WO2016063477A1 - 蓄熱部材 - Google Patents

蓄熱部材 Download PDF

Info

Publication number
WO2016063477A1
WO2016063477A1 PCT/JP2015/005112 JP2015005112W WO2016063477A1 WO 2016063477 A1 WO2016063477 A1 WO 2016063477A1 JP 2015005112 W JP2015005112 W JP 2015005112W WO 2016063477 A1 WO2016063477 A1 WO 2016063477A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
heat storage
storage member
heat exchange
phase transition
Prior art date
Application number
PCT/JP2015/005112
Other languages
English (en)
French (fr)
Inventor
伸矢 笠松
卓哉 布施
欣 河野
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2016063477A1 publication Critical patent/WO2016063477A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the present disclosure relates to a heat storage member including a heat storage unit and a heat exchange unit.
  • a heat storage material is used as one of heating or cooling means.
  • a latent heat storage material that stores and dissipates heat during a solid-liquid phase transition is known.
  • a latent heat storage material for example, a heat storage material disclosed in Patent Document 1 is known.
  • the heat storage material of Patent Document 1 has a dispersed phase made of two types of latent heat storage materials and a dispersion medium made of water or the like, and the dispersed phase is dispersed in the dispersion medium.
  • the heat storage material of Patent Document 1 stores heat using the phase transition enthalpy due to the solid-liquid phase transition. Since the heat storage material is liquefied by phase transition, it is necessary to enclose the heat storage material in a container. At this time, since the heat storage material expands and contracts during the phase transition between the solid and the liquid, it is necessary to form a gap between the container and the heat storage material in order to prevent damage to the container. This air gap becomes a thermal resistance, and there is a possibility that the heat storage and heat dissipation performance of the heat storage material is lowered.
  • the present disclosure has been made in view of the above points, and provides a heat storage member capable of improving the heat storage and heat dissipation performance.
  • a heat storage member includes a heat storage unit made of a strongly correlated electronic material that stores and releases heat by a solid-solid phase transition, and a heat exchange unit that contacts a heat medium that exchanges heat with the heat storage unit.
  • the heat storage part and the heat exchange part are integrated, and the heat exchange part has a deformed part that increases the contact area with the heat medium.
  • the heat storage and heat dissipation performance of the heat storage member can be improved.
  • Sectional drawing which shows the thermal storage member in Example 1 of this indication The figure which shows the thermal storage member in Example 1.
  • FIG. The figure which shows the relationship between the heat storage amount of vanadium dioxide, and temperature.
  • FIG. Sectional drawing which shows the thermal storage member in Example 2 of this indication.
  • FIG. 11 The figure which shows the modification of a thermal storage member (XII-XII arrow sectional drawing in FIG. 11).
  • a heat storage member includes a heat storage unit made of a strongly correlated electronic material that stores and dissipates heat by a solid-solid phase transition, and a heat exchange unit that contacts a heat medium that exchanges heat with the heat storage unit.
  • the heat exchanging part is integrated, and the heat exchanging part has a deformed part that increases the contact area with the heat medium.
  • the deformed portion may include a protruding portion that protrudes toward the heat medium path through which the heat medium flows.
  • the surface area in the deformed portion can be easily increased by forming the protruding portion. Thereby, the contact area between the deformed portion and the heat medium can be further increased, and heat exchange between the heat exchange portion and the heat medium can be performed more efficiently.
  • the deformed portion may include a flow path wall that separates a plurality of flow paths.
  • the surface area of the deformed portion can be easily increased by forming the flow path wall.
  • the contact area between the deformed portion and the heat medium can be further increased, and heat exchange between the heat exchange portion and the heat medium can be performed more efficiently.
  • the heat storage part may be made of a material that undergoes a metal-insulator phase transition.
  • a material that undergoes a metal-insulator phase transition has a larger phase transition enthalpy than a material that does not undergo a metal-insulator phase transition. Therefore, the amount of heat stored in the heat storage unit can be increased.
  • the heat exchange part may be made of the same material as the heat storage part and may be formed integrally with the heat storage part.
  • the heat exchange part is also formed of a heat storage material. for that reason. The amount of stored and dissipated heat in the heat storage member can be increased.
  • a heat storage part and a heat exchange part can be formed integrally.
  • At least the outer peripheral side surface of the heat storage unit may be covered with a high thermal conductive layer made of a material having a thermal conductivity equal to or higher than the thermal conductivity of the heat storage unit.
  • a high thermal conductive layer made of a material having a thermal conductivity equal to or higher than the thermal conductivity of the heat storage unit.
  • a heat storage member (HS) 1 is a heat medium that exchanges heat between a heat storage unit 2 made of a strongly correlated electronic material that stores and dissipates heat by solid-solid phase transition, and the heat storage unit 2. And the heat exchanging part 3 in contact with each other.
  • the heat exchange part 3 has a deformed part 32 that increases the contact area with the heat medium.
  • the arrows in FIGS. 1, 2, 5 to 11, 13, and 14 indicate the vertical direction on the drawings.
  • the heat storage member 1 of this example is used in a heat storage system 5 that stores heat by using exhaust heat of an internal combustion engine (EG) 51 that is one of driving sources for a hybrid vehicle.
  • EG internal combustion engine
  • the heat storage system 5 is configured to transmit the heat of the internal combustion engine 51 to the heat storage member 1 through cooling water and store the heat in the heat storage member 1.
  • the internal combustion engine 51 converts thermal energy generated by burning the fuel 52 into motive energy. At this time, part of the heat energy is discharged as exhaust heat to the exhaust pipe together with the exhaust gas 53 of the internal combustion engine.
  • the internal combustion engine 51 and the heat storage member 1 are connected by a cooling water passage 54 that forms a closed circuit between the internal combustion engine 51 and the heat storage member 1.
  • the cooling water channel 54 is provided with a pump 541 that circulates the cooling water in the cooling water channel 54.
  • the cooling water in the cooling water channel 54 circulates from the cooling water outlet of the internal combustion engine to the cooling water inlet of the internal combustion engine via the heat storage unit.
  • the cooling water flow path 54 is arrange
  • the cooling water is heated to a high temperature by performing heat exchange between the internal combustion engine 51 and the exhaust gas 53 and the cooling water, and heat exchange is performed between the cooling water heated to the high temperature and the heat storage member 1.
  • the heat storage member 1 can store heat.
  • the heat stored in the heat storage member 1 can be used for heating air-conditioned air.
  • the heat storage part 2 in the heat storage member 1 is made of VO 2 (vanadium dioxide), which is a strongly correlated electronic material that stores and releases heat by a solid-solid phase transition, and is formed in a substantially rectangular parallelepiped.
  • FIG. 3 is a graph in which the vertical axis represents the heat storage amount and the horizontal axis represents the temperature, and shows the relationship between the heat storage amount and temperature in VO 2 .
  • VO 2 is a transition metal oxide having V (vanadium) as a transition metal and has a phase transition temperature of about 65 ° C.
  • VO 2 is a metal-insulator phase transition material that stores heat as a metal phase above the phase transition temperature and dissipates heat as an insulating layer below the phase transition temperature.
  • the strongly correlated electronic material that stores and dissipates heat by solid-solid phase transition has electrons with spin, orbital, and charge degrees of freedom.
  • VO 2 used in this example monoclinic crystals are obtained by phase transition. The crystal structure is changed from the system to the tetragonal system and from the tetragonal system to the monoclinic system. At this time, heat is stored and released with ordering in the degree of freedom of spin, orbit, and charge.
  • the heat exchange unit 3 disposed on the upper surface of the heat storage unit 2 is made of aluminum, and includes a base 31 that contacts the heat storage unit 2 and a deformed portion 32 that stands upward from the base 31.
  • Aluminum that forms the heat exchange part 3 has higher thermal conductivity than VO 2 that forms the heat storage part 2.
  • the material excellent in thermal conductivity, such as copper, can be used besides this, for example.
  • the base 31 When viewed from above, the base 31 has a flat plate shape having the same shape as the heat storage unit 2, and the heat exchange unit 3 and the heat storage unit are in contact with the lower surface of the base 31 in contact with the upper surface of the heat storage unit 2. 2 is fixed integrally.
  • the deformed portion 32 is composed of a plurality of flat channel walls 321 erected upward from the upper surface of the base 31.
  • Each flow path wall 321 is composed of flat fins formed in parallel to each other, and is formed at equal intervals when viewed from above. Between the adjacent flow path walls 321, a flow path 322 for circulating the heat medium is formed.
  • the flow path wall 321 of this example is also a protrusion 320 that protrudes toward the heat medium path through which the heat medium flows. The protrusion 320 may protrude into the heat medium path through which the heat medium flows.
  • the heat storage unit 2 is made of a strongly correlated electronic material. That is, a strongly correlated electronic material stores and dissipates heat by utilizing a change in crystal structure due to a solid-solid phase transition and a change in enthalpy caused by spin-orbit ordering. For this reason, in a strongly correlated electronic material, a solid state is maintained even when a phase transition occurs, so that it is not necessary to enclose in a container like a heat storage material that stores and releases heat by a solid-liquid phase transition. Therefore, the heat storage part 2 can be directly integrated with the heat exchange part 3. Thereby, the thermal resistance between the heat storage part 2 and the heat exchange part 3 can be reduced, and the heat storage and radiation of the heat storage part 2 can be transmitted to the heat exchange part 3.
  • the heat exchanging unit 3 includes a deformed portion 32. Therefore, the contact area with the heat medium can be increased, and heat exchange between the heat exchange unit 3 and the heat medium can be performed efficiently. Thereby, heat exchange can be efficiently performed between the heat medium and the heat storage unit 2 via the heat exchange unit 3.
  • the deformed portion 32 includes a flow path wall 321 that separates the plurality of flow paths 322 through which the heat medium flows. Therefore, the surface area of the deformed portion 32 can be further increased. Thereby, the contact area between the deformed part 32 and the heat medium can be increased, and heat exchange between the heat exchange part 3 and the heat medium can be performed more efficiently.
  • the heat storage section 2 is made of a material that undergoes a metal-insulator phase transition.
  • a material that undergoes a metal-insulator phase transition has a larger phase transition enthalpy than a material that does not undergo a metal-insulator phase transition. Therefore, the amount of heat stored in the heat storage unit 2 can be increased. As described above, according to this example, the heat storage and heat dissipation performance of the heat storage member 1 can be improved.
  • Example 2 In this example, as shown in FIG. 5, the structure in the heat storage member 1 of Example 1 is partially changed.
  • the heat exchange part 3 in the heat storage member 1 of the present example has a deformed part 32 erected upward from the base part 31 and a covering part 33 containing the heat storage part 2 disposed below the base part 31. ing.
  • the outer shape of the heat storage unit 2 is smaller than the outer shape of the base 31.
  • the covering portion 33 is formed integrally with the base portion 31 and the deformed portion 32, and has a side wall portion 331 that covers the entire side surface of the heat storage portion 2 and a bottom portion 332 that covers the lower surface of the heat storage portion 2.
  • the contact area between the heat storage unit 2 and the heat exchange unit 3 can be increased.
  • heat exchange between the heat medium and the heat storage unit 2 can be performed more efficiently. Also in this example, the same effects as those of the first embodiment can be obtained.
  • Example 3 In this example, as shown in FIG. 6, the structure in the heat storage member 1 of Example 1 is partially changed.
  • the deformed portion 32 in the heat storage member 1 of this example has a honeycomb structure including a flow hole 323 obtained by further dividing the flow path 322 formed between the flow path walls 321 by the horizontal flow path wall 34.
  • the heat exchange unit 3 and the heat medium can be reliably brought into contact with each other, and the heat of the heat medium can be efficiently transmitted to the heat exchange unit 3.
  • heat exchange can be efficiently performed between the heat medium and the heat storage member 1. Also in this example, the same effects as those of the first embodiment can be obtained.
  • Example 4 In this example, as shown in FIG. 7, the structure in the heat storage member 1 of Example 1 is partially changed.
  • the heat exchange part 3 in the heat storage member 1 of this example is made of VO 2 which is the same material as the heat storage part 2, and is formed integrally with the heat storage part 2.
  • the heat exchange unit 3 may be integrated with the heat storage unit 2 seamlessly.
  • the heat exchange part 3 is also formed of a strongly correlated electronic material that stores and dissipates heat by solid-solid phase transition. Therefore, the amount of stored and released heat in the heat storage member 1 can be increased. Also in this example, the same effects as those of the first embodiment can be obtained.
  • the heat storage part 2 in the heat storage member 1 of Example 4 is a particulate material composed of V 2 O 3 (vanadium trioxide), which is a strongly correlated electronic material that stores and dissipates heat by a solid-solid phase transition, on a main material 21 composed of VO 2 .
  • Dispersant 22 is mixed.
  • the material of the dispersed material 22 may be an oxide other than metal or V 2 O 3.
  • V 2 O 3 is a transition metal oxide having V (vanadium) as a transition metal, and has a phase transition temperature of about ⁇ 119 ° C.
  • V 2 O 3 is a metal-insulator phase transition material that stores heat as a metal phase above the phase transition temperature and dissipates heat as an insulating layer below the phase transition temperature.
  • a dispersion material 22 made of a strongly correlated electronic material having a phase transition temperature different from that of the main material 21 is mixed.
  • the main material 21 and the dispersion material 22 can each store and dissipate heat in different temperature ranges.
  • heating and cooling can be performed in a wider temperature range.
  • the same effects as those of the fourth embodiment can be obtained.
  • Example 6 In this example, as shown in FIG. 9, the structure in the heat storage member 1 of Example 4 is partially changed.
  • the heat storage member 1 of this example has a high heat conductive layer 4 that covers the outer peripheral surfaces of the heat storage unit 2 and the heat exchange unit 3.
  • the high thermal conductive layer 4 is formed of an inorganic material having a thermal conductivity larger than that of the heat storage unit 2 and the heat exchange unit 3.
  • the high thermal conductive layer 4 of this example is made of aluminum and is formed so as to cover the entire outer peripheral surfaces of the heat storage unit 2 and the heat exchange unit 3.
  • the same reference numerals as those used in the fourth embodiment denote the same components as in the fourth embodiment unless otherwise specified.
  • the outer peripheral side surface in the said heat storage part 2 should just be covered with the high heat conductive layer 4 which consists of a material which has a heat conductivity more than the heat conductivity of the heat storage part 2.
  • the heat storage member 1 of the present example includes a high heat conductive layer 4 having a thermal conductivity larger than that of the heat storage unit 2 and the heat exchange unit 3. Therefore, heat exchange between the heat storage unit 2 and the heat exchange unit 3 and the heat medium can be efficiently performed via the high heat conductive layer 4. Moreover, the intensity
  • Example 7 This example shows an example of the shape of the heat exchanging portion 3 in the heat storage member 1 as shown in FIGS.
  • the heat exchange part 3 of the heat storage member 1 shown in FIG. 10 includes a plurality of bar-shaped protrusions 320 protruding upward from the base 31, and a flow path 324 is formed between the bar-shaped protrusions 320. Yes.
  • a deformed part 32 formed by another member is disposed on the upper surface of the base part 31.
  • the cross-sectional shape of the deformed portion 32 is a rectangular wave shape having a bottom portion 325 that contacts the base portion 31, a wall portion 326 that stands upward from both ends of the bottom portion 325, and a connection portion 327 that connects the upper ends of the wall portion 326. I am doing.
  • the bottom part 325, the wall part 326, and the connection part 327 form the flow path wall 321, and the flow path 322 is formed inside the rectangular wave-shaped peaks and valleys formed by these.
  • the heat exchange part 3 in the heat storage member 1 shown in FIG. 12 is a modification of the heat exchange part 3 in FIG.
  • the wall portion 326 has a louver shape including a plurality of small wall portions 328.
  • Other configurations are the same as those of the heat exchanging unit 3 in FIG.
  • the 13 is formed by laminating a first laminated member 35 and a second laminated member 36 as indicated by white arrows.
  • the first laminated member 35 has a plurality of linear first flow grooves 351 formed along the longitudinal direction of the heat storage unit 2 when viewed from above.
  • the second laminated member 36 includes a first groove 362 extending in a direction perpendicular to the longitudinal direction, a second groove 363 bent in the longitudinal direction from the first groove 362, and a first groove 363 to the first. It has a plurality of second flow grooves 361 composed of a groove 362 and a third groove 364 bent toward the opposite side.
  • the heat exchange unit 3 may be formed by alternately laminating the first laminated member 35 and the second laminated member 36.
  • the configuration other than the contents described above is the same as that of the first embodiment.
  • the same reference numerals as those used in the first embodiment represent the same components as in the first embodiment unless otherwise specified.
  • the heat exchanging section 3 shown in the first to seventh embodiments is only an example, and various other structures can be used.
  • a through hole may be formed in a part of the heat exchanging portion 3, or may be curved or bent. Further, a plurality of the heat exchange units 3 described above may be stacked.
  • the heat storage unit 2 may be covered with the high thermal conductive layer 4.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

 蓄熱部材(1)は、固体-固体相転移により蓄放熱する強相関電子材料からなる蓄熱部(2)と、蓄熱部(2)との間で熱交換をする熱媒体と接触する熱交換部(3)とを備え、蓄熱部(2)と熱交換部(3)は一体化している。熱交換部(3)は、熱媒体との接触面積を増加させる異形部(32)を有している。蓄熱部材(1)は、蓄熱部(2)に直接、熱交換部(3)を設けて一体化することにより、蓄熱部(2)の蓄放熱により生じる熱を、熱交換部(3)へと伝達することができる。

Description

蓄熱部材 関連出願の相互参照
 本出願は、当該開示内容が参照によって本出願に組み込まれた、2014年10月22日に出願された日本特許出願2014-214972を基にしている。
 本開示は、蓄熱部と熱交換部とを備えた蓄熱部材に関する。
 種々の用途において、加熱又は冷却の手段の一つとして、蓄熱材が用いられている。このような蓄熱材としては、固体-液体相転移時に蓄放熱を行う潜熱蓄熱材が知られている。このような潜熱蓄熱材としては、例えば、特許文献1に示された蓄熱材が知られている。特許文献1の蓄熱材は、2種類の潜熱蓄熱材からなる分散相と、水等からなる分散媒とを有しており、分散相が分散媒中に分散して存在している。
 特許文献1の蓄熱材は、固体-液体相転移による相転移エンタルピーを利用して蓄熱している。蓄熱材は、相転移により液状化するため、蓄熱材を容器内に封入する必要がある。このとき、蓄熱材は、固体-液体間で相転移する際に、膨張、収縮することから、容器の破損を防止するため、容器と蓄熱材との間に空隙を形成する必要がある。この空隙が熱抵抗となり、蓄熱材における蓄放熱性能が低下するおそれがある。
特開2014-91759号公報
 本開示は、上記点を鑑みてなされたものであり、蓄放熱性能を向上することができる蓄熱部材を提供するものである。
 本開示の一態様による蓄熱部材は、固体-固体相転移により蓄放熱する強相関電子材料からなる蓄熱部と、上記蓄熱部との間で熱交換をする熱媒体と接触する熱交換部とを備え、上記蓄熱部と上記熱交換部は一体化しており、上記熱交換部は、上記熱媒体との接触面積を増加させる異形部を有している。
 以上のごとく、本開示によれば、上記蓄熱部材の蓄放熱性能を向上することができる。
本開示の実施例1における、蓄熱部材を示す断面図。 実施例1における、蓄熱部材を示す図。 二酸化バナジウムの蓄熱量と温度との関係を示す図。 実施例1における、蓄熱システムを示す模式図。 本開示の実施例2における、蓄熱部材を示す断面図。 本開示の実施例3における、蓄熱部材を示す図。 本開示の実施例4における、蓄熱部材を示す断面図。 本開示の実施例5における、蓄熱部材を示す断面図。 本開示の実施例6における、蓄熱部材を示す断面図。 本開示の実施例7における、蓄熱部材の一態様を示す図。 実施例7における、蓄熱部材の他の態様を示す図。 蓄熱部材の変形例を示す図(図11における、XII-XII矢視断面図)。 実施例7における、積層構造の熱交換部を備える蓄熱部材を示す図。 実施例1の変形例における、蓄熱部材を示す断面図。
 本開示による蓄熱部材は、固体-固体相転移により蓄放熱する強相関電子材料からなる蓄熱部と、蓄熱部との間で熱交換をする熱媒体と接触する熱交換部とを備え、蓄熱部と熱交換部は一体化しており、熱交換部は、熱媒体との接触面積を増加させる異形部を有している。
 蓄熱部材において、異形部は、熱媒体が流通する熱媒体経路に向かって突出する突出部を備えても良い。この場合には、突出部を形成することにより、異形部における表面積を容易に増大させることができる。これにより異形部と熱媒体との間における接触面積をより増大し、熱交換部と熱媒体との間における熱交換をより効率良く行うことができる。
 異形部は、複数の流路を隔てる流路壁を備えても良い。この場合には、流路壁を形成することにより、異形部における表面積を容易に増大させることができる。これにより異形部と熱媒体との間における接触面積をより増大し、熱交換部と熱媒体との間における熱交換をより効率良く行うことができる。
 また、蓄熱部は、金属-絶縁体相転移する材料からなっても良い。金属-絶縁体相転移する材料においては、金属-絶縁体相転移しない材料に比べて、相転移エンタルピーが大きい。そのため、蓄熱部における蓄熱量を増大することができる。
 また、熱交換部は、蓄熱部と同一の材料からなり、該蓄熱部と一体に形成されても良い。この場合には、熱交換部についても蓄熱材料によって形成される。そのため。蓄熱部材における蓄放熱量を増大させることができる。また、蓄熱部と熱交換部とを一体に形成することができる。
 また、少なくとも蓄熱部における外周側面は、蓄熱部の熱伝導率以上の熱伝導率を有する材料からなる高熱伝導層によって覆われても良い。この場合には、高熱伝導層を介して、蓄熱部と熱媒体との熱交換をすることができる。これにより、蓄熱部と熱媒体との間の熱交換をより効率よく行うことができる。また、高熱伝導層が、蓄熱部における補強材の役割を果たし、蓄熱部材における強度を向上することができる。
 (実施例1)
 蓄熱部材にかかる実施例について、図1~図3を参照して説明する。図1及び図2に示すごとく、蓄熱部材(HS)1は、固体-固体相転移により蓄放熱する強相関電子材料からなる蓄熱部2と、蓄熱部2との間で熱交換をする熱媒体と接触する熱交換部3とを一体化してなる。熱交換部3は、熱媒体との接触面積を増加させる異形部32を有している。図1、2、5~11、13、14の矢印は、図面上における上下方向を示す。
 以下、さらに詳細に説明する。図4に示すごとく、本例の蓄熱部材1は、ハイブリッド自動車の走行用駆動源の1つである内燃機関(EG)51の排熱を利用して蓄熱する蓄熱システム5に用いられる。
 蓄熱システム5は、内燃機関51の熱を、冷却水を介して蓄熱部材1へ伝達し、その熱を蓄熱部材1にて蓄えるよう構成されている。内燃機関51は、燃料52を燃焼させることで生じる熱エネルギーを動力エネルギーに変換する。このとき、熱エネルギーの一部は、排熱として、内燃機関の排ガス53と共に排気管へと排出される。
 内燃機関51と蓄熱部材1とは、内燃機関51と蓄熱部材1との間で閉回路を形成する冷却水流路54によって接続されている。冷却水流路54には、冷却水流路54内に冷却水を循環させるポンプ541が設けられている。冷却水流路54内の冷却水は、内燃機関の冷却水出口から蓄熱部を経由して内燃機関の冷却水入口に循環する。また、冷却水流路54は、排気管を流通する排ガス53と冷却水との間、及び蓄熱部材1と冷却水との間において、熱交換を行うように配設されている。これにより、内燃機関51及び排ガス53と冷却水との間で熱交換を行うことで冷却水が高温に加熱され、高温に加熱された冷却水と蓄熱部材1との間で熱交換を行うことにより、蓄熱部材1に蓄熱することができる。尚、蓄熱部材1に蓄熱した熱は、空調空気の加熱等に用いることができる。
 図1に示すごとく、蓄熱部材1における蓄熱部2は、固体-固体相転移により蓄放熱する強相関電子材料であるVO(二酸化バナジウム)からなり、略直方体に形成されている。図3は、縦軸を蓄熱量とし、横軸を温度としたグラフであり、VOにおける蓄熱量と温度との関係を示したものである。図3に示すごとく、VOは、遷移金属としてのV(バナジウム)を有する遷移金属酸化物であり、相転移温度は約65℃である。また、VOは、相転移温度以上において金属相となって蓄熱し、相転移温度以下において絶縁層となって放熱する金属-絶縁体相転移材料である。
 固体-固体相転移により蓄放熱する強相関電子材料は、スピン、軌道、電荷の自由度を持つ電子を有しており、本例で用いているVOにおいては、相転移により、単斜晶系から正方晶系及び正方晶系から単斜晶系へと結晶構造を変化させる。この時、スピン、軌道、電荷の自由度における秩序化に伴い蓄放熱する。
 蓄熱部2における上面に配設された熱交換部3は、アルミニウムからなり、蓄熱部2と接触する基部31と、基部31から上方に向かって立設した異形部32とを有している。熱交換部3を形成するアルミニウムは、蓄熱部2を形成するVOに比べて熱伝導性が高い。なお、本例においては、熱交換部3の材料にアルミニウムを採用しているが、これ以外にも、例えば、銅等の熱伝導率に優れる材料を用いることができる。
 基部31は、上方から見たとき、蓄熱部2と同形状の外形を有する平板状をなしており、その下面を蓄熱部2の上面に当接させた状態で、熱交換部3と蓄熱部2とが一体に固定されている。
 異形部32は、基部31の上面から上方に向かって立設した複数の平板状の流路壁321からなる。各流路壁321は、互いに平行に形成された平板状のフィンからなり、上方から見たとき、等間隔に形成されている。隣り合う流路壁321の間には、熱媒体を流通させる流路322が形成されている。尚、本例の流路壁321は、熱媒体が流通する熱媒体経路に向かって突出する突出部320でもある。突出部320は、熱媒体が流通する熱媒体経路内に突出しても良い。
 次に本例の作用効果について説明する。蓄熱部材1において、蓄熱部2は、強相関電子材料からなる。すなわち、強相関電子材料は、固体-固体相転移による結晶構造の変化及びスピン・軌道秩序化により生じるエンタルピー変化を利用して蓄放熱する。そのため、強相関電子材料においては、相転移が生じても固体状態が維持されるため、固体-液体相転移によって蓄放熱する蓄熱材のように容器に封入する必要がない。そのため、蓄熱部2に直接、熱交換部3を設けて一体化することができる。これにより、蓄熱部2と熱交換部3との間における熱抵抗を低減し、蓄熱部2の蓄放熱を、熱交換部3へと伝達することができる。
 また、熱交換部3は、異形部32を備えている。そのため、熱媒体との接触面積を増大させ、熱交換部3と熱媒体との間における熱交換を効率良く行うことができる。これにより、熱交換部3を介して、熱媒体と蓄熱部2との間で効率良く熱交換を行うことができる。
 また、異形部32は、熱媒体を流通する複数の流路322を隔てる流路壁321を備えている。そのため、異形部32における表面積をより増大させることができる。これにより異形部32と熱媒体との間における接触面積を増大し、熱交換部3と熱媒体との間における熱交換をより効率良く行うことができる。
 また、蓄熱部2は、金属-絶縁体相転移する材料からなる。金属-絶縁体相転移する材料においては、金属-絶縁体相転移しない材料に比べて、相転移エンタルピーが大きい。そのため、蓄熱部2における蓄熱量を増大することができる。以上のごとく、本例よれば、蓄熱部材1における蓄放熱性能を向上することができる。
 (実施例2)
 本例は、図5に示すごとく、実施例1の蓄熱部材1における構造を一部変更したものである。本例の蓄熱部材1における熱交換部3は、基部31から上方に向かって立設した異形部32と、基部31の下方に配設された蓄熱部2を内包する被覆部33とを有している。
 上方から見たとき、蓄熱部2の外形は、基部31の外形よりも小さく形成されている。
 被覆部33は、基部31及び異形部32と一体に形成されており、蓄熱部2における側面の全面を覆う側壁部331と、蓄熱部2の下面を覆う底部332とを有している。
 その他の構成は実施例1と同様である。尚、本例又は本例に関する図面において用いた符号のうち、実施例1において用いた符号と同一のものは、特に示さない限り、実施例1と同様の構成要素等を表す。
 本例の蓄熱部材1においては、蓄熱部2と熱交換部3との接触面積を増大させることができる。また、熱交換部3の被覆部33に熱を伝達させることにより、熱媒体と蓄熱部2との間における熱交換をより効率よく行うことができる。また、本例においても実施例1と同様の作用効果を得ることができる。
 (実施例3)
 本例は、図6に示すごとく、実施例1の蓄熱部材1における構造を一部変更したものである。本例の蓄熱部材1における異形部32は、流路壁321の間に形成された流路322を、横流路壁34によってさらに分割した流通孔323を備えたハニカム構造を有している。
 その他の構成は実施例1と同様である。尚、本例又は本例に関する図面において用いた符号のうち、実施例1において用いた符号と同一のものは、特に示さない限り、実施例1と同様の構成要素等を表す。
 本例においては、流通孔323に熱媒体を流通させることにより、熱交換部3と熱媒体とを確実に接触させ、熱媒体の熱を熱交換部3へと効率良く伝達することができる。これにより、熱媒体と蓄熱部材1との間において、効率よく熱交換をすることができる。また、本例においても実施例1と同様の作用効果を得ることができる。
 (実施例4)
 本例は、図7に示すごとく、実施例1の蓄熱部材1における構造を一部変更したものである。本例の蓄熱部材1における熱交換部3は、蓄熱部2と同一の材料であるVOからなり、蓄熱部2と一体に形成されている。熱交換部3は、蓄熱部2と継ぎ目なく一体化されても良い。
 その他の構成は実施例1と同様である。尚、本例又は本例に関する図面において用いた符号のうち、実施例1において用いた符号と同一のものは、特に示さない限り、実施例1と同様の構成要素等を表す。
 本例の蓄熱部材1においては、熱交換部3についても固体-固体相転移により蓄放熱する強相関電子材料によって形成されている。そのため、蓄熱部材1における、蓄放熱量を増大することができる。また、本例においても実施例1と同様の作用効果を得ることができる。
 (実施例5)
 本例は、図8に示すごとく、実施例4の蓄熱部材1における構造を一部変更したものである。本例の蓄熱部材1における蓄熱部2は、VOからなる主材21に、固体-固体相転移により蓄放熱する強相関電子材料であるV(三酸化バナジウム)からなる粒子状の分散材22を混合してある。尚、分散材22の材料としては、金属やV以外の酸化物をもちいてもよい。Vは、遷移金属としてのV(バナジウム)を有する遷移金属酸化物であり、相転移温度は約-119℃である。また、Vは、相転移温度以上において金属相となって蓄熱し、相転移温度以下において絶縁層となって放熱する金属-絶縁体相転移材料である。
 その他の構成は実施例4と同様である。尚、本例又は本例に関する図面において用いた符号のうち、実施例4において用いた符号と同一のものは、特に示さない限り、実施例4と同様の構成要素等を表す。
 本例の蓄熱部材1における蓄熱部2は、主材21と相転移温度が異なる強相関電子材料からなる分散材22が混合されている。そのため、主材21と分散材22とにより、異なる温度領域において、それぞれ蓄放熱を行うことができる。これにより、本例の蓄熱部材1によれば、より広い温度領域において、加熱、冷却を行うことができる。また、本例においても実施例4と同様の作用効果を得ることができる。
 (実施例6)
 本例は、図9に示すごとく、実施例4の蓄熱部材1における構造を一部変更したものである。本例の蓄熱部材1は、蓄熱部2及び熱交換部3の外周面を覆う高熱伝導層4を有している。高熱伝導層4は、蓄熱部2及び熱交換部3の熱伝導率よりも大きい熱伝導率を有する無機材料によって形成されている。本例の高熱伝導層4は、アルミニウムからなり、蓄熱部2及び熱交換部3の外周面の全面を覆うように形成されている。
 その他の構成は実施例4と同様である。尚、本例又は本例に関する図面において用いた符号のうち、実施例4において用いた符号と同一のものは、特に示さない限り、実施例4と同様の構成要素等を表す。また、少なくとも上記蓄熱部2における外周側面が、蓄熱部2の熱伝導率以上の熱伝導率を有する材料からなる高熱伝導層4によって覆われていればよい。
 本例の蓄熱部材1は、蓄熱部2及び熱交換部3の熱伝導率よりも大きい熱伝導率を有する高熱伝導層4を有している。そのため、高熱伝導層4を介して、蓄熱部2及び熱交換部3と、熱媒体との間における熱交換を効率良く行うことができる。また、蓄熱部2及び熱交換部3を高熱伝導層4によって覆うことにより、蓄熱部材1における強度を向上することができる。また、本例においても実施例4と同様の作用効果を得ることができる。
 (実施例7)
 本例は、図10~図13に示すごとく、蓄熱部材1における熱交換部3の形状例を示すものである。図10に示す蓄熱部材1の熱交換部3は、基部31から上方に向かって突出した複数の棒状の突出部320を備えており、棒状の突出部320の間に流路324が形成されている。
 図11に示す蓄熱部材1における熱交換部3は、基部31の上面に別部材によって形成された異形部32が配設されている。異形部32の断面形状は、基部31と接触する底部325と底部325の両端から上方に向かって立設した壁部326と、壁部326の上端同士をつなぐ接続部327とを有する矩形波形状をなしている。底部325、壁部326及び接続部327は、流路壁321をなしており、これらによって形成された矩形波形状の山部及び谷部の内側に、流路322が形成されている。
 図12に示す蓄熱部材1における熱交換部3は、図11の熱交換部3の変形例である。壁部326は、複数の小壁部328からなるルーバー状をなしている。その他の構成は図11における熱交換部3と同様である。
 図13に示す蓄熱部材1における熱交換部3は、第1積層部材35と第2積層部材36とを、白抜きの矢印に示すように積層して形成されている。第1積層部材35は、上方から見たとき、蓄熱部2の長手方向に沿って形成された複数の直線状の第1流通溝351を有している。第2積層部材36は、上方から見たとき、長手方向と直交する方向に沿う第1溝部362と、第1溝部362から長手方向に屈曲する第2溝部363と、第2溝部363から第1溝部362と反対側に向かって屈曲する第3溝部364とからなる複数の第2流通溝361とを有している。第1積層部材35及び第2積層部材36を積層した状態において、第1流通溝351及び第2流通溝361によって形成された空隙が流路322を形成している。熱交換部3は、第1積層部材35と第2積層部材36を交互に積層して形成されてもよい。
 本例において、上述した内容以外の構成は実施例1と同様である。尚、本例又は本例に関する図面において用いた符号のうち、実施例1において用いた符号と同一のものは、特に示さない限り、実施例1と同様の構成要素等を表す。
 上記実施例1~上記実施例7に示した熱交換部3は、一例を示すものであり、これ以外にも種々の構造を用いることができる。例えば、熱交換部3の一部に貫通孔を形成したり、湾曲又は屈曲させてもよい。また、上述の熱交換部3を複数積層してもよい。上記実施例1において蓄熱部2は、高熱伝導層4に覆われてもよい。
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。

Claims (8)

  1.  固体-固体相転移により蓄放熱する強相関電子材料からなる蓄熱部(2)と、
     上記蓄熱部(2)との間で熱交換をする熱媒体と接触する熱交換部(3)とを備え、
     上記蓄熱部と上記熱交換部は一体化しており、
     上記熱交換部(3)は、上記熱媒体との接触面積を増加させる異形部(32)を有している蓄熱部材(1)。
  2.  上記異形部(32)は、上記熱媒体が流通する熱媒体経路内に突出する突出部(320)を備えている請求項1に記載の蓄熱部材(1)。
  3.  上記異形部(32)は、上記熱媒体が流通する複数の流路(322)を隔てる複数の流路壁(321)を備えている請求項1又は2に記載の蓄熱部材(1)。
  4.  上記蓄熱部(2)は、金属-絶縁体相転移する材料からなる請求項1~3のいずれか一項に記載の蓄熱部材(1)。
  5.  上記熱交換部(3)は、上記蓄熱部(2)と同一の材料からなり、該蓄熱部(2)と一体に形成されている請求項1~4のいずれか一項に記載の蓄熱部材(1)。
  6.  上記蓄熱部(2)は、上記熱交換部(3)と異なる材料からなる請求項1~4のいずれか一項に記載の蓄熱部材(1)。
  7.  少なくとも上記蓄熱部(2)における外周側面は、上記蓄熱部(2)の熱伝導率以上の熱伝導率を有する材料からなる高熱伝導層(4)によって覆われている請求項1~6のいずれか一項に記載の蓄熱部材(1)。
  8. 上記高熱伝導層(4)は、上記熱交換部(3)を覆うことなしに上記蓄熱部(2)を覆う請求項7に記載の蓄熱部材(1)。

     
PCT/JP2015/005112 2014-10-22 2015-10-08 蓄熱部材 WO2016063477A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014214972A JP2016080315A (ja) 2014-10-22 2014-10-22 蓄熱部材
JP2014-214972 2014-10-22

Publications (1)

Publication Number Publication Date
WO2016063477A1 true WO2016063477A1 (ja) 2016-04-28

Family

ID=55760538

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/005112 WO2016063477A1 (ja) 2014-10-22 2015-10-08 蓄熱部材

Country Status (2)

Country Link
JP (1) JP2016080315A (ja)
WO (1) WO2016063477A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018016073A1 (ja) 2016-07-22 2018-01-25 富士通株式会社 熱電変換モジュール、センサモジュール及び情報処理システム
JP2018025363A (ja) * 2016-08-10 2018-02-15 株式会社デンソー 蓄熱容器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61184337A (ja) * 1985-02-08 1986-08-18 Mitsui Home Kk 床暖房用蓄熱槽
JPS6424022A (en) * 1987-07-21 1989-01-26 Toshiba Monofrax Refractory material for regenerator
JPH0443291A (ja) * 1990-06-08 1992-02-13 Tsuneo Mamiya 蓄熱素子
JP2010163510A (ja) * 2009-01-14 2010-07-29 Institute Of Physical & Chemical Research 蓄熱材
JP2012215378A (ja) * 2011-03-30 2012-11-08 Tokyo Univ Of Science 蓄熱装置及び蓄熱装置を備えるシステム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61184337A (ja) * 1985-02-08 1986-08-18 Mitsui Home Kk 床暖房用蓄熱槽
JPS6424022A (en) * 1987-07-21 1989-01-26 Toshiba Monofrax Refractory material for regenerator
JPH0443291A (ja) * 1990-06-08 1992-02-13 Tsuneo Mamiya 蓄熱素子
JP2010163510A (ja) * 2009-01-14 2010-07-29 Institute Of Physical & Chemical Research 蓄熱材
JP2012215378A (ja) * 2011-03-30 2012-11-08 Tokyo Univ Of Science 蓄熱装置及び蓄熱装置を備えるシステム

Also Published As

Publication number Publication date
JP2016080315A (ja) 2016-05-16

Similar Documents

Publication Publication Date Title
JP6123746B2 (ja) 組電池
JP4432892B2 (ja) 半導体冷却構造
JP4785476B2 (ja) 熱電発電構造及び発電機能付き熱交換器
JP6043555B2 (ja) 組電池の冷却構造
JP5157681B2 (ja) 積層型冷却器
JP2013157111A (ja) 組電池の冷却兼加熱構造
JP2015507818A (ja) 新規な構造のバスバー
JP7091971B2 (ja) 電池ユニット
JP2012512517A (ja) 冷却手段を有するバッテリーモジュール、及びそれを含む(中型または大型)バッテリーパック
US20140000670A1 (en) Thermoelectric module, heat exchanger, exhaust system and internal combustion engine
WO2016017084A1 (ja) 蓄熱システム
US20120291832A1 (en) Thermoelectric conversion module
CN115244764A (zh) 电池包
WO2016063477A1 (ja) 蓄熱部材
JP2015041558A (ja) 組電池の冷却兼加熱構造
KR20110118615A (ko) 내부 연소엔진의 배기가스 냉각기
JP5479871B2 (ja) バッテリ冷却装置
JP2014220087A (ja) 電池パック
US10305152B2 (en) Water cooling system for a battery
JP2014203622A (ja) 電池冷却装置
JP5906921B2 (ja) 電池モジュール及び車両
JP2013089821A (ja) 熱電変換モジュール
KR101704322B1 (ko) 열전 모듈 및 이러한 모듈을 구비한 열 교환기
JP2005228915A (ja) セパレート型ペルチェシステム
US20120255590A1 (en) Thermoelectric conversion module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15851699

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15851699

Country of ref document: EP

Kind code of ref document: A1