WO2016063387A1 - 複合材料の成形方法および成形装置 - Google Patents

複合材料の成形方法および成形装置 Download PDF

Info

Publication number
WO2016063387A1
WO2016063387A1 PCT/JP2014/078140 JP2014078140W WO2016063387A1 WO 2016063387 A1 WO2016063387 A1 WO 2016063387A1 JP 2014078140 W JP2014078140 W JP 2014078140W WO 2016063387 A1 WO2016063387 A1 WO 2016063387A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
resin
injection
mold
composite material
Prior art date
Application number
PCT/JP2014/078140
Other languages
English (en)
French (fr)
Inventor
勝宏 臼井
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to US15/516,751 priority Critical patent/US10647068B2/en
Priority to JP2016555011A priority patent/JP6402775B2/ja
Priority to EP14904346.5A priority patent/EP3210739B1/en
Priority to CN201480082872.5A priority patent/CN107073762B/zh
Priority to MX2017004945A priority patent/MX360687B/es
Priority to PCT/JP2014/078140 priority patent/WO2016063387A1/ja
Publication of WO2016063387A1 publication Critical patent/WO2016063387A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/46Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs
    • B29C70/48Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs and impregnating the reinforcements in the closed mould, e.g. resin transfer moulding [RTM], e.g. by vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/02Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • B29C39/10Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of definite length, i.e. discrete articles incorporating preformed parts or layers, e.g. casting around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/22Component parts, details or accessories; Auxiliary operations
    • B29C39/24Feeding the material into the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/22Component parts, details or accessories; Auxiliary operations
    • B29C39/42Casting under special conditions, e.g. vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/22Component parts, details or accessories; Auxiliary operations
    • B29C39/44Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • B29C67/24Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00 characterised by the choice of material
    • B29C67/246Moulding high reactive monomers or prepolymers, e.g. by reaction injection moulding [RIM], liquid injection moulding [LIM]

Definitions

  • the present invention relates to a molding method and molding apparatus for a composite material.
  • RTM Resin Transfer Molding
  • a reinforcing base material is installed in a cavity in a molding die composed of a pair of lower molds (female molds) and upper molds (male molds) that can be opened and closed. After closing the mold, the resin is injected from the resin inlet, and the reinforced base material is impregnated with the resin. And a composite material is obtained by hardening resin in a cavity.
  • the molding time can be shortened by increasing the resin injection pressure.
  • the pressure in the cavity suddenly increases and the mold opens. If the mold is opened at the time of molding, burrs are generated in the molded product, causing molding defects. For this reason, it is necessary to load the mold with a high clamping pressure by the press machine, which causes a problem that the size of the press machine increases and the equipment cost increases accordingly.
  • an object of the present invention is to provide a molding method and a molding apparatus for a composite material that can suppress the clamping pressure while reducing the molding time.
  • a reinforced base material is disposed in a cavity in a mold that can be opened and closed, and a resin is placed in the cavity in a state where a mold clamping pressure is applied to the mold.
  • It is a molding method in which a composite material is molded by pouring and curing the resin. Adjusting the injection pressure of the resin between a first pressure higher than the mold clamping pressure and a second pressure lower than the mold clamping pressure when injecting the resin into the cavity; and The injection pressure of the resin is lowered at least once from a pressure higher than the mold clamping pressure to a pressure lower than the mold clamping pressure.
  • the resin is injected without the pressure in the cavity exceeding the mold clamping pressure from the start of injection of the resin to the end of injection.
  • An apparatus for molding a composite material according to the present invention that achieves the above object includes an openable / closable mold having a cavity in which a reinforcing substrate is disposed, a press section for applying a clamping pressure to the mold, and the cavity.
  • a resin injection part for injecting resin into the resin a pressure adjustment part provided in the resin injection part and capable of adjusting the injection pressure of the resin, and a control for controlling the operation of the pressure adjustment part based on the pressure in the cavity Part.
  • the control unit controls the operation of the pressure adjusting unit to adjust the injection pressure of the resin between a first pressure higher than the mold clamping pressure and a second pressure lower than the mold clamping pressure.
  • the injection pressure of the resin is lowered at least once from a pressure higher than the mold clamping pressure to a pressure lower than the mold clamping pressure.
  • the resin is injected without the pressure in the cavity exceeding the mold clamping pressure from the start of injection of the resin to the end of injection.
  • FIG. 4A is a graph showing the time transition of the pressure in the cavity according to this embodiment
  • FIG. 4B is a graph showing the time transition of the injection pressure of the resin according to this embodiment. is there.
  • FIG. 5A is a diagram showing an automobile part using a composite material
  • FIG. 5B is a diagram showing a vehicle body in which the parts are joined.
  • FIG. 1 is a schematic view of a molding apparatus 100 for a composite material 200.
  • FIG. 2 is a schematic diagram illustrating the configuration of the resin injection unit 30.
  • FIG. 3 is a flowchart showing a method for forming the composite material 200.
  • FIG. 4A is a graph showing the time transition of the pressure Pr in the cavity 15 according to the present embodiment, and FIG. 4B shows the time transition of the injection pressure Pi of the resin according to the present embodiment.
  • FIG. FIG. 5 is a schematic view of automobile parts 301 to 303 and a vehicle body 300 using the composite material 200.
  • the composite material 200 obtained by the molding method and the molding apparatus 100 according to the present embodiment is composed of a reinforced base material 210 and a resin 220.
  • the composite material 200 having higher strength and rigidity than the resin 220 alone is obtained.
  • a frame part such as a front side member 301 and a pillar 302, which are parts used in a car body 300 (see FIG. 5B) of an automobile, and an outer plate part such as a roof 303.
  • the reinforced substrate 210 is formed of a woven sheet of carbon fiber, glass fiber, organic fiber or the like, and is placed in the cavity 15 formed in the mold 10 in a laminated state and preformed.
  • a carbon fiber having a small thermal expansion coefficient, excellent dimensional stability, and little deterioration in mechanical properties even at high temperatures is used.
  • the preform may be performed by another mold other than the mold 10.
  • an epoxy resin, a phenol resin, or the like, which is a thermosetting resin is used as the resin 220.
  • an epoxy resin having excellent mechanical characteristics and dimensional stability is used.
  • Epoxy resin is mainly a two-component type, and a main agent and a curing agent are mixed and used.
  • the main agent is generally a bisphenol A-type epoxy resin, and the curing agent is an amine-based one.
  • the main agent is not particularly limited, and can be appropriately selected according to desired material characteristics.
  • the molding apparatus 100 can be outlined as follows: a mold 10 that can be opened and closed in which a cavity 15 in which a carbon fiber 210 (corresponding to a reinforced base material) is disposed, and a mold 10.
  • a press part 20 for applying a clamping pressure Pm to the resin
  • a resin injection part 30 for injecting a resin 220 into the cavity 15
  • a valve 40 pressure adjustment
  • the molding apparatus 100 includes a pressure gauge 50 that measures the pressure Pr in the cavity 15, a suction unit 60 that evacuates the mold 10, a mold temperature adjustment unit 70 that adjusts the temperature of the mold 10, and a molding apparatus.
  • a control unit 80 for controlling the operation of the entire system 100.
  • the controller 80 controls the operation of the valve 40 based on the pressure Pr in the cavity 15 measured by the pressure gauge 50.
  • the molding apparatus 100 will be described in detail.
  • the mold 10 has a pair of upper mold 11 (male mold) and a lower mold 12 (female mold) that can be opened and closed.
  • a sealable cavity 15 is formed between the upper mold 11 and the lower mold 12.
  • the carbon fiber 210 is placed in the cavity 15 in advance in a state of being laminated and preformed.
  • An injection port 13 is provided above the upper mold 11.
  • the injection port 13 is connected to the resin injection part 30 and the resin 220 is injected into the cavity 15 from above.
  • the resin 220 is impregnated into the inside from the upper surface of the carbon fiber 210.
  • a suction port 14 is provided at the end of the lower mold 12.
  • the suction port 14 is connected to the suction part 60, and the inside of the cavity 15 is evacuated to suck and remove air.
  • a sealing member or the like may be provided on the mating surface of the upper mold 11 and the lower mold 12.
  • the pressing unit 20 applies a clamping pressure Pm to the upper mold 11 of the mold 10.
  • the press unit 20 includes a cylinder 21 that uses fluid pressure such as hydraulic pressure, and adjusts the mold clamping pressure Pm by controlling the hydraulic pressure or the like.
  • the resin injecting unit 30 includes a main agent tank 31 filled with a main agent, a curing agent tank 32 filled with a curing agent, a tube 36 forming a conveyance path for the main agent, the curing agent, and the resin 220 in which they are mixed, A pressure gauge 34 for measuring the injection pressure Pi of the resin 220 into the cavity 15 and a valve 40 capable of adjusting the injection pressure Pi of the resin 220 are provided.
  • the pressure gauge 34 is arranged in a tube 36 near the injection port 13 in order to measure the injection pressure Pi of the resin 220.
  • the resin injecting unit 30 further includes pumps 35a and 35b disposed in tubes 33a and 33b connected to the main agent tank 31 and the curing agent tank 32, respectively.
  • the pumps 35a and 35b discharge the main agent and the curing agent toward the valve 40 at a constant pressure.
  • the valve 40 is connected to the inlet 13 of the mold 10 via the tube 36.
  • the valve 40 includes a cylinder 41 and a piston 42.
  • the cylinder 41 has two chambers 41 u and 41 d defined by a base end portion 42 a of the piston 42.
  • the fluid pressure such as pneumatic pressure or hydraulic pressure supplied to the two chambers 41u and 41d
  • the piston 42 moves in the vertical direction in the figure.
  • the opening degree of the flow path of the main agent and the curing agent is adjusted.
  • the injection amount Qi of the resin 220 into the cavity 15 is adjusted by the opening degree of the valve 40, and the injection pressure Pi of the resin 220 conveyed to the mold 10 is adjusted.
  • the cylinder 41 has upper suction ports 44a and 44b and lower discharge ports 45a and 45b.
  • the lower discharge ports 45a and 45b are opened.
  • the main agent and the curing agent discharged from each of the lower discharge ports 45 a and 45 b are mixed to become the resin 220.
  • the resin 220 is discharged to the injection port 13 through the tube 36.
  • the upper suction ports 44a and 44b and the lower discharge ports 45a and 45b communicate with each other through the recesses 43a and 43b formed in the piston 42.
  • the main agent and the curing agent pass through the recesses 43a and 43b from the lower discharge ports 45a and 45b, and are returned again to the main agent tank 31 and the curing agent tank 32 from the upper suction ports 44a and 44b.
  • the main agent and the curing agent circulate in the tubes 33a and 33b at a constant pressure.
  • the pressure gauge 50 includes a strain gauge and the like, and is disposed in the mold 10 for measuring the pressure Pr in the cavity 15.
  • the suction unit 60 has a vacuum pump (not shown).
  • the suction part 60 sucks (evacuates) the air in the cavity 15 from the suction port 14 before injecting the resin 220 to make the inside of the cavity 15 in a vacuum state.
  • the mold temperature adjusting unit 70 includes a heating member 71, and heats the mold 10 to the curing temperature of the resin 220 to cure the resin 220 injected into the cavity 15.
  • the heating member is an electric heater and heats the mold 10 directly.
  • the heating member is not limited to this.
  • the temperature of the mold 10 may be adjusted by heating a heat medium such as oil with an electric heater and circulating the heat medium in the mold 10.
  • the control unit 80 controls the overall operation of the molding apparatus 100.
  • the control unit 80 includes a storage unit 81, a calculation unit 82, and an input / output unit 83.
  • the input / output unit 83 is connected to the pressure gauges 34 and 50, the valve 40, the suction unit 60, and the mold temperature adjusting unit 70.
  • the storage unit 81 includes a ROM and a RAM, and stores data such as a threshold value Pc of a pressure Pr in the cavity 15 described later in advance.
  • the calculation unit 82 is configured mainly with a CPU, and receives data on the injection pressure Pi of the resin 220 and the pressure Pr in the cavity 15 from the pressure gauges 34 and 50 via the input / output unit 83.
  • the calculation unit 82 heats the mold 10 by the piston 42 position of the valve 40, the suction pressure of the suction unit 60, and the mold temperature adjustment unit 70 based on the data read from the storage unit 81 and the data received from the input / output unit 83. Calculate the temperature. A control signal based on the calculated data is transmitted to the valve 40, the suction unit 60 and the mold temperature adjusting unit 70 via the input / output unit 83. In this way, the control unit 80 controls the injection pressure Pi of the resin 220, the pressure Pr in the cavity 15 during evacuation, the mold temperature, and the like.
  • the molding method of the composite material 200 includes a step of arranging the carbon fibers 210 (step S1), a step of performing vacuum suction (step S2), and a step of injecting the resin 220 (steps S3 to S8). ), A step of curing the resin 220 (step S9), and a step of demolding (step S10).
  • step S1 the step of arranging the carbon fibers 210
  • step S2 a step of performing vacuum suction
  • step S3 to S8 a step of injecting the resin 220
  • step S9 a step of demolding
  • carbon fibers 210 are laminated, placed in the cavity 15 of the mold 10 and preformed (step S1). At this time, the inner surface of the mold facing the cavity 15 is degreased using a predetermined organic solvent, and is subjected to a mold release process using a mold release agent.
  • step S2 the mold 10 is closed, air is sucked from the suction port 14 by the suction part 60, and vacuuming is performed to make the cavity 15 in a vacuum state (step S2).
  • the control unit 80 adjusts the pressure so that the pressure becomes negative.
  • the suction port 14 is completely closed and kept closed until the end of molding.
  • the injection pressure Pi of the resin 220 is adjusted to be a first pressure P1 (see FIG. 4B) higher than the mold clamping pressure Pm, and injection of the resin 220 is started from the injection port 13 (step S3). .
  • the injected resin 220 is impregnated from the upper surface of the carbon fiber 210.
  • the injection pressure Pi and the mold clamping pressure Pm become substantially the same pressure.
  • step S4 After starting the injection of the resin 220, the pressure Pr in the cavity 15 is measured by the pressure gauge 34 within a predetermined time (step S4). The injection of the resin 220 and the measurement of the pressure Pr in the cavity 15 are continued until the pressure Pr in the cavity 15 reaches the threshold value Pc (step S5: “No”, steps S3 and S4). When the pressure Pr in the cavity 15 reaches the threshold value Pc (step S5: “Yes”), the injection pressure Pi of the resin 220 is decreased (step S6).
  • the threshold value Pc is set to a value slightly lower than the mold clamping pressure Pm in advance based on the material characteristics of the resin 220, the injection amount, the injection speed, and the like. In the present embodiment, the threshold value Pc is set to 90% of the mold clamping pressure Pm. In consideration of pressure measurement errors, for example, a value in the range of 85% to 95% of the mold clamping pressure Pm can be selected as the threshold value.
  • the threshold value Pc By setting the threshold value Pc to a high value, the injection pressure Pi of the resin 220 can be increased to the vicinity of the mold clamping pressure Pm, and the injection time can be shortened. Furthermore, the impregnation property of the resin 220 into the carbon fiber 210 can be improved by increasing the pressure Pr in the cavity 15.
  • the injection pressure Pi of the resin 220 is lowered at least once from a high pressure to a pressure lower than the mold clamping pressure Pm.
  • the resin 220 is injected so that the pressure in the cavity 15 does not exceed the mold clamping pressure Pm from the start of injection of the resin 220 to the end of injection (step S7).
  • the threshold value Pc it is preferable to set the threshold value Pc as high as possible from the viewpoint of shortening the injection time. However, it is preferable to set the threshold value Pc so that an overshoot in which the pressure Pr in the cavity 15 exceeds the mold clamping pressure Pm does not occur in the injection pressure control of the resin 220.
  • step S7 is repeated until the resin 220 is completely filled in the cavity 15 (step S8: “No”, step S7).
  • step S8 When the specified amount of the resin 220 is injected into the cavity 15 (step S8: “Yes”), the resin 220 in the cavity 15 is left until it is sufficiently cured (step S9).
  • the entire mold 10 is temperature-adjusted in advance to the curing temperature of the resin 220 by the mold temperature adjusting unit 70.
  • step S10 When the mold 10 is opened and the molded composite material 200 is demolded, the molding is completed (step S10).
  • the graphs indicated by the solid lines show time transitions of the pressure Pr in the cavity 15 and the injection pressure Pi of the resin 220 by the molding method according to this embodiment shown in FIG.
  • the graph shown by the broken line is proportional, and shows the time transition of the pressure Pr in the cavity 15 and the injection pressure Pi of the resin 220 when the injection pressure Pi of the resin 220 is injected at a constant high pressure until the completion of injection.
  • Time 0 [sec] to t1 is a mold clamping process
  • time t1 to t2 is a vacuuming process
  • time t2 to t3 is a resin 220 injection process
  • after t3, a resin 220 curing process is shown in FIGS. 4A and 4B, after the resin 220 is injected at the injection pressure Pi, the pressure Pr in the cavity 15 does not increase immediately, but gradually increases after the injection pressure Pi. .
  • the injection pressure Pi of the resin 220 is gradually lowered so as to be stepped as shown in FIG.
  • the valve 40 is controlled by the control unit 80 so that the pressure Pr in the cavity 15 does not exceed the mold clamping pressure Pm from the start of injection of the resin 220 shown in FIG.
  • the injection pressure Pi of the resin 220 is adjusted between the first pressure P1 higher than the clamping pressure Pm and the second pressure P2 lower than the mold clamping pressure Pm.
  • the injection pressure Pi of the resin 220 is lowered at least once from a pressure higher than the mold clamping pressure Pm to a pressure lower than the mold clamping pressure Pm.
  • the second pressure P2 can be set to an arbitrary value between the gauge pressure 0 [MPa] and the mold clamping pressure Pm.
  • the pressure Pr in the cavity 15 is significantly higher than the mold clamping pressure Pm in proportion to the injection pressure Pi of the resin 220 that is uniformly high-pressure injected until the completion of injection. It becomes high up to P3.
  • the pressure Pr in the cavity 15 does not exceed the mold clamping pressure Pm from the start of injection of the resin 220 to the end of injection. 220 is injected. Since the injection is performed so that the pressure Pr in the cavity 15 does not exceed the mold clamping pressure Pm, the mold clamping pressure Pm generated by the press unit 20 can be suppressed. By being able to suppress the mold clamping pressure Pm, it is possible to reduce the size of the press machine and contribute to a reduction in equipment costs.
  • the pressure Pr in the cavity 15 does not drop abruptly as shown in a proportional relationship (dashed line in FIG. 4A) at the start of curing.
  • the shrinkage rate of the resin 220 during curing increases. Therefore, according to the molding method of the present embodiment, the molding shrinkage rate of the composite material 200, which is a molded product, is reduced as compared with the case where the high-pressure injection of the resin 220 is made constant as in a comparative manner, and the shape as designed is obtained. It can be obtained stably. As a result, a molded article of a good quality composite material 200 with high dimensional stability can be obtained.
  • the control of the injection pressure Pi of the resin 220 can be appropriately changed according to the material characteristics of the resin 220.
  • the length is appropriately changed according to the curing time from the injection of the resin 220 into the cavity 15 to the curing.
  • the injection time of the resin 220 needs to be shortened. Therefore, the injection pressure Pi of the resin 220 is set to the first pressure P1 from the start of injection.
  • the injection of the resin 220 is started at a high pressure, and the pressure Pr in the cavity 15 is controlled to be as close as possible to the mold clamping pressure Pm.
  • the injection pressure Pi of the resin 220 at the start of injection may be set to a value lower than the mold clamping pressure Pm. it can.
  • the injection pressure Pi of the resin 220 is set higher than the mold clamping pressure Pm during the injection.
  • the injection pressure Pi of the resin 220 is higher than the mold clamping pressure Pm and the mold.
  • the injection pressure Pi of the resin 220 is lowered at least once from a pressure higher than the mold clamping pressure Pm to a pressure lower than the mold clamping pressure Pm. . Accordingly, the resin 220 is injected without the pressure Pr in the cavity 15 exceeding the mold clamping pressure Pm from the start of injection of the resin 220 to the end of injection.
  • the molding apparatus 100 configured as described above and the molding method using the molding apparatus 100, by having a time zone for injecting the resin 220 with a pressure higher than the mold clamping pressure Pm between the start of injection and the end of injection.
  • the average injection pressure from the start of injection to the end of injection is higher than when injection is performed at a pressure lower than the mold clamping pressure Pm from the start of injection to the end of injection.
  • the mold clamping pressure Pm can be suppressed by adjusting the injection pressure Pi of the resin 220 so that the pressure Pr in the cavity 15 does not exceed the mold clamping pressure Pm.
  • the injection pressure Pi of the resin 220 is gradually lowered from a pressure higher than the mold clamping pressure Pm to a pressure lower than the mold clamping pressure Pm.
  • the average injection pressure from the start of injection to the end of injection is higher than when injection is performed at a low pressure from the start of injection to the end of injection.
  • the injection time of the resin 220 can be shortened and the molding time can be shortened.
  • the injection pressure Pi of the resin 220 is decreased from the first pressure. .
  • control is facilitated by providing a reference value for controlling the injection pressure Pi of the resin 220.
  • the injection pressure Pi at the start of the injection of the resin 220 is set as the first pressure.
  • the pressure in the cavity 15 is obtained by high-pressure injection at the start of injection of the resin 220 in which the pressure Pr in the cavity 15 is still low.
  • the differential pressure between the injection pressure Pi of Pr and the resin 220 increases, and the resin 220 easily flows into the cavity 15. As a result, the injection speed of the resin 220 can be increased and the molding time can be further shortened.
  • the mold 10 is evacuated before the resin 220 is injected.
  • the inside of the cavity 15 is evacuated before the resin 220 is injected, and is generated in the resin 220 and on the surface after the resin 220 is injected. Air bubbles can be prevented and voids and pits of the composite material 200 that is a molded product can be reduced. Thereby, the mechanical characteristics and designability of the composite material 200 can be improved.
  • the reinforced substrate 210 is formed from carbon fiber.
  • the use of carbon fiber for the reinforced base material results in a small coefficient of thermal expansion, excellent dimensional stability, and mechanical properties even at high temperatures.
  • the composite material 200 with little deterioration in characteristics can be formed.
  • the composite material 200 is used for an automobile part.
  • the automobile part of the composite material 200 suitable for mass production can be molded, and the weight of the vehicle body can be reduced.
  • the resin 220 is a thermosetting resin, but a thermoplastic resin may be used.
  • the mold temperature adjusting unit 70 further includes a cooling member 72, the mold 10 is heated by the heating member 71 while the resin 220 is injected into the cavity 15, and the mold is injected after the resin 220 is injected. 10 is cooled. Thereby, the viscosity of the resin 220 at the time of injecting the resin 220 is decreased to facilitate the impregnation of the carbon fibers 210, and the resin 220 can be cured by cooling after the injection.
  • the pressure Pr in the cavity 15 is measured by the pressure gauge 50, but the measurement method is not limited to this, and the injection pressure Pi of the resin 220, the size of the injection port 13, It may be estimated from the volume.
  • the injection of the resin 220 is started with the injection pressure Pi of the resin 220 being higher than the mold clamping pressure Pm (first pressure P1), but the injection of the resin 220 is started from the start of injection to the end of injection. There may be a point in time when the pressure Pi becomes the first pressure P1.
  • the injection pressure Pi of the resin 220 is gradually lowered stepwise (step S6 in FIG. 3, FIG. 4B). See).
  • the pattern for lowering the injection pressure Pi is not limited to the illustrated step shape, and an appropriate pattern can be set.
  • the injection pressure Pi can be lowered at a time (at a stroke) from a pressure higher than the mold clamping pressure Pm to a pressure lower than the mold clamping pressure Pm, or gradually lowered so as to draw a curve.
  • the injection port 13 for the resin 220 is provided in the upper die 11 and the suction part 60 for evacuation is provided in the lower die 12, but it may be provided in either the upper die 11 or the lower die 12. Good.
  • the number of the inlets 13 and the suction ports 14 is one, but the number is not limited to this, and a plurality of inlets 13 and suction ports 14 may be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

【課題】成形時間を短縮しつつ、型締圧力を抑えることを可能とする複合材料の成形方法および成形装置を提供する。 【解決手段】複合材料の成形方法にあっては、開閉可能な成形型内のキャビティに強化基材を配置し、成形型に型締圧力を負荷した状態において樹脂をキャビティ内に注入し、樹脂を硬化させて複合材料を成形する。樹脂をキャビティ内に注入するときに、樹脂の注入圧力を型締圧力よりも高い第1の圧力と型締圧力よりも低い第2の圧力との間において調整し、かつ、型締圧力よりも高い圧力から型締圧力よりも低い圧力へ樹脂の注入圧力を少なくとも1回は降下させる(S3~S6)。これによって、樹脂の注入開始から注入終了までキャビティ内の圧力が型締圧力を超えることなく樹脂を注入する(S7)。

Description

複合材料の成形方法および成形装置
 本発明は、複合材料の成形方法および成形装置に関する。
 近年、自動車の車体軽量化のために強化基材に樹脂を含浸させた複合材料が自動車部品として用いられている。複合材料の成形方法として、量産化に適したRTM(Resin Transfer Molding)成形法が注目されている。RTM成形法にあっては、まず、開閉可能な一対の下型(雌型)、上型(雄型)からなる成形型内のキャビティに強化基材を設置する。型を閉締した後、樹脂注入口から樹脂を注入し、強化基材に樹脂を含浸させる。そして、キャビティ内において樹脂を硬化させることによって、複合材料を得る。
特開2005-193587号公報
 キャビティ内に樹脂を注入する際に、樹脂の注入圧力を高くすることによって成形時間を短縮することができる。その一方、高圧注入によって、キャビティ内の圧力が急激に上がり、型が開いてしまう。成形時に型が開いてしまうと、成形品にバリが生じ、成形不良の原因となる。そのため、プレス機によって高い型締圧力を負荷して型締する必要があり、プレス機が大型化し、これに伴って設備費用が高くなるという問題が生じている。
 そこで、本発明は、上記課題を解決するためになされたものであり、成形時間を短縮しつつ、型締圧力を抑えることを可能とする複合材料の成形方法および成形装置を提供することを目的とする。
 上記目的を達成する本発明に係る複合材料の成形方法は、開閉可能な成形型内のキャビティに強化基材を配置し、前記成形型に型締圧力を負荷した状態において樹脂を前記キャビティ内に注入し、前記樹脂を硬化させて複合材料を成形する成形方法である。前記樹脂を前記キャビティ内に注入するとき、前記樹脂の注入圧力を前記型締圧力よりも高い第1の圧力と前記型締圧力よりも低い第2の圧力との間において調整し、かつ、前記型締圧力よりも高い圧力から前記型締圧力よりも低い圧力へ前記樹脂の前記注入圧力を少なくとも1回は降下させる。これよって、前記樹脂の注入開始から注入終了まで前記キャビティ内の圧力が前記型締圧力を超えることなく前記樹脂を注入する。
 上記目的を達成する本発明に係る複合材料の成形装置は、強化基材を配置するキャビティが形成された開閉可能な成形型と、前記成形型に型締圧力を負荷するプレス部と、前記キャビティ内に樹脂を注入する樹脂注入部と、前記樹脂注入部に備えられ前記樹脂の注入圧力を調整自在な圧力調整部と、前記キャビティ内の圧力に基づいて前記圧力調整部の作動を制御する制御部と、を有する。前記制御部は、前記圧力調整部の作動を制御し、前記樹脂の前記注入圧力を前記型締圧力よりも高い第1の圧力と前記型締圧力よりも低い第2の圧力との間において調整し、かつ、前記型締圧力よりも高い圧力から前記型締圧力よりも低い圧力へ前記樹脂の前記注入圧力を少なくとも1回は降下させる。これよって、前記樹脂の注入開始から注入終了まで前記キャビティ内の圧力が前記型締圧力を超えることなく前記樹脂を注入させる。
本実施形態に係る複合材料の成形装置の概略図である。 本実施形態に係る樹脂注入部の構成を示す概略図である。 本実施形態に係る複合材料の成形方法を示すフローチャートである。 図4(A)は、本実施形態に係るキャビティ内の圧力の時間推移を表すグラフ図であり、図4(B)は、本実施形態に係る樹脂の注入圧力の時間推移を表すグラフ図である。 図5(A)は、複合材料を使用した自動車部品を示す図であり、図5(B)は、部品を接合した車体を示す図である。
 以下、添付した図面を参照しながら、本発明の実施形態を説明する。なお、以下の記載は特許請求の範囲に記載される技術的範囲や用語の意義を限定するものではない。また、図面の寸法比率は説明の都合上誇張されており、実際の比率とは異なる場合がある。
 図1は、複合材料200の成形装置100の概略図である。図2は、樹脂注入部30の構成を示す概略図である。図3は、複合材料200の成形方法を示すフローチャートである。図4(A)は、本実施形態に係るキャビティ15内の圧力Prの時間推移を表すグラフ図であり、図4(B)は、本実施形態に係る樹脂の注入圧力Piの時間推移を表すグラフ図である。図5は、複合材料200を使用した自動車部品301~303および車体300の概略図である。
 以下、図面に基づいて本発明の実施の形態を説明する。
 本実施形態に係る成形方法および成形装置100によって得られる複合材料200は、強化基材210と、樹脂220と、によって構成されている。強化基材210と組み合わせることによって樹脂220単体に比べて高い強度および剛性を備える複合材料200となる。また、図5に示すように、自動車の車体300(図5(B)を参照)に使用される部品であるフロントサイドメンバー301やピラー302等の骨格部品、ルーフ303等の外板部品に複合材料200を使用することによって、鉄鋼材料を使用した場合に比べて車体の軽量化が可能となる。
 強化基材210は、炭素繊維、ガラス繊維、有機繊維等の織物シートによって形成され、積層された状態において成形型10に形成されたキャビティ15内に配置してプリフォームする。本実施形態においては、熱膨張係数が小さく寸法安定性に優れ、高温下においても機械的特性の低下が少ない炭素繊維を用いる。なお、プリフォームは成形型10以外の別型により行ってもよい。
 樹脂220は、熱硬化性樹脂であるエポキシ樹脂、フェノール樹脂等が用いられる。本実施形態においては、機械的特性、寸法安定性に優れたエポキシ樹脂を用いる。エポキシ樹脂は2液タイプが主流であり、主剤および硬化剤を混合して使用する。主剤はビスフェノールA型のエポキシ樹脂、硬化剤はアミン系のものが一般的に用いられるが、特にこれに限定されるものではなく、所望の材料特性に合わせて適宜選択できる。
 図1を参照して、本実施形態に係る成形装置100は、概説すると、炭素繊維210(強化基材に相当)を配置するキャビティ15が形成された開閉可能な成形型10と、成形型10に型締圧力Pmを負荷するプレス部20と、キャビティ15内に樹脂220を注入する樹脂注入部30と、樹脂注入部30に備えられ樹脂220の注入圧力Piを調整自在なバルブ40(圧力調整部に相当)と、を有する。成形装置100は、キャビティ15内の圧力Prを測定する圧力計50と、成形型10内を真空引きする吸引部60と、成形型10の温度を調整する成形型温度調整部70と、成形装置100全体の作動を制御する制御部80と、をさらに有する。制御部80は、圧力計50によって測定したキャビティ15内の圧力Prに基づいてバルブ40の作動を制御する。以下、成形装置100について詳述する。
 成形型10は、開閉可能な一対の上型11(雄型)と、下型12(雌型)と、を有する。上型11と下型12の間に、密閉自在なキャビティ15を形成する。炭素繊維210は、積層してプリフォームした状態において予めキャビティ15内に配置する。上型11の上方部に、注入口13を設ける。注入口13を樹脂注入部30に連結し、上方からキャビティ15内に樹脂220を注入する。樹脂220は、炭素繊維210の上面から内部に含浸する。また、下型12の端部に、吸引口14を設ける。吸引口14を吸引部60に連結し、キャビティ15内を真空引きして空気を吸引除去する。キャビティ15内を密閉状態にするために、上型11と下型12の合わせ面にシール部材等を設けてもよい。
 プレス部20は、成形型10の上型11に型締圧力Pmを負荷する。プレス部20は、油圧等の流体圧を用いたシリンダー21を有し、油圧等を制御することによって型締圧力Pmを調整する。
 樹脂注入部30は、主剤を充填した主剤タンク31と、硬化剤を充填した硬化剤タンク32と、主剤、硬化剤、およびそれらが混合された樹脂220の搬送流路を形成するチューブ36と、樹脂220のキャビティ15内への注入圧力Piを測定する圧力計34と、樹脂220の注入圧力Piを調整自在なバルブ40と、を有する。圧力計34は、樹脂220の注入圧力Piを測定するため、注入口13付近のチューブ36に配置する。
 図2を参照して、樹脂注入部30は、主剤タンク31および硬化剤タンク32に連結されるチューブ33a、33bにそれぞれ配置されたポンプ35a、35bをさらに有する。ポンプ35a、35bは、主剤および硬化剤を一定圧力においてバルブ40に向けて吐出する。
 バルブ40は、チューブ36を介して成形型10の注入口13に接続する。バルブ40は、シリンダー41と、ピストン42と、を有する。シリンダー41は、ピストン42の基端部42aによって区画された2つのチャンバ41u、41dを有する。2つのチャンバ41u、41dに供給する空圧または油圧などの流体圧を調整することによって、ピストン42は図において上下方向に移動する。ピストン42がシリンダー41内を移動することによって、主剤および硬化剤の流通経路の開度を調整する。このバルブ40の開度によって、樹脂220のキャビティ15内への注入量Qiを調整し、成形型10に搬送される樹脂220の注入圧力Piを調整する。なお、樹脂220が硬化する前の状態において粘度が200[mPa・s]以下のとき、キャビティ15内への樹脂220の注入量Qiと注入圧力Piは、Qi=A×Pi(Aは、流出係数、流路面積および流体密度によって決まる値)の式によって表される相関関係にあることが知られている。
 シリンダー41は、上側吸入口44a、44bと、下側吐出口45a、45bと、を有する。ピストン42が図において上方に移動すると、下側吐出口45a、45bが開く。下側吐出口45a、45bのそれぞれから吐出した主剤および硬化剤は、混合されて樹脂220となる。樹脂220は、チューブ36を介して注入口13に吐出される。ピストン42が図において下方に移動すると、上側吸入口44a、44bと下側吐出口45a、45bとが、ピストン42に形成した凹部43a、43bを介して連通する。主剤および硬化剤は、下側吐出口45a、45bから凹部43a、43bを通り、上側吸入口44a、44bから主剤タンク31および硬化剤タンク32に再び戻される。この動作によって、主剤および硬化剤は、一定の圧力においてチューブ33a、33b内を循環する。
 図1を再び参照して、圧力計50は、ひずみゲージ等を備え、キャビティ15内の圧力Prを測定するために成形型10に配置される。
 吸引部60は、真空ポンプ(図示せず)を有する。吸引部60は、樹脂220の注入前に吸引口14からキャビティ15内の空気を吸引(真空引き)し、キャビティ15内を真空状態にする。
 成形型温度調整部70は、加熱部材71を有し、成形型10を樹脂220の硬化温度まで加熱し、キャビティ15内に注入された樹脂220を硬化させる。加熱部材は、電気ヒーターであり、直接的に成形型10を加熱する。なお、加熱部材はこれ限定されず、たとえば、油などの熱媒体を電気ヒーターによって加熱し、成形型10内に熱媒体を循環させることによって、成形型10の温度を調整してもよい。
 制御部80は、成形装置100全体の動作を制御する。制御部80は、記憶部81と、演算部82と、入出力部83と、を有する。入出力部83は、圧力計34、50と、バルブ40と、吸引部60と、成形型温度調整部70とに接続される。記憶部81は、ROMやRAMから構成し、後述するキャビティ15内の圧力Prのしきい値Pc等のデータを予め記憶する。演算部82は、CPUを主体に構成され、入出力部83を介して圧力計34、50からの樹脂220の注入圧力Piおよびキャビティ15内の圧力Prのデータを受信する。演算部82は、記憶部81から読み出したデータおよび入出力部83から受信したデータを基にバルブ40のピストン42位置、吸引部60の吸入圧および成形型温度調整部70による成形型10の加熱温度を算出する。算出データを基にした制御信号は、入出力部83を介してバルブ40、吸引部60および成形型温度調整部70に送信する。このようにして、制御部80は、樹脂220の注入圧力Pi、真空引き時のキャビティ15内の圧力Pr、成形型温度等を制御する。
 以下、図3を参照して複合材料200の成形方法の手順について説明する。
 図3に示すように、複合材料200の成形方法は、炭素繊維210を配置する工程(ステップS1)と、真空吸引を行う工程(ステップS2)と、樹脂220を注入する工程(ステップS3~S8)と、樹脂220を硬化させる工程(ステップS9)と、脱型する工程(ステップS10)と、を有する。以下、各工程について詳述する。なお、ステップS1、S9、S10の操作を除き、制御部80が各ステップの処理を実行する。
 まず、炭素繊維210を積層し、成形型10のキャビティ15内に配置してプリフォームする(ステップS1)。このとき、キャビティ15に臨む型内面を、所定の有機溶剤を用いて脱脂処理し、離型剤を用いて離型処理を施しておく。
 次に、成形型10を閉じ、吸引部60によって吸引口14から空気を吸引し、真空引きを行い、キャビティ15内を真空状態にする(ステップS2)。このとき、圧力が負圧となるように圧力計50のデータを基に制御部80によって調整する。真空引き終了後、吸引口14は完全に閉じ、成形終了まで閉じた状態にしておく。真空引きを行うことによって、表面に発生する気泡を防止し、成形品である複合材料200のボイドやピットを減らすことができ、複合材料200の機械的特性や意匠性を向上させることができる。
 樹脂220の注入圧力Piが型締圧力Pmよりも高い第1の圧力P1(図4(B)を参照)となるように調整し、注入口13から樹脂220の注入を開始する(ステップS3)。注入された樹脂220は、炭素繊維210の上面から含浸していく。注入した樹脂220がキャビティ15内を完全に満たしたとき、注入圧力Piと型締圧力Pmはほぼ同じ圧力となる。
 樹脂220の注入開始後、所定時間内に圧力計34によってキャビティ15内の圧力Prを測定する(ステップS4)。キャビティ15内の圧力Prがしきい値Pcに達するまで、樹脂220の注入、およびキャビティ15内の圧力Prの測定を継続する(ステップS5:「No」、ステップS3、S4)。キャビティ15内の圧力Prがしきい値Pcに達したら(ステップS5:「Yes」)、樹脂220の注入圧力Piを降下する(ステップS6)。
 しきい値Pcは、樹脂220の材料特性、注入量、注入速度等に基づいて予め型締圧力Pmよりも少し低い値に設定する。本実施形態においては、しきい値Pcを型締圧力Pmの90%に設定している。圧力測定の誤差を考慮して、たとえば、しきい値は型締圧力Pmの85%~95%の範囲の値を選択することができる。しきい値Pcを高い値に設定することによって、型締圧力Pm近傍まで樹脂220の注入圧力Piを上げ、注入時間を短縮することができる。さらに、キャビティ15内の圧力Prが高い状態になることによって、炭素繊維210への樹脂220の含浸性を向上することができる。
 樹脂220の注入圧力Piを測定しながら型締圧力Pmよりも高い第1の圧力P1と型締圧力Pmよりも低い第2の圧力P2との間において調整し、かつ、型締圧力Pmよりも高い圧力から型締圧力Pmよりも低い圧力へ樹脂220の注入圧力Piを少なくとも1回は降下させる。この制御によって、樹脂220の注入開始から注入終了までキャビティ15内の圧力が型締圧力Pmを超えることないように樹脂220を注入する(ステップS7)。上述したように、注入時間を短縮する観点からは、しきい値Pcをできるだけ高い値に設定することが好ましい。ただし、樹脂220の注入圧力制御においてキャビティ15内の圧力Prが型締圧力Pmを超えるオーバーシュートが生じないように、しきい値Pcを設定することが好ましい。
 キャビティ15内に樹脂220が完全に充填されるまでステップS7の動作を繰り返す(ステップS8:「No」、ステップS7)。
 キャビティ15内に樹脂220を規定量注入し終えると(ステップS8:「Yes」)、キャビティ15内の樹脂220が十分硬化するまで放置する(ステップS9)。なお、成形型10全体は、成形型温度調整部70によって樹脂220の硬化温度に予め温度調節してある。
 成形型10を開き、成形された複合材料200を脱型すると、成形が完了する(ステップS10)。
 次に、図4を参照して、本実施形態の成形方法に係る樹脂220の注入圧力Piの制御について詳述する。
 図4(A)および(B)に実線によって示されるグラフは、図3に示す本実施形態に係る成形方法によるキャビティ15内の圧力Prおよび樹脂220の注入圧力Piの時間推移を示す。破線によって示されるグラフは、対比例であり、樹脂220の注入圧力Piを注入完了まで一定に高圧注入した場合のキャビティ15内の圧力Prおよび樹脂220の注入圧力Piの時間推移を示す。時間0[sec]~t1は、型締工程、時間t1~t2は、真空引き工程、時間t2~t3は、樹脂220の注入工程、t3以降は樹脂220の硬化工程である。ここで、図4(A)および(B)に示すように、樹脂220を注入圧力Piで注入後、キャビティ15内の圧力Prは直ぐには上昇せず、注入圧力Piより遅れて徐々に上昇する。
 キャビティ15内の圧力Prが上昇し、しきい値Pcに達したとき、図4(B)に示す階段状になるように樹脂220の注入圧力Piを徐々に降下させる。このとき、図4(A)に示す樹脂220の注入開始から注入終了までキャビティ15内の圧力Prが型締圧力Pmを超えることのないように、制御部80によってバルブ40を制御して、型締圧力Pmよりも高い第1の圧力P1と、型締圧力Pmよりも低い第2の圧力P2との間において樹脂220の注入圧力Piを調整する。樹脂220の注入圧力Piは、型締圧力Pmよりも高い圧力から型締圧力Pmよりも低い圧力へ少なくとも1回降下させる。第2の圧力P2は、ゲージ圧0[MPa]から型締圧力Pmの間において任意の値を設定できる。
 図4(A)に破線によって示すように、樹脂220の注入圧力Piを注入完了まで一定に高圧注入した対比例にあっては、キャビティ15内の圧力Prが型締圧力Pmよりも著しく高い圧力P3まで高くなってしまう。
 これに対して、本実施形態にあっては、樹脂220の注入圧力Piを制御することによって、樹脂220の注入開始から注入終了までキャビティ15内の圧力Prが型締圧力Pmを超えることなく樹脂220を注入している。キャビティ15内の圧力Prが型締圧力Pmを超えることがないように注入することから、プレス部20が発生する型締圧力Pmを抑えることができる。型締圧力Pmを抑制できることを通して、プレス機の小型化が可能となり、設備費用の低減に寄与することができる。
 また、本実施形態の成形方法では、硬化開始時に、対比例(図4(A)破線)のようにキャビティ15内の圧力Prが急激に降下しない。圧力が急降下すると硬化時の樹脂220の収縮率は高くなる。したがって、本実施形態の成形方法によれば、対比例のように樹脂220の高圧注入を一定にしたときに比べて成形品である複合材料200の成形収縮率を低下させ、設計通りの形状を安定して得ることができる。その結果、寸法安定性の高い良品質な複合材料200の成形品を得ることができる。
 なお、樹脂220の注入圧力Piの制御は、樹脂220の材料特性によって適宜変更することができる。たとえば、樹脂220がキャビティ15内に注入されてから硬化するまでの硬化時間によって適宜変更する。硬化時間が短い樹脂220を使用する場合は、樹脂220の注入時間を短くする必要があるので、樹脂220の注入圧力Piを注入開始から第1の圧力P1とする。これによって、高い圧力によって樹脂220の注入を開始し、キャビティ15内の圧力Prが型締圧力Pmにできるだけ近い値となるように制御する。逆に、硬化時間が長い樹脂220を使用する場合は、樹脂220の注入時間を長くすることができるので、注入開始時の樹脂220の注入圧力Piを型締圧力Pmより低い値とすることもできる。ただし、この場合においても、成形時間を短縮するために、注入する間に樹脂220の注入圧力Piを型締圧力Pmよりも高い圧力とする。
 以上説明したように、本実施形態に係る成形装置100および成形方法では、樹脂220をキャビティ15内に注入するとき、樹脂220の注入圧力Piを型締圧力Pmよりも高い第1の圧力と型締圧力Pmよりも低い第2の圧力との間において調整し、かつ、型締圧力Pmよりも高い圧力から型締圧力Pmよりも低い圧力へ樹脂220の注入圧力Piを少なくとも1回は降下させる。これよって、樹脂220の注入開始から注入終了までキャビティ15内の圧力Prが型締圧力Pmを超えることなく樹脂220を注入する。
 このように構成した成形装置100および成形装置100を使用する成形方法によれば、注入開始から注入終了までの間に型締圧力Pmよりも高い圧力によって樹脂220を注入する時間帯を有することによって、注入開始から注入終了まで型締圧力Pmよりも低い圧力によって注入したときに比べて注入開始から注入終了までの平均注入圧力が高くなる。その結果、樹脂220の注入時間を短縮し、成形時間を短縮することができる。また、樹脂220の注入圧力Piを調整し、キャビティ15内の圧力Prが型締圧力Pmを超えないようにすることによって、型締圧力Pmを抑えることができる。型締圧力Pmを抑制できることを通して、プレス機の小型化が可能となり、設備費用の低減に寄与することができる。
 また、本実施形態に係る成形装置100および成形方法では、樹脂220の注入圧力Piを、型締圧力Pmよりも高い圧力から型締圧力Pmよりも低い圧力まで、徐々に降下させる。
 このように構成した成形装置100および成形装置100を使用する成形方法によれば、注入開始から注入終了まで低圧力によって注入したときに比べて注入開始から注入終了までの平均注入圧力が高くなる。その結果、樹脂220の注入時間を短縮し、成形時間を短縮することができる。
 また、本実施形態に係る成形装置100および成形方法では、キャビティ15内の圧力Prが上昇し予め設定したしきい値Pcに達すると、樹脂220の注入圧力Piを、第1の圧力から降下させる。
 このように構成した成形装置100および成形装置100を使用する成形方法によれば、樹脂220の注入圧力Piの制御の基準値を設けることで、制御が容易になる。
 また、本実施形態に係る成形装置100および成形方法では、樹脂220の注入開始時の注入圧力Piを第1の圧力とする。
 このように構成した成形装置100および成形装置100を使用する成形方法によれば、キャビティ15内の圧力Prがまだ低い状態である樹脂220の注入開始時に高圧注入することによって、キャビティ15内の圧力Prと樹脂220の注入圧力Piの差圧が大きくなり、樹脂220がキャビティ15内へ流入しやすくなる。その結果、樹脂220の注入速度を高め、成形時間をさらに短縮することができる。
 また、本実施形態に係る成形装置100および成形方法では、樹脂220を注入する前に、成形型10内を真空引きする。
 このように構成した成形装置100および成形装置100を使用する成形方法によれば、樹脂220の注入前にキャビティ15内を真空状態にすることによって、樹脂220注入後に樹脂220内および表面に発生する気泡を防止し、成形品である複合材料200のボイドやピットを減らすことができる。これによって、複合材料200の機械的特性や意匠性を向上させることができる。
 また、本実施形態に係る成形装置100および成形方法では、強化基材210は炭素繊維から形成されてなる。
 このように構成した成形装置100および成形装置100を使用する成形方法によれば、炭素繊維を強化基材に使用することによって、熱膨張係数が小さく寸法安定性に優れ、高温下においても機械的特性の低下が少ない複合材料200を成形することができる。
 また、本実施形態に係る成形装置100および成形方法では、複合材料200は自動車部品に使用される。
 このように構成した成形装置100および成形装置100を使用する成形方法によれば、量産に適した複合材料200の自動車部品を成形することができ、車体の軽量化が可能となる。
 以上、実施形態を通じて複合材料200の成形方法および成形装置100を説明したが、本発明は実施形態において説明した構成のみに限定されることはなく、特許請求の範囲の記載に基づいて適宜変更することが可能である。
 たとえば、本実施形態においては、樹脂220は、熱硬化性樹脂であるとしたが、熱可塑性樹脂を用いてもよい。この場合は、成形型温度調整部70は、冷却部材72をさらに有し、キャビティ15内に樹脂220を注入する間は成形型10を加熱部材71によって加熱し、樹脂220の注入後は成形型10を冷却する。これによって、樹脂220の注入時の樹脂220の粘度を低下させて炭素繊維210に含浸し易くし、注入後に冷却することで樹脂220を硬化することができる。
 また、本実施形態では、キャビティ15内の圧力Prを圧力計50で測定しているが、測定方法はこれに限定されず、樹脂220の注入圧力Piと注入口13の大きさ、キャビティ15の容積から推定してもよい。
 また、本実施形態では、樹脂220の注入圧力Piを型締圧力Pmよりも高い圧力(第1の圧力P1)として樹脂220の注入を開始したが、注入開始から注入終了までに樹脂220の注入圧力Piが第1の圧力P1となる時点があればよい。
 また、本実施形態では、キャビティ15内の圧力がしきい値Pcに達した後、樹脂220の注入圧力Piを階段状に徐々に降下させている(図3のステップS6、図4(B)を参照)。注入圧力Piを降下させるパターンは図示した階段状に限られるものではなく、適宜のパターンを設定することができる。たとえば、注入圧力Piを、型締圧力Pmよりも高い圧力から型締圧力Pmよりも低い圧力まで、一度に(一気に)降下させたり、カーブを描くように徐々に降下させたりすることができる。
 また、本実施形態では、上型11に樹脂220の注入口13を、下型12に真空引きのための吸引部60を設けたが、それぞれ上型11または下型12のいずれに設けてもよい。
 また、本実施形態では、注入口13と吸引口14の数はそれぞれ1つとしたが、数はこれに限定されず、複数有していてもよい。
10  成形型、
11  上型、
12  下型、
13  注入口、
14  吸引口、
15  キャビティ、
20  プレス部、
30  樹脂注入部、
31  主剤タンク、
32  硬化剤タンク、
33、36 チューブ、
34、50 圧力計、
35  ポンプ、
40  バルブ(圧力調整部)、
41  シリンダー、
42  ピストン、
60  吸引部、
70  成形型温度調整部、
80  制御部、
100 成形装置、
200 複合材料、
210 炭素繊維(強化基材)、
220 樹脂、
300 車体、
Pm  型締圧力、
Pr  キャビティ内の圧力、
Pi  注入圧力、
Pc  しきい値、
P1  第1の圧力、
P2  第2の圧力、
Qi  注入量。

Claims (14)

  1.  開閉可能な成形型内のキャビティに強化基材を配置し、前記成形型に型締圧力を負荷した状態において樹脂を前記キャビティ内に注入し、前記樹脂を硬化させて複合材料を成形する成形方法であって、
     前記樹脂を前記キャビティ内に注入するとき、前記樹脂の注入圧力を前記型締圧力よりも高い第1の圧力と前記型締圧力よりも低い第2の圧力との間において調整し、かつ、前記型締圧力よりも高い圧力から前記型締圧力よりも低い圧力へ前記樹脂の前記注入圧力を少なくとも1回は降下させることによって、前記樹脂の注入開始から注入終了まで前記キャビティ内の圧力が前記型締圧力を超えることなく前記樹脂を注入する、複合材料の成形方法。
  2.  前記樹脂の前記注入圧力を、前記型締圧力よりも高い圧力から前記型締圧力よりも低い圧力まで、一度にまたは徐々に降下させる、請求項1に記載の複合材料の成形方法。
  3.  前記キャビティ内の圧力が上昇し予め設定したしきい値に達すると、前記樹脂の前記注入圧力を、前記第1の圧力から降下させる、請求項1または請求項2に記載の複合材料の成形方法。
  4.  前記樹脂の注入開始時の前記注入圧力を前記第1の圧力とする、請求項1~3のいずれか1項に記載の複合材料の成形方法。
  5.  前記樹脂を注入する前に、前記成形型内を真空引きする、請求項1~4のいずれか1項に記載の複合材料の成形方法。
  6.  前記強化基材は炭素繊維から形成されてなる、請求項1~5のいずれか1項に記載の複合材料の成形方法。
  7.  前記複合材料は自動車部品に使用される、請求項1~6のいずれか1項に記載の複合材料の成形方法。
  8.  強化基材を配置するキャビティが形成された開閉可能な成形型と、
     前記成形型に型締圧力を負荷するプレス部と、
     前記キャビティ内に樹脂を注入する樹脂注入部と、
     前記樹脂注入部に備えられ前記樹脂の注入圧力を調整自在な圧力調整部と、
     前記キャビティ内の圧力に基づいて前記圧力調整部の作動を制御する制御部と、を有し、
     前記制御部は、前記圧力調整部の作動を制御し、前記樹脂の前記注入圧力を前記型締圧力よりも高い第1の圧力と前記型締圧力よりも低い第2の圧力との間において調整し、かつ、前記型締圧力よりも高い圧力から前記型締圧力よりも低い圧力へ前記樹脂の前記注入圧力を少なくとも1回は降下させることによって、前記樹脂の注入開始から注入終了まで前記キャビティ内の圧力が前記型締圧力を超えることなく前記樹脂を注入させる、複合材料の成形装置。
  9.  前記制御部は、前記樹脂の前記注入圧力を、前記型締圧力よりも高い圧力から前記型締圧力よりも低い圧力まで、一度にまたは徐々に降下させる、請求項8に記載の複合材料の成形装置。
  10.  前記制御部は、前記キャビティ内の圧力が上昇し予め設定したしきい値に達すると、前記樹脂の前記注入圧力を、前記第1の圧力から降下させる、請求項8または請求項9に記載の複合材料の成形装置。
  11.  前記樹脂の注入開始時の前記注入圧力を前記第1の圧力とする、請求項8~10のいずれか1項に記載の複合材料の成形装置。
  12.  前記成形型内を真空引きする吸引部をさらに有し、
     前記制御部は、前記樹脂を注入する前に、前記吸引部の作動を制御して前記成形型内を真空引きする、請求項8~11のいずれか1項に記載の複合材料の成形装置。
  13.  前記強化基材は炭素繊維から形成されてなる、請求項8~12のいずれか1項に記載の複合材料の成形装置。
  14.  前記複合材料は自動車部品用の材料である、請求項8~13のいずれか1項に記載の複合材料の成形装置。
PCT/JP2014/078140 2014-10-22 2014-10-22 複合材料の成形方法および成形装置 WO2016063387A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US15/516,751 US10647068B2 (en) 2014-10-22 2014-10-22 Composite-material molding method and molding device
JP2016555011A JP6402775B2 (ja) 2014-10-22 2014-10-22 複合材料の成形方法および成形装置
EP14904346.5A EP3210739B1 (en) 2014-10-22 2014-10-22 Composite-material moulding method and moulding device
CN201480082872.5A CN107073762B (zh) 2014-10-22 2014-10-22 复合材料的成形方法和复合材料的成形装置
MX2017004945A MX360687B (es) 2014-10-22 2014-10-22 Método de moldeo y dispositivo de moldeo de material compuesto.
PCT/JP2014/078140 WO2016063387A1 (ja) 2014-10-22 2014-10-22 複合材料の成形方法および成形装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/078140 WO2016063387A1 (ja) 2014-10-22 2014-10-22 複合材料の成形方法および成形装置

Publications (1)

Publication Number Publication Date
WO2016063387A1 true WO2016063387A1 (ja) 2016-04-28

Family

ID=55760456

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/078140 WO2016063387A1 (ja) 2014-10-22 2014-10-22 複合材料の成形方法および成形装置

Country Status (6)

Country Link
US (1) US10647068B2 (ja)
EP (1) EP3210739B1 (ja)
JP (1) JP6402775B2 (ja)
CN (1) CN107073762B (ja)
MX (1) MX360687B (ja)
WO (1) WO2016063387A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111531768A (zh) * 2020-06-01 2020-08-14 合肥同源化工科技有限公司 一种固体胶制备工艺

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018027199A1 (en) * 2016-08-05 2018-02-08 Lane Segerstrom System and method for increasing density of structural composites
GB2570104B (en) * 2017-12-18 2021-12-29 Composite Integration Ltd Improved system and method for resin transfer moulding

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03121818A (ja) * 1989-10-04 1991-05-23 Mitsubishi Kasei Corp 繊維強化樹脂成形体の製造方法
JP2007007910A (ja) * 2005-06-29 2007-01-18 Toray Ind Inc RTM(ResinTransferMolding)成形方法およびRTM成形用樹脂注入装置
JP2007230175A (ja) * 2006-03-03 2007-09-13 Toyota Industries Corp 繊維強化樹脂成形品の製造方法
JP2008302498A (ja) * 2007-06-05 2008-12-18 Ist Corp 樹脂トランスファー成形法及び複合材料

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS608222B2 (ja) * 1976-06-01 1985-03-01 旭硝子株式会社 レジンインジエクシヨン成形方法
US4692291A (en) 1980-04-14 1987-09-08 Union Carbide Corporation Molding method using fast curing fiber reinforced, low viscosity thermosetting resin
US6814908B2 (en) * 2002-10-24 2004-11-09 Marazita Jose R Injection molding machine and controller
JP2005193587A (ja) 2004-01-09 2005-07-21 Toray Ind Inc Rtm成形方法
CN100368185C (zh) * 2005-12-07 2008-02-13 南京航空航天大学 树脂基先进复合材料的快速rtm制造方法
JP5557997B2 (ja) * 2008-11-19 2014-07-23 三菱重工業株式会社 繊維強化複合材の製造方法、及び繊維強化複合材の製造装置
CN101612783A (zh) * 2009-06-25 2009-12-30 无锡威锐科智能测控技术有限公司 注塑机模腔树脂压力控制方法
CN103231486B (zh) * 2013-03-27 2015-06-03 株洲宏大高分子材料有限公司 传递模塑成型方法及设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03121818A (ja) * 1989-10-04 1991-05-23 Mitsubishi Kasei Corp 繊維強化樹脂成形体の製造方法
JP2007007910A (ja) * 2005-06-29 2007-01-18 Toray Ind Inc RTM(ResinTransferMolding)成形方法およびRTM成形用樹脂注入装置
JP2007230175A (ja) * 2006-03-03 2007-09-13 Toyota Industries Corp 繊維強化樹脂成形品の製造方法
JP2008302498A (ja) * 2007-06-05 2008-12-18 Ist Corp 樹脂トランスファー成形法及び複合材料

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111531768A (zh) * 2020-06-01 2020-08-14 合肥同源化工科技有限公司 一种固体胶制备工艺

Also Published As

Publication number Publication date
EP3210739A1 (en) 2017-08-30
EP3210739A4 (en) 2018-01-10
JP6402775B2 (ja) 2018-10-10
US10647068B2 (en) 2020-05-12
US20170312997A1 (en) 2017-11-02
MX360687B (es) 2018-11-14
MX2017004945A (es) 2017-07-05
CN107073762A (zh) 2017-08-18
CN107073762B (zh) 2018-12-14
JPWO2016063387A1 (ja) 2017-08-10
EP3210739B1 (en) 2018-10-03

Similar Documents

Publication Publication Date Title
JP6021256B2 (ja) 繊維複合成形品のプレス成形方法、繊維複合成形品のプレス成形装置、および繊維複合成形品の金型
CN104736324A (zh) 纤维增强塑料的成型方法
JP2012526679A (ja) 金型を使う成形品の製造方法および金型装置
JP6332470B2 (ja) 複合材料の成形方法および成形装置
JP6402775B2 (ja) 複合材料の成形方法および成形装置
JP6384213B2 (ja) 複合材料の製造方法、複合材料の製造装置
JP6497084B2 (ja) 複合材料の成形方法、複合材料の成形装置、および複合材料
JP6750735B2 (ja) 複合材料の成形方法および複合材料の成形装置
JP6402776B2 (ja) 複合材料の成形方法および成形装置
US9302433B2 (en) Method and apparatus for moulding parts made from composite materials
JP6796280B2 (ja) 繊維強化熱可塑性樹脂成形体の製造方法
WO2012157327A1 (ja) Rtm成形方法及びrtm成形装置
JP2005169787A (ja) Frpの製造方法および製造装置
JP6451345B2 (ja) 複合材料の成形方法および成形装置
JP6357984B2 (ja) 複合材料の成形方法および成形装置
CN104802424A (zh) 用于制造纤维增强的空心型材构件的方法
JP2016083780A (ja) 複合材料の成形方法および成形装置
JP2012206391A (ja) 繊維強化プラスチックの成形方法
CN109843536B (zh) 树脂成形部件的成形方法及成形系统
JP5348946B2 (ja) 繊維強化複合材料成形品の製造方法
EP0751857A1 (en) Method of resin transfer molding
JP6520173B2 (ja) 複合材料の成形方法および成形装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14904346

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15516751

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016555011

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2017/004945

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014904346

Country of ref document: EP