WO2016061839A1 - 真空板材及其制造方法 - Google Patents

真空板材及其制造方法 Download PDF

Info

Publication number
WO2016061839A1
WO2016061839A1 PCT/CN2014/089950 CN2014089950W WO2016061839A1 WO 2016061839 A1 WO2016061839 A1 WO 2016061839A1 CN 2014089950 W CN2014089950 W CN 2014089950W WO 2016061839 A1 WO2016061839 A1 WO 2016061839A1
Authority
WO
WIPO (PCT)
Prior art keywords
vacuum
plate
sealing
less
equal
Prior art date
Application number
PCT/CN2014/089950
Other languages
English (en)
French (fr)
Inventor
田永姜
Original Assignee
太阳真空玻璃有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201410558660.1A external-priority patent/CN104329558B/zh
Priority claimed from CN201420607158.0U external-priority patent/CN204358415U/zh
Application filed by 太阳真空玻璃有限公司 filed Critical 太阳真空玻璃有限公司
Priority to EP14859322.1A priority Critical patent/EP3210944B1/en
Priority to CA2888398A priority patent/CA2888398C/en
Priority to US14/431,971 priority patent/US10000407B2/en
Publication of WO2016061839A1 publication Critical patent/WO2016061839A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/20Uniting glass pieces by fusing without substantial reshaping
    • C03B23/24Making hollow glass sheets or bricks
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/6612Evacuated glazing units
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/663Elements for spacing panes
    • E06B3/66304Discrete spacing elements, e.g. for evacuated glazing units
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/67Units comprising two or more parallel glass or like panes permanently secured together characterised by additional arrangements or devices for heat or sound insulation or for controlled passage of light
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/673Assembling the units
    • E06B3/67339Working the edges of already assembled units
    • E06B3/6736Heat treatment
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/677Evacuating or filling the gap between the panes ; Equilibration of inside and outside pressure; Preventing condensation in the gap between the panes; Cleaning the gap between the panes
    • E06B3/6775Evacuating or filling the gap during assembly
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/673Assembling the units
    • E06B3/67326Assembling spacer elements with the panes
    • E06B3/6733Assembling spacer elements with the panes by applying, e.g. extruding, a ribbon of hardenable material on or between the panes
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/673Assembling the units
    • E06B3/67326Assembling spacer elements with the panes
    • E06B3/67334Assembling spacer elements with the panes by soldering; Preparing the panes therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/24Structural elements or technologies for improving thermal insulation
    • Y02A30/249Glazing, e.g. vacuum glazing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B80/00Architectural or constructional elements improving the thermal performance of buildings
    • Y02B80/22Glazing, e.g. vaccum glazing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/23Sheet including cover or casing
    • Y10T428/231Filled with gas other than air; or under vacuum
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/23Sheet including cover or casing
    • Y10T428/239Complete cover or casing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24628Nonplanar uniform thickness material
    • Y10T428/24669Aligned or parallel nonplanarities
    • Y10T428/24694Parallel corrugations
    • Y10T428/24711Plural corrugated components

Definitions

  • the present invention relates to the field of sheet metal technology, and more particularly to a vacuum sheet and a method of manufacturing the same.
  • vacuum sheets of various functions have emerged, especially vacuum boards with heat insulation, sound insulation, heat preservation and cold preservation are widely used.
  • the multifunctional vacuum plate is manufactured by placing the solder glass on the periphery of the plate, placing a large number of support columns on one of the plates, and putting the two plates together to allow them to move together. Heating the solder glass around the sheet to melt it so that the two sheets are fixed on the support column, then cooling the solder glass to cure the edge seal, and then evacuating the sheet through a tube that is sealed through a sheet or edge Finally, the evacuated tube is melted and sealed to form a vacuum sheet.
  • the plates of different layers are supported by the same supporting structure.
  • the surface of the plates is not absolutely flat, which will cause the supporting structure between the plates to be supported, and some supporting structures because of the space Can not support and fail, so that it can not effectively play a supporting role, the vacuum sheet is easy to break, resulting in structural hazards.
  • the present invention provides a vacuum sheet and a method of manufacturing the same to overcome the deficiencies in the prior art.
  • the invention provides a vacuum plate comprising: at least two layers of plates, a plurality of support structures of different heights, and an organic film;
  • the plates of adjacent layers are separated by a plurality of support structures of different heights;
  • the edges of the at least two layers of sheets are closed by a seal mixture
  • An edge of the at least two layers of sheets and an outer side of the seal mixture are covered with the organic membrane.
  • the invention provides a method for manufacturing a vacuum plate, comprising the following steps:
  • the first plate is aligned with the second plate, and the spacing between the plates at the position where the support structure is placed is measured, wherein a spacing between each adjacent two of the support structures is 10-120 mm;
  • An organic film is coated on the edges of the first and second sheets and the outside of the seal mixture to form a vacuum sheet.
  • the corresponding height support structure is arranged at a corresponding position between the plate layers, and the height of the support structure matches the gap height of the corresponding portion inside the vacuum plate. Therefore, each support structure can be clamped by the upper and lower plates, effectively supporting the utility, and reducing the safety hazard caused by the damage of the vacuum plate structure.
  • FIG. 1 is a schematic structural view of an embodiment of a vacuum sheet according to the present invention.
  • FIG. 2 is a top plan view of an AA' surface of an embodiment of a vacuum sheet according to the present invention
  • FIG. 3 is a schematic structural view of an embodiment of a sealing mixture of a vacuum plate according to the present invention.
  • FIG. 4 is a schematic structural view of an embodiment of an exhaust port of a vacuum plate according to the present invention.
  • 5-1 is a schematic structural view of an embodiment of an exhaust pipe of a vacuum plate according to the present invention.
  • 5-2 is a schematic structural view of another embodiment of an exhaust pipe of a vacuum plate according to the present invention.
  • FIG. 6 is a schematic structural view of a getter tank of an embodiment of a vacuum sheet according to the present invention.
  • Figure 7 is a schematic structural view of an embodiment of a vacuum tempered glass sheet according to the present invention.
  • Figure 8 is a schematic structural view of an embodiment of a laminated board according to the present invention.
  • Figure 9 is a schematic structural view of an embodiment of a hollow sheet material according to the present invention.
  • Figure 10 is a flow chart showing an embodiment of a vacuum sheet manufacturing method of the present invention.
  • FIG. 1 is a schematic structural view of an embodiment of a vacuum sheet according to the present invention
  • FIG. 2 is a top view of the AA' surface of an embodiment of the vacuum sheet of the present invention.
  • the vacuum plate material 01 of the present embodiment includes at least two layers of the plate material 11, a plurality of support structures 12 of different heights, a sealing mixture 13, and an organic film 14.
  • the plates 11 of adjacent layers are separated by a plurality of support structures 12 of different heights, and the edges of at least two layers 11 are closed by the sealing mixture 13 , the edges of at least two layers 11 and the sealing mixture 13
  • the outer side is covered with an organic film 14.
  • the support 12 of the corresponding height is placed at a corresponding position of the sheet 11; the sealing mixture 13 is placed at the edge of the sheet 11; the other sheet 11 is covered on the sheet 11; sequentially stacked into two or more layers of vacuum sheet 01 assembly; in a vacuum chamber between 10 -6 ⁇ 10Pa vacuum, the substrate of the mixture 13 is melted by a high temperature of less than or equal to 700 ° C; After the sealing is taken out, the organic film 14 is covered on the edge of the sheet 11 and the outside of the sealing compound 13; a vacuum sheet 01 is formed.
  • the organic film 14 can effectively isolate the sealing mixture 13 from the air, thereby preventing the erosion of the sealing mixture 13 by moisture and contaminants in the air.
  • the material, size, and shape of the plate 11 of different layers may be the same or different.
  • the material of the plate 11 may be non-tempered glass, or tempered glass, or Semi-tempered glass, or low-emissivity glass, or chemically strengthened glass, or heat-reflecting glass, or wired glass, or embossed glass, or hot-melt glass, or coated glass, or glazed glass Or frosted glass, or engraved glass, or chemically etched glass, or solar glass, or fire-resistant glass, or soda-lime glass, or borosilicate glass, or aluminosilicate glass, or Quartz glass, or glass-ceramic, or porcelain glass, or plexiglass, or porcelain, or metal plates, or solar panels, or plastic plates, or resin plates, or PE A board, or a PC board, or a PMMA board, or a PET board, or a polyimide board, or a composite board, or a combination of the above.
  • the surface of the sheet material may be covered with various metal elemental films,
  • the support structure of the corresponding height is disposed at a corresponding position between the plate layers, and the height of the support structure matches the gap height of the corresponding portion inside the vacuum plate, so that Each support structure can be clamped by two layers of upper and lower plates, which effectively serves as a support and reduces the safety hazard caused by the damage of the vacuum plate structure.
  • each adjacent two support structures 12 may be 10-120 mm.
  • the shape of the support structure 12 may be a columnar structure having a height of 0.1 to 5 mm and a diameter of 0.1 to 5 mm, a spherical structure or a hemispherical structure or a ring structure, or a wire having a diameter of 0.1 to 5 mm and having a diameter of 1 to 1 .
  • the upper and lower two sheets 11 are embossed or etched to form the wire support structure 12, and the lines are preferably arranged in a crosswise manner to form a contact support, so that the support structure 12 can be omitted, and the process cost can be saved.
  • the cross section of the support structure 12 perpendicular to the plate 11 may be a straight column shape, a T shape, a work shape, an X shape, a ten shape, a king shape, or a
  • the earth shape may also be a dry shape, or may be circular or elliptical or semi-circular or annular, and the cross-section of the support structure 12 parallel to the sheet material 11 may be any shape.
  • the material of the support structure 12 may be glass, ceramic, or metal, or getter metal, or crystal, or plastic, or resin, or organic glass, or a combination of any two or more of the above various materials.
  • An inorganic high temperature glue 121 is further disposed on the surface of the support structure 12 and is fixedly connected to the plate 11 of the adjacent layer.
  • the inorganic high temperature glue 121 fixes the support structure 12 in its own position, avoiding the hidden danger caused by the movement of the support structure 12 when the vacuum plate 01 is erected or vibrated.
  • the inorganic high temperature adhesive 121 is a glass having a sealing temperature of less than or equal to 700 ° C, or a ceramic having a sealing temperature of less than or equal to 700 ° C, or a metal having a melting point of less than or equal to 700 ° C, or a soft metal having a Mohs hardness of less than 4. Or an inorganic binder, or an inorganic salt, or a combination of any two or more of any of the above materials.
  • the frame body 141 may be disposed outside the edge of at least two layers of the sheet material 11, and a filler 19 is disposed between the at least two layers of the sheet material 11 and the frame body 141, so that the vacuum sheet can be improved.
  • the material of the frame 141 may be plastic, or metal, or wood, or glass reinforced plastic, or a combination thereof.
  • the material of the filler 19 may be grease, or silica gel, or silicone glue, or rubber, or plastic, or resin, or cement, or a combination thereof.
  • an iron frame is placed around the vacuum plate, and the expanded cement is filled between the vacuum plate and the iron frame to increase the strength of the vacuum plate.
  • the sealing mixture 13 is formed by mixing a substrate 131 and particles 132.
  • the substrate 131 is a glass having a sealing temperature of less than or equal to 700 ° C, or a metal having a melting point of less than or equal to 700 ° C, or a ceramic having a sealing temperature of less than or equal to 700 ° C, or a plastic having a sealing temperature of less than or equal to 700 ° C.
  • the particles 132 may include positioning particles 1321, expanding particles 1322, and viscous particles 1323.
  • the positioning particles 1321 accounted for 0.01% to 30% by volume of the sealing mixture, the expanded particles 1322 accounted for 0.01% to 70% by volume of the sealing mixture, and the viscous particles 1323 accounted for 0.01% by volume of the sealing mixture. % to 50%, the total volume percentage of the three particles is less than or equal to 75%.
  • the diameter of the positioning particles 1321 is less than or equal to the height of the support structure 12, and the softening temperature is higher than 300 °C.
  • the vacuum plate 01 is sealed at a high temperature, the substrate 131 of the sealing mixture 13 is melted, and it is easy to cause the spacing between the upper and lower plates 11 to be too small or even completely under the action of an external force. Touch, causing excessive structural stress.
  • the positioning particles 1321 in this embodiment can play a supporting role, so that the spacing between the edges of the upper and lower plates 11 is not less than the diameter of the positioning particles 1321, thereby avoiding this hidden danger.
  • the diameter of the expanded particles 1322 is less than or equal to the height of the support structure 12, the softening temperature is higher than 300 ° C, and the expansion coefficient is (-200 to 70) ⁇ 10 -7 / ° C. Since the expansion coefficient of the base material 131 of the sealing mixture 13 and the upper and lower two sheets 11 is difficult to be completely matched, stress is easily left after sealing to cause cracking. The expanded particles 1322 can adjust the expansion coefficient of the sealing mixture 13 to match the upper and lower sheets 11 to avoid this hidden danger.
  • the diameter of the viscous particles 1323 is less than or equal to the height of the support structure 12, the softening temperature is higher than 300 ° C, and the wetting angle with the substrate 131 of the sealing compound 13 is less than 90°.
  • the substrate 131 of the sealing mixture 13 is liable to flow and deviate from the sealing portion after melting, resulting in sealing failure. Therefore, after the viscous particles 1323 are added, the substrate 131 of the melted sealing mixture 13 adheres around the unmelted solid viscous particles 1323, and no longer flows around, effectively preventing the sealing failure.
  • FIG. 4 is a schematic view showing the structure of an exhaust port of a vacuum plate of the present invention.
  • the exhaust port 15 may be disposed on the upper surface of at least one layer of the plate 11, and the opening 151 of the exhaust port 15 is located in the vacuum chamber formed between the at least two layers of the plate 11, the exhaust port 15
  • the closure 152 is located outside of the vacuum chamber.
  • a sealing piece 1521 may be further disposed at the closing opening 152 of the exhaust port 15, and a protective cover 1522 may be further disposed on the sealing piece.
  • FIG. 5-1 is a schematic structural view of an embodiment of an exhaust pipe of a vacuum plate of the present invention
  • FIG. 5-2 is a schematic structural view of another embodiment of an exhaust pipe of a vacuum plate of the present invention.
  • the exhaust port 15 may also be provided on the side of at least one layer of the sheet material 11.
  • the exhaust pipe 16 may also be disposed in the exhaust port 15 at the side of at least one layer of the plate material 11.
  • the opening 161 of the exhaust pipe 16 is located in a vacuum chamber formed between at least two layers of the plate material 11, and the exhaust pipe 16
  • the closure 162 is located outside of the vacuum chamber.
  • the venting opening 15 may be located at the corner of the sheet material 11, or at the side of the sheet material 11, and may be sealingly connected to the exhaust pipe 16 by a sealing compound 13. As shown in FIG.
  • Fig. 6 is a schematic view showing the structure of a getter tank according to an embodiment of the vacuum sheet of the present invention.
  • the getter tank 18 may also be disposed on at least one layer of the sheet material 11.
  • the getter tank 18 is filled with a getter 181, and the shape of the getter tank 18 is preferably a bowl shape or a disc shape or Ring.
  • the getter 181 may be an evapotranspiration getter or a non-evaporable getter. After the vacuum-type getter is sealed in the vacuum plate 01, a high-frequency evapotranspiration agent is required to activate the gettering component to absorb a small amount of gas released inside the vacuum plate 01 during use.
  • the getter 181 is a non-evaporable getter
  • the getter component is activated before the vacuum sheet 01 is completed to absorb a small amount of gas released from the internal space during use of the vacuum sheet 01.
  • getter 181 is of a closed type, after the vacuum plate 01 is sealed, a laser is required to open the outer wall of the getter 181, so that the activated getter 181 component can pass through the hole and absorb the inner space of the vacuum plate 01. A small amount of gas released during use.
  • Fig. 7 is a structural schematic view showing an embodiment of a vacuum tempered glass sheet according to the present invention.
  • the plate 11 is a tempered glass plate 71
  • the support structure 12 is a stainless steel support column 72
  • the organic film 14 is a grease 74.
  • the support structure 72 containing the inorganic high temperature glue of a corresponding height is uniformly disposed at the corresponding position of the rectangular tempered glass plate 71 having a thickness of 5 mm.
  • the inorganic high-temperature glue is a tin-bismuth alloy with a melting point of 280 ° C.
  • the support structure is a stainless steel support column 32 having a diameter of 0.2 mm and a height of 0.2-0.8 mm and a tin-cerium-containing alloy on the surface, and the spacing between each adjacent two support columns. It is 30mm.
  • a sealing mixture composed of 5% of positioned particles, 30% of expanded particles, 15% of viscous particles, and a substrate is disposed on the edge of the tempered glass plate 71, and the positioned particles are Kovar alloy balls 733 having a diameter of 0.1 mm.
  • the substrate 734 is melted, and it is easy to cause the spacing between the upper and lower layers of the tempered glass sheet 71 to be too small or even completely contacted by an external force, resulting in excessive structural stress.
  • the Kovar alloy ball 733 in this embodiment can play a supporting role, so that the edge spacing of the upper and lower tempered glass sheets 71 is not less than the diameter of the Kovar alloy ball 733, thereby avoiding this hidden danger.
  • the expanded particles are ceramic powder 731 having a diameter of less than 0.12 mm and a coefficient of expansion of 70 ⁇ 10 -7 . Since the expansion coefficients of the base material 734 and the upper and lower tempered glass sheets 71 are difficult to be completely matched, stress tends to remain after sealing. Causes cracking. The ceramic powder 731 can adjust the expansion coefficient of the substrate 734 to match the upper and lower layers of the tempered glass plate 71, thereby avoiding this hidden danger.
  • the viscous particles are silver powder 732 having a diameter of less than 0.18 mm. Due to the past technology, when the tempered glass plate 71 is sealed at a high temperature, the substrate 734 is easily squirmed and deviated from the sealing portion after melting, resulting in sealing failure. Therefore, after the silver powder 732 is added, the melted substrate 734 adheres around the unmelted solid viscous particles 732 and does not flow around, effectively preventing the sealing failure.
  • the substrate was a tin-bismuth alloy 734 having a melting point of 280 °C.
  • a sealed stainless steel cup having a diameter of 4 mm and a height of 1 mm containing the activated non-evaporable zirconium getter 781 was placed in the getter tank 78.
  • Another piece of the same size, 5 mm thick tempered glass plate 71 was placed on the tempered glass plate 71.
  • a three-layer tempered glass plate 71 assembly is superposed.
  • the sealed mixture was melted by vacuuming at 280 ° C for 5 minutes in a vacuum furnace having a degree of vacuum of 10 -4 Pa, and the three tempered glass sheets 71 were hermetically sealed together. After the sealing is taken out, the grease 74 is covered on the outside of the sealing mixture.
  • the top of the stainless steel cup is perforated with a laser so that the active zirconium powder inside the non-evaporable zirconium getter 781 communicates with the space between the adjacent tempered glass sheets 71, and the residual gas inside the vacuum tempered glass sheet 71 is directly absorbed.
  • the vacuum layers between the tempered glass sheets 71 may or may not communicate with each other, and the vacuum layers communicate with each other when communicating.
  • the vacuum layers may be not connected to each other, even if one vacuum layer fails, the other vacuum layers still have excellent heat insulation effects.
  • the outer surface of the vacuum plate may also cover or paste the functional film, which may be grease, explosion-proof film, or light-shielding film, or light-adjusting film, or filter film, or anti-reflection film, or LOW-E film, or anti-fouling.
  • the functional film may be grease, explosion-proof film, or light-shielding film, or light-adjusting film, or filter film, or anti-reflection film, or LOW-E film, or anti-fouling.
  • the functional film on the surface of the vacuum sheet can give its corresponding special functions: for example, the explosion-proof membrane can improve the impact resistance of the vacuum sheet, and adhere to the sheet fragments after the vacuum sheet is broken to prevent falling off; the light-shielding film can block light; the light-adjusting film can Adjust the amount of light passing through; antifouling film can To reduce the probability of being contaminated; anti-fog film will not fog; anti-bacterial film can avoid bacterial growth; self-cleaning film can be self-cleaning; hydrophilic film can accelerate the rain, the conductive film can be conductive, electromagnetic shielding film can shield electromagnetic waves,
  • the antenna film can receive signals, the special circuit film can have circuit function, the touch film can touch, the LED display film can display LED image, the LCD display film can display LCD image, the OLED display film can display OLED image, the solar film can bring sunlight Converted to electrical energy or thermal energy, color crystal film can be more beautiful.
  • the outer surface of the vacuum tempered glass sheet 71 is covered with an explosion-proof membrane 741.
  • Figure 8 is a schematic view showing the structure of an embodiment of the laminated sheet of the present invention.
  • the outer surface of the vacuum sheet can be combined with non-tempered glass, tempered glass, or semi-tempered glass, or low-emissivity glass, or chemically strengthened glass, or heat-reflecting glass, or wired glass, or embossed glass.
  • hot-melt glass or coated glass, or glazed glass, or frosted glass, or engraved glass, or chemically etched glass, or solar glass, or fire-resistant glass, or soda-lime glass Or borosilicate glass, or aluminosilicate glass, or quartz glass, or glass-ceramic, or porcelain glass, or plexiglass, or porcelain, or metal, or solar a battery plate, or a plastic plate, or a resin plate, or a PE plate, or a PC plate, or a PMMA plate, or a PET plate, or a polyimide plate, or a composite plate, etc.
  • a rubber sheet which may be a transparent or opaque, or colored, or electrochromic light film, or a thermochromic light film, or a photochromic light film, or a filter film, or LOW-E film, or electromagnetic shielding film, or conductive film, or antenna film, or special Circuit film, or touch film, or LED display film, or LCD display film, or OLED display film, or solar film, or PVB film, or SGP film, or EVA film, or PU film, or PMMA film, or UV film Equal film layers or combinations between them.
  • the laminated sheet formed on the surface of the vacuum sheet not only improves the strength of the vacuum sheet, but also possesses the characteristics of the laminated layer and the laminated sheet, and can be transparent, or opaque, or colored, or electrochromic, or thermochromic, Or photochromic, or electromagnetically shielded, or electrically conductive, or as a receiving antenna, or as a special circuit, or touch, or LED display, or LCD display, or OLED display, or solar power generation.
  • the sheet material 11 is a semi-tempered glass sheet 81
  • the support structure 12 is a glass support column 82
  • the organic film 14 is a silicone oil 84.
  • an arc having a diameter of 10 mm was recessed inward, and a semicircular exhaust port 85 having a depth of 3 mm and a length of 15 mm was chemically etched on the upper surface of the recessed portion.
  • a cylindrical support column having a spacing of 50 mm, a diameter of 0.2 mm, and a height of 0.2 mm is chemically etched on the semi-tempered glass plate 81, and each support is supported according to the spacing between the semi-tempered glass plates 81.
  • a glass support column 82 of corresponding height is adhered to the column.
  • a sealing mixture composed of 6% of the positioning particles, 10% of the expanded particles, 6% of the viscous particles and the substrate was placed on the edge of the semi-tempered glass plate 81, and the positioning particles were a forsterite ceramic ball 831 having a diameter of 0.15 mm.
  • the expanded particles are glass powder 832 having a diameter of less than 0.15 mm and a coefficient of expansion of 65 ⁇ 10 -7 /°C
  • the viscous particles are titanium oxide powder 833 having a diameter of less than 0.16 mm
  • the substrate is glass 834 having a sealing temperature of 380 °C.
  • An exhaust pipe 86 having a diameter of 5 mm and a length of 30 mm coated with the sealing mixture was placed in the semicircular exhaust port 85.
  • the two sheets of the semi-tempered glass sheets 81 were evacuated through an exhaust pipe 86 so that the degree of vacuum was 10 -3 Pa.
  • the closed mouth of the exhaust pipe 86 is then vacuum sealed.
  • the closed portion of the exhaust pipe 86 is extended 3 mm from the recessed portion, just hidden in the straight side line of the adjacent semi-tempered glass plate 81.
  • the silicone oil 84 is covered on the outside of the sealing mixture to form a vacuum semi-tempered glass sheet.
  • a laminated plate 08 is formed on the surface of the vacuum semi-tempered glass sheet with the electro-dimming film 841 and the LOW-E tempered glass 811.
  • Figure 9 is a schematic view showing the structure of an embodiment of a hollow sheet material of the present invention.
  • the outer surface of the vacuum sheet can be combined with non-tempered glass, tempered glass, or semi-tempered glass, or low-emissivity glass, or chemically strengthened glass, or heat-reflecting glass, or wired glass, or embossed glass.
  • hot-melt glass or coated glass, or glazed glass, or frosted glass, or engraved glass, or chemically etched glass, or solar glass, or fire-resistant glass, or soda-lime glass Or borosilicate glass, or aluminosilicate glass, or quartz glass, or glass-ceramic, or porcelain glass, or plexiglass, or porcelain, or metal, or solar a battery board, or a plastic board, or a resin board, or a PE board, or a PC board, or
  • Various hollow sheets are formed from PMMA sheets, or PET sheets, or polyimide sheets, or composite sheets.
  • a gas or aerosol such as argon may be flushed into the hollow layer.
  • the hollow layer can be built with venetian blinds or other curtains.
  • the transmission mechanism of the curtain is in the hollow layer, the control mechanism is outside the hollow layer, and the control mechanism and the transmission mechanism are controlled by mechanical connection or magnetic connection.
  • the hollow plate formed on the surface of the vacuum plate can be made to adapt to different frame materials and has the corresponding function of the hollow plate.
  • the plate material 11 is a glass plate 91
  • the support structure 12 is a C-shaped ring 92
  • the organic film 14 is a silica gel 94.
  • the support structure of the corresponding high-temperature inorganic high-temperature glue is uniformly disposed at the corresponding position of the rectangular glass plate 91 having a thickness of 3 mm
  • the inorganic high-temperature glue is a glass having a sealing temperature of 420 ° C
  • the support structure is A C-ring 92 having a diameter of 2 mm bent from a stainless steel wire having a diameter of 0.2 to 1.0 mm has a spacing of 20 mm between each adjacent support structure.
  • a sealing mixture composed of 5% of positioned particles, 20% of expanded particles, 10% of viscous particles, and a substrate was placed on the edge of the glass plate 91, and the positioned particles were forsterite ceramic balls 931 having a diameter of 0.1 mm, which were expanded.
  • the particles are glass powder 932 having a diameter of less than 0.11 mm and a coefficient of expansion of 65 ⁇ 10 -7 /° C.
  • the viscous particles are titanium oxide powder 933 having a diameter of less than 0.15 mm
  • the substrate is glass 934 having a sealing temperature of 400 ° C.
  • the exhaust port 95 is a through hole having a diameter of 3 mm which is 30 mm apart from both sides of the glass plate 91, and a metal sealing piece 953 containing a sealing mixture is disposed outside the exhaust port 95.
  • the vaporized yttrium aluminum nickel getter 981 is placed in the getter tank 98 on the glass plate 91.
  • Another complete 3 mm thick glass plate 91 was placed on the glass plate 91, and the sealing mixture was melted by tempering at 420 ° C for 10 minutes, and the two glass plates 91 were hermetically sealed together.
  • the two glass plates 91 were evacuated through a discharge port 95 so that the degree of vacuum was 10 -2 Pa.
  • the metal sealing sheet was heated from 953 to 420 ° C, the sealing mixture thereon was melted, and the exhaust port 95 was vacuum sealed.
  • the protective cover 954 is bonded to the glass plate 91 with glue.
  • the evapotranspiration yttrium aluminum nickel getter 981 can form an active ruthenium film on the inner wall of the vacuum chamber to absorb residual gas between the two sheets of glass 91.
  • the silica gel 94 is covered on the outside of the sealing mixture to form a vacuum glass sheet.
  • a hollow sheet 09 is formed on the surface of the vacuum glass sheet having the metal sealing sheet 953 and the solar glass sheet 911.
  • FIG. 10 is a flow chart showing an embodiment of a vacuum sheet manufacturing method of the present invention. As shown in FIG. 10, the vacuum sheet manufacturing method of this embodiment may include:
  • Step 1001 Aligning the first plate with the second plate, and measuring a spacing between the plates at the position where the support structure is placed, wherein a spacing between each adjacent two of the support structures is 10-120 mm. .
  • Step 1002 Separating the first plate from the second plate material, and setting the support structure of a corresponding height at the placement position on the first plate.
  • Step 1003 arranging a sealing mixture on a side of the upper surface of the first plate.
  • Step 1004 covering the first plate material on the first plate material to form a vacuum plate assembly having a cavity.
  • Step 1005 Melt the substrate of the sealing mixture by a high temperature of less than or equal to 700 ° C to form the cavity into a vacuum confined space.
  • the substrate of the sealing mixture can be melted at a high temperature of less than or equal to 700 ° C in a vacuum chamber having a vacuum between 10 -6 and 10 Pa to form a vacuum between the two layers of the plate. hermetic space. It is also possible to: heat the vacuum plate assembly into a heating furnace, and melt the substrate of the mixture by a high temperature of less than or equal to 700 ° C. Then, the cavity between the two sheets is evacuated through the exhaust port so that the degree of vacuum is between 10 -6 and 10 Pa. Finally, the exhaust port is closed.
  • Step 1006 covering an edge of the first plate and the second plate and an outer side of the sealing mixture to form a vacuum plate.
  • the vacuum plate is only exemplified by two layers of plates, but the invention is not limited to two layers of plates, and vacuum plates can be manufactured for two or more layers, because of the manufacturing principle and the present invention.
  • the method steps in the embodiment are the same and will not be described here.
  • the support structure of the corresponding height is disposed at a corresponding position between the plate layers, and the height of the support structure matches the gap height of the corresponding portion inside the vacuum plate.
  • the support structure can be clamped by the upper and lower plates, effectively supporting the utility, and reducing the safety hazard caused by the damage of the vacuum plate structure.

Abstract

一种真空板材及其制造方法,该真空板材包括:至少两层板材(11)、多个不同高度的支撑结构(12)、有机膜(14)。相邻层的所述板材之间被多个不同高度的支撑结构隔开,至少两层板材的边缘通过封接混合料(13)连接闭合述至少两层板材的边缘和封接混合料的外侧覆盖有所述有机膜。该真空板材根据板材表面的起伏,将相应高度的支撑结构设置在板材层之间的相应位置上,且支撑结构的高度与真空板材内部对应部位的间隙高度相匹配,使得每一个支撑结构都能被上下两层板材夹紧,有效地起到支撑作用,降低了真空板材结构破损带来的安全隐患。

Description

真空板材及其制造方法 技术领域
本发明涉及板材领域技术,尤其涉及一种真空板材及其制造方法。
背景技术
随着建筑装饰等板材行业的迅速发展,同时为了满足市场的不同需求,各种功能的真空板材应运而生,尤其是具有隔热、隔音以及保温、保冷等多功能的真空板材被广泛应用。
在现有技术中,多功能真空板材的制造方法是,通常把焊料玻璃放在板材的外围,把大量的支撑柱放在其中某一块板材上,把两块板材放在一起,允许它们一起移动,加热板材周围的焊料玻璃,使其融化,使得两块板材固定在支撑柱上,然后冷却焊料玻璃,使边部密封固化,接着,通过一个穿过一块板材或边部密封的管子将板材抽空,最后,抽空管被融化,密封住,形成真空板材。
现有的真空板材中,不同层的板材之间采用同样的支撑结构支撑,然而,板材表面并非绝对平整,这就会造成板材之间有的支撑结构能撑住,有的支撑结构因为空间过大撑不住而失效,从而不能有效地起到支撑作用,真空板材易于破损,带来结构隐患。
发明内容
本发明提供一种真空板材及其制造方法,以克服现有技术中的缺陷。
本发明提供一种真空板材,包括:至少两层板材、多个不同高度的支撑结构、有机膜;
相邻层的所述板材之间被多个所述不同高度的支撑结构隔开;
所述至少两层板材的边缘通过封接混合料连接闭合;
所述至少两层板材的边缘和所述封接混合料的外侧覆盖有所述有机 膜。
本发明提供一种真空板材的制造方法,包括以下步骤:
将第一板材与第二板材对合,测量支撑结构摆放位置处的所述板材之间的间距,其中,每相邻的两个所述支撑结构之间的间距为10-120mm;
将所述第一板材与所述第二板材分离,将对应高度的所述支撑结构设置在所述第一板材上的所述摆放位置处;
在所述第一板材上表面的边部布置封接混合料;
将所述第二板材覆盖在所述第一板材上,形成具有空腔的真空板材组装件;
通过小于或等于700℃的高温熔化所述封接混合料的基材,使所述空腔形成真空密闭空间;
将有机膜覆盖在所述第一板材与所述第二板材的边缘和所述封接混合料的外侧,形成真空板材。
本发明提供的真空板材及其制造方法,根据板材表面的起伏,将相应高度的支撑结构设置在板材层之间的相应位置上,且支撑结构的高度与真空板材内部对应部位的间隙高度相匹配,使得每一个支撑结构都能被上下两层板材夹紧,有效地起到支撑作用,降低了真空板材结构破损带来的安全隐患。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明真空板材一实施例的结构示意图;
图2为本发明真空板材一实施例的AA`面俯视图;
图3为本发明真空板材的封接混合料一实施例的结构示意图;
图4为本发明真空板材的排气口一实施例的结构示意图;
图5-1为本发明真空板材的排气管一实施例的结构示意图;
图5-2为本发明真空板材的排气管另一实施例的结构示意图;
图6为本发明真空板材一实施例的吸气剂槽的结构示意图;
图7为本发明真空钢化玻璃板材一实施例的结构示意图;
图8为本发明夹胶板材一实施例的结构示意图;
图9为本发明中空板材一实施例的结构示意图;
图10为本发明真空板材制造方法一实施例的流程图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
图1为本发明真空板材一实施例的结构示意图,图2为本发明真空板材一实施例的AA`面俯视图。如图1、图2所示,本实施例的真空板材01包括:至少两层板材11、多个不同高度的支撑结构12、封接混合料13、有机膜14。
相邻层的板材11之间被多个不同高度的支撑结构12隔开,至少两层板材11的边缘通过封接混合料13连接闭合,至少两层板材11的边缘和封接混合料13的外侧覆盖有有机膜14。
根据相邻层的板材11表面的起伏,将相应高度的支撑物12设置在一片板材11的相应位置上;在该板材11的边缘放置封接混合料13;将另一片板材11覆盖在此板材11上;依次叠加成两层或多层真空板材01组装件;在真空度位于10-6~10Pa之间的真空室内,通过小于或等于700℃的高温熔化封接混合料13的基材;完成封接取出后,在板材11的边缘和封接混合料13外侧覆盖有机膜14;制成真空板材01。
其中,有机膜14可以有效地将封接混合料13与空气隔绝,杜绝了空气中水汽与污染物对封接混合料13的侵蚀。
本实施例中,不同层的板材11的材质、尺寸、形状可以相同,也可以不同。例如,板材11的材质可以是非钢化玻璃、或是钢化玻璃、或是 半钢化玻璃、或是低辐射玻璃、或是化学强化玻璃、或是热反射玻璃、或是夹丝玻璃、或是压花玻璃、或是热熔玻璃,或是镀膜玻璃、或是彩釉玻璃、或是磨砂玻璃、或是刻花玻璃、或是化学腐蚀玻璃、或是太阳能玻璃、或是防火玻璃、或是钠钙玻璃、或是硼硅玻璃、或是铝硅酸盐玻璃、或是石英玻璃、或是微晶玻璃、或是瓷质玻璃、或是有机玻璃、或是瓷板、或是金属板、或是太阳能电池板、或是塑料板、或是树酯板、或是PE板、或是PC板、或是PMMA板、或是PET板、或是聚酰亚胺板、或是复合板等板材、或是以上板材的组合。板材表面可以覆盖各种金属单质膜、或各种非金属单质膜、或各种氧化物膜、或各种氮化物膜、或上述各种材料中任意至少两种或两种以上的组合。
本发明实施例提供的真空板材,根据板材表面的起伏,将相应高度的支撑结构设置在板材层之间的相应位置上,且支撑结构的高度与真空板材内部对应部位的间隙高度相匹配,使得每一个支撑结构都能被上下两层板材夹紧,有效地起到支撑作用,降低了真空板材结构破损带来的安全隐患。
进一步的,每相邻的两个支撑结构12之间的间距可以为10-120mm。
支撑结构12的形状可以是高度为0.1~5mm、直径为0.1~5mm的柱状结构或球状结构或半球结构或环状结构,也可以是直径为0.1~5mm的金属丝弯成的直径为1~10mm的C形开口环状结构、或直径为0.1~5mm的金属丝段或网状结构,还可以是所述至少两层板材上压花或腐蚀成型直径为0.1~5mm的线状结构或柱状结构。其中,上下两层板材11上压花或腐蚀成型线支撑结构12,其线优选交叉排列,形成接触支撑,这样可以省去支撑结构12摆放环节,能够节省工艺成本。
另外,支撑结构12垂直于板材11的剖面可以是直柱形,也可以是T形,也可以是工形,也可以是X形,也可以是十形,也可以是王形,也可以是土形,也可以是干形,也可以是圆形或椭圆形或半圆形或环形,支撑结构12平行于板材11的剖面也可以是任意形状。
支撑结构12的材质可以为玻璃、或陶瓷、或金属、或吸气金属、或晶体、或塑料、或树酯、或有机玻璃、或上述各种材料中任意两种或两种以上的组合。
在支撑结构12表面还设置有无机高温胶121与相邻层的板材11固定连接。无机高温胶121将支撑结构12固定在自己的位置上,避免了当真空板材01竖起或震动时,支撑结构12便会移动所带来的隐患。
其中,无机高温胶121是熔封温度小于或等于700℃的玻璃、或熔封温度小于或等于700℃的陶瓷、或熔点小于或等于700℃的金属、或摩氏硬度小于4的软金属、或无机粘结剂、或无机盐、或上述材料中任意至少两种或两种以上的组合。
进一步的,如图2所示,框体141还可以设置在至少两层板材11的边缘外侧,且该至少两层板材11和该框体141之间设置有填充物19,这样可以提高真空板材01的强度。
其中,框体141的材质可以为塑料、或金属、或木材、或玻璃钢、或它们之间的组合。填充物19的材质可以为油脂、或硅胶、或硅酮胶、或橡胶、或塑料、或树酯、或水泥、或它们之间的组合。
例如,在真空板材周边加铁框,真空板材和铁框之间填充膨胀水泥,提高了真空板材的强度。
图3为本发明真空板材的封接混合料一实施例的结构示意图。如图3所示,封接混合料13由基材131和粒子132混合而成。其中,基材131是熔封温度小于或等于700℃的玻璃、或熔点小于或等于700℃的金属、或熔封温度小于或等于700℃的陶瓷、或熔封温度小于或等于700℃的塑料、或熔封温度小于或等于700℃的树酯、或熔封温度小于或等于700℃的胶、或上述材料中至少任意两种或两种以上的组合。
粒子132可以包括:定位粒子1321、膨胀粒子1322和粘滞粒子1323。
定位粒子1321占封接混合料13体积百分比为0.01%~30%,膨胀粒子1322占封接混合料13体积百分比为0.01%~70%,粘滞粒子1323占封接混合料13体积百分比为0.01%~50%,三种粒子总体积百分比小于或等于75%。
其中,定位粒子1321的直径小于或等于支撑结构12的高度,软化温度高于300℃。在真空板材01高温封接时,封接混合料13的基材131熔化,容易在外力作用下导致上下两层板材11边部间距过小,甚至完全接 触,造成结构应力过大。本实施例中的定位粒子1321可以起到支撑作用,使得上下两层板材11边部间距不小于定位粒子1321的直径,避免了此隐患。
膨胀粒子1322的直径小于或等于支撑结构12的高度,软化温度高于300℃,膨胀系数为(-200~70)×10-7/℃。由于封接混合料13的基材131与上下两层板材11的膨胀系数难以做到完全匹配,在封接后易残留应力而导致开裂。膨胀粒子1322可以调节封接混合料13的膨胀系数,使之与上下两层板材11相匹配,避免了此隐患。
粘滞粒子1323的直径小于或等于支撑结构12的高度,软化温度高于300℃,与封接混合料13的基材131的浸润角小于90°。由于在真空板材高温封接时,封接混合料13的基材131熔化后易于流淌而偏离封接部位,造成封接失效。所以加入粘滞粒子1323后,熔化的封接混合料13的基材131附着在未熔化的固体粘滞粒子1323周围,不再四处流动,有效避免了封接失效。
图4为本发明真空板材的排气口一实施例的结构示意图。如图4所示,排气口15可以设置在至少一层板材11的上表面,并且排气口15的开口151位于至少两层板材11之间所形成的真空腔体内,排气口15的闭口152位于真空腔外。另外,在排气口15的闭口152处还可以设置封口片1521,封口片上还可以设置保护盖1522。
图5-1为本发明真空板材的排气管一实施例的结构示意图,图5-2为本发明真空板材的排气管另一实施例的结构示意图。排气口15还可以设置在至少一层板材11的侧面。所述排气管16还可以设置在至少一层板材11的侧面的排气口15内,排气管16的开口161位于至少两层板材11之间所形成的真空腔体内,排气管16的闭口162位于所述真空腔外。排气口15可以位于板材11的角部,也可位于板材11的边部,并且与排气管16通过封接混合料13密封连接。如图5-1所示,当排气管16位于角部时,角部切去一块使其向内凹进,使得排气管16的闭口部分162藏在真空板材01的直边内。如图5-2所示,当排气管16位于边部时,排气口15周边的板材局部向内凹进,使得排气管闭口部分162藏在真空板材01的直边内。
图6为本发明真空板材一实施例的吸气剂槽的结构示意图。如图6所示,吸气剂槽18还可以设置在至少一层板材11上,吸气剂槽18中填充有吸气剂181,吸气剂槽18的形状优选为碗形或盘形或环形。
吸气剂181可以是蒸散型吸气剂,也可以是非蒸散型吸气剂。蒸散型吸气剂在真空板材01封口后,需要高频蒸散吸气剂,激活吸气组份,以便吸收真空板材01使用过程中内部释放的少量气体。
如果吸气剂181是非蒸散型吸气剂,在真空板材01制造完成前要激活吸气剂组份,以便在真空板材01使用过程中吸收内部空间释放的少量气体。
如果吸气剂181是密闭型的,在真空板材01封口后,需要用激光将吸气剂181外壁开孔,使得已激活的吸气剂181组份可以通过此孔,吸收真空板材01内部空间在使用过程中释放的少量气体。
图7为本发明真空钢化玻璃板材一实施例的结构示意图。如图7所示,作为图1所示实施例的一种可行结构,板材11为钢化玻璃板71,支撑结构12为不锈钢支撑柱72,有机膜14为油脂74。根据钢化玻璃板71表面的起伏,将相应高度的含无机高温胶的支撑结构72均匀设置在厚度为5mm的矩形钢化玻璃板71的相应位置上。无机高温胶为熔点280℃的锡铋合金,支撑结构是直径为0.2mm、高度为0.2~0.8mm、表面含锡铋合金的不锈钢支撑柱32,每相邻的两个支撑柱之间的间距为30mm。
将由5%定位粒子、30%膨胀粒子、15%粘滞粒子和基材构成的封接混合料设置在钢化玻璃板71上的边缘,定位粒子为直径是0.1mm的可伐合金球733,在现有技术中,钢化玻璃板71高温封接时,基材734熔化,容易在外力作用下导致上下两层钢化玻璃板71边部间距过小,甚至完全接触,造成结构应力过大。本实施例中的可伐合金球733可以起到支撑作用,使得上下钢化玻璃板71的边部间距不小于可伐合金球733的直径,避免了此隐患。
膨胀粒子为直径小于0.12mm、膨胀系数为70×10-7的陶瓷粉731,由于基材734与上下两层钢化玻璃板71的膨胀系数难以做到完全匹配,在 封接后易残留应力而导致开裂。陶瓷粉731可以调节基材734的膨胀系数,使之与上下两层钢化玻璃板71相匹配,避免了此隐患。
粘滞粒子为直径小于0.18mm的银粉732,由于过去技术中,在钢化玻璃板71高温封接时,基材734熔化后易于四处流淌而偏离封接部位,造成封接失效。所以加入银粉732后,熔化的基材734附着在未熔化的固体粘滞粒子732周围,不再四处流动,有效避免了封接失效。
基材为熔点280℃的锡铋合金734。
将内含已激活的非蒸散型锆吸气剂781的直径为4mm、高为1mm的密闭不锈钢杯置于吸气剂槽78内。将另一片同样大小的、5mm厚的钢化玻璃板71覆盖在此钢化玻璃板71上。
按照上述的方法,叠加成三层钢化玻璃板71组装件。在真空度位于10-4Pa的真空炉中,通过280℃保温5分钟熔化封接混合料,将三片钢化玻璃板71密闭封接在一起。完成封接取出后,在封接混合料外侧覆盖油脂74。
用激光将不锈钢杯顶部打孔,使得非蒸散型锆吸气剂781内部的活性锆粉与相互邻近的钢化玻璃板71之间的空间联通,直接吸收真空钢化玻璃板材71内部的残余气体。
其中,钢化玻璃板材71之间的各真空层可以连通也可互不连通,连通时各真空层之间有孔相通。各真空层之间互不连通时,即使一个真空层失效,其它真空层依然具有优秀的隔热效果。
真空板材外表面还可以覆盖或粘贴功能膜,该功能膜可以是油脂、防爆膜、或遮光膜、或调光膜、或滤光膜、或增透膜、或LOW-E膜、或防污膜、或防雾膜、或防菌膜、或自洁膜、或亲水膜、或疏水膜、或导电膜、或电磁屏蔽膜、或天线膜、或特殊电路膜、或触控膜、或LED显示膜、或LCD显示膜、或OLED显示膜、或太阳能膜、或彩晶膜、或PET膜、或PBT膜、或PVC膜、或聚酰亚胺膜、或UV膜、或涂料、或油漆、或油墨等膜层或它们之间的组合。
真空板材表面的功能膜可以赋予其相应的特殊功能:例如,防爆膜可以提高真空板材的抗冲击性,并在真空板材破碎后粘附板材碎片防止脱落;遮光膜可以阻挡光线;调光膜可以调节通过的光线量;防污膜可 以减轻被污染的概率;防雾膜不会结雾;防菌膜可以免除细菌滋长;自洁膜可以自洁净;亲水膜可以加速雨水滑落、导电膜可以导电、电磁屏蔽膜可以屏蔽电磁波、天线膜可以接收信号、特殊电路膜可以具有电路功能、触控膜可以触控、LED显示膜可以显示LED图像、LCD显示膜可以显示LCD图像、OLED显示膜可以显示OLED图像、太阳能膜可以将阳光转换为电能或热能、彩晶膜可以更绚丽等。
在真空钢化玻璃板材71外表面覆盖防爆膜741。
图8为本发明夹胶板材一实施例的结构示意图。真空板材外表面可以与非钢化玻璃、或是钢化玻璃、或是半钢化玻璃、或是低辐射玻璃、或是化学强化玻璃、或是热反射玻璃、或是夹丝玻璃、或是压花玻璃、或是热熔玻璃,或是镀膜玻璃、或是彩釉玻璃、或是磨砂玻璃、或是刻花玻璃、或是化学腐蚀玻璃、或是太阳能玻璃、或是防火玻璃、或是钠钙玻璃、或是硼硅玻璃、或是铝硅酸盐玻璃、或是石英玻璃、或是微晶玻璃、或是瓷质玻璃、或是有机玻璃、或是瓷板、或是金属板、或是太阳能电池板、或是塑料板、或是树酯板、或是PE板、或是PC板、或是PMMA板、或是PET板、或是聚酰亚胺板、或是复合板等板材形成夹胶板材,该夹胶层可以是透明的、或不透明的、或彩色的、或电致变色调光膜、或热致变色调光膜、或光致变色调光膜、或滤光膜、或LOW-E膜、或电磁屏蔽膜、或导电膜、或天线膜、或特殊电路膜、或触控膜、或LED显示膜、或LCD显示膜、或OLED显示膜、或太阳能膜、或PVB膜、或SGP膜、或EVA膜、或PU膜、或PMMA膜、或UV膜等膜层或它们之间的组合。
真空板材表面形成的夹胶板材,不仅提高了真空板材的强度,而且拥有了该夹胶层和夹胶板材的特性,可以透明、或不透明、或彩色、或电致变色、或热致变色、或光致变色、或电磁屏蔽、或导电、或作为接收天线、或作为特殊电路、或触控、或LED显示、或LCD显示、或OLED显示、或太阳能发电等。
如图8所示,作为图1所示实施例的另一种可行结构,板材11为半钢化玻璃板81,支撑结构12为玻璃支撑柱82,有机膜14为硅油84。在 矩形8mm厚的半钢化玻璃板81上,一边向内凹进直径10mm的弧,在该凹进部位上表面化学腐蚀出深为3mm、长为15mm的半圆形排气口85。在半钢化玻璃板81上化学腐蚀出每相邻之间间距为50mm、直径为0.2mm、高为0.2mm的圆柱形支撑柱,根据半钢化玻璃板81之间的间距的不同,每个支撑柱上粘附相应高度的玻璃支撑柱82。
将由6%定位粒子、10%膨胀粒子、6%粘滞粒子和基材组成的封接混合料设置在半钢化玻璃板81的边缘,定位粒子为直径是0.15mm的镁橄榄石瓷球831,膨胀粒子为直径小于0.15mm、膨胀系数65×10-7/℃的玻粉832,粘滞粒子为直径小于0.16mm的氧化钛粉833,基材为熔封温度380℃的玻璃834。
将涂有封接混合料的直径为5mm、长为30mm的排气管86置于半圆形排气口85内。
将另一片同样形状的8mm厚的半钢化玻璃板81覆盖在此半钢化玻璃板81上,通过380℃保温5分钟熔化封接混合料,将两片半钢化玻璃板81密闭封接在一起。
通过排气管86将两片半钢化玻璃板81之间抽真空,使得真空度为10-3Pa。然后将排气管86的闭口真空密封。使得排气管86的闭口部分伸出凹进部位3mm,正好藏在相邻的半钢化玻璃板81的直边连线内。
在封接混合料外侧覆盖硅油84,形成真空半钢化玻璃板材。
在真空半钢化玻璃板材表面与电致调光胶膜841和LOW-E钢化玻璃811形成夹胶板材08。
图9为本发明中空板材一实施例的结构示意图。真空板材外表面可以与非钢化玻璃、或是钢化玻璃、或是半钢化玻璃、或是低辐射玻璃、或是化学强化玻璃、或是热反射玻璃、或是夹丝玻璃、或是压花玻璃、或是热熔玻璃,或是镀膜玻璃、或是彩釉玻璃、或是磨砂玻璃、或是刻花玻璃、或是化学腐蚀玻璃、或是太阳能玻璃、或是防火玻璃、或是钠钙玻璃、或是硼硅玻璃、或是铝硅酸盐玻璃、或是石英玻璃、或是微晶玻璃、或是瓷质玻璃、或是有机玻璃、或是瓷板、或是金属板、或是太阳能电池板、或是塑料板、或是树酯板、或是PE板、或是PC板、或是 PMMA板、或是PET板、或是聚酰亚胺板、或是复合板等板材形成各种中空板材。中空层内可以冲入氩气等气体或气溶胶。中空层内可以内置百叶帘或其他窗帘,窗帘的传动机构在中空层内,控制机构在中空层外,控制机构与传动机构通过机械连接或磁力连接实现控制。真空板材表面形成的中空板材使其厚度可以适应不同的框材,并具有中空板材相应的功能。
如图9所示,作为图1所示实施例的再一种可行结构,板材11为玻璃板91,支撑结构12为C形环92,有机膜14为硅胶94。根据玻璃板91表面的起伏,将相应高度的含无机高温胶的支撑结构均匀设置在厚度为3mm的矩形玻璃板91的相应位置上,无机高温胶为熔封温度420℃的玻璃,支撑结构是直径为0.2~1.0mm的不锈钢丝弯曲而成的直径为2mm的C形环92,每相邻的支撑结构之间的间距为20mm。
将由5%定位粒子、20%膨胀粒子、10%粘滞粒子和基材组成的封接混合料设置在玻璃板91上的边缘,定位粒子是直径为0.1mm的镁橄榄石瓷球931,膨胀粒子为直径小于0.11mm、膨胀系数为65×10-7/℃的玻粉932,粘滞粒子为直径小于0.15mm的氧化钛粉933,基材为熔封温度400℃的玻璃934。
排气口95为距玻璃板91两边距离均为30mm的直径为3mm的通孔,将含封接混合料的金属封口片953设置在排气口95外。将蒸散型钡铝镍吸气剂981设置在玻璃板91上的吸气剂槽98内。
将另一片完整的3mm厚的玻璃板91覆盖在此玻璃板91上,通过420℃保温10分钟熔化封接混合料,将两片玻璃板91密闭封接在一起。
通过排气口95将两片玻璃板91之间抽真空,使得真空度为10-2Pa。
加热金属封口片953至420℃,使其上的封接混合料熔化,将排气口95真空密封。用胶将保护盖954粘结在玻璃板91上。
蒸散型钡铝镍吸气剂981可以在真空腔内壁形成活性钡膜,吸收两片玻璃91之间的残余气体。
在封接混合料外侧覆盖硅胶94,形成真空玻璃板材。
在有金属封口片953的真空玻璃板材表面与太阳能玻璃板911形成中空板材09。
图10为本发明真空板材制造方法一实施例的流程图。如图10所示,本实施例的真空板材制造方法可以包括:
步骤1001、将第一板材与第二板材对合,测量支撑结构摆放位置处的所述板材之间的间距,其中,每相邻的两个所述支撑结构之间的间距为10-120mm。
步骤1002、将所述第一板材与所述第二板材板材分离,将对应高度的所述支撑结构设置在所述第一板材上的所述摆放位置处。
步骤1003、在所述第一板材上表面的边部布置封接混合料。
步骤1004、将所述第二板材覆盖在所述第一板材上,形成具有空腔的真空板材组装件。
步骤1005、通过小于或等于700℃的高温熔化所述封接混合料的基材,使所述空腔形成真空密闭空间。
针对步骤1005,可以在真空度位于10-6~10Pa之间的真空室内,通过小于或等于700℃的高温熔化所述封接混合料的基材,使两层板材之间的空腔形成真空密闭空间。还可以为:将真空板材组装件放入加热炉内加热,通过小于或等于700℃的高温熔化封接混合料的基材。然后,通过排气口将两层板材之间的空腔抽真空,使得真空度位于10-6~10Pa之间。最后,将排气口封闭。
步骤1006、将有机膜覆盖在所述第一板材与所述第二板材的边缘和所述封接混合料的外侧,形成真空板材。
这里需要说明的是,本实施例中仅以两层板材制造真空板材来举例说明,但本发明不仅限于两层板材,可以为两层或者两层以上的板材制造真空板材,因为制造原理与本实施例中的方法步骤相同,在此不加以赘述。
本发明实施例的真空板材制造方法,根据板材表面的起伏,将相应高度的支撑结构设置在板材层之间的相应位置上,且支撑结构的高度与真空板材内部对应部位的间隙高度相匹配,使得每一个支撑结构都能被上下两层板材夹紧,有效地起到支撑作用,降低了真空板材结构破损带来的安全隐患。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而 非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (18)

  1. 一种真空板材,其特征在于,包括:至少两层板材、多个不同高度的支撑结构、有机膜;
    相邻层的所述板材之间被多个所述不同高度的支撑结构隔开;
    所述至少两层板材的边缘通过封接混合料连接闭合;
    所述至少两层板材的边缘和所述封接混合料的外侧覆盖有所述有机膜。
  2. 根据权利要求1所述的真空板材,其特征在于,每相邻的两个所述支撑结构之间的间距为10-120mm。
  3. 根据权利要求1所述的真空板材,其特征在于,所述支撑结构的形状为高度为0.1~5mm、直径为0.1~5mm的柱状结构或球状结构或半球结构或环状结构,或
    直径为0.1~5mm的金属丝弯成的直径为1~10mm的C形开口环状结构、或直径为0.1~5mm的金属丝段或网状结构,或
    所述至少两层板材上压花或腐蚀成型直径为0.1~5mm的线状结构或柱状结构。
  4. 根据权利要求3所述的真空板材,其特征在于,所述支撑结构表面通过无机高温胶与相邻层的所述板材固定连接;
    所述无机高温胶是熔封温度小于或等于700℃的玻璃、或熔封温度小于或等于700℃的陶瓷、或熔点小于或等于700℃的金属、或摩氏硬度小于4的软金属、或无机粘结剂、或无机盐、或上述材料中至少两种或两种以上的组合。
  5. 根据权利要求1-3任一项所述的真空板材,其特征在于,所述支撑结构的材质为玻璃、或陶瓷、或金属、或吸气金属、或晶体、或塑料、或树酯、或有机玻璃、或上述各种中任意两种或两种以上的组合。
  6. 根据权利要求1-3任一项所述的真空板材,其特征在于,所述封接混合料由基材和粒子混合而成;
    所述基材是熔封温度小于或等于700℃的玻璃、或熔点小于或等于700℃的金属、或熔封温度小于或等于700℃的陶瓷、或熔封温度小于或等于700℃的塑料、或熔封温度小于或等于700℃的树酯、或熔封温度小 于或等于700℃的胶、或上述材料中至少两种或两种以上的组合。
  7. 根据权利要求6所述的真空板材,其特征在于,所述粒子包括:定位粒子、膨胀粒子和粘滞粒子;
    所述定位粒子占所述封接混合料体积百分比为0.01%~30%,所述膨胀粒子占所述封接混合料体积百分比为0.01%~70%,所述粘滞粒子占所述封接混合料体积百分比为0.01%~50%,三种粒子总体积百分比小于等于75%;
    所述定位粒子的直径小于或等于所述支撑结构的高度,软化温度高于300℃;
    所述粘滞粒子的直径小于或等于所述支撑结构的高度,软化温度高于300℃,与所述基材的浸润角小于90°;
    所述膨胀粒子的直径小于或等于所述支撑结构的高度,软化温度高于300℃,膨胀系数为(-200~70)×10-7/℃。
  8. 根据权利要求1-3任一项所述的真空板材,其特征在于,还包括:排气口;
    所述排气口设置在至少一层板材的上表面或侧面,且所述排气口的开口位于所述至少两层板材之间所形成的真空腔体内,所述排气口的闭口位于所述真空腔外。
  9. 根据权利要求8所述的真空板材,其特征在于,所述排气口的闭口处设置有封口片,所述封口片上还设置有保护盖。
  10. 根据权利要求8所述的真空板材,其特征在于,还包括:排气管;
    所述排气管设置在所述排气口内,所述排气管的开口位于所述至少两层板材之间所形成的真空腔体内,所述排气管的闭口位于所述真空腔外。
  11. 根据权利要求1-3任一项所述的真空板材,其特征在于,还包括:吸气剂槽;
    所述吸气剂槽设置在至少一层板材上,所述吸气剂槽中填充有吸气剂。
  12. 根据权利要求1-3任一所述的真空板材,其特征在于,所述真空板材外表面覆盖或粘贴功能膜。
  13. 根据权利要求1-3任一项所述的真空板材,其特征在于,还包 括:框体;
    所述框体设置在所述至少两层板材的边缘外侧,且所述至少两层板材和所述框体之间设置有填充物。
  14. 根据权利要求1-3任一项所述的真空板材,其特征在于,所述真空板材外表面形成夹胶板材。
  15. 根据权利要求1-3任一项所述的真空板材,其特征在于,所述真空板材外表面形成中空板材。
  16. 一种真空板材的制造方法,其特征在于,包括以下步骤:
    将第一板材与第二板材对合,测量支撑结构摆放位置处的所述板材之间的间距,其中,每相邻的两个所述支撑结构之间的间距为10-120mm;
    将所述第一板材与所述第二板材分离,将对应高度的所述支撑结构设置在所述第一板材上的所述摆放位置处;
    在所述第一板材上表面的边部布置封接混合料;
    将所述第二板材覆盖在所述第一板材上,形成具有空腔的真空板材组装件;
    通过小于或等于700℃的高温熔化所述封接混合料的基材,使所述空腔形成真空密闭空间;
    将有机膜覆盖在所述第一板材与所述第二板材的边缘和所述封接混合料的外侧,形成真空板材。
  17. 根据权利要求16所述的方法,其特征在于,所述通过小于或等于700℃的高温熔化所述封接混合料的基材,使所述空腔形成真空密闭空间,包括:
    在真空度位于10-6~10Pa之间的真空室内,通过小于或等于700℃的高温熔化所述封接混合料的基材,使所述空腔形成真空密闭空间。
  18. 根据权利要求16所述的方法,其特征在于,所述通过小于或等于700℃的高温熔化所述封接混合料的基材,使所述空腔形成真空密闭空间,还包括:
    将所述真空板材组装件放入加热炉内加热,通过小于或等于700℃的高温熔化所述封接混合料的基材,并通过排气口将所述空腔抽真空,使得真空度位于10-6~10Pa之间,将所述排气口封闭。
PCT/CN2014/089950 2014-10-20 2014-10-30 真空板材及其制造方法 WO2016061839A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP14859322.1A EP3210944B1 (en) 2014-10-20 2014-10-30 Vacuum board and manufacturing method therefor
CA2888398A CA2888398C (en) 2014-10-20 2014-10-30 Vacuum plate and method for manufacturing the same
US14/431,971 US10000407B2 (en) 2014-10-20 2014-10-30 Vacuum plate and method for manufacturing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201420607158.0 2014-10-20
CN201410558660.1A CN104329558B (zh) 2014-10-20 2014-10-20 真空板材及其制造方法
CN201410558660.1 2014-10-20
CN201420607158.0U CN204358415U (zh) 2014-10-20 2014-10-20 真空板材

Publications (1)

Publication Number Publication Date
WO2016061839A1 true WO2016061839A1 (zh) 2016-04-28

Family

ID=55760111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/089950 WO2016061839A1 (zh) 2014-10-20 2014-10-30 真空板材及其制造方法

Country Status (3)

Country Link
US (1) US10000407B2 (zh)
EP (1) EP3210944B1 (zh)
WO (1) WO2016061839A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114589992A (zh) * 2022-03-31 2022-06-07 郑发林 一种防爆复合钢化玻璃

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10464845B2 (en) * 2015-03-13 2019-11-05 Panasonic Intellectual Property Management Co., Ltd. Method for manufacturing glass panel unit, method for manufacturing glass window, and device for manufacturing glass substrate with spacer
WO2018062140A1 (ja) * 2016-09-30 2018-04-05 パナソニックIpマネジメント株式会社 ガラスパネルユニット、ガラス窓およびガラスパネルユニットの製造方法
US10781129B2 (en) * 2017-01-19 2020-09-22 Corning Incorporated Fusing glass articles
JP6748976B2 (ja) * 2017-02-28 2020-09-02 パナソニックIpマネジメント株式会社 ピラー供給用シートの製造方法、ガラスパネルユニットの製造方法及びガラス窓の製造方法
EP3842612B1 (en) 2018-02-14 2023-10-11 VKR Holding A/S Process of manufacturing a compressible pillar for a vacuum insulated glazing unit
EP3755860B1 (en) 2018-02-22 2022-03-09 VKR Holding A/S Vacuum insulating glass units based on topographic representations
EP3786129A4 (en) * 2018-04-27 2021-06-23 Panasonic Intellectual Property Management Co., Ltd. GLASS UNIT AND GLASS WINDOW
WO2020075406A1 (ja) * 2018-10-12 2020-04-16 パナソニックIpマネジメント株式会社 ガラスパネルユニット及びガラス窓
JP7084332B2 (ja) * 2019-01-31 2022-06-14 Ykk Ap株式会社 複層ガラスの製造方法および複層ガラス
CN110571249A (zh) * 2019-08-15 2019-12-13 武汉华星光电半导体显示技术有限公司 一种显示面板
JP7362548B2 (ja) 2020-06-01 2023-10-17 Ykk Ap株式会社 複層ガラスの製造方法および複層ガラス

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10034764A1 (de) * 2000-05-31 2001-12-06 Arnold Glaswerke Paneel
KR20080038676A (ko) * 2006-10-30 2008-05-07 엘지전자 주식회사 냉장고용 단열 조립체
CN102730950A (zh) * 2012-07-11 2012-10-17 天津森宇玻璃制造有限公司 一种安全钢化真空玻璃的制造方法
CN102777115A (zh) * 2011-05-12 2012-11-14 朱盛菁 真空防火玻璃
CN102898007A (zh) * 2011-10-11 2013-01-30 许长河 无尾封接真空节能降噪玻璃

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPM888994A0 (en) * 1994-10-19 1994-11-10 University Of Sydney, The Design improvement to vacuum glazing
AU686461B2 (en) * 1994-10-19 1998-02-05 University Of Sydney, The Design improvements to vacuum glazing
US5851133A (en) * 1996-12-24 1998-12-22 Micron Display Technology, Inc. FED spacer fibers grown by laser drive CVD
JP4503856B2 (ja) * 1999-03-25 2010-07-14 日本板硝子株式会社 ガラスパネルおよびその製造方法
JP2003137612A (ja) * 2001-10-25 2003-05-14 Nippon Sheet Glass Co Ltd ガラスパネルとその製法
CN1198043C (zh) * 2002-09-05 2005-04-20 京东方科技集团股份有限公司 高隔热、高隔音玻璃及内设支撑物的粘设固定方法
WO2009036359A1 (en) * 2007-09-14 2009-03-19 Electronics Packaging Solutions, Inc. Insulating glass unit having multi-height internal standoffs and visible decoration
US9695628B2 (en) * 2012-05-08 2017-07-04 Guardian Industries Corp. Vacuum insulated glass (VIG) window unit including pump-out tube protection ring and/or cap and methods for making same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10034764A1 (de) * 2000-05-31 2001-12-06 Arnold Glaswerke Paneel
KR20080038676A (ko) * 2006-10-30 2008-05-07 엘지전자 주식회사 냉장고용 단열 조립체
CN102777115A (zh) * 2011-05-12 2012-11-14 朱盛菁 真空防火玻璃
CN102898007A (zh) * 2011-10-11 2013-01-30 许长河 无尾封接真空节能降噪玻璃
CN102730950A (zh) * 2012-07-11 2012-10-17 天津森宇玻璃制造有限公司 一种安全钢化真空玻璃的制造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114589992A (zh) * 2022-03-31 2022-06-07 郑发林 一种防爆复合钢化玻璃

Also Published As

Publication number Publication date
EP3210944A1 (en) 2017-08-30
US20170217816A1 (en) 2017-08-03
EP3210944A4 (en) 2018-05-23
EP3210944B1 (en) 2019-10-16
US10000407B2 (en) 2018-06-19

Similar Documents

Publication Publication Date Title
WO2016061839A1 (zh) 真空板材及其制造方法
CN104329558B (zh) 真空板材及其制造方法
US10661534B2 (en) Multiple pane
JP6471917B2 (ja) 複層ガラスの製造方法
JP6270167B2 (ja) 排気管保護リング及び/又はキャップを含む真空断熱ガラス(vig)窓ユニット、及びその製造方法
JP3082046B2 (ja) 断熱ガラスパネル及びその構築方法
JP4049607B2 (ja) ガラスパネルの製造方法とその方法で製造されたガラスパネル
JP6507461B2 (ja) ガラスパネルユニットの製造方法およびガラス窓の製造方法
WO2017169253A1 (ja) ガラスパネルユニット及びガラス窓
JP6528343B2 (ja) ガラスパネルユニットの製造方法、及びガラス窓の製造方法
US20190055776A1 (en) Glass panel unit, glass window provided with same, and method for manufacturing glass panel unit
CN207609327U (zh) 一种三玻两腔中空玻璃
CA2888398C (en) Vacuum plate and method for manufacturing the same
CN204358415U (zh) 真空板材
JP2001172059A (ja) 低圧複層ガラスおよびその製造方法
CN112431521A (zh) 一种防火中空玻璃、制作方法及应用
JP2002080247A (ja) 低圧複層ガラス
WO2016065665A1 (zh) 节能板材及其制造方法
CN219667645U (zh) 一种高强度防爆隔音low-E玻璃结构
TWI625316B (zh) 強化真空玻璃的製作方法
WO2016074200A1 (zh) 通孔节能板材及其制作方法
CN206205699U (zh) 一种节能环保的中空夹胶玻璃
US20220170313A1 (en) Glass panel unit and method for manufacturing the glass panel unit
GB2580172A (en) Vacuum insulated glazing unit
CN203582736U (zh) 金属封边中空玻璃

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2888398

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14431971

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014859322

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14859322

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE