WO2016056560A1 - 液晶滴下工法用シール剤、上下導通材料、及び、液晶表示素子 - Google Patents

液晶滴下工法用シール剤、上下導通材料、及び、液晶表示素子 Download PDF

Info

Publication number
WO2016056560A1
WO2016056560A1 PCT/JP2015/078367 JP2015078367W WO2016056560A1 WO 2016056560 A1 WO2016056560 A1 WO 2016056560A1 JP 2015078367 W JP2015078367 W JP 2015078367W WO 2016056560 A1 WO2016056560 A1 WO 2016056560A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
meth
sealing agent
acrylate
crystal dropping
Prior art date
Application number
PCT/JP2015/078367
Other languages
English (en)
French (fr)
Inventor
一男 伊
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2015553983A priority Critical patent/JPWO2016056560A1/ja
Priority to KR1020167021928A priority patent/KR20170066276A/ko
Priority to CN201580030104.XA priority patent/CN106462014A/zh
Publication of WO2016056560A1 publication Critical patent/WO2016056560A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/40Compounds of aluminium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/08Treatment with low-molecular-weight non-polymer organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/12Treatment with organosilicon compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells

Definitions

  • the present invention relates to a sealant for a liquid crystal dropping method which is excellent in coating property, adhesiveness and moisture permeation prevention property of a cured product and has low liquid crystal contamination even in a high temperature and high humidity environment. Moreover, this invention relates to the vertical conduction material and liquid crystal display element which are manufactured using this sealing compound for liquid crystal dropping methods.
  • a method for producing a liquid crystal display element such as a liquid crystal display cell has been disclosed in terms of shortening tact time and optimizing the amount of liquid crystal used, for example, a photocurable resin as disclosed in Patent Document 1 and Patent Document 2,
  • a liquid crystal dropping method called a dropping method using a photopolymerization initiator, a thermosetting resin, a light containing a thermosetting agent, and a thermosetting sealant is used.
  • a rectangular seal pattern is formed on one of two transparent substrates with electrodes by dispensing.
  • a liquid crystal micro-droplet is dropped on the entire surface of the transparent substrate frame with the sealant being uncured, and the other transparent substrate is immediately overlaid, and the seal portion is irradiated with light such as ultraviolet rays to perform temporary curing.
  • heating is performed at the time of liquid crystal annealing to perform main curing, and a liquid crystal display element is manufactured. If the substrates are bonded together under reduced pressure, a liquid crystal display element can be manufactured with extremely high efficiency, and this dripping method is currently the mainstream method for manufacturing liquid crystal display elements.
  • liquid crystal display elements are increasingly required to have moisture resistance reliability when driving in high-temperature and high-humidity environments, and the sealant prevents water from entering from the outside.
  • the sealant prevents water from entering from the outside.
  • the adhesion between the sealing agent and the substrate is improved, and from the bulk of the sealing agent.
  • it is necessary to improve the moisture permeation preventive property of the sealant.
  • Patent Document 3 when a method of blending an inorganic filler such as talc into a sealing agent is used, the moisture permeation preventing property of the sealing agent can be improved.
  • an inorganic filler when such an inorganic filler is blended, the adhesiveness of the resulting sealant is lowered, or the viscosity is increased by blending a large amount in order to improve the moisture permeation prevention property, and the coating property is lowered. There was a problem such as.
  • An object of this invention is to provide the sealing agent for liquid crystal dropping methods which is excellent in applicability
  • the present invention is a liquid crystal dropping method sealing agent containing a curable resin, a radical polymerization initiator and / or a thermosetting agent, and mica.
  • the present invention is described in detail below.
  • the present inventor believes that when talc or the like is blended as an inorganic filler for improving the moisture permeation preventive property of the sealing agent, the cause of the decrease in the adhesive property or coating property of the sealing agent is hydrogen due to a hydroxyl group present on the surface of the talc or the like. It was thought that talc and the like were easily aggregated due to bonding. Therefore, the present inventor, for blending mica as an inorganic filler, is excellent in coating properties, adhesiveness, and moisture permeability prevention of cured products, and for liquid crystal dropping method with low liquid crystal contamination even in a high temperature and high humidity environment. The present inventors have found that a sealant can be obtained and have completed the present invention.
  • the sealing agent for liquid crystal dropping method of the present invention contains mica. By containing the mica, the sealing agent for liquid crystal dropping method of the present invention is excellent in moisture permeation preventing property of the cured product while maintaining excellent coating property and adhesiveness.
  • the mica is a mineral belonging to the phyllosilicate mineral mica group, and is characterized by being peeled thinly. Many are hexagonal plate-like crystals.
  • natural mica such as phlogopite, muscovite, sericite, etc., fluorine phlogopite, potassium tetrasilicon mica, sodium tetrasilicon mica, sodium teniolite, lithium teniolite, etc. Mica.
  • synthetic mica is preferable from the viewpoint of suppressing a decrease in adhesiveness and coating property.
  • Examples of the method for producing the synthetic mica include a method in which talc and an alkali metal silicofluoride such as potassium silicofluoride are subjected to solid phase reaction (solid phase reaction method), silicon dioxide, magnesium oxide, aluminum oxide, and the like, Examples thereof include a method (melting synthesis method) in which alkali metal silicofluoride such as potassium is dissolved by heating and then cooled and crystallized.
  • talc as a raw material is a product obtained by removing impurities by purification treatment, classification treatment, or the like.
  • the mica preferably has a ratio of those having an aspect ratio of 2 or more of 85% by weight or more.
  • the ratio of those having an aspect ratio of 2 or more is less than 85% by weight, the effect of improving the coating property and adhesiveness of the liquid crystal dropping method sealing agent and the moisture permeation prevention property of the cured product is sufficiently obtained. It may not be demonstrated.
  • a more preferable lower limit of the ratio of the mica having an aspect ratio of 2 or more is 90% by weight, and a more preferable lower limit is 95% by weight.
  • the aspect ratio is defined by the ratio of the major axis to the minor axis (major axis / minor axis) of the particles observed at a magnification of 5000 using a scanning electron microscope. Can be determined by measuring the aspect ratio of 40 particles.
  • S-4300 manufactured by Hitachi High-Technologies Corporation
  • S-4300 manufactured by Hitachi High-Technologies Corporation
  • Examples of the method of setting the ratio of those having an aspect ratio of 2 or more in the mica include a method of classifying mica having a ratio of 2 or more in aspect ratio of less than 85% by weight.
  • a method using a classifier such as an ultrafine powder wind classifier that classifies particles in a forced vortex by the difference between centrifugal force and fluid drag, a swirling air classifier, a precision air classifier, or a swing type A method of removing fine particles using a sieve shaker (“SS-S-230” manufactured by Ito Seisakusho Co., Ltd.) and a JIS standard sieve having a mesh of 5 to 10 ⁇ m, an electromagnetic vibration type sieving machine (for example, Ito A method of removing fine particles using “MS-200” manufactured by Seisakusho Co., a method of removing fine particles using a sonic sieving machine (for example, “MSS-75” manufactured by Ito Seisakusho Co., Ltd.), etc. Is mentioned.
  • the preferable lower limit of the average particle diameter of the mica is 0.05 ⁇ m, and the preferable upper limit is 10 ⁇ m.
  • the average particle size of the mica is less than 0.05 ⁇ m, the obtained sealing agent for liquid crystal dropping method may be inferior in applicability.
  • the average particle diameter of the mica exceeds 10 ⁇ m, display unevenness may occur in the liquid crystal display element due to a gap defect.
  • the more preferable lower limit of the average particle diameter of the mica is 0.1 ⁇ m, the more preferable upper limit is 5.0 ⁇ m, the still more preferable lower limit is 0.3 ⁇ m, and the still more preferable upper limit is 3.0 ⁇ m.
  • the “average particle diameter of mica” means an average value of the particle diameters (major diameters) of 10 particles observed at a magnification of 5000 times using a scanning electron microscope.
  • Examples of commercially available mica include MK-100, MK-200, and MK-300 (all manufactured by Co-op Chemical).
  • the mica may be surface-treated with a surface treatment agent.
  • the mica subjected to the above surface treatment has excellent dispersibility in the sealing agent, and the resulting sealing agent has superior adhesiveness and moisture permeation preventive properties.
  • Examples of the surface treatment agent include silane coupling agents, fatty acids, titanate coupling agents, and the like. Especially, since it is excellent in the effect which improves the adhesiveness of the sealing agent obtained, a silane coupling agent is preferable and the silane coupling agent which has an epoxy group is more preferable.
  • silane coupling agent used as the mica surface treatment agent examples include vinyltrimethoxysilane, vinyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, and 3-glycidoxypropylmethyldimethoxy.
  • Silane 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, p-styryltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3 -Methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, N-2- (aminoethyl)- -Aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-trieth
  • silane coupling agents examples include KBM-303, KBM-403, KBM-502, KBM-602, and KBM-603 (all manufactured by Shin-Etsu Chemical Co., Ltd.).
  • fatty acid used as the surface treatment agent for mica examples include stearic acid, palmitic acid, lauric acid, oleic acid, and linoleic acid.
  • titanate coupling agents used as the mica surface treatment agent include titanium acylates such as tributoxy titanium stearate, isopropoxy titanium triisostearate, mono-i-propoxy titanium tri-i-stearate, Titanium alkoxide such as titanium tetraethoxide, titanium tetrapropoxide, titanium tetrabutoxide, tetracyclohexyl titanate, tetrabenzyl titanate, di-n-butoxy bis (triethanolaminato) titanium, titanium diisopropoxy bis (acetylacetate) ), Titanium tetraacetylacetonate, titanium di-2-ethylhexoxybis (2-ethyl-3-hydroxyhexoxide), titanium diisopropoxybis (ethylacetoacetate), etc. Over doors and the like.
  • titanium acylates such as tributoxy titanium stearate, isopropoxy titanium triisostearate, mono-i-propoxy titanium tri-i-ste
  • titanate coupling agents examples include TAA, TOG, A-1, TOT, and B-1 (all manufactured by Nippon Soda Co., Ltd.).
  • the surface treatment for example, a method of spraying a mixed solution of water and a surface treatment agent in a state where untreated mica serving as a raw material is flowed, or adding untreated mica in an organic solvent, Examples include a method of adding water and a surface treatment agent and mixing them, and then evaporating and drying water and an organic solvent with an evaporator.
  • the content of the mica is preferably 0.5 parts by weight and preferably 30 parts by weight with respect to 100 parts by weight of the curable resin.
  • the content of the mica is less than 0.5 parts by weight, the effect of improving the moisture permeation preventing property of the cured product of the obtained liquid crystal dropping method sealing agent may not be sufficiently exhibited.
  • the content of the mica exceeds 30 parts by weight, the obtained liquid crystal dropping method sealing agent may be inferior in applicability and adhesiveness.
  • a more preferred lower limit of the mica content is 1 part by weight, a more preferred upper limit is 20 parts by weight, and a still more preferred lower limit is 2 parts by weight.
  • the sealing agent for liquid crystal dropping method of the present invention may contain other fillers other than the mica as long as the object of the present invention is not impaired.
  • the other fillers include talc, asbestos, silica, diatomaceous earth, smectite, bentonite, calcium carbonate, magnesium carbonate, alumina, montmorillonite, zinc oxide, iron oxide, magnesium oxide, tin oxide, titanium oxide, and magnesium hydroxide.
  • Other inorganic fillers such as aluminum hydroxide, glass beads, silicon nitride, barium sulfate, gypsum, calcium silicate, aluminum nitride, and organic fillers such as polyester fine particles, polyurethane fine particles, vinyl polymer fine particles, acrylic polymer fine particles Is mentioned.
  • other fillers may contain silicone particles larger than the cell gap of the liquid crystal display element.
  • the sealing agent for liquid crystal dropping method of the present invention contains a curable resin.
  • the curable resin preferably has a main skeleton composed of carbon atoms.
  • the curable resin preferably contains a (meth) acrylic resin. Since the sealing agent for liquid crystal dropping method of the present invention can be cured quickly, it preferably contains a (meth) acrylic resin as a curable resin and a radical polymerization initiator as a polymerization initiator. More preferably, the curable resin contains an epoxy (meth) acrylate as the (meth) acrylic resin.
  • the “(meth) acryl” means acryl or methacryl
  • the “(meth) acrylic resin” means a resin having a (meth) acryloyl group.
  • the “(meth) acrylate” means acrylate or methacrylate
  • the “epoxy (meth) acrylate” is a compound obtained by reacting all epoxy groups in the epoxy resin with (meth) acrylic acid. Means that.
  • Examples of the epoxy resin used as a raw material for synthesizing the epoxy (meth) acrylate include, for example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, and 2,2′-diallyl bisphenol A type epoxy resin.
  • Hydrogenated bisphenol type epoxy resin propylene oxide added bisphenol A type epoxy resin, resorcinol type epoxy resin, biphenyl type epoxy resin, sulfide type epoxy resin, diphenyl ether type epoxy resin, dicyclopentadiene type epoxy resin, naphthalene type epoxy resin, phenol Novolac epoxy resin, ortho-cresol novolac epoxy resin, dicyclopentadiene novolac epoxy resin, biphenyl novolac epoxy resin, naphtha Emissions phenol novolak type epoxy resin, glycidyl amine type epoxy resin, alkyl polyol type epoxy resin, rubber modified epoxy resin, glycidyl ester compounds, bisphenol A type episulfide resins.
  • Examples of commercially available bisphenol A type epoxy resins include jER828EL, jER1001, jER1004 (all manufactured by Mitsubishi Chemical Corporation), Epicron 850-S (manufactured by DIC Corporation), and the like.
  • As what is marketed among the said bisphenol F type epoxy resins jER806, jER4004, jER YL983U (all are Mitsubishi Chemical Corporation make) etc. are mentioned, for example.
  • As what is marketed among the said bisphenol S-type epoxy resins Epicron EXA1514 (made by DIC Corporation) etc. are mentioned, for example.
  • Examples of commercially available 2,2′-diallylbisphenol A type epoxy resins include RE-810NM (manufactured by Nippon Kayaku Co., Ltd.).
  • Examples of commercially available diphenyl ether type epoxy resins include YSLV-80DE (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.).
  • Examples of commercially available dicyclopentadiene type epoxy resins include EP-4088S (manufactured by ADEKA).
  • Examples of commercially available naphthalene type epoxy resins include Epicron HP4032, Epicron EXA-4700 (both manufactured by DIC) and the like.
  • Examples of commercially available phenol novolac epoxy resins include Epicron N-770 (manufactured by DIC).
  • Examples of the ortho-cresol novolac type epoxy resin that are commercially available include epiclone N-670-EXP-S (manufactured by DIC).
  • Examples of commercially available glycidylamine type epoxy resins include jER630 (manufactured by Mitsubishi Chemical), Epicron 430 (manufactured by DIC), and TETRAD-X (manufactured by Mitsubishi Gas Chemical).
  • Examples of commercially available alkyl polyol type epoxy resins include ZX-1542 (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), Epiklon 726 (manufactured by DIC), Epolite 80MFA (manufactured by Kyoeisha Chemical Co., Ltd.), Denacol EX-611. (Manufactured by Nagase ChemteX Corporation).
  • Examples of commercially available rubber-modified epoxy resins include YR-450, YR-207 (both manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), Epolide PB (manufactured by Daicel Corporation), and the like.
  • Examples of commercially available glycidyl ester compounds include Denacol EX-147 (manufactured by Nagase ChemteX Corporation).
  • Examples of commercially available bisphenol A type episulfide resins include jERYL-7000 (manufactured by Mitsubishi Chemical Corporation).
  • epoxy resins include, for example, YDC-1312, YSLV-80XY, YSLV-90CR (all manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), XAC4151 (manufactured by Asahi Kasei Co., Ltd.), jER1031, jER1032 (all Also, Mitsubishi Chemical Corporation), EXA-7120 (DIC Corporation), TEPIC (Nissan Chemical Corporation) and the like.
  • Examples of commercially available epoxy (meth) acrylates include, for example, EBECRYL860, EBECRYL3200, EBECRYL3201, EBECRYL3412, EBECRYL3600, EBECRYL3700, EBECRYL3701, EBECRYL3702, EBECRYL3703, EBECRY3603 EA-1010, EA-1020, EA-5323, EA-5520, EA-CHD, EMA-1020 (all manufactured by Shin-Nakamura Chemical Co., Ltd.), epoxy ester M-600A, epoxy ester 40EM, epoxy ester 70PA, epoxy Ester 200PA, epoxy ester 80MFA Epoxy ester 3002M, Epoxy ester 3002A, Epoxy ester 1600A, Epoxy ester 3000M, Epoxy ester 3000A, Epoxy ester 200EA, Epoxy ester 400EA (all manufactured by Kyoeisha Chemical Co., Ltd.), Denacol acrylate DA-141, Den
  • Examples of other (meth) acrylic resins other than the above epoxy (meth) acrylate include, for example, (meth) acrylic acid ester compound obtained by reacting a compound having a hydroxyl group with (meth) acrylic acid, and an isocyanate compound with a hydroxyl group.
  • examples thereof include urethane (meth) acrylate obtained by reacting a (meth) acrylic acid derivative having it.
  • Examples of monofunctional compounds among the (meth) acrylic acid ester compounds obtained by reacting the above (meth) acrylic acid with a compound having a hydroxyl group include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, propyl ( (Meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, t-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, n-octyl (meth) acrylate, isooctyl (meth) acrylate, isononyl ( (Meth) acrylate, isodecyl (meth) acrylate, lauryl (meth) acrylate, isomyristyl (meth) acrylate, stearyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (
  • Examples of the bifunctional one of the (meth) acrylic acid ester compounds include 1,3-butanediol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, and 1,6-hexanediol diene.
  • those having three or more functions include, for example, trimethylolpropane tri (meth) acrylate, ethylene oxide-added trimethylolpropane tri (meth) acrylate, propylene oxide-added trimethylolpropane tri (meth).
  • the urethane (meth) acrylate is obtained, for example, by reacting 2 equivalents of a (meth) acrylic acid derivative having a hydroxyl group with 1 equivalent of an isocyanate compound having two isocyanate groups in the presence of a catalytic amount of a tin-based compound. be able to.
  • isocyanate compound used as the raw material for the urethane (meth) acrylate examples include isophorone diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, and diphenylmethane-4,4.
  • MDI '-Diisocyanate
  • hydrogenated MDI polymeric MDI, 1,5-naphthalene diisocyanate, norbornane diisocyanate, tolidine diisocyanate, xylylene diisocyanate (XDI), hydrogenated XDI, lysine diisocyanate, triphenylmethane triisocyanate, tris (isocyanate) Phenyl) thiophosphate, tetramethylxylylene diisocyanate, 1,6,11-undecantrie Cyanate, and the like.
  • MDI '-Diisocyanate
  • XDI xylylene diisocyanate
  • XDI hydrogenated XDI
  • lysine diisocyanate triphenylmethane triisocyanate
  • tris (isocyanate) Phenyl) thiophosphate tetramethylxylylene diisocyanate, 1,6,11-und
  • the isocyanate compound is obtained by, for example, reacting a polyol such as ethylene glycol, propylene glycol, glycerin, sorbitol, trimethylolpropane, carbonate diol, polyether diol, polyester diol, polycaprolactone diol and an excess isocyanate compound. It is also possible to use chain-extended isocyanate compounds.
  • Examples of the (meth) acrylic acid derivative having a hydroxyl group, which is a raw material of the urethane (meth) acrylate include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, and 4-hydroxybutyl (meth). Hydroxyalkyl (meth) acrylates such as acrylate and 2-hydroxybutyl (meth) acrylate, ethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, polyethylene glycol, etc.
  • Examples of commercially available urethane (meth) acrylates include M-1100, M-1200, M-1210, M-1600 (all manufactured by Toagosei Co., Ltd.), EBECRYL230, EBECRYL270, EBECRYL4858, EBECRYL8402, EBECRYL8804, EBECRYL8803, EBECRYL8807, EBECRYL9260, EBECRYL1290, EBECRYL5129, EBECRYL4842, EBECRYL210, EBECRYL4827, EBECRYL6700, EBECRYL6700, EBECRYL6700, EBECRYL6700, EBECRYL6700 , Art resin N-1255, Art Resin UN-330, Art Resin UN-3320HB, Art Resin UN-1200TPK, Art Resin SH-500B (all manufactured by Negami Industrial Co., Ltd.), U-122P, U-108A, U-340P,
  • the (meth) acrylic resin preferably has a hydrogen-bonding unit such as —OH group, —NH— group, —NH 2 group, etc. from the viewpoint of suppressing adverse effects on the liquid crystal.
  • the (meth) acrylic resin preferably has 2 to 3 (meth) acryloyl groups in the molecule because of its high reactivity.
  • the said curable resin may contain an epoxy resin for the purpose of improving the adhesiveness of the sealing agent for liquid crystal dropping methods obtained.
  • said epoxy resin the epoxy resin used as the raw material for synthesize
  • the partial (meth) acryl-modified epoxy resin means a resin having one or more epoxy groups and (meth) acryloyl groups in one molecule, for example, two or more epoxy groups. It can be obtained by reacting a part of the epoxy group of the resin having a methacrylic acid with (meth) acrylic acid.
  • Examples of commercially available partial (meth) acrylic-modified epoxy resins include KRM8287 (manufactured by Daicel Ornex).
  • a preferable upper limit of the ratio of the epoxy group to the total amount of the (meth) acryloyl group and the epoxy group in the entire curable resin is 50 mol%.
  • the ratio of the epoxy group exceeds 50 mol%, the resulting liquid crystal dropping method sealing agent is highly soluble in liquid crystals, causing liquid crystal contamination, and the resulting liquid crystal display element may be inferior in display performance. is there.
  • a more preferable upper limit of the ratio of the epoxy group is 20 mol%.
  • the sealing agent for liquid crystal dropping method of the present invention contains a radical polymerization initiator and / or a thermosetting agent.
  • a radical polymerization initiator and / or thermosetting agent means containing a radical polymerization initiator or a thermosetting agent, or a radical polymerization initiator and a thermosetting agent. means.
  • radical polymerization initiator examples include a photo radical polymerization initiator and a thermal radical polymerization initiator.
  • photo radical polymerization initiator for example, benzophenone compounds, acetophenone compounds, acylphosphine oxide compounds, titanocene compounds, oxime ester compounds, benzoin ether compounds, thioxanthone, and the like can be preferably used.
  • photo radical polymerization initiators examples include Irgacure 184, Irgacure 369, Irgacure 379, Irgacure 651, Irgacure 819, Irgacure 907, Irgacure 2959, Irgacure OXE01, and Lucyrin TPO (all of which are BASF).
  • Benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether (all manufactured by Tokyo Chemical Industry Co., Ltd.) and the like.
  • Irgacure 651 Irgacure 651, Irgacure 907, benzoin isopropyl ether, and Lucillin TPO are preferable because of their wide absorption wavelength range.
  • These radical photopolymerization initiators may be used alone or in combination of two or more.
  • thermal radical polymerization initiator what consists of an azo compound, an organic peroxide, etc. is mentioned, for example.
  • a polymer azo initiator composed of a polymer azo compound is preferable.
  • the polymer azo initiator means a compound having an azo group and generating a radical capable of curing a (meth) acryloyloxy group by heat and having a number average molecular weight of 300 or more.
  • the said polymeric azo initiator normally decomposes
  • the preferable lower limit of the number average molecular weight of the polymeric azo initiator is 1000, and the preferable upper limit is 300,000.
  • the number average molecular weight of the polymer azo initiator is less than 1000, the polymer azo initiator may adversely affect the liquid crystal.
  • the number average molecular weight of the polymeric azo initiator exceeds 300,000, mixing with the curable resin may be difficult.
  • the more preferable lower limit of the number average molecular weight of the polymeric azo initiator is 5000, the more preferable upper limit is 100,000, the still more preferable lower limit is 10,000, and the still more preferable upper limit is 90,000.
  • polymer azo initiator examples include those having a structure in which a plurality of units such as polyalkylene oxide and polydimethylsiloxane are bonded via an azo group.
  • polymer azo initiator having a structure in which a plurality of units such as polyalkylene oxide are bonded via the azo group those having a polyethylene oxide structure are preferable.
  • Examples of such a polymer azo initiator include polycondensates of 4,4′-azobis (4-cyanopentanoic acid) and polyalkylene glycol, and 4,4′-azobis (4-cyanopentanoic acid) Examples thereof include polycondensates of polydimethylsiloxane having a terminal amino group, such as VPE-0201, VPE-0401, VPE-0601, VPS-0501, VPS-1001 (all of which are Wako Pure Chemical Industries, Ltd.) Manufactured) and the like.
  • Examples of the azo initiator other than the polymer azo initiator include V-65, V-501, V-601 (all manufactured by Wako Pure Chemical Industries, Ltd.) and the like.
  • organic peroxide examples include ketone peroxide, peroxyketal, hydroperoxide, dialkyl peroxide, peroxyester, diacyl peroxide, and peroxydicarbonate.
  • the content of the radical polymerization initiator is preferably 0.1 parts by weight and preferably 30 parts by weight with respect to 100 parts by weight of the curable resin.
  • the content of the radical polymerization initiator is less than 0.1 parts by weight, the polymerization of the obtained liquid crystal dropping method sealing agent may not sufficiently proceed.
  • the content of the radical polymerization initiator exceeds 30 parts by weight, a large amount of unreacted radical polymerization initiator remains, and the weather resistance of the obtained liquid crystal dropping method sealing agent may deteriorate.
  • the minimum with more preferable content of the said radical polymerization initiator is 1 weight part, A more preferable upper limit is 10 weight part, Furthermore, a preferable upper limit is 5 weight part.
  • thermosetting agent examples include organic acid hydrazides, imidazole derivatives, amine compounds, polyhydric phenol compounds, acid anhydrides, and the like. Among these, solid organic acid hydrazide is preferably used.
  • Examples of the solid organic acid hydrazide include 1,3-bis (hydrazinocarboethyl) -5-isopropylhydantoin, sebacic acid dihydrazide, isophthalic acid dihydrazide, adipic acid dihydrazide, malonic acid dihydrazide, and the like.
  • Examples thereof include Amicure VDH, Amicure UDH (all manufactured by Ajinomoto Fine Techno Co., Ltd.), SDH, IDH, ADH (all manufactured by Otsuka Chemical Co., Ltd.), MDH (manufactured by Nippon Finechem Co., Ltd.), and the like.
  • the sealing agent for liquid crystal dropping method of the present invention preferably contains a silane coupling agent.
  • the silane coupling agent mainly has a role as an adhesion assistant for favorably bonding the sealing agent and the substrate.
  • silane coupling agent since it is excellent in the effect which improves adhesiveness with a board
  • -Aminopropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-isocyanatopropyltrimethoxysilane and the like are preferably used.
  • These silane coupling agents may be used alone or in combination of two or more.
  • the sealing agent for liquid crystal dropping method of the present invention may contain a light shielding agent.
  • the sealing compound for liquid crystal dropping methods of this invention can be used suitably as a light shielding sealing agent.
  • Examples of the light-shielding agent include iron oxide, titanium black, aniline black, cyanine black, fullerene, carbon black, and resin-coated carbon black. Of these, titanium black is preferable.
  • Titanium black is a substance having a higher transmittance in the vicinity of the ultraviolet region, particularly for light having a wavelength of 370 to 450 nm, compared to the average transmittance for light having a wavelength of 300 to 800 nm. That is, the above-described titanium black sufficiently shields light having a wavelength in the visible light region, thereby providing light shielding properties to the sealing agent for liquid crystal dropping method of the present invention, while transmitting light having a wavelength in the vicinity of the ultraviolet region.
  • a shading agent Therefore, by using the photo radical polymerization initiator that can start the reaction with light having a wavelength (370 to 450 nm) that increases the transmittance of the titanium black, the light of the sealing agent for liquid crystal dropping method of the present invention can be used.
  • the light shielding agent contained in the liquid crystal dropping method sealing agent of the present invention is preferably a highly insulating material, and titanium black is also suitable as the highly insulating light shielding agent.
  • the light-shielding agent preferably has an optical density (OD value) per ⁇ m of 3 or more, more preferably 4 or more. The higher the light-shielding property of the light-shielding agent, the better. There is no particular upper limit for the OD value of the light-shielding agent, but it is usually 5 or less.
  • the above-mentioned titanium black exhibits a sufficient effect even if it is not surface-treated, but the surface is treated with an organic component such as a coupling agent, silicon oxide, titanium oxide, germanium oxide, aluminum oxide, oxidized Surface-treated titanium black such as those coated with an inorganic component such as zirconium or magnesium oxide can also be used. Especially, what is processed with the organic component is preferable at the point which can improve insulation more.
  • the liquid crystal display device manufactured using the sealing agent for liquid crystal dropping method of the present invention containing the above-described titanium black as a light-shielding agent has a sufficient light-shielding property, and thus has a high contrast without light leakage. A liquid crystal display element having excellent image display quality can be realized.
  • titanium black examples include 12S, 13M, 13M-C, 13R-N (all manufactured by Mitsubishi Materials Corporation), Tilak D (manufactured by Ako Kasei Co., Ltd.), and the like.
  • the preferable lower limit of the specific surface area of the titanium black is 13 m 2 / g, the preferable upper limit is 30 m 2 / g, the more preferable lower limit is 15 m 2 / g, and the more preferable upper limit is 25 m 2 / g.
  • the preferred lower limit of the volume resistance of the titanium black is 0.5 ⁇ ⁇ cm, the preferred upper limit is 3 ⁇ ⁇ cm, the more preferred lower limit is 1 ⁇ ⁇ cm, and the more preferred upper limit is 2.5 ⁇ ⁇ cm.
  • the primary particle diameter of the light-shielding agent is not particularly limited as long as it is not more than the distance between the substrates of the liquid crystal display element, but the preferred lower limit is 1 nm and the preferred upper limit is 5 ⁇ m.
  • the primary particle diameter of the light-shielding agent is less than 1 nm, the viscosity and thixotropy of the obtained liquid crystal dropping method sealing agent are greatly increased, and workability may be deteriorated.
  • the primary particle diameter of the light-shielding agent exceeds 5 ⁇ m, the coating property of the obtained liquid crystal dropping method sealing agent on the substrate may be deteriorated.
  • the more preferable lower limit of the primary particle diameter of the light shielding agent is 5 nm, the more preferable upper limit is 200 nm, the still more preferable lower limit is 10 nm, and the still more preferable upper limit is 100 nm.
  • the preferable lower limit of the content of the light-shielding agent is 5% by weight and the preferable upper limit is 80% by weight with respect to the entire sealing agent for liquid crystal dropping method of the present invention. If the content of the light shielding agent is less than 5% by weight, sufficient light shielding properties may not be obtained. If the content of the light-shielding agent exceeds 80% by weight, the adhesion of the obtained sealing agent for liquid crystal dropping method to the substrate and the strength after curing may be lowered, or the drawing property may be lowered.
  • the more preferable lower limit of the content of the light-shielding agent is 10% by weight, the more preferable upper limit is 70% by weight, the still more preferable lower limit is 30% by weight, and the still more preferable upper limit is 60% by weight.
  • the sealing agent for liquid crystal dropping method of the present invention further comprises a reactive diluent for adjusting the viscosity, a spacer such as polymer beads for adjusting the panel gap, 3-P-chlorophenyl-1,1- It contains additives such as curing accelerators such as dimethylurea and isocyanuric carboxylic acid, antifoaming agents, leveling agents, polymerization inhibitors, organic fine particles such as elastomer particles, acrylic particles and core-shell particles, and other coupling agents. Good.
  • Examples of the method for producing the sealing agent for liquid crystal dropping method of the present invention include a curable resin and a radical using a mixer such as a homodisper, a homomixer, a universal mixer, a planetary mixer, a kneader, or a three roll.
  • a mixer such as a homodisper, a homomixer, a universal mixer, a planetary mixer, a kneader, or a three roll.
  • Examples thereof include a method of mixing a polymerization initiator and / or a thermosetting agent, mica, and an additive such as a silane coupling agent added as necessary.
  • a vertical conduction material can be manufactured by mix
  • Such a vertical conduction material containing the sealing agent for liquid crystal dropping method of the present invention and conductive fine particles is also one aspect of the present invention.
  • electroconductive fine particles what formed the conductive metal layer on the surface of a metal ball, resin microparticles
  • the one in which the conductive metal layer is formed on the surface of the resin fine particles is preferable because the conductive connection is possible without damaging the transparent substrate due to the excellent elasticity of the resin fine particles.
  • the liquid crystal display element which has the sealing compound for liquid crystal dropping methods of this invention or the vertical conduction material of this invention is also one of this invention.
  • the sealing agent for the liquid crystal dropping method of the present invention is applied to one of two transparent substrates such as a glass substrate with electrodes such as an ITO thin film or a polyethylene terephthalate substrate.
  • the process of forming a rectangular seal pattern by screen printing, dispenser application, etc., the liquid crystal drop method sealing agent of the present invention is uncured, and liquid crystal microdrops are dropped on the entire surface of the transparent substrate and applied immediately.
  • the method includes a step of superimposing another substrate on the substrate, a step of irradiating the seal pattern part with light such as ultraviolet rays to temporarily cure the sealant, and a step of heating and temporarily curing the temporarily cured sealant. It is done.
  • ADVANTAGE OF THE INVENTION According to this invention, it is excellent in applicability
  • the average particle diameter measured in the same manner as that of the untreated synthetic mica A was 1.5 ⁇ m, and the ratio of those having an aspect ratio of 2 or more in the epoxy surface-treated synthetic mica A was 97. % By weight.
  • Synthetic mica B and ethanol obtained by the above “(Production of synthetic mica B)” are placed in a 2 L reaction vessel equipped with a stirrer, the reaction vessel is set in a thermostatic bath, and the mixture is stirred. The mixture was warmed to 25 ° C. Subsequently, 3-methacryloxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., “KBM-503”) as a surface treatment agent was continuously added over 45 minutes while stirring the mixed solution, and then the mixture was heated to 50 ° C. The temperature was raised and stirred overnight. Then, it filtered and dried at 130 degreeC overnight, and the methacryl surface treatment synthetic mica B was obtained.
  • 3-methacryloxypropyltrimethoxysilane manufactured by Shin-Etsu Chemical Co., Ltd., “KBM-503”
  • the average particle diameter of methacrylic surface-treated synthetic mica B measured in the same manner as that of untreated synthetic mica A was 0.7 ⁇ m
  • the aspect ratio in methacrylic surface-treated synthetic mica B was The ratio of 2 or more was 97% by weight.
  • Examples 1 to 17, Comparative Examples 1 to 3 According to the blending ratios described in Tables 1 to 3, each material was mixed using a planetary stirrer (“Shinky Co., Ltd.“ Awatori Netaro ”), and then mixed using three rolls. The sealing agents for liquid crystal dropping method of Examples 1 to 17 and Comparative Examples 1 to 3 were prepared.
  • Example 9 the sealing agent obtained in Example 9 was 3000 mJ / with a metal halide lamp. Curing by irradiating ultraviolet rays of cm 2 , and curing each sealing agent obtained in Examples 10 to 12 by heating at 120 ° C. for 60 minutes) The adhesion test piece was obtained. This was subjected to a tensile test (5 mm / sec) with a chuck arranged vertically.
  • a cured film for humidity measurement was obtained.
  • a moisture permeability test cup was prepared by a method according to JIS Z 0208 for moisture proof packaging materials (cup method), and the obtained cured film for moisture permeability measurement was attached, and the temperature was 80 ° C. and the humidity was 90% RH. The moisture permeability was measured by putting in a constant temperature and humidity oven.
  • TN liquid crystal manufactured by Chisso Corporation, “JC-5001LA”
  • JC-5001LA fine droplets of TN liquid crystal
  • the sealing agent in the cell after bonding was cured (for each sealing agent obtained in Examples 1 to 8, 13 to 17, and Comparative Examples 1 to 3, ultraviolet rays of 3000 mJ / cm 2 were applied by a metal halide lamp. After irradiation, it was cured by heating at 120 ° C.
  • Example 9 the sealant obtained in Example 9 was cured by irradiating 3000 mJ / cm 2 of ultraviolet rays with a metal halide lamp, in Examples 10-12.
  • a metal halide lamp in Examples 10-12.
  • the obtained liquid crystal display element was stored for 36 hours in an environment of a temperature of 80 ° C. and a humidity of 90% RH, and then driven with a voltage of AC 3.5 V, and the periphery of the halftone sealant was visually observed.
  • the case where no color unevenness was observed at all around the sealant part was evaluated as “ ⁇ ”, the case where slightly light color unevenness was observed as “ ⁇ ”, and the case where clear dark color unevenness was observed as “X”.
  • ADVANTAGE OF THE INVENTION According to this invention, it is excellent in applicability

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Sealing Material Composition (AREA)
  • Liquid Crystal (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

本発明は、塗布性、接着性、及び、硬化物の透湿防止性に優れ、高温高湿環境下でも液晶汚染性の低い液晶滴下工法用シール剤を提供することを目的とする。また、本発明は、該液晶滴下工法用シール剤を用いて製造される上下導通材料及び液晶表示素子を提供することを目的とする。 本発明は、硬化性樹脂と、ラジカル重合開始剤及び/又は熱硬化剤と、マイカとを含有する液晶滴下工法用シール剤である。

Description

液晶滴下工法用シール剤、上下導通材料、及び、液晶表示素子
本発明は、塗布性、接着性、及び、硬化物の透湿防止性に優れ、高温高湿環境下でも液晶汚染性の低い液晶滴下工法用シール剤に関する。また、本発明は、該液晶滴下工法用シール剤を用いて製造される上下導通材料及び液晶表示素子に関する。
近年、液晶表示セル等の液晶表示素子の製造方法は、タクトタイム短縮、使用液晶量の最適化といった観点から、例えば、特許文献1、特許文献2に開示されているような光硬化性樹脂、光重合開始剤、熱硬化性樹脂、及び、熱硬化剤を含有する光、熱併用硬化型のシール剤を用いた滴下工法と呼ばれる液晶滴下方式が用いられている。
滴下工法では、まず、2枚の電極付き透明基板の一方に、ディスペンスにより長方形状のシールパターンを形成する。次いで、シール剤が未硬化の状態で液晶の微小滴を透明基板の枠内全面に滴下し、すぐに他方の透明基板を重ねあわせ、シール部に紫外線等の光を照射して仮硬化を行う。その後、液晶アニール時に加熱して本硬化を行い、液晶表示素子を作製する。基板の貼り合わせを減圧下で行うようにすれば、極めて高い効率で液晶表示素子を製造することができ、現在この滴下工法が液晶表示素子の製造方法の主流となっている。
ところで、携帯電話、携帯ゲーム機等、各種液晶パネル付きモバイル機器が普及している現代において、装置の小型化は最も求められている課題である。小型化の手法として、液晶表示部の狭額縁化が挙げられ、例えば、シール部の位置をブラックマトリックス下に配置することが行われている(以下、狭額縁設計ともいう)。
このような狭額縁設計に伴い、液晶表示素子において、画素領域からシール剤までの距離が近くなっており、シール剤によって液晶が汚染されることによる表示むらが生じやすくなっている。
また、タブレット端末や携帯端末の普及に伴い、液晶表示素子には高温高湿環境下での駆動等における耐湿信頼性がますます要求されており、シール剤には外部からの水の浸入を防止する性能が一層求められている。液晶表示素子の耐湿信頼性を向上させるためには、シール剤と基板等との界面からの水の浸入を防ぐためにシール剤と基板等との接着性を向上させ、かつ、シール剤のバルクから進入する水を防ぐために、シール剤の透湿防止性を向上させる必要性がある。例えば、特許文献3に開示されているように、タルクのような無機充填剤をシール剤に配合する方法を用いた場合、シール剤の透湿防止性を向上させることができる。しかしながら、このような無機充填剤を配合した場合、得られるシール剤の接着性が低下したり、透湿防止性を向上させるために多量に配合することで粘度が上昇し、塗布性が低下したりする等の問題があった。
特開2001-133794号公報 国際公開第02/092718号 特開2008-40015号公報
本発明は、塗布性、接着性、及び、硬化物の透湿防止性に優れ、高温高湿環境下でも液晶汚染性の低い液晶滴下工法用シール剤を提供することを目的とする。また、本発明は、該液晶滴下工法用シール剤を用いて製造される上下導通材料及び液晶表示素子を提供することを目的とする。
本発明は、硬化性樹脂と、ラジカル重合開始剤及び/又は熱硬化剤と、マイカとを含有する液晶滴下工法用シール剤である。
以下に本発明を詳述する。
本発明者は、シール剤の透湿防止性を向上させる無機充填剤としてタルク等を配合した場合にシール剤の接着性や塗布性が低下する原因が、タルク等の表面に存在する水酸基による水素結合により、タルク等が凝集しやすくなっていることであると考えた。
そこで本発明者は、無機充填剤としてマイカを配合することにより、塗布性、接着性、及び、硬化物の透湿防止性に優れ、高温高湿環境下でも液晶汚染性の低い液晶滴下工法用シール剤を得ることができることを見出し、本発明を完成させるに至った。
本発明の液晶滴下工法用シール剤は、マイカを含有する。上記マイカを含有することにより、本発明の液晶滴下工法用シール剤は、優れた塗布性及び接着性を維持したまま、硬化物の透湿防止性に優れるものとなる。
上記マイカは、フィロケイ酸塩鉱物雲母族に属する鉱物であって、薄くはがれるのが特徴である。多くは六角板状の結晶であり、例えば、金雲母、白雲母、セリサイト等の天然マイカや、フッ素金雲母、カリウム四ケイ素雲母、ナトリウム四ケイ素雲母、ナトリウムテニオライト、リチウムテニオライト等の合成マイカが挙げられる。なかでも、接着性や塗布性の低下を抑制する観点から合成マイカが好ましい。
上記合成マイカを製造する方法としては、例えば、タルクとケイフッ化カリウム等のアルカリ金属ケイフッ化物とを固相反応させる方法(固相反応法)、二酸化ケイ素、酸化マグネシウム、酸化アルミニウム等と、ケイフッ化カリウム等のアルカリ金属ケイフッ化物とを加熱して溶かし、冷却して結晶化させる方法(溶融合成法)等が挙げられる。
上記固相反応法により合成マイカを製造する場合、原料となるタルクは、精製処理や分級処理等により不純物を除去したものであることが好ましい。
上記マイカは、透湿防止性や接着性の観点から、アスペクト比が2以上のものの割合が85重量%以上であることが好ましい。上記マイカにおいて、アスペクト比が2以上のものの割合が85重量%未満であると、液晶滴下工法用シール剤の塗布性、接着性、及び、硬化物の透湿防止性を向上させる効果が充分に発揮されないことがある。上記マイカにおける、アスペクト比が2以上のものの割合のより好ましい下限は90重量%、更に好ましい下限は95重量%であり、アスペクト比が2以上のもののみからなることが特に好ましい。
なお、本明細書において上記アスペクト比は、走査型電子顕微鏡を用いて、5000倍の倍率で観察した粒子の長径と短径の比率(長径/短径)で規定され、上記マイカにおける、アスペクト比が2以上のものの割合は、40個の粒子のアスペクト比を測定することにより求めることができる。また、上記走査型電子顕微鏡としては、S-4300(日立ハイテクノロジーズ社製)等を用いることができる。
上記マイカにおいて、アスペクト比が2以上のものの割合を85重量%以上にする方法としては、例えば、アスペクト比が2以上のものの割合が85重量%未満のマイカを分級する方法等が挙げられる。具体的には例えば、強制渦中の粒子を遠心力と流体抗力の差によって分級を行う超微粉風力分級機や、旋回気流分級機、精密空気分級機等の分級機を用いる方法や、揺動式ふるい振とう機(伊藤製作所社製、「SS-S-230」)及び網目が5~10μmのJIS規格の篩を使用して微粒子を除去する方法や、電磁振動式篩分器(例えば、伊藤製作所社製、「MS-200」)を使用して微粒子を除去する方法や、音波式篩分器(例えば、伊藤製作所社製、「MSS-75」)を使用して微粒子を除去する方法等が挙げられる。
上記マイカの平均粒子径の好ましい下限は0.05μm、好ましい上限は10μmである。上記マイカの平均粒子径が0.05μm未満であると、得られる液晶滴下工法用シール剤が塗布性に劣るものとなることがある。上記マイカの平均粒子径が10μmを超えると、ギャップ不良により液晶表示素子に表示むらが生じることがある。上記マイカの平均粒子径のより好ましい下限は0.1μm、より好ましい上限は5.0μm、更に好ましい下限は0.3μm、更に好ましい上限は3.0μmである。
なお、本明細書において上記「マイカの平均粒子径」は、走査型電子顕微鏡を用いて、5000倍の倍率で観察した粒子10個の粒子径(長径)の平均値を意味する。
上記マイカのうち市販されているものとしては、例えば、MK-100、MK-200、MK-300(いずれもコープケミカル社製)等が挙げられる。
上記マイカは、表面処理剤によって表面処理されたものであってもよい。上記表面処理を行ったマイカはシール剤中の分散性に優れるものとなり、得られるシール剤が接着性や透湿防止性により優れるものとなる。
上記表面処理剤としては、例えば、シランカップリング剤、脂肪酸、チタネートカップリング剤等が挙げられる。なかでも、得られるシール剤の接着性を向上させる効果に優れることから、シランカップリング剤が好ましく、エポキシ基を有するシランカップリング剤がより好ましい。
上記マイカの表面処理剤として用いるシランカップリング剤としては、例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、p-スチリルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチルブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-(ビニルベンジル)-2-アミノエチル-3-アミノプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン、メチルトリメトキシシラン、ジメチルジメトキシシラン、フェニルトリメトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、フェニルトリエトキシシラン、ヘキシルトリメトキシシラン、ヘキシルトリエトキシシラン、デシルトリメトキシシラン、トリフルオロプロピルトリメトキシシラン等が挙げられる。
上記シランカップリング剤のうち市販されているものとしては、例えば、KBM-303、KBM-403、KBM-502、KBM-602、KBM-603(いずれも信越化学工業社製)等が挙げられる。
上記マイカの表面処理剤として用いる脂肪酸としては、例えば、ステアリン酸、パルミチン酸、ラウリン酸、オレイン酸、リノール酸等が挙げられる。
上記マイカの表面処理剤として用いるチタネートカップリング剤としては、例えば、トリブトキシチタンステアレート、イソプロポキシチタントリイソステアレート、モノ-i-プロポキシチタントリ-i-ステアレート等のチタンアシレートや、チタンテトラエトキシド、チタンテトラプロポキシド、チタンテトラブトキシド、テトラシクロヘキシルチタネート、テトラベンジルチタネート等のチタンアルコキシドや、ジ-n-ブトキシ・ビス(トリエタノールアミナト)チタン、チタンジイソプロポキシビス(アセチルアセトネート)、チタンテトラアセチルアセトネート、チタニウムジ-2-エチルヘキソキシビス(2-エチル-3-ヒドロキシヘキソキシド)、チタンジイソプロポキシビス(エチルアセトアセテート)等のチタンキレート等が挙げられる。
上記チタネートカップリング剤のうち市販されているものとしては、例えば、TAA、TOG、A-1、TOT、B-1(いずれも日本曹達社製)等が挙げられる。
上記表面処理としては、例えば、原料となる未処理のマイカを流動させた状態で、水と表面処理剤との混合液を噴霧させる方法や、有機溶媒中に未処理のマイカを加え、更に、水と表面処理剤とを加えて混合した後、水と有機溶媒とをエバポレーターで蒸発乾燥させる方法等が挙げられる。
上記マイカの含有量は、硬化性樹脂100重量部に対して、好ましい下限が0.5重量部、好ましい上限が30重量部である。上記マイカの含有量が0.5重量部未満であると、得られる液晶滴下工法用シール剤の硬化物の透湿防止性を向上させる効果が充分に発揮されないことがある。上記マイカの含有量が30重量部を超えると、得られる液晶滴下工法用シール剤が塗布性や接着性に劣るものとなることがある。上記マイカの含有量のより好ましい下限は1重量部、より好ましい上限は20重量部、更に好ましい下限は2重量部である。
本発明の液晶滴下工法用シール剤は、本発明の目的を阻害しない範囲において、上記マイカ以外のその他の充填剤を含有してもよい。
上記その他の充填剤としては、例えば、タルク、石綿、シリカ、珪藻土、スメクタイト、ベントナイト、炭酸カルシウム、炭酸マグネシウム、アルミナ、モンモリロナイト、酸化亜鉛、酸化鉄、酸化マグネシウム、酸化錫、酸化チタン、水酸化マグネシウム、水酸化アルミニウム、ガラスビーズ、窒化珪素、硫酸バリウム、石膏、珪酸カルシウム、窒化アルミニウム等のその他の無機充填剤や、ポリエステル微粒子、ポリウレタン微粒子、ビニル重合体微粒子、アクリル重合体微粒子等の有機充填剤が挙げられる。
また、液晶汚染及び液晶のシール剤への差し込みを防止する観点から、その他の充填剤として液晶表示素子のセルギャップよりも大きいシリコーン粒子を含有してもよい。
本発明の液晶滴下工法用シール剤は、硬化性樹脂を含有する。
上記硬化性樹脂は、主骨格が炭素原子からなることが好ましい。
また、上記硬化性樹脂は、(メタ)アクリル樹脂を含有することが好ましい。
本発明の液晶滴下工法用シール剤は、速やかに硬化させることができるため、硬化性樹脂として(メタ)アクリル樹脂を含有し、かつ、重合開始剤としてラジカル重合開始剤を含有することが好ましい。
上記硬化性樹脂は、上記(メタ)アクリル樹脂としてエポキシ(メタ)アクリレートを含有することがより好ましい。
なお、本明細書において、上記「(メタ)アクリル」とは、アクリル又はメタクリルを意味し、上記「(メタ)アクリル樹脂」とは、(メタ)アクリロイル基を有する樹脂を意味する。また、上記「(メタ)アクリレート」とは、アクリレート又はメタクリレートを意味し、上記「エポキシ(メタ)アクリレート」とは、エポキシ樹脂中の全てのエポキシ基を(メタ)アクリル酸と反応させた化合物のことを意味する。
上記エポキシ(メタ)アクリレートを合成するための原料となるエポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、2,2’-ジアリルビスフェノールA型エポキシ樹脂、水添ビスフェノール型エポキシ樹脂、プロピレンオキシド付加ビスフェノールA型エポキシ樹脂、レゾルシノール型エポキシ樹脂、ビフェニル型エポキシ樹脂、スルフィド型エポキシ樹脂、ジフェニルエーテル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ナフタレン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、オルトクレゾールノボラック型エポキシ樹脂、ジシクロペンタジエンノボラック型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂、ナフタレンフェノールノボラック型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、アルキルポリオール型エポキシ樹脂、ゴム変性型エポキシ樹脂、グリシジルエステル化合物、ビスフェノールA型エピスルフィド樹脂等が挙げられる。
上記ビスフェノールA型エポキシ樹脂のうち市販されているものとしては、例えば、jER828EL、jER1001、jER1004(いずれも三菱化学社製)、エピクロン850-S(DIC社製)等が挙げられる。
上記ビスフェノールF型エポキシ樹脂のうち市販されているものとしては、例えば、jER806、jER4004、jER YL983U(いずれも三菱化学社製)等が挙げられる。
上記ビスフェノールS型エポキシ樹脂のうち市販されているものとしては、例えば、エピクロンEXA1514(DIC社製)等が挙げられる。
上記2,2’-ジアリルビスフェノールA型エポキシ樹脂のうち市販されているものとしては、例えば、RE-810NM(日本化薬社製)等が挙げられる。
上記水添ビスフェノール型エポキシ樹脂のうち市販されているものとしては、例えば、エピクロンEXA7015(DIC社製)等が挙げられる。
上記プロピレンオキシド付加ビスフェノールA型エポキシ樹脂のうち市販されているものとしては、例えば、EP-4000S(ADEKA社製)等が挙げられる。
上記レゾルシノール型エポキシ樹脂のうち市販されているものとしては、例えば、EX-201(ナガセケムテックス社製)等が挙げられる。
上記ビフェニル型エポキシ樹脂のうち市販されているものとしては、例えば、jERYX-4000H(三菱化学社製)等が挙げられる。
上記スルフィド型エポキシ樹脂のうち市販されているものとしては、例えば、YSLV-50TE(新日鉄住金化学社製)等が挙げられる。
上記ジフェニルエーテル型エポキシ樹脂のうち市販されているものとしては、例えば、YSLV-80DE(新日鉄住金化学社製)等が挙げられる。
上記ジシクロペンタジエン型エポキシ樹脂のうち市販されているものとしては、例えば、EP-4088S(ADEKA社製)等が挙げられる。
上記ナフタレン型エポキシ樹脂のうち市販されているものとしては、例えば、エピクロンHP4032、エピクロンEXA-4700(いずれもDIC社製)等が挙げられる。
上記フェノールノボラック型エポキシ樹脂のうち市販されているものとしては、例えば、エピクロンN-770(DIC社製)等が挙げられる。
上記オルトクレゾールノボラック型エポキシ樹脂のうち市販されているものとしては、例えば、エピクロンN-670-EXP-S(DIC社製)等が挙げられる。
上記ジシクロペンタジエンノボラック型エポキシ樹脂のうち市販されているものとしては、例えば、エピクロンHP7200(DIC社製)等が挙げられる。
上記ビフェニルノボラック型エポキシ樹脂のうち市販されているものとしては、例えば、NC-3000P(日本化薬社製)等が挙げられる。
上記ナフタレンフェノールノボラック型エポキシ樹脂のうち市販されているものとしては、例えば、ESN-165S(新日鉄住金化学社製)等が挙げられる。
上記グリシジルアミン型エポキシ樹脂のうち市販されているものとしては、例えば、jER630(三菱化学社製)、エピクロン430(DIC社製)、TETRAD-X(三菱ガス化学社製)等が挙げられる。
上記アルキルポリオール型エポキシ樹脂のうち市販されているものとしては、例えば、ZX-1542(新日鉄住金化学社製)、エピクロン726(DIC社製)、エポライト80MFA(共栄社化学社製)、デナコールEX-611(ナガセケムテックス社製)等が挙げられる。
上記ゴム変性型エポキシ樹脂のうち市販されているものとしては、例えば、YR-450、YR-207(いずれも新日鉄住金化学社製)、エポリードPB(ダイセル社製)等が挙げられる。
上記グリシジルエステル化合物のうち市販されているものとしては、例えば、デナコールEX-147(ナガセケムテックス社製)等が挙げられる。
上記ビスフェノールA型エピスルフィド樹脂のうち市販されているものとしては、例えば、jERYL-7000(三菱化学社製)等が挙げられる。
上記エポキシ樹脂のうちその他に市販されているものとしては、例えば、YDC-1312、YSLV-80XY、YSLV-90CR(いずれも新日鉄住金化学社製)、XAC4151(旭化成社製)、jER1031、jER1032(いずれも三菱化学社製)、EXA-7120(DIC社製)、TEPIC(日産化学社製)等が挙げられる。
上記エポキシ(メタ)アクリレートのうち市販されているものとしては、例えば、EBECRYL860、EBECRYL3200、EBECRYL3201、EBECRYL3412、EBECRYL3600、EBECRYL3700、EBECRYL3701、EBECRYL3702、EBECRYL3703、EBECRYL3800、EBECRYL6040、EBECRYLRDX63182(いずれもダイセル・オルネクス社製)、EA-1010、EA-1020、EA-5323、EA-5520、EA-CHD、EMA-1020(いずれも新中村化学工業社製)、エポキシエステルM-600A、エポキシエステル40EM、エポキシエステル70PA、エポキシエステル200PA、エポキシエステル80MFA、エポキシエステル3002M、エポキシエステル3002A、エポキシエステル1600A、エポキシエステル3000M、エポキシエステル3000A、エポキシエステル200EA、エポキシエステル400EA(いずれも共栄社化学社製)、デナコールアクリレートDA-141、デナコールアクリレートDA-314、デナコールアクリレートDA-911(いずれもナガセケムテックス社製)等が挙げられる。
上記エポキシ(メタ)アクリレート以外の他の(メタ)アクリル樹脂としては、例えば、(メタ)アクリル酸に水酸基を有する化合物を反応させることにより得られる(メタ)アクリル酸エステル化合物、イソシアネート化合物に水酸基を有する(メタ)アクリル酸誘導体を反応させることにより得られるウレタン(メタ)アクリレート等が挙げられる。
上記(メタ)アクリル酸に水酸基を有する化合物を反応させることにより得られる(メタ)アクリル酸エステル化合物のうち単官能のものとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、イソノニル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、イソミリスチル(メタ)アクリレート、ステアリル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ビシクロペンテニル(メタ)アクリレート、ベンジル(メタ)アクリレート、2-メトキシエチル(メタ)アクリレート、2-エトキシエチル(メタ)アクリレート、2-ブトキシエチル(メタ)アクリレート、2-フェノキシエチル(メタ)アクリレート、メトキシエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、フェノキシジエチレングリコール(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、エチルカルビトール(メタ)アクリレート、2,2,2-トリフルオロエチル(メタ)アクリレート、2,2,3,3-テトラフルオロプロピル(メタ)アクリレート、1H,1H,5H-オクタフルオロペンチル(メタ)アクリレート、イミド(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、2-(メタ)アクリロイロキシエチルコハク酸、2-(メタ)アクリロイロキシエチルヘキサヒドロフタル酸、2-(メタ)アクリロイロキシエチル2-ヒドロキシプロピルフタレート、2-(メタ)アクリロイロキシエチルホスフェート、グリシジル(メタ)アクリレート等が挙げられる。
上記(メタ)アクリル酸エステル化合物のうち2官能のものとしては、例えば、1,3-ブタンジオールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、2-n-ブチル-2-エチル-1,3-プロパンジオールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、エチレンオキシド付加ビスフェノールAジ(メタ)アクリレート、プロピレンオキシド付加ビスフェノールAジ(メタ)アクリレート、エチレンオキシド付加ビスフェノールFジ(メタ)アクリレート、ジメチロールジシクロペンタジエニルジ(メタ)アクリレート、エチレンオキシド変性イソシアヌル酸ジ(メタ)アクリレート、2-ヒドロキシ-3-(メタ)アクリロイロキシプロピル(メタ)アクリレート、カーボネートジオールジ(メタ)アクリレート、ポリエーテルジオールジ(メタ)アクリレート、ポリエステルジオールジ(メタ)アクリレート、ポリカプロラクトンジオールジ(メタ)アクリレート、ポリブタジエンジオールジ(メタ)アクリレート等が挙げられる。
上記(メタ)アクリル酸エステル化合物のうち3官能以上のものとしては、例えば、トリメチロールプロパントリ(メタ)アクリレート、エチレンオキシド付加トリメチロールプロパントリ(メタ)アクリレート、プロピレンオキシド付加トリメチロールプロパントリ(メタ)アクリレート、カプロラクトン変性トリメチロールプロパントリ(メタ)アクリレート、エチレンオキシド付加イソシアヌル酸トリ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、プロピレンオキシド付加グリセリントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリス(メタ)アクリロイルオキシエチルフォスフェート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等が挙げられる。
上記ウレタン(メタ)アクリレートは、例えば、2つのイソシアネート基を有するイソシアネート化合物1当量に対して水酸基を有する(メタ)アクリル酸誘導体2当量を、触媒量のスズ系化合物存在下で反応させることによって得ることができる。
上記ウレタン(メタ)アクリレートの原料となるイソシアネート化合物としては、例えば、イソホロンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、ジフェニルメタン-4,4’-ジイソシアネート(MDI)、水添MDI、ポリメリックMDI、1,5-ナフタレンジイソシアネート、ノルボルナンジイソシアネート、トリジンジイソシアネート、キシリレンジイソシアネート(XDI)、水添XDI、リジンジイソシアネート、トリフェニルメタントリイソシアネート、トリス(イソシアネートフェニル)チオフォスフェート、テトラメチルキシリレンジイソシアネート、1,6,11-ウンデカントリイソシアネート等が挙げられる。
また、上記イソシアネート化合物としては、例えば、エチレングリコール、プロピレングリコール、グリセリン、ソルビトール、トリメチロールプロパン、カーボネートジオール、ポリエーテルジオール、ポリエステルジオール、ポリカプロラクトンジオール等のポリオールと過剰のイソシアネート化合物との反応により得られる鎖延長されたイソシアネート化合物も使用することができる。
上記ウレタン(メタ)アクリレートの原料となる、水酸基を有する(メタ)アクリル酸誘導体としては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレートや、エチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、ポリエチレングリコール等の二価のアルコールのモノ(メタ)アクリレート、トリメチロールエタン、トリメチロールプロパン、グリセリン等の三価のアルコールのモノ(メタ)アクリレート又はジ(メタ)アクリレート、ビスフェノールA型エポキシアクリレート等のエポキシ(メタ)アクリレート等が挙げられる。
上記ウレタン(メタ)アクリレートのうち市販されているものとしては、例えば、M-1100、M-1200、M-1210、M-1600(いずれも東亞合成社製)、EBECRYL230、EBECRYL270、EBECRYL4858、EBECRYL8402、EBECRYL8804、EBECRYL8803、EBECRYL8807、EBECRYL9260、EBECRYL1290、EBECRYL5129、EBECRYL4842、EBECRYL210、EBECRYL4827、EBECRYL6700、EBECRYL220、EBECRYL2220(いずれもダイセル・オルネクス社製)、アートレジンUN-9000H、アートレジンUN-9000A、アートレジンUN-7100、アートレジンUN-1255、アートレジンUN-330、アートレジンUN-3320HB、アートレジンUN-1200TPK、アートレジンSH-500B(いずれも根上工業社製)、U-122P、U-108A、U-340P、U-4HA、U-6HA、U-324A、U-15HA、UA-5201P、UA-W2A、U-1084A、U-6LPA、U-2HA、U-2PHA、UA-4100、UA-7100、UA-4200、UA-4400、UA-340P、U-3HA、UA-7200、U-2061BA、U-10H、U-122A、U-340A、U-108、U-6H、UA-4000(いずれも新中村化学工業社製)、AH-600、AT-600、UA-306H、AI-600、UA-101T、UA-101I、UA-306T、UA-306I(いずれも共栄社化学社製)等が挙げられる。
上記(メタ)アクリル樹脂は、液晶への悪影響を抑える点で、-OH基、-NH-基、-NH基等の水素結合性のユニットを有するものが好ましい。
また、上記(メタ)アクリル樹脂は、反応性の高さから分子中に(メタ)アクリロイル基を2~3個有するものが好ましい。
上記硬化性樹脂は、得られる液晶滴下工法用シール剤の接着性を向上させることを目的として、エポキシ樹脂を含有してもよい。
上記エポキシ樹脂としては、例えば、上記エポキシ(メタ)アクリレートを合成するための原料となるエポキシ樹脂や、部分(メタ)アクリル変性エポキシ樹脂等が挙げられる。
なお、本明細書において上記部分(メタ)アクリル変性エポキシ樹脂とは、1分子中にエポキシ基と(メタ)アクリロイル基とをそれぞれ1つ以上有する樹脂を意味し、例えば、2つ以上のエポキシ基を有する樹脂の一部分のエポキシ基を(メタ)アクリル酸と反応させることによって得ることができる。
上記部分(メタ)アクリル変性エポキシ樹脂のうち、市販されているものとしては、例えば、KRM8287(ダイセル・オルネクス社製)等が挙げられる。
上記硬化性樹脂として上記エポキシ樹脂を含有する場合、上記硬化性樹脂全体における(メタ)アクリロイル基とエポキシ基との合計量に対するエポキシ基の比率の好ましい上限は50モル%である。上記エポキシ基の比率が50モル%を超えると、得られる液晶滴下工法用シール剤の液晶に対する溶解性が高くなって液晶汚染を引き起こし、得られる液晶表示素子が表示性能に劣るものとなることがある。上記エポキシ基の比率のより好ましい上限は20モル%である。
本発明の液晶滴下工法用シール剤は、ラジカル重合開始剤及び/又は熱硬化剤を含有する。
なお、本明細書において、上記「ラジカル重合開始剤及び/又は熱硬化剤を含有する」とは、ラジカル重合開始剤又は熱硬化剤、或いは、ラジカル重合開始剤及び熱硬化剤を含有することを意味する。
上記ラジカル重合開始剤としては、光ラジカル重合開始剤、熱ラジカル重合開始剤等が挙げられる。
上記光ラジカル重合開始剤としては、例えば、ベンゾフェノン系化合物、アセトフェノン系化合物、アシルフォスフィンオキサイド系化合物、チタノセン系化合物、オキシムエステル系化合物、ベンゾインエーテル系化合物、チオキサントン等を好適に用いることができる。
また、上記光ラジカル重合開始剤のうち市販されているものとしては、例えば、イルガキュア184、イルガキュア369、イルガキュア379、イルガキュア651、イルガキュア819、イルガキュア907、イルガキュア2959、イルガキュアOXE01、ルシリンTPO(いずれもBASF社製)、ベンソインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル(いずれも東京化成工業社製)等が挙げられる。なかでも、吸収波長域が広いことから、イルガキュア651、イルガキュア907、ベンゾインイソプロピルエーテル、及び、ルシリンTPOが好適である。これらの光ラジカル重合開始剤は単独で用いてもよく、2種以上を併用してもよい。
上記熱ラジカル重合開始剤としては、例えば、アゾ化合物、有機過酸化物等からなるものが挙げられる。なかでも、高分子アゾ化合物からなる高分子アゾ開始剤であることが好ましい。
なお、本明細書において高分子アゾ開始剤とは、アゾ基を有し、熱によって(メタ)アクリロイルオキシ基を硬化させることができるラジカルを生成する、数平均分子量が300以上の化合物を意味する。
また、上記高分子アゾ開始剤は、通常、光照射によっても分解してラジカルを発生することから、上記光ラジカル重合開始剤としても機能し得る。
上記高分子アゾ開始剤の数平均分子量の好ましい下限は1000、好ましい上限は30万である。上記高分子アゾ開始剤の数平均分子量が1000未満であると、高分子アゾ開始剤が液晶に悪影響を与えることがある。上記高分子アゾ開始剤の数平均分子量が30万を超えると、硬化性樹脂への混合が困難になることがある。上記高分子アゾ開始剤の数平均分子量のより好ましい下限は5000、より好ましい上限は10万であり、更に好ましい下限は1万、更に好ましい上限は9万である。
上記高分子アゾ開始剤としては、例えば、アゾ基を介してポリアルキレンオキサイドやポリジメチルシロキサン等のユニットが複数結合した構造を有するものが挙げられる。
上記アゾ基を介してポリアルキレンオキサイド等のユニットが複数結合した構造を有する高分子アゾ開始剤としては、ポリエチレンオキサイド構造を有するものが好ましい。このような高分子アゾ開始剤としては、例えば、4,4’-アゾビス(4-シアノペンタン酸)とポリアルキレングリコールの重縮合物や、4,4’-アゾビス(4-シアノペンタン酸)と末端アミノ基を有するポリジメチルシロキサンの重縮合物等が挙げられ、具体的には例えば、VPE-0201、VPE-0401、VPE-0601、VPS-0501、VPS-1001(いずれも和光純薬工業社製)等が挙げられる。
また、高分子アゾ開始剤以外のアゾ開始剤の例としては、例えば、V-65、V-501、V-601(いずれも和光純薬工業社製)等が挙げられる。
上記有機過酸化物としては、例えば、ケトンパーオキサイド、パーオキシケタール、ハイドロパーオキサイド、ジアルキルパーオキサイド、パーオキシエステル、ジアシルパーオキサイド、パーオキシジカーボネート等が挙げられる。
上記ラジカル重合開始剤の含有量は、上記硬化性樹脂100重量部に対して、好ましい下限が0.1重量部、好ましい上限が30重量部である。上記ラジカル重合開始剤の含有量が0.1重量部未満であると、得られる液晶滴下工法用シール剤の重合が充分に進行しないことがある。上記ラジカル重合開始剤の含有量が30重量部を超えると、未反応のラジカル重合開始剤が多く残り、得られる液晶滴下工法用シール剤の耐候性が悪くなることがある。上記ラジカル重合開始剤の含有量のより好ましい下限は1重量部、より好ましい上限は10重量部であり、更に好ましい上限は5重量部である。
上記熱硬化剤としては、例えば、有機酸ヒドラジド、イミダゾール誘導体、アミン化合物、多価フェノール系化合物、酸無水物等が挙げられる。なかでも、固形の有機酸ヒドラジドが好適に用いられる。
上記固形の有機酸ヒドラジドとしては、例えば、1,3-ビス(ヒドラジノカルボエチル)-5-イソプロピルヒダントイン、セバシン酸ジヒドラジド、イソフタル酸ジヒドラジド、アジピン酸ジヒドラジド、マロン酸ジヒドラジド等が挙げられ、市販されているものとしては、例えば、アミキュアVDH、アミキュアUDH(いずれも味の素ファインテクノ社製)、SDH、IDH、ADH(いずれも大塚化学社製)、MDH(日本ファインケム社製)等が挙げられる。
本発明の液晶滴下工法用シール剤は、シランカップリング剤を含有することが好ましい。上記シランカップリング剤は、主にシール剤と基板等とを良好に接着するための接着助剤としての役割を有する。
上記シランカップリング剤としては、基板等との接着性を向上させる効果に優れ、硬化性樹脂と化学結合することにより液晶中への硬化性樹脂の流出を抑制することができることから、例えば、3-アミノプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-イソシアネートプロピルトリメトキシシラン等が好適に用いられる。これらのシランカップリング剤は単独で用いてもよいし、2種以上を併用してもよい。
本発明の液晶滴下工法用シール剤は、遮光剤を含有してもよい。上記遮光剤を含有することにより、本発明の液晶滴下工法用シール剤は、遮光シール剤として好適に用いることができる。
上記遮光剤としては、例えば、酸化鉄、チタンブラック、アニリンブラック、シアニンブラック、フラーレン、カーボンブラック、樹脂被覆型カーボンブラック等が挙げられる。なかでも、チタンブラックが好ましい。
上記チタンブラックは、波長300~800nmの光に対する平均透過率と比較して、紫外線領域付近、特に波長370~450nmの光に対する透過率が高くなる物質である。即ち、上記チタンブラックは、可視光領域の波長の光を充分に遮蔽することで本発明の液晶滴下工法用シール剤に遮光性を付与する一方、紫外線領域付近の波長の光は透過させる性質を有する遮光剤である。従って、上記光ラジカル重合開始剤として、上記チタンブラックの透過率の高くなる波長(370~450nm)の光によって反応を開始可能なものを用いることで、本発明の液晶滴下工法用シール剤の光硬化性をより増大させることができる。また一方で、本発明の液晶滴下工法用シール剤に含有される遮光剤としては、絶縁性の高い物質が好ましく、絶縁性の高い遮光剤としてもチタンブラックが好適である。
上記遮光剤は、1μmあたりの光学濃度(OD値)が、3以上であることが好ましく、4以上であることがより好ましい。上記遮光剤の遮光性は高ければ高いほどよく、上記遮光剤のOD値に好ましい上限は特にないが、通常は5以下となる。
上記チタンブラックは、表面処理されていないものでも充分な効果を発揮するが、表面がカップリング剤等の有機成分で処理されているものや、酸化ケイ素、酸化チタン、酸化ゲルマニウム、酸化アルミニウム、酸化ジルコニウム、酸化マグネシウム等の無機成分で被覆されているもの等、表面処理されたチタンブラックを用いることもできる。なかでも、有機成分で処理されているものは、より絶縁性を向上できる点で好ましい。
また、遮光剤として上記チタンブラックを含有する本発明の液晶滴下工法用シール剤を用いて製造した液晶表示素子は、充分な遮光性を有するため、光の漏れ出しがなく高いコントラストを有し、優れた画像表示品質を有する液晶表示素子を実現することができる。
上記チタンブラックのうち市販されているものとしては、例えば、12S、13M、13M-C、13R-N(いずれも三菱マテリアル社製)、ティラックD(赤穂化成社製)等が挙げられる。
上記チタンブラックの比表面積の好ましい下限は13m/g、好ましい上限は30m/gであり、より好ましい下限は15m/g、より好ましい上限は25m/gである。
また、上記チタンブラックの体積抵抗の好ましい下限は0.5Ω・cm、好ましい上限は3Ω・cmであり、より好ましい下限は1Ω・cm、より好ましい上限は2.5Ω・cmである。
上記遮光剤の一次粒子径は、液晶表示素子の基板間の距離以下であれば特に限定されないが、好ましい下限は1nm、好ましい上限は5μmである。上記遮光剤の一次粒子径が1nm未満であると、得られる液晶滴下工法用シール剤の粘度やチクソトロピーが大きく増大してしまい、作業性が悪くなることがある。上記遮光剤の一次粒子径が5μmを超えると、得られる液晶滴下工法用シール剤の基板への塗布性が悪くなることがある。上記遮光剤の一次粒子径のより好ましい下限は5nm、より好ましい上限は200nm、更に好ましい下限は10nm、更に好ましい上限は100nmである。
上記遮光剤の含有量は、本発明の液晶滴下工法用シール剤全体に対して、好ましい下限が5重量%、好ましい上限が80重量%である。上記遮光剤の含有量が5重量%未満であると、充分な遮光性が得られないことがある。上記遮光剤の含有量が80重量%を超えると、得られる液晶滴下工法用シール剤の基板に対する接着性や硬化後の強度が低下したり、描画性が低下したりすることがある。上記遮光剤の含有量のより好ましい下限は10重量%、より好ましい上限は70重量%であり、更に好ましい下限は30重量%、更に好ましい上限は60重量%である。
本発明の液晶滴下工法用シール剤は、更に、必要に応じて、粘度調整の為の反応性希釈剤、パネルギャップ調整の為のポリマービーズ等のスペーサー、3-P-クロロフェニル-1,1-ジメチル尿素、イソシアヌルカルボン酸等の硬化促進剤、消泡剤、レベリング剤、重合禁止剤、エラストマー粒子、アクリル粒子、コアシェル粒子等の有機微粒子、その他のカップリング剤等の添加剤を含有してもよい。
本発明の液晶滴下工法用シール剤を製造する方法としては、例えば、ホモディスパー、ホモミキサー、万能ミキサー、プラネタリーミキサー、ニーダー、3本ロール等の混合機を用いて、硬化性樹脂と、ラジカル重合開始剤及び/又は熱硬化剤と、マイカと、必要に応じて添加するシランカップリング剤等の添加剤とを混合する方法等が挙げられる。
本発明の液晶滴下工法用シール剤に導電性微粒子を配合することにより、上下導通材料を製造することができる。このような本発明の液晶滴下工法用シール剤と導電性微粒子とを含有する上下導通材料もまた、本発明の1つである。
上記導電性微粒子としては、例えば、金属ボール、樹脂微粒子の表面に導電金属層を形成したもの等を用いることができる。なかでも、樹脂微粒子の表面に導電金属層を形成したものは、樹脂微粒子の優れた弾性により、透明基板等を損傷することなく導電接続が可能であることから好適である。
本発明の液晶滴下工法用シール剤又は本発明の上下導通材料を有する液晶表示素子もまた、本発明の1つである。
本発明の液晶表示素子を製造する方法としては、例えば、ITO薄膜等の電極付きのガラス基板やポリエチレンテレフタレート基板等の2枚の透明基板の一方に、本発明の液晶滴下工法用シール剤等をスクリーン印刷、ディスペンサー塗布等により長方形状のシールパターンを形成する工程、本発明の液晶滴下工法用シール剤等が未硬化の状態で液晶の微小滴を透明基板の枠内全面に滴下塗布し、すぐに別の基板を重ね合わせる工程、シールパターン部分に紫外線等の光を照射してシール剤を仮硬化させる工程、及び、仮硬化したシール剤を加熱して本硬化させる工程を有する方法等が挙げられる。
本発明によれば、塗布性、接着性、及び、硬化物の透湿防止性に優れ、高温高湿環境下でも液晶汚染性の低い液晶滴下工法用シール剤を提供することができる。また、本発明によれば、該液晶滴下工法用シール剤を用いて製造される上下導通材料及び液晶表示素子を提供することができる。
以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されない。
(合成マイカAの製造)
平均粒子径1.5μmの薄片状タルク80重量部とケイフッ化カリウム20重量部とを混合して磁性ルツボに入れ、電気炉にて900℃で1時間加熱し、合成マイカAを得た。得られた合成マイカAを走査型電子顕微鏡(日立ハイテクノロジーズ社製、「S-4300」)で観察し、平均粒子径及びアスペクト比を測定したところ、合成マイカAの平均粒子径は1.5μmであり、合成マイカA中におけるアスペクト比2以上のものの割合は97重量%であった。
(合成マイカAの表面処理)
上記「(合成マイカAの製造)」により得られた合成マイカAとエタノールとを、撹拌機を備えた2Lの反応容器中に入れ、該反応容器を恒温槽にセットし、混合液を撹拌しながら25℃に加温した。次いで、該混合液を撹拌したまま、表面処理剤として3-グリシドキシプロピルトリエトキシシラン(信越化学工業社製、「KBM-403」)を45分かけて連続的に添加した後、50℃に昇温し、一晩撹拌した。その後、ろ過し、130℃で一晩乾燥することにより、エポキシ表面処理合成マイカAを得た。
得られたエポキシ表面処理合成マイカAについて、未処理の合成マイカAと同様にして測定した平均粒子径は1.5μmであり、エポキシ表面処理合成マイカA中におけるアスペクト比2以上のものの割合は97重量%であった。
(合成マイカBの製造)
平均粒子径0.7μmの薄片状タルク80重量部とケイフッ化カリウム20重量部とを混合して磁性ルツボに入れ、電気炉にて900℃で1時間加熱し、合成マイカBを得た。得られた合成マイカBについて、未処理の合成マイカAと同様にして測定した平均粒子径は0.7μmであり、合成マイカB中におけるアスペクト比2以上のものの割合は97重量%であった。
(合成マイカBの表面処理)
上記「(合成マイカBの製造)」により得られた合成マイカBとエタノールとを、撹拌機を備えた2Lの反応容器中に入れ、該反応容器を恒温槽にセットし、混合液を撹拌しながら25℃に加温した。次いで、該混合液を撹拌したまま、表面処理剤として3-メタクリロキシプロピルトリメトキシシラン(信越化学工業社製、「KBM-503」)を45分かけて連続的に添加した後、50℃に昇温し、一晩撹拌した。その後、ろ過し、130℃で一晩乾燥し、メタクリル表面処理合成マイカBを得た。
得られたメタクリル表面処理合成マイカBについて、未処理の合成マイカAと同様にして測定したメタクリル表面処理合成マイカBの平均粒子径は0.7μmであり、メタクリル表面処理合成マイカB中におけるアスペクト比2以上のものの割合は97重量%であった。
(合成マイカCの製造)
平均粒子径1.0μmの薄片状タルク80重量部とケイフッ化カリウム20重量部とを混合して磁性ルツボに入れ、電気炉にて900℃で1時間加熱し、合成マイカCを得た。得られた合成マイカCについて、未処理の合成マイカAと同様にして測定した平均粒子径は1.0μmであり、合成マイカC中におけるアスペクト比2以上のものの割合は87.5重量%であった。
(実施例1~17、比較例1~3)
表1~3に記載された配合比に従い、各材料を、遊星式撹拌機(シンキー社製「あわとり練太郎」)を用いて混合した後、更に3本ロールを用いて混合することにより実施例1~17、比較例1~3の液晶滴下工法用シール剤を調製した。
<評価>
実施例及び比較例で得られたシール剤について以下の評価を行った。結果を表1~3に示した。
(塗布性)
ディスペンサー(武蔵エンジニアリング社製、「SHOTMASTER300」)を用いて、実施例及び比較例で得られた各シール剤をガラス基板上に塗布した際の塗布性を評価した。ディスペンスノズルを400μm、ノズルギャップを30μm、塗出圧を300kPaに固定して塗布したとき、かすれなく塗布できた場合「○」、かすれが生じた場合「△」、全く塗布できなかった場合「×」として評価した。
(接着性)
実施例及び比較例で得られた各シール剤に、シリカスペーサー(積水化学工業社製、「SI-H055」)を1重量%配合し、2枚のITO膜付きアルカリガラス試験片(30×40mm)のうち一方に微小滴下し、これにもう一方のガラス試験片を十字状に貼り合わせ、シール剤を硬化(実施例1~8、13~17、及び、比較例1~3で得られた各シール剤については、メタルハライドランプにて3000mJ/cmの紫外線を照射した後、120℃で60分加熱することによって硬化、実施例9で得られたシール剤については、メタルハライドランプにて3000mJ/cmの紫外線を照射することによって硬化、実施例10~12で得られた各シール剤については、120℃で60分加熱することによって硬化)させることによって接着試験片を得た。これを上下に配したチャックにて引っ張り試験(5mm/sec)を行った。得られた測定値(kgf)をシール塗布断面積(cm)で除した値が60kgf/cm以上であった場合を「○」、30kgf/cm以上60kgf/cm未満であった場合を「△」、30kgf/cm未満であった場合を「×」として評価した。
(透湿防止性)
実施例及び比較例で得られた各シール剤を、平滑な離型フィルム状にコーターで厚さ200~300μmに塗布した後、シール剤を硬化(実施例1~8、13~17、及び、比較例1~3で得られた各シール剤については、メタルハライドランプにて3000mJ/cmの紫外線を照射した後、120℃で60分加熱することによって硬化、実施例9で得られたシール剤については、メタルハライドランプにて3000mJ/cmの紫外線を照射することによって硬化、実施例10~12で得られた各シール剤については、120℃で60分加熱することによって硬化)させることによって透湿度測定用硬化フィルムを得た。JIS Z 0208の防湿包装材料の透湿度試験方法(カップ法)に準じた方法で透湿度試験用カップを作製し、得られた透湿度測定用硬化フィルムを取り付け、温度80℃湿度90%RHの恒温恒湿オーブンに投入して透湿度を測定した。得られた透湿度の値が50g/m・24hr未満であった場合を「○」、50g/m・24hr以上70g/m・24hr未満であった場合を「△」、70g/m・24hr以上であった場合を「×」として透湿防止性を評価した。
(高温高湿下で保管した後に駆動した液晶表示素子の色むら評価)
実施例及び比較例で得られた各シール剤をディスペンス用のシリンジ(武蔵エンジニアリング社製、「PSY-10E」)に充填し、脱泡処理を行った。次いで、ディスペンサー(武蔵エンジニアリング社製、「SHOTMASTER300」)を用いてITO薄膜付きの透明電極基板に長方形の枠を描く様にシール剤を塗布した。続いて、TN液晶(チッソ社製、「JC-5001LA」)の微小滴を液晶滴下装置にて滴下塗布し、他方の透明基板を、真空貼り合わせ装置にて5Paの減圧下にて貼り合わせた。貼り合わせ後のセル中のシール剤を硬化(実施例1~8、13~17、及び、比較例1~3で得られた各シール剤については、メタルハライドランプにて3000mJ/cmの紫外線を照射した後、120℃で60分加熱することによって硬化、実施例9で得られたシール剤については、メタルハライドランプにて3000mJ/cmの紫外線を照射することによって硬化、実施例10~12で得られた各シール剤については、120℃で60分加熱することによって硬化)させ、液晶表示素子を各シール剤につき5枚ずつ作製した。得られた液晶表示素子を温度80℃、湿度90%RHの環境下にて36時間保管した後、AC3.5Vの電圧駆動をさせ、中間調のシール剤周辺を目視で観察した。シール剤部周辺に色むらが全く見られなかった場合を「○」、少し薄い色むらが見えた場合を「△」、はっきりとした濃い色むらがあった場合を「×」として評価した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
本発明によれば、塗布性、接着性、及び、硬化物の透湿防止性に優れ、高温高湿環境下でも液晶汚染性の低い液晶滴下工法用シール剤を提供することができる。また、本発明によれば、該液晶滴下工法用シール剤を用いて製造される上下導通材料及び液晶表示素子を提供することができる。

Claims (8)

  1. 硬化性樹脂と、ラジカル重合開始剤及び/又は熱硬化剤と、マイカとを含有することを特徴とする液晶滴下工法用シール剤。
  2. マイカは、合成マイカであることを特徴とする請求項1記載の液晶滴下工法用シール剤。
  3. マイカは、表面処理剤によって表面処理されたものであることを特徴とする請求項1又は2記載の液晶滴下工法用シール剤。
  4. 表面処理剤は、シランカップリング剤であることを特徴とする請求項3記載の液晶滴下工法用シール剤。
  5. マイカは、アスペクト比が2以上のものを85重量%以上含有することを特徴とする請求項1、2、3又は4記載の液晶滴下工法用シール剤。
  6. 遮光剤を含有することを特徴とする請求項1、2、3、4又は5記載の液晶滴下工法用シール剤。
  7. 請求項1、2、3、4、5又は6記載の液晶滴下工法用シール剤と導電性微粒子とを含有することを特徴とする上下導通材料。
  8. 請求項1、2、3、4、5若しくは6記載の液晶滴下工法用シール剤又は請求項7記載の上下導通材料を有することを特徴とする液晶表示素子。
PCT/JP2015/078367 2014-10-08 2015-10-06 液晶滴下工法用シール剤、上下導通材料、及び、液晶表示素子 WO2016056560A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015553983A JPWO2016056560A1 (ja) 2014-10-08 2015-10-06 液晶滴下工法用シール剤、上下導通材料、及び、液晶表示素子
KR1020167021928A KR20170066276A (ko) 2014-10-08 2015-10-06 액정 적하 공법용 시일제, 상하 도통 재료, 및 액정 표시 소자
CN201580030104.XA CN106462014A (zh) 2014-10-08 2015-10-06 液晶滴下工艺用密封剂、上下导通材料及液晶显示元件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-207474 2014-10-08
JP2014207474 2014-10-08

Publications (1)

Publication Number Publication Date
WO2016056560A1 true WO2016056560A1 (ja) 2016-04-14

Family

ID=55653171

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/078367 WO2016056560A1 (ja) 2014-10-08 2015-10-06 液晶滴下工法用シール剤、上下導通材料、及び、液晶表示素子

Country Status (5)

Country Link
JP (1) JPWO2016056560A1 (ja)
KR (1) KR20170066276A (ja)
CN (1) CN106462014A (ja)
TW (1) TW201623543A (ja)
WO (1) WO2016056560A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018041961A (ja) * 2016-09-05 2018-03-15 荒川化学工業株式会社 フレキシブルプリント配線板用銅張積層板及びフレキシブルプリント配線板
WO2019231875A1 (en) * 2018-05-29 2019-12-05 Henkel IP & Holding GmbH Anaerobic paste compositions
JP2020076794A (ja) * 2018-11-05 2020-05-21 協立化学産業株式会社 液晶表示素子用シール剤組成物
US11630351B2 (en) 2018-06-22 2023-04-18 Japan Display Inc. Liquid crystal panel and electro-optical device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018128158A1 (ja) * 2017-01-04 2018-07-12 積水化学工業株式会社 液晶表示素子用シール剤、上下導通材料、及び、液晶表示素子
KR101994698B1 (ko) 2017-05-29 2019-07-01 엘지전자 주식회사 차량용 사용자 인터페이스 장치 및 차량
WO2018230655A1 (ja) * 2017-06-16 2018-12-20 積水化学工業株式会社 液晶表示素子用シール剤、上下導通材料、及び、液晶表示素子

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001046752A1 (en) * 1999-12-23 2001-06-28 Ppg Industries Ohio, Inc. Improved edge seal for electrooptic devices
WO2009044763A1 (ja) * 2007-10-01 2009-04-09 Momentive Performance Materials Japan Llc 表示素子用シール剤
JP2014139662A (ja) * 2012-12-19 2014-07-31 Sekisui Chem Co Ltd 液晶滴下工法用シール剤、液晶滴下工法用シール剤の製造方法、上下導通材料、及び、液晶表示素子
WO2014163090A1 (ja) * 2013-04-01 2014-10-09 Jnc株式会社 光硬化性エポキシ接着剤、樹脂組成物、積層体、ディスプレイ、および樹脂組成物の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1942523B (zh) * 2004-04-14 2010-12-08 旭化成化学株式会社 导电树脂组合物
EP2226347B1 (en) * 2007-12-13 2012-06-27 Showa Denko K.K. Epoxy resin curing agent, method for producing the same, and epoxy resin composition
KR101885944B1 (ko) * 2011-07-13 2018-08-06 닛뽄 가야쿠 가부시키가이샤 액정 시일제 및 그것을 사용한 액정 표시 셀

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001046752A1 (en) * 1999-12-23 2001-06-28 Ppg Industries Ohio, Inc. Improved edge seal for electrooptic devices
WO2009044763A1 (ja) * 2007-10-01 2009-04-09 Momentive Performance Materials Japan Llc 表示素子用シール剤
JP2014139662A (ja) * 2012-12-19 2014-07-31 Sekisui Chem Co Ltd 液晶滴下工法用シール剤、液晶滴下工法用シール剤の製造方法、上下導通材料、及び、液晶表示素子
WO2014163090A1 (ja) * 2013-04-01 2014-10-09 Jnc株式会社 光硬化性エポキシ接着剤、樹脂組成物、積層体、ディスプレイ、および樹脂組成物の製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018041961A (ja) * 2016-09-05 2018-03-15 荒川化学工業株式会社 フレキシブルプリント配線板用銅張積層板及びフレキシブルプリント配線板
JP7102691B2 (ja) 2016-09-05 2022-07-20 荒川化学工業株式会社 フレキシブルプリント配線板用銅張積層板及びフレキシブルプリント配線板
WO2019231875A1 (en) * 2018-05-29 2019-12-05 Henkel IP & Holding GmbH Anaerobic paste compositions
US11286382B2 (en) 2018-05-29 2022-03-29 Henkel Ag & Co., Kgaa Anaerobic paste compositions
US11630351B2 (en) 2018-06-22 2023-04-18 Japan Display Inc. Liquid crystal panel and electro-optical device
JP2020076794A (ja) * 2018-11-05 2020-05-21 協立化学産業株式会社 液晶表示素子用シール剤組成物

Also Published As

Publication number Publication date
KR20170066276A (ko) 2017-06-14
CN106462014A (zh) 2017-02-22
TW201623543A (zh) 2016-07-01
JPWO2016056560A1 (ja) 2017-07-27

Similar Documents

Publication Publication Date Title
WO2016056560A1 (ja) 液晶滴下工法用シール剤、上下導通材料、及び、液晶表示素子
JP5827752B2 (ja) 液晶滴下工法用シール剤、上下導通材料、及び、液晶表示素子
JP5685346B1 (ja) 液晶滴下工法用シール剤、上下導通材料、及び、液晶表示素子
CN107636524B (zh) 液晶显示元件用密封剂、上下导通材料及液晶显示元件
CN108351561B (zh) 液晶显示元件用密封剂、上下导通材料和液晶显示元件
WO2015002067A1 (ja) 液晶滴下工法用シール剤、上下導通材料、液晶表示素子、及び、遮光性柔軟シリコーン粒子
JP6163045B2 (ja) 液晶滴下工法用シール剤、上下導通材料、及び、液晶表示素子
WO2013058324A1 (ja) 液晶滴下工法用シール剤、上下導通材料、及び、液晶表示素子
JP6046868B1 (ja) 液晶滴下工法用シール剤、上下導通材料、及び、液晶表示素子
WO2014189110A1 (ja) 液晶滴下工法用シール剤、上下導通材料、及び、液晶表示素子
TWI719201B (zh) 液晶顯示元件用密封劑、上下導通材料、以及、液晶顯示元件
JP5395968B2 (ja) 液晶滴下工法用シール剤、上下導通材料、及び、液晶表示素子
WO2017221936A1 (ja) 液晶表示素子用シール剤、上下導通材料、及び、液晶表示素子
JPWO2017131002A1 (ja) 液晶表示素子用遮光シール剤、上下導通材料、及び、液晶表示素子
JP5369242B2 (ja) 液晶滴下工法用シール剤、上下導通材料、及び、液晶表示素子
JP2016081064A (ja) 液晶表示素子用シール剤、上下導通材料、及び、液晶表示素子
JP6122724B2 (ja) 液晶滴下工法用シール剤、上下導通材料、及び、液晶表示素子
JP6609164B2 (ja) 液晶滴下工法用シール剤、上下導通材料、及び、液晶表示素子
JP2014219589A (ja) 液晶滴下工法用シール剤、上下導通材料、及び、液晶表示素子
JP2014013382A (ja) 液晶滴下工法用シール剤、上下導通材料、及び、液晶表示素子
JP2015001616A (ja) 液晶滴下工法用シール剤、上下導通材料、及び、液晶表示素子
JP6046533B2 (ja) 液晶滴下工法用シール剤、上下導通材料、及び、液晶表示素子
JP2016218447A (ja) 液晶表示素子用シール剤、上下導通材料、及び、液晶表示素子
WO2016190398A1 (ja) 液晶滴下工法用シール剤、上下導通材料、及び、液晶表示素子
JPWO2018037861A1 (ja) 液晶表示素子用シール剤、上下導通材料、及び、液晶表示素子

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015553983

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15849757

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167021928

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15849757

Country of ref document: EP

Kind code of ref document: A1