WO2018027942A1 - 一种信息传输的方法及装置 - Google Patents

一种信息传输的方法及装置 Download PDF

Info

Publication number
WO2018027942A1
WO2018027942A1 PCT/CN2016/094977 CN2016094977W WO2018027942A1 WO 2018027942 A1 WO2018027942 A1 WO 2018027942A1 CN 2016094977 W CN2016094977 W CN 2016094977W WO 2018027942 A1 WO2018027942 A1 WO 2018027942A1
Authority
WO
WIPO (PCT)
Prior art keywords
stti
physical layer
control channel
resource
information
Prior art date
Application number
PCT/CN2016/094977
Other languages
English (en)
French (fr)
Inventor
时洁
黎超
张兴炜
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2016/094977 priority Critical patent/WO2018027942A1/zh
Publication of WO2018027942A1 publication Critical patent/WO2018027942A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method and an apparatus for information transmission.
  • the LTE (Long Term Evolution) network transmits signals in units of radio frames, and is directed to the downlink of the eNB (evolved Node B, evolved base station) to the UE (User Equipment), as shown in FIG.
  • eNB evolved Node B, evolved base station
  • UE User Equipment
  • Each radio frame is composed of a sub-frame, and each sub-frame has two slots, and each slot is composed of a fixed number of OFDM (Orthogonal Frequency Division Multiplexing) symbols.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the eNB to the UE downlink uses the full-bandwidth mode to transmit signals, and the UE-to-eNB uplink uses SC-FDMA (Single-Carrier Frequency-Division Multiple Access) modulation to occupy the entire A part of the UL bandwidth (Physical Resource Block).
  • SC-FDMA Single-Carrier Frequency-Division Multiple Access
  • Each slot includes 6 or 7 os (ofdm symbol, orthogonal frequency division multiplexing symbols).
  • the TTI (Transmission Time Interval) length of the UL may be longer than the TTI length of the DL (Down Link).
  • TTI length of the DL Down Link
  • the subframe lengths may be different by UL (Up Link) and DL.
  • the subframe length may be reduced from 1 ms to 0.5 ms (7 OFDM symbols), 4 OFDM symbols, 2 OFDM symbols, or even 1 OFDM symbol.
  • the LTE network has multiple channels, and the downlink includes a PDCCH (Physical Downlink Control Channel) channel and a PDSCH (Physical Downlink Shared Channel) channel, which are respectively used for downlink control command transmission and downlink data.
  • Send; uplink includes PUCCH (Physical Uplink Control Channel, physical layer The channel (control channel) channel, the PUSCH (Physical Uplink Shared Channel) channel, is used for uplink control command transmission and uplink data transmission.
  • PUCCH Physical Uplink Control Channel
  • the PUSCH Physical Uplink Shared Channel
  • the number of symbols of the sPDCCH/sPDSCH applied to the short subframe is 2 symbols and 1 slot (7) OFDM symbols, and the number of symbols applied to the sPUCCH/sPUSCH of the short subframe is 2/4/7.
  • the OFDM symbol therefore, may be the case where the lengths of the short subframes used for the uplink and downlink are not equal.
  • the PUCCH for the 1 ms TTI is placed in two segments of the uplink system bandwidth. Specifically, the location where the PUCCH is placed on the system band and the DCI (Downlink Control Information) corresponding to the information included in the PUCCH. Information) related.
  • the eNB sends a data packet to the UE in the n subframe, and correspondingly, the location of the first CCE (Control Channel Element) of the downlink control information indicating the packet information in the n subframe is the PUCCH placement position. Need to consider the factors.
  • the UE sends uplink control information on the corresponding uplink PUCCH channel of the n+k subframe.
  • the resource location of the PUCCH is related to the DCI of the control information of the UD of the UCI in which the PUCCH is placed.
  • the DCI is no longer a DCI in one subframe, but has two levels of DCI in one subframe. Therefore, the mapping of the original primary DCI will be invalid. If the primary mapping is continued, the UE with excessive sTTI may use resources at the same PUCCH time-frequency resource location, resulting in insufficient use of the PUCCH, thereby causing the UE to transmit UCI ( Uplink Control Information, Downstream Control Information) An error occurred.
  • the embodiments of the present invention provide a method and an apparatus for information transmission, which are used to implement different sTTI terminals to use resources on resource positions of different physical layer uplink control channels, so as to prevent the terminal from transmitting uplink control information errors.
  • a method for transmitting information includes:
  • the terminal acquires resource unit index information of a physical layer uplink control channel for sTTI (Short Transmission Time Interval);
  • the terminal according to the resource unit index information and the sTTI of the physical layer uplink control channel used for the sTTI Time information, determining radio resource block information of the physical layer uplink control channel of the sTTI;
  • the terminal sends uplink control information on the radio resource block of the physical layer uplink control channel of the sTTI.
  • the location of the resource that can carry the uplink control information of the channel, and the terminal that implements the different sTTIs uses resources on the resource locations of the uplink control channels of different physical layers to prevent the terminal from transmitting the uplink control information.
  • the acquiring, by the terminal, the resource unit index information of the physical layer uplink control channel of the sTTI includes:
  • the terminal acquires resource unit index information related to the downlink control information, and determines resource element index information of the physical layer uplink control channel used for the sTTI according to the resource unit index information and the resource index algorithm related to the downlink control information; or
  • the terminal acquires resource unit index information of the physical layer uplink control channel used by the base station for the sTTI.
  • the resource unit index information of the physical layer uplink control channel used for the sTTI may be determined by the terminal itself or may be sent by the base station, so that the terminal can obtain the radio resource block information of the physical layer uplink control channel of the sTTI.
  • the resource unit index information and the sTTI of the physical layer uplink control channel for the sTTI sent by the base station are related.
  • the resource unit index information of the physical layer uplink control channel for the sTTI determined by the base station by using the format of the physical layer uplink control channel of the sTTI and/or the length of the sTTI, so that the terminal can obtain the physical layer uplink control channel of the sTTI more accurately.
  • Radio resource block information The resource unit index information of the physical layer uplink control channel for the sTTI determined by the base station by using the format of the physical layer uplink control channel of the sTTI and/or the length of the sTTI, so that the terminal can obtain the physical layer uplink control channel of the sTTI more accurately. Radio resource block information.
  • the downlink control information is carried in the physical layer downlink control channel, and the downlink control information includes the first level Downlink control information and/or second level downlink control information;
  • the terminal acquires resource unit index information related to the downlink control information, including:
  • the terminal acquires the resource unit index information of the resource that carries the first-level downlink control information, or the resource unit index information of the resource that the terminal acquires the second-level downlink control information.
  • the resource unit index information of the resource carrying the first-level downlink control information is Resource unit index information of resources of the first-level downlink control information carried by the control layer and/or the physical layer downlink control channel of the sTTI;
  • the resource unit index information of the resource carrying the second-level downlink control information is the resource unit index information of the resource of the second-level downlink control information carried by the physical layer downlink control channel and/or the physical layer downlink control channel of the sTTI.
  • the resource unit index information of the resource of the first-level downlink control information is Index information of a specified resource unit of a resource where the primary downlink control information is located;
  • the resource unit index information of the resource of the second-level downlink control information is the index information of the specified resource unit of the resource where the second-level downlink control information is located.
  • the acquiring, by the terminal, the resource unit index information related to the downlink control information includes:
  • the terminal acquires resource information of a physical layer downlink shared channel carrying downlink control information and/or a physical layer downlink shared channel of the sTTI; or
  • the terminal acquires resource location information in the physical layer downlink shared channel of the physical layer downlink shared channel and/or the sTTI of the downlink control information.
  • the physical layer downlink shared channel carrying the downlink control information and/or the physical layer downlink sharing of the sTTI The resource information of the channel is index information of a specified resource unit of the resource where the downlink control information is located;
  • the resource information of the physical layer downlink shared channel carrying the downlink control information and/or the physical layer downlink shared channel resource of the sTTI is the number of resource units occupied by the resource where the downlink control information is located.
  • the downlink control information is carried in the physical layer downlink control channel and the physical layer downlink data channel,
  • the downlink control information includes first-level downlink control information and second-level downlink control information;
  • the terminal acquires resource unit index information related to the downlink control information, including:
  • the terminal acquires the relationship between the resource unit index information of the resource carrying the first-level downlink control information and the resource unit index information of the resource carrying the second-level downlink control information;
  • the terminal determines the resource unit index information related to the downlink control information according to the relationship between the resource unit index information of the resource that carries the first-level downlink control information and the resource unit index information of the resource that carries the second-level downlink control information.
  • the terminal determines an uplink physical control for the sTTI
  • the resource unit index information of the channel meets one of the following formulas (1) to (5):
  • the delta sPUCCH is the resource offset value of the HARQ (Hybrid Automatic Repeat reQuest)
  • n sRU is resource unit index information related to downlink control information
  • n' is the antenna port related value.
  • the terminal determines the physical layer uplink control of the sTTI according to the determined resource unit index information of the physical layer uplink control channel for the sTTI and the time information of the sTTI.
  • Radio resource block information of the channel including:
  • the terminal determines the radio resource block information of the physical layer uplink control channel of the sTTI according to the resource location of the physical layer uplink control channel of the sTTI and the time information of the sTTI.
  • the determining, by the terminal, the resource location of the physical layer uplink control channel of the sTTI includes:
  • the terminal allocates a frequency band according to the length of the sTTI in the frequency domain of the uplink control channel, determines the frequency band occupied by the uplink control channel corresponding to the length of each sTTI, and determines the sTTI according to the format of the physical layer uplink control channel of the sTTI in the occupied frequency band. Sorting resources used by the physical layer uplink control channel; or
  • the terminal allocates a frequency band according to the format of the physical layer uplink control channel of the sTTI in the frequency domain of the uplink control channel, determines a frequency band occupied by the format of the physical layer uplink control channel of each sTTI, and determines the sTTI according to the length of the sTTI in the occupied frequency band.
  • the physical layer uses the resources used by the uplink control channel for sorting.
  • the terminal determines, by using the following formula, a resource location of a physical layer uplink control channel of the sTTI One of (6) to (12):
  • m is the resource location of the physical layer uplink control channel of the sTTI, Resource element index information of the physical layer uplink control channel of the sTTI, where k is the format type of the uplink physical control channel, The port number of the antenna, where M is the number of resource blocks RB occupied by the physical layer uplink control channel in a specific format of sTTI, and K is the number of physical layer uplink control channels that can be multiplexed on a limited number of RBs, The number of cyclic offsets for the terminal, For the interval of the terminal loop offset, For the offset value assigned to the terminal, The spreading factor of the uplink control channel for the physical layer.
  • the resource unit index information includes One of the following information:
  • the index value is the index value at the system level or sub-band level.
  • the index number of the resource unit includes: the first resource unit where the downlink control information is located Index number.
  • the index of the first resource unit where the downlink control information is located is the downlink resource control channel, the physical layer downlink data channel, and the sTTI of the first resource unit where the downlink control information is located.
  • the resource unit includes one of the following units:
  • One or more resource elements one or more control channel elements, and multiple resource element groups.
  • the second aspect provides a method for information transmission, including:
  • the base station receiving terminal sends the uplink control information on the radio resource block of the physical layer uplink control channel of the sTTI, and the radio resource block of the physical layer uplink control channel of the sTTI is the resource unit index information of the terminal according to the physical layer uplink control channel used for the sTTI.
  • the time information of the sTTI is determined;
  • the base station performs scheduling according to the uplink control information.
  • the radio resource block of the physical layer uplink control channel of the obtained sTTI is determined by the terminal according to resource element index information of the physical layer uplink control channel for sTTI and time information of the sTTI, so that terminals of different sTTIs are implemented in different physics.
  • the resource is used at the resource location of the layer uplink control channel to prevent the terminal from transmitting an uplink control information error.
  • the base station before the receiving terminal sends the uplink control information on the radio resource block of the physical layer uplink control channel of the sTTI, includes:
  • the base station sends the resource unit index information related to the downlink control information to the terminal, so that the terminal determines the resource unit index information of the physical layer uplink control channel used for the sTTI according to the resource unit index information and the resource index algorithm related to the downlink control information; Or the base station sends resource unit index information for the physical layer uplink control channel of the sTTI to the terminal.
  • the resource unit index information of the physical layer uplink control channel for the sTTI sent by the base station to the terminal Corresponding to the format of the physical layer uplink control channel of the sTTI and/or the length of the sTTI.
  • the downlink control information is carried in the physical layer downlink control channel, and the downlink control information includes the first level Downlink control information and/or second level downlink control information;
  • the base station sends the resource unit index information related to the downlink control information to the terminal, including:
  • the base station sends the resource unit index information of the resource carrying the first-level downlink control information to the terminal, or the base station sends the resource unit index information of the resource that carries the second-level downlink control information to the terminal.
  • the resource unit index information of the resource carrying the first-level downlink control information is Resource unit index information of resources of the first-level downlink control information carried by the control layer and/or the physical layer downlink control channel of the sTTI;
  • the resource unit index information of the resource carrying the second-level downlink control information is the resource unit index information of the resource of the second-level downlink control information carried by the physical layer downlink control channel and/or the physical layer downlink control channel of the sTTI.
  • the resource unit index information of the resource of the first-level downlink control information is Index information of a specified resource unit of a resource where the primary downlink control information is located;
  • the resource unit index information of the resource of the second-level downlink control information is the index information of the specified resource unit of the resource where the second-level downlink control information is located.
  • the base station sends the resource unit index information related to the downlink control information to the terminal, including:
  • the base station sends the resource location information in the physical layer downlink shared channel of the physical layer downlink shared channel and/or the sTTI to the terminal.
  • the physical layer downlink shared channel and/or the sTTI carrying the downlink control information is the index information of the specified resource unit of the resource where the downlink control information is located;
  • the resource information of the physical layer downlink shared channel carrying the downlink control information and/or the physical layer downlink shared channel resource of the sTTI is the number of resource units occupied by the resource where the downlink control information is located.
  • the downlink control information is carried in the physical layer downlink control channel and the physical layer downlink data channel,
  • the downlink control information includes first-level downlink control information and second-level downlink control information;
  • the terminal acquires resource unit index information related to the downlink control information, including:
  • the terminal acquires the relationship between the resource unit index information of the resource carrying the first-level downlink control information and the resource unit index information of the resource carrying the second-level downlink control information;
  • the terminal determines the resource unit index information related to the downlink control information according to the relationship between the resource unit index information of the resource that carries the first-level downlink control information and the resource unit index information of the resource that carries the second-level downlink control information.
  • the uplink physical control channel is used for the sTTI
  • the resource unit index information meets one of the following formulas (1) to (5):
  • Resource element index information for the physical layer uplink control channel of the sTTI where k is the format type of the uplink physical control channel, The port number of the antenna, The offset value related to the format type and/or the sTTI length type of the uplink physical control channel sent by the user equipment on the sTTI, the delta sPUCCH is the resource offset value corresponding to the HARQ, the sTTI length type corresponding to the uplink physical control channel, and the uplink At least one of the format types of the physical control channel or the associated offset value, or the physical layer uplink control channel of the sTTI is located in the physical layer uplink control channel or the uplink channel, and the n sRU is related to the downlink control information.
  • Resource unit index information To specify the number of lower resource units of the agreed resource unit in the resource block set, n' is the antenna port related value.
  • the radio resource block of the physical layer uplink control channel of the sTTI is the resource unit index information and the sTTI of the terminal according to the physical layer uplink control channel used for the sTTI
  • the time information is determined, including:
  • the terminal determines the radio resource block information of the physical layer uplink control channel of the sTTI according to the resource location of the physical layer uplink control channel of the sTTI and the time information of the sTTI.
  • the resource location of the physical layer uplink control channel of the sTTI is determined by the following steps, include:
  • the resources used by the physical layer uplink control channel are sorted.
  • the resource location of the physical layer uplink control channel of the sTTI conforms to the following formula (6) ) to one of (12):
  • m is the resource location of the physical layer uplink control channel of the sTTI, Resource element index information of the physical layer uplink control channel of the sTTI, where k is the format type of the uplink physical control channel, The port number of the antenna, where M is the number of resource blocks RB occupied by the physical layer uplink control channel in a specific format of sTTI, and K is the number of physical layer uplink control channels that can be multiplexed on a limited number of RBs, The number of cyclic offsets for the terminal, For the interval of the terminal loop offset, For the offset value assigned to the terminal, The spreading factor of the uplink control channel for the physical layer.
  • the resource unit index information includes One of the following information:
  • the index value is the index value at the system level or sub-band level.
  • the index number of the resource unit includes: the first resource unit where the downlink control information is located Index number.
  • the index of the first resource unit where the downlink control information is located is the downlink resource control channel, the physical layer downlink data channel, and the sTTI of the first resource unit where the downlink control information is located.
  • the resource unit includes one of the following units:
  • One or more resource elements one or more control channel elements, and multiple resource element groups.
  • the third aspect provides a method for information transmission, including:
  • the terminal configures a signal of an sTTI physical layer uplink control channel whose length is two orthogonal frequency division multiplexing symbols;
  • the terminal transmits a signal of a physical layer uplink control channel whose length is sTTI of two orthogonal frequency division multiplexing symbols.
  • the terminal configures the signal of the sTTI physical layer uplink control channel with two orthogonal frequency division multiplexing symbols, and the data signal and the reference signal in a 0.5 ms period can be agreed for two orthogonal frequency division multiplexing symbols. Placement.
  • the terminal configures, by the terminal, a signal of a physical layer uplink control channel of an sTTI of two orthogonal frequency division multiplexing symbols, including:
  • the signal of the physical layer uplink control channel of the sTTI includes a reference signal and a data signal
  • the terminal configuration reference signal is located at an odd or even number of positions of the subframe corresponding to the two orthogonal frequency division multiplexing symbols, and the data signal is located at a position other than the reference signal.
  • the terminal configures, by the terminal, a signal of an uplink physical control channel of an sTTI of two orthogonal frequency division multiplexing symbols, including:
  • the signal of the physical layer uplink control channel of the sTTI includes a reference signal and a data signal
  • the terminal configures at least one reference signal adjacent to the two data signals in the subframe corresponding to the two orthogonal frequency division multiplexing symbols, and is shared by the two data signals.
  • the terminal configures the at least one reference signal in two orthogonal frequency division multiplexers
  • the sub-frame corresponding to the number is adjacent to two data signals, including:
  • the terminal is configured with one reference signal in the middle of the two data signals, and the remaining reference signals are adjacent to one data signal.
  • the terminal configures a signal of a physical layer uplink control channel of an sTTI of two orthogonal frequency division multiplexing symbols, including:
  • the signal of the physical layer uplink control channel of the sTTI includes a reference signal and a data signal
  • the terminal configuration reference signal and the data signal are alternately arranged on each orthogonal frequency division multiplexing symbol.
  • the terminal configuration length is two orthogonal frequencies.
  • the signal of the physical layer uplink control channel of the sTTI of the multiplexed symbol including:
  • the terminal modulates a data symbol onto a data signal and spreads the data signal in the frequency domain.
  • the terminal configuration length is two orthogonal frequencies.
  • the signal of the physical layer uplink control channel of the sTTI of the multiplexed symbol including:
  • the terminal modulates two data symbols onto two data signals, spreads the two data signals in the frequency domain, and spreads the two data signals in the time domain.
  • the terminal configuration length is two orthogonal frequencies.
  • the signal of the physical layer uplink control channel of the sTTI of the multiplexed symbol including:
  • the terminal modulates a plurality of data symbols into a plurality of data signals, and places the plurality of data signals on a frequency domain carrier of the same orthogonal frequency division multiplex symbol.
  • the fourth aspect provides a method for information transmission, including:
  • the base station receives the signal of the physical layer uplink control channel of the sTTI whose length is two orthogonal frequency division multiplexing symbols, and the signal of the physical layer uplink control channel of the sTTI whose length is two orthogonal frequency division multiplexing symbols is Terminal configuration
  • the base station according to the physical layer uplink control channel of the sTTI whose length is two orthogonal frequency division multiplexing symbols The signal is scheduled.
  • the signal of the physical layer uplink control channel of the sTTI of the two orthogonal frequency division multiplexing symbols includes a reference signal and a data signal;
  • the reference signal is located at an odd or even number of positions of the subframe corresponding to the two orthogonal frequency division multiplexing symbols, and the data signal is located at a position other than the reference signal.
  • the signal of the physical layer uplink control channel of the sTTI of the two orthogonal frequency division multiplexing symbols includes a reference signal and a data signal;
  • the at least one reference signal is adjacent to the two data signals in the subframe corresponding to the two orthogonal frequency division multiplexing symbols, and is shared by the two data signals.
  • the at least one reference signal is in a subframe corresponding to two orthogonal frequency division multiplexing symbols Adjacent to the two data signals is a reference signal located in the middle of the two data signals, and the remaining reference signals are adjacent to one data signal.
  • the signal of the physical layer uplink control channel of the sTTI of the two orthogonal frequency division multiplexing symbols includes a reference signal and a data signal;
  • the reference signal and the data signal are alternately arranged on each orthogonal frequency division multiplexing symbol.
  • the length is two orthogonal frequency division
  • the signal of the physical layer uplink control channel with the symbolized sTTI includes a data symbol modulated onto a data signal, and the data signal is spread over the frequency domain.
  • the length is two orthogonal frequency division complexes
  • the signal of the physical layer uplink control channel with the symbol sTTI includes two data symbols modulated onto two data signals, two data signals being spread in the frequency domain, and two data signals being spread in the time domain. frequency.
  • the length is two orthogonal frequency division
  • the signal of the physical layer uplink control channel with the symbolized sTTI includes a plurality of data symbols modulated to a plurality of data signals, and the plurality of data signals are placed on a frequency domain carrier of the same orthogonal frequency division multiplexed symbol.
  • a fifth aspect provides an apparatus for information transmission, including:
  • a transceiver unit configured to acquire resource unit index information of a physical layer uplink control channel for the sTTI
  • a processing unit configured to determine, according to the resource unit index information of the physical layer uplink control channel for the sTTI and the time information of the sTTI acquired by the transceiver unit, the radio resource block information of the physical layer uplink control channel of the sTTI;
  • the transceiver unit is further configured to send uplink control information on a radio resource block of a physical layer uplink control channel of the sTTI determined by the processing unit.
  • the transceiver unit is specifically configured to:
  • resource unit index information related to downlink control information Obtaining resource unit index information related to downlink control information; determining resource element index information of a physical layer uplink control channel used for sTTI according to resource unit index information and a resource index algorithm related to downlink control information; or
  • the resource unit index information and the sTTI of the physical layer uplink control channel for the sTTI sent by the base station are related.
  • the downlink control information is carried in the physical layer downlink control channel, and the downlink control information includes the first level Downlink control information and/or second level downlink control information;
  • the transceiver unit is specifically used to:
  • the resource unit index information of the resource carrying the first-level downlink control information is downlink at the physical layer Resource unit index information of resources of the first-level downlink control information carried by the control layer and/or the physical layer downlink control channel of the sTTI;
  • the resource unit index information of the resource carrying the second-level downlink control information is the resource unit index information of the resource of the second-level downlink control information carried by the physical layer downlink control channel and/or the physical layer downlink control channel of the sTTI.
  • the resource unit index information of the resource of the first-level downlink control information is Index information of a specified resource unit of a resource where the primary downlink control information is located;
  • the resource unit index information of the resource of the second-level downlink control information is the index information of the specified resource unit of the resource where the second-level downlink control information is located.
  • the transceiver unit is specifically configured to:
  • the physical layer downlink shared channel carrying the downlink control information and/or the physical layer downlink sharing of the sTTI The resource information of the channel is index information of a specified resource unit of the resource where the downlink control information is located;
  • the resource information of the physical layer downlink shared channel carrying the downlink control information and/or the physical layer downlink shared channel resource of the sTTI is the number of resource units occupied by the resource where the downlink control information is located.
  • the downlink control information is in the physical layer downlink control channel and or the physical layer
  • the downlink control information includes the first-level downlink control information and the second-level downlink control information.
  • the transceiver unit is specifically used to:
  • the resource unit index information related to the downlink control information is determined according to the relationship between the resource unit index information of the resource carrying the first-level downlink control information and the resource unit index information of the resource carrying the second-level downlink control information.
  • the transceiver unit is specifically configured to:
  • the resource unit index information for determining the uplink physical control channel for the sTTI meets one of the following formulas (1) to (5):
  • Resource element index information for the physical layer uplink control channel of the sTTI where k is the format type of the uplink physical control channel, The port number of the antenna,
  • the delta sPUCCH is the resource offset value corresponding to the HARQ
  • the uplink At least one of the format types of the physical control channel or the associated offset value, or the physical layer uplink control channel of the sTTI is located in the physical layer uplink control channel or the uplink channel
  • the n sRU is related to the downlink control information.
  • Resource unit index information To specify the number of lower resource units of the agreed resource unit in the resource block set, n' is the antenna port related value.
  • the processing unit is specifically configured to:
  • Radio resource block information of the physical layer uplink control channel of the sTTI Determining radio resource block information of the physical layer uplink control channel of the sTTI according to the resource location of the physical layer uplink control channel of the sTTI and the time information of the sTTI.
  • the processing unit is specifically configured to:
  • the resources used by the physical layer uplink control channel are sorted.
  • the processing unit is specifically configured to:
  • m is the resource location of the physical layer uplink control channel of the sTTI, Resource element index information of the physical layer uplink control channel of the sTTI, where k is the format type of the uplink physical control channel, The port number of the antenna, where M is the number of resource blocks RB occupied by the physical layer uplink control channel in a specific format of sTTI, and K is the number of physical layer uplink control channels that can be multiplexed on a limited number of RBs, The number of cyclic offsets for the terminal, For the interval of the terminal loop offset, For the offset value assigned to the terminal, The spreading factor of the uplink control channel for the physical layer.
  • the resource unit index information includes One of the following information:
  • the index value is the index value at the system level or sub-band level.
  • the index number of the resource unit includes: the first resource unit where the downlink control information is located Index number.
  • the index number of the first resource unit where the downlink control information is located is downlink control information
  • the first resource unit is located at the physical layer downlink control channel, the physical layer downlink data channel, the physical layer downlink control channel of the sTTI, and the index number of one of the physical layer downlink data channels of the sTTI.
  • the resource unit includes one of the following units:
  • One or more resource elements one or more control channel elements, and multiple resource element groups.
  • a sixth aspect provides an apparatus for information transmission, including:
  • the transceiver unit is configured to send, by the terminal, the uplink control information on the radio resource block of the physical layer uplink control channel of the sTTI, where the radio resource block of the physical layer uplink control channel of the sTTI is the resource of the terminal according to the physical layer uplink control channel used for the sTTI
  • the unit index information and the time information of the sTTI are determined;
  • the processing unit is configured to perform scheduling according to the uplink control information.
  • the transceiver unit is further configured to:
  • the resource unit index information related to the downlink control information is sent to the terminal, so that the terminal according to the resource unit index information related to the downlink control information And a resource indexing algorithm, determining resource element index information of the physical layer uplink control channel for the sTTI; or transmitting resource element index information of the physical layer uplink control channel for the sTTI to the terminal.
  • the resource unit index information of the physical layer uplink control channel for the sTTI that is sent to the terminal is The format of the physical layer uplink control channel of the sTTI is related to the length of the sTTI.
  • the downlink control information is carried in the physical layer downlink control channel, and the downlink control information includes the first level Downlink control information and/or second level downlink control information;
  • the transceiver unit is specifically used to:
  • the resource unit index information of the resource carrying the first-level downlink control information is sent to the terminal, or the resource unit index information of the resource carrying the second-level downlink control information is sent to the terminal.
  • the resource unit index information of the resource carrying the first-level downlink control information is the downlink of the physical layer The first level of the physical layer downlink control channel carried by the control channel and/or sTTI Resource unit index information of resources of downlink control information;
  • the resource unit index information of the resource carrying the second-level downlink control information is the resource unit index information of the resource of the second-level downlink control information carried by the physical layer downlink control channel and/or the physical layer downlink control channel of the sTTI.
  • the resource unit index information of the resource of the first-level downlink control information is Index information of a specified resource unit of a resource where the primary downlink control information is located;
  • the resource unit index information of the resource of the second-level downlink control information is the index information of the specified resource unit of the resource where the second-level downlink control information is located.
  • the transceiver unit is specifically configured to:
  • the physical layer downlink shared channel carrying the downlink control information and/or the physical layer downlink sharing of the sTTI The resource information of the channel is index information of a specified resource unit of the resource where the downlink control information is located;
  • the resource information of the physical layer downlink shared channel carrying the downlink control information and/or the physical layer downlink shared channel resource of the sTTI is the number of resource units occupied by the resource where the downlink control information is located.
  • the downlink control information is carried in the physical layer downlink control channel and the physical layer downlink data channel,
  • the downlink control information includes first-level downlink control information and second-level downlink control information;
  • the transceiver unit is specifically used to:
  • the resource unit index information related to the downlink control information is determined according to the relationship between the resource unit index information of the resource carrying the first-level downlink control information and the resource unit index information of the resource carrying the second-level downlink control information.
  • the uplink physical control channel for the sTTI meets one of the following formulas (1) to (5):
  • Resource element index information for the physical layer uplink control channel of the sTTI where k is the format type of the uplink physical control channel, The port number of the antenna,
  • the delta sPUCCH is the resource offset value corresponding to the HARQ
  • the uplink At least one of the format types of the physical control channel or the associated offset value, or the physical layer uplink control channel of the sTTI is located in the physical layer uplink control channel or the uplink channel
  • the n sRU is related to the downlink control information.
  • Resource unit index information To specify the number of lower resource units of the agreed resource unit in the resource block set, n' is the antenna port related value.
  • the radio resource block of the physical layer uplink control channel of the sTTI is the resource of the terminal according to the physical layer uplink control channel used for the sTTI
  • the source unit index information and the time information of the sTTI are determined, including:
  • Radio resource block information of the physical layer uplink control channel of the sTTI Determining radio resource block information of the physical layer uplink control channel of the sTTI according to the resource location of the physical layer uplink control channel of the sTTI and the time information of the sTTI.
  • the resource location of the physical layer uplink control channel of the sTTI is determined by the following steps, include:
  • the resources used by the physical layer uplink control channel are sorted.
  • the resource location of the physical layer uplink control channel of the sTTI conforms to the following formula (6) ) to one of (12):
  • m is the resource location of the physical layer uplink control channel of the sTTI, Resource element index information of the physical layer uplink control channel of the sTTI, where k is the format type of the uplink physical control channel, The port number of the antenna, where M is the number of resource blocks RB occupied by the physical layer uplink control channel in a specific format of sTTI, and K is the number of physical layer uplink control channels that can be multiplexed on a limited number of RBs, The number of cyclic offsets for the terminal, For the interval of the terminal loop offset, For the offset value assigned to the terminal, The spreading factor of the uplink control channel for the physical layer.
  • the resource unit index information includes One of the following information:
  • the index value is the index value at the system level or sub-band level.
  • the index number of the resource unit includes: the first resource unit where the downlink control information is located Index number.
  • the index number of the first resource unit where the downlink control information is located is downlink control information
  • the first resource unit is located at the physical layer downlink control channel, the physical layer downlink data channel, the physical layer downlink control channel of the sTTI, and the index number of one of the physical layer downlink data channels of the sTTI.
  • the resource unit includes one of the following units:
  • One or more resource elements one or more control channel elements, and multiple resource element groups.
  • a seventh aspect provides an apparatus for information transmission, including:
  • a processing unit configured to configure a signal of an sTTI physical layer uplink control channel of two orthogonal frequency division multiplexing symbols
  • the transceiver unit is configured to send a signal of a physical layer uplink control channel of the sTTI configured to be two orthogonal frequency division multiplexing symbols.
  • the processing unit is specifically configured to:
  • the signal of the physical layer uplink control channel of the sTTI includes a reference signal and a data signal
  • the configuration reference signal is located at an odd or even number of positions of the subframe corresponding to the two orthogonal frequency division multiplexing symbols, and the data signal is located at a position other than the reference signal.
  • the processing unit is specifically configured to:
  • the signal of the physical layer uplink control channel of the sTTI includes a reference signal and a data signal
  • the at least one reference signal is configured to be adjacent to the two data signals in the subframe corresponding to the two orthogonal frequency division multiplexing symbols, and is shared by the two data signals.
  • the processing unit is specifically configured to:
  • a reference signal is placed in the middle of the two data signals, and the remaining reference signals are adjacent to one of the data signals.
  • the processing unit is specifically configured to:
  • the signal of the physical layer uplink control channel of the sTTI includes a reference signal and a data signal
  • the configuration reference signal and the data signal are alternately arranged on each orthogonal frequency division multiplexing symbol.
  • the processing unit is specifically configured to:
  • a data symbol is modulated onto a data signal and the data signal is spread over the frequency domain.
  • the processing unit is specifically configured to:
  • Two data symbols are modulated onto two data signals, two data signals are spread in the frequency domain, and the two data signals are spread in the time domain.
  • the processing unit is specifically configured to:
  • a plurality of data symbols are modulated onto a plurality of data signals, and the plurality of data signals are placed on a frequency domain carrier of the same orthogonal frequency division multiplexed symbol.
  • the eighth aspect provides an apparatus for information transmission, including:
  • a transceiver unit configured to receive a signal of a physical layer uplink control channel of an sTTI of two orthogonal frequency division multiplexing symbols and a physical layer uplink control channel of an sTTI of two orthogonal frequency division multiplexing symbols
  • the signal is configured by the terminal;
  • a processing unit configured to perform scheduling according to a signal of a physical layer uplink control channel of an sTTI whose length is two orthogonal frequency division multiplexing symbols.
  • the signal of the physical layer uplink control channel of the sTTI whose length is two orthogonal frequency division multiplexing symbols includes a reference signal and a data signal;
  • the reference signal is located at an odd or even number of positions of the subframe corresponding to the two orthogonal frequency division multiplexing symbols, and the data signal is located at a position other than the reference signal.
  • the signal of the physical layer uplink control channel of the sTTI whose length is two orthogonal frequency division multiplexing symbols includes a reference signal and a data signal;
  • the at least one reference signal is adjacent to the two data signals in the subframe corresponding to the two orthogonal frequency division multiplexing symbols, and is shared by the two data signals.
  • the at least one reference signal is in a subframe corresponding to two orthogonal frequency division multiplexing symbols Adjacent to the two data signals is a reference signal located in the middle of the two data signals, and the remaining reference signals are adjacent to one data signal.
  • the signal of the physical layer uplink control channel of the sTTI of the two orthogonal frequency division multiplexing symbols includes a reference signal and a data signal;
  • the reference signal and the data signal are alternately arranged on each orthogonal frequency division multiplexing symbol.
  • the length is two orthogonal frequency division
  • the signal of the physical layer uplink control channel with the symbolized sTTI includes a data symbol modulated onto a data signal, and the data signal is spread over the frequency domain.
  • the length is two orthogonal frequency division complexes
  • the signal of the physical layer uplink control channel with the symbolized sTTI includes two data symbols modulated onto two data signals, the two data signals being spread over the frequency domain, and the two data signals being spread over the time domain.
  • the length is two orthogonal frequency division
  • the signal of the physical layer uplink control channel with the symbolized sTTI includes a plurality of data symbols modulated to a plurality of data signals, and the plurality of data signals are placed on a frequency domain carrier of the same orthogonal frequency division multiplexed symbol.
  • a ninth aspect provides an information transmission device, including:
  • Transceiver processor and memory
  • the transceiver is configured to obtain resource unit index information of a physical layer uplink control channel for the sTTI;
  • the processor is configured to determine, according to the resource unit index information of the physical layer uplink control channel for the sTTI and the time information of the sTTI, the radio resource block information of the physical layer uplink control channel of the sTTI;
  • the transceiver is further configured to send uplink control information on a radio resource block of a physical layer uplink control channel of the sTTI determined by the processor.
  • the transceiver acquires resource unit index information related to the downlink control information, and determines, according to the resource unit index information and the resource index algorithm related to the downlink control information, Resource element index information for the physical layer uplink control channel of the sTTI; or
  • the transceiver acquires a resource unit index of a physical layer uplink control channel used by the base station for sTTI information.
  • the resource unit index information and the sTTI of the physical layer uplink control channel for the sTTI sent by the base station are related.
  • the downlink control information is carried in the physical layer downlink control channel, and the downlink control information includes the first level Downlink control information and/or second level downlink control information;
  • the transceiver obtains the resource unit index information of the resource that carries the first-level downlink control information, or the resource unit index information of the resource that the transceiver acquires the second-level downlink control information.
  • the resource unit index information of the resource carrying the first-level downlink control information is the downlink in the physical layer Resource unit index information of resources of the first-level downlink control information carried by the control layer and/or the physical layer downlink control channel of the sTTI;
  • the resource unit index information of the resource carrying the second-level downlink control information is the resource unit index information of the resource of the second-level downlink control information carried by the physical layer downlink control channel and/or the physical layer downlink control channel of the sTTI.
  • the resource unit index information of the resource of the first-level downlink control information is Index information of a specified resource unit of a resource where the primary downlink control information is located;
  • the resource unit index information of the resource of the second-level downlink control information is the index information of the specified resource unit of the resource where the second-level downlink control information is located.
  • the transceiver acquires a physical layer downlink shared channel carrying the downlink control information and/or a physical of the sTTI Resource information of the layer downlink shared channel;
  • the transceiver acquires resource location information in the physical layer downlink shared channel of the physical layer downlink shared channel and/or the sTTI of the downlink control information.
  • the resource information of the physical layer downlink shared channel carrying the downlink control information and/or the physical layer downlink shared channel of the sTTI is the index information of the specified resource unit of the resource where the downlink control information is located, in the seven possible implementation manners;
  • the resource information of the physical layer downlink shared channel carrying the downlink control information and/or the physical layer downlink shared channel resource of the sTTI is the number of resource units occupied by the resource where the downlink control information is located.
  • the downlink control information is carried in the physical layer downlink control channel and the physical layer downlink data channel,
  • the downlink control information includes first-level downlink control information and second-level downlink control information;
  • the transceiver acquires the relationship between the resource unit index information of the resource carrying the first-level downlink control information and the resource unit index information of the resource carrying the second-level downlink control information; and the resource unit index information of the resource that carries the first-level downlink control information
  • the resource unit index information related to the downlink control information is determined according to the relationship between the resource unit index information of the resource carrying the second-level downlink control information.
  • the transceiver determines the uplink physics for the sTTI
  • the resource unit index information of the control channel meets one of the following formulas (1) to (5):
  • Resource element index information for the physical layer uplink control channel of the sTTI where k is the format type of the uplink physical control channel, The port number of the antenna, The offset value related to the format type and/or the sTTI length type of the uplink physical control channel sent by the user equipment on the sTTI, the delta sPUCCH is the resource offset value corresponding to the HARQ, the sTTI length type corresponding to the uplink physical control channel, and the uplink At least one of the format types of the physical control channel or the associated offset value, or the physical layer uplink control channel of the sTTI is located in the physical layer uplink control channel or the uplink channel, and the n sRU is related to the downlink control information.
  • Resource unit index information To specify the number of lower resource units of the agreed resource unit in the resource block set, n' is the antenna port related value.
  • the processor determines, according to the determined resource unit index information of the physical layer uplink control channel for the sTTI, the resource location of the physical layer uplink control channel of the sTTI And determining radio resource block information of the physical layer uplink control channel of the sTTI according to the resource location of the physical layer uplink control channel of the sTTI and the time information of the sTTI.
  • the processor allocates a frequency band according to a length of the sTTI in a frequency domain of the uplink control channel, and determines The length of each sTTI corresponds to the frequency band occupied by the uplink control channel, and sorts the resources used by the physical layer uplink control channel of the sTTI according to the format of the physical layer uplink control channel of the sTTI in the occupied frequency band; or
  • the processor allocates a frequency band according to the format of the physical layer uplink control channel of the sTTI in the frequency domain of the uplink control channel, determines a frequency band occupied by the format of the physical layer uplink control channel of each sTTI, and according to the length of the sTTI in the occupied frequency band
  • the resources used by the sTTI physical layer uplink control channel are sorted.
  • the processor determines a resource location of the physical layer uplink control channel of the sTTI, One of formulas (6) to (12):
  • m is the resource location of the physical layer uplink control channel of the sTTI, Resource element index information of the physical layer uplink control channel of the sTTI, where k is the format type of the uplink physical control channel, The port number of the antenna, where M is the number of resource blocks RB occupied by the physical layer uplink control channel in a specific format of sTTI, and K is the number of physical layer uplink control channels that can be multiplexed on a limited number of RBs, The number of cyclic offsets for the terminal, For the interval of the terminal loop offset, For the offset value assigned to the terminal, The spreading factor of the uplink control channel for the physical layer.
  • the resource unit index information includes One of the following information:
  • the index value is the index value at the system level or sub-band level.
  • the index number of the resource unit includes: the first resource unit where the downlink control information is located Index number.
  • the index of the first resource unit where the downlink control information is located is the downlink resource control channel, the physical layer downlink data channel, and the sTTI of the first resource unit where the downlink control information is located.
  • the resource unit includes one of the following units:
  • One or more resource elements one or more control channel elements, and multiple resource element groups.
  • the tenth aspect provides a device for information transmission, including:
  • Transceiver processor and memory
  • the transceiver is configured to send, by the terminal, the uplink control information on the radio resource block of the physical layer uplink control channel of the sTTI, and the radio resource block of the physical layer uplink control channel of the sTTI is the resource unit index of the terminal according to the physical layer uplink control channel used for the sTTI.
  • Information and time information of sTTI are determined;
  • the processor is configured to perform scheduling according to the uplink control information.
  • the transceiver sends the downlink control information to the terminal before the receiving terminal sends the uplink control information on the radio resource block of the physical layer uplink control channel of the sTTI.
  • Corresponding resource unit index information so that the terminal determines resource element index information of the physical layer uplink control channel for the sTTI according to the resource unit index information and the resource index algorithm related to the downlink control information; or the transceiver sends the terminal to the terminal for sending Resource element index information of the physical layer uplink control channel of the sTTI.
  • the resource unit index information of the physical layer uplink control channel for the sTTI sent to the terminal is The format of the physical layer uplink control channel of the sTTI is related to the length of the sTTI.
  • the downlink control information is carried in the physical layer downlink control channel, and the downlink control information includes the first level Downlink control information and/or second level downlink control information;
  • the transceiver sends the resource unit index information of the resource carrying the first-level downlink control information to the terminal, or the transceiver sends the resource unit index information of the resource that carries the second-level downlink control information to the terminal.
  • the resource unit index information of the resource carrying the first-level downlink control information is the downlink of the physical layer Resource unit index information of resources of the first-level downlink control information carried by the control layer and/or the physical layer downlink control channel of the sTTI;
  • the resource unit index information of the resource carrying the second-level downlink control information is the resource unit index information of the resource of the second-level downlink control information carried by the physical layer downlink control channel and/or the physical layer downlink control channel of the sTTI.
  • the resource unit index information of the resource of the first-level downlink control information is Index information of a specified resource unit of a resource where the primary downlink control information is located;
  • the resource unit index information of the resource of the second-level downlink control information is the index information of the specified resource unit of the resource where the second-level downlink control information is located.
  • the transceiver sends, to the terminal, a physical layer downlink shared channel and/or sTTI that carries downlink control information.
  • the transceiver sends the downlink location information of the downlink control information to the terminal in the physical layer downlink shared channel and/or the physical layer downlink shared channel of the sTTI.
  • the physical layer downlink shared channel carrying the downlink control information and/or the physical layer downlink sharing of the sTTI The resource information of the channel is index information of a specified resource unit of the resource where the downlink control information is located;
  • the resource information of the physical layer downlink shared channel carrying the downlink control information and/or the physical layer downlink shared channel resource of the sTTI is the number of resource units occupied by the resource where the downlink control information is located.
  • the downlink control information is carried in the physical layer downlink control channel and the physical layer downlink data channel,
  • the downlink control information includes first-level downlink control information and second-level downlink control information;
  • the transceiver acquires the relationship between the resource unit index information of the resource carrying the first-level downlink control information and the resource unit index information of the resource carrying the second-level downlink control information; and the resource unit index information of the resource that carries the first-level downlink control information
  • the resource unit index information related to the downlink control information is determined according to the relationship between the resource unit index information of the resource carrying the second-level downlink control information.
  • the uplink physical control channel for the sTTI meets one of the following formulas (1) to (5):
  • Resource element index information for the physical layer uplink control channel of the sTTI where k is the format type of the uplink physical control channel, The port number of the antenna,
  • the delta sPUCCH is the resource offset value corresponding to the HARQ
  • the uplink At least one of the format types of the physical control channel or the associated offset value, or the physical layer uplink control channel of the sTTI is located in the physical layer uplink control channel or the uplink channel
  • the n sRU is related to the downlink control information.
  • Resource unit index information To specify the number of lower resource units of the agreed resource unit in the resource block set, n' is the antenna port related value.
  • the radio resource block of the physical layer uplink control channel of the sTTI is the resource of the terminal according to the physical layer uplink control channel used for the sTTI
  • the source unit index information and the time information of the sTTI are determined, including:
  • Radio resource block information of the physical layer uplink control channel of the sTTI Determining radio resource block information of the physical layer uplink control channel of the sTTI according to the resource location of the physical layer uplink control channel of the sTTI and the time information of the sTTI.
  • the resource location of the physical layer uplink control channel of the sTTI is determined by the following steps, include:
  • the resources used by the physical layer uplink control channel are sorted.
  • the resource location of the physical layer uplink control channel of the sTTI conforms to the following formula (6) ) to one of (12):
  • m is the resource location of the physical layer uplink control channel of the sTTI, Resource element index information of the physical layer uplink control channel of the sTTI, where k is the format type of the uplink physical control channel, The port number of the antenna, where M is the number of resource blocks RB occupied by the physical layer uplink control channel in a specific format of sTTI, and K is the number of physical layer uplink control channels that can be multiplexed on a limited number of RBs, The number of cyclic offsets for the terminal, For the interval of the terminal loop offset, For the offset value assigned to the terminal, The spreading factor of the uplink control channel for the physical layer.
  • the resource unit index information includes One of the following information:
  • the index value is the index value at the system level or sub-band level.
  • the index number of the resource unit includes: the first resource unit where the downlink control information is located Index number.
  • the index number of the first resource unit where the downlink control information is located is downlink control information
  • the first resource unit is located at the physical layer downlink control channel, the physical layer downlink data channel, the physical layer downlink control channel of the sTTI, and the index number of one of the physical layer downlink data channels of the sTTI.
  • the resource unit includes one of the following units:
  • One or more resource elements one or more control channel elements, and multiple resource element groups.
  • an information transmission device including:
  • Transceiver processor and memory
  • the processor is configured to configure an sTTI physical layer uplink control signal with two orthogonal frequency division multiplexing symbols. Signal of the road;
  • the transceiver is configured to send a signal of a physical layer uplink control channel of the sTTI configured to be two orthogonal frequency division multiplexing symbols.
  • the signal of the physical layer uplink control channel of the sTTI includes a reference signal and a data signal
  • the processor configuration reference signal is located at an odd or even number of positions of the subframe corresponding to the two orthogonal frequency division multiplexing symbols, and the data signal is located at a position other than the reference signal.
  • the signal of the physical layer uplink control channel of the sTTI includes a reference signal and a data signal
  • the processor configures at least one reference signal adjacent to the two data signals in the subframe corresponding to the two orthogonal frequency division multiplexing symbols, and is shared by the two data signals.
  • the processor configures a reference signal to be in the middle of the two data signals, and the remaining The reference signal is adjacent to a data signal.
  • the signal of the physical layer uplink control channel of the sTTI includes a reference signal and a data signal
  • the processor configuration reference signal and the data signal are alternately arranged on each orthogonal frequency division multiplexing symbol.
  • the processor sends a data symbol Modulation onto a data signal, spreading the data signal in the frequency domain.
  • the processor in a sixth possible implementation manner of the eleventh aspect, the processor: The symbol is modulated onto two data signals, the two data signals are spread in the frequency domain, and the two data signals are spread in the time domain.
  • the processor is configured to The symbol is modulated into multiple data signals, and multiple data signals are placed in the same orthogonal frequency division multiplexing The symbol is on the frequency domain carrier.
  • the twelfth aspect provides an information transmission device, including:
  • Transceiver processor and memory
  • the transceiver is configured to receive a signal of a physical layer uplink control channel of an sTTI of two orthogonal frequency division multiplexing symbols and a signal of a physical layer uplink control channel of an sTTI of two orthogonal frequency division multiplexing symbols. Is configured by the terminal;
  • the processor is configured to perform scheduling according to a signal of a physical layer uplink control channel of an sTTI whose length is two orthogonal frequency division multiplexing symbols.
  • the signal of the physical layer uplink control channel of the sTTI of two orthogonal frequency division multiplexing symbols includes a reference signal and a data signal;
  • the reference signal is located at an odd or even number of positions of the subframe corresponding to the two orthogonal frequency division multiplexing symbols, and the data signal is located at a position other than the reference signal.
  • the signal of the physical layer uplink control channel of the sTTI of two orthogonal frequency division multiplexing symbols includes a reference signal and a data signal;
  • the at least one reference signal is adjacent to the two data signals in the subframe corresponding to the two orthogonal frequency division multiplexing symbols, and is shared by the two data signals.
  • the at least one reference signal is corresponding to the two orthogonal frequency division multiplexing symbols
  • the sub-frame is adjacent to the two data signals as one reference signal located in the middle of the two data signals, and the remaining reference signals are adjacent to one data signal.
  • the signal of the physical layer uplink control channel of the sTTI whose length is two orthogonal frequency division multiplexing symbols includes a reference signal and a data signal;
  • the reference signal and the data signal are alternately arranged on each orthogonal frequency division multiplexing symbol.
  • the signal of the physical layer uplink control channel of the sTTI of two orthogonal frequency division multiplexing symbols includes a data symbol modulated to one On the data signal, and the data signal is spread in the frequency domain.
  • the length is two orthogonal
  • the signal of the physical layer uplink control channel of the sTTI of the frequency division multiplexed symbol includes two data symbols modulated onto two data signals, two data signals being spread in the frequency domain, and two data signals being time-domain Spread spectrum.
  • the length is two orthogonal
  • the signal of the physical layer uplink control channel of the sTTI of the frequency division multiplexed symbol includes a plurality of data symbols modulated to a plurality of data signals, and the plurality of data signals are placed on a frequency domain carrier of the same orthogonal frequency division multiplexed symbol .
  • the embodiment of the present invention indicates that the terminal acquires the resource unit index information of the physical layer uplink control channel for the sTTI, and then determines, by the terminal, the resource unit index information of the physical layer uplink control channel for the sTTI and the time information of the sTTI.
  • the physical layer of the sTTI uplink control channel radio resource block information, and sends uplink control information on the radio resource block of the physical layer uplink control channel of the sTTI.
  • the location of the resource that can carry the uplink control information of the channel, and the terminal that implements the different sTTIs uses resources on the resource locations of the uplink control channels of different physical layers to prevent the terminal from transmitting the uplink control
  • FIG. 1 is a schematic structural diagram of a wireless subframe in the prior art
  • FIG. 2 is a schematic diagram of a system structure according to an embodiment of the present invention.
  • FIG. 3 is a schematic flowchart diagram of a method for information transmission according to an embodiment of the present disclosure
  • FIG. 4 is a schematic flowchart diagram of a method for information transmission according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a physical uplink control channel according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of a physical uplink control channel according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of a physical uplink control channel according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a physical uplink control channel according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a physical uplink control channel according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a physical uplink control channel according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of a physical uplink control channel according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of an apparatus for information transmission according to an embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram of an apparatus for information transmission according to an embodiment of the present invention.
  • FIG. 14 is a schematic structural diagram of an apparatus for information transmission according to an embodiment of the present invention.
  • FIG. 15 is a schematic structural diagram of an apparatus for information transmission according to an embodiment of the present invention.
  • FIG. 16 is a schematic structural diagram of an apparatus for information transmission according to an embodiment of the present disclosure.
  • FIG. 17 is a schematic structural diagram of an apparatus for information transmission according to an embodiment of the present disclosure.
  • FIG. 18 is a schematic structural diagram of an apparatus for information transmission according to an embodiment of the present disclosure.
  • FIG. 19 is a schematic structural diagram of an apparatus for information transmission according to an embodiment of the present invention.
  • FIG. 2 exemplarily shows a system structure applicable to an embodiment of the present invention.
  • UE1 is respectively connected to eNB1 and eNB2 to form an LTE communication system, and UE1 and eNB1 and eNB2 are respectively configured.
  • Information transfer is possible.
  • the eNB1 or the eNB2 may transmit the sPUCCH resource mapping related parameter to the UE1, so that the UE1 can calculate the resource location of the corresponding sPUCCH.
  • the UE1 receives the sPUCCH resource mapping related parameters sent by the eNB1 or the eNB2, calculates the resource location of the sPUCCH, and transmits the content of the sPUCCH at this location.
  • the UE may also be deployed in multiple scenarios of the LTE network, such as a multi-carrier, a multi-cell, a MeNB/SeNB, and a remote radio head (RRH).
  • a terminal a device that provides voice and/or data connectivity to a user, including a wireless terminal or a wired terminal.
  • the wireless terminal can be a handheld device with wireless connectivity, or other processing device connected to a wireless modem, and a mobile terminal that communicates with one or more core networks via a wireless access network.
  • the wireless terminal can be a mobile phone (or "cellular" phone) and a computer with a mobile terminal.
  • the wireless terminal can also be a portable, pocket, handheld, computer built-in or in-vehicle mobile device.
  • the wireless terminal can be a mobile station (MS), an access point (AP), or a portion of a user equipment.
  • MS mobile station
  • AP access point
  • a terminal For convenience of description, in the embodiment of the present invention, it is simply referred to as a terminal.
  • the eNB includes but is not limited to a base station, a node, a station controller, an access point (AP), or any other type of interface device capable of working in a wireless environment.
  • FIG. 3 exemplarily shows a flow of a method for information transmission provided by an embodiment of the present invention, which may be implemented by an information transmission apparatus, which may include a terminal and a base station.
  • the specific steps of the process include:
  • Step 301 The terminal acquires resource unit index information of a physical layer uplink control channel for the sTTI.
  • Step 302 The terminal determines radio resource block information of the physical layer uplink control channel of the sTTI according to the resource unit index information of the physical layer uplink control channel and the time information of the sTTI for the sTTI.
  • Step 303 The terminal sends uplink control information on the radio resource block of the physical layer uplink control channel of the sTTI.
  • Step 304 The base station receiving terminal sends uplink control information on a radio resource block of a physical layer uplink control channel of the sTTI.
  • Step 305 The base station performs scheduling according to the uplink control information.
  • the uplink control information includes: SR: Scheduling Request. Used to request an uplink UL-SCH resource from the eNodeB.
  • HARQ ACK Acknowledgement
  • NACK Negative Acknowledgment
  • CSI Channel State Information: includes CQI (Channel Quality Indicator), PMI (Precoding Matrix Indicator), and RI (rank indication). It is used to tell the eNodeB downlink channel quality and the like to help the eNB perform downlink scheduling.
  • the UCI is transmitted on the PUCCH, and of course the aperiodic CSI information can also be transmitted on the PUSCH channel.
  • the foregoing uplink control information is sent by the terminal to the base station on the physical layer uplink control channel of the sTTI.
  • the terminal needs to obtain the resource unit index information of the physical layer uplink control channel of the sTTI, and the resource unit index information of the physical layer uplink control channel for the sTTI may be determined by the terminal itself or by the base station, so that the terminal The radio resource block information of the physical layer uplink control channel of the sTTI can be obtained.
  • the terminal may obtain the resource unit index information related to the downlink control information, and then determine the resource unit index information of the physical layer uplink control channel used for the sTTI according to the resource unit index information and the resource index algorithm related to the downlink control information.
  • the resource unit index information related to the downlink control information acquired by the terminal is obtained by the terminal according to the location of the downlink control information sent by the base station.
  • the resource indexing algorithm includes determining the physical layer uplink for the sTTI according to the resource unit index information related to the downlink control information and the offset value related to the format type and/or the sTTI length type of the uplink physical control channel sent by the terminal on the sTTI. Resource element index information of the control channel.
  • the terminal may also acquire resource unit index information of the physical layer uplink control channel used by the base station for the sTTI.
  • Resource element index information of the physical layer uplink control channel used by the base station for sTTI The information is related to the format of the physical layer uplink control channel of the sTTI and/or the length of the sTTI, that is, the resource element index information of the physical layer uplink control channel used by the base station for the sTTI is determined by the physical layer uplink control channel of the sTTI. The format and / or the length of the sTTI is determined.
  • the resource unit index information of the physical layer uplink control channel for the sTTI determined by the base station by using the format of the physical layer uplink control channel of the sTTI and/or the length of the sTTI, so that the terminal can obtain the physical layer uplink control channel of the sTTI more accurately.
  • Radio resource block information The resource unit index information of the physical layer uplink control channel for the sTTI determined by the base station by using the format of the physical layer uplink control channel of the sTTI and/or the length of the sTTI, so that the terminal can obtain the physical layer uplink control channel of the sTTI more accurately. Radio resource block information.
  • the resource unit index information related to the downlink control information acquired by the terminal is sent by the base station, and may be obtained by using the following three methods.
  • the downlink control information is carried in a physical layer downlink control channel, where the downlink control information includes first-level downlink control information and/or second-level downlink control information.
  • the physical layer downlink control channel is a physical layer downlink control channel corresponding to a 1 ms subframe. It is usually the downlink control channel of the first 1 to 3 OFMD lengths within a 1 ms subframe.
  • the first-level downlink control information is the first-level downlink control information in the two-level downlink control information
  • the second-level downlink information is the second-level downlink information in the two-level downlink control information.
  • the terminal may obtain the resource unit index information of the resource that carries the first-level downlink control information, and may also obtain the resource unit index information of the resource that carries the second-level downlink control information.
  • the resource carrying the first-level downlink control information is located in the physical layer downlink control channel.
  • the resource unit index information of the resource carrying the first-level downlink control information is the resource unit index information of the resource of the first-level downlink control information carried by the physical layer downlink control channel and/or the physical layer downlink control channel of the sTTI. .
  • it may be an index value of a control channel element of an sTTI or an index value of a resource element.
  • the resource unit index information of the resource carrying the second-level downlink control information is resource unit index information of the resource of the second-level downlink control information carried by the physical layer downlink control channel and/or the physical layer downlink control channel of the sTTI.
  • the resource unit index information of the resource of the first-level downlink control information is index information of a specified resource unit of the resource where the first-level downlink control information is located.
  • the resource unit index information of the resource of the second-level downlink control information is the designated resource of the resource where the second-level downlink control information is located.
  • the index information of the source unit For example, the specified one is the first or two.
  • the downlink control information is carried in a physical layer downlink shared channel of a physical layer downlink shared channel and/or sTTI.
  • the terminal acquires resource information of a physical layer downlink shared channel carrying downlink control information and/or a physical layer downlink shared channel of the sTTI; or
  • the terminal acquires resource location information in the physical layer downlink shared channel of the physical layer downlink shared channel and/or the sTTI of the downlink control information.
  • the resource information of the physical layer downlink shared channel carrying the downlink control information and/or the physical layer downlink shared channel of the sTTI is the index information of the specified resource unit of the resource where the downlink control information is located, and the physical layer carrying the downlink control information.
  • the resource information of the resources of the downlink shared channel and/or the physical layer downlink shared channel of the sTTI is the number of resource units occupied by the resource where the downlink control information is located.
  • the resource information may be information such as unit index information, sTTI index value, RE index value, or resource unit number identifier, where the index value may be an index value at a system level or a sub-band level.
  • the downlink control information is carried in the physical layer downlink control channel and the physical layer downlink data channel, and the downlink control information includes the first level downlink control information and the second level downlink control information.
  • the terminal acquires the relationship between the resource unit index information of the resource carrying the first-level downlink control information and the resource unit index information of the resource carrying the second-level downlink control information, and then according to the resource unit index of the resource that carries the first-level downlink control information
  • the relationship between the information and the resource unit index information of the resource carrying the second-level downlink control information determines the resource unit index information related to the downlink control information.
  • the relationship between the resource unit index information of the resource carrying the first-level downlink control information and the resource unit index information of the resource carrying the second-level downlink control information may be a function expression form between the two, for example, The sum of the two, or other calculations.
  • the resource used by the terminal in determining the resource unit index information of the uplink physical control channel for the sTTI needs to meet one of the following formulas (1) to (5):
  • the delta sPUCCH is the resource offset value corresponding to the hybrid automatic repeat request HARQ and the uplink physical control channel.
  • At least one of the sTTI length type, the format type of the uplink physical control channel, or the combination-related offset value, or the physical layer uplink control information of the sTTI is located in the physical layer uplink control channel or the uplink channel, and the n- sRU is Resource unit index information related to downlink control information, To specify the number of lower resource units of the agreed resource unit in the resource block set, n' is the antenna port related value.
  • the channel bandwidth occupied by the physical layer uplink control channel of a specific sTTI length type in the physical layer uplink control channel format of the specific sTTI or the channel bandwidth occupied by the physical layer uplink control channel of a specific format of the specific sTTI length type may be represented.
  • the terminal determines, according to the determined resource unit index information of the physical layer uplink control channel for the sTTI and the time information of the sTTI, the radio resource block information of the physical layer uplink control channel of the sTTI is specifically determined by the terminal according to the determining.
  • the resource unit index information of the physical layer uplink control channel for the sTTI determines the resource location of the physical layer uplink control channel of the sTTI, and then the terminal determines the sTTI according to the resource location of the physical layer uplink control channel of the sTTI and the time information of the sTTI.
  • Radio resource block information of the physical layer uplink control channel may be represented by m.
  • the terminal when determining, by the terminal, the resource location of the physical layer uplink control channel of the sTTI, the terminal allocates a frequency band according to the length of the sTTI in the frequency domain of the uplink control channel, and determines a frequency band occupied by the uplink control channel corresponding to the length of each sTTI. And sorting the resources used by the physical layer uplink control channel of the sTTI according to the format of the physical layer uplink control channel of the sTTI in the occupied frequency band.
  • the frequency band occupied by the format of the physical layer uplink control channel of each sTTI may be determined by assigning a frequency band according to the format of the physical layer uplink control channel of the sTTI in the frequency domain of the uplink control channel, and according to the sTTI in the occupied frequency band.
  • the length sorts the resources used by the physical layer uplink control channel of the sTTI.
  • each TTI has a corresponding PUCCH format.
  • the calculation of the resource location m of the physical layer uplink control channel of the sTTI needs to meet the following two principles:
  • the specific f function design can use the value of each format of 36.211 for 1ms, for each m value, that is, the physical layer uplink control channel of the specific sTTI
  • the resource location is mapped in the frequency domain according to the length of the sTTI type, and at least one of the sTTIs (2os/4os/7os) occupies the corresponding frequency band.
  • the format of the physical layer uplink control channel according to the sTTI within the frequency band is sorted according to the priority of the format type. The principle is to divide the subband first and then assign it according to the format in each frequency band.
  • m f(n_spucch1/3/4/5_nos)
  • the frequency band of the physical layer uplink control channel of the same sTTI continues to be divided according to the sTTI type.
  • the frequency band is divided according to the format of the physical layer uplink control channel of the sTTI, and then the frequency band is divided according to the sTTI type.
  • the terminal determines the resource location m of the physical layer uplink control channel of the sTTI, and needs to comply with one of the following formulas (6) to (12):
  • m is the resource location of the physical layer uplink control channel of the sTTI, Resource element index information of the physical layer uplink control channel of the sTTI, where k is the format type of the uplink physical control channel, The port number of the antenna, where M is the number of resource blocks RB occupied by the physical layer uplink control channel in a specific format of sTTI, and K is the number of physical layer uplink control channels that can be multiplexed on a limited number of RBs, The number of cyclic offsets for the terminal, For the interval of the terminal loop offset, For the offset value assigned to the terminal, The spreading factor of the uplink control channel for the physical layer.
  • the terminal may send the uplink control information to the base station based on the radio resource block of the physical layer uplink control channel of the sTTI.
  • step 304 when the terminal received by the base station sends the uplink control information on the radio resource block of the physical layer uplink control channel of the sTTI, the radio resource block of the physical layer uplink control channel of the sTTI is the physical layer of the terminal according to the sTTI.
  • the resource unit index information of the layer uplink control channel and the time information of the sTTI are determined.
  • the base station may perform scheduling according to the uplink control information.
  • the base station is in the radio resource block of the physical layer uplink control channel of the receiving terminal at the sTTI Before transmitting the uplink control information, the base station needs to send the resource unit index information related to the downlink control information to the terminal, so that the terminal determines the physical layer uplink for the sTTI according to the resource unit index information and the resource index algorithm related to the downlink control information.
  • Resource element index information of the control channel The resource unit index information related to the downlink control information sent by the base station to the terminal is implicitly transmitted, and the base station only sends downlink control information, and the terminal obtains resource unit index information related to the downlink control information according to the location of the downlink control information.
  • the base station may also send resource unit index information of the physical layer uplink control channel for the sTTI to the terminal.
  • the resource element index information of the physical layer uplink control channel for the sTTI transmitted by the base station to the terminal is related to the format of the physical layer uplink control channel of the sTTI and/or the length of the sTTI.
  • the process of determining the resource unit index information of the physical layer uplink control channel for the sTTI according to the resource unit index information and the resource index algorithm related to the downlink control information is described in the foregoing embodiment, and details are not described herein again. .
  • the resource unit index information described in the embodiment of the present invention includes one of the following information: an index value of an sTTI, an index value of a resource element, and a quantity of resource elements.
  • the index value is the index value at the system level or sub-band level.
  • the index number of the resource unit includes: an index number of the first resource unit where the downlink control information is located.
  • the index of the first resource unit where the downlink control information is located may be the physical resource layer downlink control channel of the physical resource layer downlink control channel, the physical layer downlink data channel, and the sTTI physical layer downlink control channel where the downlink control information is located.
  • the resource unit includes one of the following units: one or more resource elements, one or more control channel elements, and multiple resource element groups.
  • the finite number of resource elements, the finite number of control channel elements, or the finite number of resource element groups the embodiment of the present invention is only an exemplary function, and is not limited thereto.
  • the foregoing embodiment shows that the terminal obtains the resource unit index information of the physical layer uplink control channel for the sTTI, and then the terminal determines, according to the resource unit index information of the physical layer uplink control channel for the sTTI and the time information of the sTTI.
  • the physical layer of the sTTI uplink control channel radio resource block information, and sends uplink control information on the radio resource block of the physical layer uplink control channel of the sTTI.
  • Resource element index information of the physical layer uplink control channel used for sTTI and The time information of the sTTI can obtain the radio resource block information of the physical layer uplink control channel of the sTTI, so that the location of the resource that can carry the uplink control information of the physical layer uplink control channel of the sTTI of the terminal can be obtained, and the terminal can prevent the terminal from transmitting the uplink control information. An error occurred.
  • FIG. 4 exemplarily shows a flow of a method for information transmission provided by an embodiment of the present invention, which may be implemented by an information transmission apparatus, which may include a terminal and a base station.
  • the specific steps of the process include:
  • Step 401 The terminal configures a signal of an sTTI physical layer uplink control channel whose length is two orthogonal frequency division multiplexing symbols.
  • Step 402 The terminal sends a signal of a physical layer uplink control channel of an sTTI configured to be two orthogonal frequency division multiplexing symbols.
  • Step 403 The base station receives a signal of a physical layer uplink control channel of an sTTI whose length is two orthogonal frequency division multiplexing symbols transmitted by the terminal.
  • Step 404 The base station performs scheduling according to a signal of a physical layer uplink control channel of an sTTI whose length is two orthogonal frequency division multiplexing symbols.
  • the signal of the physical layer uplink control channel of the sTTI may include a reference signal and a data signal.
  • the terminal when the terminal configures the signal of the physical layer uplink control channel of the sTTI of the two orthogonal frequency division multiplexing symbols, the terminal may be configured in the following three manners.
  • the terminal configuration reference signal is located at an odd or even number of positions of the subframe corresponding to the two orthogonal frequency division multiplexing symbols, and the data signal is located at a position other than the reference signal.
  • a position of 7 os symbols is included in a 0.5 ms subframe, and a slash is used to indicate that the reference signal is located at os of three positions 0, 2, and 4, and the other positions are positions where the data signal is located.
  • the oblique line indicates that the reference signal is located at the os of the three positions 1, 3, and 5, and the other positions are the positions where the data signal is located.
  • the terminal needs to configure at least one reference signal to be associated with two data signals in a subframe corresponding to two orthogonal frequency division multiplexing symbols. Neighbor, and is shared by these two data signals.
  • the terminal needs to configure one reference signal in the middle of the two data signals, and the remaining reference signals are adjacent to one data signal.
  • the reference signals located at positions 0 and 2 are adjacent to one data signal
  • the reference signals at position 5 are located in the middle of the two data signals, and are shared by the two data signals.
  • the reference signals at positions 4 and 6 are respectively adjacent to one data signal
  • the reference signals at position 1 are located in the middle of the two data signals, and are shared by the two data signals.
  • the terminal needs to configure the reference signal and the data signal to be alternately set on each orthogonal frequency division multiplexing symbol. As shown in FIG. 9, the reference signal and the data signal are alternately set in twelve REs on each orthogonal frequency division multiplexing symbol.
  • the terminal needs to process the data signal, that is, to perform spreading in the frequency domain and the time domain.
  • the terminal modulates a data symbol onto a data signal and spreads the data signal in the frequency domain.
  • the spreading of length 12 is performed directly in the frequency domain, and is transmitted on either side of the physical layer uplink control channel for the sTTI in the system bandwidth.
  • the terminal can modulate two data symbols onto two data signals, spread the two data signals in the frequency domain, and spread the two data signals in the time domain.
  • the spreading of length 12 is performed directly in the frequency domain, and the time domain spreading is performed twice in length on two orthogonal frequency division multiplexing symbols, and is in the system.
  • the side of the physical layer uplink control channel used for sTTI is transmitted in the bandwidth.
  • the terminal may further modulate the plurality of data symbols to the plurality of data signals, and place the plurality of data signals on the frequency domain carrier of the same orthogonal frequency division multiplexing symbol.
  • the terminal After the terminal configures the signal of the sTTI physical layer uplink control channel whose length is two orthogonal frequency division multiplexing symbols, the terminal sends the signal of the sTTI physical layer uplink control channel whose length is two orthogonal frequency division multiplexing symbols. To the base station.
  • the base station receives the length of the two orthogonal frequency division multiplexing symbols sent by the terminal.
  • the format of the sTTI physical layer uplink control channel, and the format of the sTTI physical layer uplink control channel whose length is two orthogonal frequency division multiplexing symbols has been described in the foregoing embodiment, and details are not described herein again.
  • the foregoing embodiment shows that the terminal configures the signal of the sTTI physical layer uplink control channel with two orthogonal frequency division multiplexing symbols, and the length is two orthogonal frequency division multiplexing symbols, which can be agreed within one 0.5 ms.
  • the placement of the data signal and reference signal is not limited to one 0.5 ms.
  • FIG. 12 exemplarily shows an apparatus for information transmission provided by an embodiment of the present invention, which may perform a flow of information transmission, and the apparatus may be located in the terminal or may be the terminal.
  • the device specifically includes:
  • the transceiver unit 1201 is configured to acquire resource unit index information of a physical layer uplink control channel for the sTTI;
  • the processing unit 1202 is configured to determine a radio resource block of the physical layer uplink control channel of the sTTI according to the resource unit index information of the physical layer uplink control channel for the sTTI and the time information of the sTTI acquired by the transceiver unit 1201. information;
  • the transceiver unit 1201 is further configured to send uplink control information on a radio resource block of a physical layer uplink control channel of the sTTI determined by the processing unit 1202.
  • the transceiver unit 1201 is specifically configured to:
  • the resource unit index information of the physical layer uplink control channel for the sTTI sent by the base station is related to the format of the physical layer uplink control channel of the sTTI and/or the length of the sTTI.
  • the downlink control information is carried in a physical layer downlink control channel, and the downlink control information includes first-level downlink control information and/or second-level downlink control information;
  • the transceiver unit 1201 is specifically configured to:
  • the resource unit index information of the resource carrying the first-level downlink control information is a resource unit index of the resource of the first-level downlink control information carried by the physical layer downlink control channel and/or the physical layer downlink control channel of the sTTI. information;
  • the resource unit index information of the resource carrying the second-level downlink control information is resource unit index information of the resource of the second-level downlink control information carried by the physical layer downlink control channel and/or the physical layer downlink control channel of the sTTI.
  • the resource unit index information of the resource of the first-level downlink control information is index information of a specified resource unit of the resource where the first-level downlink control information is located;
  • the resource unit index information of the resource of the second-level downlink control information is index information of a specified resource unit of the resource where the second-level downlink control information is located.
  • the transceiver unit 1201 is specifically configured to:
  • the resource information of the physical layer downlink shared channel carrying the downlink control information and/or the physical layer downlink shared channel of the sTTI is index information of a specified resource unit of the resource where the downlink control information is located;
  • the resource information of the physical layer downlink shared channel carrying the downlink control information and/or the physical layer downlink shared channel resource of the sTTI is the number of occupied resource units of the resource where the downlink control information is located.
  • the downlink control information is carried in a physical layer downlink control channel and a physical layer downlink data channel, where the downlink control information includes first-level downlink control information and second-level downlink control information;
  • the transceiver unit 1201 is specifically configured to:
  • the transceiver unit 1201 is specifically configured to:
  • Resource element index information for the physical layer uplink control channel of the sTTI where k is the format type of the uplink physical control channel, The port number of the antenna,
  • the delta sPUCCH is the resource offset value corresponding to the HARQ
  • the uplink At least one of the format types of the physical control channel or the associated offset value, or the physical layer uplink control channel of the sTTI is located in the physical layer uplink control channel or the uplink channel
  • the n sRU is related to the downlink control information.
  • Resource unit index information To specify the number of lower resource units of the agreed resource unit in the resource block set, n' is the antenna port related value.
  • processing unit 1202 is specifically configured to:
  • the determined resource unit index information of the physical layer uplink control channel for the sTTI Determining a resource location of a physical layer uplink control channel of the sTTI;
  • Radio resource block information of the physical layer uplink control channel of the sTTI according to the resource location of the physical layer uplink control channel of the sTTI and the time information of the sTTI.
  • processing unit 1202 is specifically configured to:
  • Determining a frequency band according to a length of the sTTI in the frequency domain of the uplink control channel, determining a frequency band occupied by an uplink control channel corresponding to a length of each sTTI, and determining, according to the sTTI, a physical layer uplink control channel in the occupied frequency band The format of the resources used by the sTTI physical layer uplink control channel; or
  • the length of the sTTI sorts the resources used by the physical layer uplink control channel of the sTTI.
  • processing unit 1202 is specifically configured to:
  • m is the resource location of the physical layer uplink control channel of the sTTI, Resource element index information of the physical layer uplink control channel of the sTTI, where k is the format type of the uplink physical control channel, The port number of the antenna, where M is the number of resource blocks RB occupied by the physical layer uplink control channel in a specific format of sTTI, and K is the number of physical layer uplink control channels that can be multiplexed on a limited number of RBs, The number of cyclic offsets for the terminal, For the interval of the terminal loop offset, For the offset value assigned to the terminal, The spreading factor of the uplink control channel for the physical layer.
  • the resource unit index information includes one of the following information:
  • the index value is an index value at a system level or a sub-band level.
  • the index number of the resource unit includes: an index number of the first resource unit where the downlink control information is located.
  • the index number of the first resource unit where the downlink control information is located is that the first resource unit where the downlink control information is located is in the physical layer downlink control channel, the physical layer downlink data channel, and the physical layer of the sTTI.
  • the resource unit comprises one of the following units:
  • One or more resource elements one or more control channel elements, and multiple resource element groups.
  • FIG. 13 exemplarily shows the structure of an apparatus for information transmission provided by an embodiment of the present invention, which may perform a flow of information transmission, and the apparatus may be located in a base station or may be a base station. .
  • the device specifically includes:
  • the transceiver unit 1301 is configured to send, by the terminal, the uplink control information on the radio resource block of the physical layer uplink control channel of the sTTI, where the radio resource block of the physical layer uplink control channel of the sTTI is the physical layer of the terminal according to the sTTI Determining resource element index information of the uplink control channel and time information of the sTTI;
  • the processing unit 1302 is configured to perform scheduling according to the uplink control information.
  • the transceiver unit 1301 is further configured to:
  • the resource unit index information related to the downlink control information is sent to the terminal, so that the terminal is configured according to the downlink control information.
  • the related resource unit index information and the resource indexing algorithm determine resource element index information of the physical layer uplink control channel for the sTTI; or send the resource unit index information of the physical layer uplink control channel for the sTTI to the terminal.
  • the resource unit index information of the physical layer uplink control channel for the sTTI sent to the terminal is related to the format of the physical layer uplink control channel of the sTTI and/or the length of the sTTI.
  • the downlink control information is carried in a physical layer downlink control channel, and the downlink control information includes first-level downlink control information and/or second-level downlink control information;
  • the transceiver unit 1301 is specifically configured to:
  • the resource unit index information of the resource carrying the first-level downlink control information is a resource unit index of the resource of the first-level downlink control information carried by the physical layer downlink control channel and/or the physical layer downlink control channel of the sTTI. information;
  • the resource unit index information of the resource carrying the second-level downlink control information is resource unit index information of the resource of the second-level downlink control information carried by the physical layer downlink control channel and/or the physical layer downlink control channel of the sTTI.
  • the resource unit index information of the resource of the first-level downlink control information is index information of a specified resource unit of the resource where the first-level downlink control information is located;
  • the resource unit index information of the resource of the second-level downlink control information is index information of a specified resource unit of the resource where the second-level downlink control information is located.
  • the transceiver unit 1301 is specifically configured to:
  • the resource information of the physical layer downlink shared channel carrying the downlink control information and/or the physical layer downlink shared channel of the sTTI is index information of a specified resource unit of the resource where the downlink control information is located;
  • the resource information of the physical layer downlink shared channel carrying the downlink control information and/or the physical layer downlink shared channel resource of the sTTI is the number of occupied resource units of the resource where the downlink control information is located.
  • the downlink control information is carried in a physical layer downlink control channel and a physical layer downlink data channel, where the downlink control information includes first-level downlink control information and second-level downlink control information;
  • the transceiver unit 1301 is specifically configured to:
  • the resource unit index information of the uplink physical control channel for the sTTI meets one of the following formulas (1) to (5):
  • Resource element index information for the physical layer uplink control channel of the sTTI where k is the format type of the uplink physical control channel, The port number of the antenna,
  • the delta sPUCCH is the resource offset value corresponding to the HARQ
  • the uplink At least one of the format types of the physical control channel or the associated offset value, or the physical layer uplink control channel of the sTTI is located in the physical layer uplink control channel or the uplink channel
  • the n sRU is related to the downlink control information.
  • Resource unit index information To specify the number of lower resource units of the agreed resource unit in the resource block set, n' is the antenna port related value.
  • the radio resource block of the physical layer uplink control channel of the sTTI is determined by the terminal according to the resource unit index information of the physical layer uplink control channel for the sTTI and the time information of the sTTI, and includes:
  • Radio resource block information of the physical layer uplink control channel of the sTTI according to the resource location of the physical layer uplink control channel of the sTTI and the time information of the sTTI.
  • the resource location of the physical layer uplink control channel of the sTTI is determined by the following steps, including:
  • Determining a frequency band according to a length of the sTTI in the frequency domain of the uplink control channel, determining a frequency band occupied by an uplink control channel corresponding to a length of each sTTI, and determining, according to the sTTI, a physical layer uplink control channel in the occupied frequency band The format of the resources used by the sTTI physical layer uplink control channel; or
  • the length of the sTTI sorts the resources used by the physical layer uplink control channel of the sTTI.
  • the resource location of the physical layer uplink control channel of the sTTI conforms to one of the following formulas (6) to (12):
  • m is the resource location of the physical layer uplink control channel of the sTTI, Resource element index information of the physical layer uplink control channel of the sTTI, where k is the format type of the uplink physical control channel, The port number of the antenna, where M is the number of resource blocks RB occupied by the physical layer uplink control channel in a specific format of sTTI, and K is the number of physical layer uplink control channels that can be multiplexed on a limited number of RBs, The number of cyclic offsets for the terminal, For the interval of the terminal loop offset, For the offset value assigned to the terminal, The spreading factor of the uplink control channel for the physical layer.
  • the resource unit index information includes one of the following information:
  • the index value is an index value at a system level or a sub-band level.
  • the index number of the resource unit includes: an index number of the first resource unit where the downlink control information is located.
  • the index number of the first resource unit where the downlink control information is located is the downlink control channel and the physical layer downlink number of the first resource unit where the downlink control information is located.
  • the channel, the physical layer downlink control channel of the sTTI, and the index number of one of the physical layer downlink data channels of the sTTI is the downlink control channel and the physical layer downlink number of the first resource unit where the downlink control information is located.
  • the resource unit comprises one of the following units:
  • One or more resource elements one or more control channel elements, and multiple resource element groups.
  • FIG. 14 exemplarily shows the structure of an apparatus for information transmission provided by an embodiment of the present invention, which may perform a process of information transmission, and the apparatus may be located in the terminal, or may be the terminal. .
  • the device specifically includes:
  • the processing unit 1401 is configured to configure a signal of an sTTI physical layer uplink control channel whose length is two orthogonal frequency division multiplexing symbols;
  • the transceiver unit 1402 is configured to send a signal of a physical layer uplink control channel of the sTTI configured to be two orthogonal frequency division multiplexing symbols.
  • processing unit 1401 is specifically configured to:
  • the signal of the physical layer uplink control channel of the sTTI includes a reference signal and a data signal
  • the reference signal configuring the reference signal to be located at an odd or even number of positions of the subframe corresponding to the two orthogonal frequency division multiplexing symbols, where the data signal is located at a position other than the reference signal.
  • processing unit 1401 is specifically configured to:
  • the signal of the physical layer uplink control channel of the sTTI includes a reference signal and a data signal
  • the at least one reference signal is configured to be adjacent to two data signals in a subframe corresponding to the two orthogonal frequency division multiplexing symbols, and is shared by the two data signals.
  • processing unit 1401 is specifically configured to:
  • a reference signal is placed in the middle of the two data signals, and the remaining reference signals are adjacent to one of the data signals.
  • processing unit 1401 is specifically configured to:
  • the signal of the physical layer uplink control channel of the sTTI includes a reference signal and a data signal
  • the reference signal and the data signal are arranged to be alternately arranged on each orthogonal frequency division multiplexing symbol.
  • processing unit 1401 is specifically configured to:
  • a data symbol is modulated onto a data signal, and the data signal is spread over the frequency domain.
  • processing unit 1401 is specifically configured to:
  • the two data symbols are modulated onto two data signals, the two data signals are spread in the frequency domain, and the two data signals are spread over the time domain.
  • processing unit 1401 is specifically configured to:
  • a plurality of data symbols are modulated onto a plurality of data signals, and the plurality of data signals are placed on a frequency domain carrier of the same orthogonal frequency division multiplexed symbol.
  • FIG. 15 exemplarily shows the structure of an apparatus for information transmission provided by an embodiment of the present invention.
  • the apparatus may perform a flow of information transmission, and the apparatus may be located in a base station, or may be the base station. .
  • the device specifically includes:
  • the transceiver unit 1501 is configured to receive, by the terminal, a signal of a physical layer uplink control channel of an sTTI of two orthogonal frequency division multiplexing symbols, where the length is a physical layer of sTTIs of two orthogonal frequency division multiplexing symbols.
  • the signal of the uplink control channel is configured by the terminal;
  • the processing unit 1502 is configured to perform scheduling according to the signal of the physical layer uplink control channel of the sTTI whose length is two orthogonal frequency division multiplexing symbols.
  • the signal of the physical layer uplink control channel of the sTTI of two orthogonal frequency division multiplexing symbols includes a reference signal and a data signal;
  • the reference signal is located at an odd or even number of positions of the subframe corresponding to the two orthogonal frequency division multiplexing symbols, and the data signal is located at a position other than the reference signal.
  • the signal of the physical layer uplink control channel of the sTTI of two orthogonal frequency division multiplexing symbols includes a reference signal and a data signal;
  • the at least one reference signal is adjacent to two data signals in a subframe corresponding to the two orthogonal frequency division multiplexing symbols, and is shared by the two data signals.
  • the at least one reference signal is in a corresponding one of the two orthogonal frequency division multiplexing symbols
  • the frame adjacent to the two data signals is a reference signal located in the middle of the two data signals, and the remaining reference signals are adjacent to one data signal.
  • the signal of the physical layer uplink control channel of the sTTI of two orthogonal frequency division multiplexing symbols includes a reference signal and a data signal;
  • the reference signal and the data signal are alternately arranged on each orthogonal frequency division multiplexing symbol.
  • the signal of the physical layer uplink control channel of the sTTI of two orthogonal frequency division multiplexing symbols comprises one data symbol modulated onto one data signal, and the data signal is spread in the frequency domain.
  • the signal of the physical layer uplink control channel of the sTTI of two orthogonal frequency division multiplexing symbols comprises two data symbols modulated onto two data signals, the two data signals being in the frequency domain Spreaded, the two data signals are spread over the time domain.
  • the signal of the physical layer uplink control channel of the sTTI of two orthogonal frequency division multiplexing symbols comprises a plurality of data symbols modulated to a plurality of data signals, and the plurality of data signals are placed in the same An orthogonal frequency division multiplexed symbol on a frequency domain carrier.
  • the information transmission device 1600 can perform the steps or functions performed by the transmitter in the various embodiments described above.
  • the information transmission device 1600 can include a transceiver 1601, a processor 1602, and a memory 1603.
  • the processor 1602 is for controlling the operation of the device 1600 for information transfer; the memory 1603 may include a read only memory and a random access memory storing instructions and data that the processor 1602 can execute. A portion of the memory 1603 may also include non-volatile line random access memory (NVRAM).
  • the components such as the transceiver 1601, the processor 1602, and the memory 1603 are connected by a bus 1609.
  • the bus 1609 may include a power bus, a control bus, and a status signal bus in addition to the data bus. However, for clarity of description, various buses are labeled as bus 1609 in the figure.
  • a method for information transmission disclosed in the embodiment of the present invention may be applied to the processor 1602 or implemented by the processor 1602.
  • each step of the processing flow may pass through the processor 1602.
  • the integrated logic of the hardware or the instruction in the form of software is completed.
  • the processor 1602 can be a general purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component, can be implemented or executed in an embodiment of the invention.
  • a general purpose processor can be a microprocessor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 1603, and the processor 1602 reads the information stored in the memory 1603, in conjunction with its hardware, to perform the steps of a method of information transmission.
  • the transceiver 1601 is configured to acquire resource unit index information of a physical layer uplink control channel for the sTTI;
  • the processor 1602 is configured to determine radio resource block information of the physical layer uplink control channel of the sTTI according to the resource unit index information of the physical layer uplink control channel for the sTTI and the time information of the sTTI acquired by the transceiver 1601. ;
  • the transceiver 1601 is further configured to send uplink control information on a radio resource block of a physical layer uplink control channel of the sTTI determined by the processor 1602.
  • the transceiver 1601 acquires resource unit index information related to the downlink control information, and determines a resource unit index of the physical layer uplink control channel used for the sTTI according to the resource unit index information and the resource index algorithm related to the downlink control information.
  • Information or
  • the transceiver 1601 acquires resource unit index information of a physical layer uplink control channel used by the base station for the sTTI.
  • the resource unit index information of the physical layer uplink control channel for the sTTI sent by the base station is related to the format of the physical layer uplink control channel of the sTTI and/or the length of the sTTI.
  • the downlink control information is carried in a physical layer downlink control channel, and the downlink control information includes first-level downlink control information and/or second-level downlink control information;
  • the transceiver 1601 acquires a resource unit index letter of the resource that carries the first-level downlink control information.
  • the information or transceiver 1601 acquires resource unit index information of a resource that carries the second-level downlink control information.
  • the resource unit index information of the resource carrying the first-level downlink control information is a resource unit index of the resource of the first-level downlink control information carried by the physical layer downlink control channel and/or the physical layer downlink control channel of the sTTI. information;
  • the resource unit index information of the resource carrying the second-level downlink control information is resource unit index information of the resource of the second-level downlink control information carried by the physical layer downlink control channel and/or the physical layer downlink control channel of the sTTI.
  • the resource unit index information of the resource of the first-level downlink control information is index information of a specified resource unit of the resource where the first-level downlink control information is located;
  • the resource unit index information of the resource of the second-level downlink control information is index information of a specified resource unit of the resource where the second-level downlink control information is located.
  • the transceiver acquires resource information of a physical layer downlink shared channel carrying the downlink control information and/or a physical layer downlink shared channel of the sTTI; or
  • the transceiver 1601 acquires resource location information of the downlink control information in the physical layer downlink shared channel and/or the physical layer downlink shared channel of the sTTI.
  • the resource information of the physical layer downlink shared channel carrying the downlink control information and/or the physical layer downlink shared channel of the sTTI is index information of a specified resource unit of the resource where the downlink control information is located;
  • the resource information of the physical layer downlink shared channel carrying the downlink control information and/or the physical layer downlink shared channel resource of the sTTI is the number of occupied resource units of the resource where the downlink control information is located.
  • the downlink control information is carried in a physical layer downlink control channel and a physical layer downlink data channel, where the downlink control information includes first-level downlink control information and second-level downlink control information;
  • the transceiver 1601 acquires the relationship between the resource unit index information of the resource that carries the first-level downlink control information and the resource unit index information of the resource that carries the second-level downlink control information; The relationship between the resource unit index information of the resource carrying the first-level downlink control information and the resource unit index information of the resource carrying the second-level downlink control information, and determining resource unit index information related to the downlink control information.
  • the transceiver 1601 determines resource element index information of the uplink physical control channel for the sTTI, and meets one of the following formulas (1) to (5):
  • Resource element index information for the physical layer uplink control channel of the sTTI where k is the format type of the uplink physical control channel, The port number of the antenna,
  • the delta sPUCCH is the resource offset value corresponding to the HARQ
  • the uplink At least one of the format types of the physical control channel or the associated offset value, or the physical layer uplink control channel of the sTTI is located in the physical layer uplink control channel or the uplink channel
  • the n sRU is related to the downlink control information.
  • Resource unit index information To specify the number of lower resource units of the agreed resource unit in the resource block set, n' is the antenna port related value.
  • the processor 1602 determines, according to the determined resource unit index information of the physical layer uplink control channel for the sTTI, a resource location of the physical layer uplink control channel of the sTTI; and physical layer uplink control according to the sTTI. And determining, by the resource location of the channel and the time information of the sTTI, radio resource block information of the physical layer uplink control channel of the sTTI.
  • the processor 1602 allocates a frequency band according to the length of the sTTI in the frequency domain of the uplink control channel, determines a frequency band occupied by the uplink control channel corresponding to the length of each sTTI, and according to the sTTI in the occupied frequency band.
  • the format of the physical layer uplink control channel which sorts the resources used by the sTTI physical layer uplink control channel; or
  • the processor 1602 allocates a frequency band according to a format of a physical layer uplink control channel of the sTTI in a frequency domain of the uplink control channel, and determines a frequency band occupied by a format of a physical layer uplink control channel of each sTTI, and is in the occupied frequency band. Sorting resources used by the physical layer uplink control channel of the sTTI according to the length of the sTTI.
  • the processor 1602 determines a resource location of the physical layer uplink control channel of the sTTI, and conforms to one of the following formulas (6) to (12):
  • m is the resource location of the physical layer uplink control channel of the sTTI, Resource element index information of the physical layer uplink control channel of the sTTI, where k is the format type of the uplink physical control channel, The port number of the antenna, where M is the number of resource blocks RB occupied by the physical layer uplink control channel in a specific format of sTTI, and K is the number of physical layer uplink control channels that can be multiplexed on a limited number of RBs, The number of cyclic offsets for the terminal, For the interval of the terminal loop offset, For the offset value assigned to the terminal, The spreading factor of the uplink control channel for the physical layer.
  • the resource unit index information includes one of the following information:
  • the index value is an index value at a system level or a sub-band level.
  • the index number of the resource unit includes: an index number of the first resource unit where the downlink control information is located.
  • the index number of the first resource unit where the downlink control information is located is that the first resource unit where the downlink control information is located is in the physical layer downlink control channel, the physical layer downlink data channel, and the physical layer of the sTTI.
  • the resource unit comprises one of the following units:
  • One or more resource elements one or more control channel elements, and multiple resource element groups.
  • the information transmission device 1700 can perform the steps or functions performed by the receiver in the above embodiments.
  • the information transmission device 1700 can include a transceiver 1701, a processor 1702, and a memory 1703.
  • the processor 1702 is for controlling the operation of the device 1700 for information transfer;
  • the memory 1703 may include a read only memory and a random access memory storing instructions and data that the processor 1702 can execute.
  • a portion of the memory 1703 can also include non-volatile line random access memory (NVRAM).
  • the components such as the transceiver 1701, the processor 1702, and the memory 1703 are connected by a bus 1709.
  • the bus 1709 may include a power bus, a control bus, and a status signal bus in addition to the data bus. However, for clarity of description, various buses are labeled as bus 1709 in the figure.
  • a method for information transmission disclosed in the embodiments of the present invention may be applied to the processor 1702 or implemented by the processor 1702.
  • each step of the processing flow may be completed by an integrated logic circuit of hardware in the processor 1702 or an instruction in the form of software.
  • the processor 1702 can be a general purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array, or other programmable
  • the methods, steps, and logic blocks disclosed in the embodiments of the present invention may be implemented or executed by a logic device, a discrete gate or a transistor logic device, or a discrete hardware component.
  • a general purpose processor can be a microprocessor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 1703, and the processor 1702 reads the information stored in the memory 1703, in conjunction with its hardware, to perform the steps of a method of information transmission.
  • the transceiver 1701 is configured to send, by the terminal, the uplink control information on the radio resource block of the physical layer uplink control channel of the sTTI, where the radio resource block of the physical layer uplink control channel of the sTTI is the physical layer uplink of the terminal according to the sTTI Determining resource element index information of the control channel and time information of the sTTI;
  • the processor 1702 is configured to perform scheduling according to the uplink control information.
  • the transceiver 1701 sends the resource unit index information related to the downlink control information to the terminal before the receiving terminal sends the uplink control information on the radio resource block of the physical layer uplink control channel of the sTTI, so that the terminal is configured according to the terminal.
  • the resource unit index information and the resource index algorithm related to the downlink control information determine resource element index information of the physical layer uplink control channel used for the sTTI; or the transceiver 1701 sends the physical layer uplink control for the sTTI to the terminal Resource element index information of the channel.
  • the resource unit index information of the physical layer uplink control channel for the sTTI sent to the terminal is related to the format of the physical layer uplink control channel of the sTTI and/or the length of the sTTI.
  • the downlink control information is carried in a physical layer downlink control channel, and the downlink control information includes first-level downlink control information and/or second-level downlink control information;
  • the transceiver 1701 sends the resource unit index information of the resource carrying the first-level downlink control information to the terminal, or the transceiver 1701 sends the resource unit index information of the resource that carries the second-level downlink control information to the terminal.
  • the resource unit index information of the resource carrying the first-level downlink control information is Resource unit index information of resources of the first layer downlink control information carried by the physical layer downlink control channel and/or the physical layer downlink control channel of the sTTI;
  • the resource unit index information of the resource carrying the second-level downlink control information is resource unit index information of the resource of the second-level downlink control information carried by the physical layer downlink control channel and/or the physical layer downlink control channel of the sTTI.
  • the resource unit index information of the resource of the first-level downlink control information is index information of a specified resource unit of the resource where the first-level downlink control information is located;
  • the resource unit index information of the resource of the second-level downlink control information is index information of a specified resource unit of the resource where the second-level downlink control information is located.
  • the transceiver 1701 sends, to the terminal, resource information of a physical layer downlink shared channel carrying the downlink control information and/or a physical layer downlink shared channel of the sTTI; or
  • the transceiver 1701 sends the resource location information of the downlink control information in the physical layer downlink shared channel and/or the physical layer downlink shared channel of the sTTI to the terminal.
  • the resource information of the physical layer downlink shared channel carrying the downlink control information and/or the physical layer downlink shared channel of the sTTI is index information of a specified resource unit of the resource where the downlink control information is located;
  • the resource information of the physical layer downlink shared channel carrying the downlink control information and/or the physical layer downlink shared channel resource of the sTTI is the number of occupied resource units of the resource where the downlink control information is located.
  • the downlink control information is carried in a physical layer downlink control channel and a physical layer downlink data channel, where the downlink control information includes first-level downlink control information and second-level downlink control information;
  • the transceiver 1701 acquires a relationship between the resource unit index information of the resource that carries the first-level downlink control information and the resource unit index information of the resource that carries the second-level downlink control information, and the first-level downlink according to the bearer. And determining, by the relationship between the resource unit index information of the resource of the control information and the resource unit index information of the resource carrying the second-level downlink control information, the resource unit index information related to the downlink control information.
  • the resource unit index information of the uplink physical control channel for the sTTI meets one of the following formulas (1) to (5):
  • Resource element index information for the physical layer uplink control channel of the sTTI where k is the format type of the uplink physical control channel, The port number of the antenna,
  • the delta sPUCCH is the resource offset value corresponding to the HARQ
  • the uplink At least one of the format types of the physical control channel or the associated offset value, or the physical layer uplink control channel of the sTTI is located in the physical layer uplink control channel or the uplink channel
  • the n sRU is related to the downlink control information.
  • Resource unit index information To specify the number of lower resource units of the agreed resource unit in the resource block set, n' is the antenna port related value.
  • the radio resource block of the physical layer uplink control channel of the sTTI is determined by the terminal according to the resource unit index information of the physical layer uplink control channel for the sTTI and the time information of the sTTI, and includes:
  • Radio resource block information of the physical layer uplink control channel of the sTTI according to the resource location of the physical layer uplink control channel of the sTTI and the time information of the sTTI.
  • the resource location of the physical layer uplink control channel of the sTTI is determined by the following steps, including:
  • Determining a frequency band according to a length of the sTTI in the frequency domain of the uplink control channel, determining a frequency band occupied by an uplink control channel corresponding to a length of each sTTI, and determining, according to the sTTI, a physical layer uplink control channel in the occupied frequency band The format of the resources used by the sTTI physical layer uplink control channel; or
  • the length of the sTTI sorts the resources used by the physical layer uplink control channel of the sTTI.
  • the resource location of the physical layer uplink control channel of the sTTI conforms to one of the following formulas (6) to (12):
  • m is the resource location of the physical layer uplink control channel of the sTTI, Resource element index information of the physical layer uplink control channel of the sTTI, where k is the format type of the uplink physical control channel, For the port number of the antenna, M is the number of resource blocks RB occupied by the physical layer uplink control channel in the specific format of sTTI, and K is the number of physical layer uplink control channels that can be multiplexed on a limited number of RBs.
  • the number of cyclic offsets for the terminal For the interval of the terminal loop offset, For the offset value assigned to the terminal, The spreading factor of the uplink control channel for the physical layer.
  • the resource unit index information includes one of the following information:
  • the index value is an index value at a system level or a sub-band level.
  • the index number of the resource unit includes: an index number of the first resource unit where the downlink control information is located.
  • the index number of the first resource unit where the downlink control information is located is that the first resource unit where the downlink control information is located is in the physical layer downlink control channel, the physical layer downlink data channel, and the physical layer of the sTTI.
  • the resource unit comprises one of the following units:
  • One or more resource elements one or more control channel elements, and multiple resource element groups.
  • the information transmission device 1800 can perform the steps or functions performed by the transmitter in the various embodiments described above.
  • the information transmission device 1800 can include a transceiver 1801, a processor 1802, and a memory 1803.
  • the processor 1802 is for controlling the operation of the device 1800 for information transfer;
  • the memory 1803 may include a read only memory and a random access memory storing instructions and data that the processor 1802 can execute.
  • a portion of the memory 1803 may also include non-volatile line random access memory (NVRAM).
  • the components such as the transceiver 1801, the processor 1802, and the memory 1803 are connected by a bus 1809.
  • the bus 1809 may include a power bus, a control bus, and a status signal bus in addition to the data bus. However, for clarity of description, various buses are labeled as bus 1809 in the figure.
  • a method for information transmission disclosed in the embodiment of the present invention may be applied to the processor 1802 or implemented by the processor 1802.
  • each step of the processing flow may pass through the processor 1802.
  • the integrated logic of the hardware or the instruction in the form of software is completed.
  • the processor 1802 can be a general purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component, can be implemented or executed in an embodiment of the invention.
  • a general purpose processor can be a microprocessor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 1803, and the processor 1802 reads the information stored in the memory 1803, and performs the steps of a method of information transmission in conjunction with its hardware.
  • the processor 1802 is configured to configure a signal of an sTTI physical layer uplink control channel whose length is two orthogonal frequency division multiplexing symbols;
  • the transceiver 1801 is configured to send a signal of a physical layer uplink control channel of an sTTI configured to be two orthogonal frequency division multiplexing symbols.
  • the signal of the physical layer uplink control channel of the sTTI includes a reference signal and a data signal;
  • the processor 1802 configures the reference signal to be located at an odd or even number of positions of the subframe corresponding to the two orthogonal frequency division multiplexing symbols, the data signal being located at a position other than the reference signal.
  • the signal of the physical layer uplink control channel of the sTTI includes a reference signal and a data signal;
  • the processor 1802 configures the at least one reference signal to be adjacent to two data signals in a subframe corresponding to the two orthogonal frequency division multiplexing symbols, and is shared by the two data signals.
  • processor 1802 configures a reference signal to be intermediate the two data signals, with the remaining reference signals being adjacent to one of the data signals.
  • the signal of the physical layer uplink control channel of the sTTI includes a reference signal and a data signal;
  • the processor 1802 configures the reference signal and the data signal in each orthogonal frequency division multiplexing symbol Alternately set up.
  • processor 1802 modulates a data symbol onto a data signal and spreads the data signal in the frequency domain.
  • processor 1802 modulates two data symbols onto two data signals, spreads the two data signals in the frequency domain, and spreads the two data signals in the time domain.
  • the processor 1802 modulates a plurality of data symbols onto a plurality of data signals and places the plurality of data signals on a frequency domain carrier of the same orthogonal frequency division multiplexed symbol.
  • the information transmission device 1900 can perform the steps or functions performed by the receiver in the various embodiments described above.
  • the information transmission device 1900 can include a transceiver 1901, a processor 1902, and a memory 1903.
  • the processor 1902 is for controlling the operation of the device 1900 for information transfer;
  • the memory 1903 may include read only memory and random access memory, and stores instructions and data that the processor 1902 can execute.
  • a portion of the memory 1903 may also include non-volatile line random access memory (NVRAM).
  • the components such as the transceiver 1901, the processor 1902, and the memory 1903 are connected by a bus 1909.
  • the bus 1909 may include a power bus, a control bus, and a status signal bus in addition to the data bus. However, for clarity of description, various buses are labeled as bus 1909 in the figure.
  • a method for information transmission disclosed in the embodiment of the present invention may be applied to the processor 1902 or implemented by the processor 1902.
  • each step of the processing flow may be completed by an integrated logic circuit of hardware in the processor 1902 or an instruction in the form of software.
  • the processor 1902 can be a general purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component, can be implemented or executed in an embodiment of the invention.
  • a general purpose processor can be a microprocessor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 1903, and the processor 1902 reads the information stored in the memory 1903 and performs the steps of a method of information transmission in conjunction with its hardware.
  • the transceiver 1901 is configured to receive, by the terminal, a signal of a physical layer uplink control channel of an sTTI of two orthogonal frequency division multiplexing symbols, where the length is a physical layer uplink of the sTTI of two orthogonal frequency division multiplexing symbols.
  • the signal of the control channel is configured by the terminal;
  • the processor 1902 is configured to perform scheduling according to the signal of the physical layer uplink control channel of the sTTI whose length is two orthogonal frequency division multiplexing symbols.
  • the signal of the physical layer uplink control channel of the sTTI of two orthogonal frequency division multiplexing symbols includes a reference signal and a data signal;
  • the reference signal is located at an odd or even number of positions of the subframe corresponding to the two orthogonal frequency division multiplexing symbols, and the data signal is located at a position other than the reference signal.
  • the signal of the physical layer uplink control channel of the sTTI of two orthogonal frequency division multiplexing symbols includes a reference signal and a data signal;
  • the at least one reference signal is adjacent to two data signals in a subframe corresponding to the two orthogonal frequency division multiplexing symbols, and is shared by the two data signals.
  • the at least one reference signal is adjacent to the two data signals in a subframe corresponding to the two orthogonal frequency division multiplexing symbols, and one reference signal is located in the middle of the two data signals, and the remaining reference signals are A data signal is adjacent.
  • the signal of the physical layer uplink control channel of the sTTI of two orthogonal frequency division multiplexing symbols includes a reference signal and a data signal;
  • the reference signal and the data signal are alternately arranged on each orthogonal frequency division multiplexing symbol.
  • the signal of the physical layer uplink control channel of the sTTI of two orthogonal frequency division multiplexing symbols comprises one data symbol modulated onto one data signal, and the data signal is spread in the frequency domain.
  • the signal of the physical layer uplink control channel of the sTTI of two orthogonal frequency division multiplexing symbols comprises two data symbols modulated onto two data signals, the two data signals being The frequency domain is spread and the two data signals are spread over the time domain.
  • the signal of the physical layer uplink control channel of the sTTI of two orthogonal frequency division multiplexing symbols comprises a plurality of data symbols modulated to a plurality of data signals, and the plurality of data signals are placed in the same An orthogonal frequency division multiplexed symbol on a frequency domain carrier.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种信息传输的方法及装置,该方法包括终端获取用于sTTI的物理层上行控制信道的资源单元索引信息,然后该终端根据该用于sTTI的物理层上行控制信道的资源单元索引信息和该sTTI的时间信息,确定sTTI的物理层上行控制信道的无线资源块信息,并在该sTTI的物理层上行控制信道的无线资源块上发送上行控制信息。通过获取的用于sTTI的物理层上行控制信道的资源单元索引信息以及该sTTI的时间信息可以得到该sTTI的物理层上行控制信道的无线资源块信息,从而可以得到终端的sTTI的物理层上行控制信道的可以承载上行控制信息的资源的位置,避免终端传输上行控制信息出现错误。

Description

一种信息传输的方法及装置 技术领域
本发明涉及通信技术领域,尤其涉及一种信息传输的方法及装置。
背景技术
LTE(Long Term Evolution,长期演进)网络以无线帧(raido frame)为单位传输信号,针对eNB(evolved Node B,演进型基站)到UE(User Equipment,用户设备)的下行,如图1所示,每个无线帧由子帧(subframe)构成,每个子帧有2个时隙(slot),每个slot由固定个数的OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号组成。对应的,UE到eNB的上行按照子帧(2个时隙)发送,eNB到UE。从带宽角度考虑,eNB到UE的下行,采用全带宽方式发送信号,UE到eNB的上行,采用SC-FDMA(Single-carrier Frequency-Division Multiple Access,单载波频分多址)调制方式,占据整个UL带宽的一部分PRB(Physical Resource Block,物理资源块)。每个时隙包括6或者7个os(ofdm symbol,正交频分复用符号)。
随着UE的业务类型的增多,比如UE浏览网页时,可能只能需要和eNB间交互小包,这导致UE可以使用较少的时域资源传输数据。另一方面,为了支持上行覆盖增强,UL的TTI(Transmission Time Interval,传输时间间隔)长度可能长于DL(Down Link,下行链路)的TTI长度。这些需求,导致传统的LTE的子帧结构将会发生变化,子帧的时间间隔更短。举例而言,可能由UL(Up Link,上行链路)和DL的子帧长度也不相同。子帧长度可能由1ms缩减到0.5ms(7个OFDM符号),4个OFDM符号,2个OFDM符号,甚至1个OFDM符号。LTE网络有多个信道,下行包括PDCCH(Physical Downlink Control Channel,物理层下行控制信道)信道,PDSCH(Physical Downlink Shared Channel,物理层下行共享信道)信道,分别用于下行控制行令发送,下行数据发送;上行包括PUCCH(Physical Uplink Control Channel,物理层上 行控制信道)信道,PUSCH(Physical Uplink Shared Channel,物理层上行共享信道)信道,用于上行控制行令发送,上行数据发送。目前,比较合适的应用于短子帧的sPDCCH/sPDSCH的符号数为2符号和1个slot(7)个OFDM符号,应用于短子帧的sPUCCH/sPUSCH的符号数是2/4/7个OFDM符号,因此,可能出现上行和下行使用的短子帧的长度不相等的情况。
现有技术中在进行信息传输时,针对1msTTI的PUCCH被放置在上行系统带宽的两段,具体的,PUCCH在系统频带上放置的位置和PUCCH包含的信息对应的DCI(Downlink Control Information,下行控制信息)相关。例如,eNB在n子帧发送数据包给UE,对应的,在n子帧中指示该数据包信息的下行控制信息所在第一个CCE(Control Channel Element,控制信道元素)的位置为PUCCH放置位置需要考虑到因素。UE在n+k子帧的对应上行PUCCH信道发送上行控制信息。
现有技术中,PUCCH的资源位置和PUCCH放置的UCI的DL的控制信息的DCI相关,在sTTI场景下,DCI不再是一个子帧内有一个DCI,而是一个子帧内有两级DCI,这样原来的一级DCI的映射将无效,如果继续使用一级映射,有可能导致过多的sTTI的UE在相同的PUCCH时频资源位置使用资源,导致PUCCH不够使用,进而导致UE传输UCI(Uplink Control Information,下行控制信息)发生错误。
发明内容
本发明实施例提供一种信息传输的方法及装置,用以实现不同的sTTI的终端在不同的物理层上行控制信道的资源位置上使用资源,避免终端传输上行控制信息出现错误。
第一方面,提供的一种信息传输的方法,包括:
终端获取用于sTTI(Short Transmission Time Interval,短传输时间间隔)的物理层上行控制信道的资源单元索引信息;
终端根据用于sTTI的物理层上行控制信道的资源单元索引信息和sTTI 的时间信息,确定sTTI的物理层上行控制信道的无线资源块信息;
终端在sTTI的物理层上行控制信道的无线资源块上发送上行控制信息。
通过获取的用于sTTI的物理层上行控制信道的资源单元索引信息以及该sTTI的时间信息可以得到该sTTI的物理层上行控制信道的无线资源块信息,从而可以得到终端的sTTI的物理层上行控制信道的可以承载上行控制信息的资源的位置,实现不同的sTTI的终端在不同的物理层上行控制信道的资源位置上使用资源,避免终端传输上行控制信息出现错误。
结合第一方面,在第一方面的第一种可能的实现方式中,终端获取用于sTTI的物理层上行控制信道的资源单元索引信息,包括:
终端获取与下行控制信息相关的资源单位索引信息;根据与下行控制信息相关的资源单位索引信息和资源索引算法,确定用于sTTI的物理层上行控制信道的资源单元索引信息;或者
终端获取基站发送的用于sTTI的物理层上行控制信道的资源单元索引信息。
上述用于sTTI的物理层上行控制信道的资源单元索引信息可以是终端自己确定的也可以是基站发送的,以使终端可以得到该sTTI的物理层上行控制信道的无线资源块信息。
结合第一方面以及第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,基站发送的用于sTTI的物理层上行控制信道的资源单元索引信息与sTTI的物理层上行控制信道的格式和/或sTTI的长度相关。
基站通过sTTI的物理层上行控制信道的格式和/或sTTI的长度确定的用于sTTI的物理层上行控制信道的资源单元索引信息,可以使得终端更准确的获得该sTTI的物理层上行控制信道的无线资源块信息。
结合第一方面以及第一方面的第一种可能的实现方式,在第一方面的第三种可能的实现方式中,下行控制信息在物理层下行控制信道中承载,下行控制信息包括第一级下行控制信息和/或第二级下行控制信息;
终端获取与下行控制信息相关的资源单位索引信息,包括:
终端获取承载第一级下行控制信息的资源的资源单位索引信息或终端获取承载第二级下行控制信息的资源的资源单位索引信息。
结合第一方面以及第一方面的第三种可能的实现方式,在第一方面的第四种可能的实现方式中,承载第一级下行控制信息的资源的资源单位索引信息为在物理层下行控制信道和/或sTTI的物理层下行控制信道承载的第一级下行控制信息的资源的资源单位索引信息;
承载第二级下行控制信息的资源的资源单位索引信息为在物理层下行控制信道和/或sTTI的物理层下行控制信道承载的第二级下行控制信息的资源的资源单位索引信息。
结合第一方面以及第一方面的第三种或第四种可能的实现方式,在第一方面的第五种可能的实现方式中,第一级下行控制信息的资源的资源单位索引信息为第一级下行控制信息所在资源的指定个资源单位的索引信息;
第二级下行控制信息的资源的资源单位索引信息为第二级下行控制信息所在资源的指定个资源单位的索引信息。
结合第一方面以及第一方面的第一种可能的实现方式,在第一方面的第六种可能的实现方式中,终端获取与下行控制信息相关的资源单位索引信息,包括:
终端获取承载下行控制信息的物理层下行共享信道和/或sTTI的物理层下行共享信道的资源信息;或
终端获取下行控制信息在物理层下行共享信道和/或sTTI的物理层下行共享信道中的资源位置信息。
结合第一方面以及第一方面的第六种可能的实现方式,在第一方面的第七种可能的实现方式中,承载下行控制信息的物理层下行共享信道和/或sTTI的物理层下行共享信道的资源信息为下行控制信息所在资源的指定个资源单位的索引信息;
承载下行控制信息的物理层下行共享信道和/或sTTI的物理层下行共享信道的资源的资源信息为下行控制信息所在资源的占用的资源单位个数。
结合第一方面以及第一方面的第一种可能的实现方式,在第一方面的第八种可能的实现方式中,下行控制信息在物理层下行控制信道和或物理层下行数据信道中承载,下行控制信息包括第一级下行控制信息和第二级下行控制信息;
终端获取与下行控制信息相关的资源单位索引信息,包括:
终端获取承载第一级下行控制信息的资源的资源单位索引信息与承载第二级下行控制信息的资源的资源单位索引信息的关系;
终端根据承载第一级下行控制信息的资源的资源单位索引信息与承载第二级下行控制信息的资源的资源单位索引信息的关系,确定与下行控制信息相关的资源单位索引信息。
结合第一方面以及第一方面的第一种至第八种可能的实现方式中任意一种实现方式,在第一方面的第九种可能的实现方式中,终端确定用于sTTI的上行物理控制信道的资源单元索引信息,符合下述公式(1)至(5)之一要求:
Figure PCTCN2016094977-appb-000001
Figure PCTCN2016094977-appb-000002
Figure PCTCN2016094977-appb-000003
Figure PCTCN2016094977-appb-000004
Figure PCTCN2016094977-appb-000005
其中,
Figure PCTCN2016094977-appb-000006
为用于sTTI的物理层上行控制信道的资源单元索引信息,k为上行物理控制信道的格式类型,
Figure PCTCN2016094977-appb-000007
为天线的端口号,
Figure PCTCN2016094977-appb-000008
为与用户设备在sTTI上发送的上行物理控制信道的格式类型和/或sTTI长度类型相关的偏移值,deltasPUCCH为与HARQ(Hybrid Automatic Repeat reQuest,混合自动 重传请求)的资源偏移值、上行物理控制信道对应的sTTI长度类型、上行物理控制信道的格式类型至少之一或组合相关的偏移值,或者sTTI的物理层上行控制信息所在物理层上行控制信道或上行信道的频带位置信息相关值,nsRU为与下行控制信息相关的资源单位索引信息,
Figure PCTCN2016094977-appb-000009
为约定资源块集合中的约定资源单元的下位资源单元的个数,n'为天线端口相关数值。
结合第一方面,在第一方面的第十种可能的实现方式中,终端根据确定的用于sTTI的物理层上行控制信道的资源单元索引信息和sTTI的时间信息,确定sTTI的物理层上行控制信道的无线资源块信息,包括:
终端根据确定的用于sTTI的物理层上行控制信道的资源单元索引信息,确定sTTI的物理层上行控制信道的资源位置;
终端根据sTTI的物理层上行控制信道的资源位置和sTTI的时间信息,确定sTTI的物理层上行控制信道的无线资源块信息。
结合第一方面以及第一方面的第十种可能的实现方式,在第一方面的第十一种可能的实现方式中,终端确定sTTI的物理层上行控制信道的资源位置,包括:
终端在上行控制信道的频域上依据sTTI的长度分配频带,确定每个sTTI的长度对应的上行控制信道占用的频带,并在占用的频带中依据sTTI的物理层上行控制信道的格式,对sTTI的物理层上行控制信道使用的资源进行排序;或
终端在上行控制信道的频域上依据sTTI的物理层上行控制信道的格式分配频带,确定每个sTTI的物理层上行控制信道的格式占用的频带,并在占用的频带中依据sTTI的长度对sTTI的物理层上行控制信道使用的资源进行排序。
结合第一方面以及第一方面的第十一种可能的实现方式,在第一方面的第十二种可能的实现方式中,终端确定sTTI的物理层上行控制信道的资源位置,符合下述公式(6)至(12)之一:
Figure PCTCN2016094977-appb-000010
Figure PCTCN2016094977-appb-000011
Figure PCTCN2016094977-appb-000012
Figure PCTCN2016094977-appb-000013
Figure PCTCN2016094977-appb-000014
Figure PCTCN2016094977-appb-000015
Figure PCTCN2016094977-appb-000016
Figure PCTCN2016094977-appb-000017
其中,m为sTTI的物理层上行控制信道的资源位置,
Figure PCTCN2016094977-appb-000018
为sTTI的物理层上行控制信道的资源单元索引信息,k为上行物理控制信道的格式类型,
Figure PCTCN2016094977-appb-000019
为天线的端口号,M为sTTI的具体格式的物理层上行控制信道占用的资源块RB个数,K为有限个RB上能够复用的物理层上行控制信道的个数,
Figure PCTCN2016094977-appb-000020
为终端的循环偏移的个数,
Figure PCTCN2016094977-appb-000021
为终端循环偏移的间隔,
Figure PCTCN2016094977-appb-000022
为分配给终端的偏移值,
Figure PCTCN2016094977-appb-000023
为物理层上行控制信道的扩频因子。
结合第一方面以及第一方面的第一种至第十二种可能的实现方式中任意一种可能的实现方式,在第一方面的第十三种可能的实现方式中,资源单位索引信息包括以下信息之一:
sTTI的索引值、资源元素的索引值、资源元素的数量;
其中,索引值为系统级别或子带级别的索引值。
结合第一方面以及第一方面的第十三种可能的实现方式,在第一方面的第十四种可能的实现方式中,资源单位的索引号包括:下行控制信息所在的第一个资源单元的索引号。
结合第一方面以及第一方面的第十四种可能的实现方式,在第一方面的 第十五种可能的实现方式中,下行控制信息所在的第一个资源单元的索引号为下行控制信息所在的第一个资源单元在所在物理层下行控制信道、物理层下行数据信道、sTTI的物理层下行控制信道、sTTI的物理层下行数据信道之一的索引号。
结合第一方面以及第一方面的第十五种可能的实现方式,在第一方面的第十六种可能的实现方式中,资源单位包括下述单位之一:
一个或多个资源元素、一个或多个控制信道元素、多个资源元素组。
第二方面,提供的一种信息传输的方法,包括:
基站接收终端在sTTI的物理层上行控制信道的无线资源块上发送上行控制信息,sTTI的物理层上行控制信道的无线资源块是终端根据用于sTTI的物理层上行控制信道的资源单元索引信息和sTTI的时间信息确定的;
基站根据上行控制信息进行调度。
上述获取的sTTI的物理层上行控制信道的无线资源块是终端根据用于sTTI的物理层上行控制信道的资源单元索引信息和sTTI的时间信息确定的,从而实现不同的sTTI的终端在不同的物理层上行控制信道的资源位置上使用资源,避免终端传输上行控制信息出现错误。
结合第二方面,在第二方面的第一种可能的实现方式中,基站在接收终端在sTTI的物理层上行控制信道的无线资源块上发送上行控制信息之前,还包括:
基站向终端发送与下行控制信息相关的资源单位索引信息,以使终端根据与下行控制信息相关的资源单位索引信息和资源索引算法,确定用于sTTI的物理层上行控制信道的资源单元索引信息;或基站向终端发送用于sTTI的物理层上行控制信道的资源单元索引信息。
结合第二方面以及第二方面的第一种可能的实现方式,在第二方面的第二种可能的实现方式中,基站向终端发送的用于sTTI的物理层上行控制信道的资源单元索引信息与sTTI的物理层上行控制信道的格式和/或sTTI的长度相关。
结合第二方面以及第二方面的第一种可能的实现方式,在第二方面的第三种可能的实现方式中,下行控制信息在物理层下行控制信道中承载,下行控制信息包括第一级下行控制信息和/或第二级下行控制信息;
基站向终端发送与下行控制信息相关的资源单位索引信息,包括:
基站向终端发送承载第一级下行控制信息的资源的资源单位索引信息或基站向终端发送承载第二级下行控制信息的资源的资源单位索引信息。
结合第二方面以及第二方面的第三种可能的实现方式,在第二方面的第四种可能的实现方式中,承载第一级下行控制信息的资源的资源单位索引信息为在物理层下行控制信道和/或sTTI的物理层下行控制信道承载的第一级下行控制信息的资源的资源单位索引信息;
承载第二级下行控制信息的资源的资源单位索引信息为在物理层下行控制信道和/或sTTI的物理层下行控制信道承载的第二级下行控制信息的资源的资源单位索引信息。
结合第二方面以及第二方面的第三种或第四种可能的实现方式,在第二方面的第五种可能的实现方式中,第一级下行控制信息的资源的资源单位索引信息为第一级下行控制信息所在资源的指定个资源单位的索引信息;
第二级下行控制信息的资源的资源单位索引信息为第二级下行控制信息所在资源的指定个资源单位的索引信息。
结合第二方面以及第二方面的第一种可能的实现方式,在第二方面的第六种可能的实现方式中,基站向终端发送与下行控制信息相关的资源单位索引信息,包括:
基站向终端发送承载下行控制信息的物理层下行共享信道和/或sTTI的物理层下行共享信道的资源信息;或
基站向终端发送下行控制信息在物理层下行共享信道和/或sTTI的物理层下行共享信道中的资源位置信息。
结合第二方面以及第二方面的第六种可能的实现方式,在第二方面的第七种可能的实现方式中,承载下行控制信息的物理层下行共享信道和/或sTTI 的物理层下行共享信道的资源信息为下行控制信息所在资源的指定个资源单位的索引信息;
承载下行控制信息的物理层下行共享信道和/或sTTI的物理层下行共享信道的资源的资源信息为下行控制信息所在资源的占用的资源单位个数。
结合第二方面以及第二方面的第一种可能的实现方式,在第二方面的第八种可能的实现方式中,下行控制信息在物理层下行控制信道和或物理层下行数据信道中承载,下行控制信息包括第一级下行控制信息和第二级下行控制信息;
终端获取与下行控制信息相关的资源单位索引信息,包括:
终端获取承载第一级下行控制信息的资源的资源单位索引信息与承载第二级下行控制信息的资源的资源单位索引信息的关系;
终端根据承载第一级下行控制信息的资源的资源单位索引信息与承载第二级下行控制信息的资源的资源单位索引信息的关系,确定与下行控制信息相关的资源单位索引信息。
结合第二方面以及第二方面的第一种至第八种可能的实现方式中任意一种实现方式,在第二方面的第九种可能的实现方式中,用于sTTI的上行物理控制信道的资源单元索引信息,符合下述公式(1)至(5)之一要求:
Figure PCTCN2016094977-appb-000024
Figure PCTCN2016094977-appb-000025
Figure PCTCN2016094977-appb-000026
Figure PCTCN2016094977-appb-000027
Figure PCTCN2016094977-appb-000028
其中,
Figure PCTCN2016094977-appb-000029
为用于sTTI的物理层上行控制信道的资源单元索引信息,k为上行物理控制信道的格式类型,
Figure PCTCN2016094977-appb-000030
为天线的端口号,
Figure PCTCN2016094977-appb-000031
为与用户设 备在sTTI上发送的上行物理控制信道的格式类型和/或sTTI长度类型相关的偏移值,deltasPUCCH为与HARQ的资源偏移值、上行物理控制信道对应的sTTI长度类型、上行物理控制信道的格式类型至少之一或组合相关的偏移值,或者sTTI的物理层上行控制信息所在物理层上行控制信道或上行信道的频带位置信息相关值,nsRU为与下行控制信息相关的资源单位索引信息,
Figure PCTCN2016094977-appb-000032
为约定资源块集合中的约定资源单元的下位资源单元的个数,n'为天线端口相关数值。
结合第二方面,在第二方面的第十种可能的实现方式中,sTTI的物理层上行控制信道的无线资源块是终端根据用于sTTI的物理层上行控制信道的资源单元索引信息和sTTI的时间信息确定的,包括:
终端根据确定的用于sTTI的物理层上行控制信道的资源单元索引信息,确定sTTI的物理层上行控制信道的资源位置;
终端根据sTTI的物理层上行控制信道的资源位置和sTTI的时间信息,确定sTTI的物理层上行控制信道的无线资源块信息。
结合第二方面以及第二方面的第十种可能的实现方式,在第二方面的第十一种可能的实现方式中,sTTI的物理层上行控制信道的资源位置是由下述步骤确定的,包括:
在上行控制信道的频域上依据sTTI的长度分配频带,确定每个sTTI的长度对应的上行控制信道占用的频带,并在占用的频带中依据sTTI的物理层上行控制信道的格式,对sTTI的物理层上行控制信道使用的资源进行排序;或
在上行控制信道的频域上依据sTTI的物理层上行控制信道的格式分配频带,确定每个sTTI的物理层上行控制信道的格式占用的频带,并在占用的频带中依据sTTI的长度对sTTI的物理层上行控制信道使用的资源进行排序。
结合第二方面以及第二方面的第十一种可能的实现方式,在第二方面的第十二种可能的实现方式中,sTTI的物理层上行控制信道的资源位置,符合下述公式(6)至(12)之一:
Figure PCTCN2016094977-appb-000033
Figure PCTCN2016094977-appb-000034
Figure PCTCN2016094977-appb-000035
Figure PCTCN2016094977-appb-000036
Figure PCTCN2016094977-appb-000037
Figure PCTCN2016094977-appb-000038
Figure PCTCN2016094977-appb-000039
Figure PCTCN2016094977-appb-000040
其中,m为sTTI的物理层上行控制信道的资源位置,
Figure PCTCN2016094977-appb-000041
为sTTI的物理层上行控制信道的资源单元索引信息,k为上行物理控制信道的格式类型,
Figure PCTCN2016094977-appb-000042
为天线的端口号,M为sTTI的具体格式的物理层上行控制信道占用的资源块RB个数,K为有限个RB上能够复用的物理层上行控制信道的个数,
Figure PCTCN2016094977-appb-000043
为终端的循环偏移的个数,
Figure PCTCN2016094977-appb-000044
为终端循环偏移的间隔,
Figure PCTCN2016094977-appb-000045
为分配给终端的偏移值,
Figure PCTCN2016094977-appb-000046
为物理层上行控制信道的扩频因子。
结合第二方面以及第二方面的第一种至第十二种可能的实现方式中任意一种可能的实现方式,在第二方面的第十三种可能的实现方式中,资源单位索引信息包括以下信息之一:
sTTI的索引值、资源元素的索引值、资源元素的数量;
其中,索引值为系统级别或子带级别的索引值。
结合第二方面以及第二方面的第十三种可能的实现方式,在第二方面的第十四种可能的实现方式中,资源单位的索引号包括:下行控制信息所在的第一个资源单元的索引号。
结合第二方面以及第二方面的第十四种可能的实现方式,在第二方面的 第十五种可能的实现方式中,下行控制信息所在的第一个资源单元的索引号为下行控制信息所在的第一个资源单元在所在物理层下行控制信道、物理层下行数据信道、sTTI的物理层下行控制信道、sTTI的物理层下行数据信道之一的索引号。
结合第二方面以及第二方面的第十五种可能的实现方式,在第二方面的第十六种可能的实现方式中,资源单位包括下述单位之一:
一个或多个资源元素、一个或多个控制信道元素、多个资源元素组。
第三方面,提供的一种信息传输的方法,包括:
终端配置长度为两个正交频分复用符号的sTTI物理层上行控制信道的信号;
终端发送配置的长度为两个正交频分复用符号的sTTI的物理层上行控制信道的信号。
终端通过配置长度为两个正交频分复用符号的sTTI物理层上行控制信道的信号,针对长度为两个正交频分复用符号,可以约定在一个0.5ms内的数据信号和参考信号的放置位置。
结合第三方面,在第三方面的第一种可能的实现方式中,终端配置长度为两个正交频分复用符号的sTTI的物理层上行控制信道的信号,包括:
sTTI的物理层上行控制信道的信号包括参考信号和数据信号;
终端配置参考信号位于两个正交频分复用符号对应的子帧的奇数或偶数个位置,数据信号位于除参考信号之外的位置。
结合第三方面,在第三方面的第二种可能的实现方式中,终端配置长度为两个正交频分复用符号的sTTI的上行物理控制信道的信号,包括:
sTTI的物理层上行控制信道的信号包括参考信号和数据信号;
终端配置至少一个参考信号在两个正交频分复用符号对应的子帧中与两个数据信号相邻,并被这两个数据信号共享。
结合第三方面以及第三方面的第二种可能的实现方式,在第三方面的第三种可能的实现方式中,终端配置至少一个参考信号在两个正交频分复用符 号对应的子帧中与两个数据信号相邻,包括:
终端配置一个参考信号位于两个数据信号的中间,剩余的参考信号与一个数据信号相邻。
结合第三方面,在第三方面的第四种可能的实现方式中,终端配置长度为两个正交频分复用符号的sTTI的物理层上行控制信道的信号,包括:
sTTI的物理层上行控制信道的信号包括参考信号和数据信号;
终端配置参考信号和数据信号在每个正交频分复用符号上交替设置。
结合第三方面以及第三方面的第一种至第四种可能的实现方式中任意一种实现方式,在第三方面的第五种可能的实现方式中,终端配置长度为两个正交频分复用符号的sTTI的物理层上行控制信道的信号,包括:
终端将一个数据符号调制到一个数据信号上,将数据信号在频域上进行扩频。
结合第三方面以及第三方面的第一种至第四种可能的实现方式中任意一种实现方式,在第三方面的第六种可能的实现方式中,终端配置长度为两个正交频分复用符号的sTTI的物理层上行控制信道的信号,包括:
终端将两个数据符号调制到两个数据信号上,将两个数据信号在频域上进行扩频,将两个数据信号在时域上进行扩频。
结合第三方面以及第三方面的第一种至第四种可能的实现方式中任意一种实现方式,在第三方面的第七种可能的实现方式中,终端配置长度为两个正交频分复用符号的sTTI的物理层上行控制信道的信号,包括:
终端将多个数据符号调制到多个数据信号,并将多个数据信号放在同一个正交频分复用符号的频域载波上。
第四方面,提供的一种信息传输的方法,包括:
基站接收终端发送的长度为两个正交频分复用符号的sTTI的物理层上行控制信道的信号,长度为两个正交频分复用符号的sTTI的物理层上行控制信道的信号是由终端配置的;
基站根据长度为两个正交频分复用符号的sTTI的物理层上行控制信道的 信号进行调度。
结合第四方面,在第四方面的第一种可能的实现方式中,长度为两个正交频分复用符号的sTTI的物理层上行控制信道的信号包括参考信号和数据信号;
其中,参考信号位于两个正交频分复用符号对应的子帧的奇数或偶数个位置,数据信号位于除参考信号之外的位置。
结合第四方面,在第四方面的第二种可能的实现方式中,长度为两个正交频分复用符号的sTTI的物理层上行控制信道的信号包括参考信号和数据信号;
其中,至少一个参考信号在两个正交频分复用符号对应的子帧中与两个数据信号相邻,并被这两个数据信号共享。
结合第四方面以及第四方面的第二种可能的实现方式,在第四方面的第三种可能的实现方式中,至少一个参考信号在两个正交频分复用符号对应的子帧中与两个数据信号相邻为一个参考信号位于两个数据信号的中间,剩余的参考信号与一个数据信号相邻。
结合第四方面,在第四方面的第四种可能的实现方式中,长度为两个正交频分复用符号的sTTI的物理层上行控制信道的信号包括参考信号和数据信号;
其中,参考信号和数据信号在每个正交频分复用符号上交替设置。
结合第四方面以及第四方面的第一种至第四种可能的实现方式中任意一种实现方式,在第四方面的第五种可能的实现方式中,长度为两个正交频分复用符号的sTTI的物理层上行控制信道的信号包括一个数据符号被调制到一个数据信号上,且数据信号在频域上被扩频。
结合第四方面以及第四方面的第一种至第四种可能的实现方式中任意一种实现方式,在第四方面的第六种可能的实现方式中,长度为两个正交频分复用符号的sTTI的物理层上行控制信道的信号包括两个数据符号被调制到两个数据信号上,两个数据信号在频域上被扩频,两个数据信号在时域上被扩 频。
结合第四方面以及第四方面的第一种至第四种可能的实现方式中任意一种实现方式,在第四方面的第七种可能的实现方式中,长度为两个正交频分复用符号的sTTI的物理层上行控制信道的信号包括多个数据符号被调制到多个数据信号,且多个数据信号被放在同一个正交频分复用符号的频域载波上。
第五方面,提供的一种信息传输的装置,包括:
收发单元,用于获取用于sTTI的物理层上行控制信道的资源单元索引信息;
处理单元,用于根据收发单元获取的用于sTTI的物理层上行控制信道的资源单元索引信息和sTTI的时间信息,确定sTTI的物理层上行控制信道的无线资源块信息;
收发单元还用于在处理单元确定的sTTI的物理层上行控制信道的无线资源块上发送上行控制信息。
结合第五方面,在第五方面的第一种可能的实现方式中,收发单元具体用于:
获取与下行控制信息相关的资源单位索引信息;根据与下行控制信息相关的资源单位索引信息和资源索引算法,确定用于sTTI的物理层上行控制信道的资源单元索引信息;或者
获取基站发送的用于sTTI的物理层上行控制信道的资源单元索引信息。
结合第五方面以及第五方面的第一种可能的实现方式,在第五方面的第二种可能的实现方式中,基站发送的用于sTTI的物理层上行控制信道的资源单元索引信息与sTTI的物理层上行控制信道的格式和/或sTTI的长度相关。
结合第五方面以及第五方面的第一种可能的实现方式,在第五方面的第三种可能的实现方式中,下行控制信息在物理层下行控制信道中承载,下行控制信息包括第一级下行控制信息和/或第二级下行控制信息;
收发单元具体用于:
获取承载第一级下行控制信息的资源的资源单位索引信息或获取承载第 二级下行控制信息的资源的资源单位索引信息。
结合第五方面以及第五方面的第三种可能的实现方式,在第五方面的第四种可能的实现方式中,承载第一级下行控制信息的资源的资源单位索引信息为在物理层下行控制信道和/或sTTI的物理层下行控制信道承载的第一级下行控制信息的资源的资源单位索引信息;
承载第二级下行控制信息的资源的资源单位索引信息为在物理层下行控制信道和/或sTTI的物理层下行控制信道承载的第二级下行控制信息的资源的资源单位索引信息。
结合第五方面以及第五方面的第三种或第四种可能的实现方式,在第五方面的第五种可能的实现方式中,第一级下行控制信息的资源的资源单位索引信息为第一级下行控制信息所在资源的指定个资源单位的索引信息;
第二级下行控制信息的资源的资源单位索引信息为第二级下行控制信息所在资源的指定个资源单位的索引信息。
结合第五方面以及第五方面的第一种可能的实现方式,在第五方面的第六种可能的实现方式中,收发单元具体用于:
获取承载下行控制信息的物理层下行共享信道和/或sTTI的物理层下行共享信道的资源信息;或
获取下行控制信息在物理层下行共享信道和/或sTTI的物理层下行共享信道中的资源位置信息。
结合第五方面以及第五方面的第六种可能的实现方式,在第五方面的第七种可能的实现方式中,承载下行控制信息的物理层下行共享信道和/或sTTI的物理层下行共享信道的资源信息为下行控制信息所在资源的指定个资源单位的索引信息;
承载下行控制信息的物理层下行共享信道和/或sTTI的物理层下行共享信道的资源的资源信息为下行控制信息所在资源的占用的资源单位个数。
结合第五方面以及第五方面的第一种可能的实现方式,在第五方面的第八种可能的实现方式中,下行控制信息在物理层下行控制信道和或物理层下 行数据信道中承载,下行控制信息包括第一级下行控制信息和第二级下行控制信息;
收发单元具体用于:
获取承载第一级下行控制信息的资源的资源单位索引信息与承载第二级下行控制信息的资源的资源单位索引信息的关系;
根据承载第一级下行控制信息的资源的资源单位索引信息与承载第二级下行控制信息的资源的资源单位索引信息的关系,确定与下行控制信息相关的资源单位索引信息。
结合第五方面以及第五方面的第一种至第八种可能的实现方式中任意一种实现方式,在第五方面的第九种可能的实现方式中,收发单元具体用于:
确定用于sTTI的上行物理控制信道的资源单元索引信息,符合下述公式(1)至(5)之一要求:
Figure PCTCN2016094977-appb-000047
Figure PCTCN2016094977-appb-000048
Figure PCTCN2016094977-appb-000049
Figure PCTCN2016094977-appb-000050
Figure PCTCN2016094977-appb-000051
其中,
Figure PCTCN2016094977-appb-000052
为用于sTTI的物理层上行控制信道的资源单元索引信息,k为上行物理控制信道的格式类型,
Figure PCTCN2016094977-appb-000053
为天线的端口号,
Figure PCTCN2016094977-appb-000054
为与用户设备在sTTI上发送的上行物理控制信道的格式类型和/或sTTI长度类型相关的偏移值,deltasPUCCH为与HARQ的资源偏移值、上行物理控制信道对应的sTTI长度类型、上行物理控制信道的格式类型至少之一或组合相关的偏移值,或者sTTI的物理层上行控制信息所在物理层上行控制信道或上行信道的频带位 置信息相关值,nsRU为与下行控制信息相关的资源单位索引信息,
Figure PCTCN2016094977-appb-000055
为约定资源块集合中的约定资源单元的下位资源单元的个数,n'为天线端口相关数值。
结合第五方面,在第五方面的第十种可能的实现方式中,处理单元具体用于:
根据确定的用于sTTI的物理层上行控制信道的资源单元索引信息,确定sTTI的物理层上行控制信道的资源位置;
根据sTTI的物理层上行控制信道的资源位置和sTTI的时间信息,确定sTTI的物理层上行控制信道的无线资源块信息。
结合第五方面以及第五方面的第十种可能的实现方式,在第五方面的第十一种可能的实现方式中,处理单元具体用于:
在上行控制信道的频域上依据sTTI的长度分配频带,确定每个sTTI的长度对应的上行控制信道占用的频带,并在占用的频带中依据sTTI的物理层上行控制信道的格式,对sTTI的物理层上行控制信道使用的资源进行排序;或
在上行控制信道的频域上依据sTTI的物理层上行控制信道的格式分配频带,确定每个sTTI的物理层上行控制信道的格式占用的频带,并在占用的频带中依据sTTI的长度对sTTI的物理层上行控制信道使用的资源进行排序。
结合第五方面以及第五方面的第十一种可能的实现方式,在第五方面的第十二种可能的实现方式中,处理单元具体用于:
确定sTTI的物理层上行控制信道的资源位置,符合下述公式(6)至(12)之一:
Figure PCTCN2016094977-appb-000056
Figure PCTCN2016094977-appb-000057
Figure PCTCN2016094977-appb-000058
Figure PCTCN2016094977-appb-000059
Figure PCTCN2016094977-appb-000060
Figure PCTCN2016094977-appb-000061
Figure PCTCN2016094977-appb-000062
Figure PCTCN2016094977-appb-000063
其中,m为sTTI的物理层上行控制信道的资源位置,
Figure PCTCN2016094977-appb-000064
为sTTI的物理层上行控制信道的资源单元索引信息,k为上行物理控制信道的格式类型,
Figure PCTCN2016094977-appb-000065
为天线的端口号,M为sTTI的具体格式的物理层上行控制信道占用的资源块RB个数,K为有限个RB上能够复用的物理层上行控制信道的个数,
Figure PCTCN2016094977-appb-000066
为终端的循环偏移的个数,
Figure PCTCN2016094977-appb-000067
为终端循环偏移的间隔,
Figure PCTCN2016094977-appb-000068
为分配给终端的偏移值,
Figure PCTCN2016094977-appb-000069
为物理层上行控制信道的扩频因子。
结合第五方面以及第五方面的第一种至第十二种可能的实现方式中任意一种可能的实现方式,在第五方面的第十三种可能的实现方式中,资源单位索引信息包括以下信息之一:
sTTI的索引值、资源元素的索引值、资源元素的数量;
其中,索引值为系统级别或子带级别的索引值。
结合第五方面以及第五方面的第十三种可能的实现方式,在第五方面的第十四种可能的实现方式中,资源单位的索引号包括:下行控制信息所在的第一个资源单元的索引号。
结合第五方面以及第五方面的第十四种可能的实现方式,在第五方面的第十五种可能的实现方式中,下行控制信息所在的第一个资源单元的索引号为下行控制信息所在的第一个资源单元在所在物理层下行控制信道、物理层下行数据信道、sTTI的物理层下行控制信道、sTTI的物理层下行数据信道之一的索引号。
结合第五方面以及第五方面的第十五种可能的实现方式,在第五方面的 第十六种可能的实现方式中,资源单位包括下述单位之一:
一个或多个资源元素、一个或多个控制信道元素、多个资源元素组。
第六方面,提供的一种信息传输的装置,包括:
收发单元,用于接收终端在sTTI的物理层上行控制信道的无线资源块上发送上行控制信息,sTTI的物理层上行控制信道的无线资源块是终端根据用于sTTI的物理层上行控制信道的资源单元索引信息和sTTI的时间信息确定的;
处理单元,用于根据上行控制信息进行调度。
结合第六方面,在第六方面的第一种可能的实现方式中,收发单元还用于:
在接收终端在sTTI的物理层上行控制信道的无线资源块上发送上行控制信息之前,向终端发送与下行控制信息相关的资源单位索引信息,以使终端根据与下行控制信息相关的资源单位索引信息和资源索引算法,确定用于sTTI的物理层上行控制信道的资源单元索引信息;或向终端发送用于sTTI的物理层上行控制信道的资源单元索引信息。
结合第六方面以及第六方面的第一种可能的实现方式,在第六方面的第二种可能的实现方式中,向终端发送的用于sTTI的物理层上行控制信道的资源单元索引信息与sTTI的物理层上行控制信道的格式和/或sTTI的长度相关。
结合第六方面以及第六方面的第一种可能的实现方式,在第六方面的第三种可能的实现方式中,下行控制信息在物理层下行控制信道中承载,下行控制信息包括第一级下行控制信息和/或第二级下行控制信息;
收发单元具体用于:
向终端发送承载第一级下行控制信息的资源的资源单位索引信息或向终端发送承载第二级下行控制信息的资源的资源单位索引信息。
结合第六方面以及第六方面的第三种可能的实现方式,在第六方面的第四种可能的实现方式中,承载第一级下行控制信息的资源的资源单位索引信息为在物理层下行控制信道和/或sTTI的物理层下行控制信道承载的第一级 下行控制信息的资源的资源单位索引信息;
承载第二级下行控制信息的资源的资源单位索引信息为在物理层下行控制信道和/或sTTI的物理层下行控制信道承载的第二级下行控制信息的资源的资源单位索引信息。
结合第六方面以及第六方面的第三种或第四种可能的实现方式,在第六方面的第五种可能的实现方式中,第一级下行控制信息的资源的资源单位索引信息为第一级下行控制信息所在资源的指定个资源单位的索引信息;
第二级下行控制信息的资源的资源单位索引信息为第二级下行控制信息所在资源的指定个资源单位的索引信息。
结合第六方面以及第六方面的第一种可能的实现方式,在第六方面的第六种可能的实现方式中,收发单元具体用于:
向终端发送承载下行控制信息的物理层下行共享信道和/或sTTI的物理层下行共享信道的资源信息;或
向终端发送下行控制信息在物理层下行共享信道和/或sTTI的物理层下行共享信道中的资源位置信息。
结合第六方面以及第六方面的第六种可能的实现方式,在第六方面的第七种可能的实现方式中,承载下行控制信息的物理层下行共享信道和/或sTTI的物理层下行共享信道的资源信息为下行控制信息所在资源的指定个资源单位的索引信息;
承载下行控制信息的物理层下行共享信道和/或sTTI的物理层下行共享信道的资源的资源信息为下行控制信息所在资源的占用的资源单位个数。
结合第六方面以及第六方面的第一种可能的实现方式,在第六方面的第八种可能的实现方式中,下行控制信息在物理层下行控制信道和或物理层下行数据信道中承载,下行控制信息包括第一级下行控制信息和第二级下行控制信息;
收发单元具体用于:
获取承载第一级下行控制信息的资源的资源单位索引信息与承载第二级 下行控制信息的资源的资源单位索引信息的关系;
根据承载第一级下行控制信息的资源的资源单位索引信息与承载第二级下行控制信息的资源的资源单位索引信息的关系,确定与下行控制信息相关的资源单位索引信息。
结合第六方面以及第六方面的第一种至第八种可能的实现方式中任意一种实现方式,在第六方面的第九种可能的实现方式中,用于sTTI的上行物理控制信道的资源单元索引信息,符合下述公式(1)至(5)之一要求:
Figure PCTCN2016094977-appb-000070
Figure PCTCN2016094977-appb-000071
Figure PCTCN2016094977-appb-000072
Figure PCTCN2016094977-appb-000073
Figure PCTCN2016094977-appb-000074
其中,
Figure PCTCN2016094977-appb-000075
为用于sTTI的物理层上行控制信道的资源单元索引信息,k为上行物理控制信道的格式类型,
Figure PCTCN2016094977-appb-000076
为天线的端口号,
Figure PCTCN2016094977-appb-000077
为与用户设备在sTTI上发送的上行物理控制信道的格式类型和/或sTTI长度类型相关的偏移值,deltasPUCCH为与HARQ的资源偏移值、上行物理控制信道对应的sTTI长度类型、上行物理控制信道的格式类型至少之一或组合相关的偏移值,或者sTTI的物理层上行控制信息所在物理层上行控制信道或上行信道的频带位置信息相关值,nsRU为与下行控制信息相关的资源单位索引信息,
Figure PCTCN2016094977-appb-000078
为约定资源块集合中的约定资源单元的下位资源单元的个数,n'为天线端口相关数值。
结合第六方面,在第六方面的第十种可能的实现方式中,sTTI的物理层上行控制信道的无线资源块是终端根据用于sTTI的物理层上行控制信道的资 源单元索引信息和sTTI的时间信息确定的,包括:
根据确定的用于sTTI的物理层上行控制信道的资源单元索引信息,确定sTTI的物理层上行控制信道的资源位置;
根据sTTI的物理层上行控制信道的资源位置和sTTI的时间信息,确定sTTI的物理层上行控制信道的无线资源块信息。
结合第六方面以及第六方面的第十种可能的实现方式,在第六方面的第十一种可能的实现方式中,sTTI的物理层上行控制信道的资源位置是由下述步骤确定的,包括:
在上行控制信道的频域上依据sTTI的长度分配频带,确定每个sTTI的长度对应的上行控制信道占用的频带,并在占用的频带中依据sTTI的物理层上行控制信道的格式,对sTTI的物理层上行控制信道使用的资源进行排序;或
在上行控制信道的频域上依据sTTI的物理层上行控制信道的格式分配频带,确定每个sTTI的物理层上行控制信道的格式占用的频带,并在占用的频带中依据sTTI的长度对sTTI的物理层上行控制信道使用的资源进行排序。
结合第六方面以及第六方面的第十一种可能的实现方式,在第六方面的第十二种可能的实现方式中,sTTI的物理层上行控制信道的资源位置,符合下述公式(6)至(12)之一:
Figure PCTCN2016094977-appb-000079
Figure PCTCN2016094977-appb-000080
Figure PCTCN2016094977-appb-000081
Figure PCTCN2016094977-appb-000082
Figure PCTCN2016094977-appb-000083
Figure PCTCN2016094977-appb-000084
Figure PCTCN2016094977-appb-000085
Figure PCTCN2016094977-appb-000086
其中,m为sTTI的物理层上行控制信道的资源位置,
Figure PCTCN2016094977-appb-000087
为sTTI的物理层上行控制信道的资源单元索引信息,k为上行物理控制信道的格式类型,
Figure PCTCN2016094977-appb-000088
为天线的端口号,M为sTTI的具体格式的物理层上行控制信道占用的资源块RB个数,K为有限个RB上能够复用的物理层上行控制信道的个数,
Figure PCTCN2016094977-appb-000089
为终端的循环偏移的个数,
Figure PCTCN2016094977-appb-000090
为终端循环偏移的间隔,
Figure PCTCN2016094977-appb-000091
为分配给终端的偏移值,
Figure PCTCN2016094977-appb-000092
为物理层上行控制信道的扩频因子。
结合第六方面以及第六方面的第一种至第十二种可能的实现方式中任意一种可能的实现方式,在第六方面的第十三种可能的实现方式中,资源单位索引信息包括以下信息之一:
sTTI的索引值、资源元素的索引值、资源元素的数量;
其中,索引值为系统级别或子带级别的索引值。
结合第六方面以及第六方面的第十三种可能的实现方式,在第六方面的第十四种可能的实现方式中,资源单位的索引号包括:下行控制信息所在的第一个资源单元的索引号。
结合第六方面以及第六方面的第十四种可能的实现方式,在第六方面的第十五种可能的实现方式中,下行控制信息所在的第一个资源单元的索引号为下行控制信息所在的第一个资源单元在所在物理层下行控制信道、物理层下行数据信道、sTTI的物理层下行控制信道、sTTI的物理层下行数据信道之一的索引号。
结合第六方面以及第六方面的第十五种可能的实现方式,在第六方面的第十六种可能的实现方式中,资源单位包括下述单位之一:
一个或多个资源元素、一个或多个控制信道元素、多个资源元素组。
第七方面,提供的一种信息传输的装置,包括:
处理单元,用于配置长度为两个正交频分复用符号的sTTI物理层上行控制信道的信号;
收发单元,用于发送配置的长度为两个正交频分复用符号的sTTI的物理层上行控制信道的信号。
结合第七方面,在第七方面的第一种可能的实现方式中,处理单元具体用于:
sTTI的物理层上行控制信道的信号包括参考信号和数据信号;
配置参考信号位于两个正交频分复用符号对应的子帧的奇数或偶数个位置,数据信号位于除参考信号之外的位置。
结合第七方面,在第七方面的第二种可能的实现方式中,处理单元具体用于:
sTTI的物理层上行控制信道的信号包括参考信号和数据信号;
配置至少一个参考信号在两个正交频分复用符号对应的子帧中与两个数据信号相邻,并被这两个数据信号共享。
结合第七方面以及第七方面的第二种可能的实现方式,在第七方面的第三种可能的实现方式中,处理单元具体用于:
配置一个参考信号位于两个数据信号的中间,剩余的参考信号与一个数据信号相邻。
结合第七方面,在第七方面的第四种可能的实现方式中,处理单元具体用于:
sTTI的物理层上行控制信道的信号包括参考信号和数据信号;
配置参考信号和数据信号在每个正交频分复用符号上交替设置。
结合第七方面以及第七方面的第一种至第四种可能的实现方式中任意一种实现方式,在第七方面的第五种可能的实现方式中,处理单元具体用于:
将一个数据符号调制到一个数据信号上,将数据信号在频域上进行扩频。
结合第七方面以及第七方面的第一种至第四种可能的实现方式中任意一种实现方式,在第七方面的第六种可能的实现方式中,处理单元具体用于:
将两个数据符号调制到两个数据信号上,将两个数据信号在频域上进行扩频,将两个数据信号在时域上进行扩频。
结合第七方面以及第七方面的第一种至第四种可能的实现方式中任意一种实现方式,在第七方面的第七种可能的实现方式中,处理单元具体用于:
将多个数据符号调制到多个数据信号,并将多个数据信号放在同一个正交频分复用符号的频域载波上。
第八方面,提供的一种信息传输的装置,包括:
收发单元,用于接收终端发送的长度为两个正交频分复用符号的sTTI的物理层上行控制信道的信号,长度为两个正交频分复用符号的sTTI的物理层上行控制信道的信号是由终端配置的;
处理单元,用于根据长度为两个正交频分复用符号的sTTI的物理层上行控制信道的信号进行调度。
结合第八方面,在第八方面的第一种可能的实现方式中,长度为两个正交频分复用符号的sTTI的物理层上行控制信道的信号包括参考信号和数据信号;
其中,参考信号位于两个正交频分复用符号对应的子帧的奇数或偶数个位置,数据信号位于除参考信号之外的位置。
结合第八方面,在第八方面的第二种可能的实现方式中,长度为两个正交频分复用符号的sTTI的物理层上行控制信道的信号包括参考信号和数据信号;
其中,至少一个参考信号在两个正交频分复用符号对应的子帧中与两个数据信号相邻,并被这两个数据信号共享。
结合第八方面以及第八方面的第二种可能的实现方式,在第八方面的第三种可能的实现方式中,至少一个参考信号在两个正交频分复用符号对应的子帧中与两个数据信号相邻为一个参考信号位于两个数据信号的中间,剩余的参考信号与一个数据信号相邻。
结合第八方面,在第八方面的第四种可能的实现方式中,长度为两个正交频分复用符号的sTTI的物理层上行控制信道的信号包括参考信号和数据信号;
其中,参考信号和数据信号在每个正交频分复用符号上交替设置。
结合第八方面以及第八方面的第一种至第四种可能的实现方式中任意一种实现方式,在第八方面的第五种可能的实现方式中,长度为两个正交频分复用符号的sTTI的物理层上行控制信道的信号包括一个数据符号被调制到一个数据信号上,且数据信号在频域上被扩频。
结合第八方面以及第八方面的第一种至第四种可能的实现方式中任意一种实现方式,在第八方面的第六种可能的实现方式中,长度为两个正交频分复用符号的sTTI的物理层上行控制信道的信号包括两个数据符号被调制到两个数据信号上,两个数据信号在频域上被扩频,两个数据信号在时域上被扩频。
结合第八方面以及第八方面的第一种至第四种可能的实现方式中任意一种实现方式,在第八方面的第七种可能的实现方式中,长度为两个正交频分复用符号的sTTI的物理层上行控制信道的信号包括多个数据符号被调制到多个数据信号,且多个数据信号被放在同一个正交频分复用符号的频域载波上。
第九方面,提供的一种信息传输的设备,包括:
收发器、处理器和存储器;
收发器用于获取用于sTTI的物理层上行控制信道的资源单元索引信息;
处理器用于根据收发器获取的用于sTTI的物理层上行控制信道的资源单元索引信息和sTTI的时间信息,确定sTTI的物理层上行控制信道的无线资源块信息;
收发器还用于在处理器确定的sTTI的物理层上行控制信道的无线资源块上发送上行控制信息。
结合第九方面,在第九方面的第一种可能的实现方式中,收发器获取与下行控制信息相关的资源单位索引信息;根据与下行控制信息相关的资源单位索引信息和资源索引算法,确定用于sTTI的物理层上行控制信道的资源单元索引信息;或者
收发器获取基站发送的用于sTTI的物理层上行控制信道的资源单元索引 信息。
结合第九方面以及第九方面的第一种可能的实现方式,在第九方面的第二种可能的实现方式中,基站发送的用于sTTI的物理层上行控制信道的资源单元索引信息与sTTI的物理层上行控制信道的格式和/或sTTI的长度相关。
结合第九方面以及第九方面的第一种可能的实现方式,在第九方面的第三种可能的实现方式中,下行控制信息在物理层下行控制信道中承载,下行控制信息包括第一级下行控制信息和/或第二级下行控制信息;
收发器获取承载第一级下行控制信息的资源的资源单位索引信息或收发器获取承载第二级下行控制信息的资源的资源单位索引信息。
结合第九方面以及第九方面的第三种可能的实现方式,在第九方面的第四种可能的实现方式中,承载第一级下行控制信息的资源的资源单位索引信息为在物理层下行控制信道和/或sTTI的物理层下行控制信道承载的第一级下行控制信息的资源的资源单位索引信息;
承载第二级下行控制信息的资源的资源单位索引信息为在物理层下行控制信道和/或sTTI的物理层下行控制信道承载的第二级下行控制信息的资源的资源单位索引信息。
结合第九方面以及第九方面的第三种或第四种可能的实现方式,在第九方面的第五种可能的实现方式中,第一级下行控制信息的资源的资源单位索引信息为第一级下行控制信息所在资源的指定个资源单位的索引信息;
第二级下行控制信息的资源的资源单位索引信息为第二级下行控制信息所在资源的指定个资源单位的索引信息。
结合第九方面以及第九方面的第一种可能的实现方式,在第九方面的第六种可能的实现方式中,收发器获取承载下行控制信息的物理层下行共享信道和/或sTTI的物理层下行共享信道的资源信息;或
收发器获取下行控制信息在物理层下行共享信道和/或sTTI的物理层下行共享信道中的资源位置信息。
结合第九方面以及第九方面的第六种可能的实现方式,在第九方面的第 七种可能的实现方式中,承载下行控制信息的物理层下行共享信道和/或sTTI的物理层下行共享信道的资源信息为下行控制信息所在资源的指定个资源单位的索引信息;
承载下行控制信息的物理层下行共享信道和/或sTTI的物理层下行共享信道的资源的资源信息为下行控制信息所在资源的占用的资源单位个数。
结合第九方面以及第九方面的第一种可能的实现方式,在第九方面的第八种可能的实现方式中,下行控制信息在物理层下行控制信道和或物理层下行数据信道中承载,下行控制信息包括第一级下行控制信息和第二级下行控制信息;
收发器获取承载第一级下行控制信息的资源的资源单位索引信息与承载第二级下行控制信息的资源的资源单位索引信息的关系;根据承载第一级下行控制信息的资源的资源单位索引信息与承载第二级下行控制信息的资源的资源单位索引信息的关系,确定与下行控制信息相关的资源单位索引信息。
结合第九方面以及第九方面的第一种至第八种可能的实现方式中任意一种实现方式,在第九方面的第九种可能的实现方式中,收发器确定用于sTTI的上行物理控制信道的资源单元索引信息,符合下述公式(1)至(5)之一要求:
Figure PCTCN2016094977-appb-000093
Figure PCTCN2016094977-appb-000094
Figure PCTCN2016094977-appb-000095
Figure PCTCN2016094977-appb-000096
Figure PCTCN2016094977-appb-000097
其中,
Figure PCTCN2016094977-appb-000098
为用于sTTI的物理层上行控制信道的资源单元索引信息,k为上行物理控制信道的格式类型,
Figure PCTCN2016094977-appb-000099
为天线的端口号,
Figure PCTCN2016094977-appb-000100
为与用户设 备在sTTI上发送的上行物理控制信道的格式类型和/或sTTI长度类型相关的偏移值,deltasPUCCH为与HARQ的资源偏移值、上行物理控制信道对应的sTTI长度类型、上行物理控制信道的格式类型至少之一或组合相关的偏移值,或者sTTI的物理层上行控制信息所在物理层上行控制信道或上行信道的频带位置信息相关值,nsRU为与下行控制信息相关的资源单位索引信息,
Figure PCTCN2016094977-appb-000101
为约定资源块集合中的约定资源单元的下位资源单元的个数,n'为天线端口相关数值。
结合第九方面,在第九方面的第十种可能的实现方式中,处理器根据确定的用于sTTI的物理层上行控制信道的资源单元索引信息,确定sTTI的物理层上行控制信道的资源位置;以及根据sTTI的物理层上行控制信道的资源位置和sTTI的时间信息,确定sTTI的物理层上行控制信道的无线资源块信息。
结合第九方面以及第九方面的第十种可能的实现方式,在第九方面的第十一种可能的实现方式中,处理器在上行控制信道的频域上依据sTTI的长度分配频带,确定每个sTTI的长度对应的上行控制信道占用的频带,并在占用的频带中依据sTTI的物理层上行控制信道的格式,对sTTI的物理层上行控制信道使用的资源进行排序;或
处理器在上行控制信道的频域上依据sTTI的物理层上行控制信道的格式分配频带,确定每个sTTI的物理层上行控制信道的格式占用的频带,并在占用的频带中依据sTTI的长度对sTTI的物理层上行控制信道使用的资源进行排序。
结合第九方面以及第九方面的第十一种可能的实现方式,在第九方面的第十二种可能的实现方式中,处理器确定sTTI的物理层上行控制信道的资源位置,符合下述公式(6)至(12)之一:
Figure PCTCN2016094977-appb-000102
Figure PCTCN2016094977-appb-000103
Figure PCTCN2016094977-appb-000104
Figure PCTCN2016094977-appb-000105
Figure PCTCN2016094977-appb-000106
Figure PCTCN2016094977-appb-000107
Figure PCTCN2016094977-appb-000108
Figure PCTCN2016094977-appb-000109
其中,m为sTTI的物理层上行控制信道的资源位置,
Figure PCTCN2016094977-appb-000110
为sTTI的物理层上行控制信道的资源单元索引信息,k为上行物理控制信道的格式类型,
Figure PCTCN2016094977-appb-000111
为天线的端口号,M为sTTI的具体格式的物理层上行控制信道占用的资源块RB个数,K为有限个RB上能够复用的物理层上行控制信道的个数,
Figure PCTCN2016094977-appb-000112
为终端的循环偏移的个数,
Figure PCTCN2016094977-appb-000113
为终端循环偏移的间隔,
Figure PCTCN2016094977-appb-000114
为分配给终端的偏移值,
Figure PCTCN2016094977-appb-000115
为物理层上行控制信道的扩频因子。
结合第九方面以及第九方面的第一种至第十二种可能的实现方式中任意一种可能的实现方式,在第九方面的第十三种可能的实现方式中,资源单位索引信息包括以下信息之一:
sTTI的索引值、资源元素的索引值、资源元素的数量;
其中,索引值为系统级别或子带级别的索引值。
结合第九方面以及第九方面的第十三种可能的实现方式,在第九方面的第十四种可能的实现方式中,资源单位的索引号包括:下行控制信息所在的第一个资源单元的索引号。
结合第九方面以及第九方面的第十四种可能的实现方式,在第九方面的 第十五种可能的实现方式中,下行控制信息所在的第一个资源单元的索引号为下行控制信息所在的第一个资源单元在所在物理层下行控制信道、物理层下行数据信道、sTTI的物理层下行控制信道、sTTI的物理层下行数据信道之一的索引号。
结合第九方面以及第九方面的第十五种可能的实现方式,在第九方面的第十六种可能的实现方式中,资源单位包括下述单位之一:
一个或多个资源元素、一个或多个控制信道元素、多个资源元素组。
第十方面,提供的一种信息传输的设备,包括:
收发器、处理器和存储器;
收发器用于接收终端在sTTI的物理层上行控制信道的无线资源块上发送上行控制信息,sTTI的物理层上行控制信道的无线资源块是终端根据用于sTTI的物理层上行控制信道的资源单元索引信息和sTTI的时间信息确定的;
处理器用于根据上行控制信息进行调度。
结合第十方面,在第十方面的第一种可能的实现方式中,收发器在接收终端在sTTI的物理层上行控制信道的无线资源块上发送上行控制信息之前,向终端发送与下行控制信息相关的资源单位索引信息,以使终端根据与下行控制信息相关的资源单位索引信息和资源索引算法,确定用于sTTI的物理层上行控制信道的资源单元索引信息;或收发器向终端发送用于sTTI的物理层上行控制信道的资源单元索引信息。
结合第十方面以及第十方面的第一种可能的实现方式,在第十方面的第二种可能的实现方式中,向终端发送的用于sTTI的物理层上行控制信道的资源单元索引信息与sTTI的物理层上行控制信道的格式和/或sTTI的长度相关。
结合第十方面以及第十方面的第一种可能的实现方式,在第十方面的第三种可能的实现方式中,下行控制信息在物理层下行控制信道中承载,下行控制信息包括第一级下行控制信息和/或第二级下行控制信息;
收发器向终端发送承载第一级下行控制信息的资源的资源单位索引信息或收发器向终端发送承载第二级下行控制信息的资源的资源单位索引信息。
结合第十方面以及第十方面的第三种可能的实现方式,在第十方面的第四种可能的实现方式中,承载第一级下行控制信息的资源的资源单位索引信息为在物理层下行控制信道和/或sTTI的物理层下行控制信道承载的第一级下行控制信息的资源的资源单位索引信息;
承载第二级下行控制信息的资源的资源单位索引信息为在物理层下行控制信道和/或sTTI的物理层下行控制信道承载的第二级下行控制信息的资源的资源单位索引信息。
结合第十方面以及第十方面的第三种或第四种可能的实现方式,在第十方面的第五种可能的实现方式中,第一级下行控制信息的资源的资源单位索引信息为第一级下行控制信息所在资源的指定个资源单位的索引信息;
第二级下行控制信息的资源的资源单位索引信息为第二级下行控制信息所在资源的指定个资源单位的索引信息。
结合第十方面以及第十方面的第一种可能的实现方式,在第十方面的第六种可能的实现方式中,收发器向终端发送承载下行控制信息的物理层下行共享信道和/或sTTI的物理层下行共享信道的资源信息;或
收发器向终端发送下行控制信息在物理层下行共享信道和/或sTTI的物理层下行共享信道中的资源位置信息。
结合第十方面以及第十方面的第六种可能的实现方式,在第十方面的第七种可能的实现方式中,承载下行控制信息的物理层下行共享信道和/或sTTI的物理层下行共享信道的资源信息为下行控制信息所在资源的指定个资源单位的索引信息;
承载下行控制信息的物理层下行共享信道和/或sTTI的物理层下行共享信道的资源的资源信息为下行控制信息所在资源的占用的资源单位个数。
结合第十方面以及第十方面的第一种可能的实现方式,在第十方面的第八种可能的实现方式中,下行控制信息在物理层下行控制信道和或物理层下行数据信道中承载,下行控制信息包括第一级下行控制信息和第二级下行控制信息;
收发器获取承载第一级下行控制信息的资源的资源单位索引信息与承载第二级下行控制信息的资源的资源单位索引信息的关系;根据承载第一级下行控制信息的资源的资源单位索引信息与承载第二级下行控制信息的资源的资源单位索引信息的关系,确定与下行控制信息相关的资源单位索引信息。
结合第十方面以及第十方面的第一种至第八种可能的实现方式中任意一种实现方式,在第十方面的第九种可能的实现方式中,用于sTTI的上行物理控制信道的资源单元索引信息,符合下述公式(1)至(5)之一要求:
Figure PCTCN2016094977-appb-000116
Figure PCTCN2016094977-appb-000117
Figure PCTCN2016094977-appb-000118
Figure PCTCN2016094977-appb-000119
Figure PCTCN2016094977-appb-000120
其中,
Figure PCTCN2016094977-appb-000121
为用于sTTI的物理层上行控制信道的资源单元索引信息,k为上行物理控制信道的格式类型,
Figure PCTCN2016094977-appb-000122
为天线的端口号,
Figure PCTCN2016094977-appb-000123
为与用户设备在sTTI上发送的上行物理控制信道的格式类型和/或sTTI长度类型相关的偏移值,deltasPUCCH为与HARQ的资源偏移值、上行物理控制信道对应的sTTI长度类型、上行物理控制信道的格式类型至少之一或组合相关的偏移值,或者sTTI的物理层上行控制信息所在物理层上行控制信道或上行信道的频带位置信息相关值,nsRU为与下行控制信息相关的资源单位索引信息,
Figure PCTCN2016094977-appb-000124
为约定资源块集合中的约定资源单元的下位资源单元的个数,n'为天线端口相关数值。
结合第十方面,在第十方面的第十种可能的实现方式中,sTTI的物理层上行控制信道的无线资源块是终端根据用于sTTI的物理层上行控制信道的资 源单元索引信息和sTTI的时间信息确定的,包括:
根据确定的用于sTTI的物理层上行控制信道的资源单元索引信息,确定sTTI的物理层上行控制信道的资源位置;
根据sTTI的物理层上行控制信道的资源位置和sTTI的时间信息,确定sTTI的物理层上行控制信道的无线资源块信息。
结合第十方面以及第十方面的第十种可能的实现方式,在第十方面的第十一种可能的实现方式中,sTTI的物理层上行控制信道的资源位置是由下述步骤确定的,包括:
在上行控制信道的频域上依据sTTI的长度分配频带,确定每个sTTI的长度对应的上行控制信道占用的频带,并在占用的频带中依据sTTI的物理层上行控制信道的格式,对sTTI的物理层上行控制信道使用的资源进行排序;或
在上行控制信道的频域上依据sTTI的物理层上行控制信道的格式分配频带,确定每个sTTI的物理层上行控制信道的格式占用的频带,并在占用的频带中依据sTTI的长度对sTTI的物理层上行控制信道使用的资源进行排序。
结合第十方面以及第十方面的第十一种可能的实现方式,在第十方面的第十二种可能的实现方式中,sTTI的物理层上行控制信道的资源位置,符合下述公式(6)至(12)之一:
Figure PCTCN2016094977-appb-000125
Figure PCTCN2016094977-appb-000126
Figure PCTCN2016094977-appb-000127
Figure PCTCN2016094977-appb-000128
Figure PCTCN2016094977-appb-000129
Figure PCTCN2016094977-appb-000130
Figure PCTCN2016094977-appb-000131
Figure PCTCN2016094977-appb-000132
其中,m为sTTI的物理层上行控制信道的资源位置,
Figure PCTCN2016094977-appb-000133
为sTTI的物理层上行控制信道的资源单元索引信息,k为上行物理控制信道的格式类型,
Figure PCTCN2016094977-appb-000134
为天线的端口号,M为sTTI的具体格式的物理层上行控制信道占用的资源块RB个数,K为有限个RB上能够复用的物理层上行控制信道的个数,
Figure PCTCN2016094977-appb-000135
为终端的循环偏移的个数,
Figure PCTCN2016094977-appb-000136
为终端循环偏移的间隔,
Figure PCTCN2016094977-appb-000137
为分配给终端的偏移值,
Figure PCTCN2016094977-appb-000138
为物理层上行控制信道的扩频因子。
结合第十方面以及第十方面的第一种至第十二种可能的实现方式中任意一种可能的实现方式,在第十方面的第十三种可能的实现方式中,资源单位索引信息包括以下信息之一:
sTTI的索引值、资源元素的索引值、资源元素的数量;
其中,索引值为系统级别或子带级别的索引值。
结合第十方面以及第十方面的第十三种可能的实现方式,在第十方面的第十四种可能的实现方式中,资源单位的索引号包括:下行控制信息所在的第一个资源单元的索引号。
结合第十方面以及第十方面的第十四种可能的实现方式,在第十方面的第十五种可能的实现方式中,下行控制信息所在的第一个资源单元的索引号为下行控制信息所在的第一个资源单元在所在物理层下行控制信道、物理层下行数据信道、sTTI的物理层下行控制信道、sTTI的物理层下行数据信道之一的索引号。
结合第十方面以及第十方面的第十五种可能的实现方式,在第十方面的第十六种可能的实现方式中,资源单位包括下述单位之一:
一个或多个资源元素、一个或多个控制信道元素、多个资源元素组。
第十一方面,提供的一种信息传输的设备,包括:
收发器、处理器和存储器;
处理器用于配置长度为两个正交频分复用符号的sTTI物理层上行控制信 道的信号;
收发器用于发送配置的长度为两个正交频分复用符号的sTTI的物理层上行控制信道的信号。
结合第十一方面,在第十一方面的第一种可能的实现方式中,sTTI的物理层上行控制信道的信号包括参考信号和数据信号;
处理器配置参考信号位于两个正交频分复用符号对应的子帧的奇数或偶数个位置,数据信号位于除参考信号之外的位置。
结合第十一方面,在第十一方面的第二种可能的实现方式中,sTTI的物理层上行控制信道的信号包括参考信号和数据信号;
处理器配置至少一个参考信号在两个正交频分复用符号对应的子帧中与两个数据信号相邻,并被这两个数据信号共享。
结合第十一方面以及第十一方面的第二种可能的实现方式,在第十一方面的第三种可能的实现方式中,处理器配置一个参考信号位于两个数据信号的中间,剩余的参考信号与一个数据信号相邻。
结合第十一方面,在第十一方面的第四种可能的实现方式中,sTTI的物理层上行控制信道的信号包括参考信号和数据信号;
处理器配置参考信号和数据信号在每个正交频分复用符号上交替设置。
结合第十一方面以及第十一方面的第一种至第四种可能的实现方式中任意一种实现方式,在第十一方面的第五种可能的实现方式中,处理器将一个数据符号调制到一个数据信号上,将数据信号在频域上进行扩频。
结合第十一方面以及第十一方面的第一种至第四种可能的实现方式中任意一种实现方式,在第十一方面的第六种可能的实现方式中,处理器将两个数据符号调制到两个数据信号上,将两个数据信号在频域上进行扩频,将两个数据信号在时域上进行扩频。
结合第十一方面以及第十一方面的第一种至第四种可能的实现方式中任意一种实现方式,在第十一方面的第七种可能的实现方式中,处理器将多个数据符号调制到多个数据信号,并将多个数据信号放在同一个正交频分复用 符号的频域载波上。
第十二方面,提供的一种信息传输的设备,包括:
收发器、处理器和存储器;
收发器用于接收终端发送的长度为两个正交频分复用符号的sTTI的物理层上行控制信道的信号,长度为两个正交频分复用符号的sTTI的物理层上行控制信道的信号是由终端配置的;
处理器用于根据长度为两个正交频分复用符号的sTTI的物理层上行控制信道的信号进行调度。
结合第十二方面,在第十二方面的第一种可能的实现方式中,长度为两个正交频分复用符号的sTTI的物理层上行控制信道的信号包括参考信号和数据信号;
其中,参考信号位于两个正交频分复用符号对应的子帧的奇数或偶数个位置,数据信号位于除参考信号之外的位置。
结合第十二方面,在第十二方面的第二种可能的实现方式中,长度为两个正交频分复用符号的sTTI的物理层上行控制信道的信号包括参考信号和数据信号;
其中,至少一个参考信号在两个正交频分复用符号对应的子帧中与两个数据信号相邻,并被这两个数据信号共享。
结合第十二方面以及第十二方面的第二种可能的实现方式,在第十二方面的第三种可能的实现方式中,至少一个参考信号在两个正交频分复用符号对应的子帧中与两个数据信号相邻为一个参考信号位于两个数据信号的中间,剩余的参考信号与一个数据信号相邻。
结合第十二方面,在第十二方面的第四种可能的实现方式中,长度为两个正交频分复用符号的sTTI的物理层上行控制信道的信号包括参考信号和数据信号;
其中,参考信号和数据信号在每个正交频分复用符号上交替设置。
结合第十二方面以及第十二方面的第一种至第四种可能的实现方式中任 意一种实现方式,在第十二方面的第五种可能的实现方式中,长度为两个正交频分复用符号的sTTI的物理层上行控制信道的信号包括一个数据符号被调制到一个数据信号上,且数据信号在频域上被扩频。
结合第十二方面以及第十二方面的第一种至第四种可能的实现方式中任意一种实现方式,在第十二方面的第六种可能的实现方式中,长度为两个正交频分复用符号的sTTI的物理层上行控制信道的信号包括两个数据符号被调制到两个数据信号上,两个数据信号在频域上被扩频,两个数据信号在时域上被扩频。
结合第十二方面以及第十二方面的第一种至第四种可能的实现方式中任意一种实现方式,在第十二方面的第七种可能的实现方式中,长度为两个正交频分复用符号的sTTI的物理层上行控制信道的信号包括多个数据符号被调制到多个数据信号,且多个数据信号被放在同一个正交频分复用符号的频域载波上。
本发明实施例表明,终端获取用于sTTI的物理层上行控制信道的资源单元索引信息,然后该终端根据该用于sTTI的物理层上行控制信道的资源单元索引信息和该sTTI的时间信息,确定sTTI的物理层上行控制信道的无线资源块信息,并在该sTTI的物理层上行控制信道的无线资源块上发送上行控制信息。通过获取的用于sTTI的物理层上行控制信道的资源单元索引信息以及该sTTI的时间信息可以得到该sTTI的物理层上行控制信道的无线资源块信息,从而可以得到终端的sTTI的物理层上行控制信道的可以承载上行控制信息的资源的位置,实现不同的sTTI的终端在不同的物理层上行控制信道的资源位置上使用资源,避免终端传输上行控制信息出现错误。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简要介绍。
图1为现有技术中一种无线子帧的结构示意图;
图2为本发明实施例提供的一种系统结构的示意图;
图3为本发明实施例提供的一种信息传输的方法的流程示意图;
图4为本发明实施例提供的一种信息传输的方法的流程示意图;
图5为本发明实施例提供的一种物理上行控制信道的结构示意图;
图6为本发明实施例提供的一种物理上行控制信道的结构示意图;
图7为本发明实施例提供的一种物理上行控制信道的结构示意图;
图8为本发明实施例提供的一种物理上行控制信道的结构示意图;
图9为本发明实施例提供的一种物理上行控制信道的结构示意图;
图10为本发明实施例提供的一种物理上行控制信道的结构示意图;
图11为本发明实施例提供的一种物理上行控制信道的结构示意图;
图12为本发明实施例提供的一种信息传输的装置的结构示意图;
图13为本发明实施例提供的一种信息传输的装置的结构示意图;
图14为本发明实施例提供的一种信息传输的装置的结构示意图;
图15为本发明实施例提供的一种信息传输的装置的结构示意图;
图16为本发明实施例提供的一种信息传输的设备的结构示意图;
图17为本发明实施例提供的一种信息传输的设备的结构示意图;
图18为本发明实施例提供的一种信息传输的设备的结构示意图;
图19为本发明实施例提供的一种信息传输的设备的结构示意图。
具体实施方式
本发明的实施例中,为了使本发明的目的、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
为了使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步地详细描述。
图2示例性的示出了本发明实施例适用的一种系统结构,如图2所示,UE1分别与eNB1和eNB2连接,组成LTE通信系统,UE1与eNB1和eNB2 可以进行信息传输。eNB1或eNB2可以向UE1发送sPUCCH资源映射相关的参数,以便UE1能够计算出对应的sPUCCH的资源位置。UE1接收eNB1或eNB2发送的sPUCCH资源映射相关的参数,计算出sPUCCH的资源位置,并在此位置上发送sPUCCH的内容。
在本发明实施例中,UE还可以处于LTE网络的多种架构下,如多载波、多小区、有MeNB/SeNB、远程拉远单元(Remote Radio Head,RRH)等部署场景。
本文中结合终端和/或基站来描述各种方面。终端,指向用户提供语音和/或数据连通性的设备(device),包括无线终端或有线终端。无线终端可以是具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备,经无线接入网与一个或多个核心网进行通信的移动终端。例如,无线终端可以是移动电话(或称为“蜂窝”电话)和具有移动终端的计算机。又如,无线终端也可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置。再如,无线终端可以为移动站(Mobile Station,MS)、接入点(Access Point,AP)、或用户设备的一部分。为方便描述,本发明实施例中,简称为终端。
本发明实施例中,eNB包括但不限于基站、节点、站控制器、接入点(Access Point,简称AP)、或任何其它类型的能够在无线环境中工作的接口设备。
基于上述描述内容,图3示例性的示出了本发明实施例提供的一种信息传输的方法的流程,该流程可以由信息传输装置实现,该信息传输装置可以包括终端和基站。
如图3所示,该流程具体步骤包括:
步骤301,终端获取用于sTTI的物理层上行控制信道的资源单元索引信息。
步骤302,终端根据用于sTTI的物理层上行控制信道的资源单元索引信息和sTTI的时间信息,确定sTTI的物理层上行控制信道的无线资源块信息。
步骤303,终端在sTTI的物理层上行控制信道的无线资源块上发送上行控制信息。
步骤304,基站接收终端在sTTI的物理层上行控制信道的无线资源块上发送上行控制信息。
步骤305,基站根据上行控制信息进行调度。
在本发明实施例中,上行控制信息(Uplink Control Information,UCI)包括:SR:Scheduling Request。用于向eNodeB请求上行UL-SCH资源。HARQ ACK(Acknowledgement,应答)/NACK(Negative Acknowledgment,否定应答):对在PDSCH上发送的下行数据进行HARQ确认。CSI(Channel State Information,信道状态信息):包括CQI(Channel Quality Indicator,信道质量指示)、PMI(Precoding Matrix Indicator,预编码矩阵指示)、RI(rank indication,秩指示)等信息。用于告诉eNodeB下行信道质量等,以帮助eNB进行下行调度。该UCI在PUCCH传输,当然非周期CSI信息也可以在PUSCH信道上传输。
上述上行控制信息是终端在sTTI的物理层上行控制信道上向基站发送的,为了能够更好的确定承载上行控制信息的sTTI的物理层上行控制信道的无线资源块信息,在上述步骤301中,该终端需要获取用于sTTI的物理层上行控制信道的资源单元索引信息,该用于sTTI的物理层上行控制信道的资源单元索引信息可以是终端自己确定的也可以是基站发送的,以使终端可以得到该sTTI的物理层上行控制信道的无线资源块信息。具体的,终端可以获取与下行控制信息相关的资源单位索引信息,然后根据该与下行控制信息相关的资源单位索引信息和资源索引算法,确定用于sTTI的物理层上行控制信道的资源单元索引信息。终端获取的与下行控制信息相关的资源单位索引信息是终端根据基站发送的下行控制信息的位置获得的。上述资源索引算法包括依据与下行控制信息相关的资源单位索引信息和终端在sTTI上发送的上行物理控制信道的格式类型和/或sTTI长度类型相关的偏移值,确定用于sTTI的物理层上行控制信道的资源单元索引信息。
终端也可以获取基站发送的用于sTTI的物理层上行控制信道的资源单元索引信息。该基站发送的用于sTTI的物理层上行控制信道的资源单元索引信 息与sTTI的物理层上行控制信道的格式和/或sTTI的长度相关,也就是说该基站发送的用于sTTI的物理层上行控制信道的资源单元索引信息是由sTTI的物理层上行控制信道的格式和/或sTTI的长度决定的。基站通过sTTI的物理层上行控制信道的格式和/或sTTI的长度确定的用于sTTI的物理层上行控制信道的资源单元索引信息,可以使得终端更准确的获得该sTTI的物理层上行控制信道的无线资源块信息。
上述终端获取的与下行控制信息相关的资源单位索引信息是基站发送的,具体的可以通过下述三种方式获取。
方式一
上述下行控制信息是在物理层下行控制信道中承载,该下行控制信息包括第一级下行控制信息和/或第二级下行控制信息。需要注意的是,在本发明实施例中,物理层下行控制信道为1ms子帧对应的物理层下行控制信道。通常为1ms子帧内前1到3个OFMD长度的下行控制信道。该第一级下行控制信息为两级下行控制信息中的第一级下行控制信息,该第二级下行信息为两级下行控制信息中的第二级下行信息。
终端可以获取承载第一级下行控制信息的资源的资源单位索引信息,也可以获取承载第二级下行控制信息的资源的资源单位索引信息。该承载第一级下行控制信息的资源位于物理层下行控制信道中。
进一步地,该承载第一级下行控制信息的资源的资源单位索引信息为在物理层下行控制信道和/或sTTI的物理层下行控制信道承载的第一级下行控制信息的资源的资源单位索引信息。比如可以是sTTI的控制信道元素的索引值或资源元素的索引值。该承载第二级下行控制信息的资源的资源单位索引信息为在物理层下行控制信道和/或sTTI的物理层下行控制信道承载的第二级下行控制信息的资源的资源单位索引信息。
更进一步地,该第一级下行控制信息的资源的资源单位索引信息为第一级下行控制信息所在资源的指定个资源单位的索引信息。该第二级下行控制信息的资源的资源单位索引信息为第二级下行控制信息所在资源的指定个资 源单位的索引信息。比如,该指定个为第一个或两个等。
方式二
上述下行控制信息是在物理层下行共享信道和/或sTTI的物理层下行共享信道中承载的。
终端获取承载下行控制信息的物理层下行共享信道和/或sTTI的物理层下行共享信道的资源信息;或
终端获取下行控制信息在物理层下行共享信道和/或sTTI的物理层下行共享信道中的资源位置信息。
进一步地,上述承载下行控制信息的物理层下行共享信道和/或sTTI的物理层下行共享信道的资源信息为下行控制信息所在资源的指定个资源单位的索引信息,上述承载下行控制信息的物理层下行共享信道和/或sTTI的物理层下行共享信道的资源的资源信息为下行控制信息所在资源的占用的资源单位个数。在本发明实施例中该资源信息可以为单位索引信息、sTTI索引值、RE索引值或资源单位数量标识等信息,此处的索引值可以为系统级别或者子带级别的索引值。
方式三
上述下行控制信息是在物理层下行控制信道和或物理层下行数据信道中承载的,该下行控制信息包括第一级下行控制信息和第二级下行控制信息。
终端获取承载第一级下行控制信息的资源的资源单位索引信息与承载第二级下行控制信息的资源的资源单位索引信息的关系,然后根据该承载第一级下行控制信息的资源的资源单位索引信息与该承载第二级下行控制信息的资源的资源单位索引信息的关系,确定与下行控制信息相关的资源单位索引信息。这里的承载第一级下行控制信息的资源的资源单位索引信息与承载第二级下行控制信息的资源的资源单位索引信息的关系可以是两者之间的一种函数表现形式,比如,可以是两者之和,或其他的计算方式。
为了更好的确定用于sTTI的上行物理控制信道的资源单元索引信息,终端在确定用于sTTI的上行物理控制信道的资源单元索引信息时所使用的资源 索引算法,需要符合下述公式(1)至(5)之一要求:
Figure PCTCN2016094977-appb-000139
Figure PCTCN2016094977-appb-000140
Figure PCTCN2016094977-appb-000141
Figure PCTCN2016094977-appb-000142
Figure PCTCN2016094977-appb-000143
其中,
Figure PCTCN2016094977-appb-000144
为用于sTTI的物理层上行控制信道的资源单元索引信息,k为上行物理控制信道的格式类型,
Figure PCTCN2016094977-appb-000145
为天线的端口号,
Figure PCTCN2016094977-appb-000146
为与用户设备在sTTI上发送的上行物理控制信道的格式类型和/或sTTI长度类型相关的偏移值,deltasPUCCH为与混合自动重传请求HARQ的资源偏移值、上行物理控制信道对应的sTTI长度类型、上行物理控制信道的格式类型至少之一或组合相关的偏移值,或者sTTI的物理层上行控制信息所在物理层上行控制信道或上行信道的频带位置信息相关值,nsRU为与下行控制信息相关的资源单位索引信息,
Figure PCTCN2016094977-appb-000147
为约定资源块集合中的约定资源单元的下位资源单元的个数,n'为天线端口相关数值。上述
Figure PCTCN2016094977-appb-000148
可以表示特定sTTI的物理层上行控制信道格式下特定sTTI长度类型的物理层上行控制信道占据的信道带宽,或者可以表示特定sTTI长度类型的特定格式的物理层上行控制信道占据的信道带宽。
在上述步骤302中,终端根据确定的用于sTTI的物理层上行控制信道的资源单元索引信息和sTTI的时间信息,确定sTTI的物理层上行控制信道的无线资源块信息具体的为:终端根据确定的用于sTTI的物理层上行控制信道的资源单元索引信息,确定sTTI的物理层上行控制信道的资源位置,然后终端根据该sTTI的物理层上行控制信道的资源位置和sTTI的时间信息,确定sTTI 的物理层上行控制信道的无线资源块信息。上述sTTI的物理层上行控制信道的资源位置可以用m表示。
具体的,终端在确定sTTI的物理层上行控制信道的资源位置时,是通过在上行控制信道的频域上依据sTTI的长度分配频带,确定每个sTTI的长度对应的上行控制信道占用的频带,并在占用的频带中依据sTTI的物理层上行控制信道的格式,对sTTI的物理层上行控制信道使用的资源进行排序。也可以是通过在上行控制信道的频域上依据sTTI的物理层上行控制信道的格式分配频带,确定每个sTTI的物理层上行控制信道的格式占用的频带,并在占用的频带中依据sTTI的长度对sTTI的物理层上行控制信道使用的资源进行排序。
在sTTI场景下,有多个不同长度的TTI,每个TTI又有对应的PUCCH的格式,具体sTTI的物理层上行控制信道的资源位置m的计算需要符合如下两个原则:
1、m=f(n_nos_spucch1/3/4/5),具体的f函数的设计,可使用36.211的1ms时针对各个format的数值,针对各个m值,即具体的sTTI的物理层上行控制信道的资源位置在频域先依据sTTI类型的长度进行映射,sTTI(2os/4os/7os)至少之一占用相应的频带。在频带内部依据sTTI的物理层上行控制信道的格式,按照格式类型的优先级排序。该原则是先对分频带,然后在每一个频带中依据格式进行分配。
2、m=f(n_spucch1/3/4/5_nos),依据sTTI的物理层上行控制信道的格式分频带,在同一个sTTI的物理层上行控制信道的格式里面继续依据sTTI类型分频带。先依据sTTI的物理层上行控制信道的格式分频带,然后再依据sTTI类型分频带。
基于上述两个原则,终端确定sTTI的物理层上行控制信道的资源位置m,需要符合下述公式(6)至(12)之一:
Figure PCTCN2016094977-appb-000149
Figure PCTCN2016094977-appb-000150
Figure PCTCN2016094977-appb-000151
Figure PCTCN2016094977-appb-000152
Figure PCTCN2016094977-appb-000153
Figure PCTCN2016094977-appb-000154
Figure PCTCN2016094977-appb-000155
Figure PCTCN2016094977-appb-000156
其中,m为sTTI的物理层上行控制信道的资源位置,
Figure PCTCN2016094977-appb-000157
为sTTI的物理层上行控制信道的资源单元索引信息,k为上行物理控制信道的格式类型,
Figure PCTCN2016094977-appb-000158
为天线的端口号,M为sTTI的具体格式的物理层上行控制信道占用的资源块RB个数,K为有限个RB上能够复用的物理层上行控制信道的个数,
Figure PCTCN2016094977-appb-000159
为终端的循环偏移的个数,
Figure PCTCN2016094977-appb-000160
为终端循环偏移的间隔,
Figure PCTCN2016094977-appb-000161
为分配给终端的偏移值,
Figure PCTCN2016094977-appb-000162
为物理层上行控制信道的扩频因子。
相应地,终端在确定出sTTI的物理层上行控制信道的无线资源块信息之后,就可以基于该sTTI的物理层上行控制信道的无线资源块向基站发送上行控制信息。
在步骤304中,基站接收到的终端在sTTI的物理层上行控制信道的无线资源块上发送上行控制信息时,其中该sTTI的物理层上行控制信道的无线资源块是终端根据用于sTTI的物理层上行控制信道的资源单元索引信息和sTTI的时间信息确定的。基站在接收到该上行控制信息之后可以根据该上行控制信息进行调度。
优选地,基站在在接收终端在sTTI的物理层上行控制信道的无线资源块 上发送上行控制信息之前,基站需要向终端发送与下行控制信息相关的资源单位索引信息,以使终端根据与下行控制信息相关的资源单位索引信息和资源索引算法,确定用于sTTI的物理层上行控制信道的资源单元索引信息。该基站向终端发送的与下行控制信息相关的资源单元索引信息是隐式发送的,基站只是发送下行控制信息,终端根据下行控制信息的位置,获得与下行控制信息相关的资源单位索引信息。也可以是基站向终端发送用于sTTI的物理层上行控制信道的资源单元索引信息。基站向终端发送的用于sTTI的物理层上行控制信道的资源单元索引信息与sTTI的物理层上行控制信道的格式和/或sTTI的长度相关。具体的终端根据与下行控制信息相关的资源单位索引信息和资源索引算法,确定用于sTTI的物理层上行控制信道的资源单元索引信息的流程,已在上述实施例中描述,在此不再赘述。
在本发明实施例中描述的资源单位索引信息包括以下信息之一:sTTI的索引值、资源元素的索引值、资源元素的数量。其中,索引值为系统级别或子带级别的索引值。
资源单位的索引号包括:下行控制信息所在的第一个资源单元的索引号。
进一步地,该下行控制信息所在的第一个资源单元的索引号可以为下行控制信息所在的第一个资源单元在所在物理层下行控制信道、物理层下行数据信道、sTTI的物理层下行控制信道、sTTI的物理层下行数据信道之一的索引号。其中,上述资源单位包括下述单位之一:一个或多个资源元素、一个或多个控制信道元素、多个资源元素组。比如,可以是有限个资源元素、有限个控制信道元素、或有限个资源元素组,本发明实施例仅是示例作用,对此不做限制。
上述实施例表明,终端通过获取用于sTTI的物理层上行控制信道的资源单元索引信息,然后该终端根据该用于sTTI的物理层上行控制信道的资源单元索引信息和该sTTI的时间信息,确定sTTI的物理层上行控制信道的无线资源块信息,并在该sTTI的物理层上行控制信道的无线资源块上发送上行控制信息。通过获取的用于sTTI的物理层上行控制信道的资源单元索引信息以及 该sTTI的时间信息可以得到该sTTI的物理层上行控制信道的无线资源块信息,从而可以得到终端的sTTI的物理层上行控制信道的可以承载上行控制信息的资源的位置,避免终端传输上行控制信息出现错误。
图4示例性的示出了本发明实施例提供的一种信息传输的方法的流程,该流程可以由信息传输装置实现,该信息传输装置可以包括终端和基站。
如图4所示,该流程具体步骤包括:
步骤401,终端配置长度为两个正交频分复用符号的sTTI物理层上行控制信道的信号。
步骤402,终端发送配置的长度为两个正交频分复用符号的sTTI的物理层上行控制信道的信号。
步骤403,基站接收终端发送的长度为两个正交频分复用符号的sTTI的物理层上行控制信道的信号。
步骤404,基站根据长度为两个正交频分复用符号的sTTI的物理层上行控制信道的信号进行调度。
在本发明实施例中,sTTI的物理层上行控制信道的信号可以包括参考信号和数据信号。具体的,终端在配置长度为两个正交频分复用符号的sTTI的物理层上行控制信道的信号时,可以是通过下述三个方式进行配置。
方式一
终端配置参考信号位于两个正交频分复用符号对应的子帧的奇数或偶数个位置,数据信号位于除参考信号之外的位置。如图5所示,在0.5ms子帧内包含有7个os符号的位置,使用斜线表示参考信号位于0、2、4这三个位置的os上,其它的位置为数据信号所在的位置。而如图6所示,使用斜线表示参考信号位于1、3、5这三个位置的os上,其它的位置为数据信号所在的位置。
从图5或图6中可以看出,上述终端配置的参考信号和数据信号中,终端需要配置至少一个参考信号在两个正交频分复用符号对应的子帧中与两个数据信号相邻,并被这两个数据信号共享。
方式二
终端需要配置一个参考信号位于两个数据信号的中间,剩余的参考信号与一个数据信号相邻。具体的,如图7所示,位于0和2位置上的参考信号与一个数据信号相邻,而5号位置上的参考信号是位于两个数据信号的中间,被这两个数据信号共享。如图8所示,位于4和6位置上的参考信号分别与一个数据信号相邻,而1号位置上的参考信号是位于两个数据信号的中间,被这两个数据信号共享。
方式三
终端需要配置参考信号和数据信号在每个正交频分复用符号上交替设置。如图9所示,在每个正交频分复用符号上十二个RE中,将参考信号和数据信号交替设置。
基于上述终端配置参考信号和数据信号的方式,终端需要对数据信号进行处理,也就是需要在频域和时域上进行扩频。首先,终端将一个数据符号调制到一个数据信号上,将数据信号在频域上进行扩频。具体的,如图10所示,直接在频域上进行长为12的扩频,并在系统带宽中用于sTTI的物理层上行控制信道的任一侧发送。
其次,终端可以将两个数据符号调制到两个数据信号上,将两个数据信号在频域上进行扩频,将两个数据信号在时域上进行扩频。具体的,如图11所示,直接在频域上进行长为12的扩频,并在长度为两个正交频分复用符号上做长为2倍的时域扩频,并在系统带宽中用于sTTI的物理层上行控制信道的任一侧发送。
进一步地,终端还可以将多个数据符号调制到多个数据信号,并将多个数据信号放在同一个正交频分复用符号的频域载波上。
终端在配置完上述长度为两个正交频分复用符号的sTTI物理层上行控制信道的信号之后,将该长度为两个正交频分复用符号的sTTI物理层上行控制信道的信号发送给基站。
在步骤403中,基站接收终端发送的该长度为两个正交频分复用符号的 sTTI物理层上行控制信道的信号,具体的该长度为两个正交频分复用符号的sTTI物理层上行控制信道的格式在上述实施例中已经描述,不再赘述。
上述实施例表明,终端通过配置长度为两个正交频分复用符号的sTTI物理层上行控制信道的信号,针对长度为两个正交频分复用符号,可以约定在一个0.5ms内的数据信号和参考信号的放置位置。
基于相同的技术构思,图12示例性的示出了本发明实施例提供的一种信息传输的装置,该装置可以执行信息传输的流程,该装置可以位于终端内,也可以是该终端。
如图12所示,该装置具体包括:
收发单元1201,用于获取用于sTTI的物理层上行控制信道的资源单元索引信息;
处理单元1202,用于根据所述收发单元1201获取的用于sTTI的物理层上行控制信道的资源单元索引信息和所述sTTI的时间信息,确定所述sTTI的物理层上行控制信道的无线资源块信息;
所述收发单元1201还用于在所述处理单元1202确定的所述sTTI的物理层上行控制信道的无线资源块上发送上行控制信息。
优选地,所述收发单元1201具体用于:
获取与下行控制信息相关的资源单位索引信息;根据所述与下行控制信息相关的资源单位索引信息和资源索引算法,确定用于sTTI的物理层上行控制信道的资源单元索引信息;或者
获取基站发送的用于sTTI的物理层上行控制信道的资源单元索引信息。
优选地,所述基站发送的用于sTTI的物理层上行控制信道的资源单元索引信息与sTTI的物理层上行控制信道的格式和/或sTTI的长度相关。
优选地,所述下行控制信息在物理层下行控制信道中承载,所述下行控制信息包括第一级下行控制信息和/或第二级下行控制信息;
所述收发单元1201具体用于:
获取承载所述第一级下行控制信息的资源的资源单位索引信息或获取承 载所述第二级下行控制信息的资源的资源单位索引信息。
优选地,承载所述第一级下行控制信息的资源的资源单位索引信息为在物理层下行控制信道和/或sTTI的物理层下行控制信道承载的第一级下行控制信息的资源的资源单位索引信息;
承载所述第二级下行控制信息的资源的资源单位索引信息为在物理层下行控制信道和/或sTTI的物理层下行控制信道承载的第二级下行控制信息的资源的资源单位索引信息。
优选地,所述第一级下行控制信息的资源的资源单位索引信息为第一级下行控制信息所在资源的指定个资源单位的索引信息;
所述第二级下行控制信息的资源的资源单位索引信息为第二级下行控制信息所在资源的指定个资源单位的索引信息。
优选地,所述收发单元1201具体用于:
获取承载所述下行控制信息的物理层下行共享信道和/或sTTI的物理层下行共享信道的资源信息;或
获取所述下行控制信息在物理层下行共享信道和/或sTTI的物理层下行共享信道中的资源位置信息。
优选地,承载所述下行控制信息的物理层下行共享信道和/或sTTI的物理层下行共享信道的资源信息为所述下行控制信息所在资源的指定个资源单位的索引信息;
承载所述下行控制信息的物理层下行共享信道和/或sTTI的物理层下行共享信道的资源的资源信息为所述下行控制信息所在资源的占用的资源单位个数。
优选地,所述下行控制信息在物理层下行控制信道和或物理层下行数据信道中承载,所述下行控制信息包括第一级下行控制信息和第二级下行控制信息;
所述收发单元1201具体用于:
获取承载所述第一级下行控制信息的资源的资源单位索引信息与承载所 述第二级下行控制信息的资源的资源单位索引信息的关系;
根据所述承载所述第一级下行控制信息的资源的资源单位索引信息与承载所述第二级下行控制信息的资源的资源单位索引信息的关系,确定与下行控制信息相关的资源单位索引信息。
优选地,所述收发单元1201具体用于:
确定所述用于sTTI的上行物理控制信道的资源单元索引信息,符合下述公式(1)至(5)之一要求:
Figure PCTCN2016094977-appb-000163
Figure PCTCN2016094977-appb-000164
Figure PCTCN2016094977-appb-000165
Figure PCTCN2016094977-appb-000166
Figure PCTCN2016094977-appb-000167
其中,
Figure PCTCN2016094977-appb-000168
为用于sTTI的物理层上行控制信道的资源单元索引信息,k为上行物理控制信道的格式类型,
Figure PCTCN2016094977-appb-000169
为天线的端口号,
Figure PCTCN2016094977-appb-000170
为与用户设备在sTTI上发送的上行物理控制信道的格式类型和/或sTTI长度类型相关的偏移值,deltasPUCCH为与HARQ的资源偏移值、上行物理控制信道对应的sTTI长度类型、上行物理控制信道的格式类型至少之一或组合相关的偏移值,或者sTTI的物理层上行控制信息所在物理层上行控制信道或上行信道的频带位置信息相关值,nsRU为与下行控制信息相关的资源单位索引信息,
Figure PCTCN2016094977-appb-000171
为约定资源块集合中的约定资源单元的下位资源单元的个数,n'为天线端口相关数值。
优选地,所述处理单元1202具体用于:
根据所述确定的用于sTTI的物理层上行控制信道的资源单元索引信息, 确定所述sTTI的物理层上行控制信道的资源位置;
根据所述sTTI的物理层上行控制信道的资源位置和所述sTTI的时间信息,确定所述sTTI的物理层上行控制信道的无线资源块信息。
优选地,所述处理单元1202具体用于:
在所述上行控制信道的频域上依据sTTI的长度分配频带,确定每个sTTI的长度对应的上行控制信道占用的频带,并在所述占用的频带中依据所述sTTI的物理层上行控制信道的格式,对sTTI的物理层上行控制信道使用的资源进行排序;或
在所述上行控制信道的频域上依据sTTI的物理层上行控制信道的格式分配频带,确定每个sTTI的物理层上行控制信道的格式占用的频带,并在所述占用的频带中依据所述sTTI的长度对sTTI的物理层上行控制信道使用的资源进行排序。
优选地,所述处理单元1202具体用于:
确定所述sTTI的物理层上行控制信道的资源位置,符合下述公式(6)至(12)之一:
Figure PCTCN2016094977-appb-000172
Figure PCTCN2016094977-appb-000173
Figure PCTCN2016094977-appb-000174
Figure PCTCN2016094977-appb-000175
Figure PCTCN2016094977-appb-000176
Figure PCTCN2016094977-appb-000177
Figure PCTCN2016094977-appb-000178
Figure PCTCN2016094977-appb-000179
其中,m为sTTI的物理层上行控制信道的资源位置,
Figure PCTCN2016094977-appb-000180
为sTTI的物理层上行控制信道的资源单元索引信息,k为上行物理控制信道的格式类型,
Figure PCTCN2016094977-appb-000181
为天线的端口号,M为sTTI的具体格式的物理层上行控制信道占用的资源块RB个数,K为有限个RB上能够复用的物理层上行控制信道的个数,
Figure PCTCN2016094977-appb-000182
为终端的循环偏移的个数,
Figure PCTCN2016094977-appb-000183
为终端循环偏移的间隔,
Figure PCTCN2016094977-appb-000184
为分配给终端的偏移值,
Figure PCTCN2016094977-appb-000185
为物理层上行控制信道的扩频因子。
优选地,所述资源单位索引信息包括以下信息之一:
sTTI的索引值、资源元素的索引值、资源元素的数量;
其中,所述索引值为系统级别或子带级别的索引值。
优选地,所述资源单位的索引号包括:下行控制信息所在的第一个资源单元的索引号。
优选地,所述下行控制信息所在的第一个资源单元的索引号为所述下行控制信息所在的第一个资源单元在所在物理层下行控制信道、物理层下行数据信道、sTTI的物理层下行控制信道、sTTI的物理层下行数据信道之一的索引号。
优选地,所述资源单位包括下述单位之一:
一个或多个资源元素、一个或多个控制信道元素、多个资源元素组。
基于相同的技术构思,图13示例性的示出了本发明实施例提供的一种信息传输的装置的结构,该装置可以执行信息传输的流程,该装置可以位于基站内,也可以是该基站。
如图13所示,该装置具体包括:
收发单元1301,用于接收终端在sTTI的物理层上行控制信道的无线资源块上发送上行控制信息,所述sTTI的物理层上行控制信道的无线资源块是所述终端根据用于sTTI的物理层上行控制信道的资源单元索引信息和所述sTTI的时间信息确定的;
处理单元1302,用于根据所述上行控制信息进行调度。
优选地,所述收发单元1301还用于:
在接收终端在sTTI的物理层上行控制信道的无线资源块上发送上行控制信息之前,向所述终端发送与下行控制信息相关的资源单位索引信息,以使所述终端根据所述与下行控制信息相关的资源单位索引信息和资源索引算法,确定用于sTTI的物理层上行控制信道的资源单元索引信息;或向所述终端发送用于sTTI的物理层上行控制信道的资源单元索引信息。
优选地,所述向所述终端发送的用于sTTI的物理层上行控制信道的资源单元索引信息与sTTI的物理层上行控制信道的格式和/或sTTI的长度相关。
优选地,所述下行控制信息在物理层下行控制信道中承载,所述下行控制信息包括第一级下行控制信息和/或第二级下行控制信息;
所述收发单元1301具体用于:
向所述终端发送承载所述第一级下行控制信息的资源的资源单位索引信息或向所述终端发送承载所述第二级下行控制信息的资源的资源单位索引信息。
优选地,承载所述第一级下行控制信息的资源的资源单位索引信息为在物理层下行控制信道和/或sTTI的物理层下行控制信道承载的第一级下行控制信息的资源的资源单位索引信息;
承载所述第二级下行控制信息的资源的资源单位索引信息为在物理层下行控制信道和/或sTTI的物理层下行控制信道承载的第二级下行控制信息的资源的资源单位索引信息。
优选地,所述第一级下行控制信息的资源的资源单位索引信息为第一级下行控制信息所在资源的指定个资源单位的索引信息;
所述第二级下行控制信息的资源的资源单位索引信息为第二级下行控制信息所在资源的指定个资源单位的索引信息。
优选地,所述收发单元1301具体用于:
向所述终端发送承载所述下行控制信息的物理层下行共享信道和/或sTTI的物理层下行共享信道的资源信息;或
向所述终端发送所述下行控制信息在物理层下行共享信道和/或sTTI的物理层下行共享信道中的资源位置信息。
优选地,承载所述下行控制信息的物理层下行共享信道和/或sTTI的物理层下行共享信道的资源信息为所述下行控制信息所在资源的指定个资源单位的索引信息;
承载所述下行控制信息的物理层下行共享信道和/或sTTI的物理层下行共享信道的资源的资源信息为所述下行控制信息所在资源的占用的资源单位个数。
优选地,所述下行控制信息在物理层下行控制信道和或物理层下行数据信道中承载,所述下行控制信息包括第一级下行控制信息和第二级下行控制信息;
所述收发单元1301具体用于:
获取承载所述第一级下行控制信息的资源的资源单位索引信息与承载所述第二级下行控制信息的资源的资源单位索引信息的关系;
根据所述承载所述第一级下行控制信息的资源的资源单位索引信息与承载所述第二级下行控制信息的资源的资源单位索引信息的关系,确定与下行控制信息相关的资源单位索引信息。
优选地,所述用于sTTI的上行物理控制信道的资源单元索引信息,符合下述公式(1)至(5)之一要求:
Figure PCTCN2016094977-appb-000186
Figure PCTCN2016094977-appb-000187
Figure PCTCN2016094977-appb-000188
Figure PCTCN2016094977-appb-000189
Figure PCTCN2016094977-appb-000190
其中,
Figure PCTCN2016094977-appb-000191
为用于sTTI的物理层上行控制信道的资源单元索引信息,k为上行物理控制信道的格式类型,
Figure PCTCN2016094977-appb-000192
为天线的端口号,
Figure PCTCN2016094977-appb-000193
为与用户设备在sTTI上发送的上行物理控制信道的格式类型和/或sTTI长度类型相关的偏移值,deltasPUCCH为与HARQ的资源偏移值、上行物理控制信道对应的sTTI长度类型、上行物理控制信道的格式类型至少之一或组合相关的偏移值,或者sTTI的物理层上行控制信息所在物理层上行控制信道或上行信道的频带位置信息相关值,nsRU为与下行控制信息相关的资源单位索引信息,
Figure PCTCN2016094977-appb-000194
为约定资源块集合中的约定资源单元的下位资源单元的个数,n'为天线端口相关数值。
优选地,所述sTTI的物理层上行控制信道的无线资源块是所述终端根据用于sTTI的物理层上行控制信道的资源单元索引信息和所述sTTI的时间信息确定的,包括:
根据所述确定的用于sTTI的物理层上行控制信道的资源单元索引信息,确定所述sTTI的物理层上行控制信道的资源位置;
根据所述sTTI的物理层上行控制信道的资源位置和所述sTTI的时间信息,确定所述sTTI的物理层上行控制信道的无线资源块信息。
优选地,所述sTTI的物理层上行控制信道的资源位置是由下述步骤确定的,包括:
在所述上行控制信道的频域上依据sTTI的长度分配频带,确定每个sTTI的长度对应的上行控制信道占用的频带,并在所述占用的频带中依据所述sTTI的物理层上行控制信道的格式,对sTTI的物理层上行控制信道使用的资源进行排序;或
在所述上行控制信道的频域上依据sTTI的物理层上行控制信道的格式分配频带,确定每个sTTI的物理层上行控制信道的格式占用的频带,并在所述占用的频带中依据所述sTTI的长度对sTTI的物理层上行控制信道使用的资源进行排序。
优选地,所述sTTI的物理层上行控制信道的资源位置,符合下述公式(6)至(12)之一:
Figure PCTCN2016094977-appb-000195
Figure PCTCN2016094977-appb-000196
Figure PCTCN2016094977-appb-000197
Figure PCTCN2016094977-appb-000198
Figure PCTCN2016094977-appb-000199
Figure PCTCN2016094977-appb-000200
Figure PCTCN2016094977-appb-000201
Figure PCTCN2016094977-appb-000202
其中,m为sTTI的物理层上行控制信道的资源位置,
Figure PCTCN2016094977-appb-000203
为sTTI的物理层上行控制信道的资源单元索引信息,k为上行物理控制信道的格式类型,
Figure PCTCN2016094977-appb-000204
为天线的端口号,M为sTTI的具体格式的物理层上行控制信道占用的资源块RB个数,K为有限个RB上能够复用的物理层上行控制信道的个数,
Figure PCTCN2016094977-appb-000205
为终端的循环偏移的个数,
Figure PCTCN2016094977-appb-000206
为终端循环偏移的间隔,
Figure PCTCN2016094977-appb-000207
为分配给终端的偏移值,
Figure PCTCN2016094977-appb-000208
为物理层上行控制信道的扩频因子。
优选地,所述资源单位索引信息包括以下信息之一:
sTTI的索引值、资源元素的索引值、资源元素的数量;
其中,所述索引值为系统级别或子带级别的索引值。
优选地,所述资源单位的索引号包括:下行控制信息所在的第一个资源单元的索引号。
优选地,所述下行控制信息所在的第一个资源单元的索引号为所述下行控制信息所在的第一个资源单元在所在物理层下行控制信道、物理层下行数 据信道、sTTI的物理层下行控制信道、sTTI的物理层下行数据信道之一的索引号。
优选地,所述资源单位包括下述单位之一:
一个或多个资源元素、一个或多个控制信道元素、多个资源元素组。
基于相同的技术构思,图14示例性的示出了本发明实施例提供的一种信息传输的装置的结构,该装置可以执行信息传输的流程,该装置可以位于终端内,也可以是该终端。
如图14所示,该装置具体包括:
处理单元1401,用于配置长度为两个正交频分复用符号的sTTI物理层上行控制信道的信号;
收发单元1402,用于发送配置的长度为两个正交频分复用符号的sTTI的物理层上行控制信道的信号。
优选地,所述处理单元1401具体用于:
所述sTTI的物理层上行控制信道的信号包括参考信号和数据信号;
配置所述参考信号位于所述两个正交频分复用符号对应的子帧的奇数或偶数个位置,所述数据信号位于除所述参考信号之外的位置。
优选地,所述处理单元1401具体用于:
所述sTTI的物理层上行控制信道的信号包括参考信号和数据信号;
配置所述至少一个参考信号在所述两个正交频分复用符号对应的子帧中与两个数据信号相邻,并被这两个数据信号共享。
优选地,所述处理单元1401具体用于:
配置一个参考信号位于两个数据信号的中间,剩余的参考信号与一个数据信号相邻。
优选地,所述处理单元1401具体用于:
所述sTTI的物理层上行控制信道的信号包括参考信号和数据信号;
配置所述参考信号和所述数据信号在每个正交频分复用符号上交替设置。
优选地,所述处理单元1401具体用于:
将一个数据符号调制到一个数据信号上,将所述数据信号在频域上进行扩频。
优选地,所述处理单元1401具体用于:
将两个数据符号调制到两个数据信号上,将所述两个数据信号在频域上进行扩频,将所述两个数据信号在时域上进行扩频。
优选地,所述处理单元1401具体用于:
将多个数据符号调制到多个数据信号,并将所述多个数据信号放在同一个正交频分复用符号的频域载波上。
基于相同的技术构思,图15示例性的示出了本发明实施例提供的一种信息传输的装置的结构,该装置可以执行信息传输的流程,该装置可以位于基站内,也可以是该基站。
如图15所示,该装置具体包括:
收发单元1501,用于接收终端发送的长度为两个正交频分复用符号的sTTI的物理层上行控制信道的信号,所述长度为两个正交频分复用符号的sTTI的物理层上行控制信道的信号是由终端配置的;
处理单元1502,用于根据所述长度为两个正交频分复用符号的sTTI的物理层上行控制信道的信号进行调度。
优选地,所述长度为两个正交频分复用符号的sTTI的物理层上行控制信道的信号包括参考信号和数据信号;
其中,所述参考信号位于所述两个正交频分复用符号对应的子帧的奇数或偶数个位置,所述数据信号位于除所述参考信号之外的位置。
优选地,所述长度为两个正交频分复用符号的sTTI的物理层上行控制信道的信号包括参考信号和数据信号;
其中,所述至少一个参考信号在所述两个正交频分复用符号对应的子帧中与两个数据信号相邻,并被这两个数据信号共享。
优选地,所述至少一个参考信号在所述两个正交频分复用符号对应的子 帧中与两个数据信号相邻为一个参考信号位于两个数据信号的中间,剩余的参考信号与一个数据信号相邻。
优选地,所述长度为两个正交频分复用符号的sTTI的物理层上行控制信道的信号包括参考信号和数据信号;
其中,所述参考信号和所述数据信号在每个正交频分复用符号上交替设置。
优选地,所述长度为两个正交频分复用符号的sTTI的物理层上行控制信道的信号包括一个数据符号被调制到一个数据信号上,且所述数据信号在频域上被扩频。
优选地,所述长度为两个正交频分复用符号的sTTI的物理层上行控制信道的信号包括两个数据符号被调制到两个数据信号上,所述两个数据信号在频域上被扩频,所述两个数据信号在时域上被扩频。
优选地,所述长度为两个正交频分复用符号的sTTI的物理层上行控制信道的信号包括多个数据符号被调制到多个数据信号,且所述多个数据信号被放在同一个正交频分复用符号的频域载波上。
基于相同构思,参见图16,为本发明实施例提供的一种信息传输的设备1600。该信息传输的设备1600可以执行上述各实施例中发送机所实施的步骤或执行的功能。该信息传输的设备1600可包括:收发器1601、处理器1602和存储器1603。处理器1602用于控制信息传输的设备1600的操作;存储器1603可以包括只读存储器和随机存取存储器,存储有处理器1602可以执行的指令和数据。存储器1603的一部分还可以包括非易失行随机存取存储器(NVRAM)。收发器1601、处理器1602和存储器1603等各组件通过总线1609连接,其中总线1609除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图中将各种总线都标为总线1609。
本发明实施例揭示的一种信息传输的方法可以应用于处理器1602中,或者由处理器1602实现。在实现过程中,处理流程的各步骤可以通过处理器1602 中的硬件的集成逻辑电路或者软件形式的指令完成。处理器1602可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1603,处理器1602读取存储器1603中存储的信息,结合其硬件完成一种信息传输的方法的步骤。
收发器1601用于获取用于sTTI的物理层上行控制信道的资源单元索引信息;
处理器1602用于根据所述收发器1601获取的用于sTTI的物理层上行控制信道的资源单元索引信息和所述sTTI的时间信息,确定所述sTTI的物理层上行控制信道的无线资源块信息;
收发器1601还用于在处理器1602确定的所述sTTI的物理层上行控制信道的无线资源块上发送上行控制信息。
优选地,收发器1601获取与下行控制信息相关的资源单位索引信息;根据所述与下行控制信息相关的资源单位索引信息和资源索引算法,确定用于sTTI的物理层上行控制信道的资源单元索引信息;或者
收发器1601获取基站发送的用于sTTI的物理层上行控制信道的资源单元索引信息。
优选地,所述基站发送的用于sTTI的物理层上行控制信道的资源单元索引信息与sTTI的物理层上行控制信道的格式和/或sTTI的长度相关。
优选地,所述下行控制信息在物理层下行控制信道中承载,所述下行控制信息包括第一级下行控制信息和/或第二级下行控制信息;
收发器1601获取承载所述第一级下行控制信息的资源的资源单位索引信 息或收发器1601获取承载所述第二级下行控制信息的资源的资源单位索引信息。
优选地,承载所述第一级下行控制信息的资源的资源单位索引信息为在物理层下行控制信道和/或sTTI的物理层下行控制信道承载的第一级下行控制信息的资源的资源单位索引信息;
承载所述第二级下行控制信息的资源的资源单位索引信息为在物理层下行控制信道和/或sTTI的物理层下行控制信道承载的第二级下行控制信息的资源的资源单位索引信息。
优选地,所述第一级下行控制信息的资源的资源单位索引信息为第一级下行控制信息所在资源的指定个资源单位的索引信息;
所述第二级下行控制信息的资源的资源单位索引信息为第二级下行控制信息所在资源的指定个资源单位的索引信息。
优选地,收发器获取承载所述下行控制信息的物理层下行共享信道和/或sTTI的物理层下行共享信道的资源信息;或
收发器1601获取所述下行控制信息在物理层下行共享信道和/或sTTI的物理层下行共享信道中的资源位置信息。
优选地,承载所述下行控制信息的物理层下行共享信道和/或sTTI的物理层下行共享信道的资源信息为所述下行控制信息所在资源的指定个资源单位的索引信息;
承载所述下行控制信息的物理层下行共享信道和/或sTTI的物理层下行共享信道的资源的资源信息为所述下行控制信息所在资源的占用的资源单位个数。
优选地,所述下行控制信息在物理层下行控制信道和或物理层下行数据信道中承载,所述下行控制信息包括第一级下行控制信息和第二级下行控制信息;
收发器1601获取承载所述第一级下行控制信息的资源的资源单位索引信息与承载所述第二级下行控制信息的资源的资源单位索引信息的关系;根据 所述承载所述第一级下行控制信息的资源的资源单位索引信息与承载所述第二级下行控制信息的资源的资源单位索引信息的关系,确定与下行控制信息相关的资源单位索引信息。
优选地,收发器1601确定所述用于sTTI的上行物理控制信道的资源单元索引信息,符合下述公式(1)至(5)之一要求:
Figure PCTCN2016094977-appb-000209
Figure PCTCN2016094977-appb-000210
Figure PCTCN2016094977-appb-000211
Figure PCTCN2016094977-appb-000212
Figure PCTCN2016094977-appb-000213
其中,
Figure PCTCN2016094977-appb-000214
为用于sTTI的物理层上行控制信道的资源单元索引信息,k为上行物理控制信道的格式类型,
Figure PCTCN2016094977-appb-000215
为天线的端口号,
Figure PCTCN2016094977-appb-000216
为与用户设备在sTTI上发送的上行物理控制信道的格式类型和/或sTTI长度类型相关的偏移值,deltasPUCCH为与HARQ的资源偏移值、上行物理控制信道对应的sTTI长度类型、上行物理控制信道的格式类型至少之一或组合相关的偏移值,或者sTTI的物理层上行控制信息所在物理层上行控制信道或上行信道的频带位置信息相关值,nsRU为与下行控制信息相关的资源单位索引信息,
Figure PCTCN2016094977-appb-000217
为约定资源块集合中的约定资源单元的下位资源单元的个数,n'为天线端口相关数值。
优选地,处理器1602根据所述确定的用于sTTI的物理层上行控制信道的资源单元索引信息,确定所述sTTI的物理层上行控制信道的资源位置;以及根据所述sTTI的物理层上行控制信道的资源位置和所述sTTI的时间信息,确定所述sTTI的物理层上行控制信道的无线资源块信息。
优选地,处理器1602在所述上行控制信道的频域上依据sTTI的长度分配频带,确定每个sTTI的长度对应的上行控制信道占用的频带,并在所述占用的频带中依据所述sTTI的物理层上行控制信道的格式,对sTTI的物理层上行控制信道使用的资源进行排序;或
处理器1602在所述上行控制信道的频域上依据sTTI的物理层上行控制信道的格式分配频带,确定每个sTTI的物理层上行控制信道的格式占用的频带,并在所述占用的频带中依据所述sTTI的长度对sTTI的物理层上行控制信道使用的资源进行排序。
优选地,处理器1602确定所述sTTI的物理层上行控制信道的资源位置,符合下述公式(6)至(12)之一:
Figure PCTCN2016094977-appb-000218
Figure PCTCN2016094977-appb-000219
Figure PCTCN2016094977-appb-000220
Figure PCTCN2016094977-appb-000221
Figure PCTCN2016094977-appb-000222
Figure PCTCN2016094977-appb-000223
Figure PCTCN2016094977-appb-000224
Figure PCTCN2016094977-appb-000225
其中,m为sTTI的物理层上行控制信道的资源位置,
Figure PCTCN2016094977-appb-000226
为sTTI的物理层上行控制信道的资源单元索引信息,k为上行物理控制信道的格式类型,
Figure PCTCN2016094977-appb-000227
为天线的端口号,M为sTTI的具体格式的物理层上行控制信道占用的资源块RB个数,K为有限个RB上能够复用的物理层上行控制信道的个数,
Figure PCTCN2016094977-appb-000228
为终端的循环偏移的个数,
Figure PCTCN2016094977-appb-000229
为终端循环偏移的间隔,
Figure PCTCN2016094977-appb-000230
为分配给 终端的偏移值,
Figure PCTCN2016094977-appb-000231
为物理层上行控制信道的扩频因子。
优选地,所述资源单位索引信息包括以下信息之一:
sTTI的索引值、资源元素的索引值、资源元素的数量;
其中,所述索引值为系统级别或子带级别的索引值。
优选地,所述资源单位的索引号包括:下行控制信息所在的第一个资源单元的索引号。
优选地,所述下行控制信息所在的第一个资源单元的索引号为所述下行控制信息所在的第一个资源单元在所在物理层下行控制信道、物理层下行数据信道、sTTI的物理层下行控制信道、sTTI的物理层下行数据信道之一的索引号。
优选地,所述资源单位包括下述单位之一:
一个或多个资源元素、一个或多个控制信道元素、多个资源元素组。
基于相同构思,参见图17,为本发明实施例提供的一种信息传输的设备1700。该信息传输的设备1700可以执行上述各实施例中接收机所实施的步骤或执行的功能。该信息传输的设备1700可包括:收发器1701、处理器1702和存储器1703。处理器1702用于控制信息传输的设备1700的操作;存储器1703可以包括只读存储器和随机存取存储器,存储有处理器1702可以执行的指令和数据。存储器1703的一部分还可以包括非易失行随机存取存储器(NVRAM)。收发器1701、处理器1702和存储器1703等各组件通过总线1709连接,其中总线1709除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图中将各种总线都标为总线1709。
本发明实施例揭示的一种信息传输的方法可以应用于处理器1702中,或者由处理器1702实现。在实现过程中,处理流程的各步骤可以通过处理器1702中的硬件的集成逻辑电路或者软件形式的指令完成。处理器1702可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编 程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1703,处理器1702读取存储器1703中存储的信息,结合其硬件完成一种信息传输的方法的步骤。
收发器1701用于接收终端在sTTI的物理层上行控制信道的无线资源块上发送上行控制信息,所述sTTI的物理层上行控制信道的无线资源块是所述终端根据用于sTTI的物理层上行控制信道的资源单元索引信息和所述sTTI的时间信息确定的;
处理器1702用于根据所述上行控制信息进行调度。
优选地,收发器1701在接收终端在sTTI的物理层上行控制信道的无线资源块上发送上行控制信息之前,向所述终端发送与下行控制信息相关的资源单位索引信息,以使所述终端根据所述与下行控制信息相关的资源单位索引信息和资源索引算法,确定用于sTTI的物理层上行控制信道的资源单元索引信息;或收发器1701向所述终端发送用于sTTI的物理层上行控制信道的资源单元索引信息。
优选地,所述向所述终端发送的用于sTTI的物理层上行控制信道的资源单元索引信息与sTTI的物理层上行控制信道的格式和/或sTTI的长度相关。
优选地,所述下行控制信息在物理层下行控制信道中承载,所述下行控制信息包括第一级下行控制信息和/或第二级下行控制信息;
收发器1701向所述终端发送承载所述第一级下行控制信息的资源的资源单位索引信息或收发器1701向所述终端发送承载所述第二级下行控制信息的资源的资源单位索引信息。
优选地,承载所述第一级下行控制信息的资源的资源单位索引信息为在 物理层下行控制信道和/或sTTI的物理层下行控制信道承载的第一级下行控制信息的资源的资源单位索引信息;
承载所述第二级下行控制信息的资源的资源单位索引信息为在物理层下行控制信道和/或sTTI的物理层下行控制信道承载的第二级下行控制信息的资源的资源单位索引信息。
优选地,所述第一级下行控制信息的资源的资源单位索引信息为第一级下行控制信息所在资源的指定个资源单位的索引信息;
所述第二级下行控制信息的资源的资源单位索引信息为第二级下行控制信息所在资源的指定个资源单位的索引信息。
优选地,收发器1701向所述终端发送承载所述下行控制信息的物理层下行共享信道和/或sTTI的物理层下行共享信道的资源信息;或
收发器1701向所述终端发送所述下行控制信息在物理层下行共享信道和/或sTTI的物理层下行共享信道中的资源位置信息。
优选地,承载所述下行控制信息的物理层下行共享信道和/或sTTI的物理层下行共享信道的资源信息为所述下行控制信息所在资源的指定个资源单位的索引信息;
承载所述下行控制信息的物理层下行共享信道和/或sTTI的物理层下行共享信道的资源的资源信息为所述下行控制信息所在资源的占用的资源单位个数。
优选地,所述下行控制信息在物理层下行控制信道和或物理层下行数据信道中承载,所述下行控制信息包括第一级下行控制信息和第二级下行控制信息;
收发器1701获取承载所述第一级下行控制信息的资源的资源单位索引信息与承载所述第二级下行控制信息的资源的资源单位索引信息的关系;根据所述承载所述第一级下行控制信息的资源的资源单位索引信息与承载所述第二级下行控制信息的资源的资源单位索引信息的关系,确定与下行控制信息相关的资源单位索引信息。
优选地,所述用于sTTI的上行物理控制信道的资源单元索引信息,符合下述公式(1)至(5)之一要求:
Figure PCTCN2016094977-appb-000232
Figure PCTCN2016094977-appb-000233
Figure PCTCN2016094977-appb-000234
Figure PCTCN2016094977-appb-000235
Figure PCTCN2016094977-appb-000236
其中,
Figure PCTCN2016094977-appb-000237
为用于sTTI的物理层上行控制信道的资源单元索引信息,k为上行物理控制信道的格式类型,
Figure PCTCN2016094977-appb-000238
为天线的端口号,
Figure PCTCN2016094977-appb-000239
为与用户设备在sTTI上发送的上行物理控制信道的格式类型和/或sTTI长度类型相关的偏移值,deltasPUCCH为与HARQ的资源偏移值、上行物理控制信道对应的sTTI长度类型、上行物理控制信道的格式类型至少之一或组合相关的偏移值,或者sTTI的物理层上行控制信息所在物理层上行控制信道或上行信道的频带位置信息相关值,nsRU为与下行控制信息相关的资源单位索引信息,
Figure PCTCN2016094977-appb-000240
为约定资源块集合中的约定资源单元的下位资源单元的个数,n'为天线端口相关数值。
优选地,所述sTTI的物理层上行控制信道的无线资源块是所述终端根据用于sTTI的物理层上行控制信道的资源单元索引信息和所述sTTI的时间信息确定的,包括:
根据所述确定的用于sTTI的物理层上行控制信道的资源单元索引信息,确定所述sTTI的物理层上行控制信道的资源位置;
根据所述sTTI的物理层上行控制信道的资源位置和所述sTTI的时间信息,确定所述sTTI的物理层上行控制信道的无线资源块信息。
优选地,所述sTTI的物理层上行控制信道的资源位置是由下述步骤确定的,包括:
在所述上行控制信道的频域上依据sTTI的长度分配频带,确定每个sTTI的长度对应的上行控制信道占用的频带,并在所述占用的频带中依据所述sTTI的物理层上行控制信道的格式,对sTTI的物理层上行控制信道使用的资源进行排序;或
在所述上行控制信道的频域上依据sTTI的物理层上行控制信道的格式分配频带,确定每个sTTI的物理层上行控制信道的格式占用的频带,并在所述占用的频带中依据所述sTTI的长度对sTTI的物理层上行控制信道使用的资源进行排序。
优选地,所述sTTI的物理层上行控制信道的资源位置,符合下述公式(6)至(12)之一:
Figure PCTCN2016094977-appb-000241
Figure PCTCN2016094977-appb-000242
Figure PCTCN2016094977-appb-000243
Figure PCTCN2016094977-appb-000244
Figure PCTCN2016094977-appb-000245
Figure PCTCN2016094977-appb-000246
Figure PCTCN2016094977-appb-000247
Figure PCTCN2016094977-appb-000248
其中,m为sTTI的物理层上行控制信道的资源位置,
Figure PCTCN2016094977-appb-000249
为sTTI的物理层上行控制信道的资源单元索引信息,k为上行物理控制信道的格式类型,
Figure PCTCN2016094977-appb-000250
为天线的端口号,M为sTTI的具体格式的物理层上行控制信道占用的 资源块RB个数,K为有限个RB上能够复用的物理层上行控制信道的个数,
Figure PCTCN2016094977-appb-000251
为终端的循环偏移的个数,为终端循环偏移的间隔,
Figure PCTCN2016094977-appb-000253
为分配给终端的偏移值,
Figure PCTCN2016094977-appb-000254
为物理层上行控制信道的扩频因子。
优选地,所述资源单位索引信息包括以下信息之一:
sTTI的索引值、资源元素的索引值、资源元素的数量;
其中,所述索引值为系统级别或子带级别的索引值。
优选地,所述资源单位的索引号包括:下行控制信息所在的第一个资源单元的索引号。
优选地,所述下行控制信息所在的第一个资源单元的索引号为所述下行控制信息所在的第一个资源单元在所在物理层下行控制信道、物理层下行数据信道、sTTI的物理层下行控制信道、sTTI的物理层下行数据信道之一的索引号。
优选地,所述资源单位包括下述单位之一:
一个或多个资源元素、一个或多个控制信道元素、多个资源元素组。
基于相同构思,参见图18,为本发明实施例提供的一种信息传输的设备1800。该信息传输的设备1800可以执行上述各实施例中发送机所实施的步骤或执行的功能。该信息传输的设备1800可包括:收发器1801、处理器1802和存储器1803。处理器1802用于控制信息传输的设备1800的操作;存储器1803可以包括只读存储器和随机存取存储器,存储有处理器1802可以执行的指令和数据。存储器1803的一部分还可以包括非易失行随机存取存储器(NVRAM)。收发器1801、处理器1802和存储器1803等各组件通过总线1809连接,其中总线1809除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图中将各种总线都标为总线1809。
本发明实施例揭示的一种信息传输的方法可以应用于处理器1802中,或者由处理器1802实现。在实现过程中,处理流程的各步骤可以通过处理器1802 中的硬件的集成逻辑电路或者软件形式的指令完成。处理器1802可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1803,处理器1802读取存储器1803中存储的信息,结合其硬件完成一种信息传输的方法的步骤。
处理器1802用于配置长度为两个正交频分复用符号的sTTI物理层上行控制信道的信号;
收发器1801用于发送配置的长度为两个正交频分复用符号的sTTI的物理层上行控制信道的信号。
优选地,所述sTTI的物理层上行控制信道的信号包括参考信号和数据信号;
处理器1802配置所述参考信号位于所述两个正交频分复用符号对应的子帧的奇数或偶数个位置,所述数据信号位于除所述参考信号之外的位置。
优选地,所述sTTI的物理层上行控制信道的信号包括参考信号和数据信号;
处理器1802配置所述至少一个参考信号在所述两个正交频分复用符号对应的子帧中与两个数据信号相邻,并被这两个数据信号共享。
优选地,处理器1802配置一个参考信号位于两个数据信号的中间,剩余的参考信号与一个数据信号相邻。
优选地,所述sTTI的物理层上行控制信道的信号包括参考信号和数据信号;
处理器1802配置所述参考信号和所述数据信号在每个正交频分复用符号 上交替设置。
优选地,处理器1802将一个数据符号调制到一个数据信号上,将所述数据信号在频域上进行扩频。
优选地,处理器1802将两个数据符号调制到两个数据信号上,将所述两个数据信号在频域上进行扩频,将所述两个数据信号在时域上进行扩频。
优选地,处理器1802将多个数据符号调制到多个数据信号,并将所述多个数据信号放在同一个正交频分复用符号的频域载波上。
基于相同构思,参见图19,为本发明实施例提供的一种信息传输的设备1900。该信息传输的设备1900可以执行上述各实施例中接收机所实施的步骤或执行的功能。该信息传输的设备1900可包括:收发器1901、处理器1902和存储器1903。处理器1902用于控制信息传输的设备1900的操作;存储器1903可以包括只读存储器和随机存取存储器,存储有处理器1902可以执行的指令和数据。存储器1903的一部分还可以包括非易失行随机存取存储器(NVRAM)。收发器1901、处理器1902和存储器1903等各组件通过总线1909连接,其中总线1909除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图中将各种总线都标为总线1909。
本发明实施例揭示的一种信息传输的方法可以应用于处理器1902中,或者由处理器1902实现。在实现过程中,处理流程的各步骤可以通过处理器1902中的硬件的集成逻辑电路或者软件形式的指令完成。处理器1902可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该 存储介质位于存储器1903,处理器1902读取存储器1903中存储的信息,结合其硬件完成一种信息传输的方法的步骤。
收发器1901用于接收终端发送的长度为两个正交频分复用符号的sTTI的物理层上行控制信道的信号,所述长度为两个正交频分复用符号的sTTI的物理层上行控制信道的信号是由终端配置的;
处理器1902用于根据所述长度为两个正交频分复用符号的sTTI的物理层上行控制信道的信号进行调度。
优选地,所述长度为两个正交频分复用符号的sTTI的物理层上行控制信道的信号包括参考信号和数据信号;
其中,所述参考信号位于所述两个正交频分复用符号对应的子帧的奇数或偶数个位置,所述数据信号位于除所述参考信号之外的位置。
优选地,所述长度为两个正交频分复用符号的sTTI的物理层上行控制信道的信号包括参考信号和数据信号;
其中,所述至少一个参考信号在所述两个正交频分复用符号对应的子帧中与两个数据信号相邻,并被这两个数据信号共享。
优选地,所述至少一个参考信号在所述两个正交频分复用符号对应的子帧中与两个数据信号相邻为一个参考信号位于两个数据信号的中间,剩余的参考信号与一个数据信号相邻。
优选地,所述长度为两个正交频分复用符号的sTTI的物理层上行控制信道的信号包括参考信号和数据信号;
其中,所述参考信号和所述数据信号在每个正交频分复用符号上交替设置。
优选地,所述长度为两个正交频分复用符号的sTTI的物理层上行控制信道的信号包括一个数据符号被调制到一个数据信号上,且所述数据信号在频域上被扩频。
优选地,所述长度为两个正交频分复用符号的sTTI的物理层上行控制信道的信号包括两个数据符号被调制到两个数据信号上,所述两个数据信号在 频域上被扩频,所述两个数据信号在时域上被扩频。
优选地,所述长度为两个正交频分复用符号的sTTI的物理层上行控制信道的信号包括多个数据符号被调制到多个数据信号,且所述多个数据信号被放在同一个正交频分复用符号的频域载波上。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (40)

  1. 一种信息传输的方法,其特征在于,包括:
    终端获取用于短传输时间间隔sTTI的物理层上行控制信道的资源单元索引信息;
    所述终端根据用于sTTI的物理层上行控制信道的资源单元索引信息和所述sTTI的时间信息,确定所述sTTI的物理层上行控制信道的无线资源块信息;
    所述终端在所述sTTI的物理层上行控制信道的无线资源块上发送上行控制信息。
  2. 如权利要求1所述的方法,其特征在于,所述终端获取用于sTTI的物理层上行控制信道的资源单元索引信息,包括:
    所述终端获取与下行控制信息相关的资源单位索引信息;根据所述与下行控制信息相关的资源单位索引信息和资源索引算法,确定用于sTTI的物理层上行控制信道的资源单元索引信息;或者
    所述终端获取基站发送的用于sTTI的物理层上行控制信道的资源单元索引信息。
  3. 如权利要求2所述的方法,其特征在于,所述基站发送的用于sTTI的物理层上行控制信道的资源单元索引信息与sTTI的物理层上行控制信道的格式和/或sTTI的长度相关。
  4. 如权利要求2所述的方法,其特征在于,所述下行控制信息在物理层下行控制信道中承载,所述下行控制信息包括第一级下行控制信息和/或第二级下行控制信息;
    所述终端获取与下行控制信息相关的资源单位索引信息,包括:
    所述终端获取承载所述第一级下行控制信息的资源的资源单位索引信息或所述终端获取承载所述第二级下行控制信息的资源的资源单位索引信息。
  5. 如权利要求4所述的方法,其特征在于,承载所述第一级下行控制信息的资源的资源单位索引信息为在物理层下行控制信道和/或sTTI的物理层 下行控制信道承载的第一级下行控制信息的资源的资源单位索引信息;
    承载所述第二级下行控制信息的资源的资源单位索引信息为在物理层下行控制信道和/或sTTI的物理层下行控制信道承载的第二级下行控制信息的资源的资源单位索引信息。
  6. 如权利要求4或5所述的方法,其特征在于,所述第一级下行控制信息的资源的资源单位索引信息为第一级下行控制信息所在资源的指定个资源单位的索引信息;
    所述第二级下行控制信息的资源的资源单位索引信息为第二级下行控制信息所在资源的指定个资源单位的索引信息。
  7. 如权利要求2所述的方法,其特征在于,所述终端获取与下行控制信息相关的资源单位索引信息,包括:
    所述终端获取承载所述下行控制信息的物理层下行共享信道和/或sTTI的物理层下行共享信道的资源信息;或
    所述终端获取所述下行控制信息在物理层下行共享信道和/或sTTI的物理层下行共享信道中的资源位置信息。
  8. 如权利要求7所述的方法,其特征在于,承载所述下行控制信息的物理层下行共享信道和/或sTTI的物理层下行共享信道的资源信息为所述下行控制信息所在资源的指定个资源单位的索引信息;
    承载所述下行控制信息的物理层下行共享信道和/或sTTI的物理层下行共享信道的资源的资源信息为所述下行控制信息所在资源的占用的资源单位个数。
  9. 如权利要求2所述的方法,其特征在于,所述下行控制信息在物理层下行控制信道和或物理层下行数据信道中承载,所述下行控制信息包括第一级下行控制信息和第二级下行控制信息;
    所述终端获取与下行控制信息相关的资源单位索引信息,包括:
    所述终端获取承载所述第一级下行控制信息的资源的资源单位索引信息与承载所述第二级下行控制信息的资源的资源单位索引信息的关系;
    所述终端根据所述承载所述第一级下行控制信息的资源的资源单位索引信息与承载所述第二级下行控制信息的资源的资源单位索引信息的关系,确定与下行控制信息相关的资源单位索引信息。
  10. 如权利要求1至9任一项所述的方法,其特征在于,所述终端确定所述用于sTTI的上行物理控制信道的资源单元索引信息,符合下述公式(1)至(5)之一要求:
    Figure PCTCN2016094977-appb-100001
    Figure PCTCN2016094977-appb-100002
    Figure PCTCN2016094977-appb-100003
    Figure PCTCN2016094977-appb-100004
    Figure PCTCN2016094977-appb-100005
    其中,
    Figure PCTCN2016094977-appb-100006
    为用于sTTI的物理层上行控制信道的资源单元索引信息,k为上行物理控制信道的格式类型,
    Figure PCTCN2016094977-appb-100007
    为天线的端口号,
    Figure PCTCN2016094977-appb-100008
    为与用户设备在sTTI上发送的上行物理控制信道的格式类型和/或sTTI长度类型相关的偏移值,deltasPUCCH为与混合自动重传请求HARQ的资源偏移值、上行物理控制信道对应的sTTI长度类型、上行物理控制信道的格式类型至少之一或组合相关的偏移值,或者sTTI的物理层上行控制信息所在物理层上行控制信道或上行信道的频带位置信息相关值,nsRU为与下行控制信息相关的资源单位索引信息,
    Figure PCTCN2016094977-appb-100009
    为约定资源块集合中的约定资源单元的下位资源单元的个数,n'为天线端口相关数值。
  11. 如权利要求1所述的方法,其特征在于,所述终端根据所述确定的用于sTTI的物理层上行控制信道的资源单元索引信息和所述sTTI的时间信息,确定所述sTTI的物理层上行控制信道的无线资源块信息,包括:
    所述终端根据所述确定的用于sTTI的物理层上行控制信道的资源单元索引信息,确定所述sTTI的物理层上行控制信道的资源位置;
    所述终端根据所述sTTI的物理层上行控制信道的资源位置和所述sTTI的时间信息,确定所述sTTI的物理层上行控制信道的无线资源块信息。
  12. 如权利要求11所述的方法,其特征在于,所述终端确定所述sTTI的物理层上行控制信道的资源位置,包括:
    所述终端在所述上行控制信道的频域上依据sTTI的长度分配频带,确定每个sTTI的长度对应的上行控制信道占用的频带,并在所述占用的频带中依据所述sTTI的物理层上行控制信道的格式,对sTTI的物理层上行控制信道使用的资源进行排序;或
    所述终端在所述上行控制信道的频域上依据sTTI的物理层上行控制信道的格式分配频带,确定每个sTTI的物理层上行控制信道的格式占用的频带,并在所述占用的频带中依据所述sTTI的长度对sTTI的物理层上行控制信道使用的资源进行排序。
  13. 一种信息传输的方法,其特征在于,包括:
    基站接收终端在短传输时间间隔sTTI的物理层上行控制信道的无线资源块上发送上行控制信息,所述sTTI的物理层上行控制信道的无线资源块是所述终端根据用于sTTI的物理层上行控制信道的资源单元索引信息和所述sTTI的时间信息确定的;
    所述基站根据所述上行控制信息进行调度。
  14. 如权利要求13所述的方法,其特征在于,所述基站在接收终端在sTTI的物理层上行控制信道的无线资源块上发送上行控制信息之前,还包括:
    所述基站向所述终端发送与下行控制信息相关的资源单位索引信息,以使所述终端根据所述与下行控制信息相关的资源单位索引信息和资源索引算法,确定用于sTTI的物理层上行控制信道的资源单元索引信息;或所述基站向所述终端发送用于sTTI的物理层上行控制信道的资源单元索引信息。
  15. 如权利要求14所述的方法,其特征在于,所述基站向所述终端发送 的用于sTTI的物理层上行控制信道的资源单元索引信息与sTTI的物理层上行控制信道的格式和/或sTTI的长度相关。
  16. 如权利要求14所述的方法,其特征在于,所述下行控制信息在物理层下行控制信道中承载,所述下行控制信息包括第一级下行控制信息和/或第二级下行控制信息;
    所述基站向所述终端发送与下行控制信息相关的资源单位索引信息,包括:
    所述基站向所述终端发送承载所述第一级下行控制信息的资源的资源单位索引信息或所述基站向所述终端发送承载所述第二级下行控制信息的资源的资源单位索引信息。
  17. 如权利要求16所述的方法,其特征在于,承载所述第一级下行控制信息的资源的资源单位索引信息为在物理层下行控制信道和/或sTTI的物理层下行控制信道承载的第一级下行控制信息的资源的资源单位索引信息;
    承载所述第二级下行控制信息的资源的资源单位索引信息为在物理层下行控制信道和/或sTTI的物理层下行控制信道承载的第二级下行控制信息的资源的资源单位索引信息。
  18. 如权利要求14所述的方法,其特征在于,所述基站向所述终端发送与下行控制信息相关的资源单位索引信息,包括:
    所述基站向所述终端发送承载所述下行控制信息的物理层下行共享信道和/或sTTI的物理层下行共享信道的资源信息;或
    所述基站向所述终端发送所述下行控制信息在物理层下行共享信道和/或sTTI的物理层下行共享信道中的资源位置信息。
  19. 如权利要求14所述的方法,其特征在于,所述下行控制信息在物理层下行控制信道和或物理层下行数据信道中承载,所述下行控制信息包括第一级下行控制信息和第二级下行控制信息;
    所述终端获取与下行控制信息相关的资源单位索引信息,包括:
    所述终端获取承载所述第一级下行控制信息的资源的资源单位索引信息 与承载所述第二级下行控制信息的资源的资源单位索引信息的关系;
    所述终端根据所述承载所述第一级下行控制信息的资源的资源单位索引信息与承载所述第二级下行控制信息的资源的资源单位索引信息的关系,确定与下行控制信息相关的资源单位索引信息。
  20. 如权利要求14至19任一项所述的方法,其特征在于,所述用于sTTI的上行物理控制信道的资源单元索引信息,符合下述公式(1)至(5)之一要求:
    Figure PCTCN2016094977-appb-100010
    Figure PCTCN2016094977-appb-100011
    Figure PCTCN2016094977-appb-100012
    Figure PCTCN2016094977-appb-100013
    Figure PCTCN2016094977-appb-100014
    其中,
    Figure PCTCN2016094977-appb-100015
    为用于sTTI的物理层上行控制信道的资源单元索引信息,k为上行物理控制信道的格式类型,
    Figure PCTCN2016094977-appb-100016
    为天线的端口号,
    Figure PCTCN2016094977-appb-100017
    为与用户设备在sTTI上发送的上行物理控制信道的格式类型和/或sTTI长度类型相关的偏移值,deltasPUCCH为与混合自动重传请求HARQ的资源偏移值、上行物理控制信道对应的sTTI长度类型、上行物理控制信道的格式类型至少之一或组合相关的偏移值,或者sTTI的物理层上行控制信息所在物理层上行控制信道或上行信道的频带位置信息相关值,nsRU为与下行控制信息相关的资源单位索引信息,
    Figure PCTCN2016094977-appb-100018
    为约定资源块集合中的约定资源单元的下位资源单元的个数,n'为天线端口相关数值。
  21. 如权利要求13所述的方法,其特征在于,所述sTTI的物理层上行控制信道的无线资源块是所述终端根据用于sTTI的物理层上行控制信道的资 源单元索引信息和所述sTTI的时间信息确定的,包括:
    所述终端根据所述确定的用于sTTI的物理层上行控制信道的资源单元索引信息,确定所述sTTI的物理层上行控制信道的资源位置;
    所述终端根据所述sTTI的物理层上行控制信道的资源位置和所述sTTI的时间信息,确定所述sTTI的物理层上行控制信道的无线资源块信息。
  22. 如权利要求21所述的方法,其特征在于,所述sTTI的物理层上行控制信道的资源位置是由下述步骤确定的,包括:
    在所述上行控制信道的频域上依据sTTI的长度分配频带,确定每个sTTI的长度对应的上行控制信道占用的频带,并在所述占用的频带中依据所述sTTI的物理层上行控制信道的格式,对sTTI的物理层上行控制信道使用的资源进行排序;或
    在所述上行控制信道的频域上依据sTTI的物理层上行控制信道的格式分配频带,确定每个sTTI的物理层上行控制信道的格式占用的频带,并在所述占用的频带中依据所述sTTI的长度对sTTI的物理层上行控制信道使用的资源进行排序。
  23. 一种信息传输的方法,其特征在于,包括:
    终端配置长度为两个正交频分复用符号的短传输时间间隔sTTI物理层上行控制信道的信号;
    所述终端发送配置的长度为两个正交频分复用符号的sTTI的物理层上行控制信道的信号。
  24. 如权利要求23所述的方法,其特征在于,所述终端配置长度为两个正交频分复用符号的sTTI的物理层上行控制信道的信号,包括:
    所述sTTI的物理层上行控制信道的信号包括参考信号和数据信号;
    所述终端配置所述参考信号位于所述两个正交频分复用符号对应的子帧的奇数或偶数个位置,所述数据信号位于除所述参考信号之外的位置。
  25. 如权利要求23所述的方法,其特征在于,所述终端配置长度为两个正交频分复用符号的sTTI的上行物理控制信道的信号,包括:
    所述sTTI的物理层上行控制信道的信号包括参考信号和数据信号;
    所述终端配置所述至少一个参考信号在所述两个正交频分复用符号对应的子帧中与两个数据信号相邻,并被这两个数据信号共享。
  26. 如权利要求25所述的方法,其特征在于,所述终端配置所述至少一个参考信号在所述两个正交频分复用符号对应的子帧中与两个数据信号相邻,包括:
    所述终端配置一个参考信号位于两个数据信号的中间,剩余的参考信号与一个数据信号相邻。
  27. 如权利要求23所述的方法,其特征在于,所述终端配置长度为两个正交频分复用符号的sTTI的物理层上行控制信道的信号,包括:
    所述sTTI的物理层上行控制信道的信号包括参考信号和数据信号;
    所述终端配置所述参考信号和所述数据信号在每个正交频分复用符号上交替设置。
  28. 如权利要求23至27任一项所述的方法,其特征在于,所述终端配置长度为两个正交频分复用符号的sTTI的物理层上行控制信道的信号,包括:
    所述终端将一个数据符号调制到一个数据信号上,将所述数据信号在频域上进行扩频。
  29. 如权利要求23至27任一项所述的方法,其特征在于,所述终端配置长度为两个正交频分复用符号的sTTI的物理层上行控制信道的信号,包括:
    所述终端将两个数据符号调制到两个数据信号上,将所述两个数据信号在频域上进行扩频,将所述两个数据信号在时域上进行扩频。
  30. 一种信息传输的方法,其特征在于,包括:
    基站接收终端发送的长度为两个正交频分复用符号的短传输时间间隔sTTI的物理层上行控制信道的信号,所述长度为两个正交频分复用符号的sTTI的物理层上行控制信道的信号是由终端配置的;
    所述基站根据所述长度为两个正交频分复用符号的sTTI的物理层上行控制信道的信号进行调度。
  31. 如权利要求30所述的方法,其特征在于,所述长度为两个正交频分复用符号的sTTI的物理层上行控制信道的信号包括参考信号和数据信号;
    其中,所述参考信号位于所述两个正交频分复用符号对应的子帧的奇数或偶数个位置,所述数据信号位于除所述参考信号之外的位置。
  32. 如权利要求30所述的方法,其特征在于,所述长度为两个正交频分复用符号的sTTI的物理层上行控制信道的信号包括参考信号和数据信号;
    其中,所述至少一个参考信号在所述两个正交频分复用符号对应的子帧中与两个数据信号相邻,并被这两个数据信号共享。
  33. 如权利要求32所述的方法,其特征在于,所述至少一个参考信号在所述两个正交频分复用符号对应的子帧中与两个数据信号相邻为一个参考信号位于两个数据信号的中间,剩余的参考信号与一个数据信号相邻。
  34. 如权利要求30所述的方法,其特征在于,所述长度为两个正交频分复用符号的sTTI的物理层上行控制信道的信号包括参考信号和数据信号;
    其中,所述参考信号和所述数据信号在每个正交频分复用符号上交替设置。
  35. 如权利要求30至34任一项所述的方法,其特征在于,所述长度为两个正交频分复用符号的sTTI的物理层上行控制信道的信号包括一个数据符号被调制到一个数据信号上,且所述数据信号在频域上被扩频。
  36. 如权利要求30至34任一项所述的方法,其特征在于,所述长度为两个正交频分复用符号的sTTI的物理层上行控制信道的信号包括两个数据符号被调制到两个数据信号上,所述两个数据信号在频域上被扩频,所述两个数据信号在时域上被扩频。
  37. 一种信息传输的装置,其特征在于,包括:
    收发单元,用于获取用于短传输时间间隔sTTI的物理层上行控制信道的资源单元索引信息;
    处理单元,用于根据所述收发单元获取的用于sTTI的物理层上行控制信道的资源单元索引信息和所述sTTI的时间信息,确定所述sTTI的物理层上行 控制信道的无线资源块信息;
    所述收发单元还用于在所述处理单元确定的所述sTTI的物理层上行控制信道的无线资源块上发送上行控制信息。
  38. 一种信息传输的装置,其特征在于,包括:
    收发单元,用于接收终端在短传输时间间隔sTTI的物理层上行控制信道的无线资源块上发送上行控制信息,所述sTTI的物理层上行控制信道的无线资源块是所述终端根据用于sTTI的物理层上行控制信道的资源单元索引信息和所述sTTI的时间信息确定的;
    处理单元,用于根据所述上行控制信息进行调度。
  39. 一种信息传输的装置,其特征在于,包括:
    处理单元,用于配置长度为两个正交频分复用符号的短传输时间间隔sTTI物理层上行控制信道的信号;
    收发单元,用于发送配置的长度为两个正交频分复用符号的sTTI的物理层上行控制信道的信号。
  40. 一种信息传输的装置,其特征在于,包括:
    收发单元,用于接收终端发送的长度为两个正交频分复用符号的短传输时间间隔sTTI的物理层上行控制信道的信号,所述长度为两个正交频分复用符号的sTTI的物理层上行控制信道的信号是由终端配置的;
    处理单元,用于根据所述长度为两个正交频分复用符号的sTTI的物理层上行控制信道的信号进行调度。
PCT/CN2016/094977 2016-08-12 2016-08-12 一种信息传输的方法及装置 WO2018027942A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/094977 WO2018027942A1 (zh) 2016-08-12 2016-08-12 一种信息传输的方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/094977 WO2018027942A1 (zh) 2016-08-12 2016-08-12 一种信息传输的方法及装置

Publications (1)

Publication Number Publication Date
WO2018027942A1 true WO2018027942A1 (zh) 2018-02-15

Family

ID=61161757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/094977 WO2018027942A1 (zh) 2016-08-12 2016-08-12 一种信息传输的方法及装置

Country Status (1)

Country Link
WO (1) WO2018027942A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101888702A (zh) * 2009-05-15 2010-11-17 大唐移动通信设备有限公司 一种传输上行控制信息的方法和设备
CN101917766A (zh) * 2010-08-12 2010-12-15 中兴通讯股份有限公司 一种确定物理上行控制信道资源的方法及系统
CN103188039A (zh) * 2011-12-29 2013-07-03 夏普株式会社 物理上行控制信道的资源映射方法和设备
WO2016064059A1 (en) * 2014-10-21 2016-04-28 Lg Electronics Inc. Method for transmitting and receiving data in wireless communication system and apparatus for the same
CN105827385A (zh) * 2016-06-01 2016-08-03 珠海市魅族科技有限公司 时延控制方法和时延控制系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101888702A (zh) * 2009-05-15 2010-11-17 大唐移动通信设备有限公司 一种传输上行控制信息的方法和设备
CN101917766A (zh) * 2010-08-12 2010-12-15 中兴通讯股份有限公司 一种确定物理上行控制信道资源的方法及系统
CN103188039A (zh) * 2011-12-29 2013-07-03 夏普株式会社 物理上行控制信道的资源映射方法和设备
WO2016064059A1 (en) * 2014-10-21 2016-04-28 Lg Electronics Inc. Method for transmitting and receiving data in wireless communication system and apparatus for the same
CN105827385A (zh) * 2016-06-01 2016-08-03 珠海市魅族科技有限公司 时延控制方法和时延控制系统

Similar Documents

Publication Publication Date Title
JP6736692B2 (ja) 基準信号のトリガ及び制御シグナリング
JP6795507B2 (ja) 無線通信ネットワークにおける制御データの通信
CN107210892B (zh) 无线电节点、无线设备及其中用于配置无线设备的方法
TWI543560B (zh) Means for determining / assisting in determining the resources of the PUCCH and corresponding means
KR102135151B1 (ko) 단축된 전송 시간 구간(tti)을 갖는 pusch 상에서의 업링크 제어 시그널링
RU2744209C1 (ru) Способ и терминальное устройство для передачи данных
WO2013137699A1 (ko) 상향 링크 전송 방법 및 장치
WO2016155305A1 (zh) 用户设备、网络设备和确定物理上行控制信道资源的方法
CN113543321B (zh) Harq-ack反馈时序的确定方法及设备
CA3030456C (en) Method and terminal device for transmitting data
CN109672511B (zh) 发送pucch的方法和用户终端
CN109565823B (zh) 短tti模式
WO2019184484A1 (zh) 资源指示、确定方法及装置
JP7023923B2 (ja) 信号伝送方法、端末機器、及びネットワーク機器
CN110063073A (zh) 用于适配传输功率的方法和终端设备
CN111865515B (zh) 通信方法和通信装置
JP2020502842A (ja) 通信方法、端末及びネットワーク機器
WO2018196618A1 (zh) 一种通信方法及装置
CN112994855B (zh) Pdcch的harq-ack反馈的方法及设备
US20200145143A1 (en) Methods And Apparatus For HARQ Procedure And PUCCH Resource Selection In Mobile Communications
EP3648390B1 (en) Communication method and device
CN110022190A (zh) 一种上行控制信息的传输方法及装置
CN110099446B (zh) 上行传输方法及装置、通信系统、计算机存储介质
WO2018027942A1 (zh) 一种信息传输的方法及装置
JP7299986B2 (ja) 処理方法、及び機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16912397

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16912397

Country of ref document: EP

Kind code of ref document: A1