WO2016060029A1 - 排ガス浄化装置 - Google Patents

排ガス浄化装置 Download PDF

Info

Publication number
WO2016060029A1
WO2016060029A1 PCT/JP2015/078408 JP2015078408W WO2016060029A1 WO 2016060029 A1 WO2016060029 A1 WO 2016060029A1 JP 2015078408 W JP2015078408 W JP 2015078408W WO 2016060029 A1 WO2016060029 A1 WO 2016060029A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
catalyst
partition wall
catalyst part
pores
Prior art date
Application number
PCT/JP2015/078408
Other languages
English (en)
French (fr)
Inventor
達也 大橋
新吾 坂神
伊藤 毅
亮太 尾上
三好 直人
竹内 雅彦
あけみ 佐藤
Original Assignee
株式会社キャタラー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社キャタラー filed Critical 株式会社キャタラー
Priority to US15/518,086 priority Critical patent/US10201805B2/en
Priority to EP15850326.8A priority patent/EP3207977B1/en
Publication of WO2016060029A1 publication Critical patent/WO2016060029A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9445Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
    • B01D53/945Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9445Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
    • B01D53/9454Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/066Zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/464Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/657Pore diameter larger than 1000 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/66Pore distribution
    • B01J35/69Pore distribution bimodal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0244Coatings comprising several layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0248Coatings comprising impregnated particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/038Precipitation; Co-precipitation to form slurries or suspensions, e.g. a washcoat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • F01N3/0222Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous the structure being monolithic, e.g. honeycombs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0864Oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2839Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration
    • F01N3/2878Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration by using non-elastic means for retaining catalyst body in the housing, e.g. a metal chamfer, or by corrugation or deformation of the metal housing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1021Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1025Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/204Alkaline earth metals
    • B01D2255/2042Barium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2063Lanthanum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/209Other metals
    • B01D2255/2092Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/40Mixed oxides
    • B01D2255/407Zr-Ce mixed oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/903Multi-zoned catalysts
    • B01D2255/9032Two zones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/908O2-storage component incorporated in the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/91NOx-storage component incorporated in the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/911NH3-storage component incorporated in the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/915Catalyst supported on particulate filters
    • B01D2255/9155Wall flow filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/92Dimensions
    • B01D2255/9202Linear dimensions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/06Ceramic, e.g. monoliths
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/60Discontinuous, uneven properties of filter material, e.g. different material thickness along the longitudinal direction; Higher filter capacity upstream than downstream in same housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • F01N2510/06Surface coverings for exhaust purification, e.g. catalytic reaction

Definitions

  • the present invention relates to an exhaust gas purification apparatus. More specifically, the present invention relates to an exhaust gas purification device that purifies exhaust gas discharged from an internal combustion engine such as a gasoline engine.
  • an exhaust gas purification device that purifies exhaust gas discharged from an internal combustion engine such as a gasoline engine.
  • exhaust gas discharged from an internal combustion engine contains particulate matter (PM) containing carbon as a main component, ash composed of non-combustible components, and is known to cause air pollution.
  • PM particulate matter
  • HC hydrocarbons
  • CO carbon monoxide
  • NOx nitrogen oxides
  • a particulate filter for collecting the particulate matter is provided in the exhaust passage of the internal combustion engine.
  • a gasoline particulate filter GPF
  • a gasoline particulate filter there is known a structure called a wall flow type in which a base material is composed of a large number of porous cells, and the inlets and outlets of a large number of cells are alternately closed (Patent Literature). 1, 2).
  • Patent Literature Patent Literature 1
  • the exhaust gas flowing in from the cell inlet passes through the partitioned porous cell partition wall and is discharged to the cell outlet. And while exhaust gas passes a porous cell partition, a particulate matter is collected in the pore inside a partition.
  • Patent Document 1 describes a filter catalyst in which a palladium (Pd) layer as a noble metal catalyst is disposed inside a partition wall and a rhodium (Rh) layer is laminated on the surface of the partition wall.
  • Patent Document 2 describes a filter catalyst in which a platinum (Pt) layer and a rhodium (Rh) layer as noble metal catalysts are separately supported in a partition wall.
  • the filter catalyst of Patent Document 1 since the Rh layer is formed on the surface of the partition wall, the flow path resistance of the exhaust gas is increased and the pressure loss (hereinafter also referred to as pressure loss as appropriate) increases. As a result, the engine output may be reduced. Further, according to the filter catalyst of Patent Document 2, since the Pt layer and the Rh layer are separated and supported in the partition wall, an increase in pressure loss can be suppressed, but the Rh layer and the Pt layer are separated into layers in the exhaust gas flow direction. Therefore, the exhaust gas passes through the Rh layer and the Pt layer only once, and there is a limit in improving the purification performance. Thus, the conventional filter catalyst still has room for improvement in terms of achieving both improvement in purification performance and reduction in pressure loss.
  • the present invention has been made in view of such a case, and its main object is to improve exhaust gas purification performance while reducing pressure loss in an exhaust gas purification apparatus equipped with a wall flow structure type filter catalyst. It is to provide an exhaust gas purification device that can be used.
  • the exhaust gas purification apparatus is an exhaust gas purification apparatus that is disposed in an exhaust passage of an internal combustion engine and purifies exhaust gas discharged from the internal combustion engine.
  • the apparatus includes an inlet cell in which only an end portion on an exhaust gas inflow side is opened, an outlet cell in which only an end portion on an exhaust gas outlet side is adjacent to the inlet side cell, and the inlet cell and the outlet cell.
  • a wall flow structure base material having a porous partition wall, a first catalyst part formed in a small pore having a relatively small pore diameter among the internal pores of the partition wall, and the interior of the partition wall
  • a second catalyst portion formed in a large pore having a relatively large pore diameter among the pores.
  • the first catalyst part contains a carrier and any one or two precious metals of platinum (Pt), palladium (Pd) and rhodium (Rh) supported on the carrier.
  • the second catalyst part is a carrier and any one or two kinds of noble metals of Pt, Pd and Rh supported on the carrier, and at least other than the noble metal contained in the first catalyst part. Contains noble metals.
  • the exhaust gas purifying apparatus a plurality of types of noble metals are separated and supported by the small pores (first catalyst portion) and the large pores (second catalyst portion) of the partition wall, Alloying) is effectively suppressed. Therefore, even when exposed to high temperatures, catalyst deterioration is suppressed.
  • both the first catalyst portion and the second catalyst portion are disposed inside the partition wall, pressure loss is avoided by avoiding an increase in flow resistance as when the catalyst portion is formed on the surface of the partition wall. Can be reduced.
  • a plurality of kinds of noble metals are present in the partition wall in a state of being randomly dispersed in the flow direction of the exhaust gas, the exhaust gas and the noble metal efficiently contact each other in a plurality of reaction fields. Therefore, higher purification performance can be achieved. Therefore, according to the present invention, it is possible to provide an exhaust gas purification apparatus in which exhaust gas purification performance is significantly improved while reducing pressure loss.
  • the average pore diameter of the small pores in which the first catalyst part is formed is 10 ⁇ m or less, and the large pores in which the second catalyst part is disposed.
  • the average pore diameter is more than 10 ⁇ m and not more than 100 ⁇ m.
  • the first catalyst part includes Pt as the noble metal
  • the second catalyst part includes Rh as the noble metal
  • the Pt content in the first catalyst part is 0.3 g to 1 g per 1 L of the volume of the base material
  • the second catalyst part has the content in the second catalyst part.
  • the Rh content is 0.1 g to 0.5 g. According to this configuration, since the ratio of Pt arranged in the small pores and Rh arranged in the large pores is in an appropriate balance, harmful components in the exhaust gas can be purified more efficiently.
  • the first catalyst part includes a NOx absorbent (for example, a barium compound) having NOx occlusion ability.
  • a NOx absorbent for example, a barium compound
  • NOx occlusion ability for example, a barium compound
  • the second catalyst part includes an OSC material (for example, CeO 2 or CeO 2 —ZrO 2 composite oxide) having an oxygen storage capacity.
  • an OSC material for example, CeO 2 or CeO 2 —ZrO 2 composite oxide
  • the OSC material is disposed in the partition wall in a state of being randomly dispersed in the flow direction of the exhaust gas, oxygen in the exhaust gas passing through the partition wall can be appropriately absorbed and released. Therefore, the purification performance of the catalyst is further improved.
  • the internal combustion engine is a gasoline engine.
  • the temperature of exhaust gas is relatively high, and PM hardly accumulates in the partition walls. Therefore, when the internal combustion engine is a gasoline engine, the above-described effects are more effectively exhibited.
  • FIG. 1 is a diagram schematically showing an exhaust gas purifying apparatus according to an embodiment of the present invention.
  • FIG. 2 is a perspective view schematically showing a filter of the exhaust gas purifying apparatus according to one embodiment of the present invention.
  • FIG. 3 is a cross-sectional view schematically showing a filter cross section of the exhaust gas purifying apparatus according to one embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional view enlarging the IV region of FIG.
  • FIG. 5 is a cross-sectional SEM image of the particulate filter according to an example.
  • FIG. 6 is an EPMA observation image showing the dispersion state of Pt of the particulate filter according to an example.
  • FIG. 7 is an EPMA observation image showing a dispersion state of Rh of the particulate filter according to an example.
  • FIG. 8 is a graph showing the 50% purification temperature of Examples and Comparative Examples.
  • FIG. 1 is a diagram schematically showing an internal combustion engine 2 and an exhaust gas purification device 1 provided in an exhaust system of the internal combustion engine 2.
  • An air-fuel mixture containing oxygen and fuel gas is supplied to the internal combustion engine (engine) according to the present embodiment.
  • the internal combustion engine burns the air-fuel mixture and converts the combustion energy into mechanical energy.
  • the air-fuel mixture combusted at this time becomes exhaust gas and is discharged to the exhaust system.
  • the internal combustion engine 2 having the configuration shown in FIG. 1 is mainly composed of an automobile gasoline engine.
  • An exhaust manifold 3 is connected to an exhaust port (not shown) for communicating the engine 2 with an exhaust system.
  • the exhaust manifold 3 is connected to an exhaust pipe 4 through which exhaust gas flows.
  • the exhaust manifold 3 and the exhaust pipe 4 form the exhaust passage of this embodiment.
  • the arrows in the figure indicate the exhaust gas distribution direction.
  • the exhaust gas purification apparatus 1 disclosed here is provided in the exhaust system of the engine 2.
  • the exhaust gas purification apparatus 1 includes a catalyst unit 5, a filter unit 6, and an ECU 7, and includes harmful components (for example, carbon monoxide (CO), hydrocarbon (HC), nitrogen oxide (NO) contained in the exhaust gas discharged. x )) is purified and particulate matter (PM) contained in the exhaust gas is collected.
  • harmful components for example, carbon monoxide (CO), hydrocarbon (HC), nitrogen oxide (NO) contained in the exhaust gas discharged. x )
  • PM particulate matter
  • the catalyst unit 5 is configured to be able to purify ternary components (NOx, HC, CO) contained in the exhaust gas, and is provided in the exhaust pipe 4 communicating with the engine 2. Specifically, as shown in FIG. 1, it is provided on the downstream side of the exhaust pipe 4.
  • the kind of the catalyst part 5 is not specifically limited.
  • the catalyst unit 5 may be a catalyst on which a noble metal such as platinum (Pt), palladium (Pd), rhodium (Rd) is supported, for example.
  • a downstream side catalyst part may be further arranged in the exhaust pipe 4 on the downstream side of the filter part 6. Since the specific configuration of the catalyst unit 5 does not characterize the present invention, a detailed description thereof is omitted here.
  • the filter unit 6 is provided on the downstream side of the catalyst unit 5.
  • the filter unit 6 includes a gasoline particulate filter (GPF) capable of collecting and removing particulate matter (hereinafter simply referred to as “PM”) contained in the exhaust gas.
  • GPF gasoline particulate filter
  • PM particulate matter
  • FIG. 2 is a perspective view of the particulate filter 100.
  • FIG. 3 is an enlarged schematic view of a part of a cross section of the particulate filter 100 cut in the axial direction.
  • the particulate filter 100 includes a base material 10 having a wall flow structure, a first catalyst unit 20 (see FIG. 4), and a second catalyst unit 30 (see FIG. 4). ing.
  • the base material 10, the first catalyst part 20, and the second catalyst part 30 will be described in this order.
  • a base material formed of a ceramic or alloy (stainless steel or the like) such as cordierite or silicon carbide (SiC) can be suitably employed.
  • a substrate whose outer shape is a cylindrical shape is illustrated.
  • the outer shape of the entire substrate may be an elliptical cylinder or a polygonal cylinder instead of the cylinder.
  • Such a base material 10 includes an inlet cell 12 that is open only at the end portion on the exhaust gas inflow side, an outlet cell 14 that is adjacent to the inlet cell 12 and is open only at the end portion on the exhaust gas outlet side, and the inlet cell 12. And a porous partition wall 16 that partitions the outlet cell 14.
  • the inlet side cell 12 is open only at the end on the exhaust gas inflow side, and the outlet cell 14 is adjacent to the inlet side cell 12 and is open only at the end on the exhaust gas outflow side.
  • the inlet side cell 12 is sealed with the sealing part 12a at the end on the exhaust gas outflow side
  • the outlet side cell 14 is sealed with the sealing part 14a at the end on the exhaust gas inflow side.
  • the inlet cell 12 and the outlet cell 14 may be set to appropriate shapes and sizes in consideration of the flow rate and components of the exhaust gas supplied to the filter 100.
  • the shapes of the entrance cell 12 and the exit cell 14 are various geometric shapes such as a rectangle such as a square, a parallelogram, a rectangle, and a trapezoid, a triangle, other polygons (for example, a hexagon, an octagon), and a circle. It may be.
  • Partition wall 16 A partition wall 16 is formed between the adjacent entrance cell 12 and exit cell 14. The entrance cell 12 and the exit cell 14 are partitioned by the partition wall 16.
  • the partition wall 16 has a porous structure through which exhaust gas can pass.
  • the porosity of the partition wall 16 is not particularly limited, but is generally 50% to 70%, preferably 55% to 65%. If the porosity of the partition wall 16 is too small, pressure loss may increase. On the other hand, if the porosity of the partition wall 16 is too large, the mechanical strength of the filter 100 tends to decrease, which is not preferable.
  • the thickness of the partition wall 16 is not particularly limited, but is preferably about 200 ⁇ m to 800 ⁇ m. Within such a range of the partition wall thickness, an effect of suppressing an increase in pressure loss can be obtained without impairing the PM collection efficiency.
  • FIG. 4 is an enlarged schematic diagram in which the IV region of FIG. 3 is enlarged.
  • the partition 16 has a small pore 18a having a relatively small pore diameter and a large pore 18b having a relatively large pore diameter.
  • the partition wall 16 is configured so that the front surface and the back surface of the partition wall 16 can communicate with each other by the independent large pores 18b (or a connection of a large number of large pores 18b and / or small pores 18a). ing.
  • the partition wall 16 is formed with a complicated path (a detoured path not penetrating) formed by small pores 18a that do not communicate with the partition wall 16 in the thickness direction.
  • a first catalyst portion 20 is formed inside the small pore 18a, and a second catalyst portion 30 is formed inside the large pore 18b.
  • the first catalyst portion 20 is formed on the wall surface of the small pore 18 a among the internal pores 18 a and 18 b of the partition wall 16. Since the small pores 18a form a complicated and complicated path (a bypassed path that does not penetrate) in the partition wall 16, the exhaust gas tends to stay for a long time. Therefore, exhaust gas can be efficiently purified by forming the first catalyst part 20 in the small pores 18a.
  • the pore diameter of the small pore 18a in which the first catalyst part 20 is formed may be smaller than the pore diameter of the large pore 18b in which the second catalyst part 30 is formed.
  • the average pore diameter based on the mercury intrusion method of the small pores 18a in which the first catalyst part 20 is formed or image observation with an electron microscope is approximately 10 ⁇ m or less (for example, 0.1 ⁇ m or more). 10 [mu] m or less), more preferably 8 [mu] m or less, and particularly preferably 5 [mu] m or less.
  • the exhaust gas can be efficiently purified by the first catalyst portion 20 formed in the small pore 18a.
  • HC, CO, and NOx are illustrated.
  • the first catalyst unit 20 includes a carrier (not shown) and a noble metal (not shown) supported on the carrier.
  • the first catalyst part 20 may contain any one or two precious metals of platinum (Pt), palladium (Pd), and rhodium (Rh).
  • the 2nd catalyst part 30 contains Pt as a noble metal.
  • the content of Pt in the first catalyst part 20 per liter of the base material is preferably about 0.1 g to 2 g (preferably 0.5 g to 1 g). If the amount of Pt supported is too small, the catalytic activity obtained by Pt becomes insufficient. On the other hand, if the amount of Pt supported is too large, Pt tends to cause grain growth and is disadvantageous in terms of cost.
  • the 1st catalyst part 20 may contain noble metals other than Rh, Pt, and Pd. As noble metals other than Rh, Pt and Pd, for example, ruthenium (Ru), iridium (Ir), osmium (Os) and the like can be used.
  • the first catalyst part 20 is formed by supporting Pt on a carrier.
  • carriers typically in particulate form
  • Such carriers include alumina (Al 2 O 3 ), zirconia (ZrO 2 ), ceria (CeO 2 ), silica (SiO 2 ), magnesia (MgO), and titanium oxide (titania: TiO 2 ). 2 ), or a solid solution thereof (for example, ceria-zirconia (CeO 2 —ZrO 2 ) composite oxide).
  • ceria-zirconia composite oxide is preferred. Two or more of these may be used in combination.
  • another material typically an inorganic oxide
  • rare earth elements such as lanthanum (La) and yttrium (Y), alkaline earth elements such as calcium, and other transition metal elements can be used.
  • rare earth elements such as lanthanum and yttrium are preferably used as stabilizers because they can improve the specific surface area at high temperatures without impairing the catalytic function.
  • the method for supporting Pt on the carrier is not particularly limited.
  • it can be prepared by impregnating the carrier with an aqueous solution containing a Pt salt (for example, nitrate) or a Pt complex (for example, a dinitrodiamine complex), and then drying and baking.
  • a Pt salt for example, nitrate
  • a Pt complex for example, a dinitrodiamine complex
  • a metal oxide not supporting a noble metal can be added to the first catalyst portion 20 disclosed here.
  • metal oxides include stabilized alumina.
  • the content of the stabilized alumina when the total of Pt, the carrier and the stabilized alumina is 100% by mass is usually 20% by mass to 50% by mass, for example, 30% by mass to 40% by mass. % Is preferred.
  • the first catalyst unit 20 disclosed herein may include a NOx absorbent having NOx storage capacity.
  • the NOx absorbent absorbs NOx in the exhaust gas when the air-fuel ratio of the exhaust gas is in a lean state with excess oxygen, and has a NOx occlusion ability that releases the absorbed NOx when the air-fuel ratio is switched to the rich side. Anything is acceptable.
  • a NOx absorbent a basic material containing one or more metals that can donate electrons to NOx can be preferably used.
  • alkali metals such as potassium (K), sodium (Na), cesium (Cs), alkaline earth metals such as barium (Ba), calcium (Ca), rare earths such as lanthanides and silver (Ag), Examples include metals such as copper (Cu), iron (Fe), and iridium (In).
  • a barium compound for example, barium sulfate
  • the content of the NOx absorbent is preferably 10% by mass to 25% by mass, and particularly preferably 12% by mass to 20% by mass with respect to the total mass of the first catalyst part 20.
  • the NOx absorbent is arranged in the partition wall 16 in a state of being randomly dispersed in the flow direction of the exhaust gas, so that NOx in the exhaust gas passing through the partition wall 16 can be appropriately absorbed and released. Therefore, higher purification performance can be achieved.
  • the second catalyst portion 30 is formed on the wall surface of the large pore 18b among the internal pores 18a and 18b of the partition wall 16. Since the large pores 18b communicate with the partition wall 16 in the thickness direction, the exhaust gas tends to pass smoothly. Therefore, the exhaust gas can be purified while suppressing an increase in pressure loss by forming the second catalyst portion 30 in the large pore 18b.
  • the pore diameter of the large pore 18b in which the second catalyst portion 30 is formed may be larger than the pore diameter of the small pore 18a in which the first catalyst portion 20 is formed.
  • the average pore diameter based on the mercury intrusion method or the image observation with an electron microscope (SEM) of the large pores 18b in which the second catalyst portion 30 is formed is generally greater than 10 ⁇ m (for example, greater than 10 ⁇ m and less than 100 ⁇ m). It is preferably 15 ⁇ m or more, more preferably 20 ⁇ m or more.
  • the exhaust gas can be purified while suppressing an increase in pressure loss by the second catalyst portion 30 formed in the large pores 18b.
  • HC, CO, and NOx are illustrated.
  • the second catalyst unit 30 includes a carrier (not shown) and a noble metal (not shown) supported on the carrier.
  • the second catalyst part 30 is a precious metal of any one or two of Pt, Pd and Rh and contains a precious metal other than the precious metal (here, Pt) contained in the first catalyst part 20 Good.
  • the 2nd catalyst part 30 contains Rh as a noble metal.
  • the content of Rh in the second catalyst part 30 per liter of the base material is preferably approximately 0.1 g to 0.5 g. If the content of Rh is too small, the catalytic activity obtained by Rh may be insufficient. On the other hand, if the amount of Rh supported is too large, Rh tends to cause grain growth and disadvantageous in terms of cost. is there.
  • the 2nd catalyst part 30 may contain noble metals other than Rh, Pt, and Pd.
  • noble metals other than Rh, Pt and Pd for example, ruthenium (Ru), iridium (Ir), osmium (Os) and the like can be used.
  • the second catalyst unit 30 is formed by supporting Rh on a carrier.
  • carriers typically in particulate form
  • Such carriers include alumina (Al 2 O 3 ), zirconia (ZrO 2 ), ceria (CeO 2 ), silica (SiO 2 ), magnesia (MgO), and titanium oxide (titania: TiO 2 ). 2 ), or a solid solution thereof (for example, ceria-zirconia (CeO 2 —ZrO 2 ) composite oxide).
  • alumina is preferable. Two or more of these may be used in combination.
  • another material typically an inorganic oxide
  • rare earth elements such as lanthanum (La) and yttrium (Y), alkaline earth elements such as calcium, and other transition metal elements can be used.
  • rare earth elements such as lanthanum and yttrium are preferably used as stabilizers because they can improve the specific surface area at high temperatures without impairing the catalytic function.
  • the method for supporting Rh on the carrier is not particularly limited.
  • it can be prepared by impregnating the carrier with an aqueous solution containing an Rh salt (for example, nitrate) or an Rh complex (for example, a tetraammine complex), then drying and baking.
  • an Rh salt for example, nitrate
  • an Rh complex for example, a tetraammine complex
  • the second catalyst unit 30 disclosed herein may include an OSC (Oxygen Storage Capacity) material having an oxygen storage capacity.
  • the OSC material occludes oxygen in the exhaust gas when the air-fuel ratio of the exhaust gas is lean (ie, the atmosphere on the oxygen excess side), and when the air-fuel ratio of the exhaust gas is rich (ie, the atmosphere on the fuel excess side). Any device that releases the stored oxygen may be used.
  • OSC materials include cerium oxide (ceria: CeO 2 ) and composite oxides containing the ceria (for example, ceria-zirconia composite oxide (CeO 2 —ZrO 2 composite oxide).
  • the 2- ZrO 2 composite oxide has a high oxygen storage capacity and is suitable as an OSC material used in the exhaust gas purifying apparatus disclosed herein. Those satisfying 25% by mass to 50% by mass with respect to the mass are preferable, and those satisfying 30% by mass to 40% by mass are particularly preferable. Since they are arranged in a randomly dispersed state, oxygen in the exhaust gas passing through the partition walls 16 can be appropriately absorbed and released. Now medium performance is obtained, purification performance of the catalyst is further improved.
  • first catalyst unit 20 and the second catalyst unit 30 may be formed based on different slurries. For example, a first slurry for forming the first catalyst part 20 and a second slurry for forming the second catalyst part 30 may be prepared.
  • the first slurry contains a powder obtained by supporting Pt on the carrier, stabilized alumina, a NOx absorbent, and an appropriate solvent (for example, ion-exchanged water).
  • the first slurry is easy to flow into the small pores 18 a of the partition wall 16, such as viscosity, solid content, particle diameter of particles (typically carrier powder carrying a noble metal) contained in the first slurry, etc. Is adjusted accordingly.
  • the first slurry may contain a binder.
  • the binder for example, use of alumina sol, silica sol or the like is preferable.
  • the second slurry contains a powder obtained by supporting Rh on the carrier, an OSC material, and an appropriate solvent (for example, ion-exchanged water). Further, the second slurry has a viscosity, a solid content, a particle diameter of particles (typically a carrier powder supporting a noble metal) contained in the second slurry, etc. so that the second slurry can easily flow into the large pores 18 b of the partition wall 16. Is adjusted accordingly.
  • the second slurry may contain a binder.
  • the binder for example, use of alumina sol, silica sol or the like is preferable.
  • the first slurry is coated inside the partition wall 16.
  • the method for coating the first slurry inside the partition wall 16 is not particularly limited.
  • the partition wall 16 may be taken out after being immersed in the first slurry for a predetermined time. Further, after the partition wall 16 is taken out from the first slurry, the excess first slurry may be removed by blowing (or sucking) pressurized gas.
  • the first slurry easily flows into the small pores 18a having a relatively small pore diameter by capillary action. Therefore, when the partition wall 16 is immersed in the first slurry, the first slurry preferentially flows into the small pores 18 a of the partition wall 16.
  • the small slurry 18a having a relatively small pore diameter hardly causes the first slurry to flow out due to capillary action. Therefore, after the partition wall 16 is taken out from the first slurry and then the pressurized gas is blown (or sucked), the first slurry filled in the large pores 18b is preferentially removed. That is, according to the above method, the small pores 18a are easily filled with the first slurry, and the large pores 18b are not easily filled with the first slurry. Therefore, the first slurry can be preferentially filled into the small pores 18a. Once the first slurry is filled into the small pores 18a, it may be dried and fired. Thereby, the 1st catalyst part 20 is formed in the wall surface of the small pore 18a.
  • the second slurry is suction-coated inside the partition wall 16.
  • the method for coating the second slurry inside the partition wall 16 is not particularly limited.
  • the partition 16 may be taken out after being immersed in the second slurry for a predetermined time.
  • the viscosity and solid content of the second slurry are appropriately adjusted so that the second slurry can easily flow into the large pores 18b of the partition wall 16.
  • the small pores 18 a are already coated with the first catalyst portion 20. Therefore, when the partition wall 16 is immersed in the second slurry, the second slurry preferentially flows into the large pores 18b of the partition wall 16. After the second slurry is filled in the large pores 18b in this way, it is then preferable to dry and fire. Thereby, the 2nd catalyst part 30 is formed in the wall surface of the large pore 18b.
  • an inlet cell in which only an end on the exhaust gas inflow side is opened, an exit cell in which only an end on the exhaust gas outflow side is opened adjacent to the inlet cell, and the inlet cell And a base material of a wall flow structure having a porous partition wall that partitions the outlet cell, A first catalyst portion formed in a small pore having a relatively small pore diameter among the internal pores of the partition; A second catalyst portion formed in a large pore having a relatively large pore diameter among the internal pores of the partition wall,
  • the first catalyst part contains a carrier and any one or two kinds of noble metals of Pt, Pd and Rh supported on the carrier,
  • the second catalyst part includes a support and a noble metal other than the noble metal included in at least the first catalyst part, which is any one or two kinds of noble metals of Pt, Pd and Rh supported on the support.
  • a method for producing a particulate filter containing The manufacturing method includes a first slurry containing a carrier supporting any one or two kinds of noble metals of Pt, Pd, and Rh in small pores having a relatively small pore diameter among the internal pores of the partition walls. And forming a first catalyst part (first catalyst part forming step); and Among the internal pores of the partition walls, a large pore having a relatively large pore diameter is any one or two kinds of noble metals of Pt, Pd, and Rh, and is included in at least the first catalyst part.
  • Forming a second catalyst part by applying a second slurry containing a carrier supporting a noble metal other than (second catalyst part forming step); Is included.
  • the viscosity of the first slurry, the solid content rate, and the average particle size of the particles contained in the first slurry are appropriately set so that the first slurry can flow into the small pores. Can be done.
  • the viscosity of the second slurry, the solid content ratio, and the average particle size of the particles contained in the second slurry are appropriately set so that the second slurry can flow into the large pores. obtain.
  • the first catalyst part forming step includes immersing the partition wall in the first slurry (immersion step), and taking out the partition wall from the first slurry and then spraying a pressurized gas. Removing excess first slurry (slurry removing step).
  • the first slurry is preferentially filled into the small pores under conditions (for example, gas pressure and spraying time) when the pressurized gas is sprayed (the first slurry is filled with the first slurry). It can be carried out by blowing the gas in accordance with the set conditions.
  • the particulate filter manufactured by such a method can be suitably used as a filter part of an exhaust gas purification apparatus.
  • the particulate filter 100 since Pt and Rh are separated and supported by the small pore 18a and the large pore 18b among the internal pores of the partition wall 16, sintering (alloying) of Pt and Rh is effective. Is suppressed. Therefore, even when exposed to high temperatures, catalyst deterioration is suppressed.
  • both the first catalyst unit 20 and the second catalyst unit 30 are disposed inside the partition wall 16, an increase in flow resistance as when the catalyst unit is formed on the surface of the partition wall 16 is avoided. Thus, the pressure loss can be reduced.
  • test examples relating to the present invention will be described, but the present invention is not intended to be limited to those shown in the following test examples.
  • a ceria-zirconia composite oxide as a carrier for forming the first catalyst part was prepared, impregnated with a dinitrodiamine Pt solution as a noble metal catalyst solution, evaporated to dryness, and Pt / supporting 1.91% by mass of Pt / Ceria-zirconia composite oxide support powder was prepared. 62.2 parts by mass of this Pt / ceria-zirconia composite oxide support powder, 36.61 parts by mass of La-stabilized alumina, 18.32 parts by mass of BaSO 4 , 2.44 parts by mass of alumina binder, ion-exchanged water Were mixed to prepare a first slurry.
  • a wall flow type substrate made of cordierite (diameter 103 mm, total length 105 mm) is immersed in this first slurry, and after blowing excess gas by blowing pressurized gas, drying and firing are performed.
  • the first catalyst part 20 was formed inside the partition wall 16.
  • the mass of the first catalyst part per 1 L of the base material was 52.85 g, and the mass of Pt per 1 L of the base material was 0.5251 g.
  • Rh / alumina carrier powder carrying 0.8% by mass of Rh after preparing La stabilized alumina as a carrier for forming the second catalyst part, impregnating it with a Rh nitrate solution as a noble metal catalyst solution was prepared.
  • a second slurry was prepared by mixing 36.9 parts by mass of this Rh / alumina carrier powder, 36.61 parts by mass of ceria-zirconia composite oxide, 4.88 parts by mass of alumina binder, and ion-exchanged water.
  • the wall flow type base material was immersed in the second slurry, and excess slurry was blown off, followed by drying and firing, whereby the second catalyst portion 30 was formed inside the partition wall 16.
  • the mass of the second catalyst part per liter of the base material was 34.65 g, and the mass of Rh per liter of the base material was 0.1313 g. In this way, a filter catalyst in which the first catalyst part 20 and the second catalyst part 30 were formed inside the partition wall was produced.
  • FIG. 5 shows a cross-sectional SEM image of the filter catalyst obtained above.
  • the dispersion state of Pt was observed using an electron beam microanalyzer (EPMA).
  • EPMA electron beam microanalyzer
  • the dispersion state of Rh was observed using EPMA.
  • FIGS. 5 and 6 it was confirmed by the mapping of Pt using EPMA that the first catalyst part 20 containing Pt was mainly formed in the small pores 18 a of the partition walls 16.
  • FIGS. 5 and 7 it was confirmed by the mapping of Rh using EPMA that the second catalyst part 30 containing Rh was mainly formed in the large pores 18 b of the partition walls 16.
  • a filter catalyst in which a mixed catalyst portion of Pt and Rh was formed inside the partition wall was produced. Specifically, 36.9 parts by mass of Rh / alumina carrier powder, 36.61 parts by mass of ceria-zirconia composite oxide, 62.2 parts by mass of Pt / ceria-zirconia composite oxide carrier powder, and 36. parts by mass of alumina. 61 parts by mass, 18.32 parts by mass of BaSO 4 and ion-exchanged water were mixed to prepare a mixed catalyst part forming slurry. Next, a wall flow type substrate was immersed in this slurry, and excess slurry was blown off, followed by drying and firing, thereby forming a mixed catalyst portion inside the partition walls. The mass of Pt and Rh per 1 L of the volume of the substrate was the same as in the examples.
  • the purification rate of HC gas at a temperature increase of 100 ° C. to 600 ° C. was continuously measured, and the 50% purification temperature was measured.
  • the 50% purification temperature is the gas temperature at the catalyst inlet when the HC gas purification rate reaches 50%.
  • FIG. 8 is a graph showing the 50% purification temperature of Examples and Comparative Examples.
  • the filter catalyst of the comparative example had a 50% purification temperature of HC exceeding 390 ° C.
  • separation of Pt and Rh was not performed, and sintering (alloying) of Pt and Rh proceeded, so that it is estimated that the catalyst performance was lowered.
  • the filter catalyst of the example has a lower HC 50% purification temperature and is more excellent in catalytic activity.
  • the catalyst performance was improved as a result of suppressing the sintering (alloying) of Pt and Rh by separating and supporting Pt and Rh on the small and large pores in the partition walls. Guessed. From this result, it was confirmed that the catalyst performance can be improved by separating and supporting Pt and Rh on the small and large pores in the partition wall.
  • Pt is arranged in the small pore 18a and Rh is arranged in the large pore 18b
  • the present invention is not limited to this.
  • Pt may be disposed in the large pore 18b and Rh may be disposed in the small pore 18a. Even in this case, since Pt and Rh are separated and supported in the partition wall, the above-described effects can be obtained.
  • Pd may be contained in the first catalyst unit 20 in place of Pt and / or together with Pt.
  • each member and part of the exhaust gas purification device 1 may be changed.
  • the catalyst unit is provided on the upstream side of the filter unit, but the catalyst unit may be omitted.
  • the exhaust gas purification device 1 is particularly suitable as a device for purifying harmful components in exhaust gas having a relatively high exhaust temperature, such as a gasoline engine.
  • the exhaust gas purification apparatus 1 according to the present invention is not limited to the use of purifying harmful components in exhaust gas of a gasoline engine, but various types of purifying harmful components in exhaust gas discharged from other engines (for example, diesel engines). It can be used in applications.
  • an exhaust gas purification apparatus capable of improving exhaust gas purification performance while reducing pressure loss.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Toxicology (AREA)
  • Emergency Medicine (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Nanotechnology (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

 本発明に係る排ガス浄化装置は、入側セルと出側セルと多孔質の隔壁16とを有するウォールフロー構造の基材と、隔壁16の内部細孔のうち相対的に細孔径が小さい小細孔18aに形成された第1触媒部20と、隔壁16の内部細孔のうち相対的に細孔径が大きい大細孔18bに形成された第2触媒部30とを備える。第1触媒部20は、担体と、該担体に担持されたPt、PdおよびRhのうちのいずれか1種または2種の貴金属とを含有し、第2触媒部20は、担体と、該担体に担持されたPt、PdおよびRhのうちのいずれか1種または2種の貴金属であって少なくとも第1触媒部20に含まれる貴金属以外の貴金属とを含有する。

Description

排ガス浄化装置
 本発明は、排ガス浄化装置に関する。詳しくは、ガソリンエンジン等の内燃機関から排出される排ガスを浄化する排ガス浄化装置に関する。
 なお、本国際出願は2014年10月17日に出願された日本国特許出願第2014-213110号に基づく優先権を主張しており、その出願の全内容は本明細書中に参照として組み入れられている。
 一般に、内燃機関から排出される排ガスには、炭素を主成分とする粒子状物質(PM:Particulate Matter)、不燃成分からなるアッシュなどが含まれ、大気汚染の原因となることが知られている。そのため、粒子状物質の排出量については、排ガスに含まれる炭化水素(HC)、一酸化炭素(CO)、窒素酸化物(NOx)などの成分とともに年々規制が強化されている。そこで、これらの粒子状物質を排ガスから捕集して除去するための技術が提案されている。
 例えば、上記粒子状物質を捕集するためのパティキュレートフィルタが内燃機関の排気通路内に設けられている。例えばガソリンエンジンは、ディーゼルエンジンよりは少ないものの一定量の粒子状物質を排ガスとともに排出するため、ガソリンパティキュレートフィルタ(Gasoline Particulate Filter:GPF)が排気通路内に装着される場合がある。かかるパティキュレートフィルタとしては、基材が多孔質からなる多数のセルから構成され、多数のセルの入口と出口を交互に閉塞した、ウォールフロー型と呼ばれる構造のものが知られている(特許文献1、2)。ウォールフロー型パティキュレートフィルタでは、セル入口から流入した排ガスは、仕切られた多孔質のセル隔壁を通過し、セル出口へと排出される。そして、排ガスが多孔質のセル隔壁を通過する間に、粒子状物質が隔壁内部の細孔内に捕集される。
特開2009-82915号公報 特開2007-185571号公報
 ところで、近年ではさらなる浄化性能向上のために、上記パティキュレートフィルタに貴金属触媒を担持させることが検討されている。例えば特許文献1には、貴金属触媒としてのパラジウム(Pd)層を隔壁の内部に配置し、ロジウム(Rh)層を隔壁の表面に積層したフィルタ触媒が記載されている。また特許文献2には、貴金属触媒としての白金(Pt)層とロジウム(Rh)層とを隔壁内で分離担持させたフィルタ触媒が記載されている。
 しかしながら、特許文献1のフィルタ触媒によると、Rh層が隔壁の表面に形成されているので、排ガスの流路抵抗が上昇して圧力損失(以下、適宜圧損ともいう。)が大きくなる。その結果、エンジン出力が低下するおそれがある。また、特許文献2のフィルタ触媒によると、Pt層とRh層を隔壁内で分離担持させているので圧損の上昇は抑制し得るものの、Rh層とPt層とが排ガスの流れ方向に層状に分離されているため、排ガスがRh層とPt層を一度しか通過せず、浄化性能の向上に限界がある。このように従来のフィルタ触媒は、浄化性能の向上と圧損の低減とを両立させる点でなお改善の余地があるものであった。
 本発明は、かかる事案に鑑みてなされたものであり、その主な目的は、ウォールフロー構造タイプのフィルタ触媒を備えた排ガス浄化装置において、圧損の低減を図りつつ、排ガスの浄化性能を向上させることができる排ガス浄化装置を提供することである。
 本発明に係る排ガス浄化装置は、内燃機関の排気通路に配置され、該内燃機関から排出される排ガスを浄化する排ガス浄化装置である。この装置は、排ガス流入側の端部のみが開口した入側セルと、該入側セルに隣接し排ガス流出側の端部のみが開口した出側セルと、前記入側セルと前記出側セルとを仕切る多孔質の隔壁とを有するウォールフロー構造の基材と、前記隔壁の内部細孔のうち相対的に細孔径が小さい小細孔に形成された第1触媒部と、前記隔壁の内部細孔のうち相対的に細孔径が大きい大細孔に形成された第2触媒部とを備える。前記第1触媒部は、担体と、該担体に担持された白金(Pt)、パラジウム(Pd)およびロジウム(Rh)のうちのいずれか1種または2種の貴金属とを含有する。そして、前記第2触媒部は、担体と、該担体に担持されたPt、PdおよびRhのうちのいずれか1種または2種の貴金属であって少なくとも前記第1触媒部に含まれる貴金属以外の貴金属とを含有する。
 上記排ガス浄化装置では、複数種の貴金属を隔壁の小細孔(第1触媒部)と大細孔(第2触媒部)とに分離担持させているので、複数種の貴金属同士のシンタリング(合金化)が効果的に抑制される。そのため、高温に晒された場合でも触媒の劣化が抑制される。また、第1触媒部および第2触媒部の双方が隔壁の内部に配置されているので、触媒部が隔壁の表面に形成されているときのような流路抵抗の上昇を回避して圧損を低減することができる。さらに、隔壁内において複数種の貴金属が排ガスの流れ方向にランダムに分散した状態で存在しているので、排ガスと貴金属とが複数の反応場で効率よく接触する。そのため、より高い浄化性能を達成することができる。したがって、本発明によれば、圧損の低減を図りつつ、排ガスの浄化性能が格段に向上した排ガス浄化装置を提供することができる。
 ここで開示される排ガス浄化装置の好ましい一態様では、前記第1触媒部が形成された小細孔の平均細孔直径が10μm以下であり、前記第2触媒部が配置された大細孔の平均細孔直径が10μmを上回り且つ100μm以下である。このような細孔直径を有する小細孔と大細孔とに複数種の貴金属を分離担持させることにより、隔壁内を通過する排ガスをより効率よく浄化することができる。
 ここで開示される排ガス浄化装置の好ましい一態様では、前記第1触媒部は、前記貴金属としてPtを含んでおり、前記第2触媒部は、前記貴金属としてRhを含んでいる。かかる構成によると、排ガス中の有害成分を一度に効率よく浄化することができ、排ガスの浄化性能をさらに向上させることができる。
 ここで開示される排ガス浄化装置の好ましい一態様では、前記基材の体積1L当たりについて、前記第1触媒部における前記Ptの含有量が0.3g~1gであり、前記第2触媒部における前記Rhの含有量が0.1g~0.5gである。かかる構成によると、小細孔に配置されたPtと大細孔に配置されたRhとの比率が適切なバランスにあるので、排ガス中の有害成分をより効率よく浄化することができる。
 ここで開示される排ガス浄化装置の好ましい一態様では、前記第1触媒部は、NOx吸蔵能を有するNOx吸収材(例えばバリウム化合物)を含んでいる。このように第1触媒部にNOx吸収材を含有させることにより、排ガス中に含まれるNOxを効率よく浄化することができる。この場合、隔壁内においてNOx吸収材が排ガスの流れ方向にランダムに分散した状態で配置されるので、隔壁内を通過する排ガス中のNOxを適切に吸収および放出することができる。そのため、より高い浄化性能を達成することができる。
 ここで開示される排ガス浄化装置の好ましい一態様では、前記第2触媒部は、酸素吸蔵能を有するOSC材(例えば、CeOまたはCeO-ZrO複合酸化物)を含んでいる。このように第2触媒部にOSC材を含有させることにより、安定した触媒性能が得られるようになり、触媒の浄化性能が向上する。この場合、隔壁内においてOSC材が排ガスの流れ方向にランダムに分散した状態で配置されるので、隔壁内を通過する排ガス中の酸素を適切に吸収および放出することができる。そのため、触媒の浄化性能がさらに向上する。
 ここで開示される排ガス浄化装置の好ましい一態様では、前記内燃機関は、ガソリンエンジンである。ガソリンエンジンでは、排ガスの温度が比較的高温であり、隔壁内にPMが堆積しにくい。そのため、内燃機関がガソリンエンジンである場合、上述した効果がより有効に発揮される。
図1は、本発明の一実施形態に係る排ガス浄化装置を模式的に示す図である。 図2は、本発明の一実施形態に係る排ガス浄化装置のフィルタを模式的に示す斜視図である。 図3は、本発明の一実施形態に係る排ガス浄化装置のフィルタ断面を模式的に示す断面図である。 図4は、図3のIV領域を拡大した断面模式図である。 図5は、一実施例に係るパティキュレートフィルタの断面SEM像である。 図6は、一実施例に係るパティキュレートフィルタのPtの分散状態を示すEPMA観察像である。 図7は、一実施例に係るパティキュレートフィルタのRhの分散状態を示すEPMA観察像である。 図8は、実施例および比較例の50%浄化温度を示すグラフである。
 以下、本発明の好適な実施形態を図面に基づいて説明する。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄(例えばパティキュレートフィルタの自動車における配置に関するような一般的事項)は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。
 先ず、本発明の一実施形態に係る排ガス浄化装置の構成について図1を参照しつつ説明する。ここで開示される排ガス浄化装置1は、該内燃機関の排気系に設けられている。図1は、内燃機関2と、該内燃機関2の排気系に設けられた排ガス浄化装置1を模式的に示す図である。
 本実施形態に係る内燃機関(エンジン)には、酸素と燃料ガスとを含む混合気が供給される。内燃機関は、この混合気を燃焼させ、燃焼エネルギーを力学的エネルギーに変換する。このときに燃焼された混合気は排ガスとなって排気系に排出される。図1に示す構成の内燃機関2は、自動車のガソリンエンジンを主体として構成されている。
 上記エンジン2の排気系について説明する。上記エンジン2を排気系に連通させる排気ポート(図示せず)には、エキゾーストマニホールド3が接続されている。エキゾーストマニホールド3は、排ガスが流通する排気管4に接続されている。エキゾーストマニホールド3と排気管4とにより本実施形態の排気通路が形成されている。図中の矢印は排ガス流通方向を示している。
 ここで開示される排ガス浄化装置1は、上記エンジン2の排気系に設けられている。この排ガス浄化装置1は、触媒部5とフィルタ部6とECU7を備え、上記排出される排ガスに含まれる有害成分(例えば、一酸化炭素(CO)、炭化水素(HC)、窒素酸化物(NO))を浄化するとともに、排ガスに含まれる粒子状物質(PM)を捕集する。
 触媒部5は、排気ガス中に含まれる三元成分(NOx、HC、CO)を浄化可能なものとして構成されており、上記エンジン2に連通する排気管4に設けられている。具体的には図1に示すように、排気管4の下流側に設けられている。触媒部5の種類は特に限定されない。触媒部5は、例えば、白金(Pt)、パラジウム(Pd)、ロジウム(Rd)等の貴金属が担持された触媒であってもよい。なお、フィルタ部6の下流側の排気管4に下流側触媒部をさらに配置してもよい。かかる触媒部5の具体的な構成は本発明を特徴付けるものではないため、ここでは詳細な説明は省略する。
 フィルタ部6は、触媒部5の下流側に設けられている。フィルタ部6は、排ガス中に含まれる粒子状物質(以下、単に「PM」と称する)を捕集して除去可能なガソリンパティキュレートフィルタ(GPF)を備えている。以下、本実施形態に係るパティキュレートフィルタを詳細に説明する。
 図2は、パティキュレートフィルタ100の斜視図である。図3は、パティキュレートフィルタ100を軸方向に切断した断面の一部を拡大した模式図である。図2および図3に示すように、パティキュレートフィルタ100は、ウォールフロー構造の基材10と、第1触媒部20(図4参照)と、第2触媒部30(図4参照)とを備えている。以下、基材10、第1触媒部20、第2触媒部30の順に説明する。
<基材10>
 基材10としては、従来のこの種の用途に用いられる種々の素材及び形態のものが使用可能である。例えば、コージェライト、炭化ケイ素(SiC)等のセラミックスまたは合金(ステンレス等)から形成された基材を好適に採用することができる。一例として外形が円筒形状(本実施形態)である基材が例示される。ただし、基材全体の外形については、円筒形に代えて、楕円筒形、多角筒形を採用してもよい。かかる基材10は、排ガス流入側の端部のみが開口した入側セル12と、該入側セル12に隣接し排ガス流出側の端部のみが開口した出側セル14と、入側セル12と出側セル14とを仕切る多孔質の隔壁16とを有している。
<入側セル12および出側セル14>
 入側セル12は、排ガス流入側の端部のみが開口しており、出側セル14は、入側セル12に隣接し排ガス流出側の端部のみが開口している。この実施形態では、入側セル12は、排ガス流出側の端部が封止部12aで目封じされており、出側セル14は、排ガス流入側の端部が封止部14aで目封じされている。入側セル12および出側セル14は、フィルタ100に供給される排ガスの流量や成分を考慮して適当な形状および大きさに設定するとよい。例えば入側セル12および出側セル14の形状は、正方形、平行四辺形、長方形、台形などの矩形、三角形、その他の多角形(例えば、六角形、八角形)、円形など種々の幾何学形状であってよい。
<隔壁16>
 隣接する入側セル12と出側セル14との間には、隔壁16が形成されている。この隔壁16によって入側セル12と出側セル14とが仕切られている。隔壁16は、排ガスが通過可能な多孔質構造である。隔壁16の気孔率としては特に限定されないが、概ね50%~70%にすることが適当であり、好ましくは55%~65%である。隔壁16の気孔率が小さすぎると、圧力損失が増大してしまうことがあり、一方、隔壁16の気孔率が大きすぎると、フィルタ100の機械的強度が低下傾向になるため、好ましくない。隔壁16の厚みとしては特に限定されないが、概ね200μm~800μm程度であるとよい。このような隔壁の厚みの範囲内であると、PMの捕集効率を損なうことなく圧損の上昇を抑制する効果が得られる。
 図4は、図3のIV領域を拡大した拡大模式図である。図4に示すように、隔壁16は、相対的に細孔径が小さい小細孔18aと、相対的に細孔径が大きい大細孔18bとを有している。この実施形態では、隔壁16は、その独立した大細孔18b(もしくは多数の大細孔18bおよび/または小細孔18aの繋がり)によって隔壁16の表面と裏面とが連通し得るように構成されている。また、隔壁16は、該隔壁16を厚み方向に連通していない小細孔18aによって複雑に入り組んだ経路(貫通していない迂回した経路)が形成されている。小細孔18aの内部には、第1触媒部20が形成されている、また、大細孔18bの内部には、第2触媒部30が形成されている。
<第1触媒部>
 第1触媒部20は、隔壁16の内部細孔18a、18bのうち小細孔18aの壁表面に形成されている。小細孔18aは、隔壁16内で複雑に入り組んだ経路(貫通していない迂回した経路)を形成しているため、排ガスが長く滞留する傾向がある。そのため、小細孔18aに第1触媒部20を形成することによって、排ガスを効率よく浄化することができる。第1触媒部20が形成された小細孔18aの細孔直径は、第2触媒部30が形成された大細孔18bの細孔直径よりも小さければよい。例えば、第1触媒部20が形成された小細孔18aの水銀圧入法もしくは電子顕微鏡(Scanning Electron Microscope:SEM)での画像観察に基づく平均細孔直径は、概ね10μm以下(例えば0.1μm以上10μm以下)であることが好ましく、8μm以下であることがより好ましく、5μm以下であることが特に好ましい。このような小細孔18aの細孔直径の範囲内であると、小細孔18aに形成された第1触媒部20によって排ガスを効率よく浄化することができる。第1触媒部20によって浄化される有害成分としては特に限定されないが、例えばHC、COおよびNOxが例示される。第1触媒部20は、担体(図示省略)と、該担体に担持された貴金属(図示省略)とを備えている。
 第1触媒部20は、白金(Pt)、パラジウム(Pd)およびロジウム(Rh)のうちのいずれか1種または2種の貴金属が含まれているとよい。この実施形態では、第2触媒部30は、貴金属としてPtを含んでいる。基材の体積1L当たりの第1触媒部20におけるPtの含有量は、概ね0.1g~2g(好ましくは0.5g~1g)であることが好ましい。上記Ptの担持量が少なすぎると、Ptにより得られる触媒活性が不十分となり、他方、Ptの担持量が多すぎると、Ptが粒成長を起こしやすくなると同時にコスト面でも不利である。なお、第1触媒部20は、Rh、PtおよびPd以外の貴金属を含んでいてもよい。Rh、PtおよびPd以外の貴金属として、例えば、ルテニウム(Ru)、イリジウム(Ir)、オスミウム(Os)等を用いることができる。
 第1触媒部20は、Ptを担体に担持させることによって形成されている。かかる担体(典型的には粒子状)としては、アルミナ(Al)、ジルコニア(ZrO)、セリア(CeO)、シリカ(SiO)、マグネシア(MgO)、酸化チタン(チタニア:TiO)等の金属酸化物、若しくはこれらの固溶体(例えばセリア-ジルコニア(CeO-ZrO)複合酸化物)が挙げられる。中でもセリア-ジルコニア複合酸化物の使用が好ましい。これらの二種以上を併用してもよい。なお、上記担体には、副成分として他の材料(典型的には無機酸化物)が添加されていてもよい。担体に添加し得る物質としては、ランタン(La)、イットリウム(Y)等の希土類元素、カルシウムなどのアルカリ土類元素、その他遷移金属元素などが用いられ得る。上記の中でも、ランタン、イットリウム等の希土類元素は、触媒機能を阻害せずに高温における比表面積を向上できるため、安定化剤として好適に用いられる
 上記担体にPtを担持させる方法としては特に制限されない。例えばPt塩(例えば硝酸塩)やPt錯体(例えば、ジニトロジアミン錯体)を含有する水溶液に上記担体を含浸させた後、乾燥させ、焼成することにより調製することができる。
 ここで開示される第1触媒部20には、上述したPtが担持された担体のほか、貴金属を担持していない金属酸化物を添加することができる。金属酸化物としては、安定化アルミナが例示される。Ptと担体と安定化アルミナとの合計を100質量%としたときの安定化アルミナの含有率は、通常は20質量%~50質量%であることが適当であり、例えば30質量%~40質量%であることが好ましい。
 ここで開示される第1触媒部20は、NOx吸蔵能を有するNOx吸収材を含んでいてもよい。NOx吸収材は、排ガスの空燃比が酸素過剰のリーン状態にある状態では排ガス中のNOxを吸収し、空燃比がリッチ側に切り替えられると、吸収されていたNOxを放出するNOx吸蔵能を有するものであればよい。かかるNOx吸収材としては、NOxに電子を供与し得る金属の一種または二種以上を含む塩基性材料を好ましく用いることができる。例えば、カリウム(K)、ナトリウム(Na)、セシウム(Cs)のようなアルカリ金属、バリウム(Ba)、カルシウム(Ca)のようなアルカリ土類金属、ランタノイドのような希土類および銀(Ag)、銅(Cu)、鉄(Fe)、イリジウム(In)等の金属が挙げられる。中でもバリウム化合物(例えば硫酸バリウム)は高いNOx吸蔵能を有しており、ここで開示される排ガス浄化装置に用いられるNOx吸収材として好適である。上記NOx吸収材の含有量は、第1触媒部20の全質量に対して10質量%~25質量%を満足するものが好ましく、12質量%~20質量%を満足するものが特に好ましい。本構成によると、隔壁16内においてNOx吸収材が排ガスの流れ方向にランダムに分散した状態で配置されるので、隔壁16内を通過する排ガス中のNOxを適切に吸収および放出することができる。そのため、より高い浄化性能を達成することができる。
<第2触媒部30>
 第2触媒部30は、隔壁16の内部細孔18a、18bのうち大細孔18bの壁表面に形成されている。大細孔18bは、隔壁16を厚み方向に連通しているため、排ガスが円滑に通過する傾向がある。そのため、大細孔18bに第2触媒部30を形成することによって、圧損の上昇を抑えつつ排ガスを浄化することができる。第2触媒部30が形成された大細孔18bの細孔直径は、第1触媒部20が形成された小細孔18aの細孔直径よりも大きければよい。例えば、第2触媒部30が形成された大細孔18bの水銀圧入法もしくは電子顕微鏡(SEM)での画像観察に基づく平均細孔直径は、概ね10μmを上回る(例えば10μmを超えかつ100μm以下である)ことが好ましく、15μm以上であることがより好ましく、20μm以上であることが特に好ましい。このような大細孔18bの細孔直径の範囲内であると、大細孔18bに形成された第2触媒部30によって圧損の上昇を抑えつつ排ガスを浄化することができる。第2触媒部30によって浄化される有害成分としては特に限定されないが、例えばHC、COおよびNOxが例示される。第2触媒部30は、担体(図示省略)と、該担体に担持された貴金属(図示省略)とを備えている。
 第2触媒部30は、Pt、PdおよびRhのうちのいずれか1種または2種の貴金属であって第1触媒部20に含まれる貴金属(ここではPt)以外の貴金属が含まれているとよい。この実施形態では、第2触媒部30は、貴金属としてRhを含んでいる。基材の体積1L当たりの第2触媒部30におけるRhの含有量は、概ね0.1g~0.5gであることが好ましい。上記Rhの含有量が少なすぎると、Rhにより得られる触媒活性が不十分となることがあり、他方、Rhの担持量が多すぎると、Rhが粒成長を起こしやすくなると同時にコスト面でも不利である。なお、第2触媒部30は、Rh、PtおよびPd以外の貴金属を含んでいてもよい。Rh、PtおよびPd以外の貴金属として、例えば、ルテニウム(Ru)、イリジウム(Ir)、オスミウム(Os)等を用いることができる。
 第2触媒部30は、Rhを担体に担持させることによって形成されている。かかる担体(典型的には粒子状)としては、アルミナ(Al)、ジルコニア(ZrO)、セリア(CeO)、シリカ(SiO)、マグネシア(MgO)、酸化チタン(チタニア:TiO)等の金属酸化物、若しくはこれらの固溶体(例えばセリア-ジルコニア(CeO-ZrO)複合酸化物)が挙げられる。中でもアルミナの使用が好ましい。これらの二種以上を併用してもよい。なお、上記担体には、副成分として他の材料(典型的には無機酸化物)が添加されていてもよい。担体に添加し得る物質としては、ランタン(La)、イットリウム(Y)等の希土類元素、カルシウムなどのアルカリ土類元素、その他遷移金属元素などが用いられ得る。上記の中でも、ランタン、イットリウム等の希土類元素は、触媒機能を阻害せずに高温における比表面積を向上できるため、安定化剤として好適に用いられる
 上記担体にRhを担持させる方法としては特に制限されない。例えばRh塩(例えば硝酸塩)やRh錯体(例えば、テトラアンミン錯体)を含有する水溶液に上記担体を含浸させた後、乾燥させ、焼成することにより調製することができる。
 ここで開示される第2触媒部30には、酸素吸蔵能を有するOSC(Oxygen Storage Capacity)材を含んでいてもよい。OSC材は、排ガスの空燃比がリーンであるとき(即ち酸素過剰側の雰囲気)には排ガス中の酸素を吸蔵し、排ガスの空燃比がリッチであるとき(即ち燃料過剰側の雰囲気)には吸蔵されている酸素を放出するものであればよい。かかるOSC材としては、例えば、酸化セリウム(セリア:CeO)や該セリアを含む複合酸化物(例えば、セリア-ジルコニア複合酸化物(CeO-ZrO複合酸化物)などが挙げられる。中でもCeO-ZrO複合酸化物は高い酸素吸蔵能を有しており、ここで開示される排ガス浄化装置に用いられるOSC材として好適である。上記OSCの含有量は、第2触媒部30の全質量に対して25質量%~50質量%を満足するものが好ましく、30質量%~40質量%を満足するものが特に好ましい。本構成によると、隔壁16内においてOSC材が排ガスの流れ方向にランダムに分散した状態で配置されるので、隔壁16内を通過する排ガス中の酸素を適切に吸収および放出することができる。そのため、より安定した触媒性能が得られるようになり、触媒の浄化性能がさらに向上する。
<第1触媒部20および第2触媒部30の形成方法>
 第1触媒部20および第2触媒部30を形成するに際しては、第1触媒部20と、第2触媒部30とで異なるスラリーを基に形成するとよい。例えば、第1触媒部20を形成するための第1スラリーと、第2触媒部30を形成するための第2スラリーとを用意するとよい。
 第1スラリーは、前記担体にPtを担持してなる粉末と安定化アルミナとNOx吸収材と適当な溶媒(例えばイオン交換水)とを含んでいる。また、第1スラリーは、隔壁16の小細孔18aに流入しやすいように、粘度、固形分率および第1スラリーに含まれる粒子(典型的には貴金属を担持した担体粉末)の粒子径等が適宜調整されている。隔壁16の内部に第1スラリーを適当に密着させるため、第1スラリーにはバインダーを含有させてもよい。バインダーとしては、例えばアルミナゾル、シリカゾル等の使用が好ましい。第2スラリーは、前記担体にRhを担持してなる粉末とOSC材と適当な溶媒(例えばイオン交換水)とを含んでいる。また、第2スラリーは、隔壁16の大細孔18bに流入しやすいように、粘度、固形分率および第2スラリーに含まれる粒子(典型的には貴金属を担持した担体粉末)の粒子径等が適宜調整されている。隔壁16の内部に第2スラリーを適当に密着させるため、第2スラリーにはバインダーを含有させてもよい。バインダーとしては、例えばアルミナゾル、シリカゾル等の使用が好ましい。
 第1触媒部20および第2触媒部30を形成するに際しては、まず、第1スラリーを隔壁16の内部にコートする。第1スラリーを隔壁16の内部にコートする方法は特に限定されない。例えば、隔壁16を第1スラリーに所定時間浸漬した後、取り出すとよい。また、隔壁16を第1スラリーから取り出した後、加圧したガスを吹き付けて(あるいは吸引して)余分な第1スラリーを取り除くとよい。ここで細孔径が相対的に小さい小細孔18aは、毛管現象によって第1スラリーが流入しやすい。そのため、隔壁16を第1スラリーに浸漬すると、隔壁16の小細孔18aに第1スラリーが優先的に流入する。また、細孔径が相対的に小さい小細孔18aは、毛管現象によって第1スラリーが流出しにくい。そのため、隔壁16を第1スラリーから取り出した後、加圧したガスを吹き付ける(あるいは吸引する)と、大細孔18bに充填された第1スラリーが優先的に取り除かれる。つまり、上記方法によると、小細孔18aは第1スラリーで満たされやすく、大細孔18bは第1スラリーで満たされにくい。そのため、第1スラリーを小細孔18aに優先的に充填することができる。第1スラリーを小細孔18aに充填したら、次いで乾燥・焼成するとよい。これにより、小細孔18aの壁表面に第1触媒部20が形成される。
 次いで、第2スラリーを隔壁16の内部に吸引コートする。第2スラリーを隔壁16の内部にコートする方法は特に限定されない。例えば、隔壁16を第2スラリーに所定時間浸漬した後、取り出すとよい。第2スラリーは、隔壁16の大細孔18bに流入しやすいように、粘度および固形分率が適宜調整されている。また、小細孔18aは、第1触媒部20により既にコートされている。そのため、隔壁16を第2スラリーに浸漬すると、隔壁16の大細孔18bに第2スラリーが優先的に流入するようになる。このようにして第2スラリーを大細孔18bに充填したら、次いで乾燥・焼成するとよい。これにより、大細孔18bの壁表面に第2触媒部30が形成される。
 ここで開示される技術によると、排ガス流入側の端部のみが開口した入側セルと、該入側セルに隣接し排ガス流出側の端部のみが開口した出側セルと、前記入側セルと前記出側セルとを仕切る多孔質の隔壁とを有するウォールフロー構造の基材と、
 前記隔壁の内部細孔のうち相対的に細孔径が小さい小細孔に形成された第1触媒部と、
 前記隔壁の内部細孔のうち相対的に細孔径が大きい大細孔に形成された第2触媒部と
を備え、
 前記第1触媒部は、担体と、該担体に担持されたPt、PdおよびRhのうちのいずれか1種または2種の貴金属とを含有し、
 前記第2触媒部は、担体と、該担体に担持されたPt、PdおよびRhのうちのいずれか1種または2種の貴金属であって少なくとも前記第1触媒部に含まれる貴金属以外の貴金属とを含有する、パティキュレートフィルタを製造する方法が提供され得る。
 その製造方法は、隔壁の内部細孔のうち相対的に細孔径が小さい小細孔に、Pt、PdおよびRhのうちのいずれか1種または2種の貴金属を担持した担体を含む第1スラリーを付与して第1触媒部を形成すること(第1触媒部形成工程);および、
 前記隔壁の内部細孔のうち相対的に細孔径が大きい大細孔に、Pt、PdおよびRhのうちのいずれか1種または2種の貴金属であって少なくとも前記第1触媒部に含まれる貴金属以外の貴金属を担持した担体を含む第2スラリーを付与して第2触媒部を形成すること(第2触媒部形成工程);
 を包含する。
 ここで、前記第1スラリーは、該第1スラリーが前記小細孔に流入し得るように、該第1スラリーの粘度、固形分率および第1スラリーに含まれる粒子の平均粒子径が適宜設定され得る。また、前記第2スラリーは、該第2スラリーが前記大細孔に流入し得るように、該第2スラリーの粘度、固形分率および第2スラリーに含まれる粒子の平均粒子径が適宜設定され得る。
 好ましい一態様では、前記第1触媒部形成工程は、前記隔壁を前記第1スラリーに浸漬すること(浸漬工程)と、前記隔壁を前記第1スラリーから取り出した後、加圧したガスを吹き付けて余分な第1スラリーを取り除くこと(スラリー除去工程)と、を包含する。ここで前記スラリー除去工程は、加圧したガスを吹き付けるときの条件(例えばガスの圧力や吹き付け時間)を、前記第1スラリーが前記小細孔に優先的に充填される(前記第1スラリーが前記大細孔から優先的に取り除かれる)ように設定し、その設定された条件に沿ってガスを吹き付けることにより行われ得る。かかる方法により製造されたパティキュレートフィルタは、排ガス浄化装置のフィルタ部として好適に使用され得る。
 このパティキュレートフィルタ100は、図3に示すように、基材10の入側セル12から排ガスが流入する。入側セル12から流入した排ガスは、多孔質の隔壁16を通過して出側セル14に到達する。図3においては、入側セル12から流入した排ガスが隔壁16を通過して出側セル14に到達するルートを矢印で示している。このとき、隔壁16は多孔質構造を有しているので、排ガスがこの隔壁16を通過する間に、粒子状物質(PM)が隔壁16の表面や隔壁16の内部の細孔内に捕集される。また、隔壁16の内部には、第1触媒部20および第2触媒部30が設けられているので、排ガスが隔壁16の内部を通過する間に、排ガス中の有害成分が浄化される。隔壁16を通過して出側セル14に到達した排ガスは、排ガス流出側の開口からフィルタ100の外部へと排出される。
 かかるパティキュレートフィルタ100によると、隔壁16の内部細孔のうち小細孔18aと大細孔18bとにPtおよびRhを分離担持させているので、PtおよびRhのシンタリング(合金化)が効果的に抑制される。そのため、高温に晒された場合でも触媒の劣化が抑制される。また、第1触媒部20および第2触媒部30の双方が隔壁16の内部に配置されているので、触媒部が隔壁16の表面に形成されているときのような流路抵抗の上昇を回避して圧損を低減することができる。さらに、隔壁16内においてPtとRhとが排ガスの流れ方向にランダムに分散した状態で存在しているので、排ガスとPt、および排ガスとRhとが複数の反応場で効率よく接触する。そのため、より高い浄化性能を達成することができる。したがって、本構成によれば、圧損の低減を図りつつ、排ガスの浄化性能が格段に向上した排ガス浄化装置1を提供することができる。
 以下、本発明に関する試験例を説明するが、本発明を以下の試験例に示すものに限定することを意図したものではない。
<実施例>
 第1触媒部形成用の担体としてのセリア-ジルコニア複合酸化物を用意し、貴金属触媒溶液としてジニトロジアミンPt溶液に含浸させた後、蒸発乾固してPtを1.91質量%担持したPt/セリア-ジルコニア複合酸化物担体粉末を調製した。このPt/セリア-ジルコニア複合酸化物担体粉末62.2質量部と、La安定化アルミナ36.61質量部と、BaSO18.32質量部と、アルミナバインダ2.44質量部と、イオン交換水とを混合して第1スラリーを調製した。次いで、この第1スラリーにコージェライト製のウォールフロー型基材(直径103mm、全長105mm)を浸漬し、加圧したガスを吹き付けて余分なスラリーを吹き払った後、乾燥・焼成することにより、隔壁16の内部に第1触媒部20を形成した。基材の体積1L当たりの第1触媒部の質量は52.85gとし、基材の体積1L当たりのPtの質量は0.5251gとした。
 第2触媒部形成用の担体としてのLa安定化アルミナを用意し、貴金属触媒溶液として硝酸Rh溶液に含浸させた後、蒸発乾固してRhを0.8質量%担持したRh/アルミナ担体粉末を調製した。このRh/アルミナ担体粉末36.9質量部と、セリア-ジルコニア複合酸化物36.61質量部と、アルミナバインダ4.88質量部と、イオン交換水とを混合して第2スラリーを調製した。次いで、この第2スラリーに上記ウォールフロー型基材を浸漬し、余分なスラリーを吹き払った後、乾燥・焼成することにより、隔壁16の内部に第2触媒部30を形成した。基材の体積1L当たりの第2触媒部の質量は34.65gとし、基材の体積1L当たりのRhの質量は0.1313gとした。このようにして、隔壁内部に第1触媒部20および第2触媒部30が形成されたフィルタ触媒を作製した。
 上記得られたフィルタ触媒の断面SEM像を図5に示す。また、電子線マイクロアナライザー(EPMA)を用いてPtの分散状態を観察した。結果を図6に示す。さらに、EPMAを用いてRhの分散状態を観察した。結果を図7に示す。図5および図6に示すように、EPMAを用いたPtのマッピングにより、Ptを含む第1触媒部20が隔壁16の小細孔18aに主に形成されていることが確認された。また、図5および図7に示すように、EPMAを用いたRhのマッピングにより、Rhを含む第2触媒部30が隔壁16の大細孔18bに主に形成されていることが確認された。
<比較例>
 比較のために、隔壁内部にPtとRhの混合触媒部を形成したフィルタ触媒を作製した。具体的には、Rh/アルミナ担体粉末36.9質量部と、セリア-ジルコニア複合酸化物36.61質量部と、Pt/セリア-ジルコニア複合酸化物担体粉末62.2質量部と、アルミナ36.61質量部と、BaSO18.32質量部と、イオン交換水とを混合して混合触媒部形成用スラリーを調製した。次いで、このスラリーにウォールフロー型基材を浸漬し、余分なスラリーを吹き払った後、乾燥・焼成することにより、隔壁の内部に混合触媒部を形成した。基材の体積1L当たりのPtおよびRhの質量は実施例と同条件とした。
 上記実施例および比較例のフィルタ触媒について、100℃~600℃(昇温速度20℃/分)の昇温時におけるHCガスの浄化率を連続的に測定し、50%浄化温度を測定した。ここで50%浄化温度とは、HCガスの浄化率が50%に達したときの触媒入口のガス温度である。結果を図8に示す。図8は、実施例および比較例の50%浄化温度を示すグラフである。
 図8に示すように、比較例のフィルタ触媒は、HCの50%浄化温度が390℃を超えていた。比較例では、PtとRhとの分離がなされておらず、PtとRhとのシンタリング(合金化)が進行したため、触媒性能が低下したものと推測される。これに対し、実施例のフィルタ触媒は、HCの50%浄化温度がより低く、より触媒活性に優れるものとなった。実施例では、隔壁内の小細孔と大細孔とにPtとRhとを分離担持させることでPtとRhとのシンタリング(合金化)が抑制された結果、触媒性能が向上したものと推測される。この結果から、隔壁内の小細孔と大細孔とにPtとRhとを分離担持させることによって、触媒性能が向上し得ることが確認された。
 以上、パティキュレートフィルタ100ならびに該パティキュレートフィルタ100を備えた排ガス浄化装置1について種々の改変例を例示したが、パティキュレートフィルタ100ならびに排ガス浄化装置1の構造は、上述した何れの実施形態にも限定されない。
 例えば、上述した実施形態では、Ptを小細孔18aに配置し、Rhを大細孔18bに配置した例を示したがこれに限定されない。例えば、Ptを大細孔18bに配置し、Rhを小細孔18aに配置してもよい。この場合でもPtとRhとが隔壁内で分離担持されるので、上述した効果を得ることができる。また、Ptに代えて/あるいはPtとともにPdを第1触媒部20に含有させてもよい。
 また、排ガス浄化装置1の各部材、部位の形状や構造についても変更してもよい。図1に示した例では、フィルタ部の上流側に触媒部を設けているが、触媒部は省略しても構わない。この排ガス浄化装置1は、例えば、ガソリンエンジンなど、排気温度が比較的高い排ガス中の有害成分を浄化する装置として特に好適である。ただし、本発明に係る排ガス浄化装置1は、ガソリンエンジンの排ガス中の有害成分を浄化する用途に限らず、他のエンジン(例えばディーゼルエンジン)から排出された排ガス中の有害成分を浄化する種々の用途にて用いることができる。
 本発明によれば、圧損の低減を図りつつ排ガスの浄化性能を向上させることができる排ガス浄化装置を提供することができる。

Claims (7)

  1.  内燃機関の排気通路に配置され、該内燃機関から排出される排ガスを浄化する排ガス浄化装置であって、
     排ガス流入側の端部のみが開口した入側セルと、該入側セルに隣接し排ガス流出側の端部のみが開口した出側セルと、前記入側セルと前記出側セルとを仕切る多孔質の隔壁とを有するウォールフロー構造の基材と、
     前記隔壁の内部細孔のうち相対的に細孔径が小さい小細孔に形成された第1触媒部と、
     前記隔壁の内部細孔のうち相対的に細孔径が大きい大細孔に形成された第2触媒部と
    を備え、
     前記第1触媒部は、担体と、該担体に担持されたPt、PdおよびRhのうちのいずれか1種または2種の貴金属とを含有し、
     前記第2触媒部は、担体と、該担体に担持されたPt、PdおよびRhのうちのいずれか1種または2種の貴金属であって少なくとも前記第1触媒部に含まれる貴金属以外の貴金属とを含有する、排ガス浄化装置。
  2.  前記第1触媒部が形成された小細孔の平均細孔直径が10μm以下であり、
     前記第2触媒部が形成された大細孔の平均細孔直径が10μmを上回り且つ100μm以下である、請求項1に記載の排ガス浄化装置。
  3.  前記第1触媒部は、前記貴金属としてPtを含んでおり、
     前記第2触媒部は、前記貴金属としてRhを含んでいる、請求項1または2に記載の排ガス浄化装置。
  4.  前記基材の体積1L当たりについて、
     前記第1触媒部における前記Ptの含有量が、0.3g~1gであり、
     前記第2触媒部における前記Rhの含有量が、0.1g~0.5gである、請求項1~3の何れか一つに記載の排ガス浄化装置。
  5.  前記第1触媒部は、NOx吸蔵能を有するNOx吸収材を含んでいる、請求項3または4に記載の排ガス浄化装置。
  6.  前記第2触媒部は、酸素吸蔵能を有するOSC材を含んでいる、請求項3~5の何れか一つに記載の排ガス浄化装置。
  7.  前記内燃機関は、ガソリンエンジンである、請求項1~6の何れか一つに記載の排ガス浄化装置。
     
PCT/JP2015/078408 2014-10-17 2015-10-06 排ガス浄化装置 WO2016060029A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/518,086 US10201805B2 (en) 2014-10-17 2015-10-06 Exhaust gas purification apparatus
EP15850326.8A EP3207977B1 (en) 2014-10-17 2015-10-06 Exhaust gas purification apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-213110 2014-10-17
JP2014213110A JP6279448B2 (ja) 2014-10-17 2014-10-17 排ガス浄化装置

Publications (1)

Publication Number Publication Date
WO2016060029A1 true WO2016060029A1 (ja) 2016-04-21

Family

ID=55746576

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/078408 WO2016060029A1 (ja) 2014-10-17 2015-10-06 排ガス浄化装置

Country Status (4)

Country Link
US (1) US10201805B2 (ja)
EP (1) EP3207977B1 (ja)
JP (1) JP6279448B2 (ja)
WO (1) WO2016060029A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020515766A (ja) * 2017-04-04 2020-05-28 ビーエーエスエフ コーポレーション 統合された排出制御システム

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3424592A4 (en) * 2016-03-01 2019-11-27 Cataler Corporation EMISSION CONTROL CATALYST
US11141713B2 (en) * 2017-04-28 2021-10-12 Umicore Shokubai Japan Co., Ltd. Exhaust gas purification catalyst and exhaust gas purification method using the same
EP3501648B1 (de) 2017-12-19 2023-10-04 Umicore Ag & Co. Kg Katalytisch aktives partikelfilter
DE202017007047U1 (de) 2017-12-19 2019-04-29 Umicore Ag & Co. Kg Katalytisch aktives Partikelfilter
DE202017007046U1 (de) 2017-12-19 2019-04-29 Umicore Ag & Co. Kg Katalytisch aktives Partikelfilter
EP3501647A1 (de) 2017-12-19 2019-06-26 Umicore Ag & Co. Kg Katalytisch aktives partikelfilter
EP3501646A1 (de) 2017-12-19 2019-06-26 Umicore Ag & Co. Kg Katalytisch aktives partikelfilter
US11161098B2 (en) * 2018-05-18 2021-11-02 Umicore Ag & Co. Kg Three-way catalyst
EP3829763A1 (en) * 2018-07-27 2021-06-09 Johnson Matthey Public Limited Company Improved twc catalysts containing high dopant support
WO2020031975A1 (ja) * 2018-08-09 2020-02-13 エヌ・イーケムキャット株式会社 触媒塗工ガソリンパティキュレートフィルター及びその製造方法
WO2020039649A1 (ja) * 2018-08-22 2020-02-27 三井金属鉱業株式会社 排ガス浄化用触媒
DE102019100107A1 (de) * 2019-01-04 2020-07-09 Umicore Ag & Co. Kg Katalytisch aktives Filtersubstrat und Verfahren zur Herstellung sowie deren Verwendung
WO2020153309A1 (ja) * 2019-01-22 2020-07-30 三井金属鉱業株式会社 排ガス浄化用触媒
US20220176364A1 (en) 2019-03-29 2022-06-09 Umicore Ag & Co. Kg Catalytically active particulate filter
EP4029592A1 (de) 2019-03-29 2022-07-20 UMICORE AG & Co. KG Katalytisch aktives partikelfilter
CN113646063A (zh) 2019-03-29 2021-11-12 优美科股份公司及两合公司 催化活性微粒过滤器
JP7120959B2 (ja) * 2019-04-22 2022-08-17 トヨタ自動車株式会社 構造体
JP7211893B2 (ja) * 2019-05-24 2023-01-24 トヨタ自動車株式会社 排ガス浄化装置
KR20220034779A (ko) * 2019-07-12 2022-03-18 바스프 코포레이션 방사상으로 구역화된 코팅을 포함하는 촉매 기재
JP7381372B2 (ja) 2020-03-12 2023-11-15 トヨタ自動車株式会社 排ガス浄化装置
JP2021143664A (ja) * 2020-03-13 2021-09-24 トヨタ自動車株式会社 排ガス浄化装置
EP4286663A3 (en) * 2021-08-31 2024-03-06 Johnson Matthey Public Limited Company Transition metal incorporated alumina for improved three way catalysts

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002295247A (ja) * 2001-03-29 2002-10-09 Mazda Motor Corp エンジンの排気浄化装置
JP2007185571A (ja) * 2006-01-11 2007-07-26 Toyota Central Res & Dev Lab Inc 排ガス浄化用触媒及びその製造方法
JP2009082915A (ja) * 2007-09-27 2009-04-23 Umicore Ag & Co Kg 主として化学量論的空気/燃料混合物により運転される内燃機関エンジンの排ガスからの粒子の除去
JP2013091064A (ja) * 2013-02-07 2013-05-16 Cataler Corp スラリーの粘度調整方法およびスラリーの製造方法
JP2013529134A (ja) * 2010-06-10 2013-07-18 ビーエーエスエフ ソシエタス・ヨーロピア Rh負荷が低減されたNOx貯蔵触媒
WO2013111457A1 (ja) * 2012-01-23 2013-08-01 エヌ・イーケムキャット株式会社 硫酸バリウムを含むアルミナ材料、それを用いた排気ガス浄化用触媒
WO2013121520A1 (ja) * 2012-02-14 2013-08-22 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP2014094360A (ja) * 2012-11-12 2014-05-22 Cataler Corp 排気ガス浄化用フィルター及び排気ガス浄化用フィルターの製造方法
JP2015100788A (ja) * 2013-11-28 2015-06-04 マツダ株式会社 触媒材の製造方法、並びにそれを用いた触媒付パティキュレートフィルタの製造方法及びガソリンエンジン用三元触媒の製造方法。

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2007094379A1 (ja) * 2006-02-14 2009-07-09 日本碍子株式会社 ハニカム構造体及びハニカム触媒体
US8758695B2 (en) * 2009-08-05 2014-06-24 Basf Se Treatment system for gasoline engine exhaust gas

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002295247A (ja) * 2001-03-29 2002-10-09 Mazda Motor Corp エンジンの排気浄化装置
JP2007185571A (ja) * 2006-01-11 2007-07-26 Toyota Central Res & Dev Lab Inc 排ガス浄化用触媒及びその製造方法
JP2009082915A (ja) * 2007-09-27 2009-04-23 Umicore Ag & Co Kg 主として化学量論的空気/燃料混合物により運転される内燃機関エンジンの排ガスからの粒子の除去
JP2013529134A (ja) * 2010-06-10 2013-07-18 ビーエーエスエフ ソシエタス・ヨーロピア Rh負荷が低減されたNOx貯蔵触媒
WO2013111457A1 (ja) * 2012-01-23 2013-08-01 エヌ・イーケムキャット株式会社 硫酸バリウムを含むアルミナ材料、それを用いた排気ガス浄化用触媒
WO2013121520A1 (ja) * 2012-02-14 2013-08-22 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP2014094360A (ja) * 2012-11-12 2014-05-22 Cataler Corp 排気ガス浄化用フィルター及び排気ガス浄化用フィルターの製造方法
JP2013091064A (ja) * 2013-02-07 2013-05-16 Cataler Corp スラリーの粘度調整方法およびスラリーの製造方法
JP2015100788A (ja) * 2013-11-28 2015-06-04 マツダ株式会社 触媒材の製造方法、並びにそれを用いた触媒付パティキュレートフィルタの製造方法及びガソリンエンジン用三元触媒の製造方法。

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3207977A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020515766A (ja) * 2017-04-04 2020-05-28 ビーエーエスエフ コーポレーション 統合された排出制御システム

Also Published As

Publication number Publication date
US10201805B2 (en) 2019-02-12
JP6279448B2 (ja) 2018-02-14
EP3207977B1 (en) 2020-07-15
US20180001308A1 (en) 2018-01-04
EP3207977A1 (en) 2017-08-23
JP2016077980A (ja) 2016-05-16
EP3207977A4 (en) 2017-10-18

Similar Documents

Publication Publication Date Title
JP6279448B2 (ja) 排ガス浄化装置
JP6293638B2 (ja) 排ガス浄化装置
US10018095B2 (en) Exhaust gas purification device
JP6346642B2 (ja) 排ガス浄化用触媒
JP6564637B2 (ja) 排ガス浄化装置
JP6738185B2 (ja) 排ガス浄化装置
JP6594149B2 (ja) 排ガス浄化装置
JP6381663B2 (ja) 排ガス浄化用触媒
JP6353918B2 (ja) 排ガス浄化用触媒
WO2016056573A1 (ja) 排ガス浄化装置
JP7130622B2 (ja) 排ガス浄化用触媒
JP2020168613A (ja) フィルタ触媒、排ガス浄化装置、及びフィルタ触媒の製造方法
JP2020193568A (ja) 排ガス浄化装置
JP2019081160A (ja) 排ガス浄化用触媒
WO2020110379A1 (ja) 排ガス浄化触媒及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15850326

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15518086

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015850326

Country of ref document: EP