WO2016063912A1 - 粒子検出方法、粒子検出装置および粒子検出システム - Google Patents

粒子検出方法、粒子検出装置および粒子検出システム Download PDF

Info

Publication number
WO2016063912A1
WO2016063912A1 PCT/JP2015/079699 JP2015079699W WO2016063912A1 WO 2016063912 A1 WO2016063912 A1 WO 2016063912A1 JP 2015079699 W JP2015079699 W JP 2015079699W WO 2016063912 A1 WO2016063912 A1 WO 2016063912A1
Authority
WO
WIPO (PCT)
Prior art keywords
illumination light
particle detection
flow path
particle
particles
Prior art date
Application number
PCT/JP2015/079699
Other languages
English (en)
French (fr)
Inventor
一木 隆範
久皇 鈴木
大士 田中
井上 次郎
太田 和哉
Original Assignee
国立大学法人東京大学
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京大学, 株式会社ニコン filed Critical 国立大学法人東京大学
Priority to JP2016555254A priority Critical patent/JPWO2016063912A1/ja
Publication of WO2016063912A1 publication Critical patent/WO2016063912A1/ja
Priority to US15/490,727 priority patent/US10113948B2/en

Links

Images

Classifications

    • G01N15/1433
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502715Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/50273Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means or forces applied to move the fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502761Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip specially adapted for handling suspended solids or molecules independently from the bulk fluid flow, e.g. for trapping or sorting beads, for physically stretching molecules
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/30Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
    • C12M41/36Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of biomass, e.g. colony counters or by turbidity measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N15/1484Electro-optical investigation, e.g. flow cytometers microstructural devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • G01N21/53Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/02Adapting objects or devices to another
    • B01L2200/025Align devices or objects to ensure defined positions relative to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0647Handling flowable solids, e.g. microscopic beads, cells, particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0654Lenses; Optical fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0887Laminated structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/16Surface properties and coatings
    • B01L2300/168Specific optical properties, e.g. reflective coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0415Moving fluids with specific forces or mechanical means specific forces electrical forces, e.g. electrokinetic
    • B01L2400/0421Moving fluids with specific forces or mechanical means specific forces electrical forces, e.g. electrokinetic electrophoretic flow
    • G01N15/01
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N2015/0038Investigating nanoparticles
    • G01N2015/1027
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N2015/1493Particle size
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/061Sources
    • G01N2201/06113Coherent sources; lasers

Definitions

  • the present invention relates to a particle detection method, a particle detection device, and a particle detection system.
  • Patent Document 1 discloses a measuring instrument including electrodes provided at both ends of a flow channel in a capillary cell, a laser that irradiates a laser beam, and a detection device that detects scattered light generated by the laser irradiation. ing. This measuring device measures the moving speed of particles by detecting scattered light generated by laser irradiation into a medium in which particles move by application to an electrode.
  • the measuring instrument described in Patent Document 1 also detects scattered light of a laser beam incident on the side wall facing the flow path. Since the intensity of the scattered light generated on the side wall is several orders of magnitude greater than the intensity of the scattered light from the observation target particle, the scattered light generated on the side wall may become noise and cause a decrease in the accuracy of particle detection on the observation target. is there.
  • a particle detection method for detecting particles in a sample wherein an installation step is provided in which a fluid device including a flow path in which the particles can move is provided on a stage portion, and the flow path is illuminated. An irradiation step of irradiating light, and a detection step of detecting scattered light generated from the particles by irradiation of the illumination light. In the irradiation step, the illumination light is on the illumination light incident side of the flow path. There is provided a particle detection method that converges so that a passage region of the light beam of the illumination light at the position of the first side surface is limited to the inside of the first side surface.
  • a particle detection apparatus for detecting particles in a sample, in which a fluid device having a flow channel into which a sample containing particles can be introduced can be installed;
  • An irradiation unit that irradiates illumination light, an adjustment unit that adjusts the illumination light, and a detection unit that detects scattered light generated from particles in the sample by irradiation of the illumination light, and the adjustment unit includes:
  • a particle detection apparatus that adjusts the illumination light to a convergence angle such that an irradiation region at a position of a side surface on the irradiation light incident side of the flow path is condensed in the side surface.
  • a particle detection system including a fluid device including a flow channel capable of introducing a sample containing particles and the particle detection apparatus according to the second aspect of the present invention.
  • FIG. 1 is a schematic plan view of a particle detection device according to an embodiment of the present invention.
  • 1 is a perspective view showing a basic structure of an extracellular endoplasmic reticulum analysis chip according to an embodiment of the present invention. II-II sectional view taken on the line of FIG. The top view of the fluid device which concerns on one Embodiment of this invention. The fragmentary sectional view which cut
  • FIG. 1 is a schematic plan view of a particle detection device 1 according to the embodiment.
  • FIG. 2 is a schematic front view of the particle detection device 1 according to the embodiment.
  • the particle detection apparatus 1 detects information relating to particles in the fluid device C by irradiating the fluid device C with the illumination light L1 and observing the scattered light L2 from the fluid device C with the fluid device C as a detection target.
  • the particle detection apparatus 1 includes a light source unit LS, an irradiation unit 20, an adjustment unit CL, a stage unit ST, a detection unit 30, and a control unit CONT.
  • a particle detection system 100 is configured by the particle detection apparatus 1 and the fluid device C.
  • the direction orthogonal to the orthogonal surface (not shown) orthogonal to the installation surface STa of the stage part ST is the x direction (x axis; third direction), and the direction parallel to the installation surface STa and orthogonal to the x direction.
  • the y direction (y axis) and the vertical direction perpendicular to the x direction and the y direction are appropriately described as the z direction (z axis; second direction).
  • the fluid device C in the present embodiment is, for example, an electrophoresis analysis chip used when analyzing a specimen.
  • the sample include cells, extracellular vesicles, fine particles, latex particles (including latex particles modified with antibodies and further modified with cells), polymer micelles, and the like.
  • an extracellular endoplasmic reticulum analysis chip for analyzing extracellular endoplasmic reticulum is used as an electrophoresis analysis chip.
  • an extracellular vesicle means a lipid vesicle including exosome (exosome), apoptotic body, microvesicle and the like.
  • the extracellular endoplasmic reticulum analysis chip (electrophoresis analysis chip) according to the present embodiment will be described by taking as an example the case of analyzing exosomes.
  • Exosomes are lipid vesicles having a diameter of about 30 to 100 nm.
  • various cells such as tumor cells, dendritic cells, T cells, B cells, blood, urine, It is secreted into body fluids such as saliva.
  • Abnormal cells such as cancer cells existing in the body express a protein specific to the cell membrane.
  • An exosome is a secreted product of a cell and expresses a cell-derived protein as a secretory source on its surface.
  • the surface of the exosome is a membrane surface of a lipid vesicle secreted from a cell, and refers to a portion where the secreted exosome is in contact with the environment in the living body.
  • exosomes are detected in blood circulating in the living body, abnormalities in the living body can be detected by analyzing the exosomes without performing a biopsy test.
  • analysis of exosomes using an extracellular endoplasmic reticulum analysis chip can be performed as follows. First, the exosome to be detected is purified. Next, the exosome is brought into contact with the specific binding substance.
  • the specific binding substance means a substance that can specifically bind to a molecule present on the surface of the exosome, and will be described in detail later.
  • the zeta potential of exosome is measured and analyzed using an extracellular endoplasmic reticulum analysis chip. This analysis can be applied not only to exosomes but also to analyzes of the extracellular endoplasmic reticulum in general.
  • Specific binding substances include, for example, antibodies, modified antibodies, aptamers, ligand molecules, and the like.
  • antibodies include IgG, IgA, IgD, IgE, IgM and the like.
  • IgG include IgG1, IgG2, IgG3, and IgG4.
  • IgA include IgA1 and IgA2.
  • IgM include IgM1 and IgM2.
  • the modified antibody include Fab, F (ab ′) 2 , scFv and the like.
  • Examples of aptamers include peptide aptamers and nucleic acid aptamers.
  • Examples of the ligand molecule include a ligand of the receptor protein when the detection target molecule present on the exosome surface is a receptor protein.
  • examples of the ligand molecule include G protein.
  • the specific binding substance may be labeled with a labeling substance.
  • labeling substances include biotin, avidin, streptavidin, neutravidin, glutathione-S-transferase, glutathione, fluorescent dyes, polyethylene glycol, charged molecules such as melittic acid, and the like.
  • exosomes are purified from a sample containing exosomes.
  • the sample include blood, urine, breast milk, bronchoalveolar lavage fluid, amniotic fluid, malignant exudate, saliva, cell culture fluid and the like depending on the purpose. Especially, it is easy to purify exosomes from blood and urine.
  • Examples of the method for purifying exosomes include ultracentrifugation, ultrafiltration, continuous flow electrophoresis, chromatography, and a method using a ⁇ -TAS (Micro-Total Analysis Systems) device.
  • ⁇ -TAS Micro-Total Analysis Systems
  • a specific binding substance antibody, aptamer, etc.
  • a specific binding substance an abnormality associated with a disease such as cancer, obesity, diabetes, or neurodegenerative disease can be detected.
  • the zeta potential of the exosome reacted with the antibody is measured.
  • the zeta potential is the surface charge of the fine particles in the solution.
  • exosomes are negatively charged while antibodies are positively charged.
  • the zeta potential of the antibody-exosome complex is shifted positively compared to the zeta potential of the exosome alone. Therefore, by measuring the zeta potential of the exosome reacted with the antibody, the expression of the antigen on the exosome membrane surface can be detected. This is true not only for antibodies but also for positively charged specific binding substances.
  • the exosome zeta potential ⁇ is obtained by performing exosome electrophoresis in the microchannel of an extracellular endoplasmic reticulum analysis chip, optically measuring the exosome electrophoresis speed S, and measuring the measured exosome electrophoresis. Based on the speed S, it can be calculated using the Smolkovsky equation shown in the following equation (1).
  • U ( ⁇ / ⁇ ) ⁇ (1)
  • U is the electrophoretic mobility of the exosome to be measured
  • is the dielectric constant of the sample solution
  • is the viscosity coefficient of the sample solution.
  • the electrophoretic mobility U can be calculated by dividing the electrophoretic velocity S by the electric field strength in the microchannel.
  • the exosome electrophoresis speed S is obtained by electrophoresing exosomes in a microchannel of an extracellular endoplasmic reticulum analysis chip, and as an example, irradiating a laser beam on exosomes flowing in the microchannel, Measurement can be performed by obtaining a particle image by scattered light.
  • the laser beam one having a wavelength of 405 nm and an intensity of 150 mW can be given.
  • FIG. 3 is a perspective view showing the basic structure of the extracellular vesicle analysis chip according to the embodiment. 4 is a cross-sectional view taken along line II-II in FIG.
  • the extracellular endoplasmic reticulum analysis chip 101 includes a first reservoir 110, a second reservoir 120, an electrophoresis channel 150 that connects the first reservoir 110 and the second reservoir 120, and a base material 160.
  • the migration channel 150 is, for example, a millimeter channel or a micro channel.
  • the migration channel 150 has a width of about 200 ⁇ m, a height of 400 ⁇ m, and a length of about 10 mm.
  • the electrophoresis channel 150 is a specific binding substance formed by the interaction between an extracellular vesicle or a specific binding substance that specifically binds to a molecule present on the surface of the extracellular vesicle and the extracellular vesicle.
  • a flow path for electrophoresis of an extracellular endoplasmic reticulum complex for example, an antibody-exosome complex.
  • an antibody, an aptamer, or a substance composed of a combination of an antibody and an aptamer can be given.
  • Aptamers are, for example, nucleic acid aptamers, peptide aptamers and the like.
  • molecules recognized by the specific binding substance include antigens, membrane proteins, nucleic acids, sugar chains, glycolipids and the like.
  • the first end of the electrophoresis channel 150 is connected to the first reservoir 110.
  • the second end of the electrophoresis channel 150 is connected to the second reservoir 120.
  • the first reservoir 110 and the second reservoir 120 are provided on the base material 160.
  • the first reservoir 110 has an electrode 130.
  • the second reservoir 120 has an electrode 140.
  • the electrode 130 is provided at the bottom of the first reservoir 110, and the electrode 140 is provided at the bottom of the second reservoir 120.
  • the electrode 130 is provided near the end of the migration channel 150, and the electrode 140 is provided near the end of the migration channel 150.
  • a sample eg, exosome to be analyzed
  • a buffer solution is introduced into the second reservoir 120.
  • the buffer solution may be introduced into the first reservoir 110.
  • the extracellular endoplasmic reticulum analysis chip 101 can measure the zeta potential of the extracellular endoplasmic reticulum.
  • a method for measuring the zeta potential of exosome using this extracellular endoplasmic reticulum analysis chip will be described, taking as an example the case of analyzing exosomes as specimens or extracellular endoplasmic reticulum.
  • a sample solution containing exosomes to be analyzed is introduced into the first reservoir 110.
  • the exosome to be analyzed may have been reacted with a specific binding substance.
  • the exosome is extracted from, for example, a culture supernatant or serum, and the sample solution is an exosome suspension in which the exosome is suspended in a buffer solution such as a phosphate buffer solution (PBS).
  • a sample solution containing exosomes is introduced into the migration channel 150.
  • the exosome can be introduced into the electrophoresis channel 150 by connecting a syringe to the second reservoir 120 and sucking the sample solution.
  • the buffer solution is put into the first reservoir 110 and the second reservoir 120.
  • the liquid level (liquid level height) between the first reservoir 110 and the second reservoir 120 By adjusting the liquid level (liquid level height) between the first reservoir 110 and the second reservoir 120 by the liquid level adjusting means described later, the generation of hydrostatic pressure flow generated in the migration channel 150 is prevented, and zeta potential measurement is performed. The accuracy can be improved. Subsequently, a voltage is applied between the electrodes 130 and 140 by a control unit (eg, a control unit CONT or a computer described later), and the exosome is electrophoresed. As an example, the control unit applies a voltage having an electric field strength of about 50 V / cm for about 10 seconds.
  • a control unit eg, a control unit CONT or a computer described later
  • the electrophoresis channel 150 is irradiated with laser light, and the scattered light passing through the exosome, which is emitted from the electrophoresis channel 150, is collected using an objective lens or the like, and a light receiving sensor (eg, high A sensitivity camera is used to image exosomes or specific binding substance-exosome complexes.
  • the magnification of the objective lens is about 60 times as an example.
  • the wavelength of the laser is 405 nm
  • the intensity of the laser is 150 mW.
  • control unit calculates the electrophoresis speed S of the exosome or the specific binding substance-exosome complex based on the photographed image. Then, the control unit calculates the electrophoretic mobility U by dividing the electrophoretic velocity S by the electric field strength. Subsequently, the control unit calculates the zeta potential of the exosome or the specific binding substance-exosome complex using the Smolkovsky equation described above.
  • the extracellular endoplasmic reticulum analysis chip in this embodiment, not only the average value of the zeta potential of the specific binding substance-exosome complex, but also the zeta potential of the specific binding substance-exosome complex is measured at the level of one particle. can do. Therefore, from the average value of the zeta potential, even if it seems that there is no exosome having a molecule (for example, antigen) recognized by the specific binding substance in the sample, it exists as a minor population. Exosomes with that antigen can be detected.
  • a molecule for example, antigen
  • FIG. 5 is a plan view in which the fluid device C is installed on the installation surface STa of the stage unit ST according to the embodiment.
  • FIG. 6 is a partial cross-sectional view of the fluid device C according to the embodiment partially cut along a yz plane.
  • 7 is a cross-sectional view taken along line AA in FIG.
  • the fluid device C is formed in a rectangular shape in plan view.
  • the fluid device C includes a reservoir member (first base material) 10 and a bottom plate (second base material) 11 that are sequentially stacked in the z direction.
  • the fluid device C in the present embodiment has a laminated structure (laminated body) composed of at least the reservoir member 10 and the bottom plate 11.
  • the laminated structure of the fluid device C has a two-layer structure. Further, for example, such a laminated structure of the fluid device C is formed by bonding the reservoir member 10 and the bottom plate 11 to each other.
  • the reservoir member 10 is formed of a material that can be elastically deformed in at least one direction by an external force or the like.
  • Examples of the material of the reservoir member 10 include elastomers such as silicone rubber and PDMS (polydimethylsiloxane).
  • the bottom plate 12 is made of a material through which scattered light L2 generated by irradiation with the illumination light L1 is transmitted.
  • the bottom plate 12 is formed of a glass material as an example.
  • the fluid device C includes a plurality of (three in FIG. 5) lanes 2 arranged in the length direction (y direction).
  • Each lane 2 includes a first reservoir 12A, a second reservoir 12B, a flow path 13, and electrodes 18A and 18B.
  • the first reservoir 12A and the second reservoir 12B are arranged at an interval in the y direction.
  • the first reservoir 12 ⁇ / b> A and the second reservoir 12 ⁇ / b> B are arranged at an interval in the flow channel direction of the flow channel 13.
  • the plurality of lanes 2 may be arranged in the height direction (z direction). In this case, the solution may be injected from the length direction (x direction) or from the y direction.
  • each of the light sources irradiates fine particles flowing through the lane 2 having a corresponding height.
  • the fine particles flowing in the lane 2 may be irradiated by changing the irradiation direction from at least one irradiation light source.
  • the first reservoir 12A has a holding space 14A having a circular cross section in a plane parallel to the xy plane and extending in the z direction, and the diameter gradually increases from the + z side end of the holding space 14A toward the + z direction. And an introduction portion 15A having a funnel-like shape that expands.
  • the holding space 14A opens at the ⁇ z side end facing the bottom plate 11.
  • the holding space 14 ⁇ / b> A is connected to the flow path 13.
  • the second reservoir 12B has a holding space 14B having a circular cross section in a plane parallel to the xy plane and extending in the z direction, and the diameter gradually increases from the + z side end of the holding space 14B toward the + z direction. And an introduction portion 15B having a funnel-like shape that expands.
  • the holding space 14B has an end on the ⁇ z side facing the bottom plate 11 and opening.
  • the holding space 14 ⁇ / b> B is connected to the flow path 13.
  • the flow path 13 is a flow path for electrophoresis (flow path for electrophoresis).
  • the flow path 13 extends in the y direction, which is the length direction of the fluid device C.
  • the channel 13 is provided on the surface facing the bottom plate 11 so as to connect the holding space 14A and the holding space 14B.
  • the flow path 13 is surrounded by a groove portion 10 ⁇ / b> A formed in the reservoir member 10 and a surface (second surface) 11 a of the bottom plate 11. Thereby, the flow path 13 is formed in the cross-sectional rectangular shape.
  • the groove portion 10A is formed to be surrounded by side surfaces (first surfaces) 16a and 16b facing in the x direction and a bottom surface (second surface) 16c facing the surface 11a of the bottom plate 11 in the z direction.
  • the side surfaces 16a, 16b, the bottom surface 16c, and the surface 11a constituting the groove 10A are mirror-finished.
  • the first surface includes a side surface 16a that is a first side surface and a side surface 16b that is a second side surface.
  • the side surface 16a and the side surface 16b face each other and are separated from each other in the x direction which is the first direction.
  • the lane 2 is arranged so as to be biased toward the side closer to the end surface 17 on the + x side than the center with respect to the optical axis direction (incident direction) of the illumination light L1 that is the width direction of the fluid device C.
  • the lane 2 is arranged so as to be biased toward the side closer to the end surface 17 on the incident side of the illumination light L1 than the center in the width direction (the x direction in FIG. 5) of the fluid device C that is the optical axis direction of the incident illumination light L1.
  • the end face 17 is mirror-finished in a range where at least the lane 2 is provided in the y direction.
  • the channel 13 is formed in a size of about 200 ⁇ m in width, about 400 ⁇ m in height (depth of the groove 10A), and about 10 mm in length.
  • An electrode 18A is provided on the surface 11a of the bottom plate 11 so as to face the holding space 14A.
  • An electrode 18B is provided on the surface 11a of the bottom plate 11 so as to face the holding space 14B.
  • Examples of the material for the electrode 18A and the electrode 18B include gold, platinum, and carbon.
  • the end surface (second end surface) 19 located on the incident side of the illumination light L1 in the bottom plate 11 is closer to the incident side of the illumination light L1 than the position of the end surface 17 of the reservoir member 10 in the x direction. Are spaced apart on the opposite side, -x side.
  • the light source unit LS has a wavelength that does not adversely affect the particles.
  • the light source unit LS has a wavelength of 405 nm, an intensity of 150 mW, and a beam diameter (a diameter that is 1 / e 2 with respect to the peak value).
  • a laser beam having a deflection direction in the z direction at 0.8 mm is emitted as illumination light L1.
  • the illumination light L1 may be polarized light (for example, linearly polarized light) or non-polarized light. However, in the present embodiment, a configuration using vertical polarized light and no directivity of Rayleigh scattering is adopted. .
  • the illumination light L1 is applied to the fluid device C along an optical axis extending in a direction intersecting the orthogonal plane described above.
  • the optical axis of the illumination light L1 is parallel to the x direction.
  • the illumination light L1 of the present embodiment is applied to the fluid device C along the optical axis extending in the x direction.
  • FIG. 8 is a diagram illustrating a schematic configuration of the irradiation unit 20 and the adjustment unit CL according to the embodiment.
  • the irradiation unit 20 includes a ⁇ / 2 plate 21 and an expander lens 22 that are sequentially arranged along the optical axis of the illumination light L1.
  • the optical axis of the illumination light L1 extends in the y direction, but the illumination light L1 that finally irradiates the fluid device C (channel 13) is x. It has an optical axis along the direction. For this reason, the illumination light L1 shown in FIG. 8 is illustrated on the assumption that the optical axis is along the x direction.
  • the illumination light L1 emitted from the light source unit LS is transmitted through the ⁇ / 2 plate 21 so that the polarization direction is rotated in the y direction.
  • the ⁇ / 2 plate 21 is not necessary when the light source unit LS emits the illumination light L1 having the deflection direction in the y direction.
  • the expander lens 22 includes cylindrical lenses 22A and 22B facing each other. Since the cylindrical lenses 22A and 22B have no power in the y direction, the illumination light L1 has a constant width in the y direction. The width of the illumination light L1 in the z direction is enlarged or reduced according to the distance in the optical axis direction of the cylindrical lenses 22A and 22B. In the present embodiment, the expander lens 22 enlarges the width of the illumination light L1 in the z direction as an example by a factor of two.
  • the adjustment unit CL adjusts the incident illumination light L ⁇ b> 1 that has been expanded by the expander lens 22 in the width in the z direction.
  • the adjustment unit CL is disposed in the optical path between the light source unit LS and the objective lens 31.
  • the adjustment unit CL is disposed in the optical path between the ⁇ / 2 plate 21 or the expander lens 22 and the objective lens 31.
  • the adjustment unit CL may include a drive mechanism, and the light collection point may be adjusted by the movement of the adjustment unit CL.
  • the adjustment unit CL can be driven in the x direction, for example. In this case, even when a chip having a different position of the flow path 13 is used, it is possible to adjust so that the light collecting point is located in the flow path 13.
  • FIG. 9 is a partial detailed view of the adjustment unit CL and the fluid device C according to the embodiment.
  • the adjustment unit CL is configured by a cylindrical lens.
  • the adjustment portion CL has a minimum width in the z-direction of the illumination light L1 inside the flow path 13, and the passage region of the illumination light L1 at the position of the side face 16a on the irradiation light incident side of the flow path 13 is within the side face 16a.
  • the illumination light L1 is adjusted to a convergence angle that converges so as to be limited.
  • the adjustment portion CL has a minimum width in the z direction of the illumination light L1 inside the flow path 13, and the irradiation area of the illumination light L1 at the position of the side face 16a on the irradiation light incident side of the flow path 13 is within the side face 16a.
  • the illumination light L1 is adjusted to a convergence angle that condenses light.
  • the adjustment unit CL sets the illumination light L1 at a convergence angle that converges so that the passage region of the illumination light L1 (irradiation light beam) at the position of the side surface 16b on the irradiation light emission side of the flow path 13 is limited to the side surface 16b. It is adjusted.
  • the adjusting unit CL adjusts the illumination light L1 to a convergence angle such that the irradiation region of the illumination light L1 (irradiation light beam) at the position of the side surface 16b on the irradiation light emission side of the flow path 13 is condensed in the side surface 16b. . Further, the adjustment unit CL adjusts the illumination light L1 to a convergence angle at which the irradiation region of the illumination light L1 at the position of the end surface 17 of the reservoir member 10 converges in the end surface 17. Furthermore, the adjustment unit CL adjusts the illumination light L1 to a convergence angle such that the convergence point exists in the detection region in the flow path 13.
  • the illumination light beam of the illumination light L1 outside the focal depth of the detection unit 30 has a convergence angle that is smaller than the illumination light beam within the focal depth.
  • the orthogonal plane described above includes the end face 17 of the reservoir member 10, the side face 16a on the irradiation light incident side of the flow path 13, or the side face 16b on the irradiation light emission side of the flow path 13.
  • the convergence angle in the medium is ⁇
  • the wavelength of the illumination light L1 is ⁇
  • the beam width in the z direction at the position x and the convergence angle ⁇ is ⁇ (x, ⁇ )
  • the beam profile factor of the illumination light L1 is M 2
  • the minimum width If the distance from the position in the x direction at which ⁇ 0 is reached to the side surface 16a is xL, it is necessary to satisfy the expression (3) in the following expressions (1) and (2).
  • An adjustment unit CL having optical characteristics adjusted to converge the illumination light L1 at a convergence angle ⁇ that converges inside is installed.
  • the beam width ⁇ (x, ⁇ ) included in the above formulas (1) to (3) is 1 / the intensity of the illumination light L1 with respect to the peak value. It is defined by the width of the e 2. Even when the convergence angle ⁇ satisfies the equations (1) to (3), the illumination light L1 having an intensity that is 1 / e 2 or less with respect to the peak value is outside the beam width ⁇ (xL, ⁇ ). In order to enter the position, when the convergence angle ⁇ is set, the beam width of the illumination light L1 having an intensity of 1 / e 2 or less with respect to the peak value is also taken into consideration.
  • the detection section 30 is included in the light flux of the illumination light L1 over the entire flow path 13. It is necessary to enter a DOF of DOF.
  • the depth of focus DOF of the detection unit 30 In order for the depth of focus DOF of the detection unit 30 to enter the luminous flux of the illumination light L1, the end surface 17 of the reservoir member 10 and the side surface 16a of the flow path 13 are arranged. It is also necessary to consider the inclination with respect to the optical axis. FIG.
  • FIG. 10 is a diagram schematically illustrating an optical path through which the illumination light L ⁇ b> 1 according to the embodiment passes through the end surface 17 of the reservoir member 10 and the side surface 16 a of the flow path 13.
  • the focal depth DOF see FIG. 9
  • the detection unit 30 In order for the focal depth DOF (see FIG. 9) of the detection unit 30 to enter the light flux of the illumination light L1 over the entire width of the flow path 13, the following expression (4) needs to be satisfied.
  • the angle ⁇ 3 is the elevation angle of the illumination optical axis viewed from the focal plane F, and the counterclockwise direction from the focal plane F is the positive direction.
  • the following relationship is established between the elevation angle with respect to the surface F, the medium outside the fluid device C, the material of the fluid device C, and the refractive index of the medium in the flow path 13.
  • Incident angle / outgoing angle angle from the normal to the end face 17 and the side surface
  • the elevation angle ⁇ 3 of the illumination light L1 in the flow path 13 is expressed by the following equation (5).
  • the inclination angle of the end surface 17 of the reservoir member 10 and the side surface 16a of the flow path 13 and the elevation angle ⁇ 3 of the illumination light L1 are the refractive index n1 of the free space medium, the refractive index n2 of the material of the reservoir member 10 and the flow path 13 In accordance with the refractive index n3 of the medium, it is necessary to select, manufacture, and adjust so as to satisfy Expression (6).
  • the stage unit ST moves in the x direction, the y direction, and the z direction by driving the stage driving unit 60 shown in FIG.
  • the drive of the stage drive unit 60 is controlled by the control unit CONT.
  • the stage unit ST includes an installation surface STa on which the fluid device C is installed.
  • the installation surface STa is a surface parallel to the xy plane.
  • the installation surfaces STa are arranged at intervals in the y direction.
  • the installation surface STa supports both ends in the y direction where the lane 2 of the flow channel device C is not provided from the ⁇ Z side. In the fluid device C, the region where the lane 2 is arranged is supported on the installation surface STa without hindering the observation from the ⁇ Z side by the detection unit 30.
  • stage part ST does not exist in the optical path of the illumination light L1 until the lane 2 in the fluid device C is irradiated, a part of the illumination light L1 incident on the fluid device C enters the stage part ST, which will be described later. Adversely affecting the particle detection.
  • the fixing pin 51 protrudes from the installation surface STa.
  • the fixing pin 51 includes two fixing pins 51 a that contact the long side of the fluid device C and one fixing pin 51 b that contacts the short side of the fluid device C.
  • the fixing pins 51a are arranged in the vicinity of both sides of the fluid device C in the y direction.
  • the fixing pin 51b contacts the short side located on the + y side.
  • a pressing piece 52 is provided at a corner located opposite to the corner where the fixing pin 51a and the fixing pin 51b located on the + y side are arranged.
  • the pressing piece 52 presses the fluid device C diagonally against the stage part ST.
  • the pressed fluid device C is fixed in a state where the fluid device C is positioned on the stage portion ST in the xy direction so that the flow path 13 (lane 2) is parallel to the y direction by contacting the fixing pins 51a and 51b.
  • the detection unit 30 includes an objective lens 31 and an imaging unit 32.
  • the objective lens 31 is disposed on the ⁇ Z side of the stage unit ST and the fluid device C. As shown in FIG. 9, the objective lens 31 is disposed at a position where the detection axis 31a passes through the center of the flow path 13 in the x direction.
  • the detection axis 31a is orthogonal to the optical axis of the illumination light L1.
  • the imaging unit 32 includes an EMCCD (Electron Multiplying Charge Charged Coupled Device) camera, and picks up an image of incident light. The imaging unit 32 acquires image information of side scattered light that enters through the objective lens 31.
  • the control unit CONT controls the particle detection device 1 and the particle detection system 100 in an integrated manner.
  • the control unit CONT controls the movement of the stage unit ST and the fluid device C via the stage driving unit 60.
  • the control unit CONT controls the power supply unit (application unit) BT to apply an electric field in the direction along the flow path 13 to the electrodes 18A and 18B.
  • the control unit CONT determines information related to particles in the flow path 13 based on image information captured by the imaging unit 32.
  • the particle detection method of this embodiment includes an installation process, an introduction process, an irradiation process, and a detection process.
  • the installation process is a process of installing the fluid device C on the installation surface STa of the stage part ST. Specifically, as shown in FIG. 5, by pressing the fluid device C diagonally with the pressing piece 52, the fluid device C is pressed against the fixing pins 51a and 51b, and the flow path 13 (lane 2). Is placed on the installation surface STa in a state of being positioned on the stage portion ST so as to be parallel to the y direction.
  • the introducing step is a step of introducing a sample containing particles into the holding spaces 14A and 14B and the flow path 13 of the fluid device C.
  • a sample containing particles such as a phosphate buffer
  • a buffer solution such as a phosphate buffer
  • the control unit CONT drives the stage drive unit 60 to position the lane 2 to be detected on the optical path of the illumination light L 1 and the detection axis 31 a of the detection unit 30.
  • the control unit CONT controls the power supply unit BT to apply an electric field to the electrodes 18A and 18B, and applies a force for causing the exosome to electrophores along the flow path 13.
  • the control unit CONT applies a voltage having an electric field strength of about 50 V / cm for about 10 seconds.
  • the moving direction of the exosome is parallel to the y direction.
  • the irradiation process is a process of irradiating the flow path 13 of the flow path device C with the illumination light L1 parallel to the x direction.
  • the irradiation unit 20 and the adjustment unit CL that irradiate the illumination light L1 have a constant width in the y direction, and have a sheet beam shape that converges in the z direction at a convergence angle ⁇ that satisfies the above-described equations (1) to (6).
  • Irradiation light L1 is irradiated.
  • the minimum beam thickness (beam width in the z direction) of the illumination light L1 is 10 ⁇ m.
  • the minimum beam thickness (beam width in the z direction) direction of the illumination light L1 is the z direction in FIGS.
  • the minimum beam thickness (beam width in the z direction) direction of the illumination light L1 is different from the optical axis direction and the flow path direction of the illumination light L1 on the incident surface (end surface 17 and side surface 16a). It is a direction orthogonal to the flow path direction.
  • the channel direction is a direction in which the channel 13 extends.
  • the flow path direction is a direction in which fluid flows through the flow path 13.
  • the irradiated illumination light L1 includes the first end surface (illumination light incident side end surface) 17 of the fluid device C, the side surface (illumination light incident side side surface) 16a of the flow channel 13, the inside of the flow channel 13, and the side surface of the flow channel 13 ( The light passes through the illumination light emission side surface 16b and the second end surface (illumination light emission side end surface) 27 (see FIG. 5) of the fluid device C sequentially.
  • the illumination light L1 is irradiated in a direction orthogonal to the moving direction of the exosome. As shown in FIG.
  • the irradiated illumination light L1 converges so that the width in the z direction is minimized inside the flow path 13, and the irradiation light flux passage region at the position of the side surface 16 a of the flow path 13. Converges to be confined within the side surface 16a. Furthermore, the irradiated illumination light L1 converges so that the passage region of the irradiated light beam at the position of the side surface 16b on the illumination light exit side of the flow path 13 is limited to the side surface 16a.
  • the illumination light L1 is adjusted to a convergence angle such that the irradiation region at the position of the side surface 16a is condensed in the side surface 16a and the irradiation region at the position of the side surface 16b is condensed in the side surface 16b. Further, the irradiated illumination light L1 has a convergence point in the detection region of the detection unit 30 in the flow path 13.
  • the detection unit 30 observes (images) and detects the scattered light generated from the particles in the flow path 13 by irradiation of the illumination light L1 in parallel with the x direction. Since the detection axis 31a of the objective lens 31 in the detection unit 30 is orthogonal to the optical axis of the illumination light L1, the detection unit 30 detects side scattered light generated from the particles. The detection unit 30 detects light scattered toward the z direction perpendicular to the x direction by irradiation of the illumination light L1 irradiated in parallel with the x direction. The image of the particles in which the scattered light is observed is picked up by the image pickup unit 32. The control unit CONT determines information related to the particles (for example, the particle size and the moving speed of the particles) based on the image information captured by the imaging unit 32.
  • the electrophoretic migration speed of the exosome can be obtained from two images taken with a time difference.
  • the control unit CONT calculates the electrophoretic mobility using the electrophoretic movement speed thus determined and the electric field strength applied to the electrodes 18A and 18B (electric field strength in the flow path 13). Further, the control unit CONT can determine the zeta potential of the exosome using the calculated electrophoretic mobility and the dielectric constant and viscosity coefficient of the medium in the flow path 13.
  • the illumination light L1 is not limited to the side surface 16a where the irradiation light beam passes at the position of the side surface 16a, but a part K of the illumination light L1 enters the flow path 13 via the bottom plate 11.
  • scattered light may be generated on the side surface 16b or the bottom surface 16c.
  • the signal intensity of the scattered light generated on the side surface 16b or the bottom surface 16c is several orders of magnitude greater than the signal intensity of the scattered light generated on the observation target particle, and exceeds the dynamic range of the imaging unit 32.
  • the illumination light L1 is such that the passage region of the illumination light L1 is limited within the side surface 16a at the position of the side surface 16a and the passage region of the illumination light L1 is limited within the end surface 17 at the position of the end surface 17. Therefore, the generation of scattered light having a high signal intensity can be suppressed. Therefore, in the present embodiment, information regarding the particles in the flow path 13 can be detected with high accuracy.
  • the scattered light from the particles outside the depth of focus DOF of the detection unit 30 becomes background light due to defocusing and cannot be detected as a particulate shape.
  • the width in the z direction is minimized inside the flow path 13, and the background light outside the observation region in the flow path 13 is suppressed, so that the particles illuminated with the illumination light L1 are detected with high accuracy. It becomes possible to do.
  • the end surface 17 is mirror-finished, it can be suppressed that scattered light becomes noise on the end surface 17 and adversely affects particle detection accuracy.
  • the illumination light L1 is incident perpendicularly to the end face 17, the optical axis can be easily adjusted.
  • the end surface 19 of the bottom plate 11 is separated from the end surface 17 of the reservoir member 10 on the side opposite to the incident light L1 incident side, so that a part of the illumination light L1 is incident on the end surface 17. Can be prevented from entering the end face 19.
  • the configuration in which the force due to the electric field is applied to move the particles in the flow path 13 is illustrated, but the present invention is not limited to this. It may be a configuration that moves in a direction or a configuration that does not give a force to move particles in a predetermined direction.
  • the scattered light generated from the particle toward the ⁇ Z side is detected.
  • the present invention is not limited to this.
  • the scattered light is scattered toward the + y side, the ⁇ y side, or the + z side.
  • the structure which detects this may be sufficient.
  • the detection unit is not limited to the bottom surface side of the flow path, but may be the side surface side of the flow path.
  • side scattered light may be detected from the bottom surface side of the flow channel, or side scattered light may be detected from the top surface side of the flow channel.
  • the structure which detects forward scattered light may be sufficient.
  • backscattered light may be detected from the illumination light exit side of the flow path, or forward scattered light may be detected from the illumination light exit side of the flow path. .
  • the fluid device C provided with the some lane 2 arranged in the length direction (y direction) was illustrated, the some lane 2 is arranged in the height direction (z direction). Also good.
  • the solution may be injected from the length direction (x direction) or from the y direction.
  • there are a plurality of irradiation light sources and each of the light sources irradiates fine particles flowing through the lane 2 having a corresponding height.
  • the fine particles flowing in the lane 2 may be irradiated by changing the irradiation direction from at least one irradiation light source.
  • a plurality of adjustment units CL (lenses) having different focal lengths are provided on the turret plate.
  • CL lens having a desired focal length is positioned in the optical path of the illumination light L1 by rotating the turret plate or a configuration using a zoom lens
  • the effective diameter of the condensing lens may be made variable by using a plurality of adjustment parts CL having different effective diameters and using a configuration in which a lens having a desired effective diameter is positioned in the optical path of the illumination light L1 or a variable NA stop.
  • a configuration in which a plurality of expander lenses 22 having different magnifications are used and the expander lens 22 having a desired effective diameter is positioned in the optical path of the illumination light L1 or a configuration using a zoom lens can be used to make the magnification variable. Good.
  • the configuration in which the optical axis of the illumination light L1 is parallel to the x-axis is exemplified.
  • the present invention is not limited to this. It may be tilted at ⁇ 10 degrees or ⁇ 5 degrees with respect to the axis.
  • the optical axis of the illumination light L1 is parallel to the x-axis and is incident perpendicular to the side surface 16a, in principle, the scattering angle dependency of Rayleigh scattered light becomes the weakest.
  • Mie scattered light from particles larger than the particles is cut, noise is reduced, and the signal intensity of Rayleigh scattered light may be higher when the optical axis of the illumination light L1 is inclined with respect to the x axis. is there.
  • this device and this system are not only organic particles such as exosomes (extracellular endoplasmic reticulum) but also foreign particles such as bacteria and viruses, as well as inorganic substances such as metals and silica. It is possible to extend the application range to particles.

Abstract

 試料中の粒子を検出する粒子検出方法は、粒子が移動可能な流路を備える流体デバイスをステージ部に設置する設置工程と、流路に照明光を照射する照射工程と、照明光の照射によって、粒子から生ずる散乱光を検出する検出工程と、を含む。照射工程において、照明光は、流路の照明光入射側の第1側面の位置における照明光の光束の通過領域が第1側面内に限定されるように収束する。

Description

粒子検出方法、粒子検出装置および粒子検出システム
 本発明は、粒子検出方法、粒子検出装置および粒子検出システムに関する。
 本願は、2014年10月24日に出願された日本国特許出願2014-217807号に基づき優先権を主張し、その内容をここに援用する。
 媒質中を移動する粒子を顕微鏡観察により撮像し、撮像した画像情報に基づいて、粒子の数や移動速度を測定する技術が知られている。例えば、特許文献1には、毛管セル内の流路の両端に設けた電極と、レーザービームを照射するレーザーと、レーザー照射によって生じた散乱光を検出する検出装置とを備える測定器が開示されている。この測定器は、電極への印加により粒子が移動する媒質中へのレーザー照射によって生じた散乱光を検出することにより、粒子の移動速度等を測定する。
特開2002-5888号公報
 粒子の検出限界を向上させるためには、散乱光を検出した信号に含まれるノイズを低減することが重要である。ところが、特許文献1に記載された測定器は、流路に臨む側壁に入射したレーザービームの散乱光も検出する。側壁で発生する散乱光の強度は、観察対象の粒子からの散乱光の強度よりも数桁以上大きいため、側壁で発生する散乱光がノイズとなり観察対象の粒子検出の精度低下を招く可能性がある。
 本発明の一態様に従えば、試料中の粒子を検出する粒子検出方法であって、前記粒子が移動可能な流路を備える流体デバイスをステージ部に設置する設置工程と、前記流路に照明光を照射する照射工程と、前記照明光の照射によって、前記粒子から生ずる散乱光を検出する検出工程と、を含み、前記照射工程において、前記照明光は、前記流路の照明光入射側の第1側面の位置における前記照明光の光束の通過領域が前記第1側面内に限定されるように収束する粒子検出方法が提供される。
 本発明の一態様に従えば、試料中の粒子を検出する粒子検出装置であって、粒子を含む試料を導入可能な流路を備えた流体デバイスが設置されうるステージ部と、前記流路に照明光を照射する照射部と、前記照明光を調整する調整部と、前記照明光の照射により、前記試料中の粒子から生ずる散乱光を検出する検出部と、を備え、前記調整部は、前記流路の照射光入射側の側面の位置における照射領域が前記側面内に集光するような収束角に前記照明光を調整する、粒子検出装置が提供される。
 本発明の一態様に従えば、粒子を含む試料を導入可能な流路を備えた流体デバイスと、本発明の第2の態様の粒子検出装置と、を備える粒子検出システムが提供される。
本発明の一実施形態に係る粒子検出装置の概略的な平面図。 本発明の一実施形態に係る粒子検出装置の概略的な正面図。 本発明の一実施形態に係る細胞外小胞体分析チップの基本構造を示す斜視図。 図3のII-II線断面図。 本発明の一実施形態に係る流体デバイスの平面図。 チップをYZ平面で部分的に切断した部分断面図。 図6におけるA-A線断面図。 照射部及び調整部の概略構成を示す図。 本発明の一実施形態に係る調整部および流体デバイスの部分詳細図。 本発明の一実施形態に係る照明光の光路を模式的に示す図。
 以下、本発明の粒子検出方法および粒子検出装置の実施形態を、図1~図10を参照して説明する。
 図1は、実施形態に係る粒子検出装置1の概略的な平面図である。図2は、実施形態に係る粒子検出装置1の概略的な正面図である。
 粒子検出装置1は、流体デバイスCを検出対象として流体デバイスCに照明光L1を照射し、流体デバイスCからの散乱光L2を観察することにより、流体デバイスC内の粒子に関する情報を検出する。粒子検出装置1は、光源部LS、照射部20、調整部CL、ステージ部ST、検出部30および制御部CONTを備えている。粒子検出装置1および流体デバイスCによって粒子検出システム100が構成される。
 以下の説明においては、ステージ部STの設置面STaと直交する直交面(不図示)と直交する方向をx方向(x軸;第3方向)、設置面STaと平行でx方向と直交する方向をy方向(y軸)、x方向およびy方向と直交する鉛直方向をz方向(z軸;第2方向)として適宜説明する。
 まず、検出対象である流体デバイスCについて説明する。
 本実施形態における流体デバイスCは、一例として、検体を分析する際に用いられる電気泳動分析チップである。検体としては、細胞、細胞外小胞体、微粒子、ラテックス粒子(抗体で修飾され、さらに細胞で修飾されたラテックス粒子を含む)、高分子ミセル等が挙げられる。本実施形態では、電気泳動分析チップとして、細胞外小胞体を分析するための細胞外小胞体分析チップを用いる場合について説明する。本明細書において、細胞外小胞体とは、エクソソーム(エキソソーム)、アポトーシス小体、マイクロベシクル等を含む、脂質小胞を意味するものとする。以下に、エクソソームを分析する場合を例として、本実施形態に係る細胞外小胞体分析チップ(電気泳動分析チップ)について説明する。
[エクソソーム]
 エクソソーム(エキソソーム)は、直径30~100nm程度の脂質小胞であり、エンドソームと細胞膜との融合体として、腫瘍細胞、樹状細胞、T細胞、B細胞等、種々の細胞から、血液、尿、唾液等の体液中に分泌される。
 生体内に存在する癌細胞等の異常細胞は、その細胞膜に特有のタンパク質を発現している。エクソソームは細胞の分泌物であり、その表面に分泌源の細胞由来のタンパク質を発現している。
 そこで、エクソソームの表面に発現しているタンパク質を分析することで、分泌源の細胞の異常を検出することができる。ここで、エクソソームの表面とは、細胞から分泌される脂質小胞の膜表面であって、分泌されたエクソソームが生体内の環境と接する部分をいう。
 エクソソームは、生体内で循環している血液中で検出されるため、エクソソームを分析することで、バイオプシー検査をしなくとも、生体内の異常を検出することができる。
 [エクソソームの分析]
 細胞外小胞体分析チップを用いたエクソソームの分析は、一例として次のようにして行うことができる。まず、検出対象のエクソソームを精製する。次に、エクソソームと特異的結合物質とを接触させる。ここで、特異的結合物質とは、エクソソームの表面に存在する分子に特異的に結合することができる物質を意味し、詳細は後述する。次に、細胞外小胞体分析チップを用いて、エクソソームのゼータ電位を計測し、分析を行う。本分析は、エクソソームに限らず、広く細胞外小胞体一般の分析にも適用できる。
(特異的結合物質)
 特異的結合物質としては、例えば、抗体、改変抗体、アプタマー、リガンド分子等が挙げられる。抗体としては、IgG、IgA、IgD、IgE、IgM等が挙げられる。IgGとしては、IgG1、IgG2、IgG3、IgG4等が挙げられる。IgAとしては、IgA1、IgA2等が挙げられる。IgMとしては、IgM1、IgM2等が挙げられる。改変抗体としては、Fab、F(ab’)、scFv等が挙げられる。アプタマーとしては、ペプチドアプタマー、核酸アプタマー等が挙げられる。リガンド分子としては、エクソソームの表面に存在する検出対象分子が、レセプタータンパク質である場合の、そのレセプタータンパク質のリガンド等が挙げられる。例えば、エクソソームの表面に存在する分子がインターロイキンである場合、リガンド分子としてはGタンパク質等が挙げられる。
 また、特異的結合物質は、標識物質で標識されていてもよい。標識物質としては、例えば、ビオチン、アビジン、ストレプトアビジン、ニュートラビジン、グルタチオン-S-トランスフェラーゼ、グルタチオン、蛍光色素、ポリエチレングリコール、メリト酸等の電荷分子等が挙げられる。
(エクソソームの精製)
 本分析の各工程について説明する。まず、エクソソームを含有する試料からそのエクソソームを精製する。試料としては、目的に応じて、血液、尿、母乳、気管支肺胞洗浄液、羊水、悪性滲出液、唾液、細胞培養液等が挙げられる。中でも、血液及び尿からは、エクソソームを精製しやすい。
 エクソソームを精製する方法としては、超遠心分離、限外ろ過、連続フロー電気泳動、クロマトグラフィー、μ-TAS(Micro-Total Analysis Systems)デバイスを使用する方法等が挙げられる。
(エクソソームと特異的結合物質との反応)
 次に、エクソソームと特異的結合物質(抗体、アプタマー等)とを接触させる。エクソソームの表面に検出対象の分子が存在した場合、特異的結合物質-エクソソーム複合体が形成される。特異的結合物質を適切に選択することにより、例えば、癌、肥満、糖尿病、神経変性疾患等の疾患に関連する異常を検出することができる。
(ゼータ電位の計測)
 一例として、特異的結合物質として抗体を使用した場合について説明する。エクソソームと抗体とを反応させた後、抗体と反応させたエクソソームのゼータ電位を計測する。ゼータ電位とは、溶液中の微粒子の表面電荷である。例えば、エクソソームが負に帯電しているのに対し、抗体は正に帯電している。このため、抗体-エクソソーム複合体のゼータ電位は、エクソソーム単独のゼータ電位と比較して正にシフトしている。したがって、抗体と反応させたエクソソームのゼータ電位を測定することによって、エクソソームの膜表面における抗原の発現を検出することができる。これは、抗体に限らず、正に帯電した特異的結合物質でも同様である。
 エクソソームのゼータ電位ζは、一例として、細胞外小胞体分析チップのマイクロ流路内で、エクソソームの電気泳動を行い、エクソソームの電気泳動速度Sを光学的に測定し、測定されたエクソソームの電気泳動速度Sに基づいて、以下の式(1)に示すスモルコフスキー(Smoluchowski)の式を用いて算出することができる。
 U=(ε/η)ζ …(1)
 式(1)中、Uは測定対象のエクソソームの電気泳動移動度、εはサンプル溶液の誘電率、ηはサンプル溶液の粘性係数である。また、電気泳動移動度Uは、電気泳動速度Sをマイクロ流路内の電界強度で除して算出することができる。
 エクソソームの電気泳動速度Sは、一例として、エクソソームを、細胞外小胞体分析チップのマイクロ流路内で電気泳動し、一例として、レーザー光を、マイクロ流路内を流れるエクソソームに照射して、レイリー散乱光による粒子画像を取得することにより、測定することができる。レーザー光としては、一例として、波長405nm、強度150mWのものが挙げられる。
[細胞外小胞体分析チップの基本構造]
 図3は、実施形態に係る細胞外小胞体分析チップの基本構造を示す斜視図である。図4は、図3のII-II線断面図である。細胞外小胞体分析チップ101は、第1リザーバー110と、第2リザーバー120と、第1リザーバー110と第2リザーバー120とを接続する泳動流路150と、基材160とを備えている。泳動流路150は、例えば、ミリ流路やマイクロ流路である。泳動流路150は、一例として、幅200μm、高さ400μm、長さ10mm程度の大きさである。泳動流路150は、細胞外小胞体、あるいは、細胞外小胞体の表面に存在する分子に特異的に結合する特異的結合物質と細胞外小胞体とが相互作用してなる、特異的結合物質-細胞外小胞体複合体(一例として、抗体-エクソソーム複合体)を電気泳動する流路である。特異的結合物質の一例として、抗体、アプタマー、または抗体とアプタマーとの組み合わせからなる物質が挙げられる。アプタマーは例えば、核酸アプタマー、ペプチドアプタマーなどである。特異的結合物質が認識する分子としては、例えば抗原、膜タンパク質、核酸、糖鎖、糖脂質等が挙げられる。
 泳動流路150の第一端部は、第1リザーバー110と接続されている。泳動流路150の第二端部は、第2リザーバー120と接続されている。また、第1リザーバー110及び第2リザーバー120は、基材160に設けられる。第1リザーバー110は、電極130を有している。第2リザーバー120は、電極140を有している。例えば、電極130は第1リザーバー110の底部に設けられ、電極140は第2リザーバー120の底部に設けられている。図4に示すように、電極130は、泳動流路150の端部の近傍に設けられ、電極140は、泳動流路150の端部の近傍に設けられている。また、例えば、第1リザーバー110は検体(例、分析対象のエクソソーム)が導入され、第2リザーバー120は緩衝液が導入される。なお、その緩衝液は第1リザーバー110に導入されてもよい。
 細胞外小胞体分析チップ101は、細胞外小胞体のゼータ電位を計測することができる。以下に、検体又は細胞外小胞体としてエクソソームを分析する場合を例として、本細胞外小胞体分析チップを用いた、エクソソームのゼータ電位の測定方法について説明する。
 まず、分析対象のエクソソームを含む試料液が、第1リザーバー110に導入される。
 分析対象のエクソソームは、特異的結合物質と反応させたものであってもよい。エクソソームは例えば培養上清や血清から抽出したものであり、試料液は、例えば、リン酸緩衝液(Phosphate Buffered Saline、PBS)等の緩衝液にエクソソームが懸濁されたエクソソーム懸濁液である。次に、エクソソームを含む試料液が泳動流路150に導入される。一例として、シリンジを第2リザーバー120に接続して試料液を吸引することにより、エクソソームを泳動流路150に導入することができる。次に、緩衝液を、第1リザーバー110及び第2リザーバー120に入れる。後述する液位調整手段により、第1リザーバー110と第2リザーバー120との液位(液面高)を調整して揃え、泳動流路150に生じる静水圧流の発生を防ぎ、ゼータ電位測定の精度を向上させることが可能となる。続いて、制御部(例、後述の制御部CONT、又はコンピュータなど)によって電極130及び140の間に電圧を印加し、エクソソームを電気泳動する。一例として、制御部は約50V/cmの電界強度の電圧を約10秒間印加する。
 電気泳動中に、泳動流路150にレーザー光を照射し、泳動流路150からの出射光であるエクソソームを介した散乱光を、対物レンズ等を用いて集光し、受光センサ(例、高感度カメラ)を用いて、エクソソーム又は特異的結合物質-エクソソーム複合体を撮影する。対物レンズの倍率は、一例として60倍程度である。一例として、レーザーの波長は、405nmであり、レーザーの強度は、150mWである。
 続いて、制御部は、撮影した画像をもとに、エクソソーム又は特異的結合物質-エクソソーム複合体の電気泳動速度Sを算出する。そして、制御部は、電気泳動速度Sを電界強度で除して、電気泳動移動度Uを算出する。続いて、制御部は、上述したスモルコフスキーの式を用いて、エクソソーム又は特異的結合物質-エクソソーム複合体のゼータ電位を算出する。
 本実施形態における細胞外小胞体分析チップを用いることにより、特異的結合物質-エクソソーム複合体のゼータ電位の平均値だけでなく、特異的結合物質-エクソソーム複合体のゼータ電位を1粒子レベルで計測することができる。そのため、ゼータ電位の平均値からは、特異的結合物質が認識する分子(例えば、抗原等)を有するエクソソームが試料中に存在しないように思われる場合であっても、マイナーポピュレーションとして存在する、その抗原を有するエクソソームを検出することができる。
[流体デバイスCの構造]
 図5は、実施形態に係るステージ部STの設置面STaに流体デバイスCが設置された平面図である。図6は、実施形態に係る流体デバイスCをyz平面で部分的に切断した部分断面図である。図7は、図6におけるA-A線断面図である。
 図5に示すように、流体デバイスCは、平面視で矩形形状に形成されている。図6に示すように、流体デバイスCは、z方向に順次積み重ねられたリザーバー部材(第1基材)10および底板(第2基材)11を備えている。例えば、本実施形態における流体デバイスCは、少なくともリザーバー部材10、底板11で構成された、積層構造(積層体)である。
 この場合、流体デバイスCの積層構造は二層構造を有する。また、例えば、このような流体デバイスCの積層構造は、リザーバー部材10と、底板11とを互いに貼りあわせて形成される。
 リザーバー部材10は、外力などによって少なくとも一方向に弾性変形可能な材料で形成される。リザーバー部材10の材料には、一例として、エラストマーであり、シリコーンゴム、PDMS(ポリジメチルシロキサン)などが挙げられる。底板12は、照明光L1の照射によって発生した散乱光L2が透過する材料で形成されている。底板12は、一例として、ガラス材で形成されている。
 流体デバイスCは、長さ方向(y方向)に配列された複数(図5では3つ)のレーン2を備えている。各レーン2は、第1リザーバー12A、第2リザーバー12B、流路13および電極18A、18Bを備えている。第1リザーバー12A及び第2リザーバー12Bは、y方向に間隔をあけて配置されている。例えば、第1リザーバー12A及び第2リザーバー12Bは、流路13の流路方向に間隔をあけて配置されている。なお、複数のレーン2は高さ方向(z方向)に配列されていてもよい。この場合、溶液は長さ方向(x方向)から注入されてもよく、y方向から注入されてもよい。照射光源は例えば複数あって、それぞれの光源が対応する高さのレーン2を流れる微粒子を照射する。また、少なくとも一つの照射光源から照射方向を変えることでレーン2を流れる微粒子を照射してもよい。
 第1リザーバー12Aは、xy平面と平行な面での断面が円形の形状を有しz方向に延在する保持空間14Aと、保持空間14Aの+z側端部から+z方向に向かうに従って径が漸次拡大する漏斗状の形状を有する導入部15Aとを備えている。保持空間14Aは、-z側の端部が底板11と対向して開口する。保持空間14Aは、流路13と接続される。
 第2リザーバー12Bは、xy平面と平行な面での断面が円形の形状を有しz方向に延在する保持空間14Bと、保持空間14Bの+z側端部から+z方向に向かうに従って径が漸次拡大する漏斗状の形状を有する導入部15Bとを備えている。保持空間14Bは、-z側の端部が底板11と対向して開口する。保持空間14Bは、流路13と接続される。
 流路13は、電気泳動用流路(電気泳動のための流路)である。流路13は、流体デバイスCの長さ方向であるy方向に延在する。流路13は、底板11と対向する側の面に保持空間14Aと保持空間14Bとを接続するように設けられている。流路13は、図7に示すように、リザーバー部材10に形成された溝部10Aと、底板11の表面(第2面)11aとで囲まれている。これにより、流路13は、断面矩形形状に形成されている。溝部10Aは、x方向に対向する側面(第1面)16a、16bと、底板11の表面11aとz方向で対向する底面(第2面)16cに囲まれて形成される。側面16a、16b、底面16cおよび溝部10Aを構成する表面11aは鏡面加工されている。第1面は、第1側面である側面16aと第2側面である側面16bとを含む。側面16aと側面16bとは、互いに向かい合っており、第1方向であるx方向に互いに離間している。
 レーン2は、流体デバイスCの幅方向である照明光L1の光軸方向(入射方向)について、中心よりも+x側の端面17に近い側に偏って配置されている。レーン2は、入射する照明光L1の光軸方向である流体デバイスCの幅方向(図5におけるx方向)について、中心よりも照明光L1の入射側の端面17に近い側に偏って配置されている。端面17は、y方向に関して少なくともレーン2が設けられる範囲が鏡面加工されている。流路13は、一例として、幅200μm、高さ(溝部10Aの深さ)400μm、長さ10mm程度の大きさに形成されている。
 底板11の表面11aには、保持空間14Aに臨んで電極18Aが設けられている。底板11の表面11aには、保持空間14Bに臨んで電極18Bが設けられている。電極18A及び電極18Bの素材としては、金、白金、カーボン等が挙げられる。図7に示すように、底板11における照明光L1の入射側に位置する端面(第2端面)19は、x方向について、リザーバー部材10の端面17の位置よりも、照明光L1の入射側とは逆側である-x側に離間している。
 図1に戻り、光源部LSは、粒子に対して悪影響を及ぼさない波長として、上述したように、一例として、波長405nm、強度150mWでビーム径(ピーク値に対して1/eとなる径)0.8mmでz方向を偏向方位とするレーザー光を照明光L1として発光する。なお、照明光L1は、偏光(例えば、直線偏光など)であっても、無偏光であってもよいが、本実施形態では、垂直偏光を用い、レイリー散乱の指向性が無い構成を採用する。
 照明光L1は、上述した直交面と交差する方向に延びる光軸に沿って流体デバイスCに照射される。本実施形態では、照明光L1の光軸は、x方向と平行である。本実施形態の照明光L1は、x方向に延びる光軸に沿って流体デバイスCに照射される。
 図8は、実施形態に係る照射部20及び調整部CLの概略構成を示す図である。照射部20は、照明光L1の光軸に沿って順次配置されたλ/2板21およびエキスパンダレンズ22を備えている。なお、図1に示される光源部LSおよび照射部20は、照明光L1の光軸がy方向に延びているが、最終的に流体デバイスC(流路13)を照射する照明光L1はx方向に沿った光軸を有する。このため、図8に示す照明光L1は、光軸がx方向に沿うものとして図示している。
 光源部LSが発光した照明光L1は、λ/2板21を透過することで偏光方位がy方向に回転する。なお、光源部LSがy方向を偏向方位とする照明光L1を発光する場合にはλ/2板21は不要である。エキスパンダレンズ22は、対向するシリンドリカルレンズ22A、22Bを備える。シリンドリカルレンズ22A、22Bは、y方向についてはパワーを有していないため、照明光L1はy方向の幅が一定である。照明光L1のz方向の幅は、シリンドリカルレンズ22A、22Bの光軸方向の距離に応じて拡大または縮小する。本実施形態では、エキスパンダレンズ22は、照明光L1のz方向の幅を、一例として、2倍に拡大する。
 調整部CLは、エキスパンダレンズ22でz方向の幅が拡大されて入射した照明光L1を調整する。調整部CLは、光源部LSと対物レンズ31との間の光路に配置されている。また、調整部CLは、λ/2板21又はエキスパンダレンズ22と対物レンズ31との間の光路に配置されている。調整部CLは駆動機構を備えていてもよく、調整部CLが移動することで収光点を調整できてもよい。調整部CLは例えばx方向に駆動可能である。
 この場合、流路13の位置が異なるチップを用いた場合であっても、流路13内に収光点が位置するように調整することが可能である。また、収光点と流路13の中心とが実質的に一致するように調整してもよく、検出部の中心部と収光点とが実質的に一致するように調整してもよい。図9は、実施形態に係る調整部CLおよび流体デバイスCの部分詳細図である。
 調整部CLは、一例として、シリンドリカルレンズで構成される。調整部CLは、照明光L1のz方向の幅が流路13の内部において最小となり、且つ、流路13の照射光入射側の側面16aの位置における照明光L1の通過領域が側面16a内に限定されるように収束する収束角度に照明光L1を調整している。調整部CLは、照明光L1のz方向の幅が流路13の内部において最小となり、且つ、流路13の照射光入射側の側面16aの位置における照明光L1の照射領域が側面16a内に集光するような収束角度に照明光L1を調整している。また、調整部CLは、流路13の照射光射出側の側面16bの位置における照明光L1(照射光束)の通過領域が側面16b内に限定されるように収束する収束角度に照明光L1を調整している。調整部CLは、流路13の照射光射出側の側面16bの位置における照明光L1(照射光束)の照射領域が側面16b内に集光するような収束角度に照明光L1を調整している。また、調整部CLは、リザーバー部材10の端面17の位置における照明光L1の照射領域が端面17内に収束する収束角度に照明光L1を調整している。さらに、調整部CLは、照明光L1が流路13内の検出領域において収束点が存在するような収束角に照明光L1を調整している。
 例えば、流路13の検出領域において検出部30の焦点深度外の照明光L1の照明光束は焦点深度内の照明光束よりも少なくなるような収束角を有する。なお、例えば、上述の直交面は、リザーバー部材10の端面17、流路13の照射光入射側の側面16a、又は流路13の照射光射出側の側面16bを含む。
 ここで、照明光L1が光軸方向(x方向)について、流路13の中央(x=0とする)でz方向の幅が最小幅ω0となる場合、照明光L1の流路13内の媒質での収束角をθ、照明光L1の波長をλ、位置xおよび収束角θでのz方向のビーム幅をω(x、θ)、照明光L1のビームプロファイルファクタをM、最小幅ω0となるx方向の位置から側面16aまでの距離をxLとすると、下記の式(1)、式(2)において、式(3)を満足する必要がある。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
 従って、調整部CLとしては、少なくとも式(1)~(3)を満足し、且つx=xLのときのビーム幅ω(xL、θ)が側面16aのz方向の長さよりも小さく、側面16a内に収束する収束角θで照明光L1を収束させるように調整された光学特性を有する調整部CLが設置される。
 なお、照明光L1がガウシアン光である場合には、上記の式(1)~(3)に含まれるビーム幅ω(x、θ)は、照明光L1の強度がピーク値に対して1/eとなる幅で規定される。収束角θが式(1)~(3)を満足する場合でも、ピーク値に対して1/e以下となる強度の照明光L1がビーム幅ω(xL、θ)の外側で側面16aの位置に入射するため、収束角θを設定する際はピーク値に対して1/e以下となる強度の照明光L1のビーム幅も考慮する。
 また、検出部30によって照明光L1の光軸方向(x方向)について、流路13の全域を検出領域とするには、流路13の全体に亘って照明光L1の光束内に検出部30の焦点深度DOFが入る必要がある。照明光L1の光束内に検出部30の焦点深度DOFが入る照明光L1の光束内に検出部30の焦点深度DOFが入るためには、リザーバー部材10の端面17および流路13の側面16aの光軸に対する傾きも考慮する必要がある。図10は、実施形態に係る照明光L1がリザーバー部材10の端面17および流路13の側面16aを通過する光路を模式的に示す図である。流路13の幅全体に亘って照明光L1の光束内に検出部30の焦点深度DOF(図9参照)が入るためには、下記の式(4)を満足する必要がある。
Figure JPOXMLDOC01-appb-M000004
 ここで、角度δ3は、焦点面Fから見た照明光軸の仰角であり、焦点面Fから反時計回り方向を正方向とする。一方で、界面での入射角・出射角、リザーバー部材10の端面17及び流路13の側面16aのyz平面に対する傾斜角、空気中・流体デバイスCの材質中・流路中の照明光束の焦点面Fに対する仰角、および流体デバイスCの外側の媒質・流体デバイスCの材質・流路13内の媒質の屈折率には以下の関係が成立している。
 n1sinα1=n2sinα2
 n2sinα3=n3sinα4
 α1+β1=δ1
 α2+β1=δ2
 α3+β2=δ2
 α4+β2=δ3
 ここで、
 α1:自由空間からリザーバー部材10の端面17への照明光L1の入射角
 α2:端面17からリザーバー部材10内の照明光L1の出射角
 α3:リザーバー部材10内から流路13の側面(壁面)16aへの照明光L1の入射角
 α4:側面16aから流路13内部への照明光L1の出射角
 β1:端面17の傾斜角
 β2:側面16aの傾斜角
 δ1:自由空間においての照明光L1の焦点面Fからの仰角
 δ2:リザーバー部材10内においての照明光L1の焦点面Fからの仰角
 δ3:流路13内においての照明光L1の焦点面Fからの仰角
 n1:自由空間媒質の屈折率
 n2:リザーバー部材10材質の屈折率
 n3:流路13内の媒質の屈折率
であり、
 入射角・出射角:端面17および側面16aへの垂線からの角度
 傾斜角:焦点面Fの垂線からの角度
 仰角:焦点面Fからの角度
としている。また、符号は全て反時計回り方向を正とする。
 上記の式から流路13における照明光L1の仰角δ3は、以下の式(5)で表される。
Figure JPOXMLDOC01-appb-M000005
 従って、流路13のx方向の幅全体に亘って、照明光L1の光束内に検出部30の焦点深度DOFが入るためには、以下の式(6)を満足する必要がある。
Figure JPOXMLDOC01-appb-M000006
 従って、リザーバー部材10の端面17および流路13の側面16aの傾斜角、照明光L1の仰角δ3は、自由空間媒質の屈折率n1、リザーバー部材10の材質の屈折率n2および流路13内の媒質の屈折率n3に応じて、式(6)を満足するように、選択・製造・調整されている必要がある。
 ステージ部STは、図2に示すステージ駆動部60の駆動によって、x方向、y方向およびz方向に移動する。ステージ駆動部60の駆動は、制御部CONTによって制御される。図5に示すように、ステージ部STは、流体デバイスCが設置される設置面STaを備える。設置面STaは、xy平面と平行の面である。設置面STaは、y方向に間隔をあけて配置されている。設置面STaは、流路デバイスCのレーン2が設けられていないy方向の両端部を-Z側から支持する。流体デバイスCは、レーン2が配される領域が検出部30による-Z側からの観察に支障を来すことなく設置面STaに支持される。また、流体デバイスCにおけるレーン2に照射されるまでの照明光L1の光路にステージ部STが存在しないため、流体デバイスCに入射する照明光L1の一部がステージ部STに入射して、後述する粒子検出に悪影響を及ぼすことを抑制できる。
 設置面STaには、固定ピン51が突出して設けられている。固定ピン51は、流体デバイスCの長辺に当接する二つの固定ピン51aと、流体デバイスCの短辺に当接する一つの固定ピン51bとから構成される。固定ピン51aは流体デバイスCのy方向の両側の近傍にそれぞれ配置される。固定ピン51bは、+y側に位置する短辺に当接する。その+y側に位置する固定ピン51aと固定ピン51bとが配置された角部と対角に位置する角部には、押し付けコマ52が設けられている。押し付けコマ52は、ステージ部STに対して流体デバイスCを対角方向に押し付ける。押し付けられた流体デバイスCは、固定ピン51a、51bに当接することで、流路13(レーン2)がy方向と平行になるように、xy方向に関してステージ部STに位置決めされた状態で固定される。
 検出部30は、対物レンズ31、撮像部32を備えている。対物レンズ31は、ステージ部STおよび流体デバイスCの-Z側に配置されている。図9に示すように、対物レンズ31は、検出軸31aがx方向について流路13の中心を通る位置に配置される。検出軸31aは、照明光L1の光軸と直交する。撮像部32は、一例として、EMCCD(Electron Multiplying Charge Coupled Device)カメラを備えており、入射する光の画像を撮像する。撮像部32は、対物レンズ31を介して入射する側方散乱光の画像情報を取得する。
 制御部CONTは、粒子検出装置1および粒子検出システム100を統括的に制御する。制御部CONTは、ステージ駆動部60を介してステージ部STおよび流体デバイスCの移動を制御する。制御部CONTは、電源部(印加部)BTを制御して、電極18A、18Bに流路13に沿った方向の電界を印加させる。制御部CONTは、検出部30の判定部として、撮像部32で撮像された画像情報に基づいて、流路13内の粒子に関する情報を判定する。
 上記構成の粒子検出装置1および粒子検出システム100を用いて粒子検出する方法について説明する。
 本実施形態の粒子検出方法は、設置工程、導入工程、照射工程、検出工程を含む。
 設置工程は、流体デバイスCをステージ部STの設置面STaに設置する工程である。
 具体的には、図5に示したように、押し付けコマ52により流体デバイスCを対角方向に押し付けることにより、流体デバイスCは、固定ピン51a、51bに押し付けられ、流路13(レーン2)がy方向と平行になるように、ステージ部STに位置決めされた状態で設置面STaに設置される。
 導入工程は、粒子を含む試料を流体デバイスCの保持空間14A、14Bおよび流路13に導入する工程である。試料としては、一例として、リン酸緩衝液等の緩衝液(媒質)にエクソソームが懸濁されたエクソソーム懸濁液を用いることができる。
 試料が流路13に導入されたら、制御部CONTはステージ駆動部60を駆動して、検出対象となるレーン2を照明光L1の光路および検出部30の検出軸31a上に位置させる。検出対象となるレーン2が検出位置に移動すると、制御部CONTは、電源部BTを制御して電極18A及び電極18Bに電界を印加させ、エクソソームを流路13に沿って電気泳動させる力を付与する。一例として、制御部CONTは、約50V/cmの電界強度の電圧を約10秒間印加する。エクソソームの移動方向は、y方向と平行である。
 照射工程は、照明光L1をx方向と平行に流路デバイスCの流路13に照射する工程である。
 照明光L1を照射する照射部20および調整部CLは、y方向の幅が一定で、上述した式(1)~式(6)を満足する収束角θでz方向に収束するシートビーム状の照明光L1を照射する。照明光L1の最小ビーム厚(z方向のビーム幅)は、一例として、10μmである。照明光L1の最小ビーム厚(z方向のビーム幅)方向は、図7および図9のz方向またはz方向と平行な方向である。照明光L1の最小ビーム厚(z方向のビーム幅)方向は、入射面(端面17および側面16a)における照明光L1の光軸方向及び流路方向とは異なる方向であり、その光軸方向及び流路方向と直交する方向である。流路方向は、流路13が延在する方向である。流路方向は、流路13を流体が流れる方向である。
 照射された照明光L1は、流体デバイスCの第一端面(照明光入射側端面)17、流路13の側面(照明光入射側側面)16a、流路13の内部、流路13の側面(照明光射出側側面)16b、流体デバイスCの第二端面(照明光射出側端面)27(図5参照)を順次通過する。照明光L1は、エクソソームの移動方向と直交する方向に照射される。
 照射された照明光L1は、図9に示すように、流路13の内部においてz方向の幅が最小となるように収束し、且つ、流路13の側面16aの位置における照射光束の通過領域が側面16a内に限定されるように収束する。さらに、照射された照明光L1は、流路13の照明光射出側の側面16bの位置における照射光束の通過領域が側面16a内に限定されるように収束する。照明光L1は、側面16aの位置における照射領域が側面16a内に集光し、側面16bの位置における照射領域が側面16b内に集光するような収束角に調整されている。また、照射された照明光L1は、流路13における検出部30の検出領域において収束点が存在する。
 検出工程は、照明光L1のx方向と平行な照射によって流路13内部の粒子から生じる散乱光を検出部30によって観察(イメージング)し検出する。検出部30における対物レンズ31の検出軸31aが照明光L1の光軸と直交しているため、検出部30は粒子から生じる側方散乱光を検出する。検出部30は、x方向と平行に照射された照明光L1の照射によって、x方向と垂直なz方向に向かって散乱した光を検出する。散乱光が観察された粒子の像は撮像部32で撮像される。制御部CONTは、撮像部32で撮像された画像情報に基づいて粒子に関する情報(例えば粒径や粒子の移動速度)を判定する。
 例えば、時間差をもって撮像された2つの画像からエクソソームの電気泳動移動速度が求められる。制御部CONTは、求めた電気泳動移動速度および電極18A、18Bに印加した電界強度(流路13内の電界強度)を用いて電気泳動移動度を算出する。さらに、制御部CONTは、算出した電気泳動移動度と、流路13内の媒質の誘電率および粘性係数とを用いてエクソソームのゼータ電位を判定することができる。
 本実施形態では、粒子から生じる側方散乱光を検出しているため、前方散乱光を受光した場合と比較してノイズの少ない画像情報が得られる。また、例えば、照明光L1が側面16aの位置における照射光束の通過領域が側面16a内に限定されずに、照明光L1の一部Kが底板11を介して流路13の内部に入射した場合には、側面16bまたは底面16cで散乱光が発生する可能性がある。側面16bまたは底面16cで発生した散乱光の信号強度は、観察対象の粒子で発生した散乱光の信号強度よりも数桁以上大きく、撮像部32のダイナミックレンジを超えてしまう。粒子を観察する状態においては、側面16bまたは底面16c(以下、壁面と称する)で発生した散乱光は撮像部32を飽和させる可能性がある。そして、この散乱光がz方向について広範囲から発生する場合、デフォーカスによる拡がりの発生のため、撮像部32上において散乱光が流路13内の観察領域を大きく浸食することになる。本実施形態では、側面16aの位置において照明光L1の通過領域が側面16a内に限定され、且つ、端面17の位置において照明光L1の通過領域が端面17内に限定されるように照明光L1を収束させているため、信号強度の大きい散乱光の発生を抑制することができる。そのため、本実施形態では、流路13内の粒子に関する情報を高精度で検出することができる。
 また、検出部30の焦点深度DOFの外側の粒子からの散乱光は、デフォーカスのためにバックグラウンド光となり、粒子状の形状として検出することができない。本実施形態では、流路13の内部でz方向の幅が最小となり、流路13内の観察領域外におけるバックグラウンド光を抑えているため、照明光L1で照明された粒子を高精度に検出することが可能になる。また、本実施形態では、端面17が鏡面加工されているため、端面17で散乱光がノイズとなり粒子検出精度に悪影響が及ぶことを抑制できる。また、本実施形態では、照明光L1が端面17に直交して入射しているため、光軸調整が容易になる。さらに、本実施形態では、底板11の端面19がリザーバー部材10の端面17よりも照明光L1の入射側と逆側に離間しているため、照明光L1の一部が端面17に入射する前に端面19に入射することを回避できる。
 以上、添付図面を参照しながら本発明に係る好適な実施形態について説明したが、本発明は係る例に限定されない。上述した例において示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。
 例えば、上記実施形態では、電界による力を付与して粒子に流路13内を移動させる構成を例示したが、これに限定されるものではなく、媒質に流速を付与することにより、粒子を所定方向に移動させる構成、または粒子を所定方向に移動させる力を与えない構成であってもよい。
 また、上記実施形態では、粒子から-Z側に向けて発生する散乱光を検出する構成としたが、これに限られず、例えば、+y側または-y側または+z側に向けて散乱する散乱光を検出する構成であってもよい。検出部は流路の底面側に限られず、流路の側面側でもよい。例えば、流路の側面から照明光を照射した場合に、流路の底面側から側方散乱光を検出してもよいし、流路の上面側から側方散乱光を検出してもよい。また、前方散乱光を検出する構成であってもよい。例えば、流路の側面から照明光を照射した場合に、流路の照明光出射側から後方散乱光を検出してもよく、流路の照明光出射側から前方散乱光を検出してもよい。
 また、上記実施形態では、長さ方向(y方向)に配列された複数のレーン2を備えた流体デバイスCを例示したが、複数のレーン2は高さ方向(z方向)に配列されていてもよい。この場合、溶液は長さ方向(x方向)から注入されてもよく、y方向から注入されてもよい。照射光源は例えば複数あって、それぞれの光源が対応する高さのレーン2を流れる微粒子を照射する。また、少なくとも一つの照射光源から照射方向を変えることでレーン2を流れる微粒子を照射してもよい。
 上記実施形態において、照明光L1のz方向の幅が最小サイズとなる位置を調整するには、例えば、第2調整部として、焦点距離が異なる複数の調整部CL(レンズ)をターレット板に設け、ターレット板を回転させて所望の焦点距離を有するレンズを照明光L1の光路に位置させる構成や、ズームレンズを用いる構成を採用することができる。また、有効径の異なる調整部CLを複数用い、所望の有効径を有するレンズを照明光L1の光路に位置させる構成や可変NA絞りを用いて集光レンズの有効径を可変としてもよい。さらに、倍率の異なるエキスパンダレンズ22を複数用い、所望の有効径を有するエキスパンダレンズ22を照明光L1の光路に位置させる構成や、ズームレンズを用いる構成を採用して、倍率を可変としてもよい。
 また、上記実施形態では、照明光L1の光軸がx軸と平行である構成を例示したが、これに限定されるものではなく、上述した直交面と交差する範囲であれば、例えば、x軸に対して±10度、または±5度で傾いてもよい。照明光L1の光軸がx軸と平行で側面16aと直交して入射した場合には、原理的にはレーリー散乱光の散乱角依存性が最も弱くなるが、上述したように、測定対象の粒子よりも大きい粒子からのミー散乱光をカットした場合にはノイズが低減され、照明光L1の光軸がx軸に対して傾いていた方がレーリー散乱光の信号強度が高くなる可能性がある。
 また、上記実施形態では、粒子としてエクソソームを用いる構成を例示したが、本装置および本システムは、エクソソーム以外にも適用できる。例えば、本装置および本システムは、エクソソーム(細胞外小胞体)のような自己細胞由来粒子、細菌・ウィルスのような外来粒子、に代表される有機物粒子のみならず、金属・シリカのような無機物粒子まで適用範囲を広げることが可能である。
 1…粒子検出装置、10…リザーバー部材(第1基材)、10A…溝部、11…底板(第2基材)、11a…表面(第2面)、13…流路、16a、16b…側面(第1面)、16c…底面(第2面)、17…端面、19…第2端面、20…照射部、30…検出部、100…粒子検出システム、BT…電源部(印加部)、C…流体デバイス、CL…調整部(シリンドリカルレンズ)、L1…照明光、L2…散乱光、ST…ステージ部、STa…設置面。

Claims (31)

  1.  試料中の粒子を検出する粒子検出方法であって、
     前記粒子が移動可能な流路を備える流体デバイスをステージ部に設置する設置工程と、
     前記流路に照明光を照射する照射工程と、
     前記照明光の照射によって、前記粒子から生ずる散乱光を検出する検出工程と、
     を含み、
     前記照射工程において、前記照明光は、前記流路の照明光入射側の第1側面の位置における前記照明光の光束の通過領域が前記第1側面内に限定されるように収束する粒子検出方法。
  2.  前記照射工程において、前記照明光は前記第1側面内に集光するような収束角で照射される請求項1に記載の粒子検出方法。
  3.  前記照射工程において、前記照射光は、前記流体デバイスが設置されるステージ部の設置面に対し直交する直交面と交差する第1方向に延びる光軸に沿って照射され、前記第1方向と直交する第2方向の幅が前記流路内部において最小となるように収束する請求項1に記載の粒子検出方法。
  4.  前記照射工程において、前記照明光の収束角は、前記流路の照明光射出側の第2側面の位置における前記照明光の光束の通過領域が前記第2側面内に限定される、
     請求項1に記載の粒子検出方法。
  5.  前記流路は、前記直交面と直交する第3方向に互いに離間した一対の第1面と、前記第3方向と直交する第4方向に互いに離間した一対の第2面とに囲まれた断面矩形形状に形成されており、
     前記第1方向は、前記第3方向と平行であり、
     前記照明光は前記第1面について直交して入射する、
     請求項1または請求項4に記載の粒子検出方法。
  6.  前記流体デバイスは、前記一対の第1面と、前記一対の第2面と、を有する流路部と、
     前記第1面よりも前記照明光の入射側に位置し前記第1面と平行な端面とを備え、
     前記照射工程において、前記照明光は、前記端面に直交して入射するとともに、前記第3方向について前記端面の位置における前記照明光の通過領域が前記端面内に限定されるように収束する
     請求項5記載の粒子検出方法。
  7.  前記流体デバイスは、前記第4方向に積層され屈折率が互いに異なる材料で形成された第1基材と第2基材とを備え、
     前記第1基材は、前記一対の第1面と、前記一対の第2面のうちの一方と、を有する溝部と、前記端面とを備える
     請求項6に記載の粒子検出方法。
  8.  前記端面は、鏡面加工されている
     請求項6または請求項7に記載の粒子検出方法。
  9.  前記検出工程において、前記散乱光は側方散乱光である
     請求項1から請求項8のいずれか一項に記載の粒子検出方法。
  10.  前記流体デバイスをステージ部に保持させて移動させる工程を含む
     請求項1から請求項9のいずれか一項に記載の粒子検出方法。
  11.  前記照明光の前記第2方向の幅が最小となる前記第3方向の位置を調整する工程を含む
     請求項1から10のいずれか一項に記載の粒子検出方法。
  12.  前記散乱光の画像情報を取得することと、
     取得した前記画像情報に基づいて、前記粒子に関する情報を判定することと、を含む
     請求項1から11のいずれか一項に記載の粒子検出方法。
  13.  前記粒子に前記流路内を移動させる力を付与する工程を含む
     請求項12記載の粒子検出方法。
  14.  前記媒質中に印加される電界による力を前記粒子に付与する
     請求項13記載の粒子検出方法。
  15.  前記画像情報に基づいて前記粒子の移動速度を判定する
     請求項13または請求項14に記載の粒子検出方法。
  16.  前記画像情報に基づいて前記粒子の粒径を判定する
     請求項12から請求項15のいずれか一項に記載の粒子検出方法。
  17.  前記粒子は、エクソソームである
     請求項1から16のいずれか一項に記載の粒子検出方法。
  18.  試料中の粒子を検出する粒子検出装置であって、
     粒子を含む試料を導入可能な流路を備えた流体デバイスが設置されうるステージ部と、
     前記流路に照明光を照射する照射部と、
     前記照明光を調整する調整部と、
     前記照明光の照射により、前記試料中の粒子から生ずる散乱光を検出する検出部と、
     を備え、
     前記調整部は、前記流路の照射光入射側の側面の位置における照射領域が前記側面内に集光するような収束角に前記照明光を調整する、粒子検出装置。
  19.  前記照射部は、前記照明光を前記設置面と直交する直交面と交差する第1方向に延びる光軸に沿って前記流路に照射し、
     前記調整部は、前記照明光が前記第1方向と直交する第2方向の幅が前記流路内部において最小となるように収束するような収束角に前記照明光を調整する、請求項18に記載の粒子検出装置。
  20.  前記検出部は、前記散乱光の画像情報を取得する取得部と、
     前記取得部で取得された前記画像情報に基づいて、前記粒子に関する情報を判定する判定部とを備える
     請求項18記載の粒子検出装置。
  21.  前記流路に沿った方向の電界を印加する印加部を備える
     請求項20に記載の粒子検出装置。
  22.  前記判定部は、前記画像情報に基づいて前記粒子の移動速度を判定する
     請求項20または請求項21に記載の粒子検出装置。
  23.  前記判定部は、前記画像情報に基づいて前記粒子の大きさを判定する
     請求項20から請求項22のいずれか一項に記載の粒子検出装置。
  24.  前記照明光の前記第2方向の幅が最小となる前記直交面と直交する第3方向の位置を調整する第2調整部を備える
     請求項18から請求項23のいずれか一項に記載の粒子検出装置。
  25.  粒子を含む試料を導入可能な流路を備えた流体デバイスと、
     請求項18から請求項24のいずれか一項に記載の粒子検出装置と、
     を備える粒子検出システム。
  26.  前記流体デバイスの流路は、前記直交面と直交する第3方向に互いに離間した一対の第1面と、前記第3方向と直交する第4方向に互いに離間した一対の第2面とに囲まれた断面矩形形状に形成されており、
     前記第1方向は、前記第3方向と平行であり、
     前記照射部は、前記照明光を前記第1面について直交して入射させる
     請求項25に記載の粒子検出システム。
  27.  前記流体デバイスは、前記一対の第1面と、前記一対の第2面と、を有する流路部と、
     前記第1面よりも前記照明光の入射側に位置し前記第1面と平行な端面とを備え、
     前記照明光は、前記端面に直交して入射するとともに、前記第3方向について前記端面の位置における照射領域が前記端面内に集光するような収束角に調整されている
     請求項26に記載の粒子検出システム。
  28.  前記流体デバイスは、前記第4方向に積層され屈折率が互いに異なる材料で形成された第1基材と第2基材とを備え、
     前記第1基材は、前記一対の第1面と、前記一対の第2面のうちの一方と、を有する溝部と、前記端面とを備える
     請求項27に記載の粒子検出システム。
  29.  前記端面は、鏡面加工されている
     請求項28記載の粒子検出システム。
  30.  前記第2基材は、前記照明光の入射側に位置する第2端面が前記第3方向について前記第1基材の端面の位置よりも前記入射側とは逆側に離間する
     請求項28または請求項29に記載の粒子検出システム。
  31.  前記粒子は、エクソソームである
     請求項25から30のいずれか一項に記載の粒子検出システム。
PCT/JP2015/079699 2014-10-24 2015-10-21 粒子検出方法、粒子検出装置および粒子検出システム WO2016063912A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016555254A JPWO2016063912A1 (ja) 2014-10-24 2015-10-21 粒子検出方法、粒子検出装置および粒子検出システム
US15/490,727 US10113948B2 (en) 2014-10-24 2017-04-18 Particle detection method, particle detection device and particle detection system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-217807 2014-10-24
JP2014217807 2014-10-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/490,727 Continuation US10113948B2 (en) 2014-10-24 2017-04-18 Particle detection method, particle detection device and particle detection system

Publications (1)

Publication Number Publication Date
WO2016063912A1 true WO2016063912A1 (ja) 2016-04-28

Family

ID=55760943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/079699 WO2016063912A1 (ja) 2014-10-24 2015-10-21 粒子検出方法、粒子検出装置および粒子検出システム

Country Status (3)

Country Link
US (1) US10113948B2 (ja)
JP (1) JPWO2016063912A1 (ja)
WO (1) WO2016063912A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018081069A (ja) * 2016-11-16 2018-05-24 中原大學 目標物運動状態及びその磁性粒子含量の測定に用いる電磁泳動測定システム

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6781989B2 (ja) * 2015-04-21 2020-11-11 国立大学法人 東京大学 微粒子検出システム及び微粒子検出プログラム
CN113866158B (zh) * 2021-08-30 2024-02-09 上海睿钰生物科技有限公司 一种微粒检测装置及其操作方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05240872A (ja) * 1991-11-29 1993-09-21 Canon Inc サンプル測定デバイス及びサンプル測定システム
JP2003279471A (ja) * 2002-03-20 2003-10-02 Nippon Sheet Glass Co Ltd マイクロ化学システム用チップ及びマイクロ化学システム
JP2006276000A (ja) * 2005-03-04 2006-10-12 Hitachi High-Technologies Corp 蛍光分子計測システム
JP2008261740A (ja) * 2007-04-12 2008-10-30 Univ Of Electro-Communications 粒子計測装置
WO2012147426A1 (ja) * 2011-04-26 2012-11-01 大塚電子株式会社 電気泳動移動度測定用セル並びにそれを用いた測定装置及び測定方法
WO2014030590A1 (ja) * 2012-08-24 2014-02-27 国立大学法人東京大学 エキソソームの分析方法、エキソソーム分析装置、抗体-エキソソーム複合体、及びエキソソーム電気泳動チップ
JP2014521110A (ja) * 2011-07-22 2014-08-25 モレキュラー・ビジョン・リミテッド アッセイ実行用光学デバイス

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5370842A (en) 1991-11-29 1994-12-06 Canon Kabushiki Kaisha Sample measuring device and sample measuring system
JPH06229904A (ja) * 1993-02-01 1994-08-19 Hitachi Ltd 粒子分析方法及び粒子分析装置
GB2361772B (en) 2000-04-29 2004-05-19 Malvern Instr Ltd Mobility and effects arising from surface charge
US20050140971A1 (en) 2002-03-20 2005-06-30 Nippon Sheet Glass Company, Limited Microchemical system chip and microchemical system
US7511808B2 (en) * 2006-04-27 2009-03-31 Hewlett-Packard Development Company, L.P. Analyte stages including tunable resonant cavities and Raman signal-enhancing structures
US9063117B2 (en) * 2007-02-21 2015-06-23 Paul L. Gourley Micro-optical cavity with fluidic transport chip for bioparticle analysis
US8218132B2 (en) 2007-04-12 2012-07-10 The University Of Electro-Communications Particle measuring device and particle size measure device
GB0803257D0 (en) * 2008-02-22 2008-04-02 Univ Leeds Apparatus for inspection of a fliuid and method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05240872A (ja) * 1991-11-29 1993-09-21 Canon Inc サンプル測定デバイス及びサンプル測定システム
JP2003279471A (ja) * 2002-03-20 2003-10-02 Nippon Sheet Glass Co Ltd マイクロ化学システム用チップ及びマイクロ化学システム
JP2006276000A (ja) * 2005-03-04 2006-10-12 Hitachi High-Technologies Corp 蛍光分子計測システム
JP2008261740A (ja) * 2007-04-12 2008-10-30 Univ Of Electro-Communications 粒子計測装置
WO2012147426A1 (ja) * 2011-04-26 2012-11-01 大塚電子株式会社 電気泳動移動度測定用セル並びにそれを用いた測定装置及び測定方法
JP2014521110A (ja) * 2011-07-22 2014-08-25 モレキュラー・ビジョン・リミテッド アッセイ実行用光学デバイス
WO2014030590A1 (ja) * 2012-08-24 2014-02-27 国立大学法人東京大学 エキソソームの分析方法、エキソソーム分析装置、抗体-エキソソーム複合体、及びエキソソーム電気泳動チップ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018081069A (ja) * 2016-11-16 2018-05-24 中原大學 目標物運動状態及びその磁性粒子含量の測定に用いる電磁泳動測定システム

Also Published As

Publication number Publication date
US10113948B2 (en) 2018-10-30
JPWO2016063912A1 (ja) 2017-08-03
US20170219477A1 (en) 2017-08-03

Similar Documents

Publication Publication Date Title
JP6781989B2 (ja) 微粒子検出システム及び微粒子検出プログラム
US9952215B2 (en) Exosome analysis method, exosome analysis apparatus, antibody-exosome complex, and exosome electrophoresis chip
US8928875B2 (en) Methods and systems for optical characterisation
Lincoln et al. Reconfigurable microfluidic integration of a dual-beam laser trap with biomedical applications
JP6337295B2 (ja) 電気泳動分析チップおよび電気泳動分析装置
US20160332162A1 (en) Microchip and channel structure for the same
WO2019196270A1 (zh) 微纳粒子检测系统及方法
US10113948B2 (en) Particle detection method, particle detection device and particle detection system
US20140370586A1 (en) Microchip and microchip-type fine-particle measuring device
WO2021040021A1 (ja) 被検出物質の検出方法および被検出物質の検出システム
WO2016009467A1 (ja) マルチチャンネル分析装置
EP2529211B1 (en) Bio-analysis using incident and output light guides coplanar with a separation channel and at least one ball-ended optical fiber
US20240027325A1 (en) Method and apparatus for flow-based, single-particle and/or single-molecule analysis
US20210010920A1 (en) Spectroscopic analysis device, spectroscopic analysis method, program, recording medium, and microscope
WO2018159264A1 (ja) 電気泳動分析チップおよび電気泳動分析装置
WO2015163194A1 (ja) 細胞外小胞体分析チップ、細胞外小胞体分析方法、細胞外小胞体分析装置
JPWO2018198470A1 (ja) 撮像対象分析用装置、流路構造、撮像用部材、撮像方法、及び撮像対象分析用システム
WO2016031980A1 (ja) 電気泳動デバイス、電気泳動デバイス製造方法および細胞外小胞体分離装置
JP2010223756A (ja) 凝集反応を利用した測定装置および測定方法
JPWO2014017433A1 (ja) 光学式検体検出装置
JP6482774B2 (ja) 生体分析用のデバイス、分析装置および分析方法
CN113109297A (zh) 一种基于全内反射共振原理的小型多功能生化分析仪
US20220034876A1 (en) Microdevice and analysis device
JP2015078933A (ja) イムノアッセイ方法
Lucas Detection of light scattering for lab-on-a-chip immunoassays using optical fibers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15852231

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016555254

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15852231

Country of ref document: EP

Kind code of ref document: A1