WO2016054917A1 - N型双面电池的湿法刻蚀方法 - Google Patents

N型双面电池的湿法刻蚀方法 Download PDF

Info

Publication number
WO2016054917A1
WO2016054917A1 PCT/CN2015/078932 CN2015078932W WO2016054917A1 WO 2016054917 A1 WO2016054917 A1 WO 2016054917A1 CN 2015078932 W CN2015078932 W CN 2015078932W WO 2016054917 A1 WO2016054917 A1 WO 2016054917A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
silicon wafer
type silicon
concentration
weight
Prior art date
Application number
PCT/CN2015/078932
Other languages
English (en)
French (fr)
Inventor
郑飞
张忠卫
石磊
阮忠立
赵晨
赵钰雪
Original Assignee
上海神舟新能源发展有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海神舟新能源发展有限公司 filed Critical 上海神舟新能源发展有限公司
Priority to EP15849346.0A priority Critical patent/EP3190633A4/en
Priority to US15/028,665 priority patent/US9537037B2/en
Priority to JP2017538279A priority patent/JP6553731B2/ja
Priority to AU2015323848A priority patent/AU2015323848B2/en
Publication of WO2016054917A1 publication Critical patent/WO2016054917A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0684Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells double emitter cells, e.g. bifacial solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
    • H01L31/0288Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention designs the field of solar cell technology, in particular to a wet etching method of an N-type double-sided battery.
  • N-type silicon wafer refers to the incorporation of phosphorus into the silicon wafer. Since N-type silicon wafers have a long minority carrier lifetime, solar cells can be used to obtain higher photoelectric conversion efficiency, and N-type solar cells have received more and more attention in recent years. In addition, the N-type battery is more tolerant to metal contamination, has better endurance performance, and has high stability, and the N-type silicon wafer is doped with phosphorus, has no boron-oxygen pair, and has no photo-induced attenuation effect. Due to these advantages of N-type crystalline silicon, N-type silicon wafers are very suitable for making efficient solar cells.
  • N-type double-sided battery fabrication is as follows: N-type silicon wafer is subjected to surface texturing treatment; after high-temperature boron diffusion, a PN junction is formed on the front surface of the silicon wafer; etching removes the edge of the silicon wafer and the back surface PN junction; The N+ layer was formed by diffusion; the antireflection film was deposited on both sides; the double-sided printing was followed by sintering, and finally an N-type double-sided solar cell was obtained.
  • etching is a crucial step because the front side of the N-type double-sided battery has boron diffusion, and the back side is phosphorus diffusion, and the edge PN junction insulation is not good, which will result in a battery. Leakage at the edge of the battery seriously affects the electrical performance of the battery.
  • the etching methods of double-sided batteries include plasma etching and laser etching, but the above two methods have certain drawbacks.
  • the disadvantages of plasma etching are that the edge PN junction is not completely removed and the etching effect of the machine is not The problem of stability; and due to the characteristics of the device, the etching process will reduce the light-receiving area of the battery to a certain extent, thereby reducing the photoelectric conversion efficiency of the double-sided battery.
  • the object of the present invention is to provide a wet etching method for an N-type double-sided battery which increases the polishing effect on the back surface of the silicon wafer, increases the passivation effect on the back surface, and improves the conversion efficiency of the battery in order to overcome the defects of the prior art.
  • the invention provides a wet etching method for an N-type double-sided battery, comprising:
  • the wet etching method of the N-type double-sided battery of the invention improves the polishing passivation effect of the back surface by the corrosive action of the first mixed acid under the premise of ensuring that the battery efficiency is not lowered, thereby improving the photoelectric conversion of the N-type double-sided battery effectiveness.
  • the etching of the edge and the back surface can remove the PN junction diffused to the edge of the N-type silicon wafer during the boron diffusion process and the borosilicate glass generated on the surface of the N-type silicon wafer during the boron diffusion process, thereby avoiding the finished N-type double-sided battery. The problem of edge leakage occurs afterwards.
  • a further improvement of the wet etching method of the N-type double-sided battery of the present invention is that, in the technical solution, steps (2) to (5) are repeatedly performed. Achieve better etching and passivation effects through multiple implementations.
  • a further improvement of the wet etching method of the N-type double-sided battery of the present invention is that, in the technical solution, the first mixed acid washing adopts an HF solution, a HNO 3 solution and a H 2 SO 4 solution in a volume ratio of 1:2.
  • a further improvement of the wet etching method of the N-type double-sided battery of the present invention is that, in the technical solution, the first alkaline washing uses a strong alkaline solution having a concentration of 0.5 to 15% by weight, and the strong alkaline solution includes NaOH solution or KOH solution.
  • a further improvement of the wet etching method of the N-type double-sided battery of the present invention is that, in the technical solution, the second mixed pickling is a mixture of HF solution and HCl solution in a volume ratio of 1:10 to 10:1.
  • the solution wherein the concentration of the HF solution was 49% by weight, and the concentration of the HCl solution was 37% by weight.
  • the invention also provides a wet etching method for an N-type double-sided battery, comprising:
  • the water film can protect the front side of the N-type silicon wafer, and improve the polishing of the back surface by the corrosive action of the first mixed acid under the premise of ensuring that the battery efficiency is not lowered. Passivation effect, thereby improving the photoelectric conversion efficiency of the N-type double-sided battery.
  • the etching of the edge and the back surface can remove the PN junction diffused to the edge of the N-type silicon wafer during the boron diffusion process and the borosilicate glass generated on the surface of the N-type silicon wafer during the boron diffusion process, thereby avoiding the finished N-type double-sided battery. The problem of edge leakage occurs afterwards.
  • a further improvement of the wet etching method of the N-type double-sided battery of the present invention is that, in the technical solution, steps (2) to (6) are repeatedly carried out. Achieve better etching and passivation effects through multiple implementations.
  • a further improvement of the wet etching method of the N-type double-sided battery of the present invention is that, in the technical solution, the water film is covered on the front surface of the N-type silicon wafer with pure water, and the water film completely covers the N The front side of the silicon wafer.
  • a further improvement of the wet etching method of the N-type double-sided battery of the present invention is that, in the technical solution, the first mixed acid washing is composed of an HF solution and a HNO 3 solution in a volume ratio of 1:10 to 10:1.
  • a further improvement of the wet etching method of the N-type double-sided battery of the present invention is that, in the technical solution, the first alkaline washing uses a strong alkaline solution having a concentration of 0.5 to 15% by weight, and the strong alkaline solution includes NaOH solution, KOH solution or sodium carbonate solution.
  • a further improvement of the wet etching method of the N-type double-sided battery of the present invention is that, in the technical solution, the second mixed pickling is a mixture of HF solution and HCl solution in a volume ratio of 1:10 to 10:1.
  • the solution wherein the concentration of the HF solution was 49% by weight, and the concentration of the HCl solution was 37% by weight.
  • the invention also provides a wet etching method for an N-type double-sided battery, comprising:
  • the water film can protect the front side of the N-type silicon wafer, and the corrosion effect of the first mixed acid and the third mixed acid can be ensured under the premise of ensuring that the battery efficiency is not lowered. Better to improve the polishing passivation effect on the back side, thereby improving the photoelectric conversion efficiency of the N-type double-sided battery.
  • the etching of the edge and the back surface can remove the PN junction diffused to the edge of the N-type silicon wafer during the boron diffusion process and the borosilicate glass generated on the surface of the N-type silicon wafer during the boron diffusion process, thereby avoiding the finished N-type double-sided battery. The problem of edge leakage occurs afterwards.
  • a further improvement of the wet etching method of the N-type double-sided battery of the present invention is that, in the technical solution, the first mixed acid washing adopts an HF solution, a HNO 3 solution and a H 2 SO 4 solution in a volume ratio of 1:2.
  • a further improvement of the wet etching method of the N-type double-sided battery of the present invention is that, in the technical solution, the first alkaline washing uses a strong alkaline solution having a concentration of 0.5 to 15% by weight, and the strong alkaline solution includes NaOH solution or KOH solution.
  • a further improvement of the wet etching method of the N-type double-sided battery of the present invention is that, in the technical solution, the second mixed pickling is a mixture of HF solution and HCl solution in a volume ratio of 1:10 to 10:1.
  • the solution wherein the concentration of the HF solution was 49% by weight, and the concentration of the HCl solution was 37% by weight.
  • a further improvement of the wet etching method of the N-type double-sided battery of the present invention is that, in the technical solution, the water film is covered on the front surface of the N-type silicon wafer with pure water, and the water film completely covers the N The front side of the silicon wafer.
  • a further improvement of the wet etching method of the N-type double-sided battery of the present invention is that, in the technical solution, the third mixed acid washing is composed of an HF solution and a HNO 3 solution in a volume ratio of 1:10 to 10:1.
  • a further improvement of the wet etching method of the N-type double-sided battery of the present invention is that, in the technical solution, the second alkaline washing uses a strong alkaline solution having a concentration of 0.5 to 15% by weight, and the strong alkaline solution includes NaOH solution, KOH solution or sodium carbonate solution.
  • a further improvement of the wet etching method of the N-type double-sided battery of the present invention is that, in the technical solution, the fourth mixed acid washing adopts a mixture of HF solution and HCl solution in a volume ratio of 1:10 to 10:1.
  • the solution wherein the concentration of the HF solution was 49% by weight, and the concentration of the HCl solution was 37% by weight.
  • the invention also provides a wet etching method for an N-type double-sided battery, comprising:
  • the water film can protect the front side of the N-type silicon wafer, and the corrosion effect of the first mixed acid and the third mixed acid can be ensured under the premise of ensuring that the battery efficiency is not lowered. Better to improve the polishing passivation effect on the back side, thereby improving the photoelectric conversion efficiency of the N-type double-sided battery.
  • the addition of edge and back etching can remove the PN junction diffused to the edge of the N-type silicon wafer during boron diffusion and the borosilicate generated on the surface of the N-type silicon wafer during boron diffusion. Glass, avoiding the problem of edge leakage after the N-type double-sided battery is finished.
  • a further improvement of the wet etching method of the N-type double-sided battery of the present invention is that, in the technical solution, the water film is covered on the front surface of the N-type silicon wafer with pure water, and the water film completely covers the N The front side of the silicon wafer.
  • a further improvement of the wet etching method of the N-type double-sided battery of the present invention is that, in the technical solution, the first mixed acid washing is composed of an HF solution and a HNO 3 solution in a volume ratio of 1:10 to 10:1.
  • a further improvement of the wet etching method of the N-type double-sided battery of the present invention is that, in the technical solution, the first alkaline washing uses a strong alkaline solution having a concentration of 0.5 to 15% by weight, and the strong alkaline solution includes NaOH solution, KOH solution or sodium carbonate solution.
  • a further improvement of the wet etching method of the N-type double-sided battery of the present invention is that, in the technical solution, the second mixed pickling is a mixture of HF solution and HCl solution in a volume ratio of 1:10 to 10:1.
  • the solution wherein the concentration of the HF solution was 49% by weight, and the concentration of the HCl solution was 37% by weight.
  • a further improvement of the wet etching method of the N-type double-sided battery of the present invention is that, in the technical solution, the third mixed acid washing adopts an HF solution, a HNO 3 solution and a H 2 SO 4 solution in a volume ratio of 1:2.
  • a further improvement of the wet etching method of the N-type double-sided battery of the present invention is that, in the technical solution, the second alkaline washing uses a strong alkaline solution having a concentration of 0.5 to 15% by weight, and the strong alkaline solution includes NaOH solution or KOH solution.
  • a further improvement of the wet etching method of the N-type double-sided battery of the present invention is that, in the technical solution, the fourth mixed acid washing adopts a mixture of HF solution and HCl solution in a volume ratio of 1:10 to 10:1.
  • the solution wherein the concentration of the HF solution was 49% by weight, and the concentration of the HCl solution was 37% by weight.
  • the wet etching method of the N-type double-sided battery of the present invention comprises:
  • the first mixed acid washing adopts a mixed solution of HF solution, HNO 3 solution and H 2 SO 4 solution in a volume ratio of 1:2:1 to 1:10:5, wherein the concentration of the HF solution is 49% by weight. , the concentration of the H 2 SO 4 solution is 99% by weight, the concentration of the HNO 3 solution is 70% by weight;
  • the first alkaline washing uses a strong alkaline solution having a concentration of 0.5 to 15% by weight, and the strongly alkaline solution includes a NaOH solution or The KOH solution;
  • the second mixed acid washing adopts a mixed solution of HF solution and HCl solution in a volume ratio of 1:10 to 10:1, wherein the concentration of the HF solution is 49% by weight, and the concentration of the HCl solution is 37% by weight.
  • an N-type silicon wafer is provided, the N-type silicon wafer is surface-textured, and a PN junction is prepared on the surface (including the front surface, the back surface, and the edge) of the N-type silicon wafer by a boron diffusion process.
  • a pure water washing and KOH solution cleaning removes the acid remaining on the surface of the N-type silicon wafer; and after a second pure water washing and a second mixed acid obtained by mixing HF solution and HCl solution at a volume ratio of 3:1, The residual impurities on the surface of the N-type silicon wafer; finally, after the third pure water washing and air drying, the wet etching process of the N-type double-sided battery is completed.
  • Table 1 compares the reverse leakage of the present invention with the reverse leakage data of the comparative example. As can be seen from the reverse leakage data in Table 1, the reverse leakage of the present invention is significantly smaller than the reverse leakage of the comparative example.
  • the wet etching method of the N-type double-sided battery of the invention improves the polishing passivation effect of the back surface by the corrosive action of the first mixed acid under the premise of ensuring that the battery efficiency is not lowered, thereby improving the photoelectric conversion of the N-type double-sided battery effectiveness.
  • adding edge and back etching can remove boron expansion
  • the PN junction diffused to the edge of the N-type silicon wafer during the dispersion process and the borosilicate glass generated on the surface of the N-type silicon wafer during the boron diffusion process avoid the problem of edge leakage after the N-type double-sided battery is finished.
  • the steps (2) to (5) can be repeatedly performed, and a plurality of implementations are performed to achieve a better etching and polishing passivation effect.
  • the wet etching method of the N-type double-sided battery of the present invention comprises:
  • the water film is covered on the front surface of the N-type silicon wafer with pure water, the water film completely covering the front surface of the N-type silicon wafer;
  • the first mixed pickling is performed by using an HF solution and a HNO 3 solution by volume.
  • the strong alkaline solution comprises a NaOH solution, a KOH solution or a sodium carbonate solution; and the second mixed acid wash uses a mixed solution of an HF solution and a HCl solution in a volume ratio of 1:10 to 10:1, wherein the HF solution The concentration was 49% by weight and the concentration of the HCl solution was 37% by weight.
  • an N-type silicon wafer is provided, the N-type silicon wafer is surface-textured, and a PN junction is prepared on the surface (including the front surface, the back surface, and the edge) of the N-type silicon wafer by a boron diffusion process, in the N-type
  • the front surface of the silicon wafer is covered with a pure water film, first passed through a first mixed acid mixed with an HF solution and a HNO 3 solution, and the PN junction on the edge and the back of the N-type silicon wafer is removed by etching, leaving a front PN junction and increasing the back surface.
  • Polishing passivation effect then removing the residual acid on the surface of the N-type silicon wafer after the first pure water washing and KOH solution cleaning; then passing through the second pure water washing and mixing by HF solution and HCl solution at a volume ratio of 5:1
  • the second mixed acid is formed to remove impurities remaining on the surface of the N-type silicon wafer; finally, after the third pure water washing and air drying, the wet etching process of the N-type double-sided battery is completed.
  • Table 2 compares the reverse leakage of the present invention with the reverse leakage data of the comparative example. As can be seen from the reverse leakage data in Table 2, the reverse leakage of the present invention is significantly smaller than the reverse leakage of the comparative example.
  • the water film can protect the front side of the N-type silicon wafer, and improve the polishing of the back surface by the corrosive action of the first mixed acid under the premise of ensuring that the battery efficiency is not lowered. Passivation effect, thereby improving the photoelectric conversion efficiency of the N-type double-sided battery.
  • the etching of the edge and the back surface can remove the PN junction diffused to the edge of the N-type silicon wafer during the boron diffusion process and the borosilicate glass generated on the surface of the N-type silicon wafer during the boron diffusion process, thereby avoiding the finished N-type double-sided battery. The problem of edge leakage occurs afterwards.
  • the steps (2) to (6) can be repeatedly performed, and a plurality of implementations are performed to achieve a better etching and polishing passivation effect.
  • the wet etching method of the N-type double-sided battery of the present invention comprises:
  • the water film is covered on the front surface of the N-type silicon wafer with pure water, the water film completely covering the front surface of the N-type silicon wafer;
  • the first mixed acid washing adopts an HF solution, a HNO 3 solution and H 2 SO 4 solution in a volume ratio of 1:2:1 to 1:10:5 mixed solution, wherein the concentration of the HF solution is 49 wt%, the concentration of the H 2 SO 4 solution is 99 wt%, and the concentration of the HNO 3 solution is 70 wt%;
  • the first alkali washing uses a strong alkaline solution having a concentration of 0.5 to 15 wt%, the strong alkaline solution includes a NaOH solution or a KOH solution;
  • the second mixed acid washing uses a ratio of HF solution to HCl solution by volume.
  • the solution includes a NaOH solution, a KOH solution or a sodium carbonate solution;
  • the fourth mixed acid wash uses an HF solution and a HCl solution.
  • an N-type silicon wafer is provided, the N-type silicon wafer is surface-textured, and a PN junction is prepared on the surface (including the front surface, the back surface, and the edge) of the N-type silicon wafer by a boron diffusion process.
  • the first mixed acid obtained by mixing the solution, the HNO 3 solution and the H 2 SO 4 solution in a volume ratio of 1:2:1 is etched to remove the PN junction at the edge and the back of the N-type silicon wafer, leaving a front PN junction and increasing the back surface.
  • polishing and passivating effect then removing the residual acid on the surface of the N-type silicon wafer after the first pure water washing and the 0.5% by weight NaOH solution; then passing through the second pure water washing and the volume from the HF solution and the HCl solution
  • the second mixed acid which is mixed at a ratio of 1:10 removes impurities remaining on the surface of the N-type silicon wafer; then, after a third pure water washing and air drying; the front surface of the N-type silicon wafer is covered with a pure water film, and then passed through
  • the HF solution and the HNO 3 solution are mixed with a third mixed acid in a volume ratio of 1:10, and the PN junction at the edge and the back of the N-type silicon wafer is etched away to increase the backside polishing passivation effect; then, after a fourth pure water washing and Cleaning with a 0.5% by weight KOH solution to remove residual surface of the N-type silicon wafer
  • the liquid is further subjected to a fifth pure water washing and a fourth mixed acid obtained by
  • the water film can protect the front side of the N-type silicon wafer, and the corrosion effect of the first mixed acid and the third mixed acid can be ensured under the premise of ensuring that the battery efficiency is not lowered. Better to improve the polishing passivation effect on the back side, thereby improving the photoelectric conversion efficiency of the N-type double-sided battery.
  • the etching of the edge and the back side can be removed to remove the boron diffusion process. The PN junction scattered to the edge of the N-type silicon wafer and the borosilicate glass generated on the surface of the N-type silicon wafer during the boron diffusion process avoid the problem of edge leakage after the N-type double-sided battery is finished.
  • the invention also provides a wet etching method for an N-type double-sided battery, comprising:
  • the water film is covered on the front surface of the N-type silicon wafer with pure water, the water film completely covering the front surface of the N-type silicon wafer;
  • the first mixed pickling is performed by using an HF solution and a HNO 3 solution by volume.
  • the strong alkaline solution comprises a NaOH solution, a KOH solution or a sodium carbonate solution; and the second mixed acid wash uses a mixed solution of an HF solution and a HCl solution in a volume ratio of 1:10 to 10:1, wherein the HF solution The concentration is 49 wt%, the concentration of the HCl solution is 37 wt%; the third mixed acid washing is a mixture of HF solution, HNO 3 solution and H 2 SO 4 solution in a volume ratio of 1:2:1 to 1:10:5.
  • the second alkaline washing is performed by using a strong alkaline solution having a concentration of 0.5 to 15% by weight.
  • the strong alkaline solution includes a NaOH solution or a KOH solution; the fourth mixed acid wash uses an HF solution and a HCl solution. Volume ratio of 1:10 to a mixed solution composed of 10:1, wherein the concentration of the HF solution is 49wt%, the concentration of HCl solution was 37wt%.
  • an N-type silicon wafer is provided, the N-type silicon wafer is surface-textured, and a PN junction is prepared on the surface (including the front surface, the back surface, and the edge) of the N-type silicon wafer by a boron diffusion process, in the N-type
  • the front surface of the silicon wafer is covered with a pure water film, and the first mixed acid formed by mixing HF solution and HNO 3 solution at a volume ratio of 10:1 is used to etch away the PN junction of the edge and back of the N-type silicon wafer, leaving The front PN junction increases the backside passivation effect; then the first pure water wash and 0.5 wt% KOH solution are used to remove the residual acid on the surface of the N-type silicon wafer; then the second pure water wash and the HF The solution and the HCl solution are mixed with a second mixed acid in a volume ratio of 1:2 to remove impurities remaining on the surface of the N-type silicon wafer; then subjected to a third pure water washing and air drying; and
  • the SO 4 solution is mixed with a third mixed acid in a volume ratio of 1:7: 2 , and the PN junction at the edge and the back of the N-type silicon wafer is etched away to increase the backside polishing passivation effect; then, after a fourth pure water washing and Cleaning with a 0.5% by weight NaOH solution to remove residual surface of the N-type silicon wafer
  • the liquid is further subjected to a fifth pure water washing and a fourth mixed acid obtained by mixing HF solution and HCl solution at a volume ratio of 10:1 to remove impurities remaining on the surface of the N-type silicon wafer; finally, after the sixth pure water washing and air drying
  • the wet etching process of the N-type double-sided battery is completed.
  • the water film can protect the front side of the N-type silicon wafer, and the corrosion effect of the first mixed acid and the third mixed acid can be ensured under the premise of ensuring that the battery efficiency is not lowered. Better to improve the polishing passivation effect on the back side, thereby improving the photoelectric conversion efficiency of the N-type double-sided battery.
  • the etching of the edge and the back surface can remove the PN junction diffused to the edge of the N-type silicon wafer during the boron diffusion process and the borosilicate glass generated on the surface of the N-type silicon wafer during the boron diffusion process, thereby avoiding the finished N-type double-sided battery. The problem of edge leakage occurs afterwards.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Sustainable Energy (AREA)
  • Weting (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种N型双面电池的湿法刻蚀方法,包括:(1)提供N型硅片,对N型硅片进行表面织构化,并采用硼扩散工艺在N型硅片的表面制备PN结;(2)进行第一混酸洗,刻蚀N型硅片边缘及背面的PN结;(3)进行第一次纯水洗和第一碱洗,去除N型硅片表面残留的酸液;(4)进行第二次纯水洗和第二混酸洗,去除N型硅片表面残留的杂质;(5)进行第三次纯水洗和风干;(6)风干后,完成对N型双面电池的刻蚀。在保证电池效率不降低的前提下,改善背面的抛光钝化效果,提升N型双面电池的光电转化效率。另外,增加边缘及背面的刻蚀,去除硼扩散过程中扩散到N型硅片边缘的PN结,避免N型双面电池成品后发生边缘漏电的问题。

Description

N型双面电池的湿法刻蚀方法 技术领域
本发明设计太阳电池技术领域,尤其是指一种N型双面电池的湿法刻蚀方法。
背景技术
N型硅片是指硅片中掺入磷。由于N型硅片具有较长的少数载流子寿命,因此做成太阳电池可以获得更高的光电转换效率,近些年N型太阳电池越来越受到关注。另外,N型电池对金属污染的容忍度更强,具有更好的忍耐性能,稳定性强,且N型硅片中掺入的是磷,没有硼-氧对,不存在光致衰减效应,由于N型晶体硅的这些优点,使得N型硅片非常适合制作高效的太阳电池。N型双面电池制作通常的工艺流程为:N型硅片经过表面织构化处理后;经过高温硼扩散后在硅片正面形成PN结;刻蚀去除硅片边缘和背面PN结;背面磷扩散制作N+层;双面沉积减反膜;双面印刷后烧结,最后制得N型双面太阳电池。从上述双面电池工艺过程中可以看出,刻蚀是至关重要的步骤,因为N型双面电池的正面有硼扩散,而背面是磷扩散,不做好边缘PN结绝缘,将导致电池的边缘漏电,严重影响电池的电性能表现。目前双面电池的刻蚀方法有等离子刻蚀和激光刻蚀等方法,但上述两种方法都存在一定的弊端,等离子刻蚀的缺点是存在边缘PN结去除不彻底和机台刻蚀效果不稳定的问题;而激光刻蚀由于设备特点,刻蚀过程会一定程度导致电池的受光面积减少,从而降低双面电池的光电转换效率。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种增加硅片背面的抛光效果,增加背面的钝化作用,提升电池转换效率的N型双面电池的湿法刻蚀方法。
本发明的目的可以通过以下技术方案来实现:
本发明提供了一种N型双面电池的湿法刻蚀方法,包括:
(1)提供N型硅片,对所述N型硅片进行表面织构化,并采用硼扩散工艺在所述N型硅片的表面制备PN结;
(2)进行第一混酸洗,刻蚀所述N型硅片边缘及背面的PN结;
(3)进行第一次纯水洗和第一碱洗,去除所述N型硅片表面残留的酸液;
(4)进行第二次纯水洗和第二混酸洗,去除所述N型硅片表面残留的杂质;
(5)进行第三次纯水洗和风干;
(6)风干后,完成对N型双面电池的刻蚀。
本发明N型双面电池的湿法刻蚀方法,在保证电池效率不降低的前提下,通过第一混酸的腐蚀作用,改善背面的抛光钝化效果,进而提升N型双面电池的光电转化效率。另外,增加边缘及背面的刻蚀,可以去除硼扩散过程中扩散到N型硅片边缘的PN结以及硼扩散过程中在N型硅片表面产生的硼硅玻璃,避免N型双面电池成品后发生边缘漏电的问题。
本发明N型双面电池的湿法刻蚀方法的进一步改进在于,在该技术方案中,步骤(2)~步骤(5)重复实施。通过多次实施来达到更好的刻蚀抛光钝化效果。
本发明N型双面电池的湿法刻蚀方法的进一步改进在于,在该技术方案中,所述第一混酸洗采用HF溶液、HNO3溶液和H2SO4溶液按体积比为1∶2∶1~1∶10∶5构成的混合溶液,其中HF溶液的浓度为49wt%,H2SO4溶液的浓度为99wt%,HNO3溶液的浓度为70wt%。
本发明N型双面电池的湿法刻蚀方法的进一步改进在于,在该技术方案中,所述第一碱洗采用浓度为0.5~15wt%的强碱性溶液,所述强碱性溶液包括NaOH溶液或KOH溶液。
本发明N型双面电池的湿法刻蚀方法的进一步改进在于,在该技术方案中,所述第二混酸洗采用HF溶液和HCl溶液按体积比为1∶10~10∶1构成的混合溶液,其中HF溶液的浓度为49wt%,HCl溶液的浓度为37wt%。
本发明还提供了一种N型双面电池的湿法刻蚀方法,包括:
(1)提供N型硅片,对所述N型硅片进行表面织构化,并采用硼扩散工艺在所述N型硅片的表面制备PN结;
(2)在所述N型硅片正面覆盖水膜;
(3)进行第一混酸刻蚀处理,增加所述N型硅片背面的钝化效果;
(4)进行第一次纯水洗和第一碱洗,去除所述N型硅片表面残留的酸液;
(5)进行第二次纯水洗和第二混酸洗,去除所述N型硅片表面残留的杂质;
(6)进行第三次纯水洗和风干;
(7)风干后,完成对N型双面电池的刻蚀。
本发明N型双面电池的湿法刻蚀方法,水膜可以起到保护N型硅片正面的作用,在保证电池效率不降低的前提下,通过第一混酸的腐蚀作用,改善背面的抛光钝化效果,进而提升N型双面电池的光电转化效率。另外,增加边缘及背面的刻蚀,可以去除硼扩散过程中扩散到N型硅片边缘的PN结以及硼扩散过程中在N型硅片表面产生的硼硅玻璃,避免N型双面电池成品后发生边缘漏电的问题。
本发明N型双面电池的湿法刻蚀方法的进一步改进在于,在该技术方案中,步骤(2)~步骤(6)重复实施。通过多次实施来达到更好的刻蚀抛光钝化效果。
本发明N型双面电池的湿法刻蚀方法的进一步改进在于,在该技术方案中,采用纯水在所述N型硅片正面覆盖所述水膜,所述水膜完全覆盖所述N型硅片的正面。
本发明N型双面电池的湿法刻蚀方法的进一步改进在于,在该技术方案中,所述第一混酸洗采用HF溶液和HNO3溶液按体积比为1∶10~10∶1构成的混合溶液,其中HF溶液的浓度为49wt%,HNO3溶液的浓度为70wt%。
本发明N型双面电池的湿法刻蚀方法的进一步改进在于,在该技术方案中,所述第一碱洗采用浓度为0.5~15wt%的强碱性溶液,所述强碱性溶液包括NaOH溶液、KOH溶液或碳酸钠溶液。
本发明N型双面电池的湿法刻蚀方法的进一步改进在于,在该技术方案中,所述第二混酸洗采用HF溶液和HCl溶液按体积比为1∶10~10∶1构成的混合溶液,其中HF溶液的浓度为49wt%,HCl溶液的浓度为37wt%。
本发明还提供了一种N型双面电池的湿法刻蚀方法,包括:
(1)提供N型硅片,对所述N型硅片进行表面织构化,并采用硼扩散工艺在所述N型硅片的表面制备PN结;
(2)进行第一混酸洗,刻蚀所述N型硅片边缘及背面的PN结;
(3)进行第一次纯水洗和第一碱洗,去除所述N型硅片表面残留的酸液;
(4)进行第二次纯水洗和第二混酸洗,去除所述N型硅片表面残留的杂质;
(5)进行第三次纯水洗和风干;
(6)在所述N型硅片正面覆盖水膜;
(7)进行第三混酸刻蚀处理,增加所述N型硅片背面的钝化效果;
(8)进行第四次纯水洗和第二碱洗,去除所述N型硅片表面残留的酸液;
(9)进行第五次纯水洗和第四混酸洗,去除所述N型硅片表面残留的杂质;
(10)进行第六次纯水洗和风干;
(11)风干后,完成对N型双面电池的刻蚀。
本发明N型双面电池的湿法刻蚀方法,水膜可以起到保护N型硅片正面的作用,在保证电池效率不降低的前提下,通过第一混酸和第三混酸的腐蚀作用,更好的改善背面的抛光钝化效果,进而提升N型双面电池的光电转化效率。另外,增加边缘及背面的刻蚀,可以去除硼扩散过程中扩散到N型硅片边缘的PN结以及硼扩散过程中在N型硅片表面产生的硼硅玻璃,避免N型双面电池成品后发生边缘漏电的问题。
本发明N型双面电池的湿法刻蚀方法的进一步改进在于,在该技术方案中,所述第一混酸洗采用HF溶液、HNO3溶液和H2SO4溶液按体积比为1∶2∶1~1∶10∶5构成的混合溶液,其中HF溶液的浓度为49wt%,H2SO4溶液的浓度为99wt%,HNO3溶液的浓度为70wt%。
本发明N型双面电池的湿法刻蚀方法的进一步改进在于,在该技术方案中,所述第一碱洗采用浓度为0.5~15wt%的强碱性溶液,所述强碱性溶液包括NaOH溶液或KOH溶液。
本发明N型双面电池的湿法刻蚀方法的进一步改进在于,在该技术方案中,所述第二混酸洗采用HF溶液和HCl溶液按体积比为1∶10~10∶1构成的混合溶液,其中HF溶液的浓度为49wt%,HCl溶液的浓度为37wt%。
本发明N型双面电池的湿法刻蚀方法的进一步改进在于,在该技术方案中,采用纯水在所述N型硅片正面覆盖所述水膜,所述水膜完全覆盖所述N型硅片的正面。
本发明N型双面电池的湿法刻蚀方法的进一步改进在于,在该技术方案中,所述第三混酸洗采用HF溶液和HNO3溶液按体积比为1∶10~10∶1构成的混合溶液,其中HF溶液的浓度为49wt%,HNO3溶液的浓度为70wt%。
本发明N型双面电池的湿法刻蚀方法的进一步改进在于,在该技术方案中,所述第二碱洗采用浓度为0.5~15wt%的强碱性溶液,所述强碱性溶液包括NaOH溶液、KOH溶液或碳酸钠溶液。
本发明N型双面电池的湿法刻蚀方法的进一步改进在于,在该技术方案中,所述第四混酸洗采用HF溶液和HCl溶液按体积比为1∶10~10∶1构成的混合溶液,其中HF溶液的浓度为49wt%,HCl溶液的浓度为37wt%。
本发明还提供了一种N型双面电池的湿法刻蚀方法,包括:
(1)提供N型硅片,对所述N型硅片进行表面织构化,并采用硼扩散工艺在所述N型硅片的表面制备PN结;
(2)在所述N型硅片正面覆盖水膜;
(3)进行第一混酸刻蚀处理,增加所述N型硅片背面的钝化效果;
(4)进行第一次纯水洗和第一碱洗,去除所述N型硅片表面残留的酸液;
(5)进行第二次纯水洗和第二混酸洗,去除所述N型硅片表面残留的杂质;
(6)进行第三次纯水洗和风干;
(7)进行第三混酸洗,刻蚀所述N型硅片边缘及背面的PN结;
(8)进行第四次纯水洗和第二碱洗,去除所述N型硅片表面残留的酸液;
(9)进行第五次纯水洗和第四混酸洗,去除所述N型硅片表面残留的杂质;
(10)进行第六次纯水洗和风干;
(11)风干后,完成对N型双面电池的刻蚀。
本发明N型双面电池的湿法刻蚀方法,水膜可以起到保护N型硅片正面的作用,在保证电池效率不降低的前提下,通过第一混酸和第三混酸的腐蚀作用,更好的改善背面的抛光钝化效果,进而提升N型双面电池的光电转化效率。另外,增加边缘及背面的刻蚀,可以去除硼扩散过程中扩散到N型硅片边缘的PN结以及硼扩散过程中在N型硅片表面产生的硼硅 玻璃,避免N型双面电池成品后发生边缘漏电的问题。
本发明N型双面电池的湿法刻蚀方法的进一步改进在于,在该技术方案中,采用纯水在所述N型硅片正面覆盖所述水膜,所述水膜完全覆盖所述N型硅片的正面。
本发明N型双面电池的湿法刻蚀方法的进一步改进在于,在该技术方案中,所述第一混酸洗采用HF溶液和HNO3溶液按体积比为1∶10~10∶1构成的混合溶液,其中HF溶液的浓度为49wt%,HNO3溶液的浓度为70wt%。
本发明N型双面电池的湿法刻蚀方法的进一步改进在于,在该技术方案中,所述第一碱洗采用浓度为0.5~15wt%的强碱性溶液,所述强碱性溶液包括NaOH溶液、KOH溶液或碳酸钠溶液。
本发明N型双面电池的湿法刻蚀方法的进一步改进在于,在该技术方案中,所述第二混酸洗采用HF溶液和HCl溶液按体积比为1∶10~10∶1构成的混合溶液,其中HF溶液的浓度为49wt%,HCl溶液的浓度为37wt%。
本发明N型双面电池的湿法刻蚀方法的进一步改进在于,在该技术方案中,所述第三混酸洗采用HF溶液、HNO3溶液和H2SO4溶液按体积比为1∶2∶1~1∶10∶5构成的混合溶液,其中HF溶液的浓度为49wt%,H2SO4溶液的浓度为99wt%,HNO3溶液的浓度为70wt%。
本发明N型双面电池的湿法刻蚀方法的进一步改进在于,在该技术方案中,所述第二碱洗采用浓度为0.5~15wt%的强碱性溶液,所述强碱性溶液包括NaOH溶液或KOH溶液。
本发明N型双面电池的湿法刻蚀方法的进一步改进在于,在该技术方案中,所述第四混酸洗采用HF溶液和HCl溶液按体积比为1∶10~10∶1构成的混合溶液,其中HF溶液的浓度为49wt%,HCl溶液的浓度为37wt%。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
实施例1
在第一实施例中,本发明N型双面电池的湿法刻蚀方法,包括:
(1)提供N型硅片,对所述N型硅片进行表面织构化,并采用硼扩 散工艺在所述N型硅片的表面制备PN结;
(2)进行第一混酸洗,刻蚀去除所述N型硅片边缘及背面的PN结;
(3)进行第一次纯水洗和第一碱洗,去除所述N型硅片表面残留的酸液;
(4)进行第二次纯水洗和第二混酸洗,去除所述N型硅片表面残留的杂质;
(5)进行第三次纯水洗和风干;
(6)风干后,完成对N型双面电池的刻蚀。
优选地,所述第一混酸洗采用HF溶液、HNO3溶液和H2SO4溶液按体积比为1∶2∶1~1∶10∶5构成的混合溶液,其中HF溶液的浓度为49wt%,H2SO4溶液的浓度为99wt%,HNO3溶液的浓度为70wt%;所述第一碱洗采用浓度为0.5~15wt%的强碱性溶液,所述强碱性溶液包括NaOH溶液或KOH溶液;所述第二混酸洗采用HF溶液和HCl溶液按体积比为1∶10~10∶1构成的混合溶液,其中HF溶液的浓度为49wt%,HCl溶液的浓度为37wt%。
具体地,提供N型硅片,对所N型硅片进行表面织构化,并采用硼扩散工艺在所述N型硅片的表面(包括正面、背面及边缘)制备PN结,先经过由HF溶液、HNO3溶液和H2SO4溶液混合而成的第一混酸,刻蚀去除N型硅片边缘及背面的PN结,留下正面PN结,增加背面抛光钝化效果;然后经过第一次纯水洗以及KOH溶液清洗,去除N型硅片表面残留的酸液;再经过第二次纯水洗和由HF溶液以及HCl溶液以体积比为3∶1混合而成的第二混酸,去除N型硅片表面残留的杂质;最后经过第三次纯水洗和风干,完成N型双面电池的湿法刻蚀过程。
Figure PCTCN2015078932-appb-000001
表1
表1为本发明的反向漏电与对比例的反向漏电数据对比,从表1中的反向漏电数据可以看出,本发明的反向漏电明显小于对比例的反向漏电。
本发明N型双面电池的湿法刻蚀方法,在保证电池效率不降低的前提下,通过第一混酸的腐蚀作用,改善背面的抛光钝化效果,进而提升N型双面电池的光电转化效率。另外,增加边缘及背面的刻蚀,可以去除硼扩 散过程中扩散到N型硅片边缘的PN结以及硼扩散过程中在N型硅片表面产生的硼硅玻璃,避免N型双面电池成品后发生边缘漏电的问题。并且,步骤(2)~步骤(5)可重复实施,通过多次实施来达到更好的刻蚀抛光钝化效果。
实施例2
在第二实施例中,本发明N型双面电池的湿法刻蚀方法,包括:
(1)提供N型硅片,对所述N型硅片进行表面织构化,并采用硼扩散工艺在所述N型硅片的表面制备PN结;
(2)在所述N型硅片正面覆盖水膜;
(3)进行第一混酸刻蚀处理,增加所述N型硅片背面的钝化效果;
(4)进行第一次纯水洗和第一碱洗,去除所述N型硅片表面残留的酸液;
(5)进行第二次纯水洗和第二混酸洗,去除所述N型硅片表面残留的杂质;
(6)进行第三次纯水洗和风干;
(7)风干后,完成对N型双面电池的刻蚀。
优选地,采用纯水在所述N型硅片正面覆盖所述水膜,所述水膜完全覆盖所述N型硅片的正面;所述第一混酸洗采用HF溶液和HNO3溶液按体积比为1∶10~10∶1构成的混合溶液,其中HF溶液的浓度为49wt%,HNO3溶液的浓度为70wt%;所述第一碱洗采用浓度为0.5~15wt%的强碱性溶液,所述强碱性溶液包括NaOH溶液、KOH溶液或碳酸钠溶液;所述第二混酸洗采用HF溶液和HCl溶液按体积比为1∶10~10∶1构成的混合溶液,其中HF溶液的浓度为49wt%,HCl溶液的浓度为37wt%。
具体地,提供N型硅片,对所N型硅片进行表面织构化,并采用硼扩散工艺在所述N型硅片的表面(包括正面、背面及边缘)制备PN结,在N型硅片正面覆盖一层纯水水膜,先经过由HF溶液和HNO3溶液混合而成的第一混酸,刻蚀去除N型硅片边缘及背面的PN结,留下正面PN结,增加背面抛光钝化效果;然后经过第一次纯水洗以及KOH溶液清洗,去除N型硅片表面残留的酸液;再经过第二次纯水洗和由HF溶液以及HCl溶液以体积比为5∶1混合而成的第二混酸,去除N型硅片表面残留的杂质;最后经过第三次纯水洗和风干,完成N型双面电池的湿法刻蚀过程。
Figure PCTCN2015078932-appb-000002
表2
表2为本发明的反向漏电与对比例的反向漏电数据对比,从表2中的反向漏电数据可以看出,本发明的反向漏电明显小于对比例的反向漏电。
本发明N型双面电池的湿法刻蚀方法,水膜可以起到保护N型硅片正面的作用,在保证电池效率不降低的前提下,通过第一混酸的腐蚀作用,改善背面的抛光钝化效果,进而提升N型双面电池的光电转化效率。另外,增加边缘及背面的刻蚀,可以去除硼扩散过程中扩散到N型硅片边缘的PN结以及硼扩散过程中在N型硅片表面产生的硼硅玻璃,避免N型双面电池成品后发生边缘漏电的问题。并且,步骤(2)~步骤(6)可重复实施,通过多次实施来达到更好的刻蚀抛光钝化效果。
实施例3
在第三实施例中,本发明N型双面电池的湿法刻蚀方法,包括:
(1)提供N型硅片,对所述N型硅片进行表面织构化,并采用硼扩散工艺在所述N型硅片的表面制备PN结;
(2)进行第一混酸洗,刻蚀去除所述N型硅片边缘及背面的PN结;
(3)进行第一次纯水洗和第一碱洗,去除所述N型硅片表面残留的酸液;
(4)进行第二次纯水洗和第二混酸洗,去除所述N型硅片表面残留的杂质;
(5)进行第三次纯水洗和风干;
(6)在所述N型硅片正面覆盖水膜;
(7)进行第三混酸刻蚀处理,增加所述N型硅片背面的钝化效果;
(8)进行第四次纯水洗和第二碱洗,去除所述N型硅片表面残留的酸液;
(9)进行第五次纯水洗和第四混酸洗,去除所述N型硅片表面残留的杂质;
(10)进行第六次纯水洗和风干;
(11)风干后,完成对N型双面电池的刻蚀。
优选地,采用纯水在所述N型硅片正面覆盖所述水膜,所述水膜完全覆盖所述N型硅片的正面;所述第一混酸洗采用HF溶液、HNO3溶液和H2SO4溶液按体积比为1∶2∶1~1∶10∶5构成的混合溶液,其中HF溶液的浓度为49wt%,H2SO4溶液的浓度为99wt%,HNO3溶液的浓度为70wt%;所述第一碱洗采用浓度为0.5~15wt%的强碱性溶液,所述强碱性溶液包括NaOH溶液或KOH溶液;所述第二混酸洗采用HF溶液和HCl溶液按体积比为1∶10~10∶1构成的混合溶液,其中HF溶液的浓度为49wt%,HCl溶液的浓度为37wt%;所述第三混酸洗采用HF溶液和HNO3溶液按体积比为1∶10~10∶1构成的混合溶液,其中HF溶液的浓度为49wt%,HNO3溶液的浓度为70wt%;所述第二碱洗采用浓度为0.5~15wt%的强碱性溶液,所述强碱性溶液包括NaOH溶液、KOH溶液或碳酸钠溶液;所述第四混酸洗采用HF溶液和HCl溶液按体积比为1∶10~10∶1构成的混合溶液,其中HF溶液的浓度为49wt%,HCl溶液的浓度为37wt%。
具体地,提供N型硅片,对所N型硅片进行表面织构化,并采用硼扩散工艺在所述N型硅片的表面(包括正面、背面及边缘)制备PN结,经过由HF溶液、HNO3溶液和H2SO4溶液以体积比为1∶2∶1混合而成的第一混酸,刻蚀去除N型硅片边缘及背面的PN结,留下正面PN结,增加背面抛光钝化效果;然后经过第一次纯水洗以及浓度为0.5wt%的NaOH溶液清洗,去除N型硅片表面残留的酸液;然后经过第二次纯水洗和由HF溶液以及HCl溶液以体积比为1∶10混合而成的第二混酸,去除N型硅片表面残留的杂质;然后经过第三次纯水洗和风干;在N型硅片正面覆盖一层纯水水膜,然后经过由HF溶液和HNO3溶液以体积比为1∶10混合而成的第三混酸,刻蚀去除N型硅片边缘及背面的PN结,增加背面抛光钝化效果;然后经过第四次纯水洗以及浓度为0.5wt%的KOH溶液清洗,去除N型硅片表面残留的酸液;再经过第五次纯水洗和由HF溶液以及HCl溶液以体积比为1∶10混合而成的第四混酸,去除N型硅片表面残留的杂质;最后经过第六次纯水洗和风干,完成N型双面电池的湿法刻蚀过程。
本发明N型双面电池的湿法刻蚀方法,水膜可以起到保护N型硅片正面的作用,在保证电池效率不降低的前提下,通过第一混酸和第三混酸的腐蚀作用,更好的改善背面的抛光钝化效果,进而提升N型双面电池的光电转化效率。另外,增加边缘及背面的刻蚀,可以去除硼扩散过程中扩 散到N型硅片边缘的PN结以及硼扩散过程中在N型硅片表面产生的硼硅玻璃,避免N型双面电池成品后发生边缘漏电的问题。
实施例4
本发明还提供了一种N型双面电池的湿法刻蚀方法,包括:
(1)提供N型硅片,对所述N型硅片进行表面织构化,并采用硼扩散工艺在所述N型硅片的表面制备PN结;
(2)在所述N型硅片正面覆盖水膜;
(3)进行第一混酸刻蚀处理,增加所述N型硅片背面的钝化效果;
(4)进行第一次纯水洗和第一碱洗,去除所述N型硅片表面残留的酸液;
(5)进行第二次纯水洗和第二混酸洗,去除所述N型硅片表面残留的杂质;
(6)进行第三次纯水洗和风干;
(7)进行第三混酸洗,刻蚀去除所述N型硅片边缘及背面的PN结;
(8)进行第四次纯水洗和第二碱洗,去除所述N型硅片表面残留的酸液;
(9)进行第五次纯水洗和第四混酸洗,去除所述N型硅片表面残留的杂质;
(10)进行第六次纯水洗和风干;
(11)风干后,完成对N型双面电池的刻蚀。
优选地,采用纯水在所述N型硅片正面覆盖所述水膜,所述水膜完全覆盖所述N型硅片的正面;所述第一混酸洗采用HF溶液和HNO3溶液按体积比为1∶10~10∶1构成的混合溶液,其中HF溶液的浓度为49wt%,HNO3溶液的浓度为70wt%;所述第一碱洗采用浓度为0.5~15wt%的强碱性溶液,所述强碱性溶液包括NaOH溶液、KOH溶液或碳酸钠溶液;所述第二混酸洗采用HF溶液和HCl溶液按体积比为1∶10~10∶1构成的混合溶液,其中HF溶液的浓度为49wt%,HCl溶液的浓度为37wt%;所述第三混酸洗采用HF溶液、HNO3溶液和H2SO4溶液按体积比为1∶2∶1~1∶10∶5构成的混合溶液,其中HF溶液的浓度为49wt%,H2SO4溶液的浓度为99wt%,HNO3溶液的浓度为70wt%;所述第二碱洗采用浓度为0.5~15wt%的强碱性溶液,所述强碱性溶液包括NaOH溶液或KOH溶液;所述第四混酸洗采用HF 溶液和HCl溶液按体积比为1∶10~10∶1构成的混合溶液,其中HF溶液的浓度为49wt%,HCl溶液的浓度为37wt%。
具体地,提供N型硅片,对所N型硅片进行表面织构化,并采用硼扩散工艺在所述N型硅片的表面(包括正面、背面及边缘)制备PN结,在N型硅片正面覆盖一层纯水水膜,经过由HF溶液和HNO3溶液以体积比为10∶1混合而成的第一混酸,刻蚀去除N型硅片边缘及背面的PN结,留下正面PN结,增加背面抛光钝化效果;然后经过第一次纯水洗以及浓度为0.5wt%的KOH溶液清洗,去除N型硅片表面残留的酸液;然后经过第二次纯水洗和由HF溶液以及HCl溶液以体积比为1∶2混合而成的第二混酸,去除N型硅片表面残留的杂质;然后经过第三次纯水洗和风干;然后经过由HF溶液、HNO3溶液和H2SO4溶液以体积比为1∶7∶2混合而成的第三混酸,刻蚀去除N型硅片边缘及背面的PN结,增加背面抛光钝化效果;然后经过第四次纯水洗以及浓度为0.5wt%的NaOH溶液清洗,去除N型硅片表面残留的酸液;再经过第五次纯水洗和由HF溶液以及HCl溶液以体积比为10∶1混合而成的第四混酸,去除N型硅片表面残留的杂质;最后经过第六次纯水洗和风干,完成N型双面电池的湿法刻蚀过程。
本发明N型双面电池的湿法刻蚀方法,水膜可以起到保护N型硅片正面的作用,在保证电池效率不降低的前提下,通过第一混酸和第三混酸的腐蚀作用,更好的改善背面的抛光钝化效果,进而提升N型双面电池的光电转化效率。另外,增加边缘及背面的刻蚀,可以去除硼扩散过程中扩散到N型硅片边缘的PN结以及硼扩散过程中在N型硅片表面产生的硼硅玻璃,避免N型双面电池成品后发生边缘漏电的问题。
以上所述仅是本发明的较佳实施例而已,并非对本发明做任何形式上的限制,虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明,任何熟悉本专业的技术人员,在不脱离本发明技术方案的范围内,当可利用上述揭示的技术内容作出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims (27)

  1. 一种N型双面电池的湿法刻蚀方法,其特征在于,包括:
    (1)提供N型硅片,对所述N型硅片进行表面织构化,并采用硼扩散工艺在所述N型硅片的表面制备PN结;
    (2)进行第一混酸洗,刻蚀所述N型硅片边缘及背面的PN结;
    (3)进行第一次纯水洗和第一碱洗,去除所述N型硅片表面残留的酸液;
    (4)进行第二次纯水洗和第二混酸洗,去除所述N型硅片表面残留的杂质;
    (5)进行第三次纯水洗和风干;
    (6)风干后,完成对N型双面电池的刻蚀。
  2. 根据权利要求1所述的N型双面电池的湿法刻蚀方法,其特征在于,步骤(2)~步骤(5)重复实施。
  3. 根据权利要求1所述的N型双面电池的湿法刻蚀方法,其特征在于,所述第一混酸洗采用HF溶液、HNO3溶液和H2SO4溶液按体积比为1∶2∶1~1∶10∶5构成的混合溶液,其中HF溶液的浓度为49wt%,H2SO4溶液的浓度为99wt%,HNO3溶液的浓度为70wt%。
  4. 根据权利要求1所述的N型双面电池的湿法刻蚀方法,其特征在于,所述第一碱洗采用浓度为0.5~15wt%的强碱性溶液,所述强碱性溶液包括NaOH溶液或KOH溶液。
  5. 根据权利要求1所述的N型双面电池的湿法刻蚀方法,其特征在于,所述第二混酸洗采用HF溶液和HCl溶液按体积比为1∶10~10∶1构成的混合溶液,其中HF溶液的浓度为49wt%,HCl溶液的浓度为37wt%。
  6. 一种N型双面电池的湿法刻蚀方法,其特征在于,包括:
    (1)提供N型硅片,对所述N型硅片进行表面织构化,并采用硼扩散工艺在所述N型硅片的表面制备PN结;
    (2)在所述N型硅片正面覆盖水膜;
    (3)进行第一混酸刻蚀处理,增加所述N型硅片背面的钝化效果;
    (4)进行第一次纯水洗和第一碱洗,去除所述N型硅片表面残留的酸液;
    (5)进行第二次纯水洗和第二混酸洗,去除所述N型硅片表面残留 的杂质;
    (6)进行第三次纯水洗和风干;
    (7)风干后,完成对N型双面电池的刻蚀。
  7. 根据权利要求6所述的N型双面电池的湿法刻蚀方法,其特征在于,步骤(2)~步骤(6)重复实施。
  8. 根据权利要求6所述的N型双面电池的湿法刻蚀方法,其特征在于,采用纯水在所述N型硅片正面覆盖所述水膜,所述水膜完全覆盖所述N型硅片的正面。
  9. 根据权利要求6所述的N型双面电池的湿法刻蚀方法,其特征在于,所述第一混酸洗采用HF溶液和HNO3溶液按体积比为1∶10~10∶1构成的混合溶液,其中HF溶液的浓度为49wt%,HNO3溶液的浓度为70wt%。
  10. 据权利要求6所述的N型双面电池的湿法刻蚀方法,其特征在于,所述第一碱洗采用浓度为0.5~15wt%的强碱性溶液,所述强碱性溶液包括NaOH溶液、KOH溶液或碳酸钠溶液。
  11. 根据权利要求6所述的N型双面电池的湿法刻蚀方法,其特征在于,所述第二混酸洗采用HF溶液和HCl溶液按体积比为1∶10~10∶1构成的混合溶液,其中HF溶液的浓度为49wt%,HCl溶液的浓度为37wt%。
  12. 一种N型双面电池的湿法刻蚀方法,其特征在于,包括:
    (1)提供N型硅片,对所述N型硅片进行表面织构化,并采用硼扩散工艺在所述N型硅片的表面制备PN结;
    (2)进行第一混酸洗,刻蚀所述N型硅片边缘及背面的PN结;
    (3)进行第一次纯水洗和第一碱洗,去除所述N型硅片表面残留的酸液;
    (4)进行第二次纯水洗和第二混酸洗,去除所述N型硅片表面残留的杂质;
    (5)进行第三次纯水洗和风干;
    (6)在所述N型硅片正面覆盖水膜;
    (7)进行第三混酸刻蚀处理,增加所述N型硅片背面的钝化效果;
    (8)进行第四次纯水洗和第二碱洗,去除所述N型硅片表面残留的酸液;
    (9)进行第五次纯水洗和第四混酸洗,去除所述N型硅片表面残留的杂质;
    (10)进行第六次纯水洗和风干;
    (11)风干后,完成对N型双面电池的刻蚀。
  13. 根据权利要求12所述的N型双面电池的湿法刻蚀方法,其特征在于,所述第一混酸洗采用HF溶液、HNO3溶液和H2SO4溶液按体积比为1∶2∶1~1∶10∶5构成的混合溶液,其中HF溶液的浓度为49wt%,H2SO4溶液的浓度为99wt%,HNO3溶液的浓度为70wt%。
  14. 根据权利要求12所述的N型双面电池的湿法刻蚀方法,其特征在于,所述第一碱洗采用浓度为0.5~15wt%的强碱性溶液,所述强碱性溶液包括NaOH溶液或KOH溶液。
  15. 根据权利要求12所述的N型双面电池的湿法刻蚀方法,其特征在于,所述第二混酸洗采用HF溶液和HCl溶液按体积比为1∶10~10∶1构成的混合溶液,其中HF溶液的浓度为49wt%,HCl溶液的浓度为37wt%。
  16. 根据权利要求12所述的N型双面电池的湿法刻蚀方法,其特征在于,采用纯水在所述N型硅片正面覆盖所述水膜,所述水膜完全覆盖所述N型硅片的正面。
  17. 根据权利要求12所述的N型双面电池的湿法刻蚀方法,其特征在于,所述第三混酸洗采用HF溶液和HNO3溶液按体积比为1∶10~10∶1构成的混合溶液,其中HF溶液的浓度为49wt%,HNO3溶液的浓度为70wt%。
  18. 根据权利要求12所述的N型双面电池的湿法刻蚀方法,其特征在于,所述第二碱洗采用浓度为0.5~15wt%的强碱性溶液,所述强碱性溶液包括NaOH溶液、KOH溶液或碳酸钠溶液。
  19. 根据权利要求12所述的N型双面电池的湿法刻蚀方法,其特征在于,所述第四混酸洗采用HF溶液和HCl溶液按体积比为1∶10~10∶1构成的混合溶液,其中HF溶液的浓度为49wt%,HCl溶液的浓度为37wt%。
  20. 一种N型双面电池的湿法刻蚀方法,其特征在于,包括:
    (1)提供N型硅片,对所述N型硅片进行表面织构化,并采用硼扩散工艺在所述N型硅片的表面制备PN结;
    (2)在所述N型硅片正面覆盖水膜;
    (3)进行第一混酸刻蚀处理,增加所述N型硅片背面的钝化效果;
    (4)进行第一次纯水洗和第一碱洗,去除所述N型硅片表面残留的酸液;
    (5)进行第二次纯水洗和第二混酸洗,去除所述N型硅片表面残留 的杂质;
    (6)进行第三次纯水洗和风干;
    (7)进行第三混酸洗,刻蚀所述N型硅片边缘及背面的PN结;
    (8)进行第四次纯水洗和第二碱洗,去除所述N型硅片表面残留的酸液;
    (9)进行第五次纯水洗和第四混酸洗,去除所述N型硅片表面残留的杂质;
    (10)进行第六次纯水洗和风干;
    (11)风干后,完成对N型双面电池的刻蚀。
  21. 根据权利要求20所述的N型双面电池的湿法刻蚀方法,其特征在于,采用纯水在所述N型硅片正面覆盖所述水膜,所述水膜完全覆盖所述N型硅片的正面。
  22. 根据权利要求20所述的N型双面电池的湿法刻蚀方法,其特征在于,所述第一混酸洗采用HF溶液和HNO3溶液按体积比为1∶10~10∶1构成的混合溶液,其中HF溶液的浓度为49wt%,HNO3溶液的浓度为70wt%。
  23. 根据权利要求20所述的N型双面电池的湿法刻蚀方法,其特征在于,所述第一碱洗采用浓度为0.5~15wt%的强碱性溶液,所述强碱性溶液包括NaOH溶液、KOH溶液或碳酸钠溶液。
  24. 根据权利要求20所述的N型双面电池的湿法刻蚀方法,其特征在于,所述第二混酸洗采用HF溶液和HCl溶液按体积比为1∶10~10∶1构成的混合溶液,其中HF溶液的浓度为49wt%,HCl溶液的浓度为37wt%。
  25. 根据权利要求20所述的N型双面电池的湿法刻蚀方法,其特征在于,所述第三混酸洗采用HF溶液、HNO3溶液和H2SO4溶液按体积比为1∶2∶1~1∶10∶5构成的混合溶液,其中HF溶液的浓度为49wt%,H2SO4溶液的浓度为99wt%,HNO3溶液的浓度为70wt%。
  26. 根据权利要求20所述的N型双面电池的湿法刻蚀方法,其特征在于,所述第二碱洗采用浓度为0.5~15wt%的强碱性溶液,所述强碱性溶液包括NaOH溶液或KOH溶液。
  27. 根据权利要求20所述的N型双面电池的湿法刻蚀方法,其特征在于,所述第四混酸洗采用HF溶液和HCl溶液按体积比为1∶10~10∶1构成的混合溶液,其中HF溶液的浓度为49wt%,HCl溶液的浓度为37wt%。
PCT/CN2015/078932 2014-10-08 2015-05-14 N型双面电池的湿法刻蚀方法 WO2016054917A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15849346.0A EP3190633A4 (en) 2014-10-08 2015-05-14 Wet-etching method for n-type double-sided battery
US15/028,665 US9537037B2 (en) 2014-10-08 2015-05-14 Wet etching method for an N-type bifacial cell
JP2017538279A JP6553731B2 (ja) 2014-10-08 2015-05-14 N型両面電池のウェットエッチング方法
AU2015323848A AU2015323848B2 (en) 2014-10-08 2015-05-14 Wet etching method for an N-type bifacial cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410525546.9 2014-10-08
CN201410525546.9A CN105576074A (zh) 2014-10-08 2014-10-08 一种n型双面电池的湿法刻蚀方法

Publications (1)

Publication Number Publication Date
WO2016054917A1 true WO2016054917A1 (zh) 2016-04-14

Family

ID=55652548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/078932 WO2016054917A1 (zh) 2014-10-08 2015-05-14 N型双面电池的湿法刻蚀方法

Country Status (6)

Country Link
US (1) US9537037B2 (zh)
EP (1) EP3190633A4 (zh)
JP (1) JP6553731B2 (zh)
CN (1) CN105576074A (zh)
AU (1) AU2015323848B2 (zh)
WO (1) WO2016054917A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105932113A (zh) * 2016-07-15 2016-09-07 苏州阿特斯阳光电力科技有限公司 一种硅太阳能电池的湿法刻蚀方法及其使用的水膜溶液
CN110289213A (zh) * 2019-05-09 2019-09-27 江苏格林保尔光伏有限公司 一种太阳能电池片的刻蚀方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106024970B (zh) * 2016-05-19 2017-12-15 晋能清洁能源科技有限公司 设备兼容的晶硅电池刻蚀方法和perc电池酸抛光方法
CN106601831B (zh) * 2016-12-30 2018-02-13 常州亿晶光电科技有限公司 一种太阳能电池硅片刻蚀用水膜溶液及其应用
CN108091557A (zh) * 2017-11-29 2018-05-29 江苏彩虹永能新能源有限公司 一种太阳能电池背面刻蚀工艺
CN108922941A (zh) * 2018-05-30 2018-11-30 韩华新能源(启东)有限公司 一种太阳能perc电池的制备方法
CN109378357B (zh) * 2018-09-06 2020-06-05 横店集团东磁股份有限公司 一种perc双面太阳电池湿法刻蚀工艺
JP7418261B2 (ja) 2020-03-26 2024-01-19 東京エレクトロン株式会社 基板処理方法および基板処理装置
CN112309849B (zh) * 2020-09-30 2022-11-22 英利能源(中国)有限公司 一种硅片单面刻蚀抛光的方法
CN112185865B (zh) * 2020-11-27 2021-02-26 常州时创能源股份有限公司 一种用于TOPCon电池的链式湿法刻蚀设备
CN113611776B (zh) * 2021-08-02 2023-07-25 横店集团东磁股份有限公司 一种提升perc电池背面反射率的刻蚀方法
CN116844937B (zh) * 2023-06-30 2024-04-09 淮安捷泰新能源科技有限公司 硅片的rca清洗方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102456771A (zh) * 2010-10-22 2012-05-16 华康半导体股份有限公司 硅晶片太阳能电池的制造方法
CN103904164A (zh) * 2014-04-15 2014-07-02 苏州阿特斯阳光电力科技有限公司 一种n型背结太阳能电池的制备方法
CN103904159A (zh) * 2014-01-10 2014-07-02 浙江晶科能源有限公司 一种降低铝背发射极n型太阳电池背表面漏电的方法
KR20140091628A (ko) * 2013-01-11 2014-07-22 현대중공업 주식회사 태양전지의 습식 아이솔레이션 방법

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004172271A (ja) * 2002-11-19 2004-06-17 Mitsubishi Electric Corp 太陽電池の製造方法及び太陽電池
WO2005117138A1 (ja) * 2004-05-28 2005-12-08 Sharp Kabushiki Kaisha 太陽電池用半導体基板とその製造方法および太陽電池
US8268735B2 (en) * 2006-02-01 2012-09-18 Tohoku University Semiconductor device manufacturing method and method for reducing microroughness of semiconductor surface
WO2011032880A1 (en) * 2009-09-21 2011-03-24 Basf Se Aqueous acidic etching solution and method for texturing the surface of single crystal and polycrystal silicon substrates
CN101783374B (zh) * 2010-01-25 2011-09-28 日地太阳能电力股份有限公司 一种硅太阳能电池的制备方法
CN101853897A (zh) * 2010-03-31 2010-10-06 晶澳(扬州)太阳能光伏工程有限公司 一种n型晶体硅局部铝背发射极太阳电池的制备方法
JP5434806B2 (ja) * 2010-06-09 2014-03-05 信越化学工業株式会社 半導体デバイスの製造方法
US20120295447A1 (en) * 2010-11-24 2012-11-22 Air Products And Chemicals, Inc. Compositions and Methods for Texturing of Silicon Wafers
JP5677469B2 (ja) * 2011-01-27 2015-02-25 京セラ株式会社 太陽電池素子の製造方法、太陽電池素子、および太陽電池モジュール
KR20120111378A (ko) * 2011-03-31 2012-10-10 삼성디스플레이 주식회사 태양 전지 및 이의 제조 방법
CN102214732A (zh) * 2011-04-30 2011-10-12 常州天合光能有限公司 一种扩散面水膜保护湿法刻蚀工艺
CN102437240A (zh) * 2011-12-02 2012-05-02 百力达太阳能股份有限公司 一种太阳能电池边缘刻蚀方法
CN102569502A (zh) * 2011-12-16 2012-07-11 合肥晶澳太阳能科技有限公司 一种湿法刻蚀工艺
CN102623560A (zh) * 2012-03-28 2012-08-01 浙江晶科能源有限公司 一种实现太阳能电池湿法边缘绝缘的方法
WO2013169208A1 (en) * 2012-05-09 2013-11-14 National University Of Singapore Non-acidic isotropic etch-back for silicon wafer solar cells
TW201505199A (zh) * 2013-05-08 2015-02-01 Cima Nanotech Israel Ltd 製造具有背側鈍化層之光伏打電池的方法
CN103258728A (zh) * 2013-05-30 2013-08-21 英利能源(中国)有限公司 硅片刻蚀的方法及太阳能电池片的制作方法
CN105592944B (zh) * 2013-07-29 2018-05-11 贝克太阳能有限公司 对基板进行的空间有限的加工
EP3047524B1 (en) * 2013-09-16 2020-11-04 Specmat Inc. Solar cell and method of fabricating solar cells
CN103618020A (zh) * 2013-10-18 2014-03-05 浙江晶科能源有限公司 一种硅太阳能电池生产中的湿刻蚀方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102456771A (zh) * 2010-10-22 2012-05-16 华康半导体股份有限公司 硅晶片太阳能电池的制造方法
KR20140091628A (ko) * 2013-01-11 2014-07-22 현대중공업 주식회사 태양전지의 습식 아이솔레이션 방법
CN103904159A (zh) * 2014-01-10 2014-07-02 浙江晶科能源有限公司 一种降低铝背发射极n型太阳电池背表面漏电的方法
CN103904164A (zh) * 2014-04-15 2014-07-02 苏州阿特斯阳光电力科技有限公司 一种n型背结太阳能电池的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3190633A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105932113A (zh) * 2016-07-15 2016-09-07 苏州阿特斯阳光电力科技有限公司 一种硅太阳能电池的湿法刻蚀方法及其使用的水膜溶液
CN110289213A (zh) * 2019-05-09 2019-09-27 江苏格林保尔光伏有限公司 一种太阳能电池片的刻蚀方法

Also Published As

Publication number Publication date
EP3190633A4 (en) 2018-07-25
US9537037B2 (en) 2017-01-03
JP6553731B2 (ja) 2019-07-31
US20160329451A1 (en) 2016-11-10
AU2015323848B2 (en) 2016-09-22
CN105576074A (zh) 2016-05-11
AU2015323848A1 (en) 2016-04-28
EP3190633A1 (en) 2017-07-12
JP2017531926A (ja) 2017-10-26

Similar Documents

Publication Publication Date Title
WO2016054917A1 (zh) N型双面电池的湿法刻蚀方法
TWI669830B (zh) 一種局部背接觸太陽能電池的製造方法
CN108666393B (zh) 太阳能电池的制备方法及太阳能电池
JP6246744B2 (ja) 太陽電池セルの製造方法
JP5737204B2 (ja) 太陽電池及びその製造方法
CN105118898A (zh) 一种硅片表面钝化方法及基于其的n型双面电池的制作方法
CN103746044A (zh) 背面抛光结构单晶硅太阳能电池的制备方法
CN103178159A (zh) 一种晶体硅太阳能电池刻蚀方法
CN108922941A (zh) 一种太阳能perc电池的制备方法
CN104157740B (zh) 一种n型双面太阳能电池的制备方法
JPWO2015064354A1 (ja) 太陽電池
CN111446331A (zh) 一种去绕镀方法及钝化接触太阳能电池制备方法
CN101931030B (zh) 纳米改性高效率低成本多晶硅太阳能电池制备工艺
CN104630900A (zh) 一种单晶硅太阳能电池表面制绒处理方法
CN103258728A (zh) 硅片刻蚀的方法及太阳能电池片的制作方法
TWI650872B (zh) 太陽能電池及其製造方法、太陽能電池模組及太陽能電池發電系統
CN208336240U (zh) 太阳能电池及太阳能电池组件
JP2012256713A (ja) 太陽電池の製造方法
CN115020508A (zh) 一种全背接触太阳能电池及其制作方法
CN111180544B (zh) 一种钝化接触晶体硅太阳能电池及其制作方法
JP2016032073A (ja) 太陽電池セルの製造方法および太陽電池セルの製造装置
CN103996742B (zh) 一种改善晶体硅太阳电池电性能的边缘刻蚀方法
JP5745598B2 (ja) 太陽電池用基板の表面処理方法
TWI573286B (zh) 太陽能電池的製造方法
CN114361290B (zh) 一种去除TOPCon电池制作的poly-Si绕镀的添加剂及其清洗工艺

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017538279

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2015323848

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 15028665

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015849346

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15849346

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE