WO2016063384A1 - 走行経路演算装置 - Google Patents

走行経路演算装置 Download PDF

Info

Publication number
WO2016063384A1
WO2016063384A1 PCT/JP2014/078124 JP2014078124W WO2016063384A1 WO 2016063384 A1 WO2016063384 A1 WO 2016063384A1 JP 2014078124 W JP2014078124 W JP 2014078124W WO 2016063384 A1 WO2016063384 A1 WO 2016063384A1
Authority
WO
WIPO (PCT)
Prior art keywords
travel route
vehicle
feature
route calculation
calculation device
Prior art date
Application number
PCT/JP2014/078124
Other languages
English (en)
French (fr)
Inventor
藤田 晋
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to MX2017005117A priority Critical patent/MX359043B/es
Priority to CN201480082851.3A priority patent/CN107076565B/zh
Priority to RU2017116735A priority patent/RU2660425C1/ru
Priority to BR112017008088-5A priority patent/BR112017008088B1/pt
Priority to EP14904511.4A priority patent/EP3211375B1/en
Priority to JP2016555008A priority patent/JP6304393B2/ja
Priority to US15/520,313 priority patent/US10585435B2/en
Priority to PCT/JP2014/078124 priority patent/WO2016063384A1/ja
Publication of WO2016063384A1 publication Critical patent/WO2016063384A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18154Approaching an intersection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/3453Special cost functions, i.e. other than distance or default speed limit of road segments
    • G01C21/3461Preferred or disfavoured areas, e.g. dangerous zones, toll or emission zones, intersections, manoeuvre types, segments such as motorways, toll roads, ferries
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0268Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
    • G05D1/0274Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means using mapping information stored in a memory device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/802Longitudinal distance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2555/00Input parameters relating to exterior conditions, not covered by groups B60W2552/00, B60W2554/00
    • B60W2555/60Traffic rules, e.g. speed limits or right of way

Definitions

  • the present invention relates to a travel route computing device that computes a travel route.
  • Patent Document 1 prepares a risk value matrix that gives a risk score at which an intersection becomes an isolated intersection for each factor feature such as a crossing existing in the exit direction of the intersection and a lane-decreasing portion of the road.
  • the route guidance device refers to the risk value matrix for each intersection on the route with respect to the route search result from the departure point to the destination, obtains a danger value score, and an intersection where the danger value score exceeds a predetermined threshold value Are extracted as isolated intersections.
  • the route guidance device searches for and guides a route that avoids an isolated intersection.
  • a driving assistance vehicle or an autonomous driving vehicle travels after recognizing a traffic light or the like, making an action decision for determining the action of the vehicle.
  • a vehicle that performs such action determination in order to travel appropriately, it is necessary to collect information necessary for action determination.
  • the problem to be solved by the present invention is to provide a travel route computing device capable of computing a travel route for easily recognizing features necessary for behavior determination for a vehicle traveling by behavior determination.
  • the present invention measures the necessary recognition distance necessary for the vehicle to recognize the feature when determining the behavior of the vehicle, and recognizes the feature based on the detection range and the necessary recognition distance of the feature detection means.
  • the above problem is solved by calculating the travel route after determining the difficulty of the vehicle and avoiding the location where it is determined that the feature is difficult to recognize.
  • the travel route in which the vehicle can easily recognize the feature can be calculated.
  • FIG. 1 is a block diagram of a travel route calculation apparatus according to this embodiment.
  • FIG. 2 is a diagram showing an example of a road layout.
  • FIG. 3 is a flowchart showing a control flow of the travel route calculation apparatus.
  • FIG. 4A is a diagram illustrating an example of a road layout.
  • FIG. 4B is a diagram illustrating an example of a road layout.
  • FIG. 5 is a block diagram of a travel route calculation apparatus according to another embodiment of the present invention.
  • FIG. 6 is a flowchart showing a control flow of the travel route calculation apparatus.
  • FIG. 7A is a diagram illustrating an example of a road layout.
  • FIG. 7B is a diagram illustrating an example of a road layout.
  • FIG. 1 is a block diagram of a travel route calculation apparatus according to an embodiment of the present invention.
  • the travel route calculation device according to the present embodiment is a device that is mounted on a vehicle and calculates travel accounting when the vehicle is automatically driven.
  • the travel route computing device functions as a ROM (Read Only Memory) in which various programs are stored, a CPU (Central Processing Unit) as an operation circuit for executing the programs stored in the ROM, and an accessible storage device.
  • ROM Read Only Memory
  • CPU Central Processing Unit
  • RAM Random Access Memory
  • the travel route calculation device includes an operation control unit 10, a database 11, and a sensor 12.
  • the database 11 records map data, feature information, road information, and the like.
  • the map data includes link data and node data.
  • the feature information is, for example, traffic signal information, crossing information, traffic sign information, and the like.
  • the road information includes intersection information, road merging information, road shape information of road diversion.
  • the sensor 12 is a sensor for detecting the surroundings of the own vehicle, and is a camera, a millimeter wave, a radar, or the like.
  • the operation control unit 10 controls the automatic driving of the own vehicle based on the detection value of the sensor 12.
  • the driving control unit 10 uses the sensor 12 to recognize a feature necessary for determining the behavior of the own vehicle. Action determination in automatic driving is performed by the vehicle recognizing features such as traffic signals, traffic signs, and railroad crossings.
  • the driving control unit 10 specifies a target point when performing the action of the own vehicle based on the feature. For example, when the vehicle makes a right turn as an action decision, the location of the intersection that makes a right turn becomes the target point. Then, the operation control unit 10 performs the determined action at the target point. Thereby, the own vehicle travels in an automatic operation.
  • the feature is a traffic signal provided at the intersection, and the behavior of the vehicle according to the display of the traffic signal is defined as the behavior of the vehicle.
  • the behavior of the host vehicle is to stop the vehicle at the stop line at the intersection.
  • the traffic light is blue
  • the behavior of the own vehicle is an operation of passing through the intersection at a predetermined speed. That is, traffic lights and intersections are features that cause the behavior of the vehicle to change.
  • the driving control unit 10 sets a target point at which an action is determined as an intersection.
  • the driving control unit 10 recognizes a traffic light from a place away from the intersection by a predetermined distance before the vehicle enters the intersection.
  • the traffic light is detected by the sensor 12.
  • running control part 10 approaches an intersection, it recognizes a traffic signal and determines the action according to the color which a traffic signal displays. Then, the driving control unit 10 causes the vehicle to travel according to the determined action. As a result, automatic driving of the vehicle is performed.
  • the operation control unit 10 repeatedly performs the automatic operation control as described above while traveling on the travel route. Note that the above automatic driving control is merely an example, and another control method may be used.
  • the travel route calculation device includes a vehicle information detection unit 1, a travel route calculation unit 2, and an information acquisition unit as functional blocks for calculating a travel route suitable for automatic driving when performing automatic driving of the vehicle as described above. 3, a distance measurement unit 4, a vehicle speed estimation unit 5, and a recognition determination unit 6.
  • the recognition determination unit 6 includes an avoidance location setting unit 7.
  • Vehicle information detection unit 1 detects vehicle information of the own vehicle.
  • the vehicle information includes position information of the own vehicle.
  • the vehicle information detection unit 1 has a function such as GPS.
  • the travel route calculation unit 2 acquires vehicle information from the vehicle information detection unit 1 and calculates a travel route from the current location of the vehicle to the destination while referring to the map data.
  • the destination is input by the user, for example, and the map data is recorded in the database 11.
  • the travel route calculation unit 2 calculates the travel route based on the vehicle information.
  • the travel route calculation unit 2 calculates the travel route so as to avoid the avoidance location.
  • the information acquisition unit 3 acquires a travel route from the travel route calculation unit 2.
  • the information acquisition unit 3 acquires feature information on the travel route.
  • Features are things that the vehicle must recognize when deciding the behavior of the vehicle.
  • the feature displays a traffic rule that the driver should follow when the vehicle is driven.
  • Features include traffic lights on traffic routes, traffic signs, railroad crossings, and the like.
  • the information acquisition unit 3 acquires road information from the travel route calculation unit 2.
  • the road information includes not only road information on the travel route but also information on roads connected to the road on the travel route. For example, when there is a traffic light on the travel route, not only the road on which the vehicle is scheduled to travel, but also the intersection where the traffic signal is installed and the road information connected to the intersection are included.
  • the distance measuring unit 4 measures the necessary recognition distance.
  • the necessary recognition distance is a distance that the vehicle needs to recognize the feature when determining the behavior of the vehicle, and is a distance from the position of the recognized feature to the vehicle.
  • the vehicle speed estimation unit 5 estimates the vehicle speed of the host vehicle when heading for a feature on the travel route.
  • the recognition determination unit 6 determines the difficulty in recognizing the feature based on the detection range of the sensor 12 and the required recognition distance measured by the distance measurement unit 4.
  • the feature for which the difficulty is judged is a feature that the vehicle must recognize when performing automatic driving by the driving control unit 10.
  • the avoidance location setting unit 7 sets a location where the recognition determination unit 6 determines that it is difficult to recognize the feature as an avoidance location.
  • the travel route calculation unit 2 calculates the travel route to the target location while avoiding the avoidance location.
  • the driving control unit 10 controls driving of the vehicle based on the travel route calculated avoiding the avoidance points.
  • FIG. 2 is a diagram showing a layout of intersections.
  • the own vehicle when the own vehicle travels at an intersection by automatic driving, the own vehicle needs to make an action decision according to the display of the traffic light 101.
  • the traffic light 101 When the traffic light 101 is displayed in red, the vehicle must stop by the stop line at the intersection. And in order for the own vehicle to make such an action decision, the own vehicle must recognize the traffic light 101 using the sensor 12.
  • the vehicle braking distance is determined by the vehicle speed. For example, when the vehicle is running at a high speed, the braking distance becomes long. In such a state, in order to stop the vehicle at the stop line by the red display of the traffic signal 101, the vehicle must recognize the traffic signal 101 at a position at least a braking distance away from the position of the traffic signal 101. .
  • the detection range of the sensor 12 is determined in advance by the performance of the sensor 12 and the like. Therefore, when the position of the vehicle is at least a braking distance away from the position of the traffic light 101 and the traffic light 101 is outside the detection range of the sensor 12, it becomes difficult to recognize the traffic light 101.
  • the operation control unit 10 cannot recognize the feature necessary for the automatic driving by the sensor 12, and the automatic driving is not normally performed. there is a possibility.
  • the travel route calculation device determines the recognizability of the feature on the travel route, and sets the avoidance location on the travel route where the feature is difficult to recognize. Then, a travel route suitable for automatic driving is calculated by calculating the travel route so as to avoid the avoidance point.
  • FIG. 3 is a flowchart showing a control flow of the travel route calculation apparatus.
  • the flowchart shown in FIG. 3 is a flow performed when the destination is input by the user or the like before the automatic operation control is executed.
  • a case where there are a plurality of intersections with traffic lights on the travel route from the current location of the vehicle to the destination is assumed as a specific example.
  • a traffic signal is used as a feature for ease of explanation.
  • the feature is not limited to a traffic signal, and may be another feature such as a road sign.
  • step S1 the vehicle information detection unit 1 detects the position of the vehicle as the current vehicle information of the own vehicle.
  • the position of the vehicle is detected by a combination of GPS (Global Positioning System), a gyro sensor, a vehicle speed sensor, and the like.
  • GPS Global Positioning System
  • the position of the vehicle is not limited to the current location of the stopped vehicle, but may be the current location of the running vehicle.
  • step S2 the travel route calculation unit 2 calculates the travel route to the destination based on the current location of the vehicle.
  • the travel route is a route from which the vehicle will travel.
  • a car navigation system is used to calculate the travel route.
  • the calculation of the travel route does not need to obtain the lane to be traveled, and may be performed by going straight on the route or going straight at the intersection, turning right, turning left.
  • step S3 the information acquisition unit 3 acquires feature information from the database 11.
  • step S ⁇ b> 4 the recognition determination unit 6 identifies the feature related to the traffic rule from the feature information in the travel route. The specified feature must be obeyed when the vehicle travels along the travel route. When there are a plurality of traffic lights on the travel route, the recognition determination unit 6 identifies the traffic lights at each point. The recognition determination unit 6 identifies traffic lights at all intersections on the travel route.
  • step S5 the vehicle speed estimation unit 5 estimates the vehicle speed when the host vehicle heads for the feature specified by the recognition determination unit 6.
  • the legal speed of each road is recorded as map data. Therefore, the vehicle speed estimation unit 5 estimates the legal speed of the road that travels when heading for the feature from the position of the feature and the road on the travel route as the vehicle speed of the host vehicle.
  • the vehicle speed estimation unit 5 is not necessarily limited to the legal speed, and may estimate a vehicle speed lower than the legal speed as the vehicle speed of the host vehicle.
  • the vehicle may not be able to travel at the legal speed.
  • the Road Traffic Law stipulates that a vehicle travels at a speed at which it can be stopped at any time when turning right or left at an intersection. For this reason, at intersections where a right turn is planned, it is almost impossible to drive at the legal speed. In such a case, the vehicle speed estimation unit 5 estimates a speed lower than the legal speed as the speed of the host vehicle as the speed when traveling at the intersection.
  • the vehicle speed estimation unit 5 estimates the vehicle speed based on the vehicle speed when the vehicle has traveled in the past on the road to be estimated for the vehicle speed. Also good.
  • step S6 the distance measuring unit 4 measures the necessary recognition distance based on the vehicle speed estimated by the vehicle speed estimating unit 5.
  • the vehicle behavior conditions become severe, for example, when the brake depression amount must be suddenly increased or the steering angle of the steering wheel must be suddenly increased. Is the case. For example, when a signal turns red when attempting to pass straight through an intersection, vehicle behavior conditions become severe.
  • v [km / h] is the speed when heading for the intersection.
  • t be the time from to the stop line at the intersection.
  • the place where the action is determined is the place where the brake pedal is started to stop at the stop line.
  • the stop position of the own vehicle is the same as the position of the traffic light for easy explanation.
  • Equation (1) The distance (d [m]) from the location where the action is determined to the stop line at the intersection is expressed by Equation (1).
  • equation (2) holds between the speed (v) and time (t) when heading for the intersection.
  • the necessary recognition distance may be changed according to the position of the feature on the layout (in the example of FIG. 2, the position of the traffic light at the intersection). For example, when a traffic light is set in front of an intersection on a travel route at a certain intersection (see FIG. 2), an automatic driving in which the vehicle is stopped at a stop line is assumed. In this case, since the position of the stop line and the position of the traffic signal are close to each other, if the necessary recognition distance can secure at least the braking distance of the vehicle, the vehicle can stop at the stop line while recognizing the traffic signal. Can do.
  • the necessary recognition distance is a distance obtained by adding the distance from the stop line to the traffic light to the braking distance of the vehicle.
  • step S7 the recognition determination unit 6 sets the detection range of the sensor 12 with respect to the position of the vehicle.
  • the position of the own vehicle is a position away from the feature to be recognized by a necessary recognition distance.
  • the senor 12 includes a plurality of sensors such as a millimeter wave, a radar, and a laser in addition to the camera, and the sensors 12 are provided so as to complement each other in the detection range.
  • the detection range (detection distance) of the sensor is 200 meters for millimeter waves, several hundred meters for radar, 100 meters for lasers, and several tens of meters for cameras.
  • the detection range of the sensor is specified not only by distance but also by angle. In the millimeter wave, the detection range is relatively narrow, but the camera can be selected to narrow or widen the detection range depending on the wide angle of the lens.
  • the maximum detection range by those sensors may be the detection range of the sensor, or the minimum detection The range may be the detection range of the sensor.
  • the imaging range of the sensor 12 will be described as the detection range of the sensor (for example, 50 meters).
  • step S8 the recognition determination unit 6 determines whether or not the feature is outside the detection range of the sensor 12 by comparing the detection range of the sensor 12 with the necessary recognition distance. When the necessary recognition distance is larger than the detection range of the sensor 12, the recognition determination unit 6 determines that the feature is outside the detection range of the sensor 12. On the other hand, when the necessary recognition distance is equal to or smaller than the detection range of the sensor 12, the recognition determination unit 6 determines that the feature is within the detection range of the sensor 12.
  • step S9 the recognition determination unit 6 determines that it is difficult to recognize the feature.
  • step S10 the recognition determination unit 6 determines that the feature can be recognized.
  • steps S5 to S101 will be described using the layout of the two patterns shown in FIGS. 4A and 4B.
  • 4A and 4B are diagrams showing the layout of intersections.
  • the legal speed of the road on which the vehicle is traveling is set to 40 km / h before passing through the intersection.
  • the legal speed of the road on which the vehicle is traveling is set to 60 km / h before passing through the intersection.
  • the vehicle speed estimation unit 5 estimates the vehicle speed (40 km / h) toward the traffic light 101.
  • the distance measuring unit 4 calculates the necessary recognition distance (42 m) using the above calculation formula.
  • the recognition determination unit 6 sets the detection range (50 m) of the sensor 12 with respect to the position of the host vehicle.
  • the traffic light 101 exists within the detection range of the sensor 12 as shown in FIG. 4A.
  • the recognition determination unit 6 determines the traffic light 101 as a recognizable feature.
  • the vehicle speed estimation unit 5 estimates the vehicle speed (60 km / h) toward the traffic light 101.
  • the distance measuring unit 4 calculates the necessary recognition distance (about 93 m) using the above calculation formula.
  • the recognition determination unit 6 sets the detection range (50 m) of the sensor 12 with respect to the position of the host vehicle.
  • the recognition determination unit 6 determines the traffic light 101 as a feature that is difficult to recognize.
  • the control flow of steps S5 to S10 is performed, and the next closest to the own vehicle is performed. Focusing on the features, the control flow of steps S5 to S10 is performed. Thus, the control flow of steps S5 to S10 is performed for all the features existing on the travel route on which the vehicle will travel.
  • the avoidance location setting unit 7 identifies a location where it is determined that recognition of the feature is difficult as an avoidance location.
  • the intersection shown in FIG. 4A is not set as an avoidance location, but the intersection shown in FIG. 4B is set as an avoidance location. That is, at the intersection shown in FIG. 4B, when the own vehicle travels toward the intersection at the estimated vehicle speed, it is difficult for the own vehicle to recognize the traffic light 101 by the sensor 12 when determining the action. . Therefore, the intersection shown in FIG. 4B is set as an avoidance location.
  • step S12 the travel route calculation unit 2 calculates the travel route from the current location of the vehicle to the target location after avoiding the avoidance point.
  • a travel route calculation method a method based on a graph search theory such as the Dijkstra method may be used.
  • the travel route calculation unit 2 may calculate a travel route that does not pass through a weighted link by assigning a greater weight to the link connected to the avoidance point (node) than other links. . Then, the calculation result of the travel route calculation unit 2 is output to the operation control unit 10. Then, the control flow shown in FIG. 3 ends.
  • the driving assistance vehicle and the automatic driving vehicle can easily recognize a feature and calculate a travel route on which the vehicle can travel.
  • the necessary recognition distance from the own vehicle to the feature necessary for the feature recognition is measured. Further, based on the detection range of the sensor 12 and the necessary recognition distance, the difficulty of recognizing the feature is determined, and the travel route is calculated after avoiding the location where the recognition of the feature is difficult. Thereby, according to the ease of recognizing the features required when making the action determination, the driving route until the vehicle reaches the destination is calculated. It is possible to calculate a route that can travel and a route that is difficult to travel, and to calculate a route that allows the vehicle to easily recognize the feature.
  • the vehicle speed of the host vehicle is estimated, and the necessary recognition distance is measured based on the estimated vehicle speed. Accordingly, the necessary recognition distance can be measured under the vehicle speed condition when actually traveling on the travel route.
  • the legal speed is estimated as the vehicle speed, and the necessary recognition distance is measured based on the legal speed. Thereby, it is possible to determine the difficulty of recognizing the feature under the most severe speed condition.
  • the vehicle speed is estimated when the vehicle has traveled in the past, and the necessary recognition distance is measured based on the estimated speed. Thereby, it is possible to determine the difficulty of recognizing the feature according to the actual traveling condition.
  • the detection range of the sensor 12 is set according to the typical value of the sensor 12. Thereby, the error of the sensor 12 and the tendency of the detection range by the sensor 12 can be reflected in the determination of the difficulty of the feature.
  • the necessary recognition distance is measured based on the behavior of the own vehicle.
  • the necessary recognition distance is measured in consideration of typical behavior of the own vehicle, smooth driving equivalent to a human driver can be realized even in a driving assistance vehicle or an autonomous driving vehicle.
  • the recognition determination unit 6 may set the detection range of the sensor 12 according to the congestion state of the travel route.
  • Data indicating the congestion state of the travel route may be recorded in the database 11 or acquired from the outside of the vehicle.
  • the congestion state is a congestion state of the vehicle when traveling toward the feature that is the object of recognition difficulty. For example, in the layout of FIG. 2, when the vehicle is continuously crowded for a certain period of time, another vehicle exists between the own vehicle and the traffic signal 101, so the traffic signal 101 is hidden behind the other vehicle, The detection range of the sensor 12 is limited to the distance from the own vehicle to another vehicle. For this reason, in the travel route where vehicle congestion is expected, the recognition determination unit 6 shortens the detection range as the vehicle congestion level increases.
  • the recognition determination unit 6 may set the detection range of the sensor 12 according to the typical value. As a result, when the detection range of the sensor 12 changes depending on the assumed congestion situation of the vehicle, it is determined whether or not the feature information necessary for action determination can be recognized in consideration of the detection range. it can.
  • the travel route calculation device is not limited to an automatic driving vehicle, and may be mounted on a driving support vehicle.
  • the driving support vehicle is a vehicle that supports driving by the driver, for example, driving when changing lanes. And when a driving assistance vehicle assists lane change using sensors, such as a camera, it supports driving, after recognizing the place of lane change.
  • the travel route computation device computes a travel route that facilitates recognizing the location of the lane change. Then, the driving support vehicle supports driving based on the calculated travel route.
  • the travel route calculation device may calculate the travel route not only when the vehicle is traveling but also when the vehicle is stopped.
  • the travel route calculation unit 2 corresponds to the “travel route calculation unit” of the present invention
  • the information acquisition unit 3 corresponds to the “information acquisition unit” of the present invention
  • the distance measurement unit 4 corresponds to the “distance measurement unit” of the present invention.
  • the vehicle speed estimation unit 5 corresponds to “vehicle speed estimation unit” of the present invention
  • the recognition determination unit 6 corresponds to “determination unit” of the present invention
  • the sensor 12 corresponds to “feature detection unit” of the present invention. It corresponds to.
  • FIG. 5 is a block diagram of a travel route calculation apparatus according to another embodiment of the invention. This example is different from the first embodiment described above in that it includes a deviation amount calculation unit 8. Other configurations are the same as those in the first embodiment described above, and the description thereof is incorporated.
  • the recognition determination unit 6 includes an avoidance point setting unit 7 and a deviation amount calculation unit 8.
  • the deviation amount calculation unit 8 calculates the deviation amount of the necessary recognition distance that deviates from the detection range of the sensor 12. And the recognition judgment part 6 judges the difficulty of recognition of a feature based on the calculated deviation
  • FIG. 6 is a flowchart showing a control flow of the travel route calculation apparatus.
  • FIG. 7A and 7B are diagrams showing the layout of intersections.
  • FIG. 7A and FIG. 7B are diagrams for explaining a state when the vehicle speed of the own vehicle traveling in front of the intersection is reduced from 60 km / h to 40 km / h.
  • FIG. 7A shows a state where the host vehicle is traveling at a vehicle speed (60 km / h) before deceleration
  • FIG. 7B shows a state where the host vehicle is traveling at a vehicle speed after deceleration (40 km / h).
  • step S21 to step S31 is the same as the control flow from step S1 to step S11 of the first embodiment.
  • the deviation amount calculation unit 8 calculates the deviation amount by subtracting the detection range from the necessary recognition distance.
  • the required recognition distance that is a calculation target of the deviation amount is a required recognition distance at a location where it is determined that recognition of the feature is difficult.
  • the traffic light 101 is determined as a feature that is difficult to recognize, and an intersection with the traffic light 101 is set as an avoidance location.
  • the necessary recognition distance corresponds to the braking distance of the host vehicle, and is about 95 m when the deceleration is 0.15G.
  • the detection range of the sensor 12 is 50 m
  • the deviation amount is 45 m from the difference between the necessary recognition distance and the detection range.
  • the required recognition distance is longer than the detection range by the deviation amount (45 m), so the intersection of FIG. 7A is set as an avoidance location. Since the necessary recognition distance corresponds to the braking distance of the own vehicle, the deviation amount decreases as the braking distance decreases. That is, if the vehicle speed of the vehicle traveling in front of the intersection is decelerated from 60 km / h, the necessary recognition distance is shortened, and the setting of the avoidance location at the intersection may be canceled.
  • the vehicle can decelerate to 40 km / h in advance in consideration of changes in the display of the traffic light 101 around the intersection.
  • the host vehicle needs to temporarily decelerate or stop. Therefore, depending on the travel route, the layout of the road, etc., when the vehicle is traveling before the intersection, the vehicle behavior is caused such that the vehicle speed is decelerated from the legal speed. If the vehicle speed is 40 km / h and the deceleration is 0.15 G, the braking distance is 42 km / h.
  • the required recognition distance is equal to or less than the detection range. Therefore, the traffic light 101 becomes a feature that can be recognized by the own vehicle. And the setting of the avoidance location at the intersection can be canceled.
  • the braking distance was reduced from about 95 m to 42 m, which was about 53 m.
  • the deviation amount is 45 m.
  • the deviation amount becomes 0 m or less in the example of FIG. 7B due to a decrease in the necessary recognition distance accompanying a decrease in speed. That is, if the deviation amount is equal to or less than the reduction amount of the required recognition distance due to the deceleration of the vehicle speed, the avoidance location setting can be canceled.
  • the recognition determination unit 6 sets a threshold based on the layout of the road set as the avoidance location and the calculated travel route.
  • the threshold value indicates the amount of decrease in the required recognition distance due to the deceleration of the vehicle speed.
  • step S34 the recognition determination unit 6 compares the deviation amount with the threshold value. If the deviation amount is equal to or less than the threshold value, the recognition determination unit 6 determines in step S35 that the feature at the location set as the avoidance location can be recognized. And the avoidance location setting part 7 cancels
  • step S36 the travel route calculation unit 2 calculates the travel route from the current location of the vehicle to the target point after avoiding the avoidance point.
  • the travel route calculation unit 2 calculates the travel route including the intersection shown in FIGS. 7A and 7B.
  • step S31 When there are many avoidance points set in step S31, there is a case where there is no route that can be driven by automatic driving when trying to avoid all the avoidance points.
  • the deviation amount at the avoidance location is calculated, and it is determined whether or not the avoidance location setting can be canceled after taking into account the deceleration of the host vehicle.
  • a place having a feature that is difficult to recognize is set as an avoidance place while judging the difficulty of recognition of the traffic light.
  • the threshold value is compared with the deviation amount while calculating the deviation amount. Then, based on the comparison result, it is determined whether to cancel the setting of the avoidance location. Thereby, it is a path
  • the deviation amount of the necessary recognition distance deviating from the detection range of the sensor 12 is calculated, and the difficulty of recognizing the feature is determined based on the deviation amount.
  • the travel route can be calculated after being included in the route without using the case where the deviation amount is small as an avoidance point.
  • the deviation amount is calculated based on the deceleration amount of the vehicle speed of the host vehicle.
  • the recognition determination unit 6 cancels what is set as an avoidance location as a result of the control processing in steps S28 to S31 as a result of the control processing in steps S32 to S35, but “Yes” in step S28.
  • control may be performed so as to set an avoidance location.
  • the recognition determination unit 6 calculates a deviation amount for each of a plurality of travel routes at a plurality of locations existing on the travel route, and calculates a sum of the deviation amounts for each of the plurality of travel routes.
  • the plurality of locations are locations having features that the vehicle recognizes when determining the behavior of the vehicle.
  • the travel route calculation unit 2 calculates the travel route so as to exclude the travel route having the highest sum among the plurality of travel routes from the travel route on which the host vehicle travels.
  • routes that are difficult to travel such as the travel route is not linear or the number of times of deceleration, is excluded, so a more natural travel route can be calculated.
  • the recognition determination unit 6 calculates the number of deviations higher than a predetermined value for each travel route instead of the sum of the deviation amounts, and the travel route computation unit 2 calculates the travel route with the largest number of deviations. May be calculated so as to be excluded from the travel route on which the vehicle travels.

Abstract

走行経路演算装置において、自車が目的地に到着するまでの走行経路を演算する走行経路演算手段と、地物を検出する地物検出手段と、自車の行動決定の際に自車が前記地物の認識のために必要とする、自車から前記地物までの距離を必要認識距離として測定する距離測定手段と、地物検出手段の検出範囲及び必要認識距離に基づき、地物の認識の困難性を判断する判断手段とを備え、走行経路演算手段は、判断手段により地物の認識が困難であると判断された箇所を回避した上で走行経路を演算する。

Description

走行経路演算装置
 本発明は、走行経路を演算する走行経路演算装置に関するものである。
 従来より、車両が交差点内を円滑に通過できず孤立するおそれがある孤立交差点を反映させて、指定された目的地までの経路を案内する経路案内装置が知られている。たとえば、特許文献1では、交差点の退出方向に存在する踏切、道路の車線減少部分などの要因地物ごとに、交差点が孤立交差点となる危険スコアを与える危険値マトリックスを用意する。経路案内装置は、出発地から目的地までの経路探索結果に対し、その経路上の交差点ごとに、危険値マトリックスを参照して、危険値スコアを求め、危険値スコアが所定の閾値を超える交差点を孤立交差点として抽出する。そして、経路案内装置は、孤立交差点を回避する経路を探索し、案内する。
特開2012-247315号公報
 ところで、運転支援車両又は自動運転車両は、信号機等を認識した上で、車両の行動を決める行動決定を行い、走行する。このような行動決定を行う車両において、適切に走行させるには、行動決定に必要な情報を収集する必要がある。
 しかしながら、上記の特許文献1の技術では、車両が交差点で孤立するおそれがあるかを危険度の指標としており、車両が当該交差点を認識できるか否か把握していない。そのため、例えばある交差点の危険度が低い場合でも、車両が、行動決定に必要な地物をセンサにより検出できない場合には、車両は当該地物を認識できず、適切に走行できないという問題がある。
 本発明が解決しようとする課題は、行動決定により走行する車両に対して、行動決定に必要な地物を認識しやすい走行経路を演算できる走行経路演算装置を提供することである。
 本発明は、自車の行動決定の際に自車が地物の認識のために必要とする必要認識距離を測定し、地物検出手段の検出範囲及び必要認識距離に基づき、地物の認識の困難性を判断し、地物の認識が困難であると判断された箇所を回避した上で走行経路を演算することによって上記課題を解決する。
 本発明によれば、目的地に到着するまでの走行経路において、行動決定をするために必要となる地物の認識の困難性を把握しているため、車両にとって地物を認識し易い走行経路を演算することができる。
図1は本実施形態に係る走行経路演算装置のブロック図である。 図2は道路のレイアウトの一例を示す図である。 図3は走行経路演算装置の制御フローを示すフローチャートである。 図4Aは道路のレイアウトの一例を示す図である。 図4Bは道路のレイアウトの一例を示す図である。 図5は本発明の他の実施形態に係る走行経路演算装置のブロック図である。 図6は走行経路演算装置の制御フローを示すフローチャートである。 図7Aは道路のレイアウトの一例を示す図である。 図7Bは道路のレイアウトの一例を示す図である。
 以下、本発明の実施形態を図面に基づいて説明する。
《第1実施形態》
 図1は、本発明の実施形態に係る走行経路演算装置のブロック図である。本実施形態に係る走行経路演算装置は、車両に搭載され、車両が自動運転する際の走行経理を演算するための装置である。
 走行経路演算装置は、各種プログラムが格納されたROM(Read Only Memory)と、このROMに格納されたプログラムを実行する動作回路としてのCPU(Central Processing Unit)と、アクセス可能な記憶装置として機能するRAM(Random Access Memory)とを備えている。
 走行経路演算装置は、運転制御部10、データベース11及びセンサ12を備えている。データベース11は、地図データ、地物の情報、道路の情報等を記録している。地図データは、リンクデータとノードデータ等である。地物の情報は、例えば信号機の情報、踏切の情報、交通標識の情報などである。道路の情報は、交差点の情報、道路の合流部分の情報、道路の分流部分の道路形状の情報などである。センサ12は、自車の周囲を検出するためのセンサであって、カメラ、ミリ波、レーダ等である。
 運転制御部10は、センサ12の検出値に基づき自車の自動運転を制御する。運転制御部10は、センサ12を用いて、自車の行動を決定するために必要となる地物を認識する。自動運転における行動決定は、走行経路の信号機、交通標識、踏切等の地物を車両が認識することで行われる。運転制御部10は、当該地物に基づき自車の行動を行う際の目標点を特定する。例えば、行動決定として車両が右折する場合には、右折する交差点の場所が目標点となる。そして、運転制御部10は決定した行動を当該目標点で行う。これにより、自車が自動運転で走行する。
 一例として、車両が自車の前方に存在する交差点を走行する際の自動運転について説明する。地物を交差点に設けられた信号機とし、信号機の表示に応じた自車の行動を車両の挙動とする。信号機が赤色又は黄色の場合には、自車の行動は交差点の停止線で車両を止める動作となる。一方、信号機が青色の場合には、自車の行動は交差点を所定の速度で通過する動作となる。すなわち、信号機及び交差点は自車の挙動を変化させる原因となる地物である。運転制御部10は、行動決定を行う目標点を交差点に設定する。運転制御部10は、車両が交差点に進入する前に、交差点に対して所定の距離を離れた場所から信号機を認識する。信号機はセンサ12により検出される。そして、運転制御部10は、交差点に近づくと、信号機を認識し、信号機が表示する色に応じた行動を決定する。そして、運転制御部10は、決定した行動により車両を走行させる。これにより、車両の自動運転が行われる。運転制御部10は、上記のような自動運転制御を、走行経路を走行中に繰り返し行っている。なお上記の自動運転の制御は一例にすぎず、他の制御方法であってもよい。
 走行経路演算装置は、上記のような車両の自動運転を行う際に、自動運転に適した走行経路を演算するための機能ブロックとして、車両情報検出部1、走行経路演算部2、情報取得部3、距離測定部4、車速推定部5及び認識判断部6を有している。また認識判断部6は、回避箇所設定部7を有している。
 車両情報検出部1は自車両の車両情報を検出する。車両情報は、自車の位置情報等を含む。車両情報検出部1はGPS等の機能を有している。
 走行経路演算部2は、車両情報検出部1から車両情報を取得し、地図データを参照しつつ、車両の現在地から目的地までの走行経路を演算する。目的地は例えばユーザにより入力され、地図データはデータベース11に記録されている。これにより、走行経路演算部2は、車両情報に基づき走行経路を演算する。
 走行経路演算部2は、回避箇所設定部7により回避箇所が設定されている場合には、回避箇所を避けるように走行経路を演算する。
 情報取得部3は、走行経路演算部2から走行経路を取得する。また情報取得部3は、走行経路上において、地物の情報を取得する。地物は、自車の行動決定の際に、自車が認識しなければならないものである。また、地物は車両を走行させる際に運転者が従うべき交通ルールを表示しているものである。地物は、走行経路の信号機、交通標識、踏切等である。
 また、情報取得部3は、走行経路演算部2から道路の情報を取得する。道路の情報には、走行経路上の道路の情報に限らず、走行経路上の道路と繋がっている道路の情報も含まれる。例えば、走行経路上に信号機が存在する場合には、車両の走行予定の道路に限らず、当該信号機が設置されている交差点及び当該交差点に繋がっている道路の道路情報も含まれる。
 距離測定部4は必要認識距離を測定する。必要認識距離は、自車の行動決定の際に、自車が地物の認識のために必要とする距離であり、認識する地物の位置から自車までの距離である。
 車速推定部5は、走行経路上で、地物に向かうときの自車の車速を推定する。
 認識判断部6は、センサ12の検出範囲及び距離測定部4により測定された必要認識距離に基づき、地物の認識の困難性を判断する。困難性の判断対象となる地物は、運転制御部10による自動運転を行う際に、自車が認識しなければならない地物である。
 回避箇所設定部7は、認識判断部6により地物の認識が困難であると判断された箇所を回避箇所として設定する。
 走行経路を演算する際に、回避箇所が設定されている場合には、走行経路演算部2は回避箇所を避けた上で目標地点までの走行経路を演算する。運転制御部10は、回避箇所を避けて演算された走行経路に基づき、車両の運転を制御する。
 ここで、地物の認識の困難性について、図2を用いて説明する。図2は交差点のレイアウトを示した図である。
 例えば、図2に示すように、自車が交差点を自動運転により走行する場合には、自車は、信号機101の表示に応じた行動決定を行う必要がある。信号機101が赤の表示の場合には、自車は交差点の停止線までに止まらなければならない。そして、自車が、このような行動決定を行うためには、自車はセンサ12を用いて信号機101を認識しなければならない。
 車両の制動距離は車速により決まる。例えば、車両が高速で走っている場合には、制動距離が長くなる。このような状態で、信号機101の赤の表示により、車両を停止線で停止させるためには、車両は、信号機101の位置から少なくとも制動距離分、離れた位置で信号機101を認識しなければならない。
 センサ12の検出範囲はセンサ12の性能等により予め決まっている。そのため、車両の位置が、信号機101の位置から少なくとも制動距離分、離れたところにあり、信号機101がセンサ12の検出範囲外に存在する場合には、信号機101の認識が困難な状態となる。そして、自車が、地物の認識が困難な走行経路を走行した場合に、運転制御部10がセンサ12により、自動運転に必要な地物を認識できず、自動運転が正常に行われない可能性がある。
 そこで、本実施形態に係る走行経路演算装置は、走行経路における地物の認識性を判断し、地物の認識が困難な箇所を走行経路上の回避箇所を設定する。そして、当該回避箇所を避けるように走行経路を演算することで、自動運転に適した走行経路を演算する。
 次に、具体例を挙げつつ、走行経路演算装置の制御について説明する。図3は走行経路演算装置の制御フローを示すフローチャートである。図3に示されるフローチャートは、自動運転制御が実行される前であって、ユーザ等により目的地が入力された場合に行うフローである。そして、車両の現在地から目的地に向かうまでに、走行経路上には、信号機付きの交差点が複数存在する場合を具体例として想定する。なお、以下では説明を容易にするために、地物として信号機を挙げているが、地物は信号機のみに限らず、例えば道路標識等の他の地物でもよい。
 ステップS1にて、車両情報検出部1は、自車の現在の車両情報として車両の位置を検出する。車両の位置は、GPS(Global Positioning System)、ジャイロセンサ、車速センサ等の組み合わせにより検出される。車両の位置は、止まっている車両の現在地に限らず、走行中の車両の現在地でもよい。
 ステップS2にて、走行経路演算部2は、車両の現在地に基づいて、目的地までの走行経路を演算する。走行経路は、自車がこれから走行する経路である。走行経路の演算には、カーナビゲーションシステムが用いられる。走行経路の演算は、走行すべき車線まで求める必要はなく、経路を直進したり、交差点を直進、右折、左折したりする程度で構わない。
 ステップS3にて、情報取得部3はデータベース11から地物情報を取得する。ステップS4にて、認識判断部6は、走行経路において交通ルールに関する地物を地物情報から特定する。特定される地物は、自車が走行経路を走行する上で必ず従わなければいけないものである。走行経路上に複数の信号機がある場合には、認識判断部6は、各地点の信号機を特定する。認識判断部6は、走行経路上の全ての交差点で、信号機を特定する。
 ステップS5にて、車速推定部5は、認識判断部6により特定された地物に対して自車が向かうときの車速を推定する。データベース11には、各道路の法定速度が地図データとして記録されている。そのため、車速推定部5は、地物の位置と走行経路上の道路から、地物に向かうときに走行する道路の法定速度を、自車の車速として推定する。
 なお、車速推定部5は、必ずしも法定速度に限らず、法定速度よりも低い車速を、自車の車速として推定してもよい。交差点を走行する際に、車両が法定速度で走行できるとは限らない。例えば、交差点で右折する際には、自車は法定速度で曲がることはできない。また、道路交通法では、交差点を右折又は左折する際には、車両はいつでも停車できる速度で走行することを規定している。そのため、右折を予定している交差点では、法定速度で走行しない場合がほとんどである。このような場合には、車速推定部5は、交差点を走行する際の速度として、法定速度より低い速度を、自車の車速として推定する。
 また、車速推定部5は、法定速度より低い速度を自車の車速として推定する場合には、車速の推定対象となる道路において、過去に走行したときの車速に基づいて、車速を推定してもよい。
 ステップS6にて、距離測定部4は、車速推定部5により推定された車速に基づき、必要認識距離を測定する。
 ここで車両の挙動と必要認識距離と関係について説明する。例えば、交差点に向かっている車両の挙動について、車両の挙動条件が厳しくなるのは、例えば、ブレーキの踏み込み量を急に大きくしなければならない場合や、ハンドルの操舵角を急に大きくなければならない場合である。例えば、交差点を直進通過しようとしたときに、信号が赤信号になる場合には、車両の挙動条件が厳しくなる。
 自車が交差点手前のある箇所を走行しており、交差点に向かうときの速度をv[km/h]として、一定減速度(0.15G)を用いて減速することによって、行動決定を行う箇所から交差点の停止線至るまでの時間をtとする。行動決定を行う箇所は、停止線で止まるために、ブレーキの踏み込み開始を行う箇所である。なお、自車の停車位置は、説明を容易にするために、信号機の位置と同じ位置とする。
 行動決定を行う箇所から交差点の停止線までの距離(d[m])は式(1)で表される。
Figure JPOXMLDOC01-appb-M000001
 また、交差点に向かうときの速度(v)と時間(t)との間には式(2)の関係が成り立つ。
Figure JPOXMLDOC01-appb-M000002
 そして、式(1)及び式(2)から、距離(d)は式(3)で表される。
Figure JPOXMLDOC01-appb-M000003
 例えば法定速度を60[km/h]として、式(3)にv=60[km/h]を代入することで、d=94.48[m]となる。車両の挙動として、交差点に向かって車速(v=60[km/h])で走行している場合に、制動距離が94.48[m]となる。そして、自動運転の際には、このような車両の挙動で、車両が停止線で止まるためには、制動距離を確保した上で、自車は信号機を認識する必要がある。すなわち、式(3)で表す制動距離は必要認識距離に相当し、距離測定部4は、上記の演算式を用いて、車速から必要認識距離を測定できる。
 なお、必要認識距離は、レイアウト上における地物の位置(図2の例では、交差点における信号機の位置)に応じて変更させてもよい。例えば、ある交差点において、信号機が走行経路上で交差点の手前に設定されている場合(図2を参照)で、停止線で車両を停車させる自動運転を想定する。この場合には、停止線の位置と信号機の位置が、近い位置にあるため、必要認識距離は、少なくとも車両の制動距離分を確保できれば、車両は信号機を認識しつつ、停止線で停車させることができる。
 一方、信号機が走行経路上で交差点の奥に設定されている場合で、停止線で車両を停車させる自動運転を想定する。この場合には、走行経路上で、信号機は停止線よりも遠くに設定されている。そのため、必要認識距離は、車両の制動距離に停止線から信号機までの距離を加えた距離となる。
 ステップS7にて、認識判断部6は、自車の位置に対して、センサ12の検出範囲を設定する。自車の位置は、認識対象となる地物に対して、必要認識距離分、離れた位置である。
 例えば、センサ12は、カメラの他に、ミリ波、レーダー、レーザーなど、複数のセンサが自車に設けられており、お互いのセンサが検出範囲を補完しあうように設けられたとする。ここでは、センサ性能の典型値(ノミナル値)として、センサの検出範囲(検出距離)は、ミリ波では200メートル、レーダーでは数百メートル、レーザーでは100メートル、カメラで数十メートルとなる。
 センサの検出範囲は、距離だけでなく、角度でも規定される。ミリ波では検出範囲は比較的狭角であるが、カメラはレンズの広角によって、検出範囲を狭くしたり広くしたり選択できる。
 複数のセンサによって同じ範囲をカバーすることで、認識ミスを低減するように、各センサが配置されている場合には、それらのセンサによる最大検出範囲をセンサの検出範囲としてもよいし、最小検出範囲をセンサの検出範囲としてもよい。
 以下では、説明を容易にするためにセンサ12の撮像範囲をセンサの検出範囲(例えば50メートルとする)として説明する。
 ステップS8にて、認識判断部6は、センサ12の検出範囲と必要認識距離とを比較することで、地物がセンサ12の検出範囲外にあるか否かを判断する。必要認識距離がセンサ12の検出範囲より大きい場合には、認識判断部6は、地物がセンサ12の検出範囲外にあると判断する。一方、必要認識距離がセンサ12の検出範囲以下である場合には、認識判断部6は、地物がセンサ12の検出範囲内にあると判断する。
 そして、地物がセンサ12の検出範囲外にある場合には、ステップS9にて、認識判断部6は、地物の認識が困難であると判断する。一方、地物がセンサ12の検出範囲内にある場合には、ステップS10にて、認識判断部6は、地物の認識が可能であると判断する。
 図4A、図4Bに示す2パターンのレイアウトを用いて、ステップS5~S101の制御フローを説明する。
 図4A及び図4Bは、交差点のレイアウトを示した図である。図4Aの例では、交差点を通過する前に、自車が走行している道路の法定速度を40km/hとする。図4Bの例では、交差点を通過する前に、自車が走行している道路の法定速度を60km/hとする。
 図4Aの例では、車速推定部5は、信号機101に向かう車速(40km/h)を推定する。距離測定部4は、上記の演算式を用いて、必要認識距離(42m)を演算する。認識判断部6は、自車の位置に対して、センサ12の検出範囲(50m)を設定する。
 そして、必要認識距離はセンサの検出範囲以下となるため、図4Aに示すように、信号機101はセンサ12の検出範囲内に存在することになる。認識判断部6は、信号機101を認識可能な地物として判断する。
 図4Bの例では、車速推定部5は、信号機101に向かう車速(60km/h)を推定する。距離測定部4は、上記の演算式を用いて、必要認識距離(約93m)を演算する。認識判断部6は、自車の位置に対して、センサ12の検出範囲(50m)を設定する。
 そして、必要認識距離はセンサの検出範囲より大きいため、図4Bに示すように、信号機101はセンサ12の検出範囲外に存在することになる。認識判断部6は、信号機101を認識困難な地物として判断する。
 なお、走行経路上に、運転者が従うべき地物が複数ある場合には、まず自車の最寄りの地物に着目して、ステップS5~S10の制御フローを行い、自車から次に近い地物に着目して、ステップS5~S10の制御フローを行う。これにより、自車がこれから走行する走行経路上に存在する全ての地物について、ステップS5~S10の制御フローを行う。
 ステップS11にて、回避箇所設定部7は、地物の認識が困難であると判断された箇所を、回避箇所として特定する。図4A、図4Bの例では、図4Aに示す交差点は回避箇所に設定されないが、図4Bに示す交差点は回避箇所として設定される。すなわち、図4Bに示す交差点では、自車が、推定された車速で交差点に向かって走行した場合に、自車は、行動決定の際に、信号機101をセンサ12により認識することが困難である。そのため、図4Bに示す交差点は回避箇所として設定される。
 ステップS12にて、走行経路演算部2は、回避箇所を回避した上で、車両の現在地から目標地点までの走行経路を演算する。走行経路の演算方法としては、ダイキストラ法などのグラフ探索理論に基づく手法を用いることが考えられる。また、走行経路演算部2は、回避箇所(ノード)に接続されるリンクに対して、他のリンクよりも大きな重み付けをつけることで、重み付けのあるリンクを通らない走行経路を演算してもよい。そして、走行経路演算部2の演算結果は運転制御部10に出力される。そして、図3に示す制御フローが終了する。
 このように、本実施形態では、自車の走行予定の経路上において、通過しなければならない信号付き交差点が存在する場合に、自車が実際に交差点に近づく前に、車載されたセンサ12の検出範囲に基づいて、信号機の認識の困難性を判断しているため、当該信号機付きの交差点を通過すべきか回避すべきかを判断できる。そして、運転支援車両や自動運転車両が、地物の認識がしやすく、走行可能である走行経路を演算することができる。
 上記のように、本実施形態では、地物の認識のために必要とする自車から地物までの必要認識距離を測定する。また、センサ12の検出範囲及び必要認識距離に基づき、地物の認識の困難性を判断し、当該地物の認識が困難であると判断した箇所を回避した上で走行経路を演算する。これにより、行動決定を行う際に必要となる地物の認識しやすさに応じて、自車が目的地に至るまでの走行経路を演算しているので、運転支援車両又は自動運転車両は、走行可能な経路と走行困難な経路を演算し、車両にとって地物を認識し易い経路を演算することができる。
 また本実施形態では、自車に対して必要認識距離を離した箇所に位置する地物がセンサ12の検出範囲外に存在する場合には、当該地物の認識が困難であると判断する。これにより、センサ12の検出範囲に応じて、地物の認識が困難である否か判定できる。
 また本実施形態では、自車の車速を推定し、推定された車速に基づいて必要認識距離を測定する。これにより、実際に走行経路を走行する際の車速条件下で、必要認識距離を測定できる。
 また本実施形態では、法定速度を車速として推定し、法定速度に基づいて必要認識距離を測定する。これにより、最も厳しい速度条件で、地物の認識の困難性を判断できる。
 また、本実施形態では、過去に走行したときの車速として推定し、推定された速度に基づいて必要認識距離を測定する。これにより、実際の走行条件に合わせて、地物の認識の困難性を判断できる。
 また、本実施形態では、センサ12の典型値に応じてセンサ12の検出範囲を設定している。これにより、センサ12の誤差やセンサ12による検出範囲の傾向を地物の困難性の判断に反映させることができる。
 また本実施形態では、自車の挙動に基づいて必要認識距離を測定する。これにより、典型的な自車の挙動を考慮して必要認識距離を測定するので、運転支援車両や自動運転車両でも、ヒューマンドライバー相当の滑らかな運転を実現できる。
 なお、本発明の変形例として、認識判断部6は、走行経路の混雑状態に応じてセンサ12の検出範囲を設定してもよい。走行経路の混雑状態を示すデータは、データベース11に記録されてもよく、また車両の外部から取得してもよい。混雑状態は、認識の困難度の対象となる地物に向かって走行する際の、車両の混雑状態である。例えば、図2のレイアウトで、車両が一定時間、継続して混雑している場合には、自車と信号機101との間に他車が存在するため、信号機101が他車に隠れてしまい、センサ12の検出範囲は、自車から他車までの距離に制限されてしまう。そのため、車両の混雑が予想される走行経路においては、認識判断部6は、車両の混雑度が大きいほど、検出範囲を短くする。なお、車両の混雑が一時的なものである場合には、認識判断部6は、センサ12の検出範囲を典型値に応じて設定すればよい。これにより、想定される車両の混雑状況によってセンサ12の検出範囲が変化する場合に、検出範囲を考慮した上で、行動決定を行う際に必要となる地物情報が認識可能か否かを判断できる。
 なお、上記において、走行経路演算装置が自動運転車両に搭載した場合を一例として説明したが、走行経路演算装置は、自動運転車両に限らず、運転支援車両に搭載されてもよい。運転支援車両は、ドライバーによる車両の運転、例えば車線変更する際の運転を支援する車両である。そして、運転支援車両が、カメラ等のセンサを用いて車線変更を支援する場合に、車線変更の場所を認識した上で、運転を支援する。走行経路演算装置は、当該車線変更の場所を認識し易い走行経路を演算する。そして、運転支援車両は、演算された当該走行経路に基づいて、運転を支援する。
 なお、走行経路演算装置は、車両の走行中に限らず、車両の停車中に走行経路の演算を行ってもよい。
 上記の走行経路演算部2が本発明の「走行経路演算手段」に相当し、情報取得部3が本発明の「情報取得手段」に相当し、距離測定部4が本発明の「距離測定手段」に相当し、車速推定部5が本発明の「車速推定手段」に相当し、認識判断部6が本発明の「判断手段」に相当し、センサ12が本発明の「地物検出手段」に相当する。
《第2実施形態》
 図5は、発明の他の実施形態に係る走行経路演算装置のブロック図である。本例では上述した第1実施形態に対して、逸脱量演算部8を有する点が異なる。これ以外の構成は上述した第1実施形態と同じであり、その記載を援用する。
 認識判断部6は、回避箇所設定部7及び逸脱量演算部8を有している。逸脱量演算部8はセンサ12の検出範囲に対して逸脱している必要認識距離の逸脱量を演算する。そして、認識判断部6は、演算した逸脱量に基づいて地物の認識の困難性を判断する。
 次に、具体例を挙げつつ、走行経路演算装置の制御について説明する。図6は走行経路演算装置の制御フローを示すフローチャートである。
 図7A及び図7Bは、交差点のレイアウトを示した図である。図7A及び図7Bは、交差点の手前を走行していた自車の車速が60km/hから40km/hに減速したときの状態を説明するための図である。図7Aは、自車が減速前の車速(60km/h)で走行している状態を示し、図7Bは、自車が減速後の車速(40km/h)で走行している状態を示す。
 ステップS21~ステップS31の制御フローは、第1実施形態のステップS1~ステップS11の制御フローと同様である。
 ステップS32にて、逸脱量演算部8は、必要認識距離から検出範囲を減算して、逸脱量を演算する。逸脱量の演算対象となる必要認識距離は、地物の認識が困難であると判断された箇所における必要認識距離である。例えば、図7Aの例で、信号機101が認識困難な地物として判断され、信号機101付きの交差点が回避箇所として設定された、とする。図7Aに示すように、必要認識距離は、自車の制動距離に相当し、減速度を0.15Gとすると、約95mとなる。そして、センサ12の検出範囲を50mとすると、逸脱量は、必要認識距離と検出範囲との差分から、45mとなる。
 図7Aの例では、必要認識距離が、検出範囲に対して逸脱量(45m)分、長くなっているため、図7Aの交差点が回避箇所として設定される。必要認識距離は自車の制動距離に相当するため、制動距離が短くなれば、逸脱量も小さくなる。すなわち、交差点の手前を走行する車両の車速が60km/hから減速されれば、必要認識距離が短くなり、当該交差点における回避箇所の設定を解除してもよい状態となる。
 例えば、図7Aに示すレイアウトにおいて、自車は、交差点周辺における信号機101の表示の変化を考慮して、あらかじめ40km/hまで減速を行うことができると、仮定する。また例えば、交差点で右折をする場合、又は、左折をする場合には、自車は、一時的に減速、又は、停止することが必要になる。そのため、走行経路や道路のレイアウト等に応じて、自車が交差点の手前走行している場合には、車速を法定速度よりも減速させるような、車両の挙動を起こすことになる。車速が40km/hとし、減速度0.15Gとすると、制動距離は42km/hとなる。図7Bに示すように、必要認識距離は検出範囲以下となる。そのため信号機101は、自車により認識可能な地物となる。そして、交差点における回避箇所の設定は解除可能となる。
 図7A及び図7Bの例では、車速が60km/hから40km/hに減少することで、制動距離は、95mから42mとなり、約53m程度、少なくなった。図7Aの例で、逸脱量は45mであったが、速度の減少に伴う必要認識距離の減少によって、図7Bの例では逸脱量は0m以下となる。すなわち、逸脱量が、車速の減速による必要認識距離の減少量以下であれば、回避箇所の設定は解除可能となる。
 ステップS33にて、認識判断部6は、回避箇所として設定された道路のレイアウト及び演算された走行経路に基づいて、閾値を設定する。閾値は、車速の減速による必要認識距離の減少量を示している。車速の減速量が大きいほど、閾値は大きくなる。例えば、演算された走行経路により、交差点で右折又は左折することになっている場合には、当該交差点に近づいた場合に、自車は車速を減少する。そのため、このような場合も、大きな閾値が設定される。例えば、図7A及び図7Bの例では、車速が60km/hから40km/hへ減少することに伴い、必要認識距離の減少量は53m(=95m-42m)となる。そのため、認識判断部6は、閾値を53mに設定する。
 ステップS34にて、認識判断部6は、逸脱量と閾値とを比較する。逸脱量が閾値以下である場合には、ステップS35にて、認識判断部6は、回避箇所として設定された箇所の地物を認識可能と判断する。そして、回避箇所設定部7は、当該地物をもつ回避箇所の設定を解除する。一方、逸脱量が閾値より大きい場合には、回避箇所設定部7は、回避箇所の設定を解除しない。
 ステップS36にて、走行経路演算部2は、回避箇所を回避した上で、車両の現在地から目標地点までの走行経路を演算する。
 図7A、図7Bの例では、逸脱量(45m=必要認識距離(95m)-検出範囲(50m))は閾値(53m)以下であるため、交差点における回避箇所の設定が解除される。そして、走行経路演算部2により、図7A、図7Bに示す交差点を含めた走行経路が演算される。
 ステップS31において設定された回避箇所が多く存在する場合に、全ての回避箇所を回避しようとすると、自動運転で走行可能な経路が存在しない場合も考えられる。本実施形態では、このような場合に、回避箇所における逸脱量を演算し、自車の減速を考慮した上で、回避箇所の設定を解除できるか否か判断している。
 このように、本実施形態では、自車の走行予定の経路上において、通過しなければならない信号付き交差点が存在する場合に、自車が実際に交差点に近づく前に、車載されたセンサ12の検出範囲に基づいて、信号機の認識の困難性を判断しつつ、認識な困難な地物をもつ場所を、回避箇所として設定する。設定された回避箇所について、逸脱量を演算しつつ、閾値と当該逸脱量とを比較する。そして、その比較結果に基づいて、回避箇所の設定を解除するか否かを判断する。これにより、運転支援車両や自動運転車両が走行可能な経路であり、滑らかな挙動を示す走行経路を計算することができる。
 上記のように、本実施形態では、センサ12の検出範囲に対して逸脱している必要認識距離の逸脱量を演算し、当該逸脱量に基づいて地物の認識の困難性を判断する。これにより、逸脱量が少ない場合を回避箇所とせずに、経路に含めた上で走行経路を演算できる。
 また本実施形態では、自車の車速の減速量に基づいて逸脱量を演算する。これにより、通常走行を行った場合には回避しなければならない場所でも、減速することで走行可能な場合を、走行経路に含めることができる。
 なお、認識判断部6は、ステップS28~S31の制御処理の結果として回避箇所に設定したものを、ステップS32~ステップS35の制御処理の結果として解除しているが、ステップS28の「Yes」の条件、及びステップS34の「Yes」の条件を満たした場合に、回避箇所を設定するように制御してもよい。
 なお、本発明の変形例として、認識判断部6は、走行経路上に存在する複数の箇所で、複数の走行経路毎に逸脱量を演算し、複数の走行経路毎に逸脱量の総和を演算する。複数の箇所は、自車の行動決定の際に、自車が認識する地物をもつ場所である。そして、走行経路演算部2は、複数の走行経路のうち、最も総和が高い走行経路を、自車が走行する走行経路から除外するように、走行経路を演算する。これにより、複数の走行経路のうち、走行経路が直線的ではない、もしくは、減速する回数が多いなど、走行しづらい経路が除外されるため、より自然な走行経路を演算することができる。なお、認識判断部6は、逸脱量の総和の代わりに、所定値よりも高い逸脱量の数を走行経路毎に演算し、走行経路演算部2は、当該逸脱量の数が最も多い走行経路を、自車が走行する走行経路から除外するように、走行経路を演算してもよい。
1…車両情報検出部
2…走行経路演算部
3…情報取得部
4…距離測定部
5…車速推定部
6…認識判断部
7…回避箇所設定部
8…逸脱度演算部

Claims (11)

  1.  自車が目的地に到着するまでの走行経路を演算する走行経路演算手段と、
     地物を検出する地物検出手段と、
     前記自車の行動決定の際に前記自車が前記地物の認識のために必要とする、前記自車から前記地物までの距離を必要認識距離として測定する距離測定手段と、
     前記地物検出手段の検出範囲及び前記必要認識距離に基づき、前記地物の認識の困難性を判断する判断手段とを備え、
    前記走行経路演算手段は、前記判断手段により前記地物の認識が困難であると判断された箇所を回避した上で前記走行経路を演算する
    ことを特徴とする走行経路演算装置。
  2. 請求項1記載の走行経路演算装置において、
    前記判断手段は、前記自車に対して前記必要認識距離を離した箇所に位置する前記地物が前記検出範囲外に存在する場合には、前記地物の認識が困難であると判断する
    ことを特徴とする走行経路演算装置。
  3. 請求項1又は2に記載の走行経路演算装置において、
     前記自車の車速を推定する車速推定手段を備え、
    前記距離測定手段は、前記車速に基づいて前記必要認識距離を測定する
    ことを特徴とする走行経路演算装置。
  4. 請求項3記載の走行経路演算装置において、
    前記車速推定手段は、前記走行経路の法定速度を前記車速として推定する
    ことを特徴とする走行経路演算装置。
  5. 請求項3記載の走行経路演算装置において、
    前記車速推定手段は、前記走行経路上の所定の道路を過去に走行したときの前記車速に基づき、前記所定の道路を走行する際の前記車速を推定する
    ことを特徴とする走行経路演算装置。
  6. 請求項1~5のいずれか一項に記載の走行経路演算装置において、
    前記検出範囲は、前記地物検出手段の典型値に応じて設定されている
    ことを特徴とする走行経路演算装置。
  7. 請求項1~5のいずれか一項に記載の走行経路演算装置において、
    前記検出範囲は、前記走行経路の混雑状態に応じて設定されている
    ことを特徴とする走行経路演算装置。
  8. 請求項1~7のいずれか一項に記載の走行経路演算装置において、
    前記距離測定手段は、前記自車の挙動に基づいて前記必要認識距離を測定する
    ことを特徴とする走行経路演算装置。
  9. 請求項1~8のいずれか一項に記載の走行経路演算装置において、
    前記判断手段は、
     前記検出範囲に対して逸脱している前記必要認識距離の逸脱量を演算し、
     前記逸脱量に基づいて前記地物の認識の困難性を判断する
    ことを特徴とする走行経路演算装置。
  10. 請求項9に記載の走行経路演算装置において、
    前記判断手段は、
     前記自車の車速の減速量に基づいて前記逸脱量を演算する
    ことを特徴とする走行経路演算装置。
  11. 請求項9又は10に記載の走行経路演算装置において、
    前記判断手段は、
     前記走行経路上の前記地物の各箇所で、複数の前記走行経路毎に前記逸脱量を演算し、
    前記走行経路演算手段は、
     前記複数の走行経路のうち、前記逸脱量の総和が最も高い走行経路、又は、所定値よりも高い前記逸脱量の数が最も多い走行経路を、前記自車の走行する前記走行経路として演算しない
    ことを特徴とする走行経路演算装置。
PCT/JP2014/078124 2014-10-22 2014-10-22 走行経路演算装置 WO2016063384A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
MX2017005117A MX359043B (es) 2014-10-22 2014-10-22 Dispositivo de cálculo de la ruta de desplazamiento.
CN201480082851.3A CN107076565B (zh) 2014-10-22 2014-10-22 行驶路径运算装置
RU2017116735A RU2660425C1 (ru) 2014-10-22 2014-10-22 Устройство вычисления маршрута движения
BR112017008088-5A BR112017008088B1 (pt) 2014-10-22 2014-10-22 Dispositivo de cálculo de rota de movimento
EP14904511.4A EP3211375B1 (en) 2014-10-22 2014-10-22 Travel route calculation apparatus
JP2016555008A JP6304393B2 (ja) 2014-10-22 2014-10-22 走行経路演算装置
US15/520,313 US10585435B2 (en) 2014-10-22 2014-10-22 Travel route calculation device
PCT/JP2014/078124 WO2016063384A1 (ja) 2014-10-22 2014-10-22 走行経路演算装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/078124 WO2016063384A1 (ja) 2014-10-22 2014-10-22 走行経路演算装置

Publications (1)

Publication Number Publication Date
WO2016063384A1 true WO2016063384A1 (ja) 2016-04-28

Family

ID=55760453

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/078124 WO2016063384A1 (ja) 2014-10-22 2014-10-22 走行経路演算装置

Country Status (8)

Country Link
US (1) US10585435B2 (ja)
EP (1) EP3211375B1 (ja)
JP (1) JP6304393B2 (ja)
CN (1) CN107076565B (ja)
BR (1) BR112017008088B1 (ja)
MX (1) MX359043B (ja)
RU (1) RU2660425C1 (ja)
WO (1) WO2016063384A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10838422B2 (en) 2017-04-13 2020-11-17 Panasonic Intellectual Property Corporation Of America Information processing method and information processing apparatus

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018209576A1 (en) 2017-05-16 2018-11-22 Beijing Didi Infinity Technology And Development Co., Ltd. Systems and methods for digital route planning
KR101973627B1 (ko) * 2017-07-11 2019-04-29 엘지전자 주식회사 차량에 구비된 차량 제어 장치 및 차량의 제어방법
JP6664371B2 (ja) * 2017-12-13 2020-03-13 本田技研工業株式会社 物体認識装置、物体認識方法及び車両
US11847838B2 (en) * 2018-09-25 2023-12-19 Hitachi Astemo, Ltd. Recognition device
US11402842B2 (en) 2019-01-18 2022-08-02 Baidu Usa Llc Method to define safe drivable area for automated driving system
US11167751B2 (en) * 2019-01-18 2021-11-09 Baidu Usa Llc Fail-operational architecture with functional safety monitors for automated driving system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008157820A (ja) * 2006-12-25 2008-07-10 Fujitsu Ten Ltd 標識情報提供装置
JP2012247315A (ja) * 2011-05-27 2012-12-13 Zenrin Co Ltd 経路案内装置
JP2013083498A (ja) * 2011-10-07 2013-05-09 Mic Ware:Kk ナビゲーション装置、ナビゲーション方法、およびプログラム

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1679195A1 (ru) * 1989-10-31 1991-09-23 С.П.Ботуз с (53) 681.325,61 (088.8) Устройство дл прогнозировани состо ни систем управлени
JP4724043B2 (ja) * 2006-05-17 2011-07-13 トヨタ自動車株式会社 対象物認識装置
JP4680131B2 (ja) * 2006-05-29 2011-05-11 トヨタ自動車株式会社 自車位置測定装置
RU2395122C2 (ru) * 2006-11-15 2010-07-20 Федеральное государственное образовательное учреждение высшего профессионального образования Мурманский государственный технический университет Способ управления движением подвижных объектов
JP4984152B2 (ja) * 2007-08-31 2012-07-25 アイシン・エィ・ダブリュ株式会社 画像認識システム、サーバ装置、及び画像認識装置
JP2009075010A (ja) * 2007-09-21 2009-04-09 Denso It Laboratory Inc 経路長算出装置、経路長算出方法、経路長算出プログラム及び車両用空調装置ならびに移動物体搭載機器の制御装置
JP2009257991A (ja) * 2008-04-18 2009-11-05 Denso Corp カーナビゲーションシステム
JP5233606B2 (ja) * 2008-11-19 2013-07-10 富士通株式会社 絶対移動経路算出装置及び方法、並びにプログラム
US20110190972A1 (en) * 2010-02-02 2011-08-04 Gm Global Technology Operations, Inc. Grid unlock
WO2012014280A1 (ja) * 2010-07-27 2012-02-02 トヨタ自動車株式会社 運転支援装置
US8509982B2 (en) * 2010-10-05 2013-08-13 Google Inc. Zone driving
US9182761B2 (en) 2011-08-25 2015-11-10 Nissan Motor Co., Ltd. Autonomous driving control system for vehicle
EP2765048A4 (en) * 2011-10-03 2016-03-09 Toyota Motor Co Ltd FAILSAFE SYSTEM FOR ONE VEHICLE
CN102944246B (zh) * 2012-10-30 2015-07-29 湖南赛格导航技术研究有限公司 车辆行驶线路偏移监控系统
RU128747U1 (ru) * 2012-12-25 2013-05-27 Открытое Акционерное Общество "Российские Железные Дороги" Устройство для сбора данных путевых объектов и установленных скоростей движения для систем автоведения и безопасности
US10124800B2 (en) * 2014-05-30 2018-11-13 The Boeing Company Variably controlled ground vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008157820A (ja) * 2006-12-25 2008-07-10 Fujitsu Ten Ltd 標識情報提供装置
JP2012247315A (ja) * 2011-05-27 2012-12-13 Zenrin Co Ltd 経路案内装置
JP2013083498A (ja) * 2011-10-07 2013-05-09 Mic Ware:Kk ナビゲーション装置、ナビゲーション方法、およびプログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3211375A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10838422B2 (en) 2017-04-13 2020-11-17 Panasonic Intellectual Property Corporation Of America Information processing method and information processing apparatus

Also Published As

Publication number Publication date
MX2017005117A (es) 2017-07-14
RU2660425C1 (ru) 2018-07-06
EP3211375A4 (en) 2018-01-24
JP6304393B2 (ja) 2018-04-04
BR112017008088A2 (pt) 2017-12-19
US20170322557A1 (en) 2017-11-09
BR112017008088B1 (pt) 2022-04-05
CN107076565A (zh) 2017-08-18
EP3211375A1 (en) 2017-08-30
JPWO2016063384A1 (ja) 2017-09-21
MX359043B (es) 2018-09-13
US10585435B2 (en) 2020-03-10
CN107076565B (zh) 2020-03-17
EP3211375B1 (en) 2022-02-09

Similar Documents

Publication Publication Date Title
JP6304393B2 (ja) 走行経路演算装置
JP6399100B2 (ja) 走行経路演算装置
JP6323565B2 (ja) 運転支援装置
CN110667578B (zh) 自动驾驶车辆的横向决策系统及横向决策确定方法
US10703362B2 (en) Autonomous driving autonomous system, automated driving assistance method, and computer program
US10239539B2 (en) Vehicle travel control method and vehicle travel control device
US8346463B2 (en) Driving aid system and method of creating a model of surroundings of a vehicle
KR20190014871A (ko) 차량의 후방에 위치한 응급 차량에 기초하여 상기 차량의 주행 경로를 변경하는 장치 및 방법
US20190156664A1 (en) Safety driving assistant system, server, vehicle and program
KR20200075915A (ko) 차량의 주행 제어 장치 및 그 방법
US20190130742A1 (en) Safety drving assistant system, vehicle, and program
US20180043897A1 (en) Autonomous driving system
WO2020066505A1 (ja) 認識装置
JP5565303B2 (ja) 運転支援装置及び運転支援方法
US11161506B2 (en) Travel support device and non-transitory computer-readable medium
JP2013019680A (ja) 走行制御装置
CN109425861B (zh) 本车位置可信度运算装置
CN114475649A (zh) 自动驾驶控制装置和自动驾驶控制方法
JP2023168399A (ja) 地図データ生成方法
JP7019259B2 (ja) 運転支援方法及び運転支援装置
KR20220136679A (ko) 주행 제어 장치 및 방법
JP2021101268A (ja) 自動運転車
JPWO2020053612A1 (ja) 車両挙動予測方法及び車両挙動予測装置
KR20230045391A (ko) 교통 흐름 방해 타겟 검출 장치 및 그 방법
JP2021041801A (ja) 走行軌道推定方法、車両制御方法及び走行軌道推定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14904511

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016555008

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15520313

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: MX/A/2017/005117

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014904511

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017116735

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017008088

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112017008088

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170419