WO2016060196A1 - 整流回路の電流推定回路、ac-dcコンバータ、電力制御装置、電流推定回路、電流推定方法及びプログラム - Google Patents

整流回路の電流推定回路、ac-dcコンバータ、電力制御装置、電流推定回路、電流推定方法及びプログラム Download PDF

Info

Publication number
WO2016060196A1
WO2016060196A1 PCT/JP2015/079148 JP2015079148W WO2016060196A1 WO 2016060196 A1 WO2016060196 A1 WO 2016060196A1 JP 2015079148 W JP2015079148 W JP 2015079148W WO 2016060196 A1 WO2016060196 A1 WO 2016060196A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
phase
voltage
voltages
unit
Prior art date
Application number
PCT/JP2015/079148
Other languages
English (en)
French (fr)
Inventor
清水 健志
角藤 清隆
敦之 角谷
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to CN201580050944.2A priority Critical patent/CN106716811B/zh
Priority to EP15851081.8A priority patent/EP3188353A4/en
Publication of WO2016060196A1 publication Critical patent/WO2016060196A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter

Definitions

  • the present invention relates to a current estimation circuit of a rectifier circuit, an AC-DC converter, a power control apparatus, a current estimation circuit, a current estimation method, and a program.
  • a system for generating a voltage for driving a motor includes an AC-DC converter and an inverter.
  • the system converts an AC voltage supplied from a three-phase AC power supply from an AC voltage to a DC voltage with an AC-DC converter, and converts an AC voltage converted by the AC-DC converter into an AC voltage with an inverter. By doing this, the system generates a DC voltage suitable for driving the motor.
  • Patent Document 1 discloses a related technology.
  • the device disclosed in Patent Document 1 includes a PWM (Pulse Width Modulation) rectifier circuit and a PWM inverter. This device determines the presence or absence of abnormality in the supply voltage to the PWM rectifier circuit based on the current. This device protects the circuit by reducing the output frequency or duty of the PWM inverter when it determines that there is an abnormality.
  • PWM Pulse Width Modulation
  • a device to which power is supplied from a three-phase AC power supply when respective voltages of R-phase, S-phase, and T-phase of three-phase AC power supply become unbalanced a device to which power is supplied from a three-phase AC power supply when respective voltages of R-phase, S-phase, and T-phase of three-phase AC power supply become unbalanced
  • excessive current may flow in the device connected to the rear of the device. In that case, there is a possibility that a problem may occur in the system. Therefore, when the R-phase, S-phase, and T-phase voltages of the three-phase AC power supply become unbalanced, an abnormal state in the system can be easily detected, and the system can be protected. Technology was required.
  • An object of the present invention is to provide a current estimation circuit of a rectifier circuit, an AC-DC converter, a power control apparatus, a current estimation circuit, a current estimation method, and a program that can solve the above-mentioned problems.
  • the current estimation circuit of the rectifier circuit includes a phase identification unit that identifies each phase of the plurality of AC voltages output from the power supply, and each phase identified by the phase identification unit. And a current specifying unit that specifies a current corresponding to the rectified voltage of the plurality of AC voltages in the time interval determined based on the current interval.
  • the current identification unit corresponds to the rectified voltage based on the current flowing through the rectified resistor.
  • the current may be identified.
  • the current identification unit determines the rectified voltage based on the current detected by the rectified current transformer. The corresponding current may be identified.
  • the current estimation circuit of the rectifier circuit in any of the first to third aspects is characterized in that the current estimation unit determines the current based on the current corresponding to the rectified voltage specified by the current specification unit.
  • a current estimation unit may be provided which estimates each current corresponding to each of the plurality of AC voltages.
  • the current estimation circuit of the rectifier circuit in the fourth aspect determines whether or not each current estimated by the current estimation unit exceeds the current abnormality detection threshold value.
  • an AC-DC converter comprises: a current estimation circuit of a rectifier circuit according to any one of the first to fifth aspects; and a smoothing circuit for smoothing a voltage output from the rectifier circuit. And.
  • a power control apparatus includes the AC-DC converter in the sixth aspect, and an inverter for converting a DC voltage output from the AC-DC converter into an AC voltage.
  • the current estimation circuit corresponds to the rectified voltage of the plurality of alternating voltages at a time interval determined based on each phase of the plurality of alternating voltages output from the power supply.
  • a current estimation unit configured to estimate each current corresponding to each of the plurality of AC voltages based on the current.
  • the current estimation circuit in the eighth aspect determines whether each current estimated by the current estimation unit exceeds a current abnormality detection threshold value, and A current limiting unit for limiting an upper limit of the estimated current corresponding to the determination when the current determining unit determines that the estimated current exceeds the current abnormality detection threshold value; You may have.
  • the current estimation method identifies each phase of the plurality of AC voltages output from the power source, and at the time interval determined based on the identified each phase, the plurality of ACs. Including identifying a current corresponding to the rectified voltage of the voltage.
  • the current estimation method corresponds to the rectified voltage of the plurality of alternating voltages at a time interval determined based on each phase of the plurality of alternating voltages output from the power supply. Estimating a respective current corresponding to each of the plurality of alternating voltages based on the current.
  • the program corresponds to the computer after the rectification of the plurality of AC voltages at time intervals determined based on each phase of the plurality of AC voltages output from the power source. Estimating a respective current corresponding to each of the plurality of alternating voltages based on the current.
  • the current estimation circuit According to the current estimation circuit, the AC-DC converter, the power control device, the current estimation circuit, the current estimation method and the program of the above-mentioned rectifier circuit, the voltages of R phase, S phase and T phase of the three-phase AC power supply are not sufficient. When in equilibrium, abnormal conditions in the system can be easily detected and the system can be protected.
  • FIG. 1 It is a figure which shows an example of a structure of a power control apparatus provided with the rectifier circuit by one Embodiment of this invention.
  • this embodiment it is a figure which shows an example of the simulation waveform of the voltage in case the three-phase (R phase, S phase, T phase) alternating voltage is an equilibrium state, and an electric current.
  • this embodiment it is a figure which shows an example of the simulation waveform of the voltage in case the three-phase alternating current voltage is an unbalanced state, and an electric current.
  • FIG. 1 is a diagram showing an example of the configuration of a power control apparatus 1 provided with a rectifier circuit 100 according to an embodiment of the present invention.
  • the power control device 1 according to the present embodiment includes an AC power supply 10, an AC (Alternative Current) -DC (Direct Current) converter 20, an inverter 30, and a motor 40.
  • AC Alternative Current
  • DC Direct Current
  • the AC power supply 10 outputs a plurality of AC voltages.
  • the AC power supply 10 outputs, to the rectifying unit 101, three sine wave AC voltages (R phase, S phase, T phase) whose phases are different from each other by 120 degrees.
  • the AC-DC converter 20 includes a rectifier circuit 100, a reactor 108, and a capacitor 109.
  • the rectifier circuit 100 includes a rectifying unit 101, a current detection resistor 110, and a current estimation circuit 111.
  • the rectifying unit 101 rectifies the AC voltage output from the AC power supply 10.
  • the rectifying unit 101 includes six diodes D1 to D6.
  • the anode of the diode D1 is connected to the cathode of the diode D2.
  • the anode of the diode D3 is connected to the cathode of the diode D4.
  • the anode of the diode D5 is connected to the cathode of the diode 6.
  • the AC power supply 10 outputs an AC voltage of R phase to the anode of the diode D1.
  • the AC power supply 10 outputs an AC voltage of S phase to the anode of the diode D3.
  • the AC power supply 10 outputs a T-phase AC voltage to the anode of the diode D5.
  • the rectifying unit 101 full-wave rectifies the alternating voltage output from the alternating current power supply 10 to the rectifying unit 101.
  • the current detection resistor 110 is a resistor that detects the converter current flowing to the AC-DC converter 20.
  • the current estimation circuit 111 includes a phase identification unit 102, a current identification unit 103, and a microcomputer 104.
  • the phase specifying unit 102 specifies each phase of a plurality of AC voltages output from the AC power supply 10.
  • the phase identification unit 102 includes a zero cross detection circuit.
  • the zero crossing detection circuit provided in the phase identification unit 102 detects a zero crossing point using a line voltage or a phase voltage.
  • the zero crossing point is a point at which an alternating voltage and a bias voltage indicating zero amplitude of the alternating voltage cross each other.
  • the zero crossing detection circuit included in the phase identification unit 102 detects the zero crossing point of the AC voltage of R phase.
  • the phase identification unit 102 identifies the zero cross timing of the R phase AC voltage based on the zero cross point of the R phase AC voltage detected by the zero cross detection circuit.
  • the phase identification unit 102 identifies the timing at which the zero cross timing of the identified R phase AC voltage is shifted by an amount corresponding to the phase of +120 degrees (+ 1/3 cycle) as the zero cross timing of the S phase AC voltage. Do.
  • the phase specifying unit 102 specifies a timing obtained by shifting the zero cross timing of the specified S phase AC voltage by a timing equivalent to the phase of +120 degrees as the zero cross timing of the T phase AC voltage.
  • the zero crossing detection circuit included in the phase identification unit 102 detects the zero crossing point of the RS voltage.
  • the phase specifying unit 102 specifies the zero crossing timing of the RS voltage based on the zero crossing point of the RS voltage detected by the zero crossing detection circuit.
  • the phase specifying unit 102 specifies a timing obtained by shifting the zero cross timing of the specified RS voltage by an amount corresponding to a phase of +120 degrees (+ 1/3 cycle) as the zero cross timing of the S-T voltage.
  • the phase specifying unit 102 specifies a timing obtained by shifting the zero cross timing of the specified S-T voltage by a timing corresponding to the phase of +120 degrees as the zero cross timing of the T-R voltage.
  • the zero cross detection circuit included in the phase specification unit 102 is a single phase of a three-phase AC voltage (in the case where a phase voltage is used to detect a zero cross point, a zero cross point of the R phase AC voltage, a zero cross using a line voltage)
  • the circuit is not limited to a circuit that detects the zero crossing point of the RS voltage.
  • the zero cross detection circuit provided in the phase identification unit 102 may detect two phases of three-phase AC voltage.
  • the zero cross detection circuit may detect three phases of three-phase AC voltage.
  • the zero cross detection circuit provided in the phase identification unit 102 can reduce the influence of noise and detection error on the phase detection result when the number of voltages for detecting the phase among the three-phase AC voltages is increased.
  • the current specifying unit 103 specifies the current corresponding to the rectified voltage of the plurality of alternating voltages at the time interval of the zero cross timing determined based on each phase of the plurality of alternating voltages specified by the phase specifying unit 102. For example, the current identification unit 103 acquires a voltage generated across the resistor disposed in the subsequent stage of the rectifier circuit 100. The current specifying unit 103 calculates the current by dividing the acquired voltage by the resistance value of the resistor. Also, for example, the current identification unit 103 divides the voltage across the current detection resistor 110 disposed in the subsequent stage of the rectifier circuit 100 by the resistance value to obtain the current.
  • the microcomputer 104 includes a current estimation unit 105, a current determination unit 106, and a current limiting unit 107.
  • the current estimation unit 105 estimates each current corresponding to each of the plurality of alternating voltages based on the current corresponding to the rectified voltage of the plurality of alternating voltages specified by the current specification unit 103.
  • the current determination unit 106 determines whether each current estimated by the current estimation unit 105 exceeds a current abnormality detection threshold.
  • the current abnormality detection threshold is a current value that serves as a reference by which the current determination unit 106 determines that the power control device 1 is in a state different from the normal state when a current larger than this value flows.
  • the current abnormality detection threshold may be determined by circuit simulation, for example.
  • the current limiting unit 107 limits the upper limit of the current corresponding to the determination.
  • the reactor 108 and the capacitor 109 constitute a smoothing circuit.
  • the smoothing circuit smoothes the voltage output from the rectifier circuit 100.
  • the inverter 30 converts the DC voltage output from the AC-DC converter 20 into an AC voltage.
  • the inverter 30 is an inverter configured by an IGBT (Insulated Gate Bipolar Transistor).
  • the motor 40 operates in accordance with the AC voltage output from the inverter 30.
  • FIG. 2 is a diagram showing an example of simulation waveforms of voltage and current when three-phase (R-phase, S-phase, T-phase) AC voltages are in an equilibrium state.
  • the simulation condition is that the frequency of the three-phase AC voltage is 50 hertz.
  • the simulation conditions are that the amplitude of the three-phase AC voltage is 380 volts.
  • Part (1) of FIG. 2 shows a simulation waveform of the line voltage (R-S voltage, S-T voltage, T-R voltage) after rectification of the three-phase AC voltage.
  • the horizontal axis shows time.
  • the vertical axis represents voltage.
  • the simulation waveforms of the RS voltage, the ST voltage, and the TR voltage are out of phase with each other by 120 degrees. Further, since the three-phase AC voltages are in an equilibrium state, the amplitudes of the simulation waveforms of the RS voltage, the ST voltage, and the TR voltage are the same.
  • Part (2) of FIG. 2 is a simulation waveform of the converter current.
  • the horizontal axis shows time.
  • the vertical axis shows the current.
  • the converter current is a sum of currents corresponding to the rectified voltage of the three-phase AC voltage, and is a current specified by the current specification unit 103.
  • the three-phase AC voltage is in equilibrium, and the RS voltage, the ST voltage, and the TR voltage are almost the same. Therefore, although the converter current, which is the sum of the currents corresponding to the rectified voltage of the three-phase AC voltage, shows a slight vertical fluctuation in the bias current, it shows a current fluctuation of a waveform close to a sine wave of a constant period. .
  • Part (3) of FIG. 2 is a simulation waveform of current corresponding to each of the R phase, S phase, and T phase of the three-phase AC voltage.
  • the horizontal axis shows time.
  • the vertical axis shows the current.
  • the currents corresponding to the R phase, the S phase, and the T phase are out of phase with each other by 120 degrees because the three phase AC voltages are in equilibrium, but the current waveforms are substantially the same.
  • FIG. 3 is a diagram showing an example of simulation waveforms of voltage and current when the three-phase AC voltage is in an unbalanced state.
  • the simulation condition is that the frequency of the three-phase AC voltage is 50 hertz.
  • the simulation conditions are that the amplitude of the three-phase AC voltage is 380 volts.
  • the unbalance ratio has a variation of 3 percent. (The amplitude of the AC voltage of S phase and T phase is 3% larger than the amplitude of the AC voltage of R phase.)
  • Part (1) of FIG. 3 is a simulation waveform of the line voltage (R-S voltage, S-T voltage, T-R voltage) after rectification of the three-phase AC voltage.
  • the horizontal axis shows time.
  • the vertical axis represents voltage.
  • the simulation waveforms of the RS voltage, the ST voltage, and the TR voltage are out of phase with each other by 120 degrees. Also, the unbalance rate is 3%, and the three-phase AC voltage is unbalance. For this reason, the amplitude of the simulation waveform of the ST voltage is larger than the amplitude of each of the simulation waveforms of the RS voltage and the TR voltage.
  • Part (2) of FIG. 3 is a simulation waveform of the converter current.
  • the horizontal axis shows time.
  • the vertical axis shows the current.
  • the three-phase AC voltage is unbalanced, and the amplitude of the simulation waveform of the ST voltage is larger than the amplitude of each of the simulation waveforms of the RS voltage and the TR voltage. Therefore, the waveform of the converter current, which is the sum of the currents corresponding to the rectified voltage of the three-phase AC voltage, is different from the waveform close to the sine wave of the constant period found when the three-phase AC voltage is in equilibrium. .
  • the waveform of the converter current is a waveform having a constant period but a period in which a large current flows and a period in which a small current does not flow. Further, the peak value of the converter current when the three-phase AC voltage is in an unbalanced state is larger than the peak value of the converter current when the three-phase AC voltage is in an equilibrium state.
  • Part (3) of FIG. 3 is a simulation waveform of the current corresponding to each of the R phase, the S phase, and the T phase of the three-phase AC voltage.
  • the horizontal axis shows time.
  • the vertical axis shows the current. Since the three-phase AC voltage is in an unbalanced state, the currents corresponding to each of the R phase, the S phase, and the T phase have different current waveforms, unlike the case where the three-phase AC voltage is in an unbalanced state.
  • Periods 1 and 4 are periods in which a current corresponding to the T phase of the three-phase AC voltage does not flow, as shown in part (3) of FIG. Therefore, the currents in periods 1 and 4 of the converter current shown in part (2) of FIG. 3 are currents that flow based on the currents corresponding to the R phase and the S phase of the three-phase AC voltage.
  • Periods 2 and 5 are periods in which the current corresponding to the S phase of the three-phase AC voltage does not flow as shown in part (3) of FIG. Therefore, the currents in period 2 and period 5 of the converter current shown in part (2) of FIG.
  • Periods 3 and 6 are periods in which the current corresponding to the R phase of the three-phase AC voltage does not flow, as shown in part (3) of FIG. Therefore, the currents in periods 3 and 6 of the converter current shown in part (2) of FIG. 3 are currents that flow based on the currents corresponding to the S phase and the T phase of the three-phase AC voltage. Therefore, each of the converter currents in period 1 to period 6 is a current that flows based on the current corresponding to each of R phase, S phase, and T phase of the three-phase AC voltage.
  • Each of the converter currents in period 1 to period 6 is correlated with the current corresponding to each of the R phase, S phase, and T phase of the three-phase AC voltage. It is known that when the current corresponding to each of the R phase, S phase and T phase of the three-phase AC voltage increases, the converter current of the corresponding period 1 to period 6 also increases. Therefore, current estimation unit 105 can estimate currents corresponding to the R phase, S phase, and T phase of the three-phase AC voltage based on the converter current. More specifically, current estimation unit 105 estimates the magnitude of the current corresponding to each phase of the three-phase AC voltage by averaging the converter current identified by current identification unit 103 during the period in which the current flows.
  • current estimation unit 105 estimates the current corresponding to the R phase of the three-phase AC voltage as the average value of converter currents in (period 1 + period 2 + period 4 + period 5).
  • Current estimation unit 105 estimates a current corresponding to the S phase of the three-phase AC voltage as an average value of converter currents in (period 1 + period 3 + period 4 + period 6).
  • Current estimation unit 105 estimates the current corresponding to the T phase of the three-phase AC voltage as the average value of converter currents in (period 2 + period 3 + period 5 + period 6).
  • current determination unit 106 determines whether or not each current estimated by current estimation unit 105 exceeds the current abnormality detection threshold value.
  • the current limiting unit 107 limits the upper limit of the current corresponding to the determination. By doing this, the power control device 1 can detect an excessive current that flows when the three-phase AC voltage is unbalanced, and can protect the device.
  • FIG. 4 is a diagram showing an example of a process flow of a normal state of the power control apparatus 1 according to the present embodiment.
  • AC power supply 10 outputs to AC-DC converter 20 three-phase (R-phase, S-phase, T-phase) AC voltages whose phases are shifted by 120 degrees from each other.
  • rectifying unit 101 receives a three-phase AC voltage from AC power supply 10 (step S1). More specifically, for example, as shown in FIG. 1, the rectifying unit 101 receives an AC voltage of R phase from a connection node between the anode of the diode D1 and the cathode of the diode D2. The rectifying unit 101 receives an AC voltage of S phase from a connection node between the anode of the diode D3 and the cathode of the diode D4. The rectifying unit 101 receives an AC voltage of T phase from a connection node between the anode of the diode D5 and the cathode of the diode D6. The rectifying unit 101 full-wave rectifies the received three-phase AC voltage (step S2). The rectifying unit 101 outputs the rectified voltage to the reactor 108.
  • the reactor 108 and the capacitor 109 form a smoothing circuit, and smoothes the rectified voltage (step S3).
  • Reactor 108 and capacitor 109 output the smoothed DC voltage to inverter 30.
  • inverter 30 When receiving the DC voltage, inverter 30 generates an AC voltage for driving motor 40 from the received DC voltage (step S4). The inverter 30 outputs the generated AC voltage to the motor 40. When receiving the AC voltage from inverter 30, motor 40 operates according to the received AC voltage (step S5).
  • the process in the case where the power control device 1 is in the normal state has been described above. In the normal state, the power control device 1 operates the motor 40 by performing the above-described process.
  • FIG. 5 is a diagram showing an example of a processing flow for detecting an abnormal state of the power control device 1 according to the present embodiment.
  • phase specification unit 102 receives a three-phase AC voltage from AC power supply 10.
  • the phase identification unit 102 identifies the phase of each of the R phase, S phase, and T phase of the received three-phase AC voltage (step S11).
  • the phase identification unit 102 includes a zero cross detection circuit.
  • the zero cross detection circuit provided in the phase identification unit 102 detects the zero cross point of the line voltage RS voltage.
  • the phase specifying unit 102 specifies the zero cross point of the RS voltage detected by the zero cross detection circuit as the zero cross timing of the RS voltage.
  • the phase specifying unit 102 specifies a timing obtained by shifting the zero cross timing of the specified RS voltage by an amount corresponding to a phase of +120 degrees (+ 1/3 cycle) as the zero cross timing of the S-T voltage.
  • the phase specifying unit 102 specifies a timing obtained by shifting the zero cross timing of the specified S-T voltage by a timing corresponding to the phase of +120 degrees as the zero cross timing of the T-R voltage.
  • the zero cross detection circuit provided in the phase identification unit 102 may be a circuit that detects a zero cross point using a phase voltage.
  • the phase specifying unit 102 detects one phase of a three-phase AC voltage (when detecting a zero-crossing point using a phase voltage, detecting a zero-crossing point using a zero-crossing point of the R-phase AC voltage or a line voltage) Is not limited to one that detects the zero crossing point of the RS voltage.
  • the zero cross detection circuit may detect two phases of three-phase AC voltage.
  • the zero cross detection circuit may detect three phases of three-phase AC voltage.
  • the zero-crossing detection circuit can reduce the influence of noise and detection errors on the phase detection result by increasing the number of voltages for detecting the phase among the three-phase AC voltages.
  • the phase identification unit 102 outputs the phase of each of the identified R phase, S phase, and T phase of the identified three-phase AC voltage to the current identification unit 103.
  • the phase identification unit 102 may be a line-to-line voltage (RS voltage, ST voltage, Each zero cross timing of the (TR voltage) is output to the current identification unit 103.
  • the current specifying unit 103 When the current specifying unit 103 receives the zero cross timing from the phase specifying unit 102, the current specifying unit 103 specifies a converter current in each period indicated by the zero cross timing (step S12).
  • a converter current in each period indicated by the zero cross timing.
  • the frequency of the three-phase AC voltage is 50 Hz
  • the amplitude of the three-phase AC voltage is 380 volts
  • the unbalance rate is 3 percent
  • current identification unit 103 identifies the converter current in each of period 1 to period 6 shown in part (2) of FIG.
  • Current specifying unit 103 outputs the current value of the converter current in each of the specified period 1 to period 6 to microcomputer 104.
  • current estimation unit 105 determines the current value of the converter current in each period 1 to 6 based on the current value of the converter current.
  • the currents corresponding to the R phase, the S phase, and the T phase of the three-phase AC voltage are estimated (step S13).
  • current estimation unit 105 estimates the current corresponding to the R phase of the three-phase AC voltage as the average value of converter currents in (period 1 + period 2 + period 4 + period 5).
  • Current estimation unit 105 estimates a current corresponding to the S phase of the three-phase AC voltage as an average value of converter currents in (period 1 + period 3 + period 4 + period 6).
  • Current estimation unit 105 estimates the current corresponding to the T phase of the three-phase AC voltage as the average value of converter currents in (period 2 + period 3 + period 5 + period 6).
  • Current estimation unit 105 outputs, to current determination unit 106, an average value of converter currents estimated for each of R phase, S phase, and T phase of the three-phase AC voltage.
  • Current determination unit 106 receives, from current estimation unit 105, an average value of converter currents estimated for each of R phase, S phase, and T phase of the three-phase AC voltage. Current determination unit 106 compares the average value of the converter current estimated for each of received R phase, S phase, and T phase with the current abnormality detection threshold value, and detects the average value of each converter current as a current abnormality. It is determined whether the threshold value is exceeded (step S14).
  • the current abnormality detection threshold value is a current value serving as a reference by which the current determination unit 106 determines that the power control device 1 is in a state different from normal, that is, in an abnormal state.
  • current determination unit 106 determines that power control device 1 is in the abnormal state.
  • the current determination unit 106 outputs, to the current limiting unit 107, an abnormality notification signal for notifying that an abnormal state is present.
  • the abnormality notification signal includes information notifying that an abnormal state is present and information on the average value of the converter current.
  • current limiting unit 107 receives an abnormality notification signal from current determination unit 106, current limiting unit 107 determines whether the current is one of R phase, S phase, or T phase corresponding to the largest average value of converter currents determined to be in an abnormal state. The upper limit is limited (step S15).
  • current limiting unit 107 specifies any one of R-phase, S-phase, and T-phase corresponding to the average value of the largest converter current.
  • the current limiting unit 107 limits the upper limit of the current flowing to the inverter 30 by limiting the upper limit of the current corresponding to any of the identified AC voltages of R phase, S phase, and T phase.
  • the current limiting unit 107 limits the upper limit of the current flowing through the inverter 30 by changing the threshold value of the window comparator that determines the upper limit of the current arranged on the previous stage of the inverter 30.
  • limiting the upper limit of the current flowing to the inverter 30 includes making the upper limit of the current zero.
  • limiting the upper limit of the current flowing to the inverter 30 also includes stopping the power control device 1.
  • Inverter 30 receives a DC voltage corresponding to the current whose upper limit is limited, from the smoothing circuit formed of reactor 108 and capacitor 109.
  • the inverter 30 generates an AC voltage for driving the motor 40 from the DC voltage corresponding to the current whose upper limit is limited (step S16).
  • the inverter 30 outputs the generated AC voltage to the motor 40.
  • motor 40 operates according to the received AC voltage (step S17). Then, the process returns to step S11.
  • Current determination unit 106 determines that power control device 1 is in the normal state when the average value of the converter current is equal to or less than the current abnormality detection threshold (NO in step S14). In this case, the current limiting unit 107 releases the upper limit of the limited current (step S18). The processing returns to step S11.
  • the phase identification unit 102 identifies the phase of each of the R phase, S phase, and T phase of the received three-phase AC voltage.
  • the current specifying unit 103 specifies a converter current corresponding to each voltage of R phase, S phase, and T phase of three-phase AC voltage in each period indicated by the zero cross timing. .
  • the R-phase, S-phase, and T-phase voltages of the three-phase AC power supply become unbalanced, they correspond to the estimated R-phase, S-phase, and T-phase voltages.
  • An abnormal state in the power control device 1 (system) can be easily detected based on the current, and the power control device 1 can be protected.
  • the current estimation circuit 111 is not limited to the application to the power control device 1 described in the present embodiment.
  • the current estimation circuit 111 may be applied to the power control device 1 including a PAM (Pulse Amplitude Modulation) circuit.
  • the current estimation circuit 111 may be applied to the power control device 1 including an active converter using a transistor or the like.
  • the current estimation circuit 111 may be applied to the power control device 1 including an active filter.
  • the current identification unit 103 may detect the converter current based on the current detected by a current sensor such as a current transformer disposed instead of the current detection resistor 110.
  • the process flow of the power control device 1 has been described by way of example of the process for the three-phase AC voltage, it is not limited thereto.
  • the processing flow of the power control device 1 may be processing for a two-phase AC voltage or an AC voltage of four or more phases.
  • the phase difference of each voltage is different from the phase difference of 120 degrees of the three-phase AC voltage.
  • the order of processing may be reversed as long as appropriate processing is performed.
  • the current estimation circuit 111 included in the power control device 1 described above has a computer system inside.
  • the process of the process described above is stored in the form of a program in a computer readable recording medium, and the process is performed by the computer reading and executing the program.
  • the computer-readable recording medium refers to a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, a semiconductor memory and the like.
  • the computer program may be distributed to a computer through a communication line, and the computer receiving the distribution may execute the program.
  • the program may realize part of the functions described above.
  • the program may be a file capable of realizing the above-described functions in combination with a program already recorded in a computer system, a so-called difference file (difference program).
  • the current estimation circuit According to the current estimation circuit, the AC-DC converter, the power control device, the current estimation circuit, the current estimation method and the program of the above-mentioned rectifier circuit, the voltages of R phase, S phase and T phase of the three-phase AC power supply are not sufficient. When in equilibrium, abnormal conditions in the system can be easily detected and the system can be protected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Rectifiers (AREA)

Abstract

 この整流回路の電流推定回路は、位相特定部と、電流特定部と、を備える。前記位相特定部は、電源から出力される複数の交流電圧の各位相を特定する。前記電流特定部は、前記位相特定部が特定した前記各位相に基づいて決定した時間間隔において、前記複数の交流電圧の整流後の電圧に対応する電流を特定する。

Description

整流回路の電流推定回路、AC-DCコンバータ、電力制御装置、電流推定回路、電流推定方法及びプログラム
 本発明は、整流回路の電流推定回路、AC-DCコンバータ、電力制御装置、電流推定回路、電流推定方法及びプログラムに関する。
 本願は、2014年10月17日に、日本に出願された特願2014-212667号に基づき優先権を主張し、その内容をここに援用する。
 三相交流電源から供給される交流電圧に基づいてモータを駆動する電圧を生成するシステムがある。一般的に、モータを駆動する電圧を生成するシステムは、AC-DCコンバータとインバータとを備える。そのシステムは、三相交流電源から供給される交流電圧をAC-DCコンバータで交流電圧から直流電圧に変換し、インバータでAC-DCコンバータが変換した直流電圧を交流電圧に変換する。こうすることで、システムは、モータを駆動するのに適したDC電圧を生成している。
 特許文献1には、関連する技術が開示されている。特許文献1に開示の装置は、PWM(Pulse Width Modulation)整流回路及びPWMインバータを備える。この装置は、電流に基づいてPWM整流回路への供給電圧に異常の有無を判定する。この装置は、異常があると判定した場合に、PWMインバータの出力周波数またはデューティを小さくすることで回路を保護する。
日本国特許第4759968号公報
 一般的なモータを駆動する電圧を生成するシステムにおいて、三相交流電源のR相、S相、T相のそれぞれの電圧が不平衡状態となると、三相交流電源から電力が供給される装置、あるいは、その装置の後段に接続される装置に過大な電流が流れることがある。その場合、システムに不具合が発生してしまう可能性がある。
 そのため、三相交流電源のR相、S相、T相のそれぞれの電圧が不平衡状態になった場合に、システムにおける異常な状態を容易に検出することができ、システムを保護することのできる技術が求められていた。
 本発明は、上記の課題を解決することのできる整流回路の電流推定回路、AC-DCコンバータ、電力制御装置、電流推定回路、電流推定方法及びプログラムを提供することを目的としている。
 本発明の第1の態様によれば、整流回路の電流推定回路は、電源から出力される複数の交流電圧の各位相を特定する位相特定部と、前記位相特定部が特定した前記各位相に基づいて決定した時間間隔において、前記複数の交流電圧の整流後の電圧に対応する電流を特定する電流特定部と、を備える。
 本発明の第2の態様によれば、第1の態様における整流回路の電流推定回路において、前記電流特定部は、前記整流後の抵抗に流れる電流に基づいて、前記整流後の電圧に対応する電流を特定してもよい。
 本発明の第3の態様によれば、第1の態様における整流回路の電流推定回路において、前記電流特定部は、前記整流後のカレントトランスが検出する電流に基づいて、前記整流後の電圧に対応する電流を特定してもよい。
 本発明の第4の態様によれば、第1から第3の何れかの態様における整流回路の電流推定回路は、前記電流特定部が特定した整流後の電圧に対応する電流に基づいて、前記複数の交流電圧のそれぞれに対応するそれぞれの電流を推定する電流推定部、を備えていてもよい。
 本発明の第5の態様によれば、第4の態様における整流回路の電流推定回路は、前記電流推定部が推定したそれぞれの電流が電流異常検出しきい値を超えるか否かを判定する電流判定部と、前記電流判定部が前記推定したそれぞれの電流が前記電流異常検出しきい値を超えたと判定した場合に、前記判定に対応する前記推定したそれぞれの電流の上限を制限する電流制限部と、を備えていてもよい。
 本発明の第6の態様によれば、AC-DCコンバータは、第1から第5の何れかの態様における整流回路の電流推定回路と、前記整流回路が出力する電圧を平滑化する平滑化回路と、を備える。
 本発明の第7の態様によれば、電力制御装置は、第6の態様におけるAC-DCコンバータと、前記AC-DCコンバータが出力する直流電圧を交流電圧に変換するインバータと、を備える。
 本発明の第8の態様によれば、電流推定回路は、電源から出力される複数の交流電圧の各位相に基づいて決定した時間間隔において、前記複数の交流電圧の整流後の電圧に対応する電流に基づいて、前記複数の交流電圧のそれぞれに対応するそれぞれの電流を推定する電流推定部、を備える。
 本発明の第9の態様によれば、第8の態様における電流推定回路は、前記電流推定部が推定したそれぞれの電流が電流異常検出しきい値を超えるか否かを判定する電流判定部と、前記電流判定部が前記推定したそれぞれの電流が前記電流異常検出しきい値を超えたと判定した場合に、前記判定に対応する前記推定したそれぞれの電流の上限を制限する電流制限部と、を備えていてもよい。
 本発明の第10の態様によれば、電流推定方法は、電源から出力される複数の交流電圧の各位相を特定し、特定した前記各位相に基づいて決定した時間間隔において、前記複数の交流電圧の整流後の電圧に対応する電流を特定することを含む。
 本発明の第11の態様によれば、電流推定方法は、電源から出力される複数の交流電圧の各位相に基づいて決定した時間間隔において、前記複数の交流電圧の整流後の電圧に対応する電流に基づいて、前記複数の交流電圧のそれぞれに対応するそれぞれの電流を推定することを含む。
 本発明の第12の態様によれば、プログラムは、コンピュータに、電源から出力される複数の交流電圧の各位相に基づいて決定した時間間隔において、前記複数の交流電圧の整流後の電圧に対応する電流に基づいて、前記複数の交流電圧のそれぞれに対応するそれぞれの電流を推定する、ことを実行させる。
 上述の整流回路の電流推定回路、AC-DCコンバータ、電力制御装置、電流推定回路、電流推定方法及びプログラムによれば、三相交流電源のR相、S相、T相のそれぞれの電圧が不平衡状態になった場合に、システムにおける異常な状態を容易に検出することができ、システムを保護することができる。
本発明の一実施形態による整流回路を備える電力制御装置の構成の一例を示す図である。 本実施形態において、三相(R相、S相、T相)交流電圧が平衡状態の場合の電圧及び電流のシミュレーション波形の一例を示す図である。 本実施形態において、三相交流電圧が不平衡状態の場合の電圧及び電流のシミュレーション波形の一例を示す図である。 本実施形態による電力制御装置の通常状態の処理フローの一例を示す図である。 本実施形態による電力制御装置の異常状態を検出する処理フローの一例を示す図。 本実施形態によるPAM回路を備える電力制御装置の構成の一例を示す図。 本実施形態によるアクティブコンバータを備える電力制御装置の構成の一例を示す図。
<実施形態>
 以下、図面を参照しながら実施形態について詳しく説明する。
 まず、本実施形態による整流回路100を備える電力制御装置1の構成について説明する。
 図1は、本発明の一実施形態による整流回路100を備える電力制御装置1の構成の一例を示す図である。
 図1に示すように、本実施形態による電力制御装置1は、交流電源10と、AC(Alternative Current)-DC(Direct Current)コンバータ20と、インバータ30と、モータ40と、を備える。
 交流電源10は、複数の交流電圧を出力する。例えば、交流電源10は、互いに位相が120度ずれた3つの正弦波交流電圧(R相、S相、T相)を整流部101に出力する。
 AC-DCコンバータ20は、整流回路100と、リアクトル108と、キャパシタ109と、を備える。
 整流回路100は、整流部101と、電流検出抵抗110と、電流推定回路111と、を備える。
 整流部101は、交流電源10が出力する交流電圧を整流する。例えば、整流部101は、6つのダイオードD1~D6を備える。ダイオードD1のアノードは、ダイオードD2のカソードに接続されている。ダイオードD3のアノードは、ダイオードD4のカソードに接続されている。ダイオードD5のアノードは、ダイオード6のカソードに接続されている。交流電源10は、R相の交流電圧をこのダイオードD1のアノードに出力する。交流電源10は、S相の交流電圧をこのダイオードD3のアノードに出力する。交流電源10は、T相の交流電圧をこのダイオードD5のアノードに出力する。整流部101は、交流電源10が整流部101に出力する交流電圧を全波整流する。
 電流検出抵抗110は、AC-DCコンバータ20に流れるコンバータ電流を検出する抵抗である。
 電流推定回路111は、位相特定部102と、電流特定部103と、マイクロコンピュータ104と、を備える。
 位相特定部102は、交流電源10から出力される複数の交流電圧の各位相を特定する。例えば、位相特定部102は、ゼロクロス検出回路を備える。位相特定部102が備えるゼロクロス検出回路は、線間電圧または相電圧を用いてゼロクロス点を検出する。ゼロクロス点とは、交流電圧の振幅ゼロを示すバイアス電圧と交流電圧とが交差する点である。
 例えば、相電圧を用いてゼロクロス点を検出する場合、位相特定部102が備えるゼロクロス検出回路は、R相の交流電圧のゼロクロス点を検出する。位相特定部102は、ゼロクロス検出回路が検出したR相の交流電圧のゼロクロス点に基づいて、R相の交流電圧のゼロクロスタイミングを特定する。位相特定部102は、特定したR相の交流電圧のゼロクロスタイミングを+120度の位相に相当するタイミングの分(+3分の1周期分)だけずらしたタイミングをS相の交流電圧のゼロクロスタイミングと特定する。位相特定部102は、特定したS相の交流電圧のゼロクロスタイミングを+120度の位相に相当するタイミングの分だけずらしたタイミングをT相の交流電圧のゼロクロスタイミングと特定する。
 例えば、線間電圧を用いてゼロクロス点を検出する場合、位相特定部102が備えるゼロクロス検出回路は、R-S電圧のゼロクロス点を検出する。位相特定部102は、ゼロクロス検出回路が検出したR-S電圧のゼロクロス点に基づいて、R-S電圧のゼロクロスタイミングを特定する。位相特定部102は、特定したR-S電圧のゼロクロスタイミングを+120度の位相に相当するタイミングの分(+3分の1周期分)だけずらしたタイミングをS-T電圧のゼロクロスタイミングと特定する。位相特定部102は、特定したS-T電圧のゼロクロスタイミングを+120度の位相に相当するタイミングの分だけずらしたタイミングをT-R電圧のゼロクロスタイミングと特定する。
 なお、位相特定部102が備えるゼロクロス検出回路は、三相交流電圧の1相(相電圧を用いてゼロクロス点を検出する場合にはR相の交流電圧のゼロクロス点、線間電圧を用いてゼロクロス点を検出する場合にはR-S電圧のゼロクロス点)を検出する回路に限定されない。例えば、位相特定部102が備えるゼロクロス検出回路は、三相交流電圧の2相を検出してもよい。また、ゼロクロス検出回路は、三相交流電圧の3相を検出してもよい。なお、位相特定部102が備えるゼロクロス検出回路は、三相交流電圧のうち位相を検出する電圧の数を増加すると、ノイズや検出誤差による位相検出結果への影響を低減することができる。
 電流特定部103は、位相特定部102が特定した複数の交流電圧の各位相に基づいて決定したゼロクロスタイミングの時間間隔において、複数の交流電圧の整流後の電圧に対応する電流を特定する。例えば、電流特定部103は、整流回路100の後段に配置された抵抗の両端に生じる電圧を取得する。電流特定部103は、取得した電圧をその抵抗の抵抗値で除算することにより電流を算出する。また、例えば、電流特定部103は、整流回路100の後段に配置された電流検出抵抗110の両端の電圧を抵抗値で除算し電流を取得する。
 マイクロコンピュータ104は、電流推定部105と、電流判定部106と、電流制限部107と、を備える。
 電流推定部105は、電流特定部103が特定した複数の交流電圧の整流後の電圧に対応する電流に基づいて、複数の交流電圧のそれぞれに対応するそれぞれの電流を推定する。
 電流判定部106は、電流推定部105が推定したそれぞれの電流が電流異常検出しきい値を超えるか否かを判定する。なお、電流異常検出しきい値は、これ以上の電流が流れると電力制御装置1が通常とは異なる状態であると電流判定部106が判定する基準となる電流値である。電流異常検出しきい値は、例えば、回路シミュレーションにより決定すればよい。
 電流制限部107は、電流が電流異常検出しきい値を超えたと電流判定部106が判定した場合に、その判定に対応する電流の上限を制限する。
 リアクトル108とキャパシタ109は、平滑化回路を構成する。この平滑化回路は、整流回路100が出力する電圧を平滑化する。
 インバータ30は、AC-DCコンバータ20が出力する直流電圧を交流電圧に変換する。例えば、インバータ30は、IGBT(Insulated Gate Bipolar Transistor)により構成されるインバータである。
 モータ40は、インバータ30が出力する交流電圧に応じて動作する。
 次に、整流回路100が行う交流電圧の全波整流について説明する。
 図2は、三相(R相、S相、T相)交流電圧が平衡状態の場合の電圧及び電流のシミュレーション波形の一例を示す図である。
 シミュレーション条件は、三相交流電圧の周波数が50ヘルツである。また、シミュレーション条件は、三相交流電圧の振幅が380ボルトである。
 図2の部分(1)は、三相交流電圧の整流後の線間電圧(R-S電圧、S-T電圧、T-R電圧)のシミュレーション波形を示す。横軸は時間を示している。また、縦軸は電圧を示している。
 R-S電圧、S-T電圧、T-R電圧のそれぞれのシミュレーション波形は、位相が互いに120度ずつずれている。また、三相交流電圧が平衡状態であるため、R-S電圧、S-T電圧、T-R電圧のそれぞれのシミュレーション波形の振幅は同一である。
 図2の部分(2)は、コンバータ電流のシミュレーション波形である。横軸は時間を示している。また、縦軸は電流を示している。
 コンバータ電流は、三相交流電圧の整流後の電圧に対応する電流の総和であり、電流特定部103が特定した電流である。
 三相交流電圧が平衡状態であり、R-S電圧、S-T電圧、T-R電圧のそれぞれがほぼ同一である。そのため、三相交流電圧の整流後の電圧に対応する電流の総和であるコンバータ電流は、バイアス電流にわずかな上下変動がみられるが、一定周期の正弦波に近い波形の電流変動を示している。
 図2の部分(3)は、三相交流電圧のR相、S相、T相のそれぞれに対応する電流のシミュレーション波形である。横軸は時間を示している。また、縦軸は電流を示している。
 R相、S相、T相のそれぞれに対応する電流は、三相交流電圧が平衡状態であるため、位相が互いに120度ずつずれているが、それぞれの電流波形はほぼ同一である。
 図3は、三相交流電圧が不平衡状態の場合の電圧及び電流のシミュレーション波形の一例を示す図である。
 シミュレーション条件は、三相交流電圧の周波数が50ヘルツである。また、シミュレーション条件は、三相交流電圧の振幅が380ボルトである。ただし、三相交流電圧が不平衡状態の場合の電圧及び電流のシミュレーションでは、不平衡率として3パーセントのばらつきを持たせている。(S相とT相の交流電圧の振幅は、R相の交流電圧の振幅に比べて3パーセント大きくしている。)
 図3の部分(1)は、三相交流電圧の整流後の線間電圧(R-S電圧、S-T電圧、T-R電圧)のシミュレーション波形である。横軸は時間を示している。また、縦軸は電圧を示している。
 R-S電圧、S-T電圧、T-R電圧のそれぞれのシミュレーション波形は、位相が互いに120度ずつずれている。また、不平衡率が3パーセントであり、三相交流電圧が不平衡状態である。このため、S-T電圧のシミュレーション波形の振幅は、R-S電圧、T-R電圧のそれぞれのシミュレーション波形の振幅に比べて大きい。
 図3の部分(2)は、コンバータ電流のシミュレーション波形である。横軸は時間を示している。また、縦軸は電流を示している。
 三相交流電圧が不平衡状態であり、S-T電圧のシミュレーション波形の振幅は、R-S電圧、T-R電圧のそれぞれのシミュレーション波形の振幅に比べて大きい。そのため、三相交流電圧の整流後の電圧に対応する電流の総和であるコンバータ電流の波形は、三相交流電圧が平衡状態である場合に見られた一定周期の正弦波に近い波形とは異なる。コンバータ電流の波形は、一定周期ではあるが、大きな電流を流す期間と、あまり電流を流さない期間とから成る波形である。また、三相交流電圧が不平衡状態である場合のコンバータ電流のピーク値は、三相交流電圧が平衡状態である場合のコンバータ電流のピーク値に比べて大きい。
 図3の部分(3)は、三相交流電圧のR相、S相、T相のそれぞれに対応する電流のシミュレーション波形である。横軸は時間を示している。また、縦軸は電流を示している。
 三相交流電圧が不平衡状態であるため、R相、S相、T相のそれぞれに対応する電流は、三相交流電圧が不平衡状態である場合とは異なり、互いに異なる電流波形である。
 図3に示すように、期間1~期間6に分け、図3の部分(2)と図3の部分(3)に注目する。
 期間1と期間4は、図3の部分(3)に示すように、三相交流電圧のT相に対応する電流が流れない期間である。したがって、図3の部分(2)に示すコンバータ電流の期間1と期間4における電流は、三相交流電圧のR相とS相に対応する電流に基づいて流れる電流である。
 期間2と期間5は、図3の部分(3)に示すように、三相交流電圧のS相に対応する電流が流れない期間である。したがって、図3の部分(2)に示すコンバータ電流の期間2と期間5における電流は、三相交流電圧のR相とT相に対応する電流に基づいて流れる電流である。
 期間3と期間6は、図3の部分(3)に示すように、三相交流電圧のR相に対応する電流が流れない期間である。したがって、図3の部分(2)に示すコンバータ電流の期間3と期間6における電流は、三相交流電圧のS相とT相に対応する電流に基づいて流れる電流である。
 したがって、期間1~期間6のコンバータ電流のそれぞれは、三相交流電圧のR相、S相、T相のそれぞれに対応する電流に基づいて流れる電流である。期間1~期間6のコンバータ電流のそれぞれは、三相交流電圧のR相、S相、T相のそれぞれに対応する電流に相関がある。三相交流電圧のR相、S相、T相のそれぞれに対応する電流が増加すると対応する期間1~期間6のコンバータ電流も増加することがわかっている。そのため、電流推定部105は、コンバータ電流に基づいて三相交流電圧のR相、S相、T相に対応する電流を推定することができる。
 より具体的には、電流推定部105は、三相交流電圧の各相に対応する電流の大小を、その電流が流れる期間に電流特定部103が特定したコンバータ電流を平均して推定する。具体例として、三相交流電圧が不平衡状態であり、図3で示した電圧と電流である場合について説明する。この場合、電流推定部105は、三相交流電圧のR相に対応する電流を(期間1+期間2+期間4+期間5)におけるコンバータ電流の平均値と推定する。電流推定部105は、三相交流電圧のS相に対応する電流を(期間1+期間3+期間4+期間6)におけるコンバータ電流の平均値と推定する。電流推定部105は、三相交流電圧のT相に対応する電流を(期間2+期間3+期間5+期間6)におけるコンバータ電流の平均値と推定する。
 そして、電流判定部106は、電流推定部105が推定したそれぞれの電流が電流異常検出しきい値を超えるか否かを判定する。
 電流制限部107は、電流が電流異常検出しきい値を超えたと電流判定部106が判定した場合に、その判定に対応する電流の上限を制限する。
 こうすることで、電力制御装置1は、三相交流電圧が不平衡状態である場合に流れる過大な電流を検出し装置を保護することができる。
 次に、本実施形態による電力制御装置1が行う処理について説明する。
 ここでは、図1で示した電力制御装置1を例に処理について説明する。
 電力制御装置1が三相交流電圧を整流して直流電圧を生成し、生成した直流電圧からモータ40を駆動する交流電圧を生成する通常状態の処理について説明する。
 図4は、本実施形態による電力制御装置1の通常状態の処理フローの一例を示す図である。
 交流電源10は、互いに位相が120度ずつずれた三相(R相、S相、T相)交流電圧をAC-DCコンバータ20に出力する。
 AC-DCコンバータ20が交流電源10から三相交流電圧を受けると、整流部101は、交流電源10から三相交流電圧を受ける(ステップS1)。より具体的には、例えば、整流部101は、図1に示すように、ダイオードD1のアノードとダイオードD2のカソードとの接続ノードからR相の交流電圧を受ける。整流部101は、ダイオードD3のアノードとダイオードD4のカソードとの接続ノードからS相の交流電圧を受ける。整流部101は、ダイオードD5のアノードとダイオードD6のカソードとの接続ノードからT相の交流電圧を受ける。
 整流部101は、受けた三相交流電圧を全波整流する(ステップS2)。整流部101は、整流後の電圧をリアクトル108に出力する。
 リアクトル108とキャパシタ109は、平滑化回路を構成し、整流後の電圧を平滑化する(ステップS3)。リアクトル108とキャパシタ109は、平滑化後の直流電圧をインバータ30に出力する。
 インバータ30は、直流電圧を受けると、受けた直流電圧からモータ40を駆動するための交流電圧を生成する(ステップS4)。インバータ30は、生成した交流電圧をモータ40に出力する。
 モータ40は、インバータ30から交流電圧を受けると、受けた交流電圧に応じて動作する(ステップS5)。
 以上、電力制御装置1が通常状態である場合の処理について説明した。電力制御装置1は、通常状態では上述のような処理を行うことでモータ40を動作させる。
 次に、電力制御装置1が通常状態の処理と並行に行う異常状態を検出する処理について説明する。
 図5は、本実施形態による電力制御装置1の異常状態を検出する処理フローの一例を示す図である。
 AC-DCコンバータ20が交流電源10から三相交流電圧を受けると、位相特定部102は、交流電源10から三相交流電圧を受ける。
 位相特定部102は、受けた三相交流電圧のR相、S相、T相のそれぞれの電圧の位相を特定する(ステップS11)。例えば、位相特定部102は、ゼロクロス検出回路を備える。位相特定部102が備えるゼロクロス検出回路は、線間電圧R-S電圧のゼロクロス点を検出する。位相特定部102は、ゼロクロス検出回路が検出したR-S電圧のゼロクロス点をR-S電圧のゼロクロスタイミングと特定する。位相特定部102は、特定したR-S電圧のゼロクロスタイミングを+120度の位相に相当するタイミングの分(+3分の1周期分)だけずらしたタイミングをS-T電圧のゼロクロスタイミングと特定する。位相特定部102は、特定したS-T電圧のゼロクロスタイミングを+120度の位相に相当するタイミングの分だけずらしたタイミングをT-R電圧のゼロクロスタイミングと特定する。位相特定部102が備えるゼロクロス検出回路は、相電圧を用いてゼロクロス点を検出する回路であってもよい。
 なお、位相特定部102は、三相交流電圧の1相(相電圧を用いてゼロクロス点を検出する場合にはR相の交流電圧のゼロクロス点、線間電圧を用いてゼロクロス点を検出する場合にはR-S電圧のゼロクロス点)を検出するものに限定されない。例えば、ゼロクロス検出回路は、三相交流電圧の2相を検出してもよい。また、ゼロクロス検出回路は、三相交流電圧の3相を検出してもよい。なお、ゼロクロス検出回路は、三相交流電圧のうち位相を検出する電圧の数を増加すると、ノイズや検出誤差による位相検出結果への影響を低減することができる。
 位相特定部102は、特定した三相交流電圧のR相、S相、T相のそれぞれの電圧の位相を電流特定部103に出力する。例えば、位相特定部102は、図3について説明した、三相交流電圧のR相、S相、T相のそれぞれの電圧の位相を示す特定線間電圧(R-S電圧、S-T電圧、T-R電圧)のそれぞれのゼロクロスタイミングを電流特定部103に出力する。
 電流特定部103は、位相特定部102からゼロクロスタイミングを受けると、ゼロクロスタイミングによって示される各期間におけるコンバータ電流を特定する(ステップS12)。具体例として、三相交流電圧の周波数が50ヘルツであり、三相交流電圧の振幅が380ボルトであり、不平衡率が3パーセントである場合について説明する。この場合、電流特定部103は、図3の部分(2)で示した、期間1~期間6の各期間におけるコンバータ電流を特定する。電流特定部103は、特定した期間1~期間6の各期間におけるコンバータ電流の電流値をマイクロコンピュータ104に出力する。
 マイクロコンピュータ104が電流特定部103から期間1~期間6の各期間におけるコンバータ電流の電流値を受けると、電流推定部105は、期間1~期間6の各期間におけるコンバータ電流の電流値に基づいて、三相交流電圧のR相、S相、T相に対応する電流を推定する(ステップS13)。具体例として、三相交流電圧が不平衡状態であり、図3で示した電圧と電流である場合について説明する。この場合、電流推定部105は、三相交流電圧のR相に対応する電流を(期間1+期間2+期間4+期間5)におけるコンバータ電流の平均値と推定する。電流推定部105は、三相交流電圧のS相に対応する電流を(期間1+期間3+期間4+期間6)におけるコンバータ電流の平均値と推定する。電流推定部105は、三相交流電圧のT相に対応する電流を(期間2+期間3+期間5+期間6)におけるコンバータ電流の平均値と推定する。
 電流推定部105は、三相交流電圧のR相、S相、T相のそれぞれについて推定したコンバータ電流の平均値を電流判定部106に出力する。
 電流判定部106は、電流推定部105から三相交流電圧のR相、S相、T相のそれぞれについて推定したコンバータ電流の平均値を受ける。電流判定部106は、受けたR相、S相、T相のそれぞれについて推定したコンバータ電流の平均値と電流異常検出しきい値とを比較し、それぞれのコンバータ電流の平均値が電流異常検出しきい値を超えるか否かを判定する(ステップS14)。なお、電流異常検出しきい値は、電力制御装置1が通常とは異なる状態、すなわち、異常状態であると電流判定部106が判定する基準となる電流値である。
 電流判定部106は、コンバータ電流の平均値が電流異常検出しきい値を超えた場合(ステップS14においてYES)、電力制御装置1が異常状態であると判定する。電流判定部106は、異常状態であることを報知する異常報知信号を電流制限部107に出力する。なお、異常報知信号は、異常状態であることを報知する情報と、コンバータ電流の平均値の情報とを含んでいる。
 電流制限部107は、電流判定部106から異常報知信号を受けると、異常状態であると判定したコンバータ電流の最も大きい平均値に対応するR相、S相、T相の何れかについての電流の上限を制限する(ステップS15)。例えば、電流制限部107は、電流判定部106から受けた異常報知信号に基づいて、最も大きいコンバータ電流の平均値に対応するR相、S相、T相の何れかを特定する。電流制限部107は、特定したR相、S相、T相の何れかの交流電圧に対応する電流の上限を制限することにより、インバータ30に流れる電流の上限を制限する。例えば、電流制限部107は、インバータ30よりも前段に配置された電流の上限を決定するウィンドウコンパレータのしきい値を変更してインバータ30に流れる電流の上限を制限する。なお、インバータ30に流れる電流の上限を制限することは、電流の上限をゼロにすることを含んでいる。また、インバータ30に流れる電流の上限を制限することは、電力制御装置1を停止することも含んでいる。
 インバータ30は、リアクトル108とキャパシタ109とから成る平滑化回路から上限が制限された電流に対応する直流電圧を受ける。インバータ30は、上限が制限された電流に対応する直流電圧からモータ40を駆動するための交流電圧を生成する(ステップS16)。インバータ30は、生成した交流電圧をモータ40に出力する。
 モータ40は、インバータ30から交流電圧を受けると、受けた交流電圧に応じて動作する(ステップS17)。そして、処理はステップS11へ戻る。
 電流判定部106は、コンバータ電流の平均値が電流異常検出しきい値以下である場合(ステップS14においてNO)、電力制御装置1が通常状態であると判定する。この場合、電流制限部107は、制限している電流の上限を解除する(ステップS18)。処理はステップS11へ戻る。
 以上、本発明の一実施形態による電力制御装置1の処理フローについて説明した。上述の電力制御装置1の処理において、位相特定部102は、受けた三相交流電圧のR相、S相、T相のそれぞれの電圧の位相を特定する。電流特定部103は、位相特定部102からゼロクロスタイミングを受けると、ゼロクロスタイミングによって示される各期間における三相交流電圧のR相、S相、T相のそれぞれの電圧に対応するコンバータ電流を特定する。
 このようにすれば、三相交流電源のR相、S相、T相のそれぞれの電圧が不平衡状態になった場合に、推定したR相、S相、T相のそれぞれの電圧に対応する電流に基づいて、電力制御装置1(システム)における異常な状態を容易に検出することができ、電力制御装置1を保護することができる。
 なお、本発明の実施形態による電流推定回路111は、本実施形態で説明した電力制御装置1への適用に限定しない。例えば、図6に示すように、電流推定回路111は、PAM(Pulse Amplitude Modulation)回路を備える電力制御装置1に適用してもよい。また、図7に示すように、電流推定回路111は、トランジスタなどを用いたアクティブコンバータを備える電力制御装置1に適用してもよい。また、電流推定回路111は、アクティブフィルタを備える電力制御装置1に適用してもよい。
 本発明の実施形態による電流特定部103は、電流検出抵抗110の代わりに配置されたカレントトランスなどの電流センサが検出する電流に基づいて、コンバータ電流を検出してもよい。
 本発明の実施形態による電力制御装置1の処理フローは、三相交流電圧についての処理を例に説明したが、それに限定しない。例えば、電力制御装置1の処理フローは、二相交流電圧や四相以上の交流電圧についての処理であってもよい。ただし、電力制御装置1が二相交流電圧や四相以上の交流電圧についての処理を行う場合、各電圧の位相差は、三相交流電圧の位相差120度とは異なる。
 本発明の一実施形態における処理フローは、適切な処理が行われる範囲において、処理の順番が入れ替わってもよい。
 本発明の実施形態について説明したが、上述の電力制御装置1が備える電流推定回路111は内部に、コンピュータシステムを有している。そして、上述した処理の過程は、プログラムの形式でコンピュータ読み取り可能な記録媒体に記憶されており、このプログラムをコンピュータが読み出して実行することによって、上記処理が行われる。ここでコンピュータ読み取り可能な記録媒体とは、磁気ディスク、光磁気ディスク、CD-ROM、DVD-ROM、半導体メモリ等をいう。また、このコンピュータプログラムを通信回線によってコンピュータに配信し、この配信を受けたコンピュータがそのプログラムを実行するようにしてもよい。
 また、上記プログラムは、前述した機能の一部を実現してもよい。さらに、上記プログラムは、前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるファイル、いわゆる差分ファイル(差分プログラム)であってもよい。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例であり、発明の範囲を限定しない。これらの実施形態は、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行ってよい。
 上述の整流回路の電流推定回路、AC-DCコンバータ、電力制御装置、電流推定回路、電流推定方法及びプログラムによれば、三相交流電源のR相、S相、T相のそれぞれの電圧が不平衡状態になった場合に、システムにおける異常な状態を容易に検出することができ、システムを保護することができる。
1 電力制御装置
10 交流電源
20 AC-DCコンバータ
30 インバータ
40 モータ
100 整流回路
101 整流部
102 位相特定部
103 電流特定部
104 マイクロコンピュータ
105 電流推定部
106 電流判定部
107 電流制限部
108、108a、108b、108c リアクトル
109 キャパシタ
110 電流検出抵抗
111 電流推定回路
D1、D2、D3、D4、D5、D6 ダイオード

Claims (12)

  1.  電源から出力される複数の交流電圧の各位相を特定する位相特定部と、
     前記位相特定部が特定した前記各位相に基づいて決定した時間間隔において、前記複数の交流電圧の整流後の電圧に対応する電流を特定する電流特定部と、
     を備える整流回路の電流推定回路。
  2.  前記電流特定部は、
     前記整流後の抵抗に流れる電流に基づいて、前記整流後の電圧に対応する電流を特定する、
     請求項1に記載の整流回路の電流推定回路。
  3.  前記電流特定部は、
     前記整流後のカレントトランスが検出する電流に基づいて、前記整流後の電圧に対応する電流を特定する、
     請求項1に記載の整流回路の電流推定回路。
  4.  前記電流特定部が特定した整流後の電圧に対応する電流に基づいて、前記複数の交流電圧のそれぞれに対応するそれぞれの電流を推定する電流推定部、
     を備える請求項1から請求項3の何れか一項に記載の整流回路の電流推定回路。
  5.  前記電流推定部が推定したそれぞれの電流が電流異常検出しきい値を超えるか否かを判定する電流判定部と、
     前記電流判定部が前記推定したそれぞれの電流が前記電流異常検出しきい値を超えたと判定した場合に、前記判定に対応する前記推定したそれぞれの電流の上限を制限する電流制限部と、
     を備える請求項4に記載の整流回路の電流推定回路。
  6.  請求項1から請求項5の何れか一項に記載の整流回路の電流推定回路と、
     前記整流回路が出力する電圧を平滑化する平滑化回路と、
     を備えるAC-DCコンバータ。
  7.  請求項6に記載のAC-DCコンバータと、
     前記AC-DCコンバータが出力する直流電圧を交流電圧に変換するインバータと、
     を備える電力制御装置。
  8.  電源から出力される複数の交流電圧の各位相に基づいて決定した時間間隔において、前記複数の交流電圧の整流後の電圧に対応する電流に基づいて、前記複数の交流電圧のそれぞれに対応するそれぞれの電流を推定する電流推定部、
     を備える電流推定回路。
  9.  前記電流推定部が推定したそれぞれの電流が電流異常検出しきい値を超えるか否かを判定する電流判定部と、
     前記電流判定部が前記推定したそれぞれの電流が前記電流異常検出しきい値を超えたと判定した場合に、前記判定に対応する前記推定したそれぞれの電流の上限を制限する電流制限部と、
     を備える請求項8に記載の電流推定回路。
  10.  電源から出力される複数の交流電圧の各位相を特定し、
     特定した前記各位相に基づいて決定した時間間隔において、前記複数の交流電圧の整流後の電圧に対応する電流を特定する、
     ことを含む電流推定方法。
  11.  電源から出力される複数の交流電圧の各位相に基づいて決定した時間間隔において、前記複数の交流電圧の整流後の電圧に対応する電流に基づいて、前記複数の交流電圧のそれぞれに対応するそれぞれの電流を推定する、
     ことを含む電流推定方法。
  12.  コンピュータに、
     電源から出力される複数の交流電圧の各位相に基づいて決定した時間間隔において、前記複数の交流電圧の整流後の電圧に対応する電流に基づいて、前記複数の交流電圧のそれぞれに対応するそれぞれの電流を推定する、
     ことを実行させるプログラム。
PCT/JP2015/079148 2014-10-17 2015-10-15 整流回路の電流推定回路、ac-dcコンバータ、電力制御装置、電流推定回路、電流推定方法及びプログラム WO2016060196A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580050944.2A CN106716811B (zh) 2014-10-17 2015-10-15 整流电路的电流推定电路、ac-dc转换器、电力控制装置、电流推定方法及记录介质
EP15851081.8A EP3188353A4 (en) 2014-10-17 2015-10-15 Current estimation circuit for rectification circuit, ac-dc converter, electric power control device, current estimation circuit, and method and program for current estimation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014212667A JP6532099B2 (ja) 2014-10-17 2014-10-17 電流推定回路、ac−dcコンバータ、電力制御装置、電流推定方法及びプログラム
JP2014-212667 2014-10-17

Publications (1)

Publication Number Publication Date
WO2016060196A1 true WO2016060196A1 (ja) 2016-04-21

Family

ID=55746738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/079148 WO2016060196A1 (ja) 2014-10-17 2015-10-15 整流回路の電流推定回路、ac-dcコンバータ、電力制御装置、電流推定回路、電流推定方法及びプログラム

Country Status (4)

Country Link
EP (1) EP3188353A4 (ja)
JP (1) JP6532099B2 (ja)
CN (1) CN106716811B (ja)
WO (1) WO2016060196A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6712553B2 (ja) * 2017-02-09 2020-06-24 日立オートモティブシステムズ株式会社 インバータの検証装置及び検証方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006109583A (ja) * 2004-10-04 2006-04-20 Daikin Ind Ltd 電源回路の保護方法およびその装置
JP2008301579A (ja) * 2007-05-29 2008-12-11 Hitachi Appliances Inc 冷凍サイクル圧縮機駆動用の電力変換装置及びそれを用いた冷凍装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4815239B2 (ja) * 2006-03-22 2011-11-16 東芝三菱電機産業システム株式会社 電力変換回路の制御装置
JP5069882B2 (ja) * 2006-08-30 2012-11-07 日立アプライアンス株式会社 三相コンバータ・インバータ装置及びモジュール
US8902616B2 (en) * 2011-10-13 2014-12-02 Rockwell Automation Technologies, Inc. Active front end power converter with diagnostic and failure prevention using peak detector with decay
JP2014064447A (ja) * 2012-08-30 2014-04-10 Mitsubishi Heavy Ind Ltd コンバータ制御装置、方法、プログラム及び空気調和機
JP6037913B2 (ja) * 2013-03-29 2016-12-07 株式会社日立産機システム 電力変換装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006109583A (ja) * 2004-10-04 2006-04-20 Daikin Ind Ltd 電源回路の保護方法およびその装置
JP2008301579A (ja) * 2007-05-29 2008-12-11 Hitachi Appliances Inc 冷凍サイクル圧縮機駆動用の電力変換装置及びそれを用いた冷凍装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3188353A4 *

Also Published As

Publication number Publication date
JP2016082744A (ja) 2016-05-16
JP6532099B2 (ja) 2019-06-19
EP3188353A1 (en) 2017-07-05
CN106716811B (zh) 2020-07-28
EP3188353A4 (en) 2017-08-02
CN106716811A (zh) 2017-05-24

Similar Documents

Publication Publication Date Title
CA3015049C (en) Converter device
JP6497553B2 (ja) 交流−直流変換装置
US10003272B2 (en) Three-phase/single-phase matrix converter
US10498257B2 (en) Switching power converters controlled with control signals having variable on-times
JP6461874B2 (ja) 接続順序の判断方法、欠相判断方法
JP2014042433A (ja) 平均電流モード制御によるブリッジレスpfcコンバータ
JP5834217B2 (ja) 直流電源装置及び応用システム
EP3054576B1 (en) Rectification device
WO2010098084A1 (en) Power factor correction circuit with overcurrent protection
JP4889674B2 (ja) 交流直流変換装置および圧縮機駆動装置並びに空気調和機
JP6543872B2 (ja) 制御装置、制御方法及びプログラム
KR101915991B1 (ko) 전력 변환 장치 및 이를 포함하는 공기 조화기
WO2016060196A1 (ja) 整流回路の電流推定回路、ac-dcコンバータ、電力制御装置、電流推定回路、電流推定方法及びプログラム
JP6358508B2 (ja) 不平衡補正装置、不平衡補正方法及びプログラム
JP5824339B2 (ja) 三相整流装置
JP6587134B2 (ja) コンバータ、モータ駆動装置、異常検出方法及びプログラム
KR101351593B1 (ko) 교류 전원의 제로 크로싱 감지 회로 및 이를 포함하는 전력 변환기
JP2009033814A (ja) 直流電源装置
WO2020012787A1 (ja) コンバータ装置、制御信号特定方法及びプログラム
JP7136613B2 (ja) コンバータ装置、制御切り替え方法及びプログラム
JP7080121B2 (ja) コンバータ装置、制御信号特定方法及びプログラム
JP2014042432A (ja) 平均電流モード制御によるブリッジレスpfcコンバータ
JP5170024B2 (ja) 電力変換装置
JP6591374B2 (ja) 励磁装置
JP2012175767A (ja) 電力変換装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15851081

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015851081

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015851081

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE