WO2016056415A1 - チェーンテンショナ、チェーンテンショナ群及びその製造方法 - Google Patents
チェーンテンショナ、チェーンテンショナ群及びその製造方法 Download PDFInfo
- Publication number
- WO2016056415A1 WO2016056415A1 PCT/JP2015/077260 JP2015077260W WO2016056415A1 WO 2016056415 A1 WO2016056415 A1 WO 2016056415A1 JP 2015077260 W JP2015077260 W JP 2015077260W WO 2016056415 A1 WO2016056415 A1 WO 2016056415A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- plunger
- cylinder
- type
- pressure chamber
- plug
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H7/00—Gearings for conveying rotary motion by endless flexible members
- F16H7/08—Means for varying tension of belts, ropes, or chains
- F16H7/0829—Means for varying tension of belts, ropes, or chains with vibration damping means
- F16H7/0836—Means for varying tension of belts, ropes, or chains with vibration damping means of the fluid and restriction type, e.g. dashpot
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H7/00—Gearings for conveying rotary motion by endless flexible members
- F16H7/08—Means for varying tension of belts, ropes, or chains
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B67/00—Engines characterised by the arrangement of auxiliary apparatus not being otherwise provided for, e.g. the apparatus having different functions; Driving auxiliary apparatus from engines, not otherwise provided for
- F02B67/04—Engines characterised by the arrangement of auxiliary apparatus not being otherwise provided for, e.g. the apparatus having different functions; Driving auxiliary apparatus from engines, not otherwise provided for of mechanically-driven auxiliary apparatus
- F02B67/06—Engines characterised by the arrangement of auxiliary apparatus not being otherwise provided for, e.g. the apparatus having different functions; Driving auxiliary apparatus from engines, not otherwise provided for of mechanically-driven auxiliary apparatus driven by means of chains, belts, or like endless members
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H7/00—Gearings for conveying rotary motion by endless flexible members
- F16H7/08—Means for varying tension of belts, ropes, or chains
- F16H7/0848—Means for varying tension of belts, ropes, or chains with means for impeding reverse motion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H7/00—Gearings for conveying rotary motion by endless flexible members
- F16H7/08—Means for varying tension of belts, ropes, or chains
- F16H7/10—Means for varying tension of belts, ropes, or chains by adjusting the axis of a pulley
- F16H7/12—Means for varying tension of belts, ropes, or chains by adjusting the axis of a pulley of an idle pulley
- F16H7/1209—Means for varying tension of belts, ropes, or chains by adjusting the axis of a pulley of an idle pulley with vibration damping means
- F16H7/1236—Means for varying tension of belts, ropes, or chains by adjusting the axis of a pulley of an idle pulley with vibration damping means of the fluid and restriction type, e.g. dashpot
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H7/00—Gearings for conveying rotary motion by endless flexible members
- F16H7/08—Means for varying tension of belts, ropes, or chains
- F16H2007/0802—Actuators for final output members
- F16H2007/0806—Compression coil springs
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H7/00—Gearings for conveying rotary motion by endless flexible members
- F16H7/08—Means for varying tension of belts, ropes, or chains
- F16H2007/0802—Actuators for final output members
- F16H2007/0812—Fluid pressure
- F16H2007/0817—Fluid pressure with means for venting unwanted gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H7/00—Gearings for conveying rotary motion by endless flexible members
- F16H7/08—Means for varying tension of belts, ropes, or chains
- F16H7/0848—Means for varying tension of belts, ropes, or chains with means for impeding reverse motion
- F16H2007/0853—Ratchets
- F16H2007/0855—Ratchets comprising a clip member engaging with the rack teeth
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H7/00—Gearings for conveying rotary motion by endless flexible members
- F16H7/08—Means for varying tension of belts, ropes, or chains
- F16H7/0848—Means for varying tension of belts, ropes, or chains with means for impeding reverse motion
- F16H2007/0857—Screw mechanisms
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H7/00—Gearings for conveying rotary motion by endless flexible members
- F16H7/08—Means for varying tension of belts, ropes, or chains
- F16H7/0848—Means for varying tension of belts, ropes, or chains with means for impeding reverse motion
- F16H2007/0859—Check valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H7/00—Gearings for conveying rotary motion by endless flexible members
- F16H7/08—Means for varying tension of belts, ropes, or chains
- F16H2007/0889—Path of movement of the finally actuated member
- F16H2007/0891—Linear path
Definitions
- the present invention relates to a chain tensioner used to maintain tension of a timing chain that drives a camshaft of an automobile engine, a chain tensioner group including a plurality of types of chain tensioners, and a method for manufacturing the same.
- An automobile engine generally transmits rotation of a crankshaft to a camshaft through a timing chain (hereinafter referred to as “chain”), and opens and closes a valve of a combustion chamber by the rotation of the camshaft.
- chain a timing chain
- a tension adjusting device composed of a chain guide provided so as to be able to swing around a fulcrum shaft and a chain tensioner that presses the chain via the chain guide is often used. It is done.
- a plunger is slidably inserted in a cylindrical cylinder with one end open and the other end closed, and the plunger is urged in a direction protruding from the cylinder.
- a return spring is formed, the plunger is formed in a bottomed cylindrical shape with an open end into the cylinder, and an oil supply passage is provided for introducing hydraulic oil into a pressure chamber surrounded by the plunger and the cylinder.
- a check valve that allows only the flow of hydraulic oil from the oil supply passage side to the pressure chamber side is provided at the end of the oil supply passage on the pressure chamber side (Patent Document 1 below).
- this chain tensioner moves in the direction in which the plunger is pushed into the cylinder (hereinafter referred to as “push-in direction”) due to the tension of the chain, and absorbs the tension of the chain.
- push-in direction the direction in which the plunger is pushed into the cylinder
- the hydraulic oil in the pressure chamber flows out through a leak gap between the sliding surface of the plunger and the cylinder, and a damper action is generated by the viscous resistance of the hydraulic oil, so that the plunger moves slowly.
- protruding direction the direction protruding from the cylinder
- the check valve is opened and hydraulic oil flows into the pressure chamber from the oil supply passage, so that the plunger moves quickly.
- the chain tensioner also stops the oil pump, so that the hydraulic oil level in the oil supply passage is lowered and a large amount of air is accumulated in the oil supply passage.
- a large amount of air flows into the pressure chamber from the oil supply passage, and the large amount of air that has flowed in is accumulated in the plunger.
- the plunger moves because the air accumulated in the plunger is compressed, so that the damper action of the chain tensioner is lowered.
- the chain tensioner is provided with a mechanism for discharging the air accumulated inside the plunger.
- a hole penetrating the inside and outside of the plunger is provided at the protruding end portion of the plunger from the cylinder, and a plug having a male threaded leak groove on the outer periphery is press-fitted into the cylindrical inner periphery of the through hole, and the leak The air inside the plunger is discharged to the outside through the groove.
- the chain tensioner as described above can adjust the generated hydraulic damper force by setting the leak clearance.
- the size of the leak gap changes depending on the temperature characteristic difference between the cylinder and the plunger. For this reason, the generation characteristics of the hydraulic damper force are affected by the temperature change, and the characteristic difference between the normal temperature and the high temperature becomes large. As the influence is suppressed, the setting of the leak gap is limited.
- Different engine models differ in the required hydraulic damper force generation characteristics due to differences in engine characteristics, and the internal specifications of the chain tensioner were basically designed for each engine.
- the problem to be solved by the present invention is to simply provide a chain tensioner having different hydraulic damper forces.
- a plunger is slidably inserted in an axial direction into a cylindrical cylinder having one end opened and the other end closed, and the plunger is inserted into the cylinder.
- An insertion end is opened and formed into a cylindrical shape having a protruding end surface from the cylinder, and an oil supply passage for introducing hydraulic oil is provided in a pressure chamber surrounded by the plunger and the cylinder, and the pressure chamber of the oil supply passage
- a check valve that allows only the flow of hydraulic oil from the oil supply passage side to the pressure chamber side is provided at the end on the side, and the hydraulic oil in the pressure chamber flows out of the cylinder between the sliding surfaces of the cylinder and the plunger.
- a leak spring is provided, a return spring is provided to urge the plunger in a direction protruding from the cylinder, and a through hole extending from the protruding end surface of the plunger to the pressure chamber is provided in the plunger.
- a chain tensioner in which a plug having a leak groove on the outer periphery is press-fitted into the cylindrical inner periphery to form an air vent passage between the cylindrical inner periphery and the outer periphery of the plug. The hydraulic damper force is made different only by changing the type of plug to be press-fitted.
- the chain tensioner with different hydraulic damper force can be provided easily.
- the internal design of the chain tensioner can be applied to different hydraulic damper forces corresponding to different engine types simply by changing the plug, so that parts can be shared and costs can be reduced. .
- the leak groove is a male screw
- the axial length of the leak groove is larger than the axial length of the cylindrical inner periphery of the through hole
- the counter pressure of the plug press-fitted into the cylindrical inner periphery of the through hole An axial distance can be provided between the chamber-side end surface and the protruding end surface of the plunger. If it does in this way, it will become a chain tensioner which the part which the press-fitted plug has the part which protruded in the pressure chamber, and also has the external thread part also in the protrusion part.
- This chain tensioner is designed to expand the press-fitting range of the plug to the cylindrical inner periphery of the through hole to the counter-pressure chamber side by utilizing the above-mentioned axial distance without changing the specifications of the plug and plunger. It can be changed.
- This specification change increases the meshing length of the cylindrical inner circumference of the male screw and the through hole, lengthens the spiral air vent passage, adjusts the leak characteristics of the air vent passage by this extension, and consequently the hydraulic damper. The power can be adjusted.
- the size of the leak gap in the radial direction is set to 30 to 60 ⁇ m.
- This numerical range is a lower limit that can be practically employed as the leak gap, and is suitable for suppressing the influence of changes in the leak gap due to temperature changes on the generation characteristics of the hydraulic damper force. The more this effect is suppressed, the more easily the leak characteristics of the air vent passage, which are relatively less affected by temperature changes, are more likely to affect the hydraulic damper force generation characteristics. Therefore, it becomes easy to adjust the generation characteristic of the hydraulic damper force by setting the press-fitting range of the plug.
- the cylinder can be made of an aluminum material, and the plunger and the plug can be made of an iron material.
- the cylinder is made of an aluminum material and the plunger is made of an iron material.
- a plunger is slidably inserted in an axial direction into a cylindrical cylinder having one end opened and the other end closed, and the plunger is inserted at its insertion end into the cylinder.
- an oil supply passage for introducing hydraulic oil into the pressure chamber surrounded by the plunger and the cylinder is provided, and an end portion of the oil supply passage on the pressure chamber side.
- a check valve that allows only the flow of hydraulic oil from the oil supply passage side to the pressure chamber side is provided, and a leak gap is provided between the sliding surface of the cylinder and the plunger so that the hydraulic oil in the pressure chamber flows out of the cylinder.
- a return spring that urges the plunger in a direction protruding from the cylinder, and a through hole extending from the protruding end surface of the plunger to the pressure chamber is provided in the plunger.
- a chain tensioner group including a first type of chain tensioner and different types of chain tensioners having different hydraulic damper forces is configured.
- a plunger is slidably inserted in a cylindrical cylinder whose one end is open and the other end is closed, and the plunger is inserted at its insertion end into the cylinder.
- an oil supply passage for introducing hydraulic oil into the pressure chamber surrounded by the plunger and the cylinder is provided, and an end portion of the oil supply passage on the pressure chamber side.
- a check valve that allows only the flow of hydraulic oil from the oil supply passage side to the pressure chamber side is provided, and a leak gap is provided between the sliding surface of the cylinder and the plunger so that the hydraulic oil in the pressure chamber flows out of the cylinder.
- a return spring that urges the plunger in a direction protruding from the cylinder, and a through hole extending from the protruding end surface of the plunger to the pressure chamber is provided in the plunger.
- the first type of the first type of the groove is different from the first type of the leak groove only by changing the plug of the different type having a different type of leak groove into the cylindrical inner periphery of the through hole. This is a method for manufacturing different types of chain tensioners in which the chain tensioner and the hydraulic damper force are different.
- the chain tensioner group according to the second aspect of the invention is a hydraulic damper force that is simple enough to change the type between the first type of plug and a different type of plug having a different leak groove. It is possible to provide a plurality of types of chain tensioners that have different configurations.
- the method according to the third aspect of the present invention is a simple change of the first type of plug to a different type of plug having a different leak groove, and the first type of chain tensioner and hydraulic damper force. Different types of chain tensioners with different lengths can be provided.
- FIG. 1 is a longitudinal front view showing an overall configuration of a first type of chain tensioner according to an embodiment of the present invention.
- Schematic diagram showing a chain transmission incorporating the first type of chain tensioner of FIG. Enlarged view of the vicinity of the first type plug in FIG. Enlarged view of the vicinity of the first type plug in FIG.
- FIG. 1 shows a first type of chain tensioner 1 according to an embodiment of the present invention.
- FIG. 2 shows a chain transmission device incorporating the chain tensioner 1.
- This chain transmission device has a sprocket 3 fixed to the crankshaft 2 of the engine, a sprocket 5 fixed to the camshaft 4, and a chain 6.
- the sprocket 3 and the sprocket 5 are connected via a chain 6.
- the chain 6 transmits the rotation of the crankshaft 2 to the camshaft 4, and the rotation of the camshaft 4 opens and closes a valve (not shown) in the combustion chamber. To do.
- the chain 6 is in contact with a chain guide 8 supported so as to be swingable about a fulcrum shaft 7.
- the first type of chain tensioner 1 presses the chain 6 via the chain guide 8.
- a first type of chain tensioner 1 includes a cylindrical cylinder 9 that is open at one end and closed at the other end, and a plunger 10 that is slidably inserted into the cylinder 9 in the axial direction. And have.
- the cylinder 9 is fixed to an engine block (not shown) in a state where the protruding direction of the plunger 10 is obliquely upward.
- the plunger 10 is formed in a cylindrical shape having an insertion end into the cylinder 9 and having a protruding end surface 11 from the cylinder 9.
- a pressure chamber 12 surrounded by the plunger 10 and the cylinder 9 is formed.
- An oil supply passage 13 communicating with the pressure chamber 12 is formed at the closed end of the cylinder 9.
- the oil supply passage 13 is connected to an oil supply pump (not shown), and hydraulic oil sent from the oil supply pump is introduced into the pressure chamber 12.
- a check valve 14 At the end of the oil supply passage 13 on the pressure chamber 12 side, a check valve 14 that allows only the flow of hydraulic oil from the oil supply passage 13 side to the pressure chamber 12 side is provided.
- a leak gap 15 is formed between the sliding surfaces of the plunger 10 and the cylinder 9.
- the hydraulic oil in the pressure chamber 12 leaks to the engine room (not shown) through the leak gap 15.
- the cylinder 9 is made of an aluminum material.
- the plunger 10 is made of an iron-based material. For this reason, there is a temperature characteristic difference (difference in thermal expansion coefficient) between the cylinder 9 and the plunger 10. Furthermore, since the size of the leak gap 15 in the radial direction is minute, the size of the leak gap 15 changes due to the temperature change of the cylinder 9 and the plunger 10, and the generation characteristics of the hydraulic damper force of the chain tensioner 1 also change. In order to suppress the change in the generation characteristic as much as possible, the radial size g of the leak gap 15 is set to 30 to 60 ⁇ m. The size g corresponds to a half of the inner diameter difference between the cylindrical sliding surface of the cylinder 9 and the cylindrical sliding surface of the plunger 10. The size g is a value in dimensional control at the time of manufacturing the cylinder 9 and the plunger 10, and is satisfied with the entire leak gap 15 in a thermal equilibrium state under an atmosphere of 20 ° C.
- the plunger 10 is urged in a direction protruding from the cylinder 9 by a return spring 16 incorporated in the pressure chamber 12.
- One end of the return spring 16 is supported by the check valve 14, and the other end presses the protruding end of the plunger 10.
- a protruding end surface 11 formed at the protruding end is in contact with the chain guide 8.
- a through hole 17 extending from the protruding end surface 11 to the pressure chamber 12 is formed at the protruding end of the plunger 10.
- a first type plug 18 is press-fitted into the cylindrical inner periphery of the through-hole 17.
- a first type leak groove 19 is formed on the outer periphery of the first type plug 18.
- the leak groove 19 is a male screw.
- the first type air vent passage 20 is formed in a spiral shape between the leak groove 19 and the cylindrical inner periphery of the through hole 17.
- an annular housing recess 21 is formed on the inner periphery of the cylinder 9, and a register ring 22 is housed in the housing recess 21 so as to be movable in the axial direction.
- the register ring 22 has a ring shape that lacks a part of the circumference, and is elastically deformable in the radial direction.
- the register ring 22 elastically tightens the outer periphery of the plunger 10 and is engaged with any of a plurality of circumferential grooves 23 formed at regular intervals in the axial direction on the outer periphery of the plunger 10. .
- each circumferential groove 23 when a load in the protruding direction is applied to the plunger 10, a taper surface 24 that increases the diameter of the register ring 22 and allows the plunger 10 to move, and a load in the pushing direction of the plunger 10.
- a stopper surface 25 is provided for locking the register ring 22 and restricting the movement of the plunger 10 when the load is applied.
- the register ring 22 is sandwiched between the stopper surface 25 and the tapered surface of the housing recess 21 to prevent the plunger 10 from being pushed in.
- the register ring 22, the circumferential groove 23, and the housing recess 21 constitute a stopper mechanism.
- the plunger 10 shown in FIG. 1 moves in the pushing direction by the tension of the chain 6 and absorbs the tension of the chain 6 shown in FIG. At this time, since the damper force is generated by the viscous resistance of the hydraulic oil flowing out from the pressure chamber 12 through the leak gap 15 shown in FIG. 1, the plunger 10 moves slowly.
- the register ring 22 moves back and forth within the receiving recess 21. Further, if the movement range in the protruding direction of the plunger 10 shown in FIG. 1 exceeds the movable range in the accommodation recess 21 of the register ring 22 due to the slack of the chain 6 shown in FIG.
- the taper surface 24 enlarges the diameter of the register ring 22 and allows the plunger 10 to move. At this time, the register ring 22 engages with the adjacent circumferential groove 23.
- the tension of the chain 6 may increase depending on the stop position of the camshaft 4 shown in FIG. 2. In this case, the engagement of the register ring 22 and the circumferential groove 23 shown in FIG. Movement in the pushing direction is prevented. Therefore, when the engine is restarted, the chain 6 shown in FIG. 2 is hardly slackened, and the engine can be started smoothly.
- the outlet of the oil supply passage 13 is set to ⁇ 2 to 3, but for example, the effect of suppressing the above-described excessive increase can be expected by setting it to ⁇ 1.5 or less.
- the axial length of the cylindrical inner periphery of the through hole 17 shown in FIGS. 1 and 3 is a, and the axial length of the leak groove 19 is b.
- the axial direction is a direction along the center line of the cylindrical inner circumference of the through-hole 17 set concentrically and the screw axis of the first type leak groove 19.
- the cylindrical inner periphery of the through-hole 17 is continuous in the axial direction with the same inner diameter, and the axial length a corresponds to the axial length of the inner diameter surface.
- the axial length b is the axial length of the thread formation range of the first type leak groove 19 in the outer periphery of the first type plug 18 that can be press-fitted into the cylindrical inner periphery of the through hole 17. is there.
- the thread of the first type of leak groove 19 extends substantially over the entire length of the first type of plug 18 in the axial direction. Therefore, the axial length b corresponds to the total axial length of the first type plug 18.
- the axial length b of the first type leak groove 19 is larger than the axial length a of the cylindrical inner periphery of the through hole 17.
- a distance c in the axial direction is provided between the end surface 18 a on the counter pressure chamber 12 side of the first type plug 18 press-fitted into the cylindrical inner periphery of the through hole 17 and the protruding end surface 11 of the plunger 10.
- the end surface 18 a on the counter pressure chamber 12 side is an end surface on the side farther from the pressure chamber 12 among the end surfaces on both axial sides of the first type plug 18.
- the distance c is the distance in the axial direction that is the shortest between the end face 18a and the protruding end face 11 that can come into contact with the chain guide 8.
- the end surface 18a of the plug 18 on the counter pressure chamber 12 side is pushed by the chain guide 8 in contact with the projecting end surface 11, and the air vent passage is shortened. As compared with the generation characteristic of the hydraulic damper force at this time, the generation characteristic does not change. Further, if the distance c is within the range, even if the axial position of the end face 18a of the first type plug 18 is changed to the counter pressure chamber 12 side, the above-mentioned situation does not occur and the change can be allowed. it can.
- the first type chain tensioner 1 is set such that the axial length b of the first type leak groove 19> the axial length a of the cylindrical inner periphery of the through hole 17, and the first type leak groove Since the press-fitting range of the first type plug 18 in which the 19 screw threads are in close contact with the cylindrical inner periphery is set to leave the distance c, the press-fitted plug 18 protrudes into the pressure chamber 12. There is a part, and the external thread part of the first type leak groove 19 exists also in the protruding part.
- first-type air vent passage 20 whose length in the spiral direction is determined within the press-fitting range of the first-type plug 18, not only air escapes as described above, but also hydraulic oil leaks.
- this leak characteristic affects the leak-down characteristic of the chain tensioner, and consequently affects the generation characteristics of the hydraulic damper force of the chain tensioner. Therefore, in the first type of chain tensioner 1, a different type of air vent passage different from the first type of air vent passage 20 is formed only by changing the first type of plug 18 to a different type of plug, and consequently Thus, different types of chain tensioners having different hydraulic damper forces from the first type of chain tensioners 1 can be manufactured.
- FIG. 4A to 4C show a state in which the first type plug 18, a different type of plug 18 ′, and a different type of plug 18 ′ different from these are press-fitted into the cylindrical inner periphery of the through-hole 17.
- the different types of plugs 18 ′ have different types of leak grooves 19 ′ from the first type of leak grooves 19.
- the different types of plugs 18 ′′ are different from the first type of leak grooves 19 ′.
- different different types of leak grooves 19 'and different different types of leak grooves 19' That is, FIG. 4B is different from the first type of chain tensioner 1 shown in FIG. Fig. 4C shows the vicinity of the plug 18 'of a different type of chain tensioner having a common internal structure, and Fig. 4C shows points other than the plug change as compared with the first type of chain tensioner 1 shown in Fig. 1. All internal structures are the same Of another different kinds of chain tensioner plug 18 "shows the vicinity.
- the different type of plug 18 ′ and the different type of plug 18 ′′ maintain the same tightening allowance as the first type of plug 18 while maintaining the first type of leak.
- the cylindrical inner periphery of the common through-hole 17 can be changed.
- the generation characteristic of the hydraulic damper force can be changed by changing the cross-sectional area of the orifice formed between them and the length of the orifice (the length in the spiral direction of the air vent passage).
- Test Example 1 the sectional area of the orifice was 0.13 mm 2 , the orifice length was 45 mm, and the dynamic reaction force was 2400 N.
- test Example 2 the cross-sectional area of the orifice was 0.2 mm 2 , the orifice length was 33 mm, and the dynamic reaction force was 1600 N.
- Test Example 3 the sectional area of the orifice was 0.37 mm 2 , the length of the orifice was 30 mm, and the dynamic reaction force was 780 N.
- Test Example 4 the sectional area of the orifice was 0.6 mm 2 , the orifice length was 21 mm, and the dynamic reaction force was 300 N.
- the hydraulic damper force can be changed several times only by changing the shape of the leak groove other than the outer diameter.
- the first type of chain tensioner 1 shown in FIG. 1 is manufactured for the first engine type, and only the type change to a different type of plug 18 ′ shown in FIG.
- Different types of chain tensioners with different hydraulic damper forces for different types of engines are manufactured and different from the first engine type only by changing the type to a different type of plug 18 "shown in FIG. 4C.
- Different types of chain tensioners with different hydraulic damper forces can be manufactured for different types of engine types.
- the hydraulic damper force The chain tensioners are managed according to different quality control standards, for example, the maximum set value of the hydraulic damper force is different for each type of chain tensioner. Different.
- each type of leak groove 19, 19', 19” can be formed by rolling, for example.
- the leak grooves 19, 19 ′, 19 ′′ as shown in FIGS. 4A to 4C may be formed by forging. Further, the plugs 18, 18 ′, 18 ′′ are formed by resin injection molding, and the molding is performed.
- the male thread portion present in the protruding portion of the plugs 18, 18 ′, 18 ′′ may cause the pressure rise in the pressure chamber 12 shown in FIG. It is sometimes possible to set it so that it is slightly pushed into the cylindrical inner periphery of the through-hole 17 to cause elastic deformation and spring back after the pressure drops. With this setting, the resistance to disconnection in the pressure load direction of the plugs 18, 18 ', 18 "shown in FIGS. 4A to 4C is improved.
- the leak grooves 19, 19 ′, 19 ′′ exemplify a single trapezoidal screw, but they may be a multi-threaded screw. By doing so, a plurality of air vent passages are formed, so any one of the air vents is formed. Even when the passage is clogged, the air in the pressure chamber 12 shown in FIG. 1 can be reliably discharged through another air vent passage.
- the first type plug 18 will be specifically described as a representative example.
- the plug 18 when considering the press-fitting range of the plug 18 with respect to the cylindrical inner periphery of the through hole 17, the plug 18 whose outline is drawn with a solid line is: This can be said to be the press-fitting range set in the first type of chain tensioner 1 shown in FIG.
- the counter pressure chamber 12 side is compared with the preset press-fitting range depicted by the solid line in FIG.
- Different types of chain tensioners with different hydraulic damper forces are manufactured by press-fitting the plug 18 into the cylindrical inner periphery of the through-hole 17 with the expanded new setting (indicated by the alternate long and short dash line in FIG. 3). It is possible.
- the difference between the axial length b of the leak groove 19 and the axial length a of the cylindrical inner periphery of the through hole 17 is set to be larger than the distance c, that is, (ba)> c. preferable. As a result, it is possible to extend the air vent passage in the spiral direction by making the maximum use of the distance c, and the adjustment range of the generation characteristic of the hydraulic damper force can be maximized.
- each type of chain tensioner shown in FIG. 1, FIG. 4B, and FIG. 4C changes the type between the plugs 18, 18 ′, and 18 ′′ that are press-fitted into the cylindrical inner periphery of the through hole 17. Since the hydraulic damper force is changed only by the pressure, the chain tensioner with different hydraulic damper force can be easily changed without changing the specifications inside each type of chain tensioner other than the plugs 18, 18 'and 18 ". Can be provided.
- the chain tensioner group including the first type chain tensioner 1 shown in FIG. 1 and the different types of chain tensioners shown in FIGS. 4B and 4C includes a first type plug 18 shown in FIGS.
- the hydraulic damper force can be easily changed by simply changing the type of the plug 18 between different types of plugs 18 ′ and 18 ′′ having different leak grooves 19 ′ and 19 ′′. It is possible to provide a plurality of types of chain tensioners that have different configurations.
- FIG. 4B and 4C Compared with the first type of chain tensioner 1 shown in FIG. 1, an inner portion in which different types of plugs 18 ′ and 18 ′′ are press-fitted into the cylindrical inner periphery of the through-hole 17 as shown in FIGS. 4B and 4C.
- a method of manufacturing a different type of chain tensioner only by modification is different from the first type of plug 18 shown in FIGS. 1 and 4A in that the plug 18 and the leak grooves 19 ′ and 19 ′′ are different as shown in FIGS. 4B and 4C. 4B and 4C in which the hydraulic damper force is different from that of the first type chain tensioner 1 shown in FIG. 1 and FIG. 4A by simply changing the type to the different types of plugs 18 ′ and 18 ′′.
- Different types of chain tensioners can be provided.
- the outer periphery of the plunger 10 is elastically tightened in an annular housing recess 21 formed in the inner periphery of the cylinder 9.
- a register ring 22 is accommodated, and the register ring 22 is engaged with a circumferential groove 23 formed on the outer periphery of the plunger 10 at a constant interval in the axial direction, and each circumferential groove 23 includes a plunger.
- the tapered surface 24 that allows the plunger 10 to move by expanding the diameter of the register ring 22 and the load in the direction of pushing the plunger 10 into the cylinder 9 are loaded.
- the stopper surface 25 that locks the register ring 22 and restricts the movement of the plunger 10 is provided. Also of the chain tensioner it is applicable.
- a screw rod having a cylindrical insertion end into a cylinder of a plunger, a female screw formed on the inner periphery of the insertion end, and a male screw on the outer periphery that engages with the female screw is provided.
- a chain tensioner provided and supporting the return spring with its screw rod.
- the male screw of the screw rod and the female screw of the plunger are formed in a saw-tooth shape with an asymmetric cross section along the axis, and pressure is applied when a force is applied in the direction of pushing the plunger into the cylinder. It is preferable that the flank angle of the pressure flank to be received is larger than the flank angle of the play flank.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Devices For Conveying Motion By Means Of Endless Flexible Members (AREA)
Abstract
シリンダ(9)とプランジャ(10)とで囲まれた圧力室(12)内に作動油を導入する給油通路(13)、給油通路(13)の端部にチェックバルブ(14)、シリンダ(9)とプランジャ(10)の摺動面間にリーク隙間(15)、プランジャ(10)をシリンダ(9)からの突出方向に付勢するリターンスプリング(16)を備え、プランジャ(10)の突出端面(11)から圧力室(12)に至る貫通孔(17)の円筒状内周に圧入するプラグ(18、18'、18")の種類変更のみによって圧入して相異なるエア抜き通路(20、20'、20")を形成する内部変更のみによって、油圧ダンパ力を異ならせたチェーンテンショナ(1)である。
Description
この発明は、自動車エンジンのカムシャフトを駆動するタイミングチェーンの張力保持に用いられるチェーンテンショナ、複数種類のチェーンテンショナからなるチェーンテンショナ群、及びその製造方法に関する。
自動車のエンジンは、一般に、クランクシャフトの回転をタイミングチェーン(以下「チェーン」という)を介してカムシャフトに伝達し、そのカムシャフトの回転により燃焼室のバルブの開閉を行なう。ここで、チェーンの張力を適正範囲に保つために、支点軸を中心として揺動可能に設けたチェーンガイドと、そのチェーンガイドを介してチェーンを押圧するチェーンテンショナとからなる張力調整装置が多く用いられる。
この張力調整装置に組み込まれるチェーンテンショナとして、一端が開口し、他端が閉じた筒状のシリンダ内にプランジャを軸方向に摺動可能に挿入し、そのプランジャをシリンダから突出する方向に付勢するリターンスプリングを設け、前記プランジャをシリンダ内への挿入端が開口する有底筒状に形成し、そのプランジャと前記シリンダとで囲まれた圧力室内に作動油を導入する給油通路を設け、その給油通路の圧力室側の端部に、給油通路側から圧力室側への作動油の流れのみを許容するチェックバルブを設けたものが知られている(下記特許文献1)。
このチェーンテンショナは、エンジン作動中にチェーンの張力が大きくなると、そのチェーンの張力によって、プランジャがシリンダ内に押し込まれる方向(以下、「押し込み方向」という)に移動し、チェーンの緊張を吸収する。このとき、圧力室内の作動油が、プランジャとシリンダの摺動面間のリーク隙間を通って流出し、その作動油の粘性抵抗によってダンパ作用が生じるので、プランジャはゆっくりと移動する。
一方、エンジン作動中にチェーンの張力が小さくなると、リターンスプリングの付勢力によって、プランジャがシリンダから突出する方向(以下、「突出方向」という)に移動し、チェーンの弛みを吸収する。このとき、チェックバルブが開いて、給油通路から圧力室に作動油が流入するので、プランジャは速やかに移動する。
ところで、上記チェーンテンショナは、エンジンを停止すると、オイルポンプも停止するので、給油通路内の作動油の油面が下がり、給油通路内に大量のエアが溜まった状態となる。そして、エンジンを再始動したときに、給油通路から圧力室に大量のエアが流入し、その流入した大量のエアがプランジャの内部に溜まった状態となる。この状態でプランジャに押し込み方向の荷重が負荷されると、プランジャの内部に溜まったエアが圧縮することによってプランジャが移動するので、チェーンテンショナのダンパ作用が低下してしまうという問題がある。
このダンパ作用の低下を防止するため、上記チェーンテンショナにおいてはプランジャの内部に溜まったエアを排出する機構を設けている。
具体的には、プランジャのシリンダからの突出端部にプランジャの内外を貫通する孔を設け、その貫通孔の円筒状内周に、外周に雄ねじ状のリーク溝を有するプラグを圧入し、そのリーク溝を通じてプランジャの内部のエアを外部に排出するようにしている。このようにエア抜き通路を形成すると、雌ねじ孔に円筒ころを圧入してエア抜き通路を形成する場合に比して、圧入時のバリ発生を抑え、バリ除去が容易になる。
上述のようなチェーンテンショナは、リーク隙間の設定により、発生させる油圧ダンパ力を調節することが可能である。シリンダとプランジャの温度特性差によってリーク隙間の大きさが変化する。このため、油圧ダンパ力の発生特性は、温度変化の影響を受け、常温時と高温時の特性差異が大きくなってしまう。この影響を抑えようとする程、リーク隙間の設定が制限される。エンジン型式が異なると、エンジン特性の差異から要求される油圧ダンパ力の発生特性が異なり、チェーンテンショナの内部仕様は基本的にエンジン毎に設計されていた。
そこで、この発明が解決しようとする課題は、油圧ダンパ力を異ならせたチェーンテンショナを簡単に提供することである。
上記の課題を達成する第1の発明は、一端が開放し、かつ他端が閉じた筒状のシリンダ内に、プランジャを軸方向に摺動可能に挿入し、前記プランジャを、シリンダ内への挿入端が開放し、かつシリンダからの突出端面をもった筒状に形成し、そのプランジャと前記シリンダとで囲まれた圧力室内に作動油を導入する給油通路を設け、その給油通路の圧力室側の端部に、給油通路側から圧力室側への作動油の流れのみを許容するチェックバルブを設け、前記シリンダとプランジャの摺動面間に圧力室内の作動油をシリンダの外側に流出させるリーク隙間を設け、前記プランジャをシリンダから突出する方向に付勢するリターンスプリングを設け、前記プランジャの突出端面から前記圧力室に至る貫通孔を前記プランジャに設け、その貫通孔の円筒状内周に、外周にリーク溝を有するプラグを圧入して当該円筒状内周と当該プラグの外周との間にエア抜き通路を形成したチェーンテンショナにおいて、前記貫通孔の円筒状内周に圧入するプラグの種類変更のみによって油圧ダンパ力を異ならせた構成にしたものである。
上記構成によれば、圧入するプラグ側のみで油圧ダンパ力を異ならせたので、プラグ以外にシリンダ、プランジャの内部で仕様変更を行うことがなく、それ故、油圧ダンパ力を異ならせたチェーンテンショナを簡単に提供することができる。つまり、チェーンテンショナの内部設計については共通のものを採用して、プラグを変更するだけで異なるエンジン型式に対応して異なる油圧ダンパ力に適用できるので、部品の共通化ができ低コスト化が図れる。
例えば、前記リーク溝を雄ねじとし、前記リーク溝の軸方向長さを前記貫通孔の円筒状内周の軸方向長さよりも大きく設け、前記貫通孔の円筒状内周に圧入したプラグの反圧力室側の端面と、前記プランジャの突出端面との間に軸方向の距離を設けることができる。このようにすると、圧入したプラグが圧力室に突出した部分を有し、その突出部分にも雄ねじ部分を有するチェーンテンショナとなる。このチェーンテンショナは、プラグ及びプランジャの仕様を何ら変更しなくても、前述の軸方向の距離を活用して、貫通孔の円筒状内周に対するプラグの圧入範囲を反圧力室側へ拡大する仕様変更が可能である。この仕様変更により、雄ねじと貫通孔の円筒状内周の噛み合い長さを大きくして、螺旋状のエア抜き通路を長くし、この延長程度によってエア抜き通路のリーク特性を調節し、ひいては油圧ダンパ力を調節することができる。
前記リーク隙間の径方向の大きさを30~60μmに設けることが好ましい。この数値範囲は、リーク隙間として実用的に採用し得る下限設定であり、温度変化によるリーク隙間の変化が油圧ダンパ力の発生特性に及ぼす影響を抑えるのに好適である。この影響を抑える程、比較的温度変化の影響を受け難いエア抜き通路のリーク特性が、油圧ダンパ力の発生特性に影響し易くなる。したがって、前記プラグの圧入範囲の設定によって油圧ダンパ力の発生特性を調節し易くなる。
前記シリンダをアルミ系材料で形成し、前記プランジャ及び前記プラグを鉄系材料で形成することができる。シリンダをアルミ系材料、プランジャを鉄系材料で形成することが一般的である。プラグを鉄系材料で形成することにより、一般的なプランジャとプラグ間の温度特性差を抑え、エア抜き通路のリーク特性が温度変化の影響を受け難くすることができる。
また、第2の発明は、一端が開放し、かつ他端が閉じた筒状のシリンダ内に、プランジャを軸方向に摺動可能に挿入し、前記プランジャを、シリンダ内への挿入端が開放し、かつシリンダからの突出端面をもった筒状に形成し、そのプランジャと前記シリンダとで囲まれた圧力室内に作動油を導入する給油通路を設け、その給油通路の圧力室側の端部に、給油通路側から圧力室側への作動油の流れのみを許容するチェックバルブを設け、前記シリンダとプランジャの摺動面間に圧力室内の作動油をシリンダの外側に流出させるリーク隙間を設け、前記プランジャをシリンダから突出する方向に付勢するリターンスプリングを設け、前記プランジャの突出端面から前記圧力室に至る貫通孔を前記プランジャに設け、その貫通孔の円筒状内周に、外周に第1種類のリーク溝を有する第1種類のプラグを圧入して当該円筒状内周と当該第1種類のプラグの外周との間に第1種類のエア抜き通路を形成した第1種類のチェーンテンショナと、前記第1種類のリーク溝と異なる異種類のリーク溝を有する異種類のプラグを備え、当該異種類のプラグを前記貫通孔の円筒状内周に圧入した内部変更のみによって前記第1種類のチェーンテンショナと油圧ダンパ力を異ならせた異種類のチェーンテンショナと、からなるチェーンテンショナ群を構成したものである。
また、第3の発明は、一端が開放し、かつ他端が閉じた筒状のシリンダ内に、プランジャを軸方向に摺動可能に挿入し、前記プランジャを、シリンダ内への挿入端が開放し、かつシリンダからの突出端面をもった筒状に形成し、そのプランジャと前記シリンダとで囲まれた圧力室内に作動油を導入する給油通路を設け、その給油通路の圧力室側の端部に、給油通路側から圧力室側への作動油の流れのみを許容するチェックバルブを設け、前記シリンダとプランジャの摺動面間に圧力室内の作動油をシリンダの外側に流出させるリーク隙間を設け、前記プランジャをシリンダから突出する方向に付勢するリターンスプリングを設け、前記プランジャの突出端面から前記圧力室に至る貫通孔を前記プランジャに設け、その貫通孔の円筒状内周に、外周に第1種類のリーク溝を有する第1種類のプラグを圧入して当該円筒状内周と当該第1種類のプラグの外周との間に第1種類のエア抜き通路を形成した第1種類のチェーンテンショナに比して、前記第1種類のリーク溝と異なる異種類のリーク溝を有する異種類のプラグを前記貫通孔の円筒状内周に圧入した内部変更のみによって、前記第1種類のチェーンテンショナと油圧ダンパ力を異ならせた異種類のチェーンテンショナを製造する方法である。
上述のように、第1の発明に係るチェーンテンショナは、圧入するプラグ側のみで油圧ダンパ力を異ならせたので、プラグ以外にシリンダ、プランジャの内部で仕様変更を行うことがなく、油圧ダンパ力を異ならせたチェーンテンショナを簡単に提供することができる。ひいては、プランジャ、シリンダを1パターンに統一することができ、部品統合化につながる。
また、第2の発明に係るチェーンテンショナ群は、第1種類のプラグと、これに対してリーク溝が異なる異種類のプラグとの間での種類変更を行うだけの簡単さで、油圧ダンパ力を異ならせた複数種類のチェーンテンショナを提供することができる。
また、第3の発明に係る方法は、第1種類のプラグから、これとリーク溝が異なる異種類のプラグへの種類変更を行うだけの簡単さで、第1種類のチェーンテンショナと油圧ダンパ力を異ならせた異種類のチェーンテンショナを提供することができる。
また、第2の発明に係るチェーンテンショナ群は、第1種類のプラグと、これに対してリーク溝が異なる異種類のプラグとの間での種類変更を行うだけの簡単さで、油圧ダンパ力を異ならせた複数種類のチェーンテンショナを提供することができる。
また、第3の発明に係る方法は、第1種類のプラグから、これとリーク溝が異なる異種類のプラグへの種類変更を行うだけの簡単さで、第1種類のチェーンテンショナと油圧ダンパ力を異ならせた異種類のチェーンテンショナを提供することができる。
図1に、この発明の実施形態の第1種類のチェーンテンショナ1を示す。図2にチェーンテンショナ1を組み込んだチェーン伝動装置を示す。このチェーン伝動装置は、エンジンのクランクシャフト2に固定されたスプロケット3と、カムシャフト4に固定されたスプロケット5と、チェーン6とを有する。スプロケット3とスプロケット5とが、チェーン6を介して連結され、チェーン6は、クランクシャフト2の回転をカムシャフト4に伝達し、カムシャフト4の回転により燃焼室のバルブ(図示せず)の開閉を行なう。チェーン6には、支点軸7を中心として揺動可能に支持されたチェーンガイド8が接触している。第1種類のチェーンテンショナ1は、そのチェーンガイド8を介してチェーン6を押圧している。
図1に示すように、第1種類のチェーンテンショナ1は、一端が開放し、かつ他端が閉じた筒状のシリンダ9と、シリンダ9内に軸方向に摺動可能に挿入されたプランジャ10とを有する。シリンダ9は、プランジャ10の突出方向が斜め上向きとなる状態でエンジンブロック(図示せず)に固定されている。プランジャ10は、シリンダ9内への挿入端が開放し、かつシリンダ9からの突出端面11をもった筒状に形成されている。プランジャ10とシリンダ9とで囲まれた圧力室12が形成されている。
シリンダ9の閉端には、圧力室12に連通する給油通路13が形成されている。給油通路13は、給油ポンプ(図示せず)に接続されており、その給油ポンプから送り出された作動油を、圧力室12内に導入するようになっている。給油通路13の圧力室12側の端部には、給油通路13側から圧力室12側への作動油の流れのみを許容するチェックバルブ14が設けられている。
プランジャ10とシリンダ9の摺動面間にはリーク隙間15が形成されている。圧力室12内の作動油は、リーク隙間15を通ってエンジンルーム(図示省略)へリークするようになっている。
シリンダ9は、アルミ系材料で形成されている。プランジャ10は、鉄系材料で形成されている。このため、シリンダ9とプランジャ10の温度特性差(熱膨張率の差異)がある。さらに、リーク隙間15の径方向の大きさが微小なため、シリンダ9とプランジャ10の温度変化でリーク隙間15の大きさが変化し、チェーンテンショナ1の油圧ダンパ力の発生特性も変化する。この発生特性の変化を可及的に抑えるため、リーク隙間15の径方向の大きさgは、30~60μmに設けられている。当該大きさgは、シリンダ9の円筒状の摺動面とプランジャ10の円筒状の摺動面の内径差の半分に相当する。当該大きさgは、シリンダ9とプランジャ10の製造時の寸法管理における値であり、雰囲気20℃下での熱平衡状態において、リーク隙間15の全体で満足する。
プランジャ10は、圧力室12内に組み込まれたリターンスプリング16でシリンダ9から突出する方向に付勢されている。リターンスプリング16の一端は、チェックバルブ14で支持され、他端は、プランジャ10の突出側の端部を押圧している。その突出側の端部に形成された突出端面11は、チェーンガイド8に当接している。
また、図1、図3に示すように、プランジャ10の突出側の端部には、突出端面11から圧力室12に至る貫通孔17が形成されている。その貫通孔17の円筒状内周に、第1種類のプラグ18が圧入されている。第1種類のプラグ18の外周には、第1種類のリーク溝19が形成されている。リーク溝19は、雄ねじになっている。このため、リーク溝19と、貫通孔17の円筒状内周との間に、第1種類のエア抜き通路20が螺旋状に形成されている。
図1に示すように、シリンダ9の内周には、環状の収容凹部21が形成され、その収容凹部21内にレジスタリング22が軸方向に移動可能に収容されている。レジスタリング22は、円周の一部を欠いたリング形状であり、径方向に弾性変形可能となっている。このレジスタリング22は、プランジャ10の外周を弾性的に締め付けており、プランジャ10の外周に軸方向に一定の間隔をおいて形成された複数の円周溝23のいずれかに係合している。
各円周溝23内には、プランジャ10に突出方向の荷重が負荷されたときに、レジスタリング22を拡径させてプランジャ10の移動を許容するテーパ面24と、プランジャ10に押し込み方向の荷重が負荷されたときに、レジスタリング22を係止してプランジャ10の移動を制限するストッパ面25とが設けられている。レジスタリング22はストッパ面25と収容凹部21のテーパ面に挟まれてプランジャ10が押込まれるのを防止する。これらレジスタリング22と円周溝23と収容凹部21とでストッパ機構を構成している。
次に、第1種類のチェーンテンショナ1の動作例を説明する。
エンジン作動中に図2に示すチェーン6の張力が大きくなると、そのチェーン6の張力によって、図1に示すプランジャ10が押し込み方向に移動し、図2に示すチェーン6の緊張を吸収する。このとき、図1に示すリーク隙間15を通って圧力室12から流出する作動油の粘性抵抗によってダンパ力が発生するので、プランジャ10はゆっくりと移動する。
エンジン作動中に図2に示すチェーン6の張力が小さくなると、図1に示すリターンスプリング16の付勢力によって、プランジャ10が突出方向に移動し、図2に示すチェーン6の弛みを吸収する。このとき、図1に示すチェックバルブ14が開き、給油通路13から圧力室12に作動油が流入するので、プランジャ10は速やかに移動する。
ここで、図2に示すチェーン6の振動により、図1に示すプランジャ10が前進と後退を繰り返すとき、レジスタリング22は、収容凹部21内で前後に移動する。また、図2に示すチェーン6の弛みによって、図1に示すプランジャ10の突出方向への移動範囲が、レジスタリング22の収容凹部21内での移動可能な範囲を超えると、円周溝23内のテーパ面24がレジスタリング22を拡径させて、プランジャ10の移動を許容する。このとき、レジスタリング22は、隣の円周溝23に係合する。
エンジン停止時に、図2に示すカムシャフト4の停止位置によってチェーン6の張力が大きくなる場合があるが、この場合、図1に示すレジスタリング22と円周溝23の係合により、プランジャ10の押し込み方向への移動が防止される。そのため、エンジンを再始動するときに、図2に示すチェーン6の弛みを生じにくく、円滑なエンジン始動が可能である。
また、エンジンを停止すると、オイルポンプが停止するので、図1に示す給油通路13内の作動油の油面が下がり、給油通路13内に大量のエアが溜まった状態となる。そのため、エンジンを再始動したときに、給油通路13を通って圧力室12に供給される作動油に大量のエアが混入するが、この場合、圧力室12内に混入したエアは、エア抜き通路20を経て外部に排出される。そのため、圧力室12内のエアによるダンパ作用の低下が生じにくい。
なお、エンジン低温時においては、供給される作動油の粘度が高く、供給油圧が高くなってしまい、発生するダンパ力(動的反力)が過大となるケースがある。このため、給油通路13の出口を絞ることで圧力損失を発生させ、低温時の供給油圧が高い状態でも、圧力室12内の油圧上方を抑え、発生する動的反力が過大とならないようにすることが好ましい。一般に、給油通路13の出口は、φ2~3に設定されているが、例えば、φ1.5以下にすることで前述の過大化を抑える効果が期待できる。
以下、図1、図3に示す貫通孔17の円筒状内周の軸方向長さをaとし、リーク溝19の軸方向長さをbとする。軸方向は、同心に設定された貫通孔17の円筒状内周の中心線及び第1種類のリーク溝19のねじ軸線に沿った方向とする。貫通孔17の円筒状内周は、同内径で軸方向に連なっており、軸方向長さaは、同内径面の軸方向の長さに相当する。一方、軸方向長さbは、貫通孔17の円筒状内周に圧入可能な第1種類のプラグ18の外周のうち、第1種類のリーク溝19のねじ山形成範囲の軸方向長さである。図示例では、第1種類のリーク溝19のねじ山が実質的に第1種類のプラグ18の軸方向の全長に亘っている。したがって、軸方向長さbは、第1種類のプラグ18の軸方向の全長に相当する。
第1種類のリーク溝19の軸方向長さbは、貫通孔17の円筒状内周の軸方向長さaよりも大きく設けられている。貫通孔17の円筒状内周に圧入した第1種類のプラグ18の反圧力室12側の端面18aと、プランジャ10の突出端面11との間に軸方向の距離cが設けられている。反圧力室12側の端面18aは、第1種類のプラグ18の軸方向両側の端面のうち、圧力室12に遠い側の端面である。距離cは、端面18aと、突出端面11のうち、チェーンガイド8と接触し得る部分との間で最短となる軸方向の距離とする。このような距離cが設けられているため、突出端面11に接するチェーンガイド8によって、プラグ18の反圧力室12側の端面18aが押されてエア抜き通路が短くなり、正規のエア抜き通路20のときの油圧ダンパ力の発生特性に比して、当該発生特性が変化する事態は起こらない。また、距離cの範囲内であれば、第1種類のプラグ18の端面18aの軸方向位置を反圧力室12側へ変更しても、前述の事態は起こらず、係る変更を許容することができる。
この第1種類のチェーンテンショナ1は、第1種類のリーク溝19の軸方向長さb>貫通孔17の円筒状内周の軸方向長さaに設定され、かつ当該第1種類のリーク溝19のねじ山が当該円筒状内周に密着している第1種類のプラグ18の圧入範囲が、距離cを残すように設定されているので、圧入したプラグ18は、圧力室12に突出した部分を有し、その突出部分にも第1種類のリーク溝19の雄ねじ部分が存在している。
第1種類のプラグ18の圧入範囲で螺旋方向の長さが決まった第1種類のエア抜き通路20からは、前述のようにエアが抜けるだけでなく、作動油のリークも発生する。一般に、このリーク特性は、チェーンテンショナのリークダウン特性に影響し、ひいては、チェーンテンショナの油圧ダンパ力の発生特性にも影響する。したがって、第1種類のチェーンテンショナ1において、第1種類のプラグ18を異種類のプラグへ変更することのみによって、第1種類のエア抜き通路20と異なる異種類のエア抜き通路を形成し、ひいては、第1種類のチェーンテンショナ1と油圧ダンパ力を異ならせた異種類のチェーンテンショナを製造することができる。
図4A~図4Cに、第1種類のプラグ18、これと異なる異種類のプラグ18’、これらと異なる別の異種類のプラグ18”を、それぞれ貫通孔17の円筒状内周に圧入した状態を同縮尺で示す。異種類のプラグ18’は、第1種類のリーク溝19と異なる異種類のリーク溝19’を有する。別の異種類のプラグ18”は、第1種類のリーク溝19及び異なる異種類のリーク溝19’と異なる別の異種類のリーク溝19”を有する。すなわち、図4Bは、図1に示す第1種類のチェーンテンショナ1に比して、プラグ変更以外の点で内部構造が全て共通の異種類のチェーンテンショナのプラグ18’付近を示すものである。また、図4Cは、図1に示す第1種類のチェーンテンショナ1に比して、プラグ変更以外の点で内部構造が全て共通の別の異種類のチェーンテンショナのプラグ18”付近を示すものである。
図4A~図4Cの比較から明らかなように、異種類のプラグ18’、別の異種類のプラグ18”は、第1種類のプラグ18と同じ締め代を維持しつつ、第1種類のリーク溝19に比して雄ねじのピッチ、リードを変更した異種類のリーク溝19’、別の異種類のリーク溝19”へ変更することのみによって、共通の貫通孔17の円筒状内周との間に形成されるオリフィス断面積、オリフィス長さ(エア抜き通路の螺旋方向の長さ)を変更して、油圧ダンパ力の発生特性を変更することができる。
このようなプラグの種類変更のみを行って複数種類のチェーンテンショナ(試験例1~4)を製造し、これらの動的反力を測定することによって、プラグの種類変更のみが油圧ダンパ力に与える影響を調べた。この動的反力の測定条件は、次の(1)~(4)である。
(1)加振振幅:±0.2mm
(2)加振周波数:50Hz
(3)供給油圧:0.3MPa
(4)温度:室温
(1)加振振幅:±0.2mm
(2)加振周波数:50Hz
(3)供給油圧:0.3MPa
(4)温度:室温
試験例1は、オリフィス断面積を0.13mm2とし、オリフィス長さを45mmとしたものであり、その動的反力は、2400Nであった。
また、試験例2は、オリフィス断面積を0.2mm2とし、オリフィス長さを33mmとしたものであり、その動的反力は、1600Nであった。
また、試験例3は、オリフィス断面積を0.37mm2とし、オリフィス長さを30mmとしたものであり、その動的反力は、780Nであった。
また、試験例4は、オリフィス断面積を0.6mm2とし、オリフィス長さを21mmとしたものであり、その動的反力は、300Nであった。
これら試験例1~4間における動的反力の差異から明らかなように、リーク溝が異なるプラグへの種類変更のみによって、油圧ダンパ力の発生特性を異ならせた異種類のチェーンテンショナを製造可能なことが分かる。
試験例1~4で示されたように、リーク溝の外径以外の形状変更のみによって、油圧ダンパ力を数倍に変化させることが可能である。このような調節範囲があれば、エンジン型式の差異に基づくエンジン特性の差異に対応することができる。例えば、図1に示す第1種類のチェーンテンショナ1を第1のエンジン型式用に製造し、これから図4Bに示す異種類のプラグ18’への種類変更のみによって、第1のエンジン型式と異なる異種類のエンジン型式用に油圧ダンパ力を異ならせた異種類のチェーンテンショナを製造し、同じく図4Cに示す別の異種類のプラグ18”への種類変更のみによって、第1のエンジン型式と異なる別の異種類のエンジン型式用に油圧ダンパ力を異ならせた別の異種類のチェーンテンショナを製造することができる。これら各種類のチェーンテンショナからなるチェーンテンショナ群において、油圧ダンパ力は、各種類のチェーンテンショナ間で異なる品質管理基準で管理される。例えば、油圧ダンパ力の最大設定値は、各種類のチェーンテンショナ間で異なる。
エア抜き通路20、20’、20”のリーク特性が温度変化によって変化することを抑えることが好ましい。このため、図4A~図4Cに示す各種類のプラグ18、18’、18”は、図1に示すプランジャ10と同じく鉄系材料で形成するとよい。
各種類のプラグ18、18’、18”を鉄系材料で形成する場合、各種類のリーク溝19、19’、19”は、例えば、転造によって形成することができる。転造時にプラグ18、18’、18”の外周の組織が切断されず、その外周にバリが生じにくい。そのため、各種類のエア抜き通路20、20’、20”へのバリの混入が生じにくく、図1に示す圧力室12からのリーク性能を安定させることにつながる。図4A~図4Cに示すようなリーク溝19、19’、19”は、圧造によって形成してもよい。また、プラグ18、18’、18”を樹脂の射出成形で形成して、その成形によってリーク溝19、19’、19”を形成してもよい。このようにしても、リーク溝19、19’、19”を圧造または転造で形成したものと同様、バリが生じにくいので、エア抜き通路20、20’、20”へのバリの混入が生じにくい。この場合、プラグ18、18’、18”を形成する樹脂にフェノール樹脂を用いることが好ましい。このようにすると、周囲温度が上昇したときに、プラグ18、18’、18”と、図1に示すプランジャ10との間に熱膨張差が生じにくいので、高温時にも、図4A~図4Cに示すエア抜き通路20、20’、20”の断面積が変化しにくく、安定したリーク性能を得ることができる。
また、リーク溝19、19’、19”の雄ねじ形状、素材等によっては、プラグ18、18’、18”の突出部分に存在している雄ねじ部分が、図1に示す圧力室12の圧力上昇時に貫通孔17の円筒状内周に少し押し込まれて弾性変形を生じ、圧力下降後にスプリングバックするように設定することが可能である。このように設定すれば、図4A~図4Cに示すプラグ18、18’、18”の圧力負荷方向への耐抜け性が向上する。
リーク溝19、19’、19”は、1条の台形ねじを例示したが、多条ねじにしてもよい。このようにすると、複数のエア抜き通路が形成されるので、いずれかのエア抜き通路に詰まりを生じた場合にも、他のエア抜き通路を通じて、図1に示す圧力室12内の空気を確実に排出することができる。
また、プランジャ10及び図4A~図4Cに示すプラグ18、18’、18”の仕様を何ら変更しなくても、図3に示したような前述の距離cを活用して、図4A~図4Cに示すプラグ18、18’、18”の圧入範囲を、貫通孔17の円筒状内周に対して反圧力室側へ拡大する仕様変更(オリフィス長さの変更)が可能である。この仕様変更により、リーク溝19、19’、19”と貫通孔17の円筒状内周の噛み合い長さを螺旋方向に大きくして(オリフィス長さだけを大きくして)、エア抜き通路20、20’、20”を螺旋方向に延長した更に異種類のチェーンテンショナを得ることができる。このようにプラグ18、18’、18”の圧入範囲を変更することのみによって、油圧ダンパ力を異ならせた異種類のチェーンテンショナを製造することも可能である。
第1種類のプラグ18を代表例として具体的に説明すると、図3中において、貫通孔17の円筒状内周に対するプラグ18の圧入範囲を考えたとき、実線で外形を描いたプラグ18は、図1に示す第1種類のチェーンテンショナ1において設定された圧入範囲といえる。このチェーンテンショナ1と共通の内部構造部品(シリンダ9、プランジャ10及びプラグ18等)だけを用い、図3中に当該実線で描いた既設定の圧入範囲に比して、反圧力室12側へ拡大した新設定(図3中に一点鎖線で拡大量を示す)でプラグ18を貫通孔17の円筒状内周に圧入することにより、油圧ダンパ力を異ならせた異種類のチェーンテンショナを製造することが可能である。
なお、リーク溝19の軸方向長さbと、貫通孔17の円筒状内周の軸方向長さaとの差分を距離cよりも大きく設ける、すなわち(b-a)>cとすることが好ましい。これにより、距離cを最大限に活用してエア抜き通路を螺旋方向に延長可能となり、油圧ダンパ力の発生特性の調節範囲を最大化することができる。
以上に述べたように、図1、図4B、図4Cに示した各種類のチェーンテンショナは、いわば、貫通孔17の円筒状内周に圧入するプラグ18、18’、18”間の種類変更のみによって油圧ダンパ力を異ならせたものなので、プラグ18、18’、18”以外に各種類のチェーンテンショナの内部で仕様変更を行うことがなく、油圧ダンパ力を異ならせたチェーンテンショナを簡単に提供することができる。
また、図1に示す第1種類のチェーンテンショナ1と、図4B、図4Cに示す異種類のチェーンテンショナとからなるチェーンテンショナ群は、図1、図4Aに示す第1種類のプラグ18と、図4B、図4Cに示すようにプラグ18に対してリーク溝19’、19”が異なる異種類のプラグ18’、18”との間での種類変更を行うだけの簡単さで、油圧ダンパ力を異ならせた複数種類のチェーンテンショナを提供することができる。
また、図1に示す第1種類のチェーンテンショナ1に比して、図4B、図4Cに示すように、異種類のプラグ18’、18”を貫通孔17の円筒状内周に圧入した内部変更のみによって異種類のチェーンテンショナを製造する方法は、図1、図4Aに示す第1種類のプラグ18から、図4B、図4Cに示すようにプラグ18とリーク溝19’、19”が異なる異種類のプラグ18’、18”への種類変更を行うだけの簡単さで、図1、図4Aに示す第1種類のチェーンテンショナ1と油圧ダンパ力を異ならせた図4B、図4Cに示す異種類のチェーンテンショナを提供することができる。
図1、図4B、図4Cに示す各種類のチェーンテンショナは、図1から理解できるように、シリンダ9の内周に形成された環状の収容凹部21内にプランジャ10の外周を弾性的に締め付けるレジスタリング22を収容し、そのレジスタリング22を、プランジャ10の外周に軸方向に一定の間隔をおいて形成された円周溝23に係合させ、その各円周溝23内には、プランジャ10をシリンダ9から突出させる方向の荷重が負荷されたときに、レジスタリング22を拡径させてプランジャ10の移動を許容するテーパ面24と、プランジャ10をシリンダ9内に押し込む方向の荷重が負荷されたときに、レジスタリング22を係止してプランジャ10の移動を制限するストッパ面25とが設けられているもとしたが、この発明は、他の構造のチェーンテンショナにも適用可能である。
例えば、特許文献1に記載のように、プランジャのシリンダ内への挿入端を筒状とし、その挿入端内周に雌ねじを形成し、その雌ねじにねじ係合する雄ねじを外周に有するスクリュロッドを設け、そのスクリュロッドで前記リターンスプリングを支持したチェーンテンショナに、この発明を適用することも可能である。この種のチェーンテンショナでは、スクリュロッドの雄ねじと、プランジャの雌ねじを、軸線に沿った断面形状が非対称形状の鋸歯状に形成し、プランジャをシリンダ内に押し込む方向の力が作用したときに圧力を受ける圧力側フランクのフランク角が、遊び側フランクのフランク角よりも大きくなったものにすることが好ましい。この発明の技術的範囲は、上述の実施形態に限定されず、特許請求の範囲の記載に基づく技術的思想の範囲内での全ての変更を含むものである。
1 第1種類のチェーンテンショナ
9 シリンダ
10 プランジャ
11 突出端面
12 圧力室
13 給油通路
14 チェックバルブ
15 リーク隙間
16 リターンスプリング
17 貫通孔
18、18’、18” プラグ
19、19’、19” リーク溝
20、20’、20” エア抜き通路
9 シリンダ
10 プランジャ
11 突出端面
12 圧力室
13 給油通路
14 チェックバルブ
15 リーク隙間
16 リターンスプリング
17 貫通孔
18、18’、18” プラグ
19、19’、19” リーク溝
20、20’、20” エア抜き通路
Claims (6)
- 一端が開放し、かつ他端が閉じた筒状のシリンダ(9)内に、プランジャ(10)を軸方向に摺動可能に挿入し、前記プランジャ(10)を、シリンダ(9)内への挿入端が開放し、かつシリンダ(9)からの突出端面(11)をもった筒状に形成し、そのプランジャ(10)と前記シリンダ(9)とで囲まれた圧力室(12)内に作動油を導入する給油通路(13)を設け、その給油通路(13)の圧力室(12)側の端部に、給油通路(13)側から圧力室(12)側への作動油の流れのみを許容するチェックバルブ(14)を設け、前記シリンダ(9)とプランジャ(10)の摺動面間に圧力室(12)内の作動油をシリンダ(9)の外側に流出させるリーク隙間(15)を設け、前記プランジャ(10)をシリンダ(9)から突出する方向に付勢するリターンスプリング(16)を設け、前記プランジャ(10)の突出端面(11)から前記圧力室(12)に至る貫通孔(17)を前記プランジャ(10)に設け、その貫通孔(17)の円筒状内周に、外周にリーク溝(19)を有するプラグ(18)を圧入して当該円筒状内周と当該プラグ(18)の外周との間にエア抜き通路(20)を形成したチェーンテンショナにおいて、
前記貫通孔(17)の円筒状内周に圧入するプラグ(18’、18”)の種類変更のみによって油圧ダンパ力を異ならせたことを特徴とするチェーンテンショナ。 - 前記リーク溝(19、19’、19”)を雄ねじとし、前記リーク溝(19、19’、19”)の軸方向長さ(b)を前記貫通孔(17)の円筒状内周の軸方向長さ(a)よりも大きく設け、前記貫通孔(17)の円筒状内周に圧入したプラグ(18、18’、18”)の反圧力室(12)側の端面と、前記プランジャ(10)の突出端面(11)との間に軸方向の距離(c)を設けた請求項1に記載のチェーンテンショナ。
- 前記リーク隙間(15)の径方向の大きさ(g)を30~60μmに設けた請求項1又は2に記載のチェーンテンショナ。
- 前記シリンダ(9)をアルミ系材料で形成し、前記プランジャ(10)及び前記プラグ(18)を鉄系材料で形成した請求項1から3のいずれか1項に記載のチェーンテンショナ。
- 一端が開放し、かつ他端が閉じた筒状のシリンダ(9)内に、プランジャ(10)を軸方向に摺動可能に挿入し、前記プランジャ(10)を、シリンダ(9)内への挿入端が開放し、かつシリンダ(9)からの突出端面(11)をもった筒状に形成し、そのプランジャ(10)と前記シリンダ(9)とで囲まれた圧力室(12)内に作動油を導入する給油通路(13)を設け、その給油通路(13)の圧力室(12)側の端部に、給油通路(13)側から圧力室(12)側への作動油の流れのみを許容するチェックバルブ(14)を設け、前記シリンダ(9)とプランジャ(10)の摺動面間に圧力室(12)内の作動油をシリンダ(9)の外側に流出させるリーク隙間(15)を設け、前記プランジャ(10)をシリンダ(9)から突出する方向に付勢するリターンスプリング(16)を設け、前記プランジャ(10)の突出端面(11)から前記圧力室(12)に至る貫通孔(17)を前記プランジャ(10)に設け、その貫通孔(17)の円筒状内周に、外周に第1種類のリーク溝(19)を有する第1種類のプラグ(18)を圧入して当該円筒状内周と当該第1種類のプラグ(18)の外周との間に第1種類のエア抜き通路(20)を形成した第1種類のチェーンテンショナと、
前記第1種類のリーク溝(19)と異なる異種類のリーク溝(19’、19”)を有する異種類のプラグ(18’、18”)を備え、当該異種類のプラグ(18’、18”)を前記貫通孔(17)の円筒状内周に圧入した内部変更のみによって前記第1種類のチェーンテンショナと油圧ダンパ力を異ならせた異種類のチェーンテンショナと、
からなるチェーンテンショナ群。 - 一端が開放し、かつ他端が閉じた筒状のシリンダ(9)内に、プランジャ(10)を軸方向に摺動可能に挿入し、前記プランジャ(10)を、シリンダ(9)内への挿入端が開放し、かつシリンダ(9)からの突出端面(11)をもった筒状に形成し、そのプランジャ(10)と前記シリンダ(9)とで囲まれた圧力室(12)内に作動油を導入する給油通路(13)を設け、その給油通路(13)の圧力室(12)側の端部に、給油通路(13)側から圧力室(12)側への作動油の流れのみを許容するチェックバルブ(14)を設け、前記シリンダ(9)とプランジャ(10)の摺動面間に圧力室(12)内の作動油をシリンダ(9)の外側に流出させるリーク隙間(15)を設け、前記プランジャ(10)をシリンダ(9)から突出する方向に付勢するリターンスプリング(16)を設け、前記プランジャ(10)の突出端面(11)から前記圧力室(12)に至る貫通孔(17)を前記プランジャ(10)に設け、その貫通孔(17)の円筒状内周に、外周に第1種類のリーク溝(19)を有する第1種類のプラグ(18)を圧入して当該円筒状内周と当該第1種類のプラグ(18)の外周との間に第1種類のエア抜き通路(20)を形成した第1種類のチェーンテンショナに比して、
前記第1種類のリーク溝(19)と異なる異種類のリーク溝(19’、19”)を有する異種類のプラグ(18’、18”)を前記貫通孔(17)の円筒状内周に圧入した内部変更のみによって、前記第1種類のチェーンテンショナと油圧ダンパ力を異ならせた異種類のチェーンテンショナを製造する方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/514,960 US10550916B2 (en) | 2014-10-06 | 2015-09-28 | Chain tensioner, chain tensioner group, and method of manufacturing a chain tensioner |
CN201580053502.3A CN106795951B (zh) | 2014-10-06 | 2015-09-28 | 链条张紧装置、链条张紧装置组以及其制造方法 |
EP15849774.3A EP3205903A4 (en) | 2014-10-06 | 2015-09-28 | Chain tensioner, chain tensioner group, and manufacturing method for same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014205519A JP2016075334A (ja) | 2014-10-06 | 2014-10-06 | チェーンテンショナ、チェーンテンショナ群及びその製造方法 |
JP2014-205519 | 2014-10-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016056415A1 true WO2016056415A1 (ja) | 2016-04-14 |
Family
ID=55653032
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/077260 WO2016056415A1 (ja) | 2014-10-06 | 2015-09-28 | チェーンテンショナ、チェーンテンショナ群及びその製造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10550916B2 (ja) |
EP (1) | EP3205903A4 (ja) |
JP (1) | JP2016075334A (ja) |
CN (1) | CN106795951B (ja) |
WO (1) | WO2016056415A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2545410A (en) * | 2015-12-10 | 2017-06-21 | Gm Global Tech Operations Llc | Tensioner for an endless drive element of an internal combustion engine |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107923496A (zh) * | 2015-07-28 | 2018-04-17 | 博格华纳公司 | 带有排放的两件式活塞 |
CN108204386B (zh) * | 2016-12-20 | 2021-08-17 | 博格华纳公司 | 使用活塞鼻部中孔尺寸来控制液压张紧器调谐 |
JP7064138B2 (ja) * | 2018-07-06 | 2022-05-10 | 株式会社椿本チエイン | テンショナ |
CN112709791B (zh) * | 2020-12-04 | 2022-05-06 | 浙江吉利控股集团有限公司 | 用于汽车发动机的张紧器油压调节系统以及油压调节方法 |
KR102339177B1 (ko) * | 2020-12-07 | 2021-12-14 | 한화시스템 주식회사 | 복합형 스토퍼 어셈블리 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08247237A (ja) * | 1995-03-08 | 1996-09-24 | Borg Warner Automot Kk | 油圧テンショナ |
JP2006046610A (ja) * | 2004-08-09 | 2006-02-16 | Ntn Corp | チェーンテンショナ |
JP2009079604A (ja) * | 2007-09-25 | 2009-04-16 | Ntn Corp | チェーンテンショナ |
JP2012241794A (ja) * | 2011-05-19 | 2012-12-10 | Ntn Corp | 補機用油圧式オートテンショナ |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04129946U (ja) * | 1991-01-31 | 1992-11-30 | 株式会社椿本チエイン | 圧力室の空気排出機構を具えた油圧装置 |
US5259820A (en) * | 1992-05-19 | 1993-11-09 | Borg-Warner Automotive Transmission & Engine Components Corporation | Hydraulic tensioner having a variable orifice check valve and a double helix internal ratchet |
US5601505A (en) * | 1994-09-12 | 1997-02-11 | Borg-Warner Automotive, K.K. | Hydraulic tensioner |
US5653652A (en) | 1995-12-18 | 1997-08-05 | Borg-Warner Automotive, Inc. | Hydraulic tensioning system with dual arm blade |
JP3635198B2 (ja) * | 1997-12-22 | 2005-04-06 | Ntn株式会社 | チェーンテンショナ |
JP3243226B2 (ja) * | 1999-02-18 | 2002-01-07 | 株式会社椿本チエイン | 油圧式テンショナ |
US7018406B2 (en) * | 1999-11-17 | 2006-03-28 | Corevalve Sa | Prosthetic valve for transluminal delivery |
JP3813588B2 (ja) * | 2003-02-28 | 2006-08-23 | 株式会社椿本チエイン | ラチェット式テンショナ |
CN2767759Y (zh) * | 2004-11-17 | 2006-03-29 | 重庆宗申技术开发研究有限公司 | 链条自动张紧器 |
US8243090B2 (en) * | 2007-08-08 | 2012-08-14 | Landmark Screens, Llc | Method for mapping a color specified using a smaller color gamut to a larger color gamut |
US8501534B2 (en) * | 2008-07-16 | 2013-08-06 | Infineon Technologies Ag | Method for housing an electronic component in a device package and an electronic component housed in the device package |
JP2010121748A (ja) | 2008-11-21 | 2010-06-03 | Ntn Corp | チェーンテンショナ |
JP5088832B2 (ja) * | 2009-07-21 | 2012-12-05 | 株式会社椿本チエイン | チェーンテンショナ |
JP2011149468A (ja) * | 2010-01-20 | 2011-08-04 | Ntn Corp | チェーンテンショナ |
WO2012144402A1 (ja) * | 2011-04-21 | 2012-10-26 | Ntn株式会社 | 油圧式オートテンショナ |
US20130033121A1 (en) * | 2011-08-05 | 2013-02-07 | Simpson Russell E | Personal grounding device or method to ground for a human being |
JP2013072493A (ja) * | 2011-09-28 | 2013-04-22 | Ntn Corp | チェーンテンショナ |
-
2014
- 2014-10-06 JP JP2014205519A patent/JP2016075334A/ja active Pending
-
2015
- 2015-09-28 CN CN201580053502.3A patent/CN106795951B/zh active Active
- 2015-09-28 US US15/514,960 patent/US10550916B2/en active Active
- 2015-09-28 WO PCT/JP2015/077260 patent/WO2016056415A1/ja active Application Filing
- 2015-09-28 EP EP15849774.3A patent/EP3205903A4/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08247237A (ja) * | 1995-03-08 | 1996-09-24 | Borg Warner Automot Kk | 油圧テンショナ |
JP2006046610A (ja) * | 2004-08-09 | 2006-02-16 | Ntn Corp | チェーンテンショナ |
JP2009079604A (ja) * | 2007-09-25 | 2009-04-16 | Ntn Corp | チェーンテンショナ |
JP2012241794A (ja) * | 2011-05-19 | 2012-12-10 | Ntn Corp | 補機用油圧式オートテンショナ |
Non-Patent Citations (1)
Title |
---|
See also references of EP3205903A4 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2545410A (en) * | 2015-12-10 | 2017-06-21 | Gm Global Tech Operations Llc | Tensioner for an endless drive element of an internal combustion engine |
Also Published As
Publication number | Publication date |
---|---|
US20170211663A1 (en) | 2017-07-27 |
JP2016075334A (ja) | 2016-05-12 |
US10550916B2 (en) | 2020-02-04 |
EP3205903A1 (en) | 2017-08-16 |
CN106795951A (zh) | 2017-05-31 |
EP3205903A4 (en) | 2017-09-27 |
CN106795951B (zh) | 2019-12-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016056415A1 (ja) | チェーンテンショナ、チェーンテンショナ群及びその製造方法 | |
US7775923B2 (en) | Chain tensioner for two-wheeled vehicle engine | |
US20100130320A1 (en) | Chain tensioner | |
GB2422415A (en) | Hydraulic tensioner having a friction ring | |
EP2267335B1 (en) | Chain tensioner | |
JP5561584B2 (ja) | チェーンテンショナ | |
JP5122876B2 (ja) | チェーンテンショナの製造方法 | |
JP6725726B2 (ja) | チェーンテンショナ、チェーンテンショナ群及びその製造方法 | |
JP2013072493A (ja) | チェーンテンショナ | |
JP5102238B2 (ja) | チェーンテンショナ | |
JP2011149468A (ja) | チェーンテンショナ | |
JP2011021646A (ja) | チェーンテンショナ | |
WO2019172078A1 (ja) | チェーンテンショナ | |
JP4880428B2 (ja) | 給油式オートテンショナ | |
JP2009115227A (ja) | チェーンテンショナ | |
JP2007239822A (ja) | 油圧式オートテンショナ | |
EP2251565B1 (en) | Chain tensioner | |
JP2009079604A (ja) | チェーンテンショナ | |
JP2010138942A (ja) | チェーンテンショナ | |
JP4880441B2 (ja) | チェーンテンショナ | |
JP2010223289A (ja) | チェーンテンショナ | |
US20100062886A1 (en) | Oil feed type auto-tensioner | |
JP2009008175A (ja) | オートテンショナ | |
JP2011127705A (ja) | チェーンテンショナ | |
JP5638979B2 (ja) | チェーンテンショナ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15849774 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15514960 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2015849774 Country of ref document: EP |