WO2016063905A1 - 銅多孔質焼結体、銅多孔質複合部材、銅多孔質焼結体の製造方法及び銅多孔質複合部材の製造方法 - Google Patents

銅多孔質焼結体、銅多孔質複合部材、銅多孔質焼結体の製造方法及び銅多孔質複合部材の製造方法 Download PDF

Info

Publication number
WO2016063905A1
WO2016063905A1 PCT/JP2015/079687 JP2015079687W WO2016063905A1 WO 2016063905 A1 WO2016063905 A1 WO 2016063905A1 JP 2015079687 W JP2015079687 W JP 2015079687W WO 2016063905 A1 WO2016063905 A1 WO 2016063905A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
fibers
sintered body
porous sintered
fiber
Prior art date
Application number
PCT/JP2015/079687
Other languages
English (en)
French (fr)
Inventor
喜多 晃一
星野 孝二
俊彦 幸
純 加藤
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to BR112017007728A priority Critical patent/BR112017007728A2/pt
Priority to US15/518,902 priority patent/US10532407B2/en
Priority to CN201580057020.5A priority patent/CN107073585B/zh
Priority to KR1020177010241A priority patent/KR20170074870A/ko
Priority to EP15853350.5A priority patent/EP3210698B1/en
Publication of WO2016063905A1 publication Critical patent/WO2016063905A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/002Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of porous nature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/062Fibrous particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/002Manufacture of articles essentially made from metallic fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1143Making porous workpieces or articles involving an oxidation, reduction or reaction step
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • B22F7/04Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C47/00Making alloys containing metallic or non-metallic fibres or filaments
    • C22C47/02Pretreatment of the fibres or filaments
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C49/00Alloys containing metallic or non-metallic fibres or filaments
    • C22C49/02Alloys containing metallic or non-metallic fibres or filaments characterised by the matrix material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/01Reducing atmosphere
    • B22F2201/013Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/01Reducing atmosphere
    • B22F2201/016NH3
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/02Nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/03Oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/10Inert gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/50Treatment under specific atmosphere air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/10Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps

Definitions

  • the present invention relates to a copper porous sintered body made of copper or a copper alloy, a copper porous composite member obtained by bonding the copper porous sintered body to a member body, and a method for producing a copper porous sintered body,
  • the present invention relates to a method for producing a copper porous composite member.
  • Patent Document 1 proposes a heat transfer member in which a copper porous body forming a three-dimensional network structure is integrally attached to a conductive metal member body.
  • Patent Document 1 as a method of manufacturing a metal sintered body (copper porous sintered body) forming a three-dimensional network structure, a three-dimensional network structure (for example, urethane) made of a material that is burned down by heating.
  • a three-dimensional network structure for example, urethane
  • Adhesive is applied to the skeleton and metal powder is applied to the molded body.
  • a method using a sheet-like molded body in which a metal powder is formed on a material (for example, pulp or wool fiber) that is made of a material that can form a three-dimensional network structure is disclosed.
  • sintering is performed in a reducing atmosphere.
  • the present invention has been made against the background as described above, and has a copper porous sintered body having a small shrinkage ratio during sintering, excellent dimensional accuracy and sufficient strength, and this copper porous sintered body. It aims at providing the manufacturing method of the copper porous composite member by which the body was joined to the member main body, the above-mentioned copper porous sintered compact, and the copper porous composite member.
  • the copper porous sintered body of the present invention is a copper porous sintered body obtained by sintering a plurality of copper fibers,
  • the fiber is made of copper or a copper alloy, the diameter R is in the range of 0.02 mm to 1.0 mm, and the ratio L / R of the length L to the diameter R is in the range of 4 to 2500.
  • the surface of the copper fiber has a redox layer formed by a redox treatment, and the redox layer is formed with irregularities. In the bonding portion between the copper fibers, The redox layers formed on the surface of the copper fiber are integrally bonded to each other.
  • the diameter R is in the range of 0.02 mm or more and 1.0 mm or less, and the ratio L / R of the length L to the diameter R is 4 or more and 2500 or less. Since it is configured by sintering the copper fibers within the range, a sufficient gap is ensured between the copper fibers, and the shrinkage rate during sintering can be suppressed, and the porosity And high dimensional accuracy.
  • the oxidation-reduction layer exists in the surface of the said copper fiber, and the unevenness
  • the said oxidation-reduction layers formed in each other surface are Since they are bonded together, the bonding area is ensured and the copper fibers are firmly bonded to each other, which is excellent in strength.
  • corrugation by the oxidation reduction layer is formed in the surface of the said copper fiber, a surface area becomes large, for example, it becomes possible to improve various characteristics, such as heat exchange efficiency and water retention.
  • the copper porous composite member of the present invention is characterized in that a member main body and the above-mentioned copper porous sintered body are joined. According to the copper porous composite member having this configuration, since the copper porous sintered body having high porosity and excellent dimensional accuracy and excellent strength is firmly bonded to the member main body, the surface area is increased. In addition to the characteristics of a sintered copper porous body that is largely excellent in various characteristics such as heat exchange efficiency and water retention, the copper porous composite member exhibits various characteristics such as excellent heat transfer characteristics and conductivity.
  • the bonding surface with the copper porous sintered body of the member main body is composed of copper or a copper alloy, and the bonding surface of the member main body includes: An oxidation-reduction layer formed by oxidation-reduction treatment exists, and in the joint portion between the copper fiber constituting the copper porous sintered body and the joint surface of the member body, the surface of the copper fiber It is preferable that the formed redox layer and the redox layer formed on the joint surface of the member main body are integrally coupled.
  • the joining surface of the member body has a redox layer formed by oxidation-reduction treatment, and the joining surface of the copper fiber and the member body constituting the copper porous sintered body.
  • the redox layer formed on the surface of the copper fiber and the redox layer formed on the joint surface of the member main body are integrally bonded, the copper porous sintered The body and the member main body are firmly bonded, and exhibit various properties such as strength, heat transfer characteristics, and conductivity excellent as a copper porous composite member.
  • the method for producing a copper porous sintered body according to the present invention is a method for producing a copper porous sintered body obtained by sintering a plurality of copper fibers, wherein the copper fibers are made of copper or a copper alloy and have a diameter.
  • R is in the range of 0.02 mm to 1.0 mm
  • the ratio L / R of the length L to the diameter R is in the range of 4 to 2500
  • a plurality of the copper fibers are laminated and copper fiber layering step of, stacked plurality of said copper fiber bodies have a sintering step of sintering, and in the copper fibers laminating step, true density D T of the bulk density D P is the copper fibers
  • the copper fibers are oxidized, and then the oxidized copper fibers are reduced and the copper fibers are bonded to each other. It is characterized by that.
  • the diameter R is in the range of 0.02 mm to 1.0 mm, and the ratio L between the length L and the diameter R is L. / R is 4 or more, the copper fibers in the range of 2500 or less, a bulk density D P is provided with a copper fiber lamination step of laminating arranged to be less than 50% of the true density D T of the copper fibers Therefore, voids are secured between copper fibers, and the use of copper fibers significantly reduces the number of sintered parts compared to the sintering of powders, so the shrinkage rate during sintering That is, shape change can be suppressed, and as a result, a porous copper sintered body having high porosity and excellent dimensional accuracy can be obtained.
  • the oxidized copper fibers are reduced and the copper fibers are bonded to each other. Therefore, an oxidation-reduction layer is formed on the surface of the copper fibers to form fine irregularities.
  • the copper fibers can be bonded to each other by the redox layer, and the strength of the copper porous sintered body can be improved.
  • the method for producing a copper porous composite member of the present invention is a method for producing a copper porous composite member in which a member main body and a copper porous sintered body obtained by sintering a plurality of copper fibers are joined, It has the joining process which joins the copper porous sintered compact manufactured by the manufacturing method of the above-mentioned copper porous sintered compact, and the said member main body, It is characterized by the above-mentioned.
  • the copper porous sintered body having the same high porosity and excellent strength as the copper porous sintered body produced by the method for producing a copper porous sintered body described above It becomes possible to manufacture the copper porous composite member excellent in various characteristics, such as a heat transfer characteristic and electroconductivity, by providing a ligation.
  • a joining surface to which the copper porous sintered body is joined in the member body is made of copper or a copper alloy, and the copper fiber
  • the laminating step a plurality of the copper fibers are stacked on the joining surface of the member main body, and in the sintering step and the joining step, the copper fibers and the joining surface of the member main body are oxidized and then oxidized. It is preferable that the copper fibers and the joining surfaces of the member main bodies are reduced and the copper fibers and the copper fibers are joined to the joining surfaces of the member main bodies.
  • the sintering step and the joining step the copper fibers and the joint surfaces of the member main bodies are oxidized, and then the oxidized copper fibers and the joint surfaces of the member main bodies are reduced and the copper fibers and Since it is the structure which joins the joint surface of the said copper fiber and the said member main body, improving the sintering strength of copper fibers and the joint strength of a copper fiber (copper porous sintered compact) and the said member main body. Is possible. Furthermore, since the member main body and the copper porous sintered body are firmly joined, it becomes possible to produce a copper porous composite member excellent in various characteristics such as heat transfer characteristics and conductivity. .
  • a copper porous sintered body having a small shrinkage ratio during sintering and excellent dimensional accuracy and sufficient strength and a copper porous composite member in which the copper porous sintered body is joined to a member body
  • the manufacturing method of the above-mentioned copper porous sintered compact and the manufacturing method of a copper porous composite member can be provided.
  • FIG. 1 It is an expansion schematic diagram of the copper porous sintered compact which is 1st embodiment of this invention. It is an observation photograph which shows the coupling
  • the copper porous sintered body 10 and the method for producing the copper porous sintered body 10 according to the first embodiment of the present invention will be described with reference to FIGS. 1 to 6B.
  • the copper porous sintered body 10 according to the present embodiment is obtained by sintering and integrating a plurality of copper fibers 11.
  • the copper fiber 11 is made of copper or a copper alloy, the diameter R is in the range of 0.02 mm or more and 1.0 mm or less, and the ratio L / R of the length L to the diameter R is 4 or more and 2500. Within the following range.
  • the copper fiber 11 is comprised by C1100 (tough pitch copper), for example.
  • the copper fiber 11 is given a shape such as twisting or bending.
  • the apparent density D A is less 51% of the true density D T of the copper fibers 11.
  • the shape of the copper fiber 11 is arbitrary as long as the apparent density D A is 51% or less of the true density DT of the copper fiber 11.
  • the gap between the fibers can be formed three-dimensionally and isotropically, resulting in porous copper sintering. This leads to an improvement in the isotropy of various characteristics such as heat transfer characteristics and conductivity of the body.
  • the oxidation reduction layer 12 is formed in the surface of the copper fiber 11, and the copper fibers 11 and 11 of each other In the joint portion, the redox layers 12 and 12 formed on the surfaces of each other are joined together.
  • the redox layer 12 has a porous structure as shown in FIG. 3, and has fine irregularities on the surface of the copper fiber 11 as shown in FIG.
  • the manufacturing method of the copper porous sintered body 10 which is this embodiment is demonstrated with reference to the flowchart of FIG. 4, the process drawing of FIG. First, as shown in FIG. 5, the copper fiber 11 that is the raw material of the copper porous sintered body 10 according to the present embodiment is sprayed from the spreader 31 into the stainless steel container 32 to be bulk-filled.
  • the fibers 11 are laminated (copper fiber lamination step S01).
  • a bulk density D P after filling is stacked a plurality of copper fibers 11 to be equal to or less than 50% of the true density D T of the copper fibers 11.
  • the copper fiber 11 bulk-filled in the stainless steel container 32 is sintered (sintering step S02).
  • sintering step S02 as shown in FIGS. 4 and 5, an oxidation treatment step S21 for oxidizing the copper fibers 11 and a reduction treatment step S22 for reducing and sintering the oxidized copper fibers 11 are performed. And.
  • the stainless steel container 32 filled with the copper fibers 11 is charged into the heating furnace 33 and heated in the air atmosphere A to oxidize the copper fibers 11 (oxidation treatment).
  • Step S21 By this oxidation treatment step S21, an oxide layer having a thickness of 1 ⁇ m or more and 100 ⁇ m or less, for example, is formed on the surface of the copper fiber 11.
  • the conditions of the oxidation treatment step S21 in the present embodiment are set such that the holding temperature is 520 ° C. or higher and 1050 ° C. or lower, and the holding time is 5 minutes or longer and 300 minutes or shorter.
  • the holding temperature in the oxidation treatment step S ⁇ b> 21 is less than 520 ° C.
  • the oxide layer may not be sufficiently formed on the surface of the copper fiber 11.
  • the holding temperature in the oxidation treatment step S21 exceeds 1050 ° C.
  • the copper (II) oxide formed by oxidation may be decomposed.
  • the holding temperature in the oxidation treatment step S21 is set to 520 ° C. or higher and 1050 ° C. or lower.
  • the lower limit of the holding temperature in the oxidation treatment step S21 is 600 ° C. or higher and the upper limit of the holding temperature is 1000 ° C. or lower.
  • the holding time in the oxidation treatment step S21 is set within a range of 5 minutes or more and 300 minutes or less.
  • the minimum of the retention time in oxidation treatment process S21 shall be 10 minutes or more.
  • the upper limit of the holding time in the oxidation treatment step S21 is 100 minutes or less.
  • the stainless steel container 32 filled with the copper fibers 11 is charged into the firing furnace 34 and heated in a reducing atmosphere. Then, the oxidized copper fibers 11 are subjected to a reduction treatment and the copper fibers 11 are bonded to each other (reduction treatment step S22).
  • the conditions of the reduction treatment step S22 in the present embodiment are that the atmosphere is a mixed gas atmosphere B of nitrogen and hydrogen, the holding temperature is 600 ° C. or higher and 1080 ° C. or lower, the holding time is 5 minutes or longer and 300 minutes or shorter. Yes.
  • the holding temperature in the reduction treatment step S ⁇ b> 22 is less than 600 ° C.
  • the oxide layer formed on the surface of the copper fiber 11 may not be sufficiently reduced.
  • the holding temperature in the reduction treatment step S22 exceeds 1080 ° C., it is heated to the vicinity of the melting point of copper, and the strength and the porosity may be reduced.
  • the holding temperature in the reduction treatment step S22 is set to 600 ° C. or higher and 1080 ° C. or lower.
  • the lower limit of the holding temperature in the reduction treatment step S22 is preferably set to 650 ° C. or higher.
  • the holding time in the reduction treatment step S22 is set within a range of 5 minutes or more and 300 minutes or less.
  • the lower limit of the holding temperature in the reduction treatment step S22 is preferably set to 10 minutes or more.
  • the upper limit of the holding time in the reduction treatment step S22 is 100 minutes or less.
  • the oxidation-reduction layer 12 is formed on the surface of the copper fiber 11, and fine unevenness is generated. It will be. Moreover, an oxide layer is formed on the surface of the copper fiber 11 by the oxidation treatment step S21, and the plurality of copper fibers 11 are cross-linked by the oxide layer. Thereafter, by performing the reduction treatment S22, the oxide layer formed on the surface of the copper fiber 11 is reduced to form the above-described oxidation-reduction layer 12, and the oxidation-reduction layers 12 are bonded to each other. The copper fibers 11 are sintered together.
  • the copper porous sintered body 10 which is this embodiment is manufactured by the above manufacturing methods.
  • the diameter R is in the range of 0.02 mm to 1.0 mm, and the length L and the diameter R are Since the copper fibers 11 having a ratio L / R in the range of 4 or more and 2500 or less are sintered, sufficient voids are secured between the copper fibers 11 and sintered. The shrinkage rate at the time can be suppressed, the porosity is high, and the dimensional accuracy is excellent. Furthermore, in the copper porous sintered body 10 according to the present embodiment, the copper fibers 11 and 11 are joined together by integrally bonding the redox layers 12 and 12 formed on the surfaces of each other. Therefore, the sintering strength can be greatly improved.
  • the diameter R is in the range of 0.02 mm to 1.0 mm, and the ratio L / L of the length L to the diameter R is L /.
  • R is 4 or more
  • a bulk density D P is provided with a copper fiber lamination step S01 of stacked so that more than 50% of the true density D T of the copper fibers 11 Therefore, also in sintering process S02, the space
  • the copper porous sintered compact 10 with high porosity and excellent dimensional accuracy can be manufactured.
  • the bulk density D P is the true density D apparent density of the copper porous sintered body 10 produced by sintering and stacked so that more than 50% of T D A copper fibers 11 Is set to 51% or less of the true density DT of the copper fiber 11, the shrinkage in the sintering step S02 is suppressed, and a high porosity can be secured.
  • the diameter R of the copper fibers 11 is set in the range of 0.02 mm or more and 1.0 mm or less.
  • the lower limit of the diameter R of the copper fiber 11 is preferably 0.05 mm or more, and the upper limit of the diameter R of the copper fiber 11 is preferably 0.5 mm or less.
  • the ratio L / R of the length L and the diameter R of the copper fibers 11 is set in the range of 4 or more and 2500 or less.
  • the lower limit of the ratio L / R between the length L and the diameter R of the copper fiber 11 is preferably 10 or more.
  • the ratio L / R upper limit of the length L and the diameter R of the copper fiber 11 is 500 or less.
  • the sintering step S02 includes an oxidation treatment step S21 for oxidizing the copper fibers 11 and a reduction treatment step S22 for reducing the oxidized copper fibers 11 and bonding the copper fibers 11 to each other. It becomes possible to join the fibers 11 firmly.
  • the oxidation reduction layer 12 is formed on the surface of the copper fiber 11 by reducing the copper fiber 11 after the oxidation treatment, and the fine Unevenness has occurred, and in the joint portion between the copper fibers 11, these redox layers 12 are integrally joined together, so that a bonding area is secured and the copper fibers 11 are firmly joined together. Is possible.
  • the copper porous sintered body 10 according to the present embodiment has irregularities formed on the surface of the copper fiber 11, the surface area is increased, and various characteristics such as heat exchange efficiency and water retention are greatly improved. It becomes possible to make it.
  • the copper porous composite member 100 includes a copper plate 120 (member main body) made of copper or a copper alloy, and a copper porous sintered body 110 bonded to the surface of the copper plate 120.
  • the copper porous sintered body 110 is obtained by sintering and integrating a plurality of copper fibers as in the first embodiment.
  • the copper fiber is made of copper or a copper alloy
  • the diameter R is in the range of 0.02 mm to 1.0 mm
  • the ratio L / R of the length L to the diameter R is 4 or more and 2500 or less. It is within the range.
  • the copper fiber is made of, for example, C1100 (tough pitch copper).
  • the copper fiber is given a shape such as twisting or bending.
  • the apparent density D A is less 51% of the true density D T of copper fibers.
  • a redox layer is formed by performing oxidation treatment and reduction treatment on the surfaces of the copper fibers and the copper plate 120 constituting the copper porous sintered body 110 as will be described later.
  • fine irregularities are generated on the surfaces of the copper fiber and the copper plate 120.
  • the redox layer formed in the surface of the copper fiber and the redox layer formed in the surface of the copper plate are They are joined together.
  • the copper plate 120 which is a member main body is prepared (copper plate arrangement
  • copper fibers are dispersed and arranged on the surface of the copper plate 120 (copper fiber lamination step S101).
  • bulk density D P is stacked a plurality of copper fibers to be equal to or less than 50% of the true density D T of copper fibers.
  • the copper fibers stacked and arranged on the surface of the copper plate 120 are sintered to form the copper porous sintered body 110 and the copper porous sintered body 110 (copper fiber) and the copper plate 120 are combined ( Sintering step S102 and joining step S103).
  • the oxidation treatment step S121 for oxidizing the copper fibers and the copper plate 120 and the oxidized copper fibers and the copper plate 120 are reduced and sintered.
  • Reduction processing step S122 Reduction processing step S122.
  • the copper plate 120 on which the copper fibers are laminated is placed in a heating furnace and heated in the air atmosphere A to oxidize the copper fibers (oxidation process S121).
  • oxidation treatment step S121 an oxide layer having a thickness of 1 ⁇ m or more and 100 ⁇ m or less is formed on the surfaces of the copper fiber and the copper plate 120, for example.
  • the conditions of the oxidation treatment step S121 in this embodiment are that the holding temperature is 520 ° C. or higher and 1050 ° C. or lower, desirably 600 ° C. or higher and 1000 ° C. or lower, and the holding time is 5 minutes or longer and 300 minutes or shorter, preferably 10 It is within the range of not less than 100 minutes and not more than 100 minutes.
  • the copper plate 120 on which the copper fibers are laminated is placed in a firing furnace, heated in a reducing atmosphere, and oxidized copper fibers and the copper plate 120.
  • the copper fiber and the copper plate 120 are combined with each other (reduction process step S122).
  • the conditions of the reduction treatment step S121 in this embodiment are that the atmosphere is a mixed gas atmosphere B of nitrogen and hydrogen, the holding temperature is 600 ° C. or higher and 1080 ° C. or lower, preferably 650 ° C. or higher and 1050 ° C. or lower, and the holding time. It is within the range of 5 minutes or more and 300 minutes or less, desirably 10 minutes or more and 100 minutes or less.
  • a redox layer is formed on the surfaces of the copper fiber and the copper plate 120, and fine irregularities are generated. Moreover, an oxide layer is formed on the surfaces of the copper fibers and the copper plate 120 by the oxidation treatment step S121, and the plurality of copper fibers and the copper plate 120 are cross-linked by the oxide layer. Then, by performing reduction process S122, the copper fiber and the oxide layer formed on the surface of the copper plate 120 are reduced, the copper fibers are sintered through the redox layer, and the copper fiber and the copper plate 120 are combined. Combine.
  • the copper porous composite member 100 according to the present embodiment is manufactured by the manufacturing method as described above.
  • the diameter R is within the range of 0.02 mm or more and 1.0 mm or less on the surface of the copper plate 120, and the length L Copper porous sintered body 110 having a high porosity and excellent strength and dimensional accuracy is obtained by sintering copper fibers in which the ratio L / R of diameter to diameter R is in the range of 4 or more and 2500 or less. It is excellent in various characteristics such as heat transfer characteristics and conductivity.
  • the oxidation reduction layer is formed in the surface of the copper fiber and copper plate 120 which comprise the copper porous sintered body 110, and the copper fiber and copper plate 120 which comprise the copper porous sintered body 110. Since the redox layer formed on the surface of the copper fiber and the redox layer formed on the surface of the copper plate 120 are integrally bonded to each other at the joint portion with the surface of the copper porous sintered body 110, The copper plate 120 is firmly bonded, and is excellent in various properties such as strength, heat transfer characteristics, and conductivity at the bonding interface.
  • the above-described oxidation-reduction layer causes fine irregularities on the surfaces of the copper fibers and the copper plate 120, and the bonding area at the joint between the copper fibers constituting the copper porous sintered body 110 and the surface of the copper plate 120. As a result, the bonding strength between the copper porous sintered body 110 and the copper plate 120 can be improved.
  • the surface of the copper plate 120 has a diameter R in the range of 0.02 mm or more and 1.0 mm or less.
  • the ratio L / R is 4 or more, the copper fibers 11, which is in the range of 2500 or less, a bulk density D P copper fiber lamination process to laminate arranged to be less than 50% of the true density D T of the copper fibers 11 S101 Therefore, also in the sintering step S102, a gap between the copper fibers can be secured and shrinkage can be suppressed.
  • the copper porous sintered body 110 with high porosity and excellent dimensional accuracy can be formed. Therefore, it becomes possible to manufacture the copper porous composite member 100 excellent in various properties such as thermal conductivity and conductivity.
  • a copper fiber is laminated
  • the surface of the copper fiber and the copper plate 120 is oxidized and then reduced, so that a redox layer is formed on the surface of the copper fiber and the copper plate 120, and fine unevenness is generated.
  • the copper fibers and the copper fibers and the copper plate 120 can be firmly bonded.
  • the atmosphere of the oxidation treatment steps S21 and S121 in the sintering steps S02 and S102 and the joining step S103 may be any oxidizing atmosphere in which copper or a copper alloy is oxidized at a predetermined temperature, and is not limited to the atmosphere. Any atmosphere containing 10 vol% or more oxygen in an inert gas (for example, nitrogen) may be used.
  • the atmosphere of the reduction treatment steps S22 and S122 may be any reducing atmosphere in which copper oxide is reduced to metallic copper or copper oxide is decomposed at a predetermined temperature. Specifically, hydrogen of several vol% or more is used. A nitrogen-hydrogen mixed gas, an argon-hydrogen mixed gas, a pure hydrogen gas, or an ammonia decomposition gas or a propane decomposition gas that is often used industrially can also be suitably used.
  • the copper porous composite member having the structure shown in FIG. 7 is described as an example.
  • the present invention is not limited to this, and the copper having the structure shown in FIGS. 9 to 14 is used. It may be a porous composite member.
  • a copper porous composite member 200 having a structure in which a plurality of copper tubes 220 are inserted as a member main body into a copper porous sintered body 210 may be used.
  • a copper porous composite member 300 having a structure in which a copper tube 320 curved in a U shape as a member main body is inserted into a copper porous sintered body 310 may be used. .
  • a copper porous composite member 400 having a structure in which a copper porous sintered body 410 is joined to the inner peripheral surface of a copper tube 420 as a member main body may be used.
  • the copper porous composite member 500 of the structure which joined the copper porous sintered compact 510 to the outer peripheral surface of the copper tube 520 which is a member main body may be sufficient.
  • a copper porous composite member 600 having a structure in which a copper porous sintered body 610 is joined to the inner peripheral surface and the outer peripheral surface of a copper tube 620 that is a member main body may be used.
  • a copper porous composite member 700 having a structure in which a copper porous sintered body 710 is bonded to both surfaces of a copper plate 720 as a member main body may be used.
  • Apparent density D A of the resulting copper porous sintered body was evaluated by the ratio of the true density D T of the copper fibers constituting the copper porous sintered body.
  • the copper porous sintered body of Invention Example 2 shown in FIG. The redox layers formed on the surface of the fiber are bonded together. And it is confirmed that fine unevenness is generated by the redox layer, and this unevenness is intertwined in a complicated manner.
  • Comparative Example 1 in which the diameter R of the copper fiber was 0.01 mm and in Comparative Example 2 in which the diameter R of the copper fiber was 1.3 mm, the copper porous sintered body was It is confirmed that the tensile strength is low.
  • Comparative Example 3 in which the ratio L / R of the length L and the diameter R of the copper fibers is 2, it has become a bulk density D P is 60% of the true density D T of copper fibers, sintered after the apparent density D a also has a 70% of the true density D T of copper fibers, it has not been possible to secure a high porosity.
  • Comparative Example 4 in which the ratio L / R between the length L and the diameter R of the copper fiber is 3500, the strength is low. This is presumed to be due to the presence of a portion having a large gap in part and a significant reduction in strength locally. Moreover, in the comparative example 5 which implemented sintering only by the reduction process, without performing an oxidation process, it is confirmed that the tensile strength of a copper porous sintered compact is low.
  • the apparent density D A after sintering is not changed significantly, It is confirmed that shrinkage during sintering is suppressed. Moreover, tensile strength is also high and it is confirmed that copper fibers are firmly bonded to each other. From the above, according to the present invention, it was confirmed that a high-quality copper porous sintered body having high porosity and sufficient strength can be provided.
  • Electrodes and current collectors in various batteries, heat exchanger members, silencers, filters, shock absorption It can be applied to various uses such as members.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Powder Metallurgy (AREA)

Abstract

 複数の銅繊維(11)が焼結されてなる銅多孔質焼結体(10)であって、銅繊維(11)は、銅又は銅合金からなり、直径(R)が0.02mm以上、1.0mm以下の範囲内とされ、長さ(L)と直径(R)との比(L/R)が4以上、2500以下の範囲内とされており、銅繊維(11)の表面には、酸化還元処理によって形成された酸化還元層(12)が存在し、この酸化還元層(12)によって凹凸が形成されており、銅繊維(11、11)同士の結合部においては、互いの表面に形成された酸化還元層(12、12)同士が一体に結合している。

Description

銅多孔質焼結体、銅多孔質複合部材、銅多孔質焼結体の製造方法及び銅多孔質複合部材の製造方法
 本発明は、銅又は銅合金からなる銅多孔質焼結体、この銅多孔質焼結体が部材本体に接合されてなる銅多孔質複合部材、及び、銅多孔質焼結体の製造方法、銅多孔質複合部材の製造方法に関するものである。
 本願は、2014年10月22日に、日本に出願された特願2014-215339号に基づき優先権を主張し、その内容をここに援用する。
 上述の銅多孔質焼結体及び銅多孔質複合部材は、例えば各種電池における電極及び集電体、熱交換器用部材、消音部材、フィルター、衝撃吸収部材等として使用されている。
 例えば、特許文献1には、三次元網目状構造体をなす銅多孔質体を導電性金属の部材本体に一体被着した伝熱部材が提案されている。
 ここで、特許文献1においては、三次元網目状構造体をなす金属焼結体(銅多孔質焼結体)の製造方法として、加熱により焼失する材質から成る三次元網目状構造体(例えばウレタンフォーム、ポリエチレンフォーム等連続気泡を持つ合成樹脂発泡体、天然繊維クロス、人造繊維クロス等)の骨格に粘着剤を塗布し、金属粉状物を被着した成形体を用いる方法や、加熱により焼失する材質から成り、かつ三次元網目状構造体を形成することができる材料(例えばパルプや羊毛繊維)に金属粉状物を抄き込んだシート状成形体を用いる方法等が開示されている。なお、この特許文献1においては、還元雰囲気で焼結を行っている。
日本国特開平08-145592号公報(A)
 ところで、特許文献1に記載されたように、金属粉状物を用いて金属焼結体(銅多孔質焼結体)を成形する場合には、焼結時における収縮率が大きく、気孔率の高い銅多孔質焼結体を得ることが困難であるといった問題があった。
 また、特許文献1に記載された金属焼結体(銅多孔質焼結体)においては、単に還元雰囲気で焼結を行っていることから、金属粉状物の表面が比較的平滑な面となっており、金属粉状物同士の接合面積が十分に確保できず、焼結強度が十分に確保できないといった問題があった。このように焼結強度が不十分であることから、金属焼結体(銅多孔質焼結体)としての伝熱特性及び導電性等の各種特性が低下するおそれがあった。
 さらに、加熱によって焼失する材質から成る三次元網目状構造体を利用して金属焼結体(銅多孔質焼結体)を成形する場合、三次元網目状構造体が加熱によって焼失した際に、焼結が進行する前に成形体が変形してしまい、寸法精度に優れた金属焼結体(銅多孔質焼結体)を製造することができないおそれがあった。
 本発明は、以上のような事情を背景としてなされたものであって、焼結時の収縮率が小さく寸法精度に優れるとともに十分な強度を有する銅多孔質焼結体、この銅多孔質焼結体が部材本体に接合された銅多孔質複合部材、及び、上述の銅多孔質焼結体の製造方法、銅多孔質複合部材の製造方法を提供することを目的としている。
 このような課題を解決して、前記目的を達成するために、本発明の銅多孔質焼結体は、複数の銅繊維が焼結されてなる銅多孔質焼結体であって、前記銅繊維は、銅又は銅合金からなり、直径Rが0.02mm以上、1.0mm以下の範囲内とされ、長さLと直径Rとの比L/Rが4以上、2500以下の範囲内とされており、前記銅繊維の表面には、酸化還元処理によって形成された酸化還元層が存在し、この酸化還元層によって凹凸が形成されており、前記銅繊維同士の結合部においては、互いの銅繊維の表面に形成された前記酸化還元層同士が一体に結合していることを特徴としている。
 この構成の銅多孔質焼結体によれば、直径Rが0.02mm以上、1.0mm以下の範囲内とされ、長さLと直径Rとの比L/Rが4以上、2500以下の範囲内とされた銅繊維同士が焼結されることで構成されているので、銅繊維同士の間に十分な空隙が確保されるとともに、焼結時における収縮率を抑えることができ、気孔率の高く、かつ寸法精度に優れている。
 また、前記銅繊維の表面に酸化還元層が存在し、この酸化還元層によって凹凸が形成されており、前記銅繊維同士の結合部においては、互いの表面に形成された前記酸化還元層同士が一体に結合しているので、接合面積が確保されるとともに銅繊維同士が強固に接合されることになり、強度に優れている。
 さらに、前記銅繊維の表面に酸化還元層による微細な凹凸が形成されているので、表面積が大きくなり、例えば熱交換効率や保水性等の各種特性を大幅に向上させることが可能となる。
 本発明の銅多孔質複合部材は、部材本体と、上述の銅多孔質焼結体と、が接合されてなることを特徴としている。
 この構成の銅多孔質複合部材によれば、上述の気孔率が高く寸法精度に優れているとともに強度に優れた銅多孔質焼結体が部材本体と強固に接合されていることから、表面積が大きく熱交換効率や保水性等の各種特性に優れた銅多孔体焼結体単体の特性に加え、銅多孔質複合部材として、優れた伝熱特性及び導電性等の各種特性を発揮する。
 ここで、本発明の銅多孔質複合部材においては、前記部材本体のうち前記銅多孔質焼結体との接合面は、銅又は銅合金で構成され、前記部材本体の前記接合面には、酸化還元処理によって形成された酸化還元層が存在しており、前記銅多孔質焼結体を構成する前記銅繊維と前記部材本体の前記接合面との結合部においては、前記銅繊維の表面に形成された酸化還元層と前記部材本体の前記接合面に形成された酸化還元層とが一体に結合している構成とされていることが好ましい。
 この場合、前記部材本体の前記接合面には、酸化還元処理によって形成された酸化還元層が存在しており、前記銅多孔質焼結体を構成する前記銅繊維と前記部材本体の前記接合面との結合部においては、前記銅繊維の表面に形成された酸化還元層と前記部材本体の前記接合面に形成された酸化還元層とが一体に結合しているので、前記銅多孔質焼結体と前記部材本体とが強固に接合されることになり、銅多孔質複合部材として優れた強度、伝熱特性及び導電性等の各種特性を発揮する。
 本発明の銅多孔質焼結体の製造方法は、複数の銅繊維が焼結されてなる銅多孔質焼結体の製造方法であって、前記銅繊維は、銅又は銅合金からなり、直径Rが0.02mm以上、1.0mm以下の範囲内とされ、長さLと直径Rとの比L/Rが4以上、2500以下の範囲内とされており、複数の前記銅繊維を積層する銅繊維積層工程と、積層された複数の前記銅繊維体同士を焼結する焼結工程と、を有し、前記銅繊維積層工程では、嵩密度Dが前記銅繊維の真密度Dの50%以下となるように複数の前記銅繊維を積層配置し、前記焼結工程では、前記銅繊維を酸化させた後、酸化された前記銅繊維を還元するとともに前記銅繊維同士を結合させることを特徴としている。
 上述の構成とされた本発明の銅多孔質焼結体の製造方法によれば、直径Rが0.02mm以上、1.0mm以下の範囲内とされ、長さLと直径Rとの比L/Rが4以上、2500以下の範囲内とされた銅繊維を、嵩密度Dが前記銅繊維の真密度Dの50%以下となるように積層配置する銅繊維積層工程を備えているので、銅繊維同士の間に空隙が確保されることになり、また、銅繊維を用いることにより、粉末同士の焼結に比べて焼結箇所が大幅に少なくなることから焼結時における収縮率、つまり形状変化を抑えることができ、結果として気孔率の高く、かつ寸法精度に優れた銅多孔質焼結体を得ることができる。
 また、焼結工程では、銅繊維を酸化させた後、酸化された銅繊維を還元するとともに銅繊維同士を結合させる構成としているので、銅繊維の表面に酸化還元層を形成して微細な凹凸を生じさせ、銅繊維同士をこの酸化還元層によって接合することができ、銅多孔質焼結体の強度を向上させることが可能となる。
 本発明の銅多孔質複合部材の製造方法は、部材本体と、複数の銅繊維が焼結されてなる銅多孔質焼結体とが接合された銅多孔質複合部材の製造方法であって、上述の銅多孔質焼結体の製造方法によって製造された銅多孔質焼結体と、前記部材本体とを接合する接合工程を備えていることを特徴としている。
 この構成の銅多孔質複合部材の製造方法においては、上述の銅多孔質焼結体の製造方法によって製造された銅多孔質焼結体と同等の気孔率が高く強度に優れた銅多孔質焼結体を備えることになり、伝熱特性及び導電性等の各種特性に優れた銅多孔質複合部材を製造することが可能となる。
 ここで、本発明の銅多孔質複合部材の製造方法においては、前記部材本体のうち前記銅多孔質焼結体が接合される接合面は、銅又は銅合金で構成されており、前記銅繊維積層工程では、前記部材本体の前記接合面に複数の前記銅繊維を積層配置し、前記焼結工程及び前記接合工程では、前記銅繊維及び前記部材本体の前記接合面を酸化させた後、酸化された前記銅繊維及び前記部材本体の前記接合面を還元するとともに前記銅繊維同士及び前記銅繊維と前記部材本体の前記接合面を結合させることが好ましい。
 この場合、銅繊維同士を結合して銅多孔質焼結体を得る焼結工程と、銅繊維と部材本体とを結合する接合工程とを同時に実施することができ、製造プロセスを簡略化することが可能となる。
 また、前記焼結工程及び前記接合工程では、前記銅繊維及び前記部材本体の接合面を酸化させた後、酸化された前記銅繊維及び前記部材本体の接合面を還元するとともに前記銅繊維同士及び前記銅繊維と前記部材本体の接合面を結合させる構成としているので、銅繊維同士の焼結強度、及び、銅繊維(銅多孔質焼結体)と前記部材本体との接合強度を向上させることが可能となる。
 さらに、前記部材本体と前記銅多孔質焼結体とが強固に接合されていることから、伝熱特性及び導電性等の各種特性に優れた銅多孔質複合部材を製造することが可能となる。
 本発明によれば、焼結時の収縮率が小さく寸法精度に優れるとともに十分な強度を有する銅多孔質焼結体、この銅多孔質焼結体が部材本体に接合された銅多孔質複合部材、及び、上述の銅多孔質焼結体の製造方法、銅多孔質複合部材の製造方法を提供することができる。
本発明の第一の実施形態である銅多孔質焼結体の拡大模式図である。 図1に示す銅多孔質焼結体を構成する銅繊維同士の結合状態を示す観察写真である。 図1に示す銅多孔質焼結体を構成する銅繊維同士の結合の断面観察写真である。 図1に示す銅多孔質焼結体の製造方法の一例を示すフロー図である。 図1に示す銅多孔質焼結体を製造する製造工程を示す説明図である。 図1に示す銅多孔質焼結体を構成する銅繊維の観察写真であり、焼結工程(酸化処理工程及び還元処理工程)前の銅繊維の観察写真である。 図1に示す銅多孔質焼結体を構成する銅繊維の観察写真であり、焼結工程(酸化処理工程及び還元処理工程)後の銅繊維の観察写真である。 本発明の第二の実施形態である銅多孔質複合部材の外観説明図である。 図7に示す銅多孔質複合部材の製造方法の一例を示すフロー図である。 本発明の他の実施形態である銅多孔質複合部材の外観図である。 本発明の他の実施形態である銅多孔質複合部材の外観図である。 本発明の他の実施形態である銅多孔質複合部材の外観図である。 本発明の他の実施形態である銅多孔質複合部材の外観図である。 本発明の他の実施形態である銅多孔質複合部材の外観図である。 本発明の他の実施形態である銅多孔質複合部材の外観図である。 本発明例2である銅多孔質焼結体の結合部の拡大観察写真である。 比較例5である銅多孔質焼結体の結合部の拡大観察写真である。
 以下に、本発明の実施形態である銅多孔質焼結体及び銅多孔質複合部材について、添付した図面を参照して説明する。
(第一の実施形態)
 まず、本発明の第一の実施形態である銅多孔質焼結体10及び銅多孔質焼結体10の製造方法について、図1から図6Bを参照して説明する。
 本実施形態である銅多孔質焼結体10は、図1に示すように、複数の銅繊維11が焼結されて一体化されたものである。
 ここで、銅繊維11は、銅又は銅合金からなり、直径Rが0.02mm以上、1.0mm以下の範囲内とされ、長さLと直径Rとの比L/Rが4以上、2500以下の範囲内とされている。本実施形態では、銅繊維11は、例えばC1100(タフピッチ銅)で構成されている。
 なお、本実施形態では、銅繊維11には、ねじりや曲げ等の形状付与が施されている。
 また、本実施形態である銅多孔質焼結体10においては、その見掛け密度Dが銅繊維11の真密度Dの51%以下とされている。銅繊維11の形状については、前記見掛け密度Dが銅繊維11の真密度Dの51%以下となる限りにおいて、直線状、曲線状など任意であるが、銅繊維11の少なくとも一部に、ねじり加工や曲げ加工等により所定の形状付与加工をされたものを用いると、繊維同士の間の空隙形状を立体的かつ等方的に形成させることができ、その結果、銅多孔質焼結体の伝熱特性及び導電性等の各種特性の等方性向上に繋がる。
 そして、本実施形態である銅多孔質焼結体10においては、図2及び図3に示すように、銅繊維11の表面に酸化還元層12が形成されており、銅繊維11、11同士の結合部においては、互いの表面に形成された酸化還元層12、12同士が一体に結合している。
 なお、この酸化還元層12は、図3に示すようにポーラスな構造とされており、図2に示すように銅繊維11の表面に微細な凹凸を生じさせている。
 次に、本実施形態である銅多孔質焼結体10の製造法について、図4のフロー図及び図5の工程図等を参照して説明する。
 まず、図5に示すように、本実施形態である銅多孔質焼結体10の原料となる銅繊維11を、散布機31からステンレス製容器32内に向けて散布して嵩充填し、銅繊維11を積層する(銅繊維積層工程S01)。ここで、この銅繊維積層工程S01では、充填後の嵩密度Dが銅繊維11の真密度Dの50%以下となるように複数の銅繊維11を積層配置する。なお、本実施形態では、銅繊維11にねじり加工や曲げ加工等の形状付与加工が施されているので、積層時に銅繊維11同士の間に立体的かつ等方的な空隙が確保されることになる。
 次に、ステンレス製容器32内に嵩充填された銅繊維11を焼結する(焼結工程S02)。この焼結工程S02においては、図4及び図5に示すように、銅繊維11の酸化処理を行う酸化処理工程S21と、酸化処理された銅繊維11を還元して焼結する還元処理工程S22と、を備えている。
 本実施形態では、図5に示すように、銅繊維11が充填されたステンレス製容器32を加熱炉33内に装入し、大気雰囲気Aで加熱して銅繊維11を酸化処理する(酸化処理工程S21)。この酸化処理工程S21により、銅繊維11の表面に、例えば厚さ1μm以上、100μm以下の酸化物層が形成される。
 本実施形態における酸化処理工程S21の条件は、保持温度が520℃以上、1050℃以下、保持時間が5分以上、300分以下の範囲内とされている。
 ここで、酸化処理工程S21における保持温度が520℃未満の場合には、銅繊維11の表面に酸化物層が十分に形成されないおそれがある。一方、酸化処理工程S21における保持温度が1050℃を超える場合には、酸化によって形成された酸化銅(II)が分解してしまうおそれがある。
 以上のことから、本実施形態においては、酸化処理工程S21における保持温度を520℃以上、1050℃以下に設定している。なお、銅繊維11の表面に酸化物層を確実に形成するためには、酸化処理工程S21における保持温度の下限を600℃以上、保持温度の上限を1000℃以下、とすることが好ましい。
 また、酸化処理工程S21における保持時間が5分未満の場合には、銅繊維11の表面に酸化物層が十分に形成されないおそれがある。一方、酸化処理工程S21における保持時間が300分を超える場合には、銅繊維11の内部にまで酸化が進行し、銅繊維11が脆化して強度が低下するおそれがある。
 以上のことから、本実施形態においては、酸化処理工程S21における保持時間を5分以上、300分以下の範囲内に設定している。なお、銅繊維11の表面に酸化物層を確実に形成するためには、酸化処理工程S21における保持時間の下限を10分以上とすることが好ましい。また、銅繊維11の酸化による脆化を確実に抑制するためには、酸化処理工程S21における保持時間の上限を100分以下とすることが好ましい。
 次に、本実施形態では、図5に示すように、酸化処理工程S21を実施した後、銅繊維11が充填されたステンレス製容器32を焼成炉34内に装入し、還元雰囲気で加熱して、酸化された銅繊維11を還元処理するとともに銅繊維11同士を結合する(還元処理工程S22)。
 本実施形態における還元処理工程S22の条件は、雰囲気が窒素と水素の混合ガス雰囲気B、保持温度が600℃以上、1080℃以下、保持時間が5分以上、300分以下の範囲内とされている。
 ここで、還元処理工程S22における保持温度が600℃未満の場合には、銅繊維11の表面に形成された酸化物層を十分に還元できないおそれがある。一方、還元処理工程S22における保持温度が1080℃を超える場合には、銅の融点近傍にまで加熱されることになり、強度及び気孔率の低下がおこるおそれがある。
 以上のことから、本実施形態においては、還元処理工程S22における保持温度を600℃以上、1080℃以下に設定している。なお、銅繊維11の表面に形成された酸化物層を確実に還元するためには、還元処理工程S22における保持温度の下限を650℃以上とすることが好ましい。また、強度及び気孔率の低下を確実に抑制するためには、還元処理工程S22における保持温度の上限を1050℃以下とすることが好ましい。
 また、還元処理工程S22における保持時間が5分未満の場合には、銅繊維11の表面に形成された酸化物層を十分に還元できないおそれがあるとともに、焼結が不十分となるおそれがある。一方、還元処理工程S22における保持時間が300分を超える場合には、焼結による熱収縮が大きくなるとともに強度が低下するおそれがある。
 以上のことから、本実施形態においては、還元処理工程S22における保持時間を5分以上、300分以下の範囲内に設定している。なお、銅繊維11の表面に形成された酸化物層を確実に還元するとともに焼結を十分に進行させるためには、還元処理工程S22における保持温度の下限を10分以上とすることが好ましい。また、焼結による熱収縮や強度低下を確実に抑制するためには、還元処理工程S22における保持時間の上限を100分以下とすることが好ましい。
 この酸化処理工程S21及び還元処理工程S22により、図2、図3、図6A、及び図6Bに示すように、銅繊維11の表面には、酸化還元層12が形成され、微細な凹凸が生じることになる。
 また、酸化処理工程S21によって銅繊維11の表面に酸化物層が形成され、この酸化物層によって複数の銅繊維11同士が架橋される。その後、還元処理S22を行うことで、銅繊維11の表面に形成された酸化物層が還元されて上述の酸化還元層12が形成されるとともに、この酸化還元層12同士が結合することにより、銅繊維11同士が焼結される。
 以上のような製造方法により、本実施形態である銅多孔質焼結体10が製造される。
 以上のような構成とされた本実施形態である銅多孔質焼結体10によれば、直径Rが0.02mm以上、1.0mm以下の範囲内とされ、長さLと直径Rとの比L/Rが4以上、2500以下の範囲内とされた銅繊維11が焼結されることで構成されているので、銅繊維11同士の間に十分な空隙が確保されるとともに、焼結時における収縮率を抑えることができ、気孔率の高く、かつ寸法精度に優れている。
 さらに、本実施形態である銅多孔質焼結体10においては、銅繊維11、11同士が、互いの表面に形成された酸化還元層12、12同士が一体に結合することにより、接合されているので、焼結強度を大幅に向上させることができる。
 また、本実施形態である銅多孔質焼結体10の製造方法によれば、直径Rが0.02mm以上、1.0mm以下の範囲内とされ、長さLと直径Rとの比L/Rが4以上、2500以下の範囲内とされた銅繊維11を、嵩密度Dが銅繊維11の真密度Dの50%以下となるように積層配置する銅繊維積層工程S01を備えているので、焼結工程S02においても、銅繊維11同士の間の空隙を確保することができ、収縮を抑えることが可能となる。これにより、気孔率の高く寸法精度に優れた銅多孔質焼結体10を製造することができる。
 具体的には、嵩密度Dが銅繊維11の真密度Dの50%以下となるように積層配置して焼結することによって製造された銅多孔質焼結体10の見掛け密度Dが銅繊維11の真密度Dの51%以下とされているので、焼結工程S02における収縮が抑制されており、高い気孔率を確保することが可能となる。
 ここで、銅繊維11の直径Rが0.02mm未満の場合には、銅繊維11同士の接合面積が小さく、焼結強度が不足するおそれがある。一方、銅繊維11の直径Rが1.0mmを超える場合には、銅繊維11同士が接触する接点の数が不足し、やはり、焼結強度が不足するおそれがある。
 以上のことから、本実施形態では、銅繊維11の直径Rを0.02mm以上、1.0mm以下の範囲内に設定している。なお、さらなる強度向上を図る場合には、銅繊維11の直径Rの下限を0.05mm以上とすることが好ましく、銅繊維11の直径Rの上限を0.5mm以下とすることが好ましい。
 また、銅繊維11の長さLと直径Rとの比L/Rが4未満の場合には、積層配置したときに嵩密度Dが銅繊維11の真密度Dの50%以下とすることが難しく、気孔率の高い銅多孔質焼結体10を得ることが困難となるおそれがある。一方、銅繊維11の長さLと直径Rとの比L/Rが2500を超える場合には、銅繊維11を均一に分散させることができなくなり、均一な気孔率を有する銅多孔質焼結体10を得ることが困難となるおそれがある。
 以上のことから、本実施形態では、銅繊維11の長さLと直径Rとの比L/Rを4以上、2500以下の範囲内に設定している。なお、さらなる気孔率の向上を図る場合には、銅繊維11の長さLと直径Rとの比L/Rの下限を10以上とすることが好ましい。また、確実に気孔率が均一な銅多孔質焼結体10を得るためには、銅繊維11の長さLと直径Rとの比L/R上限を500以下とすることが好ましい。
 また、焼結工程S02では、銅繊維11を酸化させる酸化処理工程S21と、酸化された銅繊維11を還元するとともに銅繊維11同士を結合させる還元処理工程S22と、を備えているので、銅繊維11同士を強固に接合することが可能となる。本実施形態では、図2、図3、図6A、及び図6Bに示すように、銅繊維11を酸化処理した後に還元することで、銅繊維11の表面に酸化還元層12が形成され、微細な凹凸が生じており、銅繊維11同士の結合部においては、これら酸化還元層12同士が一体に結合していることから、接合面積が確保されるとともに銅繊維11同士を強固に結合することが可能となる。
 さらに、本実施形態である銅多孔質焼結体10は、銅繊維11の表面に凹凸が形成されているので、表面積が大きくなり、例えば熱交換効率や保水性等の各種特性を大幅に向上させることが可能となる。
(第二の実施形態)
 次に、本発明の第二の実施形態である銅多孔質複合部材100について、添付した図面を参照して説明する。
 図7に、本実施形態である銅多孔質複合部材100を示す。この銅多孔質複合部材100は、銅又は銅合金からなる銅板120(部材本体)と、この銅板120の表面に接合された銅多孔質焼結体110と、を備えている。
 ここで、本実施形態である銅多孔質焼結体110は、第一の実施形態と同様に、複数の銅繊維が焼結されて一体化されたものである。ここで、銅繊維は、銅又は銅合金からなり、直径Rが0.02mm以上、1.0mm以下の範囲内とされ、長さLと直径Rとの比L/Rが4以上、2500以下の範囲内とされている。本実施形態では、銅繊維は、例えばC1100(タフピッチ銅)で構成されている。
 なお、本実施形態では、銅繊維には、ねじりや曲げ等の形状付与が施されている。また、本実施形態である銅多孔質焼結体110においては、その見掛け密度Dが銅繊維の真密度Dの51%以下とされている。
 さらに、本実施形態においては、銅多孔質焼結体110を構成する銅繊維及び銅板120の表面に、後述するように酸化処理及び還元処理を行うことによって酸化還元層が形成されており、これにより、銅繊維及び銅板120の表面に微細な凹凸が生じている。
 そして、銅多孔質焼結体110を構成する銅繊維と銅板120の表面との結合部においては、銅繊維の表面に形成された酸化還元層と銅板の表面に形成された酸化還元層とが一体に結合している。
 次に、本実施形態である銅多孔質複合部材100を製造する方法について、図8のフロー図を参照して説明する。
 まず、部材本体である銅板120を準備する(銅板配置工程S100)。次に、この銅板120の表面に銅繊維を分散させて積層配置する(銅繊維積層工程S101)。ここで、この銅繊維積層工程S101では、嵩密度Dが銅繊維の真密度Dの50%以下となるように複数の銅繊維を積層配置する。
 次に、銅板120の表面に積層配置された銅繊維同士を焼結して銅多孔質焼結体110を成形するとともに銅多孔質焼結体110(銅繊維)と銅板120とを結合する(焼結工程S102及び接合工程S103)。この焼結工程S102及び接合工程S103においては、図8に示すように、銅繊維及び銅板120の酸化処理を行う酸化処理工程S121と、酸化処理された銅繊維及び銅板120を還元して焼結する還元処理工程S122と、を備えている。
 本実施形態では、銅繊維が積層配置された銅板120を加熱炉内に装入し、大気雰囲気Aで加熱して銅繊維を酸化処理する(酸化処理工程S121)。この酸化処理工程S121により、銅繊維及び銅板120の表面に、例えば厚さ1μm以上、100μm以下の酸化物層が形成される。
 ここで、本実施形態における酸化処理工程S121の条件は、保持温度が520℃以上、1050℃以下、望ましくは600℃以上、1000℃以下、保持時間が5分以上、300分以下、望ましくは10分以上、100分以下の範囲内とされている。
 次に、本実施形態では、酸化処理工程S121を実施した後、銅繊維が積層配置された銅板120を焼成炉内に装入し、還元雰囲気で加熱して、酸化された銅繊維及び銅板120を還元処理し、銅繊維同士を結合するとともに銅繊維と銅板120とを結合する(還元処理工程S122)。
 ここで、本実施形態における還元処理工程S121の条件は、雰囲気が窒素と水素の混合ガス雰囲気B、保持温度が600℃以上、1080℃以下、望ましくは650℃以上、1050℃以下、保持時間が5分以上、300分以下、望ましくは10分以上、100分以下の範囲内とされている。
 この酸化処理工程S121及び還元処理工程S122により、銅繊維及び銅板120の表面に酸化還元層が形成され、微細な凹凸が生じることになる。
 また、酸化処理工程S121によって銅繊維及び銅板120の表面に酸化物層が形成され、この酸化物層によって複数の銅繊維同士及び銅板120が架橋される。その後、還元処理S122を行うことで、銅繊維及び銅板120の表面に形成された酸化物層が還元され、酸化還元層を介して銅繊維同士が焼結されるとともに銅繊維と銅板120とが結合させる。
 以上のような製造方法によって、本実施形態である銅多孔質複合部材100が製造される。
 以上のような構成とされた本実施形態である銅多孔質複合部材100によれば、銅板120の表面に、直径Rが0.02mm以上、1.0mm以下の範囲内とされ、長さLと直径Rとの比L/Rが4以上、2500以下の範囲内とされた銅繊維が焼結されてなる気孔率が高く、強度や寸法精度に優れた銅多孔質焼結体110が接合されており、伝熱特性及び導電性等の各種特性に優れている。
 さらに、本実施形態においては、銅多孔質焼結体110を構成する銅繊維及び銅板120の表面に酸化還元層が形成されており、銅多孔質焼結体110を構成する銅繊維と銅板120の表面との結合部においては、銅繊維の表面に形成された酸化還元層と銅板120の表面に形成された酸化還元層とが一体に結合しているので、銅多孔質焼結体110と銅板120とが強固に接合されることになり、接合界面の強度、伝熱特性及び導電性等の各種特性に優れている。
 また、上述の酸化還元層によって、銅繊維及び銅板120の表面に微細な凹凸が生じており、銅多孔質焼結体110を構成する銅繊維と銅板120の表面との結合部において、接合面積が確保されることになり、銅多孔質焼結体110と銅板120との接合強度を向上させることができる。
 本実施形態である銅多孔質複合部材100の製造方法によれば、銅板120の表面に、直径Rが0.02mm以上、1.0mm以下の範囲内とされ、長さLと直径Rとの比L/Rが4以上、2500以下の範囲内とされた銅繊維11を、嵩密度Dが銅繊維11の真密度Dの50%以下となるように積層配置する銅繊維積層工程S101を備えているので、焼結工程S102においても、銅繊維同士の間の空隙を確保することができ、収縮を抑えることが可能となる。これにより、気孔率の高く寸法精度に優れた銅多孔質焼結体110を成形することができる。よって、熱伝導性や導電性等の各種特性に優れた銅多孔質複合部材100を製造することが可能となる。
 また、本実施形態である銅多孔質複合部材100の製造方法においては、銅及び銅合金からなる銅板120の表面に銅繊維を積層配置し、焼結工程S102及び接合工程S103を同時に実施しているので、製造プロセスを簡略化することが可能となる。
 さらに、本実施形態では、焼結工程S102及び接合工程S103では、銅繊維及び銅板120の表面を酸化させた後、酸化された銅繊維及び銅板120の表面を還元するとともに銅繊維同士及び銅繊維と銅板120の表面を結合させる構成としているので、銅繊維同士の焼結強度、及び、銅繊維(銅多孔質焼結体110)と銅板120との接合強度を向上させることが可能となる。本実施形態では、銅繊維及び銅板120の表面を酸化処理した後に還元することで、銅繊維及び銅板120の表面に酸化還元層が形成され、微細な凹凸が生じていることから、接合面積が確保され、銅繊維同士及び銅繊維と銅板120とを強固に結合することが可能となる。
 以上、本発明の実施形態について説明したが、本発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
 例えば、図5に示す製造設備を用いて、銅多孔質焼結体を製造するものとして説明したが、これに限定されることはなく、他の製造設備を用いて銅多孔質焼結体を製造してもよい。
 焼結工程S02、S102、接合工程S103における酸化処理工程S21、S121の雰囲気については、所定温度で銅もしくは銅合金が酸化する酸化性雰囲気であればよく、具体的には、大気中に限らず、不活性ガス(例えば、窒素)に10vol%以上の酸素を含有する雰囲気であればよい。また、還元処理工程S22、S122の雰囲気についても、所定温度で銅酸化物が金属銅に還元もしくは酸化銅が分解する還元性雰囲気であればよく、具体的には、数vol%以上の水素を含有する窒素―水素混合ガス、アルゴン―水素混合ガス、純水素ガス、もしくは工業的によく用いられるアンモニア分解ガス、プロパン分解ガスなども好適に用いることができる。
 また、第二の実施形態では、図7に示す構造の銅多孔質複合部材を例に挙げて説明したが、これに限定されることはなく、図9から図14に示すような構造の銅多孔質複合部材であってもよい。
 例えば、図9に示すように、銅多孔質焼結体210の中に、部材本体として複数の銅管220が挿入された構造の銅多孔質複合部材200であってもよい。
 あるいは、図10に示すように、銅多孔質焼結体310の中に、部材本体としてU字状に湾曲された銅管320が挿入された構造の銅多孔質複合部材300であってもよい。
 さらに、図11に示すように、部材本体である銅管420の内周面に銅多孔質焼結体410を接合した構造の銅多孔質複合部材400であってもよい。
 また、図12に示すように、部材本体である銅管520の外周面に銅多孔質焼結体510を接合した構造の銅多孔質複合部材500であってもよい。
 さらに、図13に示すように、部材本体である銅管620の内周面及び外周面に銅多孔質焼結体610を接合した構造の銅多孔質複合部材600であってもよい。
 また、図14に示すように、部材本体である銅板720の両面に銅多孔質焼結体710を接合した構造の銅多孔質複合部材700であってもよい。
 以下に、本発明の効果を確認すべく行った確認実験の結果について説明する。
 表1に示す焼結原料を用いて、上述の実施形態で示した製造方法により、幅30mm×長さ200mm×厚さ5mmの銅多孔質焼結体を製造した。なお、比較例5においては、酸化処理工程を省略し、還元雰囲気のみで焼結工程を実施した。
 得られた銅多孔質焼結体の接合部の断面観察を行った。本発明例2の銅多孔質焼結体の断面観察写真を図15に示す。また、比較例5の銅多孔質焼結体の断面観察写真を図16に示す。
 さらに、得られた銅多孔質焼結体について、見掛け密度、引張強度について評価した。
 評価結果を表1に示す。なお、評価方法を以下に示す。
(見掛け密度)
 得られた銅多孔質焼結体の見掛け密度Dは、銅多孔質焼結体を構成する銅繊維の真密度Dに対する比率で評価した。
(引張強度)
 得られた銅多孔質焼結体を幅10mm×長さ100mm×厚さ5mmの試験片に加工した後、インストロン型引張試験機を用いて引張試験を行い、最大引張強度(S)を測定した。前記測定により得られた最大引張強度は見掛け密度により変化するため、本実施例では、前記最大引張強度(S)を前記見掛け密度(D)で規格化した値(S/D)を相対引張強度として定義し、比較した。
Figure JPOXMLDOC01-appb-T000001
 本実施形態において製造された銅多孔質焼結体の結合部の断面観察を行った結果、図15に示される本発明例2の銅多孔質焼結体では、銅繊維同士の結合部において銅繊維の表面に形成された酸化還元層同士が一体に結合している。そして、酸化還元層によって微細な凹凸が生じており、この凹凸が複雑に絡み合って一体化していることが確認される。
 これに対して、図16に示される酸化処理を行っていない比較例5の銅多孔質焼結体では、銅繊維の一部が結合しているのみであり、接合部における接合面積が本発明例に比べて著しく小さいことが確認される。すなわち、単に還元処理だけを行った場合においては、銅繊維の表面に酸化還元層が形成されず、表面状態は処理前と変化が無い比較的平滑な面であることから銅繊維同士の接合面積を十分に確保することができないのである。
 また、表1に示すように、銅繊維の直径Rが0.01mmとされた比較例1及び銅繊維の直径Rが1.3mmとされた比較例2においては、銅多孔質焼結体の引張強度が低くなっていることが確認される。
 また、銅繊維の長さLと直径Rとの比L/Rが2とされた比較例3においては、嵩密度Dが銅繊維の真密度Dの60%となっており、焼結後の見掛け密度Dも銅繊維の真密度Dの70%となっており、高い気孔率を確保することができなかった。
 さらに、銅繊維の長さLと直径Rとの比L/Rが3500とされた比較例4においては、強度が低くなっている。これは、部分的に空隙が大きな箇所が存在し、局所的に強度が大幅に低下したためと推測される。
 また、酸化処理を行わずに還元処理のみで焼結を実施した比較例5においては、銅多孔質焼結体の引張強度が低くなっていることが確認される。
 これに対して、本発明例の銅多孔質焼結体においては、銅繊維を積層配置した際の嵩密度Dに対して、焼結後の見掛け密度Dが大きく変化しておらず、焼結時の収縮が抑えられていることが確認される。また、引張強度も高く、銅繊維同士が強固に結合していることが確認される。
 以上のことから、本発明によれば、高い気孔率を有するとともに十分な強度を有する高品質の銅多孔質焼結体を提供可能であることが確認された。
 寸法精度が高く、かつ強度の高い銅多孔質焼結体および銅多孔質複合部材を提供することができ、例えば各種電池における電極及び集電体、熱交換器用部材、消音部材、フィルター、衝撃吸収部材等の様々な用途に適用できる。
 10、110  銅多孔質焼結体
 11  銅繊維
 12  酸化還元層
 100  銅多孔質複合部材
 120  銅板(部材本体)
 A  大気雰囲気
 B  窒素と水素の混合ガス雰囲気

Claims (6)

  1.  複数の銅繊維が焼結されてなる銅多孔質焼結体であって、
     前記銅繊維は、銅又は銅合金からなり、直径Rが0.02mm以上、1.0mm以下の範囲内とされ、長さLと直径Rとの比L/Rが4以上、2500以下の範囲内とされており、
     前記銅繊維の表面には、酸化還元処理によって形成された酸化還元層が存在し、この酸化還元層によって凹凸が形成されており、
     前記銅繊維同士の結合部においては、互いの表面に形成された前記酸化還元層同士が一体に結合していることを特徴とする銅多孔質焼結体。
  2.  部材本体と、請求項1に記載の銅多孔質焼結体と、が接合されてなることを特徴とする銅多孔質複合部材。
  3.  前記部材本体のうち前記銅多孔質焼結体との接合面は、銅又は銅合金で構成され、
     前記部材本体の前記接合面には、酸化還元処理によって形成された酸化還元層が存在しており、
     前記銅多孔質焼結体を構成する前記銅繊維と前記部材本体の前記接合面との結合部においては、前記銅繊維の表面に形成された酸化還元層と前記部材本体の前記接合面に形成された酸化還元層とが一体に結合していることを特徴とする請求項2に記載の銅多孔質複合部材。
  4.  複数の銅繊維が焼結されてなる銅多孔質焼結体の製造方法であって、
     前記銅繊維は、銅又は銅合金からなり、直径Rが0.02mm以上、1.0mm以下の範囲内とされ、長さLと直径Rとの比L/Rが4以上、2500以下の範囲内とされており、
     複数の前記銅繊維を積層する銅繊維積層工程と、積層された複数の前記銅繊維体同士を焼結する焼結工程と、を有し、
     前記銅繊維積層工程では、嵩密度Dを前記銅繊維の真密度Dの50%以下となるように複数の前記銅繊維を積層配置し、
     前記焼結工程では、前記銅繊維を酸化させた後、酸化された前記銅繊維を還元するとともに前記銅繊維同士を結合させることを特徴とする銅多孔質焼結体の製造方法。
  5.  部材本体と、複数の銅繊維が焼結されてなる銅多孔質焼結体とが接合された銅多孔質複合部材の製造方法であって、
     請求項4に記載の銅多孔質焼結体の製造方法によって製造された銅多孔質焼結体と、前記部材本体とを接合する接合工程を備えていることを特徴とする銅多孔質複合部材の製造方法。
  6.  前記部材本体のうち前記銅多孔質焼結体が接合される接合面は、銅又は銅合金で構成されており、
     前記銅繊維積層工程では、前記部材本体の前記接合面に複数の前記銅繊維を積層配置し、前記焼結工程及び前記接合工程では、前記銅繊維及び前記部材本体の前記接合面を酸化させた後、酸化された前記銅繊維及び前記部材本体の前記接合面を還元するとともに前記銅繊維同士及び前記銅繊維と前記部材本体の前記接合面を結合することを特徴とする請求項5に記載の銅多孔質複合部材の製造方法。
PCT/JP2015/079687 2014-10-22 2015-10-21 銅多孔質焼結体、銅多孔質複合部材、銅多孔質焼結体の製造方法及び銅多孔質複合部材の製造方法 WO2016063905A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
BR112017007728A BR112017007728A2 (pt) 2014-10-22 2015-10-21 material sinterizado de cobre poroso, parte compósita de cobre poroso, método de produção de material sinterizado de cobre poroso e método de produção de parte compósita de cobre poroso
US15/518,902 US10532407B2 (en) 2014-10-22 2015-10-21 Porous copper sintered material, porous copper composite part, method of producing porous copper sintered material, and method of producing porous copper composite part
CN201580057020.5A CN107073585B (zh) 2014-10-22 2015-10-21 铜多孔烧结体、铜多孔复合部件、铜多孔烧结体的制造方法及铜多孔复合部件的制造方法
KR1020177010241A KR20170074870A (ko) 2014-10-22 2015-10-21 구리 다공질 소결체, 구리 다공질 복합 부재, 구리 다공질 소결체의 제조 방법 및 구리 다공질 복합 부재의 제조 방법
EP15853350.5A EP3210698B1 (en) 2014-10-22 2015-10-21 Copper porous sintered body, copper porous composite member, method for manufacturing copper porous sintered body, and method for manufacturing copper porous composite member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014215339A JP6011593B2 (ja) 2014-10-22 2014-10-22 銅多孔質焼結体の製造方法及び銅多孔質複合部材の製造方法
JP2014-215339 2014-10-22

Publications (1)

Publication Number Publication Date
WO2016063905A1 true WO2016063905A1 (ja) 2016-04-28

Family

ID=55760937

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/079687 WO2016063905A1 (ja) 2014-10-22 2015-10-21 銅多孔質焼結体、銅多孔質複合部材、銅多孔質焼結体の製造方法及び銅多孔質複合部材の製造方法

Country Status (7)

Country Link
US (1) US10532407B2 (ja)
EP (1) EP3210698B1 (ja)
JP (1) JP6011593B2 (ja)
KR (1) KR20170074870A (ja)
CN (1) CN107073585B (ja)
BR (1) BR112017007728A2 (ja)
WO (1) WO2016063905A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016199565A1 (ja) * 2015-06-12 2016-12-15 三菱マテリアル株式会社 銅多孔質体、銅多孔質複合部材、銅多孔質体の製造方法、及び、銅多孔質複合部材の製造方法
WO2016199571A1 (ja) * 2015-06-12 2016-12-15 三菱マテリアル株式会社 銅多孔質体、及び、銅多孔質複合部材
WO2016199566A1 (ja) * 2015-06-12 2016-12-15 三菱マテリアル株式会社 銅多孔質体、銅多孔質複合部材、銅多孔質体の製造方法、及び、銅多孔質複合部材の製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6565710B2 (ja) * 2016-01-27 2019-08-28 三菱マテリアル株式会社 銅部材接合体の製造方法
JP6733286B2 (ja) * 2016-04-27 2020-07-29 三菱マテリアル株式会社 銅多孔質体の製造方法、及び、銅多孔質複合部材の製造方法
DE102017216630B4 (de) * 2017-09-20 2023-04-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Herstellung eines Wärmeübertragers
US11273492B2 (en) * 2017-11-08 2022-03-15 Entegris, Inc. Sintered porous material having nodes and fibers of different materials, with different sintering points, and related methods of preparation and use

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH076758A (ja) * 1993-06-16 1995-01-10 Yuasa Corp 亜鉛極板
JP2003268410A (ja) * 2002-03-12 2003-09-25 National Institute Of Advanced Industrial & Technology 多孔質材料の作製方法及びその成形体
JP2010500771A (ja) * 2006-08-16 2010-01-07 ハー.ツェー.スタルク ゲゼルシャフト ミット ベシュレンクテル ハフツング 構造化した焼結活性表面を有する半製品およびその製造方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2203895A (en) * 1939-01-06 1940-06-11 Gen Motors Corp Method of sintering porous metal objects
JPS5817817B2 (ja) * 1974-11-26 1983-04-09 株式会社豊田中央研究所 大表面積金属体の製造方法
US5378426A (en) * 1992-10-21 1995-01-03 Pall Corporation Oxidation resistant metal particulates and media and methods of forming the same with low carbon content
JPH08145592A (ja) 1994-11-16 1996-06-07 Hitachi Chem Co Ltd 伝熱部材およびその製造法
US5881353A (en) 1994-03-31 1999-03-09 Hitachi Chemical Company, Ltd. Method for producing porous bodies
US5640669A (en) 1995-01-12 1997-06-17 Sumitomo Electric Industries, Ltd. Process for preparing metallic porous body, electrode substrate for battery and process for preparing the same
CN1147030A (zh) 1996-06-18 1997-04-09 武汉市三合实业公司 泡沫型金属铜及其生产技术
JP3264240B2 (ja) 1998-01-30 2002-03-11 三菱マテリアル株式会社 銅多孔質層を有する銅管の製造方法
JP2000192107A (ja) * 1998-12-25 2000-07-11 Kogi Corp 多孔質金属及びその製造方法
JP2000248304A (ja) * 1999-03-03 2000-09-12 Fukuda Metal Foil & Powder Co Ltd 多孔質金属粉末およびその製造方法
US6660224B2 (en) 2001-08-16 2003-12-09 National Research Council Of Canada Method of making open cell material
JP2004218887A (ja) 2003-01-10 2004-08-05 Fujikura Ltd 電子素子の冷却装置
FI120050B (fi) 2004-06-03 2009-06-15 Luvata Oy Menetelmä metallioksidipulverin pelkistämiseksi ja liittämiseksi lämmönsiirtopintaan ja lämmönsiirtopinta
CN101088675A (zh) 2007-07-05 2007-12-19 华东理工大学 铜镍合金多孔表面管的烧结方法
EP2203236B1 (en) 2007-10-24 2017-12-06 Mott Corporation Sintered fiber filter
JP4812823B2 (ja) 2008-10-27 2011-11-09 Ntn株式会社 複層軸受の製造方法
JP2011111652A (ja) 2009-11-26 2011-06-09 Osaka Gas Co Ltd 銅多孔体の製造方法及び銅多孔体の塗膜層
WO2012106149A2 (en) * 2011-02-04 2012-08-09 Entegris, Inc. Porous metal membrane of sintered powders and metal fibers
JP5166615B1 (ja) 2012-02-17 2013-03-21 榮子 山田 多孔質表面を持つ金属の多孔体
JP5825598B2 (ja) 2012-03-13 2015-12-02 国立研究開発法人産業技術総合研究所 金属多孔体及び金属多孔体の製造方法。
CN102876909B (zh) 2012-10-26 2014-06-11 湖南新光环科技发展有限公司 泡沫金属及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH076758A (ja) * 1993-06-16 1995-01-10 Yuasa Corp 亜鉛極板
JP2003268410A (ja) * 2002-03-12 2003-09-25 National Institute Of Advanced Industrial & Technology 多孔質材料の作製方法及びその成形体
JP2010500771A (ja) * 2006-08-16 2010-01-07 ハー.ツェー.スタルク ゲゼルシャフト ミット ベシュレンクテル ハフツング 構造化した焼結活性表面を有する半製品およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3210698A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016199565A1 (ja) * 2015-06-12 2016-12-15 三菱マテリアル株式会社 銅多孔質体、銅多孔質複合部材、銅多孔質体の製造方法、及び、銅多孔質複合部材の製造方法
WO2016199571A1 (ja) * 2015-06-12 2016-12-15 三菱マテリアル株式会社 銅多孔質体、及び、銅多孔質複合部材
WO2016199566A1 (ja) * 2015-06-12 2016-12-15 三菱マテリアル株式会社 銅多孔質体、銅多孔質複合部材、銅多孔質体の製造方法、及び、銅多孔質複合部材の製造方法
JP2017002375A (ja) * 2015-06-12 2017-01-05 三菱マテリアル株式会社 銅多孔質体、銅多孔質複合部材、銅多孔質体の製造方法、及び、銅多孔質複合部材の製造方法
JP2017002374A (ja) * 2015-06-12 2017-01-05 三菱マテリアル株式会社 銅多孔質体、及び、銅多孔質複合部材
JP2017002378A (ja) * 2015-06-12 2017-01-05 三菱マテリアル株式会社 銅多孔質体、銅多孔質複合部材、銅多孔質体の製造方法、及び、銅多孔質複合部材の製造方法
US10478896B2 (en) 2015-06-12 2019-11-19 Mitsubishi Materials Corporation Porous copper body, porous copper composite part, method for manufacturing porous copper body, and method for manufacturing porous copper composite part
US10493528B2 (en) 2015-06-12 2019-12-03 Mitsubishi Materials Corporation Porous copper body, porous copper composite part, method for manufacturing porous copper body, and method for manufacturing porous copper composite part

Also Published As

Publication number Publication date
JP6011593B2 (ja) 2016-10-19
KR20170074870A (ko) 2017-06-30
US20170239729A1 (en) 2017-08-24
CN107073585B (zh) 2019-11-05
EP3210698A4 (en) 2018-07-04
EP3210698B1 (en) 2022-09-07
JP2016079495A (ja) 2016-05-16
US10532407B2 (en) 2020-01-14
BR112017007728A2 (pt) 2017-12-19
EP3210698A1 (en) 2017-08-30
CN107073585A (zh) 2017-08-18

Similar Documents

Publication Publication Date Title
WO2016063905A1 (ja) 銅多孔質焼結体、銅多孔質複合部材、銅多孔質焼結体の製造方法及び銅多孔質複合部材の製造方法
JP6065059B2 (ja) 銅多孔質体、銅多孔質複合部材、銅多孔質体の製造方法、及び、銅多孔質複合部材の製造方法
JP6065058B2 (ja) 銅多孔質体、及び、銅多孔質複合部材
WO2016199566A1 (ja) 銅多孔質体、銅多孔質複合部材、銅多孔質体の製造方法、及び、銅多孔質複合部材の製造方法
JP6589402B2 (ja) 銅多孔質体、銅多孔質複合部材、銅多孔質体の製造方法、及び、銅多孔質複合部材の製造方法
JP6724801B2 (ja) 銅多孔質体、銅多孔質複合部材、銅多孔質体の製造方法、及び、銅多孔質複合部材の製造方法
JP6249060B2 (ja) 銅多孔質複合部材
WO2017187938A1 (ja) 銅多孔質体、銅多孔質複合部材、銅多孔質体の製造方法、及び、銅多孔質複合部材の製造方法
CN108136504B (zh) 铜部件接合体的制造方法
US3713787A (en) Porous plate made of metal fibers
JP5500710B2 (ja) 高熱伝導性複合材料及びその製造方法
WO2018212039A1 (ja) 銅多孔質体、銅多孔質複合部材、銅多孔質体の製造方法、及び、銅多孔質複合部材の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15853350

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015853350

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015853350

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15518902

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20177010241

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017007728

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112017007728

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170413