WO2016056434A1 - 透明導電体、透明導電体の製造方法、及び、タッチパネル - Google Patents

透明導電体、透明導電体の製造方法、及び、タッチパネル Download PDF

Info

Publication number
WO2016056434A1
WO2016056434A1 PCT/JP2015/077645 JP2015077645W WO2016056434A1 WO 2016056434 A1 WO2016056434 A1 WO 2016056434A1 JP 2015077645 W JP2015077645 W JP 2015077645W WO 2016056434 A1 WO2016056434 A1 WO 2016056434A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent conductor
fine particles
metal fine
transparent
ionic liquid
Prior art date
Application number
PCT/JP2015/077645
Other languages
English (en)
French (fr)
Inventor
信明 山田
健一郎 中松
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US15/516,137 priority Critical patent/US10224126B2/en
Priority to JP2016553056A priority patent/JPWO2016056434A1/ja
Publication of WO2016056434A1 publication Critical patent/WO2016056434A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/118Anti-reflection coatings having sub-optical wavelength surface structures designed to provide an enhanced transmittance, e.g. moth-eye structures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/30Drying; Impregnating
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04112Electrode mesh in capacitive digitiser: electrode for touch sensing is formed of a mesh of very fine, normally metallic, interconnected lines that are almost invisible to see. This provides a quite large but transparent electrode surface, without need for ITO or similar transparent conductive material
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display

Definitions

  • the present invention relates to a transparent conductor, a method for producing a transparent conductor, and a touch panel. More specifically, the present invention relates to a transparent conductor suitably used in a touch panel or the like in the display field, a method for producing the transparent conductor, and a touch panel including the transparent conductor.
  • the transparent conductor is mainly used as a transparent electrode in, for example, a touch panel in the display field.
  • a transparent film such as indium tin oxide (ITO) is widely used.
  • ITO indium tin oxide
  • the ITO film has the following problems (1) to (4). (1) If there is variation in the film thickness of the ITO film, the reflected light on the front and back surfaces of the ITO film interferes and coloration occurs. (2)
  • the ITO film has a refractive index of about 1.9 to 2.0, and has a high refractive index because of a large refractive index difference from the air layer. (3) When a plurality of ITO films are used in a touch panel or the like, the transmittance (transparency) is lowered. (4) Since indium, which is the main raw material of the ITO film, is a rare metal, its depletion is a concern.
  • a configuration is proposed in which a transparent film such as ITO is formed on an antireflection film having a moth-eye structure (an eye-like structure), which is a kind of a nanometer-sized uneven structure (nanostructure).
  • a transparent film such as ITO is formed on an antireflection film having a moth-eye structure (an eye-like structure), which is a kind of a nanometer-sized uneven structure (nanostructure).
  • Such a configuration is said to have low reflectivity due to the moth-eye structure in addition to the conductivity due to the ITO film.
  • the structure which has antifouling property for example, refer patent document 18
  • the structure which has water repellency for example, patent document 19
  • JP 2009-224078 A JP-A-63-160140 JP-A-9-55175 Japanese Patent No. 4333210 Japanese Patent No. 5332186 JP 2003-46293 A Japanese Patent Laid-Open No. 11-26980 International Publication No. 2007/114076 Japanese Patent No. 5082357 JP 2010-93239 A JP 2008-283100 A JP 2008-218860 A JP 2003-109435 A JP 2010-93040 A JP 2009-263700 A Japanese Patent No. 5469849 Japanese Patent No. 4626721 JP 2007-322767 A JP 2008-122435 A
  • Patent Document 1 discloses a transparent conductor in which metal fine particles are arranged in a pattern.
  • the invention described in Patent Document 1 has the following problems (A) to (D), and there is room for improvement.
  • (A) As a conductive portion it is a limit to form a mesh structure having a pitch of micrometer size, and when used in combination with a display device, such a mesh structure and a pixel pattern of a display element (micrometer Moire occurs due to interference with the metric size lattice structure).
  • the resistivity of the entire conductive portion is increased, and the conductivity is reduced.
  • the conductive portion is a convex portion on the substrate, it can be easily removed by an external force and has low durability.
  • D Since it is the structure by which the mesh-shaped electroconductive part was formed on the transparent substrate, it does not have low reflectivity.
  • Patent Document 6 discloses a method for forming a conductive portion by patterning a metal thin film on a transparent substrate.
  • the invention described in Patent Document 6 has the following problems (E) to (H), and there is room for improvement.
  • E Since the pitch of the pattern of the conductive portion is a micrometer size, when used in combination with a display device, such a pattern of the conductive portion and a pixel pattern of the display element (micrometer-size lattice structure) Interfere with each other and moire occurs.
  • F When patterning, since photomasks of a predetermined size are connected and used, the boundary between the joints is easily seen as unevenness, and the quality is lowered.
  • G Since the conductive part is a convex part on the transparent substrate, it can be easily removed by an external force and has low durability.
  • H Since the metal thin film is patterned on the transparent substrate, it does not have low reflectivity.
  • Patent Document 8 discloses a transparent conductor in which metal fine particles are arranged in a pattern.
  • the invention described in Patent Document 8 has the following problems (I) to (K), and there is room for improvement.
  • the conductive part is a convex part on the substrate, it can be easily removed by an external force and has low durability.
  • the metal fine particles are adhered to the substrate with a slight amount of binder. Because it is only weak to external force. (K) Since the structure has a mesh-like conductive portion formed on the substrate, it does not have low reflectivity.
  • Patent Document 17 discloses a transparent conductor in which a transparent film such as ITO is formed on an antireflection film having a moth-eye structure.
  • a transparent film such as ITO since a transparent film such as ITO is used, there are problems already described in the above (1) to (4), and there is room for improvement.
  • Patent Document 18 discloses a configuration in which nanoparticles having a predetermined refractive index are filled in the gaps between convex portions constituting the moth-eye structure.
  • the invention described in Patent Document 18 is not for forming a transparent conductor, and has the following problems (L) and (M), and there is room for improvement.
  • L Since the refractive index of the gap between the convex portions constituting the moth-eye structure is increased with respect to air, the reflectance is increased.
  • M Nanoparticles are transparent particles such as silica, and are not metal fine particles, and therefore have insufficient conductivity.
  • the invention described in Patent Document 19 is not for forming a transparent conductor, and the conductivity is not sufficient.
  • the present invention has been made in view of the above situation, and is excellent in conductivity, transparency, and low reflectivity, and has no generation of moire, etc., and a method for producing the transparent conductor, It aims at providing a touch panel provided with the above-mentioned transparent conductor.
  • the inventors of the present invention have conducted various studies on transparent conductors that are excellent in conductivity, transparency, and low reflectivity, and that do not generate moiré or the like.
  • the antireflection film having a moth-eye structure and metal fine particles are combined.
  • the inventors have found that the bottom of the gap between the convex portions constituting the moth-eye structure is filled with metal fine particles to constitute a network-like conductive portion.
  • the inventors have conceived that the above problems can be solved brilliantly and have reached the present invention.
  • the plurality of convex portions have a pitch equal to or smaller than the wavelength of visible light
  • the antireflection film provided on the surface and the plurality of convex portions have a particle size equal to or smaller than the pitch
  • a transparent conductor comprising: metal fine particles filled in the bottoms of the gaps of the plurality of convex parts, wherein the metal fine particles arranged in the gaps of the plurality of convex parts constitute a network-like conductive part It may be.
  • Another aspect of the present invention is a method for producing the transparent conductor, the step (1) of applying a dispersion liquid in which the metal fine particles are dispersed in a solvent on the antireflection film.
  • the transparent conductor manufacturing method may include a step (2) of drying the solvent to evaporate the solvent and a step (3) of heating the dried dispersion. .
  • Yet another embodiment of the present invention may be a touch panel including the transparent conductor.
  • a transparent conductor that is excellent in conductivity, transparency, and low reflectivity and does not generate moire
  • a method for producing the transparent conductor, and a touch panel that includes the transparent conductor Can be provided.
  • FIG. 3 is a schematic plan view showing a transparent conductor according to Embodiment 1.
  • FIG. FIG. 2 is a schematic cross-sectional view showing a cross section of a portion corresponding to a line segment A-A ′ in FIG. 1.
  • FIG. 5 is a schematic cross-sectional view illustrating a manufacturing process of the transparent conductor according to the first embodiment (steps a to d).
  • 6 is a schematic cross-sectional view showing a transparent conductor according to Embodiment 2.
  • FIG. It is a cross-sectional schematic diagram which shows the transparent conductor of Embodiment 3.
  • It is a cross-sectional schematic diagram which shows the transparent conductor of Embodiment 4.
  • 10 is a schematic cross-sectional view showing a touch panel according to Embodiment 5.
  • FIG. FIG. 8 is a schematic plan view showing two transparent conductors in FIG. 7.
  • Embodiment 1 relates to a transparent conductor comprising an antireflection film and metal fine particles.
  • FIG. 1 is a schematic plan view showing a transparent conductor of Embodiment 1.
  • FIG. 2 is a schematic cross-sectional view showing a cross section of a portion corresponding to a line segment AA ′ in FIG.
  • the transparent conductor 1 a includes an antireflection film 2 and metal fine particles 3.
  • the antireflection film 2 has an antireflection film provided on the surface, that is, a moth-eye structure, with a plurality of convex portions (projections) 4 having a pitch P (distance between vertices of adjacent convex portions 4) P equal to or less than the wavelength of visible light. It corresponds to an antireflection film having (a grid-like structure).
  • the metal fine particles 3 have a particle size equal to or smaller than the pitch P of the convex portions 4 constituting the moth-eye structure, and are filled in the bottoms of the gaps 5 of the convex portions 4 to constitute a mesh-like conductive portion. .
  • the bottom of the gap 5 of the protrusion 4 indicates a range of 0% or more and 50% or less of the depth of the gap 5 of the protrusion 4.
  • the moth-eye structure and the mesh-like conductive portion (metal fine particles 3) are shown in an enlarged manner.
  • the size of the convex portions 4 and the metal fine particles 3 is extremely small (small compared to the wavelength of visible light) with respect to the area of the transparent conductor 1a.
  • the moth-eye structure or the mesh-like conductive portion (metal fine particles 3) cannot be identified by optical means such as the naked eye or an optical microscope.
  • the shape of the convex portion 4 is not particularly limited as long as the shape becomes narrower toward the tip, and for example, a shape constituted by a columnar lower portion and a hemispherical upper portion (hereinafter also referred to as “bell shape”) or , Cone shape (cone shape, conical shape) and the like. Further, the convex portion 4 may have a shape having a branch protrusion.
  • the branch protrusions are protrusions (branch protrusions 13) as shown in FIG. 1 that are formed at irregular intervals particularly in the process of anodizing and etching to form a moth-eye structure. ).
  • the convex portion 4 becomes thicker downward as shown in FIG. A bell-like shape in which the bottom of the gap 5 is narrow is preferable.
  • the bottom of the gap 5 of the convex portion 4 has an inclined shape, but it may have a horizontal shape without being inclined.
  • the shape of the convex portion 4 is preferably a shape in which the bottom of the gap 5 of the convex portion 4 is wide.
  • the pitch P of the convex portions 4 is not particularly limited as long as it is equal to or less than the wavelength of visible light (780 nm). However, from the viewpoint of sufficiently preventing optical phenomena such as moire, it is preferably 100 nm or more and 400 nm or less. More preferably, it is 100 nm or more and 200 nm or less.
  • the pitch P of the convex part 4 is read from an SEM photograph (planar photograph) using a scanning electron microscope (SEM: Scanning Electron Microscope, trade name: S-4700) manufactured by Hitachi, Ltd. as a measuring instrument. In addition, the average value of the distances between all adjacent convex portions excluding the branch protrusions in the 1 ⁇ m square area is shown.
  • the height of the convex portion 4 is not particularly limited as long as it is set so that the metal fine particles 3 do not come out of the gap 5 of the convex portion 4, and is preferably 50 nm or more. Furthermore, the height of the convex portion 4 is preferably 50 nm or more and 600 nm or less, and more preferably 100 nm or more and 300 nm or less, from the viewpoint of making it compatible with a suitable aspect ratio of the convex portion 4 described later. In the present specification, the height of the convex portion 4 is continuously measured using a SEM (trade name: S-4700) manufactured by Hitachi, Ltd. as a measuring instrument, and read from the SEM photograph (cross-sectional photograph), excluding branch protrusions.
  • SEM trade name: S-4700
  • the average value of the height of ten convex parts arranged side by side is shown. However, when 10 convex portions are selected, the convex portion having a defect or a deformed portion (such as a portion deformed when preparing a sample for SEM photography) is excluded.
  • a sample for SEM photography a sample sampled in an area where there is no specific defect of the antireflection film is used. For example, in the case of a roll-shaped antireflection film produced continuously, it is sampled near the center. Use the same thing.
  • the aspect ratio of the convex part 4 is not particularly limited, it is preferably 1.5 or less from the viewpoint of workability of the moth-eye structure. If the aspect ratio of the convex part 4 is too large (the convex part 4 is long and narrow), sticking occurs or the transfer condition when forming the moth-eye structure is deteriorated (the female mold of the moth-eye structure is clogged or wound) There are concerns. Furthermore, the aspect ratio of the convex portion 4 is preferably 0.8 or more and 1.5 or less from the viewpoint of sufficiently preventing optical phenomena such as moire and realizing good reflectance characteristics. In this specification, the aspect ratio of the convex portion 4 is determined by using a SEM (trade name: S-4700) manufactured by Hitachi, Ltd. as a measuring instrument, and the pitch P of the convex portion 4 measured by the method described above is high. And the ratio (height / pitch P).
  • the arrangement of the protrusions 4 is not particularly limited, and may be arranged randomly or regularly, but from the viewpoint of sufficiently preventing the occurrence of moire, as shown in FIG. It is preferable to arrange
  • the material of the convex portions 4 is preferably a resin.
  • a solvent of the dispersion liquid in which the metal fine particles 3 are dispersed which is applied on the antireflection film 2 when the transparent conductor of Embodiment 1 is manufactured, generally, water, ethanol, alcohol-based, ester-based
  • a hydrophilic resin having good wettability is more preferable as the material of the convex portion 4.
  • a hydrophobic resin is used as the material of the convex portion 4 there is a concern that the dispersion liquid cannot be applied well to the gap 5 of the convex portion 4 together with the lotus effect due to the moth-eye structure.
  • the metal fine particles 3 are preferably selected from a metal group having a low resistivity from the viewpoint of further increasing the conductivity, and examples thereof include gold, silver, copper, platinum, and aluminum. Among them, it is preferable to select and use gold, silver, and copper having a very low resistivity. As the metal fine particles 3, only one kind from these metal groups may be used, or a plurality of kinds may be used in combination. Moreover, you may use the alloy of these metals.
  • the shape of the metal fine particles 3 is not particularly limited, and examples thereof include a spherical shape, a columnar shape (fiber shape), and an elliptical sphere shape. From the viewpoint of efficiently filling the metal fine particles 3, the shape of the metal fine particles 3 is preferably spherical as shown in FIG.
  • the particle size of the metal fine particles 3 is not particularly limited as long as it is equal to or less than the pitch P of the convex portions 4, but is preferably 50 nm or less, and preferably 20 nm or less from the viewpoint of efficiently filling the metal fine particles 3. Is more preferable. From the viewpoint of more efficiently filling the metal fine particles 3, it is preferable to use one having a distribution (distance between the metal fine particles 3) having the same size as the particle diameter.
  • the particle size of the metal fine particles 3 is 20 metals read from SEM photographs (planar photographs and sectional photographs) using an SEM (trade name: S-4700) manufactured by Hitachi, Ltd. as a measuring instrument. The average value of the particle diameter of the fine particles is shown.
  • the particle diameter indicates the maximum length among the lengths of the metal fine particles 3 in all directions.
  • the shape of the metal fine particle 3 is spherical, the length corresponding to the diameter is indicated, and when the shape of the metal fine particle 3 is an elliptical sphere, the diameter of the main axis and the direction perpendicular to the main axis is indicated. The length of the longer one is shown.
  • the metal fine particles 3 should be filled to a range of 50% or less of the depth of the gap 5 of the convex portion 4. It is more preferable that the depth of the gap 5 of the convex portion 4 is filled to a range of 30% or more and 50% or less.
  • the transparent conductor of Embodiment 1 excellent conductivity is exhibited in the network-like conductive portion formed by the metal fine particles 3, excellent transparency is exhibited in a region not filled with the metal fine particles 3, and a moth-eye structure is obtained.
  • the antireflection film 2 can have excellent low reflectivity. Furthermore, the following effects (i) to (v) can also be achieved. (I) Since the metal microparticles 3 are used as those that are conductive, coloring due to interference of reflected light does not occur. (Ii) Since the mesh pitch in the mesh-like conductive portion is nanometer size, moire does not occur even when used in combination with a display device.
  • the transparent conductor 1a is wiped with a cloth
  • the pitch P of the protrusions 4 is 200 nm and the height is 200 nm
  • the minimum value of the fiber diameter of the cloth is 400 nm. It does not enter the gap 5 of the convex part 4 and the metal fine particles 3 are not removed.
  • the influence on the conductive portion can be suppressed.
  • V Since the fine metal particles 3 that are conductive are filled using a moth-eye structure, patterning using a photomask is not necessary, and there is no need to worry about quality degradation due to unevenness that occurs at the boundary of the seam. Also good.
  • the transparent conductor of Embodiment 1 is used as a transparent electrode in the display field, the transparency is excellent (the transmittance is high), and thus power consumption can be reduced.
  • interference fringes between interface reflections and coloring of touch panel electrodes when using an ITO film can be suppressed. Can be realized.
  • an electrode In a touch panel, an electrode may be used by patterning. In such a touch panel, when an ITO film is used as an electrode, the refractive index is as high as about 1.9 to 2.0, and the reflectance is high. The boundary could be seen, making it difficult to see the video.
  • the transparent conductor of Embodiment 1 when used as the electrode of the touch panel, the reflectivity of about 2 to 3% is exhibited in the region where the metal fine particles 3 exist because of the low reflectivity of the moth-eye structure. Since the reflectance of 0.3% or less is shown in the region where the metal fine particles 3 are not present, the boundary between the region where the metal fine particles 3 are present and the region where the metal fine particles 3 are not present is difficult to see.
  • FIG. 3 is a schematic cross-sectional view illustrating the manufacturing process of the transparent conductor according to the first embodiment (steps a to d).
  • (A) Production of antireflection film First, a substrate in which silicon dioxide (SiO 2) as an insulating layer and pure aluminum are sequentially formed on an aluminum base material is produced. At this time, for example, the insulating layer and the pure aluminum layer can be continuously formed by forming the aluminum base material into a roll shape. Next, anodization and etching are alternately repeated on the pure aluminum layer formed on the surface of the substrate to produce a female mold having a moth-eye structure. Then, the female mold is transferred to a photocurable resin by using a photo nanoimprint method, thereby producing an antireflection film 2 having a moth-eye structure as shown in FIG.
  • SiO 2 silicon dioxide
  • a dispersion liquid 7 in which metal fine particles 3 are dispersed in a solvent 6 is applied on the antireflection film 2.
  • a dispersion for example, a dispersion (trade name: nano gold dispersion, nano silver dispersion) manufactured by Wako Pure Chemical Industries, Ltd. can be used.
  • the solvent 6 for example, alcohol solvents such as water, ethanol and methyl alcohol, ester solvents such as ethyl acetate and butyl acetate, and the like can be used.
  • the concentration of the metal fine particles 3 in the dispersion 7 is not particularly limited and can be set as appropriate.
  • the shape of the metal fine particles 3 is not particularly limited, and examples thereof include a spherical shape, a columnar shape (fiber shape), and an elliptical sphere shape. From the viewpoint of efficiently filling the metal fine particles 3, the metal fine particles 3 are preferably spherical.
  • the particle size of the metal fine particles 3 is not particularly limited as long as it is equal to or less than the pitch P of the convex portions 4, but is preferably 50 nm or less, and preferably 20 nm or less from the viewpoint of efficiently filling the metal fine particles 3. Is more preferable. From the viewpoint of more efficiently filling the metal fine particles 3, it is preferable to use one having a distribution (distance between the metal fine particles 3) having the same size as the particle diameter.
  • the coating method of the dispersion liquid 7 is not specifically limited, For example, the method of dripping a predetermined amount on the predetermined area
  • step (2) Drying (step (2)) As shown in FIG. 3C, the applied dispersion liquid 7 is dried by evaporating the solvent 6.
  • the drying method of the dispersion liquid 7 is not specifically limited, For example, the method of leaving in a clean bench etc. are mentioned.
  • the metal fine particles 3 hardly adhere to the side surface of the convex portion 4. This is presumably because it is more energetically advantageous for the metal fine particles 3 to be dispersed in the dispersion liquid 7 than to adhere to the side surfaces of the convex portions 4 and be exposed to the outside air.
  • the metal fine particles 3 aggregate and gather at the bottom of the gap 5 of the convex portion 4.
  • the solvent 6 may be partially evaporated or substantially completely evaporated.
  • the conductivity of the transparent conductor according to the first embodiment is not affected by the degree of drying because the metal fine particles 3 filled using the moth-eye structure are responsible.
  • step (3) Heating (step (3)) The dried dispersion 7 is heated (fired). As a result, as shown in FIG. 3D, the remaining solvent 6 is volatilized, and the metal fine particles 3 are fixed to the bottom surface of the gap 5 of the convex portion 4, thereby completing the transparent conductor 1a.
  • the heating method of the dispersion liquid 7 is not specifically limited, For example, the method etc. which are performed in a general heating furnace are mentioned. Further, before such heating, the processes (b) and (c) may be alternately repeated a plurality of times. Thereby, since the filling amount of the metal fine particles 3 can be increased, the conductivity can be further increased.
  • Example 1 is a case where gold is used as the metal fine particles 3.
  • the manufacturing process of the transparent conductor of Example 1 was as follows.
  • Shape of convex portion 4 Pitch P of bell-shaped convex portion 4: 200 nm Height of convex part 4 (depth of gap 5 of convex part 4): 180 nm Proportion 4 aspect ratio: 0.9 Total thickness of the antireflection film 2 (including the height of the protrusions 4): 6 ⁇ m
  • step (1) A dispersion (trade name: nano gold dispersion) manufactured by Wako Pure Chemical Industries, Ltd. was used as the dispersion 7 and applied to the antireflection film 2.
  • Solvent 6 was water.
  • the concentration of the metal fine particles 3 (gold) was 10 mM, the particle size was 20 nm (average value), and the shape was spherical.
  • the dispersion 7 was applied by a method of dropping 0.5 g on the 30 mm ⁇ (corner) region of the antireflection film 2.
  • step (2) The dispersion 7 was dried by leaving it in a clean bench.
  • step (3) After repeating the processes (b) and (c) three times alternately, the dispersion 7 was heated (baked) at 120 ° C. for 10 minutes. The dispersion 7 was heated using a circulation type clean oven manufactured by Nagano Science. As a result, the transparent conductor of Example 1 was completed. The metal fine particles 3 (gold) were filled to a range of 32% or less of the depth of the gap 5 of the convex portion 4.
  • Example 2 The transparent conductor of Example 2 is the same as the transparent conductor of Example 1 except that silver is used as the metal fine particles 3.
  • the manufacturing process of the transparent conductor of Example 2 is the manufacturing of the transparent conductor of Example 1 except that a dispersion (trade name: nano silver dispersion) manufactured by Wako Pure Chemical Industries, Ltd. was used as the dispersion 7. Similar to the process. Solvent 6 was water.
  • the concentration of the metal fine particles 3 (silver) was 10 mM, the particle size was 20 nm (average value), and the shape was spherical.
  • the metal fine particles 3 (silver) were filled to a range of 33% or less of the depth of the gap 5 of the convex portion 4.
  • the second embodiment relates to a transparent conductor including an antireflection film and metal fine particles.
  • the difference from the first embodiment is that an ionic liquid is included between the metal fine particles. Since the transparent conductor of Embodiment 2 is the same as the transparent conductor of Embodiment 1 except for this configuration, the description of the overlapping points is omitted.
  • FIG. 4 is a schematic cross-sectional view showing the transparent conductor of the second embodiment.
  • the transparent conductor 1 b includes an antireflection film 2, metal fine particles 3, and an ionic liquid 8.
  • the ionic liquid 8 is disposed between the metal fine particles 3.
  • the schematic plan view showing the transparent conductor of Embodiment 2 is the same as FIG. 1 except that the ionic liquid 8 is arranged.
  • the ionic liquid 8 is not particularly limited, and for example, a hydrophilic or hydrophobic material can be used.
  • hydrophilic materials include N, N-diethyl-N-methyl-N- (2-methoxyethyl) ammonium tetrafluoroborate, 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ([EMIM] [CF3SO3 ], 1-butyl-3-methylimidazolium trifluoromethanesulfonate ([BMIM] [CF3SO3]), 1-butyl-3-methylimidazolium chloride ([BMIM] [Cl]) and the like.
  • hydrophilic means that it is soluble in water.
  • hydrophobic material examples include N, N-diethyl-N-methyl-N- (2-methoxyethyl) ammonium bis (trifluoromethanesulfonyl) imide, 1-butyl-3-methylimidazolium hexafluorophosphate ( [BMIM] [PF6]), 1-butyl-3-methylimidazolium bis (trifluoroethanesulfonyl) imide ([BMIM] [NTf2]) and the like.
  • hydrophobic means insoluble in water. Since the ionic liquid 8 has a vapor pressure of almost zero, the ionic liquid 8 will not disappear even if left unattended.
  • the transparent conductor of Embodiment 2 it is obvious that the same effect as that of the transparent conductor of Embodiment 1 can be obtained. Moreover, according to the transparent conductor of Embodiment 2, since the ionic liquid 8 is included between the metal fine particles 3, the contact resistance between the metal fine particles 3 is reduced, and the resistivity of the entire conductive portion is reduced. be able to. As a result, the conductivity of the transparent conductor can be further increased. Furthermore, since the ionic liquid 8 has entered the bottom of the gap 5 of the convex portion 4, the dirt is difficult to enter the bottom, and the dirt can be diffused on the surface of the ionic liquid 8.
  • Example 3 The transparent conductor of Example 3 is the same as the transparent conductor of Example 1 except that the ionic liquid 8 is included between the metal fine particles 3.
  • the manufacturing process of the transparent conductor of Example 3 is the same as that of Example 1 except that the ionic liquid 8 is impregnated in the metal fine particles 3 after the transparent conductor of Example 1 is completed. Similar to the process.
  • a hydrophilic ionic liquid product name: N, N-diethyl-N-methyl-N- (2-methoxyethyl) ammonium tetrafluoroborate
  • Embodiment 3 relates to a transparent conductor comprising an antireflection film and metal fine particles, and the difference from Embodiment 1 is that the ionic liquid is filled up to the upper part of the gap of the convex portion of the antireflection film. . Since the transparent conductor of Embodiment 3 is the same as the transparent conductor of Embodiment 1 except for this configuration, the description of the overlapping points is omitted.
  • FIG. 5 is a schematic cross-sectional view illustrating the transparent conductor according to the third embodiment.
  • the transparent conductor 1 c includes an antireflection film 2, metal fine particles 3, and an ionic liquid 8.
  • the ionic liquid 8 is filled up to the upper part of the gap 5 of the convex part 4.
  • the upper portion of the gap 5 of the convex portion 4 indicates a range that is higher than 50% and less than or equal to 100% of the depth of the gap 5 of the convex portion 4.
  • the schematic plan view showing the transparent conductor of Embodiment 3 is the same as FIG. 1 except that the ionic liquid 8 is arranged.
  • the ionic liquid 8 It does not specifically limit as the ionic liquid 8, The thing similar to Embodiment 2 can be used.
  • the ionic liquid 8 may flow out due to an action such as gravity.
  • the pitch P of the convex portions 4 is preferably set to 100 nm or less, although it depends on the combination of the convex portions 4 and the material of the ionic liquid 8.
  • the transparent conductor of Embodiment 3 it is obvious that the same effect as that of the transparent conductor of Embodiment 1 can be obtained. Moreover, according to the transparent conductor of Embodiment 3, since the ionic liquid 8 is included between the metal fine particles 3, the contact resistance between the metal fine particles 3 is reduced, and the resistivity of the entire conductive portion is reduced. be able to. As a result, the conductivity of the transparent conductor can be further increased. Moreover, since the ionic liquid 8 is a transparent substance, even if the filling amount is increased, a decrease in transparency (transmittance) of the transparent conductor can be suppressed to a minimum.
  • the ionic liquid 8 when the ionic liquid 8 is a hydrophilic material, a transparent conductor excellent in antifouling property against hydrophobic dirt can be realized. Further, when the ionic liquid 8 is a hydrophobic material, a transparent conductor excellent in antifouling property against hydrophilic dirt can be realized.
  • Example 4 The transparent conductor of Example 4 is the same as the transparent conductor of Example 1 except that the ionic liquid 8 is filled up to the upper part of the gap 5 of the convex part 4 of the antireflection film 2.
  • the transparent conductor manufacturing process of Example 4 is the same as that of Example 1 except that after the transparent conductor of Example 1 is completed, the ionic liquid 8 is filled up to the upper part of the gap 5 of the protrusion 4. This is the same as the manufacturing process of the conductor.
  • ionic liquid 8 a hydrophobic ionic liquid (product name: N, N-diethyl-N-methyl-N- (2-methoxyethyl) ammonium bis (trifluoromethanesulfonyl) imide) manufactured by Kanto Chemical Co., Ltd. is used. Using. The ionic liquid 8 was filled to a range of 100% or less of the depth of the gap 5 of the convex portion 4.
  • the fourth embodiment relates to a transparent conductor including an antireflection film and metal fine particles, and the difference from the first embodiment is that the metal fine particles are covered with a metal thin film. Since the transparent conductor of Embodiment 4 is the same as the transparent conductor of Embodiment 1 except for this configuration, the description of the overlapping points is omitted.
  • FIG. 6 is a schematic cross-sectional view showing the transparent conductor of the fourth embodiment.
  • the transparent conductor 1 d includes an antireflection film 2 and metal fine particles 3.
  • the metal fine particles 3 are covered with a metal thin film 9 and are subjected to so-called metal plating.
  • the schematic plan view showing the transparent conductor of Embodiment 4 is the same as FIG. 1 except that the metal thin film 9 is arranged.
  • the metal thin film (metal plating) 9 is not particularly limited as long as it has a lower ionization tendency than the metal fine particles 3.
  • metal fine particles 3 For example, when aluminum, zinc, iron, or nickel is used as the metal fine particles 3, silver or gold can be used as the metal thin film 9. Further, for example, when silver is used as the metal fine particles 3, gold can be used as the metal thin film 9.
  • the transparent conductor of Embodiment 4 it is clear that the same effect as that of the transparent conductor of Embodiment 1 can be obtained. Moreover, according to the transparent conductor of Embodiment 4, since the metal microparticles 3 are covered with the metal thin film 9, the conductivity can be further improved, and the metal microparticles 3 can be more efficiently aggregated and immobilized. . By adopting such a configuration, the conductivity can be increased and the cost can be reduced without using an expensive material such as gold or silver as the metal fine particles 3.
  • the production process of the transparent conductor of Embodiment 4 is carried out after the transparent conductor of Embodiment 1 shown in FIG. 3 except for covering with a metal thin film (metal thin film 9) having a smaller ionization tendency than 3.
  • the method of covering the metal fine particles 3 with the metal thin film 9 is not particularly limited.
  • the metal fine particles 3 are immersed in an electroless plating bath and the metal fine particles 3 are covered with the metal thin film 9 using a substitutional chemical plating method. Methods and the like.
  • the substitution-type chemical plating method the electrons emitted when the metal fine particles 3 are dissolved are received by the metal ions in the electroless plating bath, and are reduced and deposited on the metal. Will cover.
  • the electroless plating it is preferable to use a substitution type chemical plating method which has high material selectivity and can be applied with thin plating.
  • Table 1 shows the evaluation results of the sheet conductor, the transmittance, the reflectance, the reflection color, and the presence or absence of moire for the transparent conductors of Examples 1 to 3.
  • Comparative Example 1 the transparent conductor manufactured by the method described in Example 12 of Patent Document 8 was also evaluated.
  • Comparative Example 2 a configuration was also evaluated in which an ITO film having a thickness of 120 nm was formed on the entire surface of a polyethylene terephthalate (PET) film having a thickness of 80 ⁇ m.
  • PET polyethylene terephthalate
  • the sheet resistance was measured using a resistivity meter (trade name: Loresta GP MCP-T610 type) manufactured by Mitsubishi Chemical Analytech.
  • the transmittance was measured using a luminance meter (trade name: BM-9A) manufactured by Topcon Technohouse.
  • the transmittance indicates a visible light transmittance with respect to incident visible light.
  • the reflectance was measured using a spectrophotometer (trade name: V-560) manufactured by JASCO Corporation. In this specification, the reflectance indicates the visible light reflectance with respect to incident visible light.
  • each of Examples 1 to 3 exhibited a sheet resistance comparable to or lower than that of Comparative Example 2.
  • Example 3 showed a lower sheet resistance than Examples 1 and 2, and was evaluated to be more conductive.
  • Example 1 showed higher transmittance than Examples 2 and 3, and was evaluated as having better transparency.
  • Example 1 showed a lower reflectance than Comparative Examples 1 and 2.
  • Example 2 showed a lower reflectance than Examples 1 and 3, and was evaluated to be more excellent in low reflectivity.
  • the reflectivity of Example 3 is higher than that of Examples 1 and 2, but this is considered to be the effect of the ionic liquid.
  • the fifth embodiment relates to a touch panel including the transparent conductors of the first to fourth embodiments.
  • FIG. 7 is a schematic cross-sectional view illustrating the touch panel according to the fifth embodiment.
  • FIG. 8 is a schematic plan view showing two transparent conductors in FIG.
  • the touch panel 10 has a configuration in which glass substrates 11 a and 11 b arranged to face each other are bonded together with an adhesive 12.
  • the transparent conductor 1a of Embodiment 1 is disposed on the surface of the glass substrates 11a and 11b on the adhesive 12 side.
  • the two transparent conductors 1a are arranged so that the convex portions thereof face each other.
  • the adhesive 12 include an optical transparent pressure-sensitive adhesive sheet (OCA: Optical Clear Adhesive).
  • OCA optical Clear Adhesive
  • the touch panel 10 may have a cover lens via an adhesive on the side opposite to the adhesive 12 side of the glass substrate 11b. Such a touch panel 10 can be used by being disposed on the observation surface side of the liquid crystal display device.
  • positioned at the glass substrate 11a side is also called X electrode
  • positioned at the glass substrate 11b side is also called Y electrode.
  • FIG. 8 is a schematic plan view focusing on the X electrode and the Y electrode in FIG.
  • the X electrode has a conductive portion patterned and arranged in the X direction (lateral direction)
  • the Y electrode has a conductive property patterned and arranged in the Y direction (vertical direction).
  • a change in capacitance between adjacent electrodes is changed to an X-direction electrode array (for example, an X1-row, X2-row, X3-row, X4).
  • the position touched by the finger can be determined by detecting from the column) and the electrode rows in the Y direction (Y1, Y2, Y3, Y4).
  • the pattern of each electrode row has a microscopic shape in which mesh-like conductive portions are arranged in one direction (X direction or Y direction).
  • a method for realizing the X electrode and the Y electrode constituted by such an electrode row for example, a method using a transparent conductor in which mesh-like conductive portions are arranged in rows at intervals, the entire surface, And a method of arranging a plurality of transparent conductors having a mesh-like conductive portion in a line at intervals.
  • a transparent electrode such as ITO is used instead of the transparent conductor 1a (X electrode and Y electrode) in FIG. 7, and is patterned as shown in FIG. Since the refractive index of the ITO film is as high as about 1.9 to 2.0, which is very different from the refractive index of the adhesive (about 1.5), the reflected light at these interfaces becomes strong, and the ITO film pattern can be seen. There was a case.
  • the X electrode and Y electrode light transmission regions regions where no conductive portion is disposed
  • the refractive index of the regions is about 1 A material can be selected such that .5. Therefore, unnecessary reflected light at the interface between the X electrode and the Y electrode and the adhesive 12 is suppressed, and the pattern of the conductive portion becomes difficult to see.
  • the transparent conductor of Embodiment 1 is applied to the touch panel
  • the transparent conductor may further contain an ionic liquid between the metal fine particles.
  • an ionic liquid between the metal fine particles.
  • the contact resistance between the said metal microparticles becomes small, and the resistivity of the said whole electroconductive part can be reduced.
  • the conductivity of the transparent conductor can be further increased.
  • dirt can be diffused on the surface of the ionic liquid due to the effect of the ionic liquid entering the bottom of the gap between the plurality of convex portions.
  • the ionic liquid may be a hydrophilic material.
  • the ionic liquid may be a hydrophobic material.
  • the ionic liquid may be filled up to the top of the gap between the plurality of convex portions.
  • the ionic liquid may be a hydrophilic material. Thereby, while improving the electroconductivity of the said transparent conductor, it can be made excellent in the antifouling property with respect to hydrophobic dirt.
  • the ionic liquid may be a hydrophobic material. Thereby, while improving the electroconductivity of the said transparent conductor, it can be made excellent in the antifouling property with respect to a hydrophilic dirt.
  • the pitch of the plurality of convex portions may be 100 nm or less.
  • the metal fine particles may be covered with a metal thin film having a smaller ionization tendency than the metal fine particles.
  • the metal fine particles may have a particle size of 50 nm or less. Thereby, the metal fine particles are efficiently filled into the bottoms of the gaps between the plurality of convex portions.
  • the aspect ratio of the plurality of convex portions may be 0.8 or more and 1.5 or less.
  • the method for producing the transparent conductor may be such that the step (1) and the step (2) are alternately repeated a plurality of times before the step (3). Thereby, since the filling amount of the metal fine particles can be increased efficiently, the conductivity of the transparent conductor can be further increased.
  • the method for producing the transparent conductor may further include a step (4) of covering the metal fine particles with a metal thin film having a smaller ionization tendency than the metal fine particles after the step (3). .
  • the electroconductivity of the said transparent conductor can be improved more and the said metal fine particle can be more efficiently aggregated and fixed.
  • the conductivity of the transparent conductor can be increased, and the transparent conductor can be efficiently manufactured with reduced costs. Can do.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Non-Insulated Conductors (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

本発明は、導電性、透明性、及び、低反射性に優れ、かつ、モアレ等の発生がない透明導電体、及び、上記透明導電体を備えるタッチパネルを提供する。本発明の透明導電体は、複数の凸部が可視光の波長以下のピッチで、表面に設けられた反射防止フィルムと、上記複数の凸部の上記ピッチ以下の粒径を有し、かつ、上記複数の凸部の間隙の底部に充填された金属微粒子とを備え、上記複数の凸部の間隙に配置された上記金属微粒子は、網目状の導電部を構成するものである。本発明のタッチパネルは、上記透明導電体を備えるものである。

Description

透明導電体、透明導電体の製造方法、及び、タッチパネル
本発明は、透明導電体、透明導電体の製造方法、及び、タッチパネルに関する。より詳しくは、ディスプレイ分野のタッチパネル等で好適に用いられる透明導電体、上記透明導電体の製造方法、及び、上記透明導電体を備えるタッチパネルに関するものである。
透明導電体は、例えば、ディスプレイ分野のタッチパネル等において、主に透明電極として用いられている。一般的な透明導電体としては、インジウムスズ酸化物(ITO:Indium Tin Oxide)等の透明膜が広く用いられている。しかしながら、例えば、ITO膜には、下記(1)~(4)のような問題があった。
(1)ITO膜の膜厚にバラツキがあると、ITO膜の表面及び裏面での反射光が干渉することによって、色付きが発生してしまう。
(2)ITO膜は、屈折率が1.9~2.0程度であり、空気層との間の屈折率差が大きいため反射率が高い。
(3)タッチパネル等において複数のITO膜を用いる場合、その透過率(透明性)が低下してしまう。
(4)ITO膜の主原料であるインジウムが希少な金属であるため、その枯渇が危惧されている。
そこで、ITO膜に代えて、金属微粒子をパターン化して配置した透明導電体や、金属薄膜をパターニングした透明導電体等を利用することが提案されている(例えば、特許文献1~16参照)。このような構成は、透明導電体による導電性に加えて、透明導電体の開口領域による透明性(光透過性)を有する、とされている。
更に、ナノメートルサイズの凹凸構造(ナノ構造)の一種である、モスアイ構造(蛾の目状の構造)を有する反射防止フィルム上に、ITO等の透明膜が形成された構成が提案されている(例えば、特許文献17参照)。このような構成は、ITO膜による導電性に加えて、モスアイ構造による低反射性を有する、とされている。また、透明導電体を形成する目的ではないが、モスアイ構造による低反射性に加えて、防汚性を有する構成(例えば、特許文献18参照)や、撥水性を有する構成(例えば、特許文献19参照)も提案されている。
特開2009-224078号公報 特開昭63-160140号公報 特開平9-55175号公報 特許第4332610号明細書 特許第5332186号明細書 特開2003-46293号公報 特開平11-26980号公報 国際公開第2007/114076号 特許第5082357号明細書 特開2010-93239号公報 特開2008-283100号公報 特開2008-218860号公報 特開2003-109435号公報 特開2010-93040号公報 特開2009-263700号公報 特許第5469849号明細書 特許第4626721号明細書 特開2007-322767号公報 特開2008-122435号公報
しかしながら、従来の透明導電体では、導電性、透明性、及び、低反射性が充分ではなく、更に、モアレ等の発生によって品位が低下してしまうことがあった。
上記特許文献1は、金属微粒子をパターン化して配置した透明導電体を開示している。しかしながら、上記特許文献1に記載の発明では、下記(A)~(D)のような問題があり、改善の余地があった。上記特許文献2~5についても同様であった。
(A)導電部として、マイクロメートルサイズのピッチを有する網目状構造を形成することが限界であり、表示装置と組み合わせて用いる場合は、このような網目状構造と表示素子の画素のパターン(マイクロメートルサイズの格子状構造)とが干渉し、モアレが発生してしまう。
(B)リング状のパターンに金属微粒子が凝集しやすいため、リング状のパターンを連結する部分において、金属微粒子の量が少なくなり、断線が発生しやすくなる。よって、導電部全体の抵抗率が高くなり、導電性が低下してしまう。
(C)導電部が基板上で凸部となっているため、外力によって取れやすく、耐久性が低い。
(D)透明基板上に網目状の導電部が形成された構成であるため、低反射性を有しない。
上記特許文献6は、透明基板上の金属薄膜をパターニングして導電部を形成する方法を開示している。しかしながら、上記特許文献6に記載の発明では、下記(E)~(H)のような問題があり、改善の余地があった。上記特許文献7についても同様であった。
(E)導電部のパターンのピッチがマイクロメートルサイズであるため、表示装置と組み合わせて用いる場合は、このような導電部のパターンと表示素子の画素のパターン(マイクロメートルサイズの格子状構造)とが干渉し、モアレが発生してしまう。
(F)パターニングする際に、所定の大きさのフォトマスクを繋ぎ合わせて用いるため、その継ぎ目の境界がムラとして見えやすくなり、品位が低下してしまう。
(G)導電部が透明基板上で凸部となっているため、外力によって取れやすく、耐久性が低い。
(H)透明基板上で金属薄膜がパターニングされた構成であるため、低反射性を有しない。
上記特許文献8は、金属微粒子をパターン化して配置した透明導電体を開示している。しかしながら、上記特許文献8に記載の発明では、下記(I)~(K)のような問題があり、改善の余地があった。上記特許文献9~16についても同様であった。
(I)基板上での相分離を利用して導電部を形成するため、基板の表面状態を均一に保つ必要があり、工程管理が難しい。基板の表面状態が、汚れ、傷、異物等によって変化すると、金属微粒子の分布が不均一となり、網目のピッチ(マイクロメートルサイズ)が部分的に大きくなるため、ざらつきとして視認されてしまう。
(J)導電部が基板上で凸部となっているため、外力によって取れやすく、耐久性が低い。また、金属微粒子、バインダー、及び、溶媒を混合した溶液を基板に塗布し、乾燥工程で相分離させて導電部を形成する方法では、金属微粒子がわずかな量のバインダーによって基板に密着されているだけであるため、外力に弱い。
(K)基板上に網目状の導電部が形成された構成であるため、低反射性を有しない。
上記特許文献17は、モスアイ構造を有する反射防止フィルム上に、ITO等の透明膜が形成された透明導電体を開示している。しかしながら、上記特許文献17に記載の発明では、ITO等の透明膜を用いているため、上記(1)~(4)で既に説明した問題があり、改善の余地があった。
上記特許文献18は、モスアイ構造を構成する凸部の間隙に、所定の屈折率を有するナノ粒子が充填された構成を開示している。しかしながら、上記特許文献18に記載の発明は、透明導電体を形成するためのものではなく、更に、下記(L)及び(M)のような問題があり、改善の余地があった。
(L)モスアイ構造を構成する凸部の間隙の屈折率が、空気に対して大きくなるため、反射率が大きくなってしまう。
(M)ナノ粒子はシリカ等の透明粒子であり、金属微粒子ではないため、導電性が充分ではない。
上記特許文献19に記載の発明も、透明導電体を形成するためのものではなく、導電性が充分ではなかった。
本発明は、上記現状に鑑みてなされたものであり、導電性、透明性、及び、低反射性に優れ、かつ、モアレ等の発生がない透明導電体と、上記透明導電体の製造方法と、上記透明導電体を備えるタッチパネルとを提供することを目的とするものである。
本発明者らは、導電性、透明性、及び、低反射性に優れ、かつ、モアレ等の発生がない透明導電体について種々検討したところ、モスアイ構造を有する反射防止フィルムと金属微粒子とを組み合わせた構成とすることに着目した。そして、モスアイ構造を構成する凸部の間隙の底部に金属微粒子を充填し、網目状の導電部を構成することを見出した。これにより、金属微粒子が構成する網目状の導電部で優れた導電性を示し、金属微粒子が充填されていない領域で優れた透明性(光透過性)を示し、モスアイ構造を有する反射防止フィルムで優れた低反射性を示すことができることを見出した。更に、このような構成とすることで、モアレ等の発生による品位低下を防止することができることを見出した。これにより、上記課題をみごとに解決することができることに想到し、本発明に到達したものである。
すなわち、本発明の一態様は、複数の凸部が可視光の波長以下のピッチで、表面に設けられた反射防止フィルムと、上記複数の凸部の上記ピッチ以下の粒径を有し、かつ、上記複数の凸部の間隙の底部に充填された金属微粒子とを備え、上記複数の凸部の間隙に配置された上記金属微粒子は、網目状の導電部を構成するものである透明導電体であってもよい。
本発明の別の一態様は、上記透明導電体の製造方法であって、溶媒中に上記金属微粒子が分散された分散液を、上記反射防止フィルム上に塗布する工程(1)、塗布された上記分散液に対して上記溶媒を蒸発させる乾燥を行う工程(2)、及び、乾燥された上記分散液に対して加熱を行う工程(3)を含む透明導電体の製造方法であってもよい。
本発明の更に別の一態様は、上記透明導電体を備えるタッチパネルであってもよい。
本発明によれば、導電性、透明性、及び、低反射性に優れ、かつ、モアレ等の発生がない透明導電体と、上記透明導電体の製造方法と、上記透明導電体を備えるタッチパネルとを提供することができる。
実施形態1の透明導電体を示す平面模式図である。 図1中の線分A-A’に対応する部分の断面を示す断面模式図である。 実施形態1の透明導電体の製造プロセスを説明する断面模式図である(工程a~d)。 実施形態2の透明導電体を示す断面模式図である。 実施形態3の透明導電体を示す断面模式図である。 実施形態4の透明導電体を示す断面模式図である。 実施形態5のタッチパネルを示す断面模式図である。 図7中の2つの透明導電体を示す平面模式図である。
以下に実施形態(実施例)を掲げ、本発明について図面を参照して更に詳細に説明するが、本発明はこれらの実施形態(実施例)のみに限定されるものではない。また、各実施形態(各実施例)の構成は、本発明の要旨を逸脱しない範囲において適宜組み合わされてもよいし、変更されてもよい。
[実施形態1]
実施形態1は、反射防止フィルムと、金属微粒子とを備える透明導電体に関する。
(1)透明導電体の構造
実施形態1の透明導電体の構造について、図1及び図2を参照して説明する。図1は、実施形態1の透明導電体を示す平面模式図である。図2は、図1中の線分A-A’に対応する部分の断面を示す断面模式図である。図1及び図2に示すように、透明導電体1aは、反射防止フィルム2、及び、金属微粒子3を備えている。反射防止フィルム2は、複数の凸部(突起)4が可視光の波長以下のピッチ(隣接する凸部4の頂点間の距離)Pで、表面に設けられた反射防止フィルム、すなわち、モスアイ構造(蛾の目状の構造)を有する反射防止フィルムに相当する。金属微粒子3は、モスアイ構造を構成する凸部4のピッチP以下の粒径を有し、かつ、凸部4の間隙5の底部に充填されており、網目状の導電部を構成している。本明細書中、凸部4の間隙5の底部は、凸部4の間隙5の深さの0%以上、50%以下の範囲を示す。なお、図1及び図2では、モスアイ構造や網目状の導電部(金属微粒子3)を拡大して明示している。実際の透明導電体1aでは、透明導電体1aの面積に対して、凸部4、及び、金属微粒子3の大きさが極めて小さい(可視光の波長に比べて小さい)ため、図1及び図2に示したように、モスアイ構造や網目状の導電部(金属微粒子3)を肉眼や光学顕微鏡等の光学的手段で識別することはできない。
凸部4の形状は、先端に向かって細くなる形状であれば特に限定されず、例えば、柱状の下部と半球状の上部とによって構成される形状(以下、「釣鐘状」とも言う。)や、錐体状(コーン状、円錐状)等が挙げられる。また、凸部4は、枝突起を有する形状であってもよい。枝突起とは、モスアイ構造を形成するための陽極酸化及びエッチングを行う過程で、他の部分よりも特に不規則な間隔で形成されてしまった、図1に示すような凸部(枝突起13)を示す。金属微粒子3が充填されていない領域をより広くし、透明性をより高める観点からは、凸部4の形状として、図2に示すような、凸部4が下方に向かって太くなり、凸部4の間隙5の底部が狭い釣鐘状が好ましい。図2中、凸部4の間隙5の底辺は傾斜した形状となっているが、傾斜せずに水平な形状であってもよい。また、金属微粒子3が充填される領域をより広くし、導電性をより高める観点からは、凸部4の形状として、凸部4の間隙5の底部が広い形状が好ましい。
凸部4のピッチPとしては、可視光の波長(780nm)以下であれば特に限定されないが、モアレ等の光学現象を充分に防止する観点からは、100nm以上、400nm以下であることが好ましく、100nm以上、200nm以下であることがより好ましい。本明細書中、凸部4のピッチPは、測定機として日立製作所社製の走査型電子顕微鏡(SEM:Scanning Electron Microscope、商品名:S-4700)を用い、SEM写真(平面写真)から読み取った、1μm□(角)の領域内における、枝突起を除くすべての隣接する凸部間の距離の平均値を示す。
凸部4の高さは、金属微粒子3が凸部4の間隙5の外に出ないように設定されれば特に限定されず、50nm以上であることが好ましい。更に、凸部4の高さとしては、後述する凸部4の好適なアスペクト比と両立させる観点から、50nm以上、600nm以下であることが好ましく、100nm以上、300nm以下であることがより好ましい。本明細書中、凸部4の高さは、測定機として日立製作所社製のSEM(商品名:S-4700)を用い、SEM写真(断面写真)から読み取った、枝突起を除く連続して並んだ10個の凸部の高さの平均値を示す。ただし、10個の凸部を選択する際は、欠損や変形した部分(SEM写真用の試料を準備する際に変形させてしまった部分等)がある凸部を除くものとする。SEM写真用の試料としては、反射防止フィルムの特異的な欠陥がない領域でサンプリングされたものが用いられ、例えば、連続的に製造されるロール状の反射防止フィルムでは、その中央付近でサンプリングされたものを用いる。
凸部4のアスペクト比は特に限定されないが、モスアイ構造の加工性の観点からは、1.5以下であることが好ましい。凸部4のアスペクト比が大き過ぎる(凸部4が細長い)と、スティッキングが発生したり、モスアイ構造を形成する際の転写具合が悪化したりする(モスアイ構造の雌型が詰まったり、巻き付いてしまう、等)懸念がある。更に、凸部4のアスペクト比としては、モアレ等の光学現象を充分に防止し、良好な反射率特性を実現する観点からは、0.8以上、1.5以下であることが好ましい。本明細書中、凸部4のアスペクト比は、測定機として日立製作所社製のSEM(商品名:S-4700)を用い、上述したような方法で測定された凸部4のピッチPと高さとの比(高さ/ピッチP)で示す。
凸部4の配置は特に限定されず、ランダムに配置されていても、規則的に配置されていてもよいが、モアレの発生を充分に防止する観点からは、図1に示すように、ランダムに配置されていることが好ましい。
以上のような凸部4を形成する観点から、凸部4の材質としては、樹脂が好ましい。また、実施形態1の透明導電体を製造する際に反射防止フィルム2上に塗布する、金属微粒子3が分散された分散液の溶媒としては、一般的に、水、エタノール、アルコール系、エステル系等の極性溶媒が用いられるため、凸部4の材質としては、濡れ性が良好な親水性の樹脂がより好ましい。凸部4の材質として疎水性の樹脂を用いる場合、モスアイ構造によるロータス効果も合わさって、凸部4の間隙5に分散液を上手く塗布することができない懸念がある。
金属微粒子3としては、導電性をより高める観点からは、低抵抗率を有する金属群の中から適宜選択することが好ましく、例えば、金、銀、銅、白金、アルミニウム等が挙げられる。中でも、抵抗率が非常に低い、金、銀、及び、銅の中から選択して用いることが好ましい。金属微粒子3としては、これらの金属群の中から1種類のみを用いてもよいし、複数種類を組み合わせて用いてもよい。また、これらの金属の合金を用いてもよい。
金属微粒子3の形状は特に限定されず、例えば、球状、柱状(ファイバー状)、楕円球体状等が挙げられる。金属微粒子3が効率的に充填される観点からは、金属微粒子3の形状として、図2に示すような球状であることが好ましい。
金属微粒子3の粒径は、凸部4のピッチP以下であれば特に限定されないが、金属微粒子3が効率的に充填される観点からは、50nm以下であることが好ましく、20nm以下であることがより好ましい。また、金属微粒子3がより効率的に充填される観点からは、粒径と同じ大きさの分布(金属微粒子3間の距離)を有するものを用いることが好ましい。本明細書中、金属微粒子3の粒径は、測定機として日立製作所社製のSEM(商品名:S-4700)を用い、SEM写真(平面写真及び断面写真)から読み取った、20個の金属微粒子の粒径の平均値を示す。ただし、20個の金属微粒子を選択する際は、欠損や変形した部分がある金属微粒子を除くものとする。本明細書中、粒径とは、金属微粒子3の全方向の長さの中で最大の長さを示す。例えば、金属微粒子3の形状が球状である場合は、その直径に相当する長さを示し、金属微粒子3の形状が楕円球体状である場合は、主軸、及び、主軸に垂直な方向の直径のうちでより長い方の長さを示す。導電性を充分に高め、透明性(透過率)の低下を充分に抑制する観点からは、金属微粒子3は、凸部4の間隙5の深さの50%以下の範囲まで充填されていることが好ましく、凸部4の間隙5の深さの30%以上、50%以下の範囲まで充填されていることがより好ましい。
実施形態1の透明導電体によれば、金属微粒子3が構成する網目状の導電部で優れた導電性を示し、金属微粒子3が充填されていない領域で優れた透明性を示し、モスアイ構造を有する反射防止フィルム2で優れた低反射性を示すことができる。更に、下記(i)~(v)のような効果も奏することができる。
(i)導電性を担うものとして金属微粒子3を利用するため、反射光が干渉することによる色付きが発生しない。
(ii)網目状の導電部における網目のピッチがナノメートルサイズであるため、表示装置と組み合わせて用いる場合であっても、モアレが発生しない。
(iii)凸部4の間隙5の深さが略一定であり、金属微粒子3の充填量が場所によらず均一化されているため、断線が発生しにくい。また、網目のピッチがナノメートルサイズと小さく、網目の数も多いため、一部で断線が発生した場合であっても、代替部分が多く存在し、面抵抗が低下しにくい構造になっている。
(iv)金属微粒子3が凸部4の間隙5の底部に存在しているため、導電部の耐久性が高い。例えば、透明導電体1aをクロスで拭くことを想定すると、凸部4のピッチPが200nmで、高さが200nmである場合、クロスの繊維径の最小値が400nmであるため、クロスの繊維が凸部4の間隙5に入り込まず、金属微粒子3は除去されない。また、透明導電体1aに外力を加える場合、その外力は主に反射防止フィルム2に加わるため、導電部への影響を抑制することができる。
(v)導電性を担う金属微粒子3が、モスアイ構造を利用して充填されるため、フォトマスクを用いたパターニングが不要であり、その継ぎ目の境界で発生するムラによる品位低下を心配しなくてもよい。
実施形態1の透明導電体を、ディスプレイ分野の透明電極として用いれば、透明性が優れている(透過率が高い)ため、消費電力を低減することができる。また、例えば、静電容量方式のタッチパネルに適用すれば、界面反射間での干渉縞の発生や、タッチパネルの電極(ITO膜を用いた場合)の色付きを抑制することができ、高品位なタッチパネルを実現することができる。タッチパネルにおいては、電極がパターニングして用いられる場合があった。このようなタッチパネルにおいて、電極としてITO膜を用いた場合は、その屈折率が1.9~2.0程度と高く、反射率が高くなるため、ITO膜が存在する領域と存在しない領域との境界が見えてしまい、映像が見えにくくなることがあった。これに対して、実施形態1の透明導電体をタッチパネルの電極として用いた場合は、モスアイ構造の低反射性のために、金属微粒子3が存在する領域で2~3%程度の反射率を示し、金属微粒子3が存在しない領域で0.3%以下の反射率を示すため、金属微粒子3が存在する領域と存在しない領域との境界が見えにくくなる。
(2)透明導電体の製造プロセス
実施形態1の透明導電体の製造プロセスについて、図3を参照して例示する。図3は、実施形態1の透明導電体の製造プロセスを説明する断面模式図である(工程a~d)。
(a)反射防止フィルムの作製
まず、アルミニウム製の基材上に、絶縁層としての二酸化ケイ素(SiO2)、及び、純アルミニウムを順に成膜した基板を作製する。この際、例えば、アルミニウム製の基材をロール状にすることで、絶縁層、及び、純アルミニウムの層を連続的に形成することができる。次に、この基板の表面に形成された純アルミニウムの層に対して、陽極酸化及びエッチングを交互に繰り返し、モスアイ構造の雌型を作製する。そして、光ナノインプリント法を用いて、この雌型を光硬化性樹脂に転写することによって、図3の(a)に示すような、モスアイ構造を有する反射防止フィルム2を作製する。
(b)分散液の塗布(工程(1))
図3の(b)に示すように、溶媒6中に金属微粒子3が分散された分散液7を、反射防止フィルム2上に塗布する。分散液7としては、例えば、和光純薬工業社製の分散液(商品名:ナノ金分散液、ナノ銀分散液)等を用いることができる。溶媒6としては、例えば、水、エタノール、メチルアルコール等のアルコール系の溶媒、酢酸エチル、酢酸ブチル等のエステル系の溶媒等を用いることができる。分散液7中の金属微粒子3の濃度は特に限定されず、適宜設定することができる。金属微粒子3の形状は特に限定されず、例えば、球状、柱状(ファイバー状)、楕円球体状等が挙げられる。金属微粒子3が効率的に充填される観点からは、金属微粒子3の形状として、球状であることが好ましい。金属微粒子3の粒径は、凸部4のピッチP以下であれば特に限定されないが、金属微粒子3が効率的に充填される観点からは、50nm以下であることが好ましく、20nm以下であることがより好ましい。また、金属微粒子3がより効率的に充填される観点からは、粒径と同じ大きさの分布(金属微粒子3間の距離)を有するものを用いることが好ましい。分散液7の塗布方法は特に限定されず、例えば、反射防止フィルム2の所定の領域上に、所定量を滴下する方法等が挙げられる。分散液7の塗布領域や塗布量は、反射防止フィルム2の仕様(凸部4の形状、凸部4の間隙5の深さ等)に合わせて適宜調整すればよい。
(c)乾燥(工程(2))
図3の(c)に示すように、塗布された分散液7に対して、溶媒6を蒸発させる乾燥を行う。分散液7の乾燥方法は特に限定されず、例えば、クリーンベンチ内で放置する方法等が挙げられる。溶媒6が蒸発する過程において、金属微粒子3は、凸部4の側面にほとんど付着しない。これは、金属微粒子3が、凸部4の側面に付着して外気に曝されるよりも、分散液7中で分散している方が、エネルギー的に有利であるためと考えられる。その結果、金属微粒子3は、凸部4の間隙5の底部に凝集して集まる。このような乾燥を行うことによって、溶媒6は部分的に蒸発してもよいし、実質的に完全に蒸発してもよい。また、実施形態1の透明導電体の導電性は、モスアイ構造を利用して充填された金属微粒子3が担うため、乾燥の具合によって影響を受けることはない。
(d)加熱(工程(3))
乾燥された分散液7に対して加熱(焼成)を行う。その結果、図3の(d)に示すように、残存した溶媒6が揮発し、金属微粒子3が凸部4の間隙5の底面に固着して、透明導電体1aが完成する。分散液7の加熱方法は特に限定されず、例えば、一般的な加熱炉内で行う方法等が挙げられる。また、このような加熱を行う前に、上記(b)及び(c)のプロセスを交互に複数回繰り返してもよい。これにより、金属微粒子3の充填量を増やすことができるため、導電性をより高めることができる。
以下に、実施形態1の透明導電体を実際に作製した実施例を示す。
(実施例1)
実施例1は、金属微粒子3として金を用いた場合である。実施例1の透明導電体の製造プロセスは、以下のようにした。
(a)反射防止フィルムの作製
まず、アルミニウム製の基材上に、絶縁層としての二酸化ケイ素(SiO2)、及び、純アルミニウムを順に成膜した基板を作製した。次に、この基板の表面に形成された純アルミニウムの層に対して、陽極酸化及びエッチングを交互に繰り返し、モスアイ構造の雌型を作製した。そして、光ナノインプリント法を用いて、この雌型を光硬化性樹脂に転写することによって、モスアイ構造を有する反射防止フィルム2を作製した。反射防止フィルム2の仕様は、以下の通りであった。
凸部4の形状:釣鐘状
凸部4のピッチP:200nm
凸部4の高さ(凸部4の間隙5の深さ):180nm
凸部4のアスペクト比:0.9
反射防止フィルム2の総厚(凸部4の高さを含む):6μm
(b)分散液の塗布(工程(1))
分散液7として、和光純薬工業社製の分散液(商品名:ナノ金分散液)を用い、反射防止フィルム2上に塗布した。溶媒6は水であった。金属微粒子3(金)の濃度は10mM、粒径は20nm(平均値)、形状は球状であった。分散液7の塗布は、反射防止フィルム2の30mm□(角)の領域上に、0.5g滴下する方法で行った。
(c)乾燥(工程(2))
分散液7の乾燥は、クリーンベンチ内で放置する方法で行った。
(d)加熱(工程(3))
上記(b)及び(c)のプロセスを交互に3回繰り返した後、分散液7に対して、120℃で10分間加熱(焼成)を行った。分散液7の加熱は、ナガノサイエンス社製の循環式クリーンオーブンを用いて行った。その結果、実施例1の透明導電体が完成した。金属微粒子3(金)は、凸部4の間隙5の深さの32%以下の範囲まで充填された。
(実施例2)
実施例2の透明導電体は、金属微粒子3として銀を用いたこと以外、実施例1の透明導電体と同様である。実施例2の透明導電体の製造プロセスは、分散液7として、和光純薬工業社製の分散液(商品名:ナノ銀分散液)を用いたこと以外、実施例1の透明導電体の製造プロセスと同様である。溶媒6は水であった。金属微粒子3(銀)の濃度は10mM、粒径は20nm(平均値)、形状は球状であった。金属微粒子3(銀)は、凸部4の間隙5の深さの33%以下の範囲まで充填された。
[実施形態2]
実施形態2は、反射防止フィルムと、金属微粒子とを備える透明導電体に関し、実施形態1との違いは、金属微粒子間にイオン性液体を含むことである。実施形態2の透明導電体は、この構成以外、実施形態1の透明導電体と同様であるため、重複する点については説明を省略する。
(1)透明導電体の構造
実施形態2の透明導電体の構造について、図4を参照して説明する。図4は、実施形態2の透明導電体を示す断面模式図である。図4に示すように、透明導電体1bは、反射防止フィルム2、金属微粒子3、及び、イオン性液体8を備えている。イオン性液体8は、金属微粒子3の間に配置されている。実施形態2の透明導電体を示す平面模式図は、イオン性液体8が配置されていること以外、図1と同様である。
イオン性液体8としては特に限定されず、例えば、親水性、又は、疎水性の材料等を用いることができる。親水性の材料としては、例えば、N、N-ジエチル-N-メチル-N-(2-メトキシエチル)アンモニウムテトラフルオロボレート、1-エチル-3-メチルイミダゾリウムトリフルオロメタンスルホネート([EMIM][CF3SO3])、1-ブチル-3-メチルイミダゾリウムトリフルオロメタンスルホネート([BMIM][CF3SO3])、1-ブチル-3-メチルイミダゾリウムクロリド([BMIM][Cl])等が挙げられる。これらの化合物は、和光純薬工業社、関東化学社、シグマアルドリッチ社等のメーカーで幅広く製造されている。本明細書中、親水性とは、水に可溶であることを示す。疎水性の材料としては、例えば、N、N-ジエチル-N-メチル-N-(2-メトキシエチル)アンモニウムビス(トリフルオロメタンスルホニル)イミド、1-ブチル-3-メチルイミダゾリウムヘキサフルオロホスファート([BMIM][PF6])、1-ブチル-3-メチルイミダゾリウムビス(トリフルオロエタンスルホニル)イミド([BMIM][NTf2])等が挙げられる。これらの化合物は、和光純薬工業社、関東化学社、シグマアルドリッチ社等のメーカーで幅広く製造されている。本明細書中、疎水性とは、水に不溶であることを示す。イオン性液体8は、蒸気圧がほぼ0であるため、放置しても無くなることはない。
実施形態2の透明導電体によれば、実施形態1の透明導電体と同様の効果を奏することができることは明らかである。また、実施形態2の透明導電体によれば、金属微粒子3の間にイオン性液体8を含んでいるため、金属微粒子3の間の接触抵抗が小さくなり、導電部全体の抵抗率を低下させることができる。その結果、透明導電体の導電性をより高めることができる。更に、イオン性液体8が凸部4の間隙5の底部まで入り込んでいるため、汚れが底部まで入りにくく、イオン性液体8の表面で汚れを拡散することができる。
(2)透明導電体の製造プロセス
実施形態2の透明導電体の製造プロセスは、図3の(d)で示された実施形態1の透明導電体が完成した後に、イオン性液体8を金属微粒子3に含浸させたこと以外、実施形態1の透明導電体の製造プロセスと同様である。
以下に、実施形態2の透明導電体を実際に作製した実施例を示す。
(実施例3)
実施例3の透明導電体は、金属微粒子3間にイオン性液体8を含むこと以外、実施例1の透明導電体と同様である。また、実施例3の透明導電体の製造プロセスは、実施例1の透明導電体が完成した後に、イオン性液体8を金属微粒子3に含浸させたこと以外、実施例1の透明導電体の製造プロセスと同様である。イオン性液体8としては、関東化学社製の親水性のイオン性液体(製品名:N、N-ジエチル-N-メチル-N-(2-メトキシエチル)アンモニウムテトラフルオロボレート)を用いた。
[実施形態3]
実施形態3は、反射防止フィルムと、金属微粒子とを備える透明導電体に関し、実施形態1との違いは、反射防止フィルムの凸部の間隙の上部までイオン性液体が充填されていることである。実施形態3の透明導電体は、この構成以外、実施形態1の透明導電体と同様であるため、重複する点については説明を省略する。
(1)透明導電体の構造
実施形態3の透明導電体の構造について、図5を参照して説明する。図5は、実施形態3の透明導電体を示す断面模式図である。図5に示すように、透明導電体1cは、反射防止フィルム2、金属微粒子3、及び、イオン性液体8を備えている。イオン性液体8は、凸部4の間隙5の上部まで充填されている。本明細書中、凸部4の間隙5の上部は、凸部4の間隙5の深さの50%より高く、100%以下の範囲を示す。実施形態3の透明導電体を示す平面模式図は、イオン性液体8が配置されていること以外、図1と同様である。
イオン性液体8としては特に限定されず、実施形態2と同様のものを用いることができる。実施形態3の透明導電体においては、イオン性液体8の充填量が多いため、重力等の作用によって、イオン性液体8が流れ出す可能性がある。イオン性液体8が流れ出ることを防止するためには、凸部4やイオン性液体8の材料の組み合わせにより異なるが、凸部4のピッチPを100nm以下に設定することが好ましい。
実施形態3の透明導電体によれば、実施形態1の透明導電体と同様の効果を奏することができることは明らかである。また、実施形態3の透明導電体によれば、金属微粒子3の間にイオン性液体8を含んでいるため、金属微粒子3の間の接触抵抗が小さくなり、導電部全体の抵抗率を低下させることができる。その結果、透明導電体の導電性をより高めることができる。また、イオン性液体8は透明な物質であるため、その充填量を増加させても、透明導電体の透明性(透過率)の低下を最小限に抑制することができる。更に、イオン性液体8が親水性の材料である場合は、疎水性の汚れに対する防汚性に優れた透明導電体を実現することができる。また、イオン性液体8が疎水性の材料である場合は、親水性の汚れに対する防汚性に優れた透明導電体を実現することができる。
(2)透明導電体の製造プロセス
実施形態3の透明導電体の製造プロセスは、図3の(d)で示された実施形態1の透明導電体が完成した後に、イオン性液体8を凸部4の間隙5の上部まで充填したこと以外、実施形態1の透明導電体の製造プロセスと同様である。
以下に、実施形態3の透明導電体を実際に作製した実施例を示す。
(実施例4)
実施例4の透明導電体は、反射防止フィルム2の凸部4の間隙5の上部までイオン性液体8が充填されていること以外、実施例1の透明導電体と同様である。また、実施例4の透明導電体の製造プロセスは、実施例1の透明導電体が完成した後に、イオン性液体8を凸部4の間隙5の上部まで充填したこと以外、実施例1の透明導電体の製造プロセスと同様である。イオン性液体8としては、関東化学社製の疎水性のイオン性液体(製品名:N、N-ジエチル-N-メチル-N-(2-メトキシエチル)アンモニウムビス(トリフルオロメタンスルホニル)イミド)を用いた。イオン性液体8は、凸部4の間隙5の深さの100%以下の範囲まで充填された。
[実施形態4]
実施形態4は、反射防止フィルムと、金属微粒子とを備える透明導電体に関し、実施形態1との違いは、金属微粒子が金属の薄膜で覆われていることである。実施形態4の透明導電体は、この構成以外、実施形態1の透明導電体と同様であるため、重複する点については説明を省略する。
(1)透明導電体の構造
実施形態4の透明導電体の構造について、図6を参照して説明する。図6は、実施形態4の透明導電体を示す断面模式図である。図6に示すように、透明導電体1dは、反射防止フィルム2、及び、金属微粒子3を備えている。金属微粒子3は、金属薄膜9で覆われており、いわゆる金属メッキが施されている。実施形態4の透明導電体を示す平面模式図は、金属薄膜9が配置されていること以外、図1と同様である。
金属薄膜(金属メッキ)9は、金属微粒子3よりもイオン化傾向が小さい金属であれば特に限定されない。例えば、金属微粒子3としてアルミニウム、亜鉛、鉄、又は、ニッケルを用いた場合は、金属薄膜9として銀、又は、金を用いることができる。また、例えば、金属微粒子3として銀を用いた場合は、金属薄膜9として金を用いることができる。
実施形態4の透明導電体によれば、実施形態1の透明導電体と同様の効果を奏することができることは明らかである。また、実施形態4の透明導電体によれば、金属微粒子3が金属薄膜9で覆われているため、導電性をより高め、金属微粒子3をより効率的に凝集させて固定化することができる。このような構成とすることによって、金属微粒子3として金、銀等の高価な材料を用いなくても、導電性を高めることができ、コストを削減することができる。
(2)透明導電体の製造プロセス
実施形態4の透明導電体の製造プロセスは、図3の(d)で示された実施形態1の透明導電体が完成した後に、金属微粒子3を、金属微粒子3よりもイオン化傾向が小さい金属の薄膜(金属薄膜9)で覆うこと以外、実施形態1の透明導電体の製造プロセスと同様である。金属微粒子3を金属薄膜9で覆う方法としては特に限定されず、例えば、金属微粒子3を無電解メッキ浴に浸漬し、置換型の化学メッキ方法を用いて、金属微粒子3を金属薄膜9で覆う方法等が挙げられる。置換型の化学メッキ方法によれば、金属微粒子3が溶解する際に放出する電子を、無電解メッキ浴中の金属イオンが受け取ることで、金属に還元して析出し、金属微粒子3の表面を覆うことになる。無電解メッキとしては、材料の選択性が大きく、薄いメッキを施すことが可能な置換型の化学メッキ方法を用いることが好ましい。
(評価結果)
実施例1~3の透明導電体について、シート抵抗、透過率、反射率、反射色、及び、モアレの有無の評価結果を表1に示す。なお、比較例1として、上記特許文献8の実施例12に記載の方法で製造した透明導電体についても評価を行った。また、比較例2として、厚みが80μmのポリエチレンテレフタレート(PET)フィルム上に、厚みが120nmのITO膜を全面に成膜した構成についても評価を行った。
シート抵抗の測定は、三菱化学アナリテック社製の抵抗率計(商品名:ロレスタGP MCP-T610型)を用いて行った。
透過率の測定は、トプコンテクノハウス社製の輝度計(商品名:BM-9A)を用いて行った。本明細書中、透過率は、入射する可視光に対する可視光透過率を示す。
反射率の測定は、日本分光社製の分光光度計(商品名:V-560)を用いて行った。本明細書中、反射率は、入射する可視光に対する可視光反射率を示す。
反射色の評価方法としては、観察者(3名)に、各例のサンプルで蛍光灯の光を反射させた状態を観察してもらい、どのような色に見えるかを評価してもらった。
モアレの評価方法としては、観察者(3名)に、各例のサンプルをシャープ社製の60型の液晶表示装置(商品名:アクオスLX9 FHD)の前面に配置し、かつ、液晶表示装置に全面が緑色の画面を表示させた状態を観察してもらい、モアレが見えるかどうかを評価してもらった。
Figure JPOXMLDOC01-appb-T000001
表1に示すように、実施例1~3はいずれも、比較例2と同程度か、それ以下のシート抵抗を示した。特に、実施例3は、実施例1、2よりも低いシート抵抗を示し、導電性がより優れていると評価された。
表1に示すように、実施例1~3はいずれも、比較例2よりも高い透過率を示した。特に、実施例1は、実施例2、3よりも高い透過率を示し、透明性がより優れていると評価された。
表1に示すように、実施例1~3はいずれも、比較例1、2よりも低い反射率を示した。特に、実施例2は、実施例1、3よりも低い反射率を示し、低反射性がより優れていると評価された。実施例3については、実施例1、2と比べて反射率が高いが、これは、イオン性液体による影響であると考えられる。
表1に示すように、実施例1~3はいずれも、反射色に色付きがない(無彩色:ニュートラル)と評価された。また、実施例1~3はいずれも、モアレが観察されなかった。
[実施形態5]
実施形態5は、実施形態1~4の透明導電体を備えるタッチパネルに関する。以下では、実施形態1の透明導電体を投影型の静電容量方式のタッチパネルに適用する場合について、図7及び図8を参照して説明する。図7は、実施形態5のタッチパネルを示す断面模式図である。図8は、図7中の2つの透明導電体を示す平面模式図である。図7に示すように、タッチパネル10は、対向して配置されたガラス基板11a、11bが接着剤12を介して貼り合わされた構成を有している。ガラス基板11a、11bの接着剤12側の表面には、実施形態1の透明導電体1aが配置されている。ここで、2つの透明導電体1aは、互いの凸部が対向するように配置されている。接着剤12としては、例えば、光学透明粘着シート(OCA:Optical Clear Adhesive)が挙げられる。タッチパネル10は、ガラス基板11bの接着剤12側とは反対側に、接着剤を介してカバーレンズを有していてもよい。このようなタッチパネル10は、液晶表示装置の観察面側に配置されて利用することができる。以下では、ガラス基板11a側に配置された透明導電体1aをX電極とも言い、ガラス基板11b側に配置された透明導電体1aをY電極とも言う。
図8は、図7中のX電極、及び、Y電極に着目した平面模式図である。図8に示すように、X電極は、X方向(横方向)にパターン化されて並んだ導電部を有しており、Y電極は、Y方向(縦方向)にパターン化されて並んだ導電部を有している。このような構成を有するタッチパネル10に対して、例えば、指が触れると、その付近の電極間の静電容量の変化を、X方向の電極列(例えば、X1列、X2列、X3列、X4列)及びY方向の電極列(Y1列、Y2列、Y3列、Y4列)から検知することで、指が触れた位置を判別することができる。ここで、各電極列のパターンは、微視的には、網目状の導電部が一方向(X方向又はY方向)に並んだ形状となっている。このような電極列から構成される、X電極、及び、Y電極を実現する方法としては、例えば、網目状の導電部が間隔を空けて列状に配置された透明導電体を用いる方法、全面に網目状の導電部を有する透明導電体を、間隔を空けて列状に複数並べる方法等が挙げられる。
従来のタッチパネルにおいては、図7中の透明導電体1a(X電極及びY電極)の代わりにITO等の透明電極が用いられ、図8に示したようにパターニングされていた。ITO膜の屈折率は1.9~2.0程度と高く、接着剤の屈折率(約1.5)と大きく異なるため、これらの界面での反射光が強くなり、ITO膜のパターンが見えてしまうことがあった。これに対して、実施形態5のタッチパネルにおいては、X電極及びY電極の光透過領域(導電部が配置されていない領域)が主に樹脂で形成されており、その領域の屈折率が約1.5となるような材料を選択することができる。よって、X電極及びY電極と接着剤12との界面での不要な反射光が抑制され、導電部のパターンが見えにくくなる。
以上では、実施形態1の透明導電体をタッチパネルに適用した場合について説明したが、実施形態2~4の透明導電体をタッチパネルに適用した場合についても同様である。取り扱いの観点からは、実施形態1の透明導電体(乾式)を適用することが好ましい。また、他の方式のタッチパネルに適用されてもよい。
[付記]
以下に、本発明の透明導電体の好ましい態様の例を挙げる。各例は、本発明の要旨を逸脱しない範囲において適宜組み合わされてもよい。
上記透明導電体は、更に、上記金属微粒子間にイオン性液体を含むものであってもよい。これにより、上記金属微粒子間の接触抵抗が小さくなり、上記導電部全体の抵抗率を低下させることができる。その結果、上記透明導電体の導電性をより高めることができる。更に、上記イオン性液体が上記複数の凸部の間隙の底部まで入り込む効果によって、上記イオン性液体の表面で汚れを拡散することができる。上記イオン性液体は、親水性の材料であってもよい。また、上記イオン性液体は、疎水性の材料であってもよい。
上記イオン性液体は、上記複数の凸部の間隙の上部まで充填されているものであってもよい。上記イオン性液体は、親水性の材料であってもよい。これにより、上記透明導電体の導電性をより高めるとともに、疎水性の汚れに対する防汚性を優れたものとすることができる。また、上記イオン性液体は、疎水性の材料であってもよい。これにより、上記透明導電体の導電性をより高めるとともに、親水性の汚れに対する防汚性を優れたものとすることができる。
上記複数の凸部の上記ピッチは、100nm以下であってもよい。これにより、上記イオン性液体の充填量が多い場合であっても、上記イオン性液体が上記複数の凸部の間隙から流れ出ることを効果的に防止することができる。
上記金属微粒子は、上記金属微粒子よりもイオン化傾向が小さい金属の薄膜で覆われているものであってもよい。これにより、上記透明導電体の導電性をより高め、上記金属微粒子をより効率的に凝集させて固定化することができる。更に、上記金属微粒子として金、銀等の高価な材料を用いなくても、上記透明導電体の導電性を高めることができ、コストを削減することができる。
上記金属微粒子の上記粒径は、50nm以下であってもよい。これにより、上記金属微粒子が、上記複数の凸部の間隙の底部に効率よく充填される。
上記複数の凸部のアスペクト比は、0.8以上、1.5以下であってもよい。これにより、モアレ等の光学現象を充分に防止し、良好な反射率特性を実現することができる。
以下に、本発明の透明導電体の製造方法の好ましい態様の例を挙げる。各例は、本発明の要旨を逸脱しない範囲において適宜組み合わされてもよい。
上記透明導電体の製造方法は、上記工程(3)の前に、上記工程(1)、及び、上記工程(2)を交互に複数回繰り返すものであってもよい。これにより、上記金属微粒子の充填量を効率よく増やすことができるため、上記透明導電体の導電性をより高めることができる。
上記透明導電体の製造方法は、更に、上記工程(3)の後に、上記金属微粒子を、上記金属微粒子よりもイオン化傾向が小さい金属の薄膜で覆う工程(4)を含むものであってもよい。これにより、上記透明導電体の導電性をより高め、上記金属微粒子をより効率的に凝集させて固定化することができる。更に、上記金属微粒子として金、銀等の高価な材料を用いなくても、上記透明導電体の導電性を高めることができ、コストが削減された効率的な上記透明導電体の製造を行うことができる。
1a、1b、1c、1d:透明導電体
2:反射防止フィルム
3:金属微粒子
4:凸部
5:凸部の間隙
6:溶媒
7:分散液
8:イオン性液体
9:金属薄膜(金属メッキ)
10:タッチパネル
11a、11b:ガラス基板
12:接着剤
13:枝突起
P:ピッチ
 

Claims (11)

  1. 複数の凸部が可視光の波長以下のピッチで、表面に設けられた反射防止フィルムと、
    前記複数の凸部の前記ピッチ以下の粒径を有し、かつ、前記複数の凸部の間隙の底部に充填された金属微粒子とを備え、
    前記複数の凸部の間隙に配置された前記金属微粒子は、網目状の導電部を構成することを特徴とする透明導電体。
  2. 前記透明導電体は、更に、前記金属微粒子間にイオン性液体を含むことを特徴とする請求項1に記載の透明導電体。
  3. 前記イオン性液体は、前記複数の凸部の間隙の上部まで充填されていることを特徴とする請求項2に記載の透明導電体。
  4. 前記イオン性液体は、親水性の材料であることを特徴とする請求項2又は3に記載の透明導電体。
  5. 前記イオン性液体は、疎水性の材料であることを特徴とする請求項2又は3に記載の透明導電体。
  6. 前記複数の凸部の前記ピッチは、100nm以下であることを特徴とする請求項3~5のいずれかに記載の透明導電体。
  7. 前記金属微粒子の前記粒径は、50nm以下であることを特徴とする請求項1~6のいずれかに記載の透明導電体。
  8. 前記複数の凸部のアスペクト比は、0.8以上、1.5以下であることを特徴とする請求項1~7のいずれかに記載の透明導電体。
  9. 請求項1~8のいずれかに記載の透明導電体の製造方法であって、
    溶媒中に前記金属微粒子が分散された分散液を、前記反射防止フィルム上に塗布する工程(1)、
    塗布された前記分散液に対して前記溶媒を蒸発させる乾燥を行う工程(2)、及び、
    乾燥された前記分散液に対して加熱を行う工程(3)
    を含むことを特徴とする透明導電体の製造方法。
  10. 前記透明導電体の製造方法は、前記工程(3)の前に、前記工程(1)、及び、前記工程(2)を交互に複数回繰り返すことを特徴とする請求項9に記載の透明導電体の製造方法。
  11. 請求項1~8のいずれかに記載の透明導電体を備えることを特徴とするタッチパネル。
     
PCT/JP2015/077645 2014-10-07 2015-09-30 透明導電体、透明導電体の製造方法、及び、タッチパネル WO2016056434A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/516,137 US10224126B2 (en) 2014-10-07 2015-09-30 Transparent conductor, method for producing transparent conductor, and touch panel
JP2016553056A JPWO2016056434A1 (ja) 2014-10-07 2015-09-30 透明導電体、透明導電体の製造方法、及び、タッチパネル

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-206551 2014-10-07
JP2014206551 2014-10-07

Publications (1)

Publication Number Publication Date
WO2016056434A1 true WO2016056434A1 (ja) 2016-04-14

Family

ID=55653049

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/077645 WO2016056434A1 (ja) 2014-10-07 2015-09-30 透明導電体、透明導電体の製造方法、及び、タッチパネル

Country Status (3)

Country Link
US (1) US10224126B2 (ja)
JP (1) JPWO2016056434A1 (ja)
WO (1) WO2016056434A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106814953A (zh) * 2016-12-30 2017-06-09 青岛海信移动通信技术股份有限公司 移动终端
CN107678588A (zh) * 2017-09-27 2018-02-09 京东方科技集团股份有限公司 触控屏和触控显示装置
KR20180043983A (ko) * 2016-10-21 2018-05-02 삼성전자주식회사 무인 비행 장치 및 무인 비행 장치의 비행 제어방법
JP2018156863A (ja) * 2017-03-17 2018-10-04 パナソニックIpマネジメント株式会社 フィルム構造体
JP2019529171A (ja) * 2016-09-13 2019-10-17 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 耐摩耗層を有する積層体、同積層体を有する装置及び同積層体を製造する方法
JP2020149014A (ja) * 2019-03-15 2020-09-17 シャープ株式会社 超撥水性フィルム
WO2023188922A1 (ja) * 2022-03-30 2023-10-05 キヤノン株式会社 部材

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11207478B2 (en) 2016-03-25 2021-12-28 Rai Strategic Holdings, Inc. Aerosol production assembly including surface with micro-pattern
WO2018116136A1 (en) * 2016-12-20 2018-06-28 3M Innovative Properties Company Electrode pattern for capacitive touch sensor
US11297876B2 (en) * 2017-05-17 2022-04-12 Rai Strategic Holdings, Inc. Aerosol delivery device
WO2022087727A1 (en) * 2020-10-26 2022-05-05 Edgehog Advanced Technologies Inc. Anti-reflection with interconnected structures
CN113031356B (zh) * 2021-02-26 2023-01-24 Tcl华星光电技术有限公司 一种显示面板及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008041445A (ja) * 2006-08-07 2008-02-21 Asahi Glass Co Ltd 透明導電膜の製造方法および透明導電膜
JP2013178550A (ja) * 2013-04-23 2013-09-09 Oji Holdings Corp 凹凸形状を有する金属細線シート
JP2013211108A (ja) * 2012-03-30 2013-10-10 Toppan Printing Co Ltd 導電性複合体
JP2014092584A (ja) * 2012-10-31 2014-05-19 Dainippon Printing Co Ltd 反射防止性透明導電フィルム、タッチパネル及び画像表示装置

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH088080B2 (ja) 1986-12-24 1996-01-29 株式会社東芝 陰極線管及び陰極線管の製造方法
JP3288557B2 (ja) 1995-08-11 2002-06-04 住友大阪セメント株式会社 透明性電磁波遮蔽膜付き陰極線管
JPH1126980A (ja) 1997-07-04 1999-01-29 Dainippon Printing Co Ltd 電磁波遮蔽板およびその製造法
JP2003046293A (ja) 2001-08-02 2003-02-14 Hitachi Chem Co Ltd 電磁波シールド材料の製造方法、その方法によって得られる磁波シールド材料、並びにこれを用いた電磁波遮蔽構成体及び電磁波シールドディスプレイ
JP3895229B2 (ja) 2002-08-05 2007-03-22 住友大阪セメント株式会社 透明導電膜の製造方法およびこの方法により製造された透明導電膜
JP3971325B2 (ja) 2003-02-27 2007-09-05 タツタ電線株式会社 異方導電性フィルムコネクタの製造方法、異方導電性フィルムコネクタ及びそれを用いたタッチパネル入力装置
JP4332610B2 (ja) 2003-07-15 2009-09-16 三菱マテリアル株式会社 金属ナノロッドおよび金属酸化物粉末を含有する組成物とその用途
CA2648457A1 (en) * 2006-04-05 2007-10-11 Shotaro Tanaka Method for producing conductive substrate and conductive substrate
JP2007322767A (ja) 2006-06-01 2007-12-13 Nissan Motor Co Ltd 反射防止構造、反射防止構造体及びその製造方法
JP5082357B2 (ja) 2006-09-22 2012-11-28 東レ株式会社 網目状金属微粒子積層基板の製造方法
JP2008122435A (ja) 2006-11-08 2008-05-29 Nissan Motor Co Ltd 撥水性反射防止構造及びその製造方法
JP2008218860A (ja) 2007-03-07 2008-09-18 Toray Ind Inc 網目状金属微粒子積層基板の製造方法および透明導電性基板
JP2008283100A (ja) 2007-05-14 2008-11-20 Toray Ind Inc 網目状金属微粒子積層基板及び透明導電性基板の製造方法
JP5332186B2 (ja) 2007-11-26 2013-11-06 コニカミノルタ株式会社 金属ナノワイヤを用いた透明導電膜の製造方法及びそれを用いて製造された透明導電膜
JP2009224078A (ja) 2008-03-14 2009-10-01 Kyoto Univ 透明導電膜及びその製造方法
JP2009263700A (ja) 2008-04-23 2009-11-12 Bridgestone Corp 無電解めっき前処理剤、光透過性電磁波シールド材の製造方法、光透過性電磁波シールド材
US8703232B2 (en) * 2008-06-30 2014-04-22 3M Innovative Properties Company Method of forming a microstructure
JP2010093239A (ja) 2008-09-09 2010-04-22 Toray Ind Inc 網目状金属微粒子積層基板及び透明導電性基板の製造方法
JP2010093040A (ja) 2008-10-08 2010-04-22 Bridgestone Corp 光透過性電磁波シールド材及びその製造方法
JP5469849B2 (ja) 2008-10-31 2014-04-16 富士フイルム株式会社 タッチパネル用導電膜、導電膜形成用感光材料、導電性材料及び導電膜
TWI467214B (zh) 2009-09-02 2015-01-01 Dexerials Corp A conductive optical element, a touch panel, an information input device, a display device, a solar cell, and a conductive optical element
JP4626721B1 (ja) 2009-09-02 2011-02-09 ソニー株式会社 透明導電性電極、タッチパネル、情報入力装置、および表示装置
DE112013001251T5 (de) 2012-03-02 2014-11-27 Tokai Rubber Industries, Ltd. Hybridsensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008041445A (ja) * 2006-08-07 2008-02-21 Asahi Glass Co Ltd 透明導電膜の製造方法および透明導電膜
JP2013211108A (ja) * 2012-03-30 2013-10-10 Toppan Printing Co Ltd 導電性複合体
JP2014092584A (ja) * 2012-10-31 2014-05-19 Dainippon Printing Co Ltd 反射防止性透明導電フィルム、タッチパネル及び画像表示装置
JP2013178550A (ja) * 2013-04-23 2013-09-09 Oji Holdings Corp 凹凸形状を有する金属細線シート

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019529171A (ja) * 2016-09-13 2019-10-17 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 耐摩耗層を有する積層体、同積層体を有する装置及び同積層体を製造する方法
KR20180043983A (ko) * 2016-10-21 2018-05-02 삼성전자주식회사 무인 비행 장치 및 무인 비행 장치의 비행 제어방법
KR102622032B1 (ko) * 2016-10-21 2024-01-10 삼성전자주식회사 무인 비행 장치 및 무인 비행 장치의 비행 제어방법
CN106814953A (zh) * 2016-12-30 2017-06-09 青岛海信移动通信技术股份有限公司 移动终端
CN106814953B (zh) * 2016-12-30 2020-05-05 青岛海信移动通信技术股份有限公司 移动终端
JP2018156863A (ja) * 2017-03-17 2018-10-04 パナソニックIpマネジメント株式会社 フィルム構造体
CN107678588A (zh) * 2017-09-27 2018-02-09 京东方科技集团股份有限公司 触控屏和触控显示装置
JP2020149014A (ja) * 2019-03-15 2020-09-17 シャープ株式会社 超撥水性フィルム
WO2023188922A1 (ja) * 2022-03-30 2023-10-05 キヤノン株式会社 部材

Also Published As

Publication number Publication date
US20170309364A1 (en) 2017-10-26
US10224126B2 (en) 2019-03-05
JPWO2016056434A1 (ja) 2017-08-17

Similar Documents

Publication Publication Date Title
WO2016056434A1 (ja) 透明導電体、透明導電体の製造方法、及び、タッチパネル
JP6073683B2 (ja) 電極コーティングの下の高屈折率層でコーティングされたガラス基材およびその基材を含む有機発光デバイス
TWI639024B (zh) 積層體之製造方法、積層體、偏光板、影像顯示裝置及影像顯示裝置之可見性改善方法
JP5795824B2 (ja) ランダムグリッドに基づくパターニングされた透明導電フィルム
JP6056480B2 (ja) 光学積層体、光学積層体の製造方法、偏光板及び画像表示装置
TWI479382B (zh) 包括導電圖案之導電基板及包含其之觸控面板
TWI479386B (zh) 導電基板及包含其之電子裝置
WO2013051548A1 (ja) 導電シート、タッチパネル、表示装置、導電シートの製造方法及びプログラム
US20160009928A1 (en) Composition, substrates and methods thereof
JP6843215B2 (ja) 透明コンダクタ、及び、透明コンダクタを製作するプロセス
JP2014509452A (ja) 暗い多層導電体トレースを有するパターン化基材
JP2013093014A (ja) 導電シート、タッチパネル、表示装置
KR20100138964A (ko) 저 가시성 도체를 구비한 터치 스크린 센서
US9085194B2 (en) Embossing stamp for optically diffuse micro-channel
JP2014236006A (ja) 透明導電膜
JP2009058658A (ja) 光学シート
KR101990841B1 (ko) 패턴 형성 방법
KR20140141469A (ko) 터치 스크린 전도성 필름 및 그 제조 방법
TWI587200B (zh) 光穿透性導電材料
KR20230038505A (ko) 회절, 눈부심 방지 표면을 갖는 디스플레이 물품 및 이의 제조 방법
KR101550481B1 (ko) 패턴 시인성이 개선된 터치 패널, 그 제조 방법 및 이를 포함하는 디스플레이 장치
TWI601165B (zh) 透光性導電材料
WO2016056436A1 (ja) 透明フィルム、及び、透明フィルムの製造方法
JP2013054619A (ja) 導電シート、タッチパネル及び表示装置
US9865223B2 (en) Optoelectronic modulation stack

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15849098

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15516137

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016553056

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15849098

Country of ref document: EP

Kind code of ref document: A1