07-22 瑞典爱立信有限公司 使用nr tdd进行控制的无线设备、网络节点和方法
CN114785470B (zh) * 2017-01-09 2024-04-02 瑞典爱立信有限公司 使用nr tdd进行控制的无线设备、网络节点和方法
CN110192421B (zh) * 2017-01-24 2023-03-28 高通股份有限公司 用于使用多个传输时间间隔持续时间进行交叉载波调度的技术
CN110192421A (zh) * 2017-01-24 2019-08-30 高通股份有限公司 用于使用多个传输时间间隔持续时间进行交叉载波调度的技术
CN110583073A (zh) * 2017-05-05 2019-12-17 高通股份有限公司 基于用户设备能力的缩短的传输时间间隔配置
CN110583073B (zh) * 2017-05-05 2023-03-24 高通股份有限公司 基于用户设备能力的缩短的传输时间间隔配置
US11102734B2 (en) 2017-05-12 2021-08-24 Lg Electronics Inc. Method for controlling transmit power in wireless communication system and apparatus therefor
WO2018208134A1 (ko) * 2017-05-12 2018-11-15 엘지전자 주식회사 무선 통신 시스템에서 전송 전력 제어를 위한 방법 및 이를 위한 장치

Also Published As

Publication number Publication date
JP2017530653A (ja) 2017-10-12
US20180219666A1 (en) 2018-08-02
JP6781152B2 (ja) 2020-11-04
US10411869B2 (en) 2019-09-10
EP3210320A4 (en) 2018-04-25
US20220038247A1 (en) 2022-02-03
WO2016064049A1 (en) 2016-04-28
EP3210320A1 (en) 2017-08-30
CN106797248A (zh) 2017-05-31
CN106797248B (zh) 2019-09-03
US10361836B2 (en) 2019-07-23
KR102225638B1 (ko) 2021-03-12
KR20170074851A (ko) 2017-06-30
US20180041325A1 (en) 2018-02-08
EP3210320B1 (en) 2019-12-18
US11171761B2 (en) 2021-11-09
US20170318564A1 (en) 2017-11-02
WO2016064059A1 (en) 2016-04-28
US10560245B2 (en) 2020-02-11
US20190372742A1 (en) 2019-12-05
US11716188B2 (en) 2023-08-01

Similar Documents

Publication Publication Date Title
US11716188B2 (en) Method for transmitting and receiving data in wireless communication system and apparatus for the same
CN109565860B (zh) 在支持窄带物联网的无线通信系统中发送/接收数据的方法及其装置
CN106664706B (zh) 在支持未授权带的无线接入系统中配置传输机会时段的方法和设备
KR101983829B1 (ko) 무선 통신 시스템에서 단말 간 통신을 위한 방법 및 이를 위한 장치
KR101960518B1 (ko) 단말 간 통신을 지원하는 무선 통신 시스템에서 하향링크 제어 정보 송수신 방법 및 이를 위한 장치
KR102088929B1 (ko) 무선 통신 시스템에서 임의 접속 프리앰블을 송수신하기 위한 방법 및 이를 위한 장치
KR101857667B1 (ko) 무선 자원의 용도 변경을 지원하는 무선 통신 시스템에서 상향링크 제어 채널 송신 방법 및 이를 위한 장치
KR102032849B1 (ko) 신호 송수신 방법 및 이를 위한 장치
EP3697158A1 (en) Method for transmitting/receiving downlink control information in wireless communication system supporting device-to-device communication and apparatus therefor
CN109845178B (zh) 在无线通信系统中发送和接收无线信号的方法和设备
KR102001932B1 (ko) 무선 통신 시스템에서 제어 정보의 전송 방법 및 장치
WO2016064048A1 (en) Method for monitoring downlink control channel in wireless communication system and apparatus for the same
KR102058998B1 (ko) 신호 송수신 방법 및 이를 위한 장치
EP3200382B1 (en) Monitoring method by terminal in wireless communication system supporting carrier aggregation and device for same
KR102225951B1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
KR20200033345A (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
KR101909036B1 (ko) 신호 송수신 방법 및 이를 위한 장치
KR102078373B1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
KR102052975B1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15852664

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15521108

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 15852664

Country of ref document: EP

Kind code of ref document: A1