WO2016052722A1 - 溶接構造部材及びその製造方法 - Google Patents

溶接構造部材及びその製造方法 Download PDF

Info

Publication number
WO2016052722A1
WO2016052722A1 PCT/JP2015/078039 JP2015078039W WO2016052722A1 WO 2016052722 A1 WO2016052722 A1 WO 2016052722A1 JP 2015078039 W JP2015078039 W JP 2015078039W WO 2016052722 A1 WO2016052722 A1 WO 2016052722A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal member
built
base metal
build
portions
Prior art date
Application number
PCT/JP2015/078039
Other languages
English (en)
French (fr)
Inventor
正裕 小川
祥子 大阿見
真二 児玉
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to BR112017006371A priority Critical patent/BR112017006371A2/pt
Priority to US15/515,937 priority patent/US10688580B2/en
Priority to JP2016552173A priority patent/JP6344478B2/ja
Priority to MX2017004179A priority patent/MX2017004179A/es
Priority to RU2017111030A priority patent/RU2665657C1/ru
Priority to CA2962380A priority patent/CA2962380C/en
Priority to KR1020177009629A priority patent/KR101941385B1/ko
Priority to CN201580053164.3A priority patent/CN106794554B/zh
Priority to EP15847981.6A priority patent/EP3202528B1/en
Publication of WO2016052722A1 publication Critical patent/WO2016052722A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/02Seam welding; Backing means; Inserts
    • B23K9/028Seam welding; Backing means; Inserts for curved planar seams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/003Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to controlling of welding distortion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/02Seam welding; Backing means; Inserts
    • B23K9/025Seam welding; Backing means; Inserts for rectilinear seams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/02Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to soldering or welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K33/00Specially-profiled edge portions of workpieces for making soldering or welding connections; Filling the seams formed thereby
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/02Seam welding; Backing means; Inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D21/00Understructures, i.e. chassis frame on which a vehicle body may be mounted
    • B62D21/11Understructures, i.e. chassis frame on which a vehicle body may be mounted with resilient means for suspension, e.g. of wheels or engine; sub-frames for mounting engine or suspensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D27/00Connections between superstructure or understructure sub-units
    • B62D27/02Connections between superstructure or understructure sub-units rigid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B5/00Joining sheets or plates, e.g. panels, to one another or to strips or bars parallel to them
    • F16B5/08Joining sheets or plates, e.g. panels, to one another or to strips or bars parallel to them by means of welds or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/006Vehicles

Definitions

  • the present invention relates to a welded structural member and a manufacturing method thereof.
  • This application claims priority based on Japanese Patent Application No. 2014-204583 filed in Japan on October 3, 2014 and Japanese Patent Application No. 2015-158817 filed on August 11, 2015 in Japan. And the contents thereof are incorporated herein.
  • the weight of the car body has been reduced in order to improve the fuel efficiency of automobiles.
  • the welded structure member which welded the high strength steel plates is used as a vehicle body material.
  • Patent Document 1 proposes a technique for improving the fatigue strength of a welded structural member.
  • the fillet arc welded joint described in Patent Document 1 includes a bead for stiffening separately from the fillet bead formed when fillet arc welding of metal members is performed.
  • the stiffening bead is formed in the same plane as the fillet bead starting from the fillet bead. With this stiffening bead, the fatigue strength of the welded joint can be improved.
  • a T-shaped welded joint (hereinafter also referred to as a T-shaped joint) is used as a welded structural member in the underbody portion of the vehicle body (the portion that supports the suspension device). Since the underbody portion is a portion that supports the vehicle body load, it is necessary to improve the fatigue strength particularly in the T-shaped joint used for the underbody portion.
  • Patent Document 1 also discloses a T-shaped joint made of a vertical steel plate and a horizontal steel plate.
  • a stiffening bead is formed so as to intersect with a fillet bead that joins a vertical steel plate and a horizontal steel plate.
  • Patent Document 1 describes that by forming the stiffening bead as described above, deformation of the T-shaped joint is prevented and the fatigue life is improved.
  • the stiffening bead must be formed so as to intersect the fillet bead. For this reason, when forming the stiffening bead, the welding torch must be moved so as to intersect the fillet bead. At this time, if the welding torch can be smoothly moved between the vertical steel plate and the horizontal steel plate, an appropriate stiffening bead can be easily formed.
  • the standing steel plate 2 is welded with a large inclination with respect to the transverse steel plate 3 as in the T-shaped joint 1 shown in FIG. 25, the portion where the standing steel plate 2 and the transverse steel plate 3 intersect at an acute angle. Occurs.
  • the present invention has been made to solve such a problem, and an object of the present invention is to provide a structure that can easily improve fatigue strength in a welded structure member having a T-shaped joint.
  • the gist of the present invention is as follows.
  • a first aspect of the present invention includes a base metal member having a first surface and a second surface that are opposite to each other; an end surface is abutted against the first surface with an abutment surface
  • a weld metal member formed on the first surface and welded to the base metal member; and formed on the second surface of the base metal member.
  • a built-up portion formed in a linear shape so as to overlap at least one of the abutment surface and the weld bead when viewed from a line of sight facing the second surface and passing through the base metal member
  • the welding bead is the abutting end when the direction from the abutting end that is the end of the abutting surface toward the direction in which the abutting surface exists is the rear and the opposite direction is the front Welded at a position spaced in front of the end Is a welded structure members having over de end.
  • the build-up portion when viewed from a line of sight facing the second surface and passing through the base metal member, the build-up portion is separated from the abutting end portion. It may be provided over a position spaced 1.9 mm to 7.0 mm behind.
  • the build-up is forward from the abutting end when viewed from a line of sight facing the second surface and passing through the base metal member. The front part end may be located, and the build-up part rear end may be located behind the abutting end part.
  • the build-up portion is projected.
  • the plate thickness T (mm) may satisfy the following formula (A). ⁇ 0.125L W +4.06 mm ⁇ T ⁇ 4.5 mm Formula (A) (6)
  • the build-up portion may have a length of 10.0 mm or more.
  • the build-up portion when viewed from a line of sight facing the second surface and passing through the base metal member, the build-up portion is separated from the end of the weld bead. It may be provided over a position spaced 0.1 mm to 3.0 mm behind.
  • the build-up is performed forward from the end of the weld bead when viewed from a line of sight facing the second surface and passing through the base metal member.
  • the front part end may be located, and the build-up part rear end may be located rearward from the weld bead end part.
  • the build-up portion In the welded structure member according to the above (7) or (8), when viewed from a line of sight facing the second surface and passing through the base metal member, the build-up portion is the weld It may be parallel to the bead.
  • the separation distance L W (mm) between the abutting end portion and the weld bead end portion and the plate thickness T ( mm) may satisfy the following formula (B). 0.8 mm ⁇ T ⁇ 0.125L W +4.06 mm Formula (B) (11)
  • the build-up portion may have a length of 6.0 mm or more.
  • the build-up portion has a height from the second surface of 2.0 mm to 20.0 mm. May be. (13) In the welded structure member according to any one of (1) to (12), the build-up portion is a build-up bead that is not involved in joining the base metal member and another member. Also good. (14) In the welded structure member according to any one of (1) to (13), the build-up portion may be formed so as to penetrate into the base metal member. (15) In the welded structure member according to any one of (1) to (14), the weld bead does not have to penetrate the base metal member. (16) In the welded structure member according to any one of (1) to (15), the base metal member may be a steel plate having a tensile strength of 270 MPa or more.
  • a second aspect of the present invention is a method of manufacturing the welded structure member according to any one of (1) to (16) above, wherein the first surface of the base metal member And a weld bead applying step for applying a weld bead that joins the end surface of the bonded metal member with the abutting surface; and the base metal before the weld bead applying step or after the weld bead applying step And a buildup portion applying step of applying the buildup portion to the second surface of the member by arc welding or brazing.
  • the fatigue strength of the welded structural member can be improved by a simple configuration, that is, by forming a linear build-up portion on the second surface (back surface) of the base metal member.
  • the fatigue strength of the welded structure member can be easily improved. Specifically, for example, even when the plate-like portion of the joining metal member is welded with a large inclination with respect to the plate-like portion of the base metal member, it is necessary to form a built-up portion between the two plate-like portions. There are no restrictions on manufacturing because there are no. Thereby, a welded structure member with improved fatigue strength can be easily manufactured.
  • FIG. 10A It is a perspective view which shows 10 A of welded structure members which concern on 1st embodiment of this invention. It is the perspective view which looked at 10A of welding structure members which concern on the embodiment from the downward direction. It is a side view which shows a part of welding structure member 10A which concerns on the same embodiment. It is a projection view of the butting surface, weld bead, and build-up part of 10 A of welded structure members which concern on the embodiment. It is a projection view of the butting surface, weld bead, and build-up part of welding structure member 10A 'concerning a modification of the first embodiment of the present invention. It is a perspective view showing welding structure member 10B concerning a second embodiment of the present invention.
  • the present inventors diligently studied a configuration that can easily improve fatigue strength in a T-welded joint member obtained by welding the surface of a horizontal plate and the end surface of a standing plate with a weld bead.
  • the inventors have (A) In the case where the build-up bead is formed on the back surface of the horizontal plate (the surface where the joint portion with the upright plate does not exist), the maximum principal stress is reduced as compared with the case where the build-up bead is formed on the surface of the horizontal plate. It is highly effective and does not impair workability, so it can efficiently improve fatigue strength. Newly discovered.
  • the present inventors in the horizontal plate constituting the T-shaped welded joint member, the value of the maximum principal stress generated in the vicinity of the joint is large in the vicinity of the end of the joint or the end of the weld bead.
  • the fatigue failure occurs from these positions, (C)
  • the greater the thickness of the horizontal plate the greater the maximum principal stress near the end of the joint tends to be greater than the maximum principal stress near the end of the weld bead, and the smaller the thickness of the horizontal plate, The maximum principal stress near the end of the weld bead tends to be larger than the maximum principal stress near the end of the joint;
  • D When the vertical plate is pulled in a direction perpendicular to the surface of the horizontal plate, the direction of the maximum principal stress generated in the vicinity of the junction between the vertical plate and the horizontal plate is relative to the extending direction of the junction or weld bead. Being parallel, Newly discovered.
  • the present invention will be described in detail based on a first embodiment and a second embodiment.
  • FIG. 1 is a perspective view showing a welded structure member 10A according to the first embodiment of the present invention
  • FIG. 2 is a perspective view of the welded structure member 10A viewed from below
  • FIG. 3 is a welded structure member 10A.
  • FIG. 4 is a projected view of the butting surface 32, the weld bead 24, and the built-up portions 30a and 30b of the welded structural member 10A. 1 and 2, dotted circles 41a, 41b, 42a, 42b, 43a, 43b, 44a, 44b, 45a, and 45b indicate the positions of holes formed in the analysis model in the simulation described later. Details will be described later.
  • the welded structure member 10A includes a joining metal member 12 extending in the first direction D1 and a second direction D2 intersecting the first direction D1, and joining A base metal member 14 to which the end face of the metal member 12 is joined, a weld bead 24 for joining the joined metal member 12 to the base metal member 14, and a built-up portion 30a, 30b formed on the back surface of the base metal member 14, Is provided.
  • the welded structure member 10A is a so-called T-shaped joint in which the bonded metal member 12 and the base metal member 14 are bonded so that the bonded portion has a T shape.
  • the joint between the joint metal member 12 and the base metal member 14 has a T shape when projected in a direction parallel to the surface 14a described later.
  • the first direction D1 is perpendicular to the second direction D2, but the first direction D1 may be inclined with respect to the second direction D2. That is, in the welded structural member 10 ⁇ / b> A according to the present embodiment, the bonded metal member 12 is welded to the base metal member 14 so as to be perpendicular to the base metal member 14, but the bonded metal member 12 is welded to the base metal member 14. May be welded to the base metal member 14 so as to be inclined with respect to the base metal member 14.
  • the first direction D1 is the up-down direction
  • the second direction D2 is the left-right direction.
  • the joining metal member 12 is composed of a plate-like metal member. Moreover, the joining metal member 12 is comprised by the plate-shaped part 121 of an open cross-sectional shape.
  • the plate-like portion 121 of the bonded metal member 12 includes a pair of side wall portions 121a and 121b and a bottom wall portion 121c.
  • the pair of side wall portions 121a and 121b are provided in parallel so that their surfaces face each other.
  • the bottom wall 121c is provided so as to connect one end of the side wall 121a and one end of the side wall 121b.
  • the base metal member 14 is composed of a plate-like metal member, and has a front surface 14a and a back surface 14b that are opposite to each other.
  • the base metal member 14 is configured by a plate-like portion 141 having an open cross-sectional shape.
  • the plate-like portion 141 of the base metal member 14 includes a pair of side wall portions 141a and 141b and a top plate portion 141c.
  • the pair of side wall portions 141a and 141b are provided in parallel so that their surfaces face each other.
  • the top plate portion 141c is provided so as to connect one end portion of the side wall portion 141a and one end portion of the side wall portion 141b.
  • a portion of the surface of the base metal member 14 corresponding to the surface of the top plate portion 141c is referred to as a surface 14a of the base metal member 14, and among the back surfaces of the base metal member 14, the back surface of the top plate portion 141c.
  • the portion corresponding to is referred to as the back surface 14b of the base metal member 14.
  • a bonding interface between the end surface of the bonding metal member 12 and the surface 14 a of the base metal member 14 is referred to as an abutting surface 32.
  • a direction toward the direction in which the abutting surface 32 exists is referred to as the rear, and the opposite direction is referred to as the front.
  • the joining metal member 12 and the base metal member 14 are welded, a part of the joining metal member 12 and a part of the base metal member 14 are melted.
  • a certain abutting surface 32 cannot be clearly defined. Therefore, in the present invention, when welding the joining metal member 12 and the base metal member 14, it is assumed that both members are not melted (in other words, the joining metal member 12 and the base metal member 14 are The abutment surface 32 is defined assuming that the pre-weld shape is maintained.
  • the outer edge of the abutting surface 32 and the joining metal member 12 are used.
  • the outer edge of the end face coincides.
  • the joint metal member 12 and the base metal member 14 are each obtained, for example, by bending a metal plate.
  • the material of the metal plate is not particularly limited, and may be steel or aluminum.
  • a steel plate having a tensile strength of 270 MPa or more can be used as the material of the bonding metal member 12 and the base metal member 14.
  • a steel plate having a tensile strength of 980 MPa or more is more preferably used, a steel plate having a tensile strength of 1180 MPa or more is more preferably used, and a steel plate having a tensile strength of 1500 MPa or more is more preferably used.
  • the thickness of the base metal member 14 should just be comparable with the thickness of the steel plate often used as a material of an automobile underbody member, for example. Specifically, the thickness of the base metal member 14 may be set in the range of 0.8 mm to 4.5 mm. However, as will be described later, in the welded structural member 10A according to the present embodiment, the built-up portions 30a and 30b are provided so as to reduce the maximum principal stress in the vicinity of the abutting end portions 32a and 32b. Since the maximum main stress in the vicinity of the abutting end portions 32a and 32b tends to be larger than the maximum main stress in the vicinity of the weld bead end portions 24a and 24b as the thickness of the base metal member 14 is increased, the present embodiment.
  • the welded structural member 10A according to the present embodiment has a separation distance L W (mm) between the abutting end portions 32a and 32b and the weld bead end portions 24a and 24b.
  • the plate thickness T (mm) of the base metal member 14 has been found to be preferably set to satisfy the following formula (A).
  • the weld bead 24 is formed in a substantially U shape in plan view along the abutting surface 32, and joins the end surface of the joining metal member 12 and the surface 14 a of the base metal member 14.
  • the weld bead 24 includes a side wall bead portion 241 a that joins the side wall portion 121 a of the joining metal member 12 and the surface 14 a of the base metal member 14, and the side wall portion 121 b of the joining metal member 12 and the base metal member 14.
  • Side wall bead part 241b which joins surface 14a
  • bottom wall bead part 241c which joins bottom wall part 121c of joined metal member 12, and surface 14a of base metal member 14 are included.
  • the weld bead 24 is formed by, for example, arc welding.
  • the weld bead 24 is formed from the surface 14 a of the base metal member 14 to a predetermined depth position in the plate thickness direction of the base metal member 14. That is, the weld bead 24 is formed so as not to penetrate the base metal member 14. However, the weld bead 24 may be formed so as to penetrate the base metal member 14.
  • the weld bead 24 has weld bead ends 24a and 24b at positions spaced forward from the abutting ends 32a and 32b of the abutting surface 32 between the joining metal member 12 and the base metal member 14, respectively. .
  • the separation distance L W (mm) between the abutting end portions 32 a and 32 b and the weld bead end portions 24 a and 24 b is set so as to satisfy the above-described formula (A) in consideration of the plate thickness T of the base metal member 14. It is preferable.
  • the bead formed between the joining metal member 12 and the base metal member 14 is defined as a welding bead 24 on the assumption that the joining metal member 12 and the base metal member 14 maintain the shape before welding. To do.
  • the build-up portions 30a and 30b are build-up beads that are not involved in joining the base metal member 14 to other members, and are linearly formed on the back surface 14b of the base metal member 14 as shown in FIGS. It is formed.
  • the build-up part 30 a is provided corresponding to the side wall part 121 a of the bonding metal member 12, and the build-up part 30 b is provided corresponding to the side wall part 121 b of the bonding metal member 12.
  • the built-up portions 30a and 30b are formed by, for example, arc welding or brazing using a welding material.
  • the built-up portions 30a and 30b When forming the built-up portions 30a and 30b by arc welding, the built-up portions 30a and 30b are formed so as to penetrate into the base metal member 14, and therefore the maximum principal stress in the vicinity of the abutting end portions 32a and 32b. Can be reduced, and the fatigue strength of the welded structural member can be further improved.
  • the bead formed on the back surface 14b of the plate-like portion 141 is defined as the build-up portions 30a and 30b, assuming that the shape of the plate-like portion 141 before the build-up portions 30a and 30b are formed is maintained. To do. Since the built-up portions 30 a and 30 b are formed on the back surface 14 b of the base metal member 14, the manufacturing restrictions are less than when formed on the front surface 14 a of the base metal member 14. For example, even when the plate-like portion 121 is welded with a large inclination with respect to the plate-like portion 141, it is not between the plate-like portion 121 and the plate-like portion 141 but on the back surface 14 b of the plate-like portion 141.
  • the built-up portions 30a and 30b can be easily formed. Thereby, welding structure member 10A can be manufactured easily. Furthermore, when the built-up portions 30a and 30b are formed on the back surface 14b of the base metal member 14, for example, when the welded structural member 10A is used as a vehicle body material, the built-up portions 30a and 30b are placed at positions that do not appear on the appearance. It can also be formed. In this case, it is possible to prevent the aesthetic appearance of the vehicle body from being damaged by the built-up portions 30a and 30b.
  • the lengths in the front-rear direction of the built-up portions 30a and 30b may be 6.0 mm or more, preferably 10.0 mm or more, more preferably 14.0 mm or more, and 20.0 mm or more. More preferably it is.
  • the widths of the built-up portions 30a and 30b are each preferably 5.0 mm or more, and more preferably 6.0 mm or more. Moreover, it is preferable that the width
  • the width of the built-up portions 30a and 30b exceeds 40.0 mm, the effect of reducing the maximum principal stress in the vicinity of the abutting end portions 32a and 32b is saturated, and the weight of the component and the amount of work increase. It is preferably 30.0 mm or less, and more preferably 20.0 mm or less. As shown in FIG. 3, it is preferable that the height H of the built-up portion 30a, that is, the protruding height from the back surface 14b of the base metal member 14 is 2.0 mm or more.
  • the height H of the built-up portion 30a exceeds 20.0 mm, the effect of reducing the maximum principal stress in the vicinity of the abutting end portions 32a and 32b is saturated, and the weight of the component and the amount of work increase. It is preferably 20.0 mm or less, and more preferably 10.0 mm or less. The same applies to the height of the built-up portion 30b.
  • the built-up portions 30 a and 30 b are preferably formed substantially parallel to the abutting surface 32. In other words, when viewed from a line of sight facing the back surface 14b of the base metal member 14 and passing through the base metal member 14, the built-up portions 30a and 30b are formed in parallel to the extending direction of the abutting surface. Is preferred.
  • the built-up portion 30a is substantially parallel to the abutting side surface 322a and the side wall bead portion 241a
  • the built-up portion 30b is substantially parallel to the abutting side surface 322b and the side wall bead portion 241b. It is preferable.
  • FIG. 4 projects the butting surface 32, the weld bead 24, and the built-up portions 30a and 30b in a direction perpendicular to the surface 14a of the base metal member 14 (in the present embodiment, the first direction D1).
  • FIG. 4 in order to easily understand the positional relationship among the abutting surface 32, the weld bead 24, and the built-up portions 30 a and 30 b, the portion where the abutting surface 32 and the weld bead 24 are projected is illustrated. It is hatched. Moreover, the outer edge of the part which projected the built-up parts 30a and 30b is shown with the broken line.
  • the abutting surface 32 has a pair of abutting end portions 32 a and 32 b, and faces the abutting end portion 32 b from the abutting end portion 32 a. Extend substantially in a U-shape. Specifically, the abutting surface 32 includes abutting side surfaces 322a and 322b and an abutting bottom surface 322c. The abutting bottom surface 322c is an abutting surface between the bottom wall portion 121c (see FIG. 1) of the bonding metal member 12 and the plate-like portion 141 (see FIG. 1) of the base metal member.
  • the abutting side 322a is an abutting surface between the side wall part 121a (see FIG. 1) and the plate-like part 141.
  • the abutting side 322b is an abutting surface between the side wall part 121b (see FIG. 1) and the plate-like part 141.
  • the abutting side surface 322a extends linearly from the abutting bottom surface 322c toward one abutting end portion 32a of the abutting surface 32, and the abutting side surface 322b extends from the abutting bottom surface 322c to the other abutting surface 32. It extends linearly toward the abutting end 32b.
  • the abutting side surfaces 322a and 322b correspond to straight portions, respectively.
  • the boundary between the abutting bottom surface 322c and the abutting side surfaces 322a and 322b and the boundary between the bottom wall bead portion 241c and the side wall bead portions 241a and 241b are indicated by two-dot chain lines.
  • the front ends of the built-up portions 30a and 30b are abutting ends.
  • the rear ends of the built-up portions 30a and 30b are provided at a position behind the portions 32a and 32b by a distance of 1.9 mm, and the rear ends of the built-up portions 30a and 30b from the position at a distance of 7.0 mm from the abutting ends 32a and 32b. Is also provided at the rear. That is, the built-up portion 30a is formed so as to cover a region indicated by cross-hatching in FIG. 3 in the back surface 14b of the base metal member 14.
  • the front ends of the built-up portions 30a and 30b are located forward from the abutting end portions 32a and 32b, And it is preferable that the part rear end of the front build-up 30a, 30b is located back from the abutting end part 32a, 32b.
  • the front ends of the built-up portions 30a and 30b may extend to the vicinity of the weld bead end portions 24a and 24b. Specifically, it may extend further forward than a position spaced 0.1 mm rearward from the weld bead ends 24a, 24b. In this case, the maximum principal stress in the vicinity of the weld bead ends 24a and 24b can also be reduced.
  • the built-up portions 30 a and 30 b overlap the abutting surface 32 and the weld bead 24 in the vicinity of the abutting end portions 32 a and 32 b.
  • the built-up portion 30a is provided corresponding to the abutting side surface 322a, and overlaps the abutting side surface 322a and the side wall bead portion 241a in the vicinity of the abutting end portion 32a.
  • the built-up portion 30b is provided corresponding to the abutting side surface 322b, and overlaps the abutting side surface 322b and the side wall bead portion 241b in the vicinity of the abutting end portion 32b.
  • FIG. 1 the example shown in FIG.
  • the built-up portions 30 a and 30 b overlap the abutting surface 32 and the weld bead 24, but the built-up portions 30 a and 30 b are only one of the abutting surface 32 and the weld bead 24.
  • the structure which overlaps with may be sufficient.
  • the rear end of the built-up portion 30a is preferably provided rearward from the position spaced 8.0 mm rearward from the abutting end portions 32a and 32b, and is spaced 10.0 mm rearward from the abutting end portions 32a and 32b. It is more preferable to be provided rearward of the position, and it is further preferable to be provided rearward of a position spaced 14.0 mm rearward from the abutting end portions 32a and 32b.
  • the front end of the built-up portion 30a is preferably provided in front of a position spaced apart by 0.4 mm from the abutting end portions 32a and 32b, and a position spaced by 0.3 mm forward from the abutting end portions 32a and 32b. It is preferable to be provided in front of the abutting end portions 32a and 32b, more preferably in front of the abutting end portions 32a and 32b, and a distance of 1.7 mm in front of the abutting end portions 32a and 32b. More preferably, it is provided in front of the separated position.
  • the manufacturing method of the welded structural member 10 ⁇ / b> A includes arc welding to a welding bead applying process for applying a weld bead 24 that joins the end surface of the joining metal member 12 and the surface 14 a of the base metal member 14, and arc welding Or it has the build-up part provision process which provides the build-up parts 30a and 30b by brazing.
  • Either the weld bead applying step or the build-up portion applying step may be performed first, but it is preferable from the viewpoint of workability to perform the build-up portion applying step after performing the weld bead applying step.
  • the maximum principal stress can be reduced by increasing the rigidity in the vicinity of the abutting end portions 32a and 32b by the built-up portions 30a and 30b, so that the fatigue strength of the welded structural member 10A is increased. Can do.
  • FIG. 5 shows a welded structure member 10A ′ according to a modification of the present embodiment.
  • the welded structural member 10A according to the first embodiment described above the case where the side wall 121a and the side wall 121b are provided in parallel to each other has been described. However, the side wall 121a and the side wall 121b are not provided in parallel to each other. Also good.
  • the plate-like portion 121 has an open cross-sectional shape such that the open end side opens, a projection view of the abutting surface 32, the weld bead 24, and the built-up portions 30a and 30b is shown in FIG. It becomes a figure.
  • the abutting bottom surface 322c side is defined as the rear, and the opposite side is defined as the front, thereby defining the front-rear direction.
  • the positions of the abutting surface 32, the weld bead 24, and the built-up portions 30 a and 30 b are the same as the welding structure member 10 ⁇ / b> A according to the first embodiment, with reference to the front-rear direction defined for the abutting side surfaces 322 a and 322 b. Define the relationship.
  • welded structure member 10B according to the second embodiment of the present invention will be described. Since the welded structure member 10B according to the second embodiment has the same configuration as the welded structure member 10A according to the first embodiment except for the position where the built-up portions 30a and 30b are formed, the same reference is made to the same component. The reference numerals are attached and the description is omitted.
  • FIG. 6 to 9 show a welded structure member 10B according to the second embodiment. More specifically, FIG. 6 is a perspective view of the welded structural member 10B viewed from above, FIG. 7 is a perspective view of the welded structural member 10B viewed from below, and FIG. 8 is a perspective view of the welded structural member 10B.
  • FIG. 9 is a side view showing a part, and FIG. 9 is a projection view of the butting surface 32, the weld bead 24, and the built-up portions 30a and 30b of the welded structural member 10B.
  • the back surface 14b of the base metal member 14 corresponds to the vicinity of the abutting end portions 32a and 32b. It has the structure which provides the build-up parts 30a and 30b in a field. According to this configuration, the maximum principal stress in the vicinity of the abutting end portions 32a and 32b can be reduced, and an effect of increasing the fatigue strength of the welded structural member 10A can be obtained.
  • the welded structural member 10B according to the second embodiment has a configuration in which the built-up portions 30a and 30b are provided in regions in the vicinity of the weld bead end portions 24a and 24b in the back surface 14b of the base metal member 14. According to this configuration, it is possible to reduce the maximum principal stress in the vicinity of the weld bead ends 24a and 24b, and the effect of increasing the fatigue strength of the welded structural member 10B can be obtained.
  • the thickness of the joining metal member 12 and the thickness of the base metal member 14 of the welded structure member 10B according to the second embodiment are, for example, 0.8 mm to 4.4, respectively, similarly to the welded structure member 10A according to the first embodiment. What is necessary is just to set to the range of 5 mm.
  • the built-up portions 30a and 30b are provided so as to reduce the maximum principal stress in the vicinity of the weld bead end portions 24a and 24b.
  • the maximum main stress in the vicinity of the weld bead ends 24a and 24b tends to be larger than the maximum main stress in the vicinity of the butted ends 32a and 32b.
  • the weld bead ends 24a and 24b are used. It is effective to provide the built-up portions 30a and 30b in the vicinity of.
  • the welded structural member 10B according to the present embodiment has a separation distance L W (mm) between the abutting end portions 32a and 32b and the weld bead end portions 24a and 24b.
  • the thickness T (mm) of the base metal member 14 is preferably set so as to satisfy the following formula (B).
  • the built-up portions 30 a and 30 b when viewed from a line of sight facing the back surface 14 b of the base metal member 14 and passing through the base metal member 14, the built-up portions 30 a and 30 b
  • the front end is provided in front of a position spaced 0.1 mm rearward from the weld bead ends 24a and 24b, and the rear end of the built-up portions 30a and 30b is rearward from the weld bead ends 24a and 24b. It is provided behind the position separated by 3.0 mm.
  • the front ends of the built-up portions 30a and 30b are located forward from the weld bead end portions 24a and 24b, and the rear portions of the built-up portions 30a and 30b are located rearward from the weld bead end portions 24a and 24b. The edge is located.
  • the front ends of the built-up portions 30a and 30b may be provided behind the weld bead end portions 24a and 24b.
  • the rear end of the built-up portion 30a is preferably provided behind the weld bead end portions 24a and 24b at a position spaced 5.0 mm rearward, and is 10.0 mm rearward from the weld bead end portions 24a and 24b. More preferably, it is provided behind the position.
  • the front end of the built-up portion 30a is preferably provided in front of a position spaced 0.3 mm forward from the weld bead end portions 24a, 24b, and a position spaced 1.2 mm forward from the weld bead end portions 24a, 24b. It is still more preferable to be provided in front of the welding bead ends, and it is more preferable to be provided in front of the weld bead ends 24a and 24b at a position spaced 1.9 mm forward.
  • the above-mentioned 1st embodiment or 2nd embodiment demonstrated the case where the build-up parts 30a and 30b were extended and formed substantially parallel with respect to the butting surface 32 or the weld bead 24, it is meat.
  • the raised portions 30 a and 30 b may be formed to extend obliquely with respect to the abutting surface 32 or the weld bead 24. Even when the built-up portions 30a and 30b are formed to extend obliquely with respect to the abutting surface 32 or the weld bead 24, the built-up portions 30a and 30b are separated from the abutting end portions 32a and 32b.
  • the abutting end portions 32a and 32b are provided at positions rearwardly spaced from 1.9 mm to 7.0 mm, or at positions rearwardly spaced from the weld bead end portions 24a and 24b by 0.1 mm to 3.0 mm. It is possible to reduce the maximum principal stress in the vicinity of the weld bead ends 24a and 24b, and the effect of increasing the fatigue strength of the welded structural member can be obtained.
  • the plate-like portion 121 has an open cross-sectional shape that opens in a direction orthogonal to the first direction D1 and the second direction D2.
  • the shape part 121 may have an open cross-sectional shape that opens in the second direction D2.
  • the bonding metal member 12 may include a plate-like portion and a portion having another shape (for example, a columnar portion).
  • the joining metal member 12 may be a prism having an acute angle, for example.
  • the above-mentioned 1st embodiment and 2nd embodiment demonstrated the case where the plate-shaped part 121 has an open cross-sectional shape
  • this invention is applicable to the welded structure member which has a plate-shaped part of various shapes.
  • the bonded metal member 12 has a simple plate-like plate-like portion, a plate-like portion having an L-shaped cross section, or a plate-like portion having an H-shaped cross section instead of the plate-like portion 121 described above. Also good.
  • the base metal member 14 having the side wall portions 141a and 141b has been described.
  • the present invention is a welded structure member including various base metal members having flat plate portions. Applicable to. Therefore, the base metal member may not have the side wall portions 141a and 141b.
  • an analytical model (hereinafter also referred to as a second model) that does not have the built-up portions 30a and 30b is created, and the maximum generated in the vicinity of the abutting end portions 32a and 32b of the abutting surface 32.
  • the principal stress was determined.
  • holes were formed at positions indicated by dotted circles 41a, 41b, 42a, 42b, 43a, 43b, 44a, 44b, 45a, 45b in FIGS. These circles indicated by dotted lines are called holes.)
  • a fixing jig rigid body
  • a cylindrical member (rigid body) is passed through the holes 41a and 41b, and the plate-like portion 121 (joined metal member 12) is passed through the members in a direction perpendicular to the surface 14a of the plate-like portion 141 by 2.0 kN. Pulled with the power of.
  • Both the configurations of the first model and the second model are defined as follows. As described above, in the first model, the positions of the built-up portions 30a and 30b in the front-rear direction were variously changed.
  • the bonded metal member 12 and the base metal member having an arbitrary tensile strength can be obtained. 14 can be evaluated. That is, by this simulation, for example, a welded structure member using a material having a tensile strength of 270 MPa can be evaluated, or a welded structure member using a material having a tensile strength of 1500 MPa can be evaluated.
  • FIG. 10A shows the relationship between the front end position of the built-up portion 30a and the maximum value of the maximum principal stress generated in the vicinity of the abutting end portion 32a for each length of the built-up portion 30a (see FIG. 4).
  • the front end position of the built-up portion 30a means the position of the front end of the built-up portion 30a in the front-rear direction when the abutting end portion 32a (see FIG. 4) is used as a reference.
  • FIG. 10A when the front end of the built-up portion 30a is located in front of the abutting end portion 32a, the front end position of the built-up portion 30a is indicated by a positive value, and the front end of the built-up portion 30a is abutted.
  • the front end position of the built-up portion 30a is indicated by a negative value.
  • the front end position of the built-up portion 30a is indicated by a positive value.
  • the maximum value (830 MPa) of the maximum principal stress in the analysis model that does not have the built-up portions 30a and 30b is indicated by a broken line.
  • FIG. 10B shows the relationship between the rear end position of the built-up portion 30a and the maximum value of the maximum principal stress generated in the vicinity of the abutting end portion 32a for each length of the built-up portion 30a (see FIG. 4).
  • the rear end position of the built-up portion 30a means the position of the rear end of the built-up portion 30a in the front-rear direction with reference to the abutting end portion 32a (see FIG. 4).
  • the maximum value (830 MPa) of the maximum principal stress in the analysis model that does not have the built-up portions 30 a and 30 b is indicated by a broken line.
  • the relationship between the rear-end position of the build-up part 30b and the maximum value of the largest principal stress produced in the vicinity of the butting end part 32b also became the same relationship as the relationship shown to FIG. 10B.
  • the maximum principal stress at the abutting end portions 32a and 32b of the abutting surface 32 is set by appropriately setting the front end position and the rear end position of the built-up portions 30a and 30b. It can be seen that the maximum value of can be reduced. Specifically, from FIG. 10A, even when the length of the built-up portions 30a and 30b is as short as 10.0 mm, the front end position of the built-up portions 30a and 30b is set to 8.0 mm or less, preferably 7.0 mm or less. By doing this, it can be seen that the maximum value of the maximum principal stress can be reliably reduced as compared with the case where there is no built-up portion.
  • the maximum value of the maximum principal stress is sufficient. It can be seen that it can be reduced. Further, as can be seen from FIG. 10B, by setting the rear end position of the built-up portions 30a and 30b to ⁇ 3.6 mm or less, regardless of the length of the built-up portions 30a and 30b, the case where there is no built-up portion is obtained. Also, the maximum value of the maximum principal stress could be reduced. Further, from FIGS.
  • the stress reduction effect is particularly large, and when the length of the built-up portions 30a and 30b is 19.8 mm or more. It can be seen that the stress reduction effect is almost the same. For this reason, it is preferable to set the length of the built-up portions 30a and 30b to 14.0 mm or more, and in order to maximize the effect of the present invention, the length of the built-up portions is set to 19.8 mm or more. It turns out that it is more preferable to do.
  • the reduction rate of the maximum value of the maximum principal stress at this time (the reduction rate of the maximum value of the maximum principal stress with respect to the analytical model having no built-up portion) is 100%, the reduction rate is 30% (a reduction of 21 MPa).
  • the front end positions of the built-up portions 30a and 30b were ⁇ 2.5 mm and 7.0 mm. That is, when the front end positions of the built-up portions 30a and 30b are in the range of ⁇ 2.5 mm to 7.0 mm, the reduction rate of the maximum value of the maximum principal stress (hereinafter simply referred to as the reduction rate) is 30% or more. can do. That is, the lower limit of the front end positions of the built-up portions 30a and 30b for setting the reduction rate to 30% or more is ⁇ 2.5 mm, and the upper limit is 7.0 mm.
  • the maximum value of the maximum principal stress decreased to 752 MPa when the front end position of the built-up portions 30a and 30b was 3.0 mm.
  • the maximum value of the maximum principal stress in the analysis model having no built-up portion was 830 MPa. Therefore, it can be understood that the maximum value of the maximum principal stress is reduced by 78 MPa at the maximum by providing the built-up portions 30a and 30b. Assuming that the reduction rate at this time is 100%, the front end positions of the built-up portions 30a and 30b when the reduction rate is 30% (23.4 MPa reduction) were ⁇ 2.3 mm and 8.7 mm. That is, the lower limit of the front end position of the built-up portions 30a and 30b for setting the reduction rate to 30% or more is ⁇ 2.3 mm, and the upper limit is 8.7 mm.
  • the reduction rate is 50% or more and 75% when the length of the built-up portions 30a and 30b is 14.0 mm, 16.0 mm, 19.8 mm, 23.6 mm, and 28.0 mm.
  • the positions of the built-up portions 30a and 30b to be 90% or more were similarly examined.
  • the thickness of the base metal member 14 was set to 3.5 mm and 3.0 mm, and a simulation similar to the above simulation was performed. And the same examination was performed about the relationship between a decreasing rate and the build-up parts 30a and 30b.
  • the length of the built-up portions 30a and 30b is 10.0 mm, 12.0 mm, 14.0 mm, 16.0 mm, 20.0 mm. 24.0 mm and 28.0 mm.
  • the reduction rate can be at least 30%.
  • (A) a reduction rate of at least 30% can be realized by positioning the front ends of the built-up portions 30a and 30b behind the butted ends 32a and 32b and ahead of the position of 1.9 mm. Further, from FIGS.
  • the front ends of the built-up portions 30a and 30b be positioned in front of the abutting end portions 32a and 32b, rather than the position of 0.4 mm, and the abutting end portion 32a.
  • 32b is more preferable to be positioned forward than the position of 0.7 mm, and it is further preferable to be positioned more forward than the position of 1.7 mm forward of the abutting ends 32a and 32b. It was.
  • the upper limit of the front end position of the built-up portions 30a and 30b when the reduction rate becomes 30% increased as the length of the built-up portions 30a and 30b increased.
  • the reduction rates were 50% and 75%, as shown in FIGS. 12B and 12C.
  • FIG. 12D when the reduction rate is 90%, the upper limit of the front end position of the built-up portions 30a and 30b does not increase greatly even if the length of the built-up portions 30a and 30b increases. It was.
  • the reduction rate could be at least 90%.
  • the front ends of the built-up portions 30a and 30b are moved forward from the abutting end portions 32a and 32b (see FIG. 4) at a position of 7.5 mm, more preferably from the abutting end portions 32a and 32b. It can be seen that the maximum value of the maximum principal stress can be sufficiently reduced by disposing the front portion behind the 7.0 mm position.
  • the lower limit of the rear end position of the built-up portions 30a and 30b when the reduction rate is 30% decreases as the length of the built-up portions 30a and 30b increases.
  • the reduction rate was 50%, 75%, and 90%
  • the upper limit of the rear end position of the built-up portions 30a and 30b when the reduction rate is 50%, 75%, and 90% is the length of the built-up portions 30a and 30b. Declined with increasing.
  • the upper limit of the rear end position of the built-up portions 30a and 30b is greatly reduced even if the length of the built-up portions 30a and 30b is increased. There wasn't.
  • the upper limit of the rear end position of the built-up portions 30a and 30b is ⁇ regardless of the length of the built-up portions 30a and 30b. If it is 7.0 mm or less, the reduction rate can be at least 30%.
  • the maximum value of the maximum principal stress generated in the vicinity of the abutting end portions 32a and 32b is higher when the thickness of the base metal member 14 is 3.0 mm than when the thickness of the base metal member 14 is 3.5 mm.
  • the case where the thickness of the member 14 is 2.6 mm is higher than the case where the thickness of the member 14 is 3.0 mm.
  • the upper limit of the rear end position of the built-up portions 30a and 30b is preferably set to ⁇ 7.0 mm or less.
  • (B) a reduction rate of at least 30% can be realized by positioning the rear ends of the built-up portions 30a and 30b behind the butted ends 32a and 32b behind the position of 7.0 mm. .
  • the front end position of the built-up portion is a positive value for both the upper limit and the lower limit.
  • the build-up portion rear end position has a negative value for both the upper limit and the lower limit. From these things, it can be said that it is preferable that the built-up portions 30a and 30b are provided so as to straddle the abutting end portions 32a and 32b in order to implement better improvements.
  • an analytical model (hereinafter also referred to as a fourth model) that does not have the built-up portions 30a and 30b was created, and the maximum principal stress generated in the vicinity of the weld bead end portions 24a and 24b was obtained. .
  • holes were formed at positions indicated by dotted circles 41a, 41b, 42a, 42b, 43a, 43b, 44a, 44b, 45a, 45b in FIGS. These circles indicated by dotted lines are called holes.)
  • a fixing jig rigid body
  • a cylindrical member (rigid body) is passed through the holes 41a and 41b, and the plate-like portion 121 (joined metal member 12) is passed through the members in a direction perpendicular to the surface 14a of the plate-like portion 141 by 2.0 kN. Pulled with the power of.
  • the configuration of the 3rd model and the 4th model was specified as follows. As described above, in the third model, the positions of the built-up portions 30a and 30b in the front-rear direction were variously changed.
  • the stress generated in the third model and the fourth model in the case where the analysis is performed in consideration of the yield of the material of the joint metal member 12 and the base metal member 14 and in the case where the analysis is performed without considering the yield. There is no change in the magnitude relationship with the stress generated. Therefore, when relatively evaluating the magnitude relationship between the maximum principal stress generated in the third model and the maximum principal stress generated in the fourth model, it is not necessary to consider the presence or absence of material yield. Therefore, in this simulation, in order to simplify the analysis, the elastic analysis was performed without considering the yield of the material of the joining metal member 12 and the base metal member 14. In addition, when relatively evaluating the magnitude relation of the maximum principal stress as described above, it is not necessary to consider the yield of the material.
  • the bonded metal member 12 and the base metal member having an arbitrary tensile strength can be obtained. 14 can be evaluated. That is, by this simulation, for example, a welded structure member using a material having a tensile strength of 270 MPa can be evaluated, or a welded structure member using a material having a tensile strength of 1500 MPa can be evaluated.
  • FIG. 15A shows the relationship between the front end position of the built-up portion 30a and the maximum value of the maximum principal stress generated in the vicinity of the weld bead end portion 24a for each length of the built-up portion 30a (see FIG. 9).
  • the front end position of the build-up portion 30a means the position of the front end of the build-up portion 30a in the front-rear direction when the weld bead end portion 24a (see FIG. 9) is used as a reference.
  • FIG. 9 shows the relationship between the front end position of the built-up portion 30a and the maximum value of the maximum principal stress generated in the vicinity of the weld bead end portion 24a for each length of the built-up portion 30a (see FIG. 9).
  • the front end position of the built-up portion 30a is indicated by a positive value
  • the front end of the built-up portion 30a is the weld bead.
  • the front end position of the built-up portion 30a is indicated by a negative value.
  • the front end position of the built-up portion 30a is indicated by a positive value.
  • the maximum value (1273 MPa) of the maximum principal stress in the analysis model that does not have the built-up portions 30a and 30b is indicated by a broken line.
  • the relationship between the front-end position of the build-up part 30b and the maximum value of the largest principal stress produced in the vicinity of the weld bead end part 24b also became the same relationship as the relationship shown to FIG. 15A.
  • FIG. 15B shows the relationship between the rear end position of the built-up portion 30a and the maximum value of the maximum principal stress generated in the vicinity of the weld bead end portion 24a for each length of the built-up portion 30a (see FIG. 9).
  • the rear end position of the built-up portion 30a means the position of the rear end of the built-up portion 30a in the front-rear direction when the weld bead end portion 24a (see FIG. 9) is used as a reference.
  • FIG. 9 shows the relationship between the rear end position of the built-up portion 30a and the maximum value of the maximum principal stress generated in the vicinity of the weld bead end portion 24a for each length of the built-up portion 30a (see FIG. 9).
  • the maximum value (1273 MPa) of the maximum principal stress in the analysis model that does not have the built-up portions 30a and 30b is indicated by a broken line.
  • the relationship between the rear end position of the build-up part 30b and the maximum value of the largest principal stress produced in the vicinity of the weld bead end part 24b also became the same relationship as the relationship shown in FIG. 15B.
  • the maximum value of the maximum principal stress at the weld bead end portions 24a, 24b is reduced by appropriately setting the front end position and the rear end position of the built-up portions 30a, 30b. I understand that I can do it. Specifically, from FIG. 15A, even when the length of the built-up portions 30a and 30b is as short as 6.0 mm, the front end position of the built-up portions 30a and 30b should be set to ⁇ 1.7 mm or more and 4.7 mm or less. Thus, it can be seen that the maximum value of the maximum principal stress can be reliably reduced as compared with the case where there is no built-up portion.
  • the maximum principal stress is set. It can be seen that the maximum value of can be sufficiently reduced. Further, as can be seen from FIG. 15B, by setting the rear end position of the built-up portions 30a and 30b to ⁇ 1.3 mm or less, regardless of the length of the built-up portions 30a and 30b, it is possible to obtain more than the case where there is no built-up portion. Also, the maximum value of the maximum principal stress could be reduced.
  • the reduction rate of the maximum value of the maximum principal stress at this time (the reduction rate of the maximum value of the maximum principal stress with respect to the analytical model having no built-up portion) is 100%, the reduction rate is 30% (95 MPa reduction).
  • the front end positions of the built-up portions 30a and 30b were ⁇ 0.5 mm and 4.1 mm. That is, when the front end positions of the built-up portions 30a and 30b are in the range of ⁇ 0.5 mm to 4.1 mm, the reduction rate of the maximum value of the maximum principal stress (hereinafter simply referred to as the reduction rate) is 30% or more. can do. That is, the lower limit of the front end positions of the built-up portions 30a and 30b for setting the reduction rate to 30% or more is ⁇ 0.5 mm, and the upper limit is 4.1 mm.
  • the maximum value of the maximum principal stress decreased to 940 MPa when the front end position of the built-up portions 30a and 30b was 2.3 mm.
  • the maximum value of the maximum principal stress in the analysis model having no built-up portion was 1273 MPa. Therefore, it can be understood that the maximum value of the maximum principal stress is reduced by 333 MPa at the maximum by providing the built-up portions 30a and 30b.
  • the reduction rate at this time is 100%
  • the front end positions of the built-up portions 30a and 30b when the reduction rate is 30% (a reduction of 100 MPa) were ⁇ 0.3 mm and 7.6 mm. That is, the lower limit of the front end positions of the built-up portions 30a and 30b for setting the reduction rate to 30% or more is ⁇ 0.3 mm, and the upper limit is 7.6 mm.
  • the reduction rate is 50% when the lengths of the built-up portions 30a and 30b are 12.0 mm, 14.0 mm, 16.0 mm, 20.0 mm, 24.0 mm, and 28.0 mm.
  • the positions of the built-up portions 30a and 30b for 75% or more and 90% or more were similarly examined.
  • the thickness of the base metal member 14 was set to 2.3 mm, 1.6 mm, and 1.2 mm, and a simulation similar to the above-described simulation was performed. And the same examination was performed about the relationship between a decreasing rate and the build-up parts 30a and 30b.
  • the lengths of the built-up portions 30 a and 30 b are 6.0 mm, 10.0 mm, 12.0 mm, 14 0.0 mm, 16.0 mm, 20.0 mm, 24.0 mm, and 28.0 mm.
  • the reduction rate can be at least 30%.
  • the front ends of the built-up portions 30a and 30b be positioned forward from the position of 0.3 mm forward from the weld bead end portions 24a and 24b, It has been found that it is more preferable to position it forward than the position of 1.2 mm forward from 24b, and it is more preferable to position it forward of the position of 1.9 mm forward of the weld bead ends 24a and 24b. .
  • the upper limit of the front end position of the built-up portions 30a and 30b when the reduction rate is 30% increased as the length of the built-up portions 30a and 30b increased.
  • the reduction rate was 50% as shown in FIG. 17B.
  • FIG. 17C and FIG. 17D when the reduction rate is 75% and 90%, even if the length of the built-up portions 30a and 30b is increased, the front end position of the built-up portions 30a and 30b is increased.
  • the upper limit did not rise significantly.
  • the reduction rate could be 90% when the upper limit of the front end position of the built-up portions 30a and 30b was 2.3 mm or less.
  • the lower limit of the rear end position of the built-up portions 30a and 30b when the reduction rate is 30% decreases as the length of the built-up portions 30a and 30b increases.
  • the reduction rate was 50%, 75%, and 90% as shown in FIGS. 18B to 18D.
  • the upper limit of the rear end position of the built-up portions 30a and 30b when the reduction rate is 30% or 50% was substantially constant.
  • the upper limit of the rear end position of the built-up portions 30a and 30b when the reduction rate is 75% or 90% is according to the increase in the length of the built-up portions 30a and 30b. Declined.
  • the upper limit of the rear end position of the built-up portions 30a, 30b is ⁇ 3.0 mm or less regardless of the plate thickness of the base metal member 14 and the length of the built-up portions 30a, 30b. If so, the reduction rate can be at least 30%. In other words, (D) a reduction rate of at least 30% can be realized by positioning the rear ends of the built-up portions 30a and 30b behind the weld bead end portions 24a and 24b behind the position of 3.0 mm. .
  • the front end position of the built-up portion is a positive value for both the upper limit and the lower limit.
  • the rear end position of the built-up portion is a negative value for both the upper limit and the lower limit.
  • holes are formed at positions indicated by dotted circles 41a, 41b, 42a, 42b, 43a, 43b, 44a, 44b, 45a, and 45b (hereinafter indicated by dotted lines). Each of these circles is called a hole.)
  • a fixing jig (rigid body) was disposed in each of the holes 42a, 42b, 43a, 43b, 44a, 44b, 45a, 45b, and the base metal member 14 was fixed.
  • a cylindrical member (rigid body) is passed through the holes 41a and 41b, and the plate-like portion 121 (joined metal member 12) is passed through the members in a direction perpendicular to the surface 14a of the plate-like portion 141 by 2.0 kN. Pulled with the power of.
  • the configuration of the fifth model was specified as follows. As described above, the thickness of the base metal member 14 was variously changed.
  • the thickness of the base metal member 14 was changed when the protruding amount (distance L W ) from the butted ends 32a and 32b of the weld bead was 10.4 mm, 13.7 mm, 17.0 mm, and 20.0 mm.
  • FIG. 20, FIG. 21, FIG. 22 and FIG. 23 show the results of simulating the maximum main stress generated near the butting end portions 32a and 32b and the maximum main stress generated near the weld bead end portions 24a and 24b.
  • the relationship between the maximum main stress generated in the vicinity of the abutting end portions 32a and 32b and the maximum main stress generated in the vicinity of the weld bead end portions 24a and 24b is as follows: the thickness of the plate and the protruding amount of the weld bead from the abutting end portions 32a and 32b ( It has been found that there is a correlation with the distance L W ). Further, the plate thickness of the base metal member 14 and the abutting ends 32a and 32b of the weld bead in which the maximum principal stress generated in the vicinity of the abutting ends 32a and 32b and the maximum principal stress generated in the vicinity of the weld bead ends 24a and 24b coincide. FIG.
  • the built-up parts 30a and 30b in the vicinity of the contact end parts 32a and 32b. Further, when the right side is smaller than the left side of the formula (C), the maximum principal stress generated in the vicinity of the weld bead ends 24a, 24b becomes larger than the maximum principal stress generated in the vicinity of the abutting ends 32a, 32b. It turned out that it is preferable to provide the built-up parts 30a and 30b in the vicinity of the end parts 24a and 24b.
  • the built-up portions 30a and 30b are provided in the vicinity of the weld bead end portions 24a and 24b and the abutting end portions 32a and 32b.
  • the weld bead end portion 24a This is because the maximum principal stress in the vicinity of 24b is increased, and the reduction of the maximum principal stress in the vicinity of the abutting end portions 32a and 32b is a measure for improving the fatigue strength.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)
  • Arc Welding In General (AREA)
  • Body Structure For Vehicles (AREA)

Abstract

 この溶接構造部材は、第一の面及び第二の面を有するベース金属部材と;前記第一の面に対して、突き当て面をもって端面が突き当てられた接合金属部材と;前記第一の面に形成される溶接ビードと;前記ベース金属部材の前記第二の面に形成される肉盛部と;を備え、前記溶接ビードは、前記突き当て端部の前方に離間した位置に溶接ビード端部を有する。

Description

溶接構造部材及びその製造方法
 本発明は、溶接構造部材及びその製造方法に関する。
 本願は、2014年10月3日に、日本に出願された特願2014-204583号、及び、2015年8月11日に、日本に出願された特願2015-158817号に基づき優先権を主張し、その内容をここに援用する。
 近年、自動車の燃費向上のために、車体の軽量化が進められている。そして、車体の軽量化を実現するために、高強度鋼板同士を溶接した溶接構造部材が車体材料として用いられている。
 車体材料として用いられる溶接構造部材には、優れた疲労強度が求められる。しかしながら、従来、高強度鋼板を用いた場合でも溶接構造部材の疲労強度を十分に向上させることは難しいことが知られている。そこで、たとえば特許文献1に、溶接構造部材の疲労強度を向上させるための技術が提案されている。
 特許文献1に記載されている隅肉アーク溶接継手は、金属部材同士を隅肉アーク溶接する際に形成される隅肉ビードとは別に、補剛用ビードを備えている。補剛用ビードは、隅肉ビードを起点として、該隅肉ビードと同一面内に形成される。この補剛用ビードによって、溶接継手の疲労強度を向上させることができる。
国際公開第2013/157557号
 ところで、車体の足回り部(懸架装置を支持する部分)では、溶接構造部材としてT字状の溶接継手(以下、T字継手ともいう。)が用いられる。足回り部は車体荷重を支持する部分であるので、足回り部に利用されるT字継手では、特に疲労強度を向上させる必要がある。
 特許文献1においても、立鋼板および横鋼板からなるT字継手が開示されている。特許文献1のT字継手では、立鋼板と横鋼板とを接合する隅肉ビードに対して交差するように、補剛用ビードが形成されている。特許文献1には、上記のように補剛用ビードを形成することによって、T字継手の変形が防止され、疲労寿命が向上することが記載されている。
 しかしながら、特許文献1の技術では、T字継手の構造によっては製造上の制約が多くなる場合がある。以下、具体的に説明する。
 上述したように、特許文献1の技術では、隅肉ビードに対して交差するように補剛用ビードを形成しなければならない。このため、補剛用ビードを形成する際には、溶接トーチを隅肉ビードに対して交差するように移動させなければならない。このとき、立鋼板と横鋼板との間で溶接トーチを円滑に移動させることができれば、適切な補剛用ビードを容易に形成することができる。しかしながら、たとえば、図25に示すT字継手1のように、立鋼板2が横鋼板3に対して大きく傾いて溶接されている場合には、立鋼板2と横鋼板3とが鋭角に交わる部分が生じる。この部分では、補剛用ビードを形成する際に、溶接トーチ4の移動方向(隅肉ビード5に交差する方向)に十分なスペースを確保できない。この場合、立鋼板2と横鋼板3との間で溶接トーチ4を円滑に移動させることが難しくなり、適切な補剛用ビードを容易に形成することができなくなる。
 本発明は、このような問題を解決するためになされたものであり、T字形状の接合部を有する溶接構造部材において、疲労強度を容易に向上できる構成を提供することを目的としている。
 本発明の要旨は下記の通りである。
(1)本発明の第一の態様は、互いに表裏をなす第一の面及び第二の面を有するベース金属部材と;前記第一の面に対して、突き当て面をもって端面が突き当てられた接合金属部材と;前記第一の面に形成されるとともに、前記接合金属部材を前記ベース金属部材に対して接合する溶接ビードと;前記ベース金属部材の前記第二の面に形成されるとともに、前記第二の面に対向してかつ前記ベース金属部材を透過する視線で見た場合に前記突き当て面と前記溶接ビードとの少なくとも一方に重なるように線状に形成される肉盛部と;を備え、前記突き当て面の端部である突き当て端部から当該突き当て面が存在する方向に向かう方向を後方、その逆の方向を前方とするとき、前記溶接ビードは、前記突き当て端部の前方に離間した位置に溶接ビード端部を有する溶接構造部材である。
(2)上記(1)に記載の溶接構造部材では、前記第二の面に対向してかつ前記ベース金属部材を透過する視線で見た場合に、前記肉盛部が前記突き当て端部から後方に1.9mmから7.0mm離間した位置に亘って設けられてもよい。
(3)上記(2)に記載の溶接構造部材では、前記第二の面に対向してかつ前記ベース金属部材を透過する視線で見た場合に、前記突き当て端部から前方に前記肉盛り部前端が位置し、かつ前記突き当て端部から後方に前記肉盛り部後端が位置していてもよい。
(4)上記(2)又は(3)に記載の溶接構造部材では、前記第二の面に対向してかつ前記ベース金属部材を透過する視線で見た場合に、前記肉盛部が前記突き当て面に対し平行であってもよい。
(5)上記(2)~(4)のいずれか一項に記載の溶接構造部材では、前記突き当て端部と前記溶接ビード端部との離間距離L(mm)と、前記ベース金属部材の板厚T(mm)とが下記式(A)を満たしてもよい。
-0.125L+4.06mm≦T≦4.5mm ・・・式(A)
(6)上記(2)~(5)のいずれか一項に記載の溶接構造部材では、前記肉盛部の長さが10.0mm以上であってもよい。
(7)上記(1)に記載の溶接構造部材では、前記第二の面に対向してかつ前記ベース金属部材を透過する視線で見た場合に、前記肉盛部が前記溶接ビード端部から後方に0.1mmから3.0mm離間した位置に亘って設けられてもよい。
(8)上記(7)に記載の溶接構造部材では、前記第二の面に対向してかつ前記ベース金属部材を透過する視線で見た場合に、前記溶接ビード端部から前方に前記肉盛り部前端が位置し、かつ前記溶接ビード端部から後方に前記肉盛り部後端が位置していてもよい。
(9)上記(7)又は(8)に記載の溶接構造部材では、前記第二の面に対向してかつ前記ベース金属部材を透過する視線で見た場合に、前記肉盛部が前記溶接ビードに対し平行であってもよい。
(10)上記(7)~(9)に記載の溶接構造部材では、前記突き当て端部と前記溶接ビード端部との離間距離L(mm)と、前記ベース金属部材の板厚T(mm)とが下記式(B)を満たしてもよい。
0.8mm≦T<-0.125L+4.06mm ・・・式(B)
(11)上記(7)~(10)のいずれか一項に記載の溶接構造部材では、前記肉盛部の長さが6.0mm以上であってもよい。
(12)上記(1)~(11)のいずれか一項に記載の溶接構造部材では、前記肉盛部は、前記第二の面からの高さが2.0mm以上20.0mm以下であってもよい。
(13)上記(1)~(12)のいずれか一項に記載の溶接構造部材では、前記肉盛部が、前記ベース金属部材と他の部材との接合に関与しない肉盛りビードであってもよい。
(14)上記(1)~(13)のいずれか一項に記載の溶接構造部材では、前記肉盛部が、前記ベース金属部材の内部まで侵入するように形成されてもよい。
(15)上記(1)~(14)のいずれか一項に記載の溶接構造部材では、前記溶接ビードが前記ベース金属部材を貫通しなくてもよい。
(16)上記(1)~(15)のいずれか一項に記載の溶接構造部材では、前記ベース金属部材が、270MPa以上の引張強度を有する鋼板であってもよい。
(17)本発明の第二の態様は、上記(1)~(16)のいずれか一項に記載の前記溶接構造部材を製造する方法であって、前記ベース金属部材の前記第一の面と、前記接合金属部材の前記端面とを前記突き当て面で接合する溶接ビードを付与する溶接ビード付与工程と;前記溶接ビード付与工程の前、又は、前記溶接ビード付与工程の後に、前記ベース金属部材の前記第二の面に、アーク溶接又はロウ付けにより前記肉盛部を付与する肉盛部付与工程と;を備える溶接構造部材の製造方法である。
 本発明によれば、簡単な構成によって、すなわちベース金属部材の第二の面(裏面)に線状の肉盛部を形成することによって溶接構造部材の疲労強度を向上できる。この場合、製造上の制約が少なく、溶接構造部材の疲労強度を容易に向上できる。具体的には、たとえば、接合金属部材の板状部がベース金属部材の板状部に対して大きく傾いて溶接されている場合でも、両板状部の間に肉盛部を形成する必要がないので、製造上の制約が多くならない。これにより、疲労強度が向上した溶接構造部材を容易に製造できる。
本発明の第一実施形態に係る溶接構造部材10Aを示す斜視図である。 同実施形態に係る溶接構造部材10Aを下方から見た斜視図である。 同実施形態に係る溶接構造部材10Aの一部を示す側面図である。 同実施形態に係る溶接構造部材10Aの突き当て面、溶接ビード、および肉盛部の投影図である。 本発明の第一実施形態の変形例に係る溶接構造部材10A’の突き当て面、溶接ビード、および肉盛部の投影図である。 本発明の第二実施形態に係る溶接構造部材10Bを示す斜視図である。 同実施形態に係る溶接構造部材10Bを下方から見た斜視図である。 同実施形態に係る溶接構造部材10Bの一部を示す側面図である。 同実施形態に係る溶接構造部材10Bの突き当て面、溶接ビード、および肉盛部の投影図である。 コンピュータ解析によって得られた、肉盛部の長さごとの、突き当て端部に対する肉盛部の前端位置と突き当て端部における最大主応力の最大値との関係を示すグラフである。 コンピュータ解析によって得られた、肉盛部の長さごとの、突き当て端部に対する肉盛部の後端位置と突き当て端部における最大主応力の最大値との関係を示すグラフである。 突き当て端部における最大主応力の最大値の減少率が30%のときの、肉盛部の長さと該肉盛部の前端位置の下限との関係を示すグラフである。 突き当て端部における最大主応力の最大値の減少率が50%のときの、肉盛部の長さと該肉盛部の前端位置の下限との関係を示すグラフである。 突き当て端部における最大主応力の最大値の減少率が75%のときの、肉盛部の長さと該肉盛部の前端位置の下限との関係を示すグラフである。 突き当て端部における最大主応力の最大値の減少率が90%のときの、肉盛部の長さと該肉盛部の前端位置の下限との関係を示すグラフである。 突き当て端部における最大主応力の最大値の減少率が30%のときの、肉盛部の長さと該肉盛部の前端位置の上限との関係を示すグラフである。 突き当て端部における最大主応力の最大値の減少率が50%のときの、肉盛部の長さと該肉盛部の前端位置の上限との関係を示すグラフである。 突き当て端部における最大主応力の最大値の減少率が75%のときの、肉盛部の長さと該肉盛部の前端位置の上限との関係を示すグラフである。 突き当て端部における最大主応力の最大値の減少率が90%のときの、肉盛部の長さと該肉盛部の前端位置の上限との関係を示すグラフである。 突き当て端部における最大主応力の最大値の減少率が30%のときの、肉盛部の長さと該肉盛部の後端位置の下限との関係を示すグラフである。 突き当て端部における最大主応力の最大値の減少率が50%のときの、肉盛部の長さと該肉盛部の後端位置の下限との関係を示すグラフである。 突き当て端部における最大主応力の最大値の減少率が75%のときの、肉盛部の長さと該肉盛部の後端位置の下限との関係を示すグラフである。 突き当て端部における最大主応力の最大値の減少率が90%のときの、肉盛部の長さと該肉盛部の後端位置の下限との関係を示すグラフである。 突き当て端部における最大主応力の最大値の減少率が30%のときの、肉盛部の長さと該肉盛部の後端位置の上限との関係を示すグラフである。 突き当て端部における最大主応力の最大値の減少率が50%のときの、肉盛部の長さと該肉盛部の後端位置の上限との関係を示すグラフである。 突き当て端部における最大主応力の最大値の減少率が75%のときの、肉盛部の長さと該肉盛部の後端位置の上限との関係を示すグラフである。 突き当て端部における最大主応力の最大値の減少率が90%のときの、肉盛部の長さと該肉盛部の後端位置の上限との関係を示すグラフである。 コンピュータ解析によって得られた、肉盛部の長さごとの、溶接ビード端部に対する肉盛部の前端位置と溶接ビード端部における最大主応力の最大値との関係を示すグラフである。 コンピュータ解析によって得られた、肉盛部の長さごとの、溶接ビード端部に対する肉盛部の後端位置と溶接ビード端部における最大主応力の最大値との関係を示すグラフである。 溶接ビード端部における最大主応力の最大値の減少率が30%のときの、肉盛部の長さと該肉盛部の前端位置の下限との関係を示すグラフである。 溶接ビード端部における最大主応力の最大値の減少率が50%のときの、肉盛部の長さと該肉盛部の前端位置の下限との関係を示すグラフである。 溶接ビード端部における最大主応力の最大値の減少率が75%のときの、肉盛部の長さと該肉盛部の前端位置の下限との関係を示すグラフである。 溶接ビード端部における最大主応力の最大値の減少率が90%のときの、肉盛部の長さと該肉盛部の前端位置の下限との関係を示すグラフである。 溶接ビード端部における最大主応力の最大値の減少率が30%のときの、肉盛部の長さと該肉盛部の前端位置の上限との関係を示すグラフである。 溶接ビード端部における最大主応力の最大値の減少率が50%のときの、肉盛部の長さと該肉盛部の前端位置の上限との関係を示すグラフである。 溶接ビード端部における最大主応力の最大値の減少率が75%のときの、肉盛部の長さと該肉盛部の前端位置の上限との関係を示すグラフである。 溶接ビード端部における最大主応力の最大値の減少率が90%のときの、肉盛部の長さと該肉盛部の前端位置の上限との関係を示すグラフである。 溶接ビード端部における最大主応力の最大値の減少率が30%のときの、肉盛部の長さと該肉盛部の後端位置の下限との関係を示すグラフである。 溶接ビード端部における最大主応力の最大値の減少率が50%のときの、肉盛部の長さと該肉盛部の後端位置の下限との関係を示すグラフである。 溶接ビード端部における最大主応力の最大値の減少率が75%のときの、肉盛部の長さと該肉盛部の後端位置の下限との関係を示すグラフである。 溶接ビード端部における最大主応力の最大値の減少率が90%のときの、肉盛部の長さと該肉盛部の後端位置の下限との関係を示すグラフである。 溶接ビード端部における最大主応力の最大値の減少率が30%のときの、肉盛部の長さと該肉盛部の後端位置の上限との関係を示すグラフである。 溶接ビード端部における最大主応力の最大値の減少率が50%のときの、肉盛部の長さと該肉盛部の後端位置の上限との関係を示すグラフである。 溶接ビード端部における最大主応力の最大値の減少率が75%のときの、肉盛部の長さと該肉盛部の後端位置の上限との関係を示すグラフである。 溶接ビード端部における最大主応力の最大値の減少率が90%のときの、肉盛部の長さと該肉盛部の後端位置の上限との関係を示すグラフである。 板厚と最大主応力の最大値との関係を示すグラフである。 板厚と最大主応力の最大値との関係を示すグラフである。 板厚と最大主応力の最大値との関係を示すグラフである。 板厚と最大主応力の最大値との関係を示すグラフである。 延長ビード長さ(突き当て端部と溶接ビード端部との離間距離L)と、つけ根(突き当て端部)/先端応力(溶接ビード端部)逆転板厚との関係を示すグラフである。 従来のT字継手を示す図である。
 本発明者らは、横板の表面と立板の端面とを溶接ビードにより溶接して得られるT字溶接継手部材において、疲労強度を容易に向上できる構成について鋭意検討した。その結果、本発明者らは、
(a)肉盛りビードを横板の裏面(立板との接合部が存在しない面)に形成する場合には、肉盛りビードを横板の表面に形成する場合に比べ最大主応力を低減させる効果が高く、且つ、作業性を損なわないため、効率良く疲労強度を向上可能であること、
を新たに知見した。
 更に、本発明者らは
(b)T字溶接継手部材を構成する横板において、接合部の近傍において生じる最大主応力の値は、接合部の端部近傍又は溶接ビードの端部近傍において大きくなり、これらの位置から疲労破壊が発生すること、
(c)横板の厚みが大きいほど、接合部の端部近傍の最大主応力が、溶接ビードの端部近傍の最大主応力に比べて大きくなる傾向があり、横板の厚みが小さいほど、溶接ビードの端部近傍の最大主応力が接合部の端部近傍の最大主応力に比べて大きくなる傾向があること、及び、
(d)立板を横板の表面に対して垂直な方向に引っ張った場合、立板と横板の接合部の近傍において生じる最大主応力の方向は、接合部又は溶接ビードの延伸方向に対して平行になること、
を新たに知見した。
 以下、本発明について第一実施形態及び第二実施形態に基づき詳しく説明する。
≪第一実施形態≫
 図1は、本発明の第一実施形態に係る溶接構造部材10Aを示す斜視図であり、図2は、溶接構造部材10Aを下方から見た斜視図であり、図3は、溶接構造部材10Aの一部を示す側面図であり、図4は、溶接構造部材10Aの突き当て面32、溶接ビード24、および肉盛部30a,30bの投影図である。なお、図1および図2において、点線の丸41a,41b,42a,42b,43a,43b,44a,44b,45a,45bは、後述するシミュレーションにおいて解析モデルに形成した穴の位置を示している。詳細は後述する。
 図1に示すように、本実施形態に係る溶接構造部材10Aは、第1方向D1に延在する接合金属部材12と、第1方向D1に交差する第2方向D2に延在するとともに、接合金属部材12の端面が接合されるベース金属部材14と、接合金属部材12をベース金属部材14に接合する溶接ビード24と、ベース金属部材14の裏面に形成される肉盛部30a,30bと、を備える。
 溶接構造部材10Aは、接合部がT字形状を呈するように接合金属部材12とベース金属部材14とを接合した、いわゆるT字継手である。本実施形態に係る溶接構造部材10Aは、後述する表面14aに平行な方向に投影された場合に、接合金属部材12とベース金属部材14との接合部がT字形状を呈する。
 本実施形態に係る溶接構造部材10Aでは、第1方向D1は第2方向D2に対して垂直であるが、第1方向D1が第2方向D2に対して傾斜していてもよい。すなわち、本実施形態に係る溶接構造部材10Aでは、接合金属部材12がベース金属部材14に対して垂直になるようにベース金属部材14に溶接されているが、接合金属部材12がベース金属部材14に対して傾斜するようにベース金属部材14に溶接されてもよい。なお、以下の説明では、第1方向D1を上下方向とし、第2方向D2を左右方向とする。
 接合金属部材12は、板状の金属部材から構成される。また、接合金属部材12は開断面形状の板状部121により構成される。接合金属部材12の板状部121は、一対の側壁部121a,121bと、底壁部121cとを含む。一対の側壁部121a,121bは、互いの面が向き合うように平行に設けられる。底壁部121cは、側壁部121aの一端部および側壁部121bの一端部を接続するように設けられる。
 ベース金属部材14は、板状の金属部材から構成され、互いに表裏をなす表面14aおよび裏面14bを有する。また、ベース金属部材14は、開断面形状の板状部141により構成される。ベース金属部材14の板状部141は、一対の側壁部141a,141bと、天板部141cとを含む。一対の側壁部141a,141bは、互いの面が向き合うように平行に設けられる。天板部141cは、側壁部141aの一端部および側壁部141bの一端部を接続するように設けられる。
 以下の説明では、ベース金属部材14の表面のうち、天板部141cの表面に相当する部分をベース金属部材14の表面14aと称し、ベース金属部材14の裏面のうち、天板部141cの裏面に相当する部分をベース金属部材14の裏面14bと称する。
 また、接合金属部材12の端面と、ベース金属部材14の表面14aとの接合界面のことを突き当て面32と称する。更に、突き当て面32の端部である突き当て端部32a,32bを基準として、当該突き当て面32が存在する方向に向かう方向を後方、その逆の方向を前方と称する。
 接合金属部材12とベース金属部材14とを溶接する際に、接合金属部材12の一部およびベース金属部材14の一部が溶融するので、両部材を実際に溶接した状態においては、接合界面である突き当て面32を明確に規定することはできない。そこで、本発明では、接合金属部材12とベース金属部材14とを溶接する際に、両部材が溶融していないものと仮定して(言い換えると、接合金属部材12と、ベース金属部材14とが溶接前の形状を維持していると仮定して)、突き当て面32を規定する。したがって、本発明では、突き当て面32および接合金属部材12の端面を、ベース金属部材14の表面14aに対して垂直な方向に見た場合には、突き当て面32の外縁と接合金属部材12の端面の外縁とが一致する。
 接合金属部材12およびベース金属部材14はそれぞれ、たとえば、金属板を曲げ加工することによって得られる。金属板の材料は特に限定されず、鋼やアルミであってもよい。一例として、接合金属部材12およびベース金属部材14の材料として、引張強度が270MPa以上の鋼板を用いることができる。特に、溶接構造部材10Aの強度を十分に確保するためには、接合金属部材12およびベース金属部材14の材料として、引張強度が590MPa以上の鋼板を用いることが好ましく、引張強度が780MPa以上の鋼板を用いることが更に好ましく、引張強度が980MPa以上の鋼板を用いることが更に好ましく、引張強度が1180MPa以上の鋼板を用いることが更に好ましく、引張強度が1500MPa以上の鋼板を用いることが更に好ましい。
 ベース金属部材14の厚みは、たとえば、自動車足回り部材の材料としてよく使用される鋼板の厚みと同程度であればよい。具体的には、ベース金属部材14の厚みは0.8mm~4.5mmの範囲に設定されればよい。
 ただし、後述するように、本実施形態に係る溶接構造部材10Aでは、突き当て端部32a,32bの近傍における最大主応力を低減させるように肉盛部30a,30bが設けられる。ベース金属部材14の厚みが大きいほど、溶接ビード端部24a,24bの近傍における最大主応力よりも突き当て端部32a,32bの近傍における最大主応力が大きくなる傾向があることから、本実施形態に係る溶接金属部材10Aの最大主応力を低減させるには、突き当て端部32a,32bの近傍に肉盛部30a,30bを設けることが有効である。
 上記の傾向に基づき発明者らが更に研究を重ねた結果、本実施形態に係る溶接構造部材10Aは突き当て端部32a,32bと溶接ビード端部24a,24bとの離間距離L(mm)と、ベース金属部材14の板厚T(mm)とが、下記式(A)を満たすように設定されることが好ましいことを発見した。
-0.125L+4.06≦T≦4.5・・・式(A)
 ただし、式(A)を満足しない場合であっても、突き当て端部32a,32bの近傍に肉盛部30a,30bを設けることが好ましい。突き当て端部32a,32bの近傍における最大主応力を低減させることができるためである。
 尚、接合金属部材12の厚みは、部材に要求される性能に応じて選択することができる。
 溶接ビード24は、突き当て面32に沿って平面視で略U字形状に形成され、接合金属部材12の端面と、ベース金属部材14の表面14aとを接合する。
 本実施形態では、溶接ビード24は、接合金属部材12の側壁部121aとベース金属部材14の表面14aとを接合する側壁ビード部241aと、接合金属部材12の側壁部121bとベース金属部材14の表面14aとを接合する側壁ビード部241bと、接合金属部材12の底壁部121cとベース金属部材14の表面14aとを接合する底壁ビード部241cと、を含む。溶接ビード24は、たとえば、アーク溶接によって形成される。
 本実施形態では、溶接ビード24は、ベース金属部材14の表面14aから、ベース金属部材14の板厚方向に所定の深さ位置まで形成されている。すなわち、溶接ビード24は、ベース金属部材14を貫通しないように形成されている。ただし、溶接ビード24は、ベース金属部材14を貫通するように形成されてもよい。
 溶接ビード24は、それぞれ、接合金属部材12とベース金属部材14との間の突き当て面32の突き当て端部32a,32bよりも前方に離間した位置に、溶接ビード端部24a,24bを有する。突き当て端部32a,32bと溶接ビード端部24a,24bとの離間距離L(mm)は、ベース金属部材14の板厚Tを考慮して上述の式(A)を満たすように設定されることが好ましい。
 尚、接合金属部材12およびベース金属部材14が溶接前の形状を維持していると仮定して、接合金属部材12とベース金属部材14との間に形成されるビードを、溶接ビード24と規定する。
 肉盛部30a,30bは、ベース金属部材14と、他の部材との接合に関与しない肉盛りビードであり、図2~図4に示すように、ベース金属部材14の裏面14bに線状に形成される。
 肉盛部30aは接合金属部材12の側壁部121aに対応して設けられ、肉盛部30bは接合金属部材12の側壁部121bに対応して設けられる。肉盛部30a,30bは、たとえば、溶接材料を用いて、アーク溶接、又はロウ付けによって形成される。アーク溶接によって肉盛部30a,30bを形成する場合、ベース金属部材14の内部まで侵入するように肉盛部30a,30bが形成されるため、突き当て端部32a,32bの近傍の最大主応力を低減させることができ、溶接構造部材の疲労強度を更に向上させることが可能となる。
 尚、肉盛部30a,30bを形成する前の板状部141の形状が維持されていると仮定して、板状部141の裏面14bに形成されるビードを肉盛部30a,30bと規定する。
 肉盛部30a,30bは、ベース金属部材14の裏面14bに形成されるため、ベース金属部材14の表面14aに形成される場合に比べて、製造上の制約が少ない。たとえば、板状部121が板状部141に対して大きく傾いて溶接されている場合でも、板状部121と板状部141との間ではなく、板状部141の裏面14bに肉盛部30a,30bを形成すればよいので、肉盛部30a,30bを容易に形成できる。これにより、溶接構造部材10Aを容易に製造できる。
 さらに、ベース金属部材14の裏面14bに肉盛部30a,30bが形成される場合、たとえば、溶接構造部材10Aを車体材料として用いる場合に、肉盛部30a,30bを、外観に表れない位置に形成することもできる。この場合、肉盛部30a,30bによって車体の美感が損なわれることを防止できる。
 肉盛部30a,30bの前後方向の長さはそれぞれ、6.0mm以上であればよく、10.0mm以上であることが好ましく、14.0mm以上であることがより好ましく、20.0mm以上であることがさらに好ましい。
 肉盛部30a,30bの幅はそれぞれ、5.0mm以上であることが好ましく、6.0mm以上であることが更に好ましい。また、肉盛部30a,30bの幅はそれぞれ、接合金属部材12の厚さ、すなわち、突き当て面32の幅よりも大きいことが好ましい。肉盛部30a,30bの幅は、40.0mmを超えても突き当て端部32a,32bの近傍の最大主応力を低減させる効果は飽和し、部品重量及び作業量が増加することになるため、30.0mm以下であることが好ましく、20.0mm以下であることが更に好ましい。
 図3に示すように、肉盛部30aの高さH、すなわち、ベース金属部材14の裏面14bからの突出高さは、2.0mm以上であることが好ましい。肉盛部30aの高さHは、20.0mmを超えても突き当て端部32a,32bの近傍の最大主応力を低減させる効果は飽和し、部品重量及び作業量が増加することになるため、20.0mm以下であることが好ましく、10.0mm以下であることが更に好ましい。肉盛部30bの高さについても同様である。
 接合金属部材12をベース金属部材14の表面に対して垂直な方向に引っ張った場合、ベース金属部材14の突き当て端部の近傍において生じる最大主応力の方向は、突き当て面の延伸方向に対して平行な方向である。従って、肉盛部30a,30bは、突き当て面32に対して略平行に形成されていることが好ましい。
 換言すると、ベース金属部材14の裏面14bに対向してかつベース金属部材14を透過する視線で見た場合に、肉盛部30a,30bは突き当て面の延伸方向に対し平行に形成されることが好ましい。具体的には、肉盛部30aは、突き当て側面322aおよび側壁ビード部241aに対して略平行であり、肉盛部30bは、突き当て側面322bおよび側壁ビード部241bに対して略平行であることが好ましい。
 以下、本実施形態に係る溶接構造部材10Aの突き当て面32、溶接ビード24、および肉盛部30a,30bの位置関係を説明する。
 図4は、突き当て面32と、溶接ビード24と、肉盛部30a,30bとを、ベース金属部材14の表面14aに対して垂直な方向(本実施形態では、第1方向D1)に投影した図である。なお、図4においては、突き当て面32と、溶接ビード24と、肉盛部30a,30bとの位置関係を理解し易くするために、突き当て面32および溶接ビード24を投影した部分にはハッチングを付している。また、肉盛部30a,30bを投影した部分の外縁を破線で示している。
 図4に示すように、本実施形態に係る溶接構造部材10Aでは、突き当て面32は、一対の突き当て端部32a,32bを有し、突き当て端部32aから突き当て端部32bに向かって略U字状に延びる。具体的には、突き当て面32は、突き当て側面322a、322bと、突き当て底面322cとを含む。突き当て底面322cは、接合金属部材12の底壁部121c(図1参照)とベース金属部材の板状部141(図1参照)との突き当て面である。突き当て側面322aは、側壁部121a(図1参照)と板状部141との突き当て面である。突き当て側面322bは、側壁部121b(図1参照)と板状部141との突き当て面である。突き当て側面322aは、突き当て底面322cから突き当て面32の一方の突き当て端部32aに向かって直線状に延び、突き当て側面322bは、突き当て底面322cから突き当て面32の他方の突き当て端部32bに向かって直線状に延びる。本実施形態では、突き当て側面322a、322bがそれぞれ直線部に対応する。なお、図4においては、突き当て底面322cと突き当て側面322a,322bとの境界、及び、底壁ビード部241cと側壁ビード部241a,241bとの境界をそれぞれ二点鎖線で示している。
 本実施形態に係る溶接構造部材10Aでは、ベース金属部材14の裏面14bに対向してかつベース金属部材14を透過する視線で見た場合に、肉盛部30a,30bの前端は、突き当て端部32a,32bから後方に1.9mm離間した位置よりも前方に設けられ、且つ、肉盛部30a,30bの後端は、突き当て端部32a,32bから後方に7.0mm離間した位置よりも後方に設けられる。すなわち、ベース金属部材14の裏面14bのうち、図3においてクロスハッチングで示す領域を覆うように、肉盛部30aが形成される。
 また、ベース金属部材14の裏面14bに対向してかつベース金属部材14を透過する視線で見た場合に、突き当て端部32a,32bから前方に肉盛り部30a,30bの前端が位置し、かつ、突き当て端部32a,32bから後方に前肉盛り30a,30bの部後端が位置していることが好ましい。
 肉盛部30a,30bの前端は、溶接ビード端部24a,24bの近傍にまで延在してもよい。具体的には、溶接ビード端部24a,24bから後方に0.1mm離間した位置よりも前方にまで延在してもよい。この場合、溶接ビード端部24a,24b近傍の最大主応力も低減させることができる。
 肉盛部30a,30bは、図4に示すように、突き当て端部32a,32bの近傍において、突き当て面32および溶接ビード24に重なっている。具体的には、肉盛部30aは、突き当て側面322aに対応して設けられ、突き当て端部32a近傍において突き当て側面322aおよび側壁ビード部241aに重なっている。肉盛部30bは、突き当て側面322bに対応して設けられ、突き当て端部32b近傍において突き当て側面322bおよび側壁ビード部241bに重なっている。
 尚、図4に示す例では肉盛部30a,30bが突き当て面32および溶接ビード24に重なっているが、肉盛部30a,30bは、突き当て面32および溶接ビード24のいずれか一方のみに重なっている構成であってもよい。
 肉盛部30aの後端は、突き当て端部32a,32bから後方に8.0mm離間した位置よりも後方に設けられることが好ましく、突き当て端部32a,32bから後方に10.0mm離間した位置よりも後方に設けられることがより好ましく、突き当て端部32a,32bから後方に14.0mm離間した位置よりも後方に設けられることが更に好ましい。
 肉盛部30aの前端は、突き当て端部32a,32bから後方に0.4mm離間した位置よりも前方に設けられることが好ましく、突き当て端部32a,32bから前方に0.3mm離間した位置よりも前方に設けられることが好ましく、突き当て端部32a,32bから前方に0.7mm離間した位置よりも前方に設けられることが更に好ましく、突き当て端部32a,32bから前方に1.7mm離間した位置よりも前方に設けられることが更に好ましい。
 溶接構造部材10Aの製造方法は、接合金属部材12の端面とベース金属部材14の表面14aとを接合する溶接ビード24を付与する溶接ビード付与工程と、ベース金属部材14の裏面14bに、アーク溶接又はロウ付けにより肉盛部30a,30bを付与する肉盛部付与工程と、を有する。溶接ビード付与工程と肉盛部付与工程は、どちらを先に行ってもよいが、溶接ビード付与工程を行ってから肉盛部付与工程を行う方が作業性の観点から好ましい。
 上述の構成によれば、肉盛部30a,30bにより突き当て端部32a,32bの近傍の剛性を高めることで最大主応力を低減させることができるため、溶接構造部材10Aの疲労強度を高めることができる。
 図5に、本実施形態の変形例に係る溶接構造部材10A’を示す。上述の第一実施形態に係る溶接構造部材10Aでは、側壁部121aと側壁部121bとが互いに平行に設けられる場合について説明したが、側壁部121aと側壁部121bとが互いに平行に設けられなくてもよい。たとえば、板状部121が、開放端側が開くような開断面形状を有している場合には、突き当て面32、溶接ビード24および肉盛部30a,30bの投影図は、図5に示す図になる。この場合、突き当て側面322a、322bにおいてそれぞれ、突き当て底面322c側を後方とし、その逆側を前方として前後方向を定義する。そして、突き当て側面322a、322bについてそれぞれ定義した前後方向を基準として、第一実施形態に係る溶接構造部材10Aと同様に、突き当て面32、溶接ビード24、および肉盛部30a,30bの位置関係を規定する。
≪第二実施形態≫
 次に、本発明の第二実施形態に係る溶接構造部材10Bについて説明する。第二実施形態に係る溶接構造部材10Bは、肉盛部30a,30bが形成される位置を除いて第一実施形態に係る溶接構造部材10Aと同じ構成を有するため、同じ構成要素には同じ参照符号を付して説明を省略する。
 図6~図9に、第二実施形態に係る溶接構造部材10Bを示す。より詳細には、図6は、溶接構造部材10Bを上方から見た斜視図であり、図7は、溶接構造部材10Bを下方から見た斜視図であり、図8は、溶接構造部材10Bの一部を示す側面図であり、図9は、溶接構造部材10Bの突き当て面32、溶接ビード24、及び、肉盛部30a,30bの投影図である。
 前述した第一実施形態に係る溶接構造部材10A、及びその第一変形例に係る溶接構造部材10A’では、ベース金属部材14の裏面14bのうち、突き当て端部32a,32bの近傍に対応する領域に肉盛部30a,30bを設ける構成を有する。この構成によれば、突き当て端部32a,32bの近傍における最大主応力を低減させることが可能となり、溶接構造部材10Aの疲労強度を高める効果を得ることが出来る。
 一方、第二実施形態に係る溶接構造部材10Bは、ベース金属部材14の裏面14bのうち、溶接ビード端部24a,24bの近傍における領域に肉盛部30a,30bを設ける構成を有する。この構成によれば、溶接ビード端部24a,24bの近傍における最大主応力を低減させることが可能となり、溶接構造部材10Bの疲労強度を高める効果を得ることが出来る。
 第二実施形態に係る溶接構造部材10Bの接合金属部材12の厚みおよびベース金属部材14の厚みは、それぞれ、第一実施形態に係る溶接構造部材10Aと同様に、たとえば、0.8mm~4.5mmの範囲に設定されればよい。
 ただし、第二実施形態に係る溶接構造部材10Bでは、溶接ビード端部24a,24bの近傍における最大主応力を低減させるように肉盛部30a,30bが設けられる。ベース金属部材14の厚みが小さいほど、突き当て端部32a,32bの近傍における最大主応力よりも溶接ビード端部24a,24bの近傍における最大主応力が大きくなる傾向がある。従って、溶接ビード端部24a,24bの近傍における最大主応力を低減させることを目的とする本実施形態に係る溶接構造部材10Bでの最大主応力を低減させるには、溶接ビード端部24a,24bの近傍に肉盛り部30a,30bを設けることが有効である。
 上記の傾向に基づき発明者らが更に研究を重ねた結果、本実施形態に係る溶接構造部材10Bは突き当て端部32a,32bと溶接ビード端部24a,24bとの離間距離L(mm)と、ベース金属部材14の板厚T(mm)とが、下記式(B)を満たすように設定されることが好ましいことを発見した。
0.8mm≦T<-0.125L+4.06mm ・・・式(B)
 ただし、式(B)を満足しない場合であっても、溶接ビード端部24a,24bの近傍に肉盛部30a,30bを設けることが好ましい。溶接ビード端部24a,24bの近傍における最大主応力を低減させることができるためである。
 尚、接合金属部材12の厚みは、部材に要求される性能に応じて選択することができる。
 以下、第二実施形態に係る溶接構造部材10Bの突き当て面32、溶接ビード24、および肉盛部30a,30bの位置関係を説明する。
 図8に示すように、本実施形態に係る溶接構造部材10Bでは、ベース金属部材14の裏面14bに対向してかつベース金属部材14を透過する視線で見た場合に、肉盛部30a,30bの前端は、溶接ビード端部24a,24bから後方に0.1mm離間した位置よりも前方に設けられ、且つ、肉盛部30a,30bの後端は、溶接ビード端部24a,24bから後方に3.0mm離間した位置よりも後方に設けられる。
 尚、図8に示す例では、溶接ビード端部24a,24bから前方に肉盛り部30a,30bの前端が位置し、かつ溶接ビード端部24a,24bから後方に肉盛り部30a,30bの後端が位置している。しかしながら、肉盛部30a,30bの前端は、溶接ビード端部24a,24bよりも後方に設けられていてもよい。
 肉盛部30aの後端は、溶接ビード端部24a,24bから後方に5.0mm離間した位置よりも後方に設けられることが好ましく、溶接ビード端部24a,24bから後方に10.0mm離間した位置よりも後方に設けられることが更に好ましい。
 肉盛部30aの前端は、溶接ビード端部24a,24bから前方に0.3mm離間した位置よりも前方に設けられることが好ましく、溶接ビード端部24a,24bから前方に1.2mm離間した位置よりも前方に設けられることが更に好ましく、溶接ビード端部24a,24bから前方に1.9mm離間した位置よりも前方に設けられることがより好ましい。
 以上、第一実施形態及び第二実施形態に基づき本発明を説明したが、本発明は上述した実施形態のみに限定されるものではなく、特許請求の範囲内で種々の改変をすることができる。
 例えば、突き当て端部32a,32bの近傍に肉盛部30a,30bを設ける第一実施形態と、溶接ビード端部24a,24bの近傍に肉盛部30a,30bを設ける第二実施形態とを組み合わせ、突き当て端部32a,32bの近傍から溶接ビード端部24a,24bの近傍に亘って肉盛部30a,30bを設ける構成としてもよい。この場合、突き当て端部32a,32bと溶接ビード端部24a,24bとの間で肉盛部30a,30bが分割されていてもよい。
 また、上述の第一実施形態及び第二実施形態では、両突き当て端部32a,32bの近傍又は両溶接ビード端部24a,24bの近傍に肉盛部30a,30bを形成する場合について説明したが、肉盛部30a,30bのうちのいずれか一方を形成しなくてもよい。
 また、上述の第一実施形態又は第二実施形態では、肉盛部30a,30bが突き当て面32又は溶接ビード24に対して略平行に延在して形成される場合について説明したが、肉盛部30a,30bが突き当て面32又は溶接ビード24に対して斜め方向に延在して形成されてもよい。肉盛部30a,30bが突き当て面32又は溶接ビード24に対して斜め方向に延在して形成される場合であっても、肉盛部30a,30bが、突き当て端部32a,32bから後方に1.9mmから7.0mm離間した位置、又は、溶接ビード端部24a,24bから後方に0.1mmから3.0mm離間した位置に亘って設けられることで、突き当て端部32a,32bの近傍又は溶接ビード端部24a,24bの近傍における最大主応力を低減させることが可能となり、溶接構造部材の疲労強度を高める効果を得ることが出来る。
 また、上述の第一実施形態及び第二実施形態では、板状部121は、第1方向D1および第2方向D2に対して直交する方向に開口する開断面形状を有しているが、板状部121が、第2方向D2に開口する開断面形状を有していてもよい。
 また、上述の第一実施形態及び第二実施形態では、接合金属部材12全体が板状部121として構成される場合について説明したが、接合金属部材12とベース金属部材14との接合面が開断面形状を有していれば、接合金属部材12が板状部と他の形状を有する部分(たとえば、柱状部)とを備えていてもよい。接合金属部材12は、例えば、鋭角を有する角柱であってもよい。
 また、上述の第一実施形態及び第二実施形態では、板状部121が開断面形状を有する場合について説明したが、本発明は、種々の形状の板状部を有する溶接構造部材に適用できる。したがって、たとえば、接合金属部材12が、上述の板状部121の代わりに、単なる平板状の板状部、断面L字形状の板状部または断面H字形状の板状部を有していてもよい。
 また、上述の第一実施形態及び第二実施形態では、側壁部141a,141bを有するベース金属部材14について説明したが、本発明は、平板部を有する種々のベース金属部材を備えた溶接構造部材に適用できる。したがって、ベース金属部材が側壁部141a,141bを有していなくてもよい。
また、上述の第一実施形態及び第二実施形態では、ベース金属部材14と接合金属部材12の接合面が平面である場合について説明したが、本発明はベース金属部材14と接合金属部材12の接合面が曲面である溶接構造部材にも適用しても良い。
 また、上述の第一実施形態及び第二実施形態では、溶接ビード24が底壁ビード部241cを有する場合について説明したが、溶接ビードが底壁ビード部を有していなくてもよい。
(シミュレーションに基づく検討1)
 以下、コンピュータを用いたシミュレーション結果とともに、第一実施形態に係る構成の効果をより詳細に説明する。このシミュレーションでは、図1~4で説明した溶接構造部材10Aと同様の構成を有する解析モデル(以下、第1モデルともいう。)を作成した。そして、第1モデルにおいて、肉盛部30a,30bの前後方向における位置および長さを変化させて、突き当て面32の突き当て端部32a,32b近傍に生じる最大主応力を求めた。また、比較のために、肉盛部30a,30bを有していない解析モデル(以下、第2モデルともいう。)を作成し、突き当て面32の突き当て端部32a,32b近傍に生じる最大主応力を求めた。
 なお、第1モデルおよび第2モデルともに、図1および図2において点線の丸41a,41b,42a,42b,43a,43b,44a,44b,45a,45bで示す位置に穴を形成した(以下、点線で示したこれらの丸をそれぞれ穴という。)。シミュレーションでは、穴42a,42b,43a,43b,44a,44b,45a,45bにそれぞれ固定治具(剛体)を配置して、ベース金属部材14を固定した。そして、穴41a,41bに円柱状の部材(剛体)を通し、その部材を介して板状部121(接合金属部材12)を板状部141の表面14aに対して垂直な方向に2.0kNの力で引っ張った。
 第1モデルおよび第2モデルの構成はともに、下記のように規定した。なお、上述のように、第1モデルにおいて、肉盛部30a,30bの前後方向における位置は種々変化させた。
(解析モデルの構成)
・接合金属部材
  材質:鋼
  厚み:2.6mm
  高さ(第1方向D1の長さ):80mm
  左右方向(第2方向D2)の長さ:70mm
  前後方向(図4参照)の長さ:80mm
  穴41aの位置:側壁部121aの中央
  穴41bの位置:側壁部121bの中央
  ヤング率:210000MPa
  ポアソン比:0.3
・ベース金属部材
  材質:鋼
  厚み:2.6mm
  高さ(第1方向D1の長さ):50mm
  左右方向(第2方向D2)の長さ:300mm
  前後方向(図4参照)の長さ:150mm
  穴42a,42bの中心間距離:230mm
  穴43a,43bの中心間距離:230mm
  穴44a,44bの中心間距離:230mm
  穴45a,45bの中心間距離:230mm
  穴42a,43aの中心間距離:100mm
  穴42b,43bの中心間距離:100mm
  表面14aから穴44a,44b,45a,45bの中心までの上下方向の距離:25mm
  ヤング率:210000MPa
  ポアソン比:0.3
・溶接ビード
  幅(突き当て端部32a,32b(図4参照)から前方に突出する部分を除く部分の幅):4.3mm
  高さ(突き当て端部32a,32bから前方に突出する部分を除く部分の高さ):5.0mm
  幅(突き当て端部32a,32bから前方に突出する部分の幅):10.6mm
  高さ(突き当て端部32a,32bから前方に突出する部分の高さ):2.2mm
  突き当て端部32a,32bからの突出量(距離L):13.7mm
  ヤング率:210000MPa
  ポアソン比:0.3
・肉盛部(第1モデル)
  幅:6.0mm
  高さ:2.0mm
  長さ:10.0mm、12.0mm、14.0mm、16.0mm、19.8mm、23.6mm、26.0mm、28.0mm
  肉盛部30aの左右方向の位置:肉盛部30aの中心線と突き当て側面322a(図4参照)の左縁とが一致
  肉盛部30bの左右方向の位置:肉盛部30bの中心線と突き当て側面322b(図4参照)の右縁とが一致
  ヤング率:210000MPa
  ポアソン比:0.3
 なお、接合金属部材12およびベース金属部材14の材料の降伏を考慮して解析を行った場合と、降伏を考慮せずに解析を行った場合とで、第1モデルに生じる応力と第2モデルに生じる応力との大小関係は変わらない。したがって、第1モデルに生じる最大主応力と第2モデルに生じる最大主応力との大小関係を相対的に評価する場合には、材料の降伏の有無を考慮しなくてもよい。そこで、本シミュレーションでは、解析を簡単にするため、接合金属部材12およびベース金属部材14の材料の降伏を考慮せずに、弾性解析を行った。また、上記のように最大主応力の大小関係を相対的に評価する場合には材料の降伏を考慮しなくてもよいので、本シミュレーションによって、任意の引張強度の接合金属部材12およびベース金属部材14を備えた溶接構造部材の評価を行うことができる。すなわち、本シミュレーションによって、たとえば、引張強度が270MPaの材料を用いた溶接構造部材の評価を行うこともできるし、引張強度が1500MPaの材料を用いた溶接構造部材の評価を行うこともできる。
 図10Aに、肉盛部30a(図4参照)の長さごとの、肉盛部30aの前端位置と突き当て端部32a近傍に生じる最大主応力の最大値との関係を示す。なお、肉盛部30aの前端位置とは、前後方向において、突き当て端部32a(図4参照)を基準とした場合における肉盛部30aの前端の位置を意味する。図10Aにおいては、肉盛部30aの前端が突き当て端部32aよりも前方に位置している場合に肉盛部30aの前端位置を正の値で示し、肉盛部30aの前端が突き当て端部32aよりも後方に位置している場合に肉盛部30aの前端位置を負の値で示している。たとえば、図4に示した溶接構造部材10Aでは、肉盛部30aの前端が突き当て端部32aよりも前方に位置しているので、肉盛部30aの前端位置は正の値で示される。また、図10Aにおいては、肉盛部30a,30bを有していない解析モデルにおける最大主応力の最大値(830MPa)を破線で示している。なお、説明は省略するが、肉盛部30bの前端位置と突き当て端部32b近傍に生じる最大主応力の最大値との関係も、図10Aに示す関係と同様の関係になった。
 図10Bに、肉盛部30a(図4参照)の長さごとの、肉盛部30aの後端位置と突き当て端部32a近傍に生じる最大主応力の最大値との関係を示す。なお、肉盛部30aの後端位置とは、前後方向において、突き当て端部32a(図4参照)を基準とした場合における肉盛部30aの後端の位置を意味する。図10Bにおいては、肉盛部30aの後端が突き当て端部32aよりも前方に位置している場合に肉盛部30aの後端位置を正の値で示し、肉盛部30aの後端が突き当て端部32aよりも後方に位置している場合に肉盛部30aの後端位置を負の値で示している。たとえば、図4に示した溶接構造部材10Aでは、肉盛部30aの後端が突き当て端部32aよりも後方に位置しているので、肉盛部30aの後端位置は負の値で示される。また、図10Bにおいても図10Aと同様に、肉盛部30a,30bを有していない解析モデルにおける最大主応力の最大値(830MPa)を破線で示している。なお、説明は省略するが、肉盛部30bの後端位置と突き当て端部32b近傍に生じる最大主応力の最大値との関係も、図10Bに示す関係と同様の関係になった。
 図10Aおよび図10Bから、本発明によれば、肉盛部30a,30bの前端位置および後端位置を適切に設定することによって、突き当て面32の突き当て端部32a,32bにおける最大主応力の最大値を低減できることが分かる。具体的には、図10Aから、肉盛部30a,30bの長さが10.0mmと短い場合でも、肉盛部30a,30bの前端位置を8.0mm以下、好ましくは7.0mm以下に設定することによって、肉盛部が無い場合よりも最大主応力の最大値を確実に低減できることが分かる。また、肉盛部30a,30bの前端位置を0~6.0mm、好ましくは0~4.0mm、さらに好ましくは2.0~4.0mmに設定することによって、最大主応力の最大値を十分に低減できることが分かる。また、図10Bから分かるように、肉盛部30a,30bの長さにかかわらず、肉盛部30a,30bの後端位置を-3.6mm以下にすることによって、肉盛部が無い場合よりも最大主応力の最大値を低減できた。また、図10Aおよび図10Bから、肉盛部30a,30bの長さが14.0mm以上になると、応力低減効果が特に大きくなり、肉盛部30a,30bの長さが19.8mm以上になると、応力低減効果がほぼ同じとなることが分かる。このことから、肉盛部30a,30bの長さを14.0mm以上とすることが好ましく、本発明の効果を最大限に発揮するためには、肉盛部の長さを19.8mm以上とするのがより好ましいことが分かる。
(シミュレーションに基づく検討2)
 図10Aを参照して、上述のシミュレーションでは、肉盛部30a,30bの長さが10.0mmの場合、肉盛部30a,30bの前端位置が3.0mmのときに最大主応力の最大値が760MPaまで減少した。上述のように、肉盛部を有していない解析モデルにおける最大主応力の最大値は830MPaであった。したがって、肉盛部30a,30bを設けることによって、最大主応力の最大値が最大で70MPa減少したことが分かる。このときの最大主応力の最大値の減少率(肉盛部を有していない解析モデルに対する最大主応力の最大値の減少率)を100%とすると、減少率が30%(21MPaの減少)になるときの肉盛部30a,30bの前端位置は、-2.5mmおよび7.0mmであった。すなわち、肉盛部30a,30bの前端位置が-2.5mm~7.0mmの範囲にある場合に、最大主応力の最大値の減少率(以下、単に減少率という。)を30%以上にすることができる。すなわち、減少率を30%以上にするための肉盛部30a,30bの前端位置の下限は-2.5mmであり、上限は7.0mmである。
 同様に、肉盛部30a,30bの長さが12.0mmの場合、肉盛部30a,30bの前端位置が3.0mmのときに最大主応力の最大値が752MPaまで減少した。上述のように、肉盛部を有していない解析モデルにおける最大主応力の最大値は830MPaであった。したがって、肉盛部30a,30bを設けることによって、最大主応力の最大値が最大で78MPa減少したことが分かる。このときの減少率を100%とすると、減少率が30%(23.4MPaの減少)になるときの肉盛部30a,30bの前端位置は、-2.3mmおよび8.7mmであった。すなわち、減少率を30%以上にするための肉盛部30a,30bの前端位置の下限は-2.3mmであり、上限は8.7mmである。
 詳細な説明は省略するが、肉盛部30a,30bの長さが14.0mm、16.0mm、19.8mm、23.6mm、28.0mmの場合について、減少率を50%以上、75%以上、および90%以上にするための肉盛部30a,30bの位置についても同様に検討を行った。さらに、上述の第1モデルにおいて、ベース金属部材14の厚みを3.5mmおよび3.0mmに設定して上述のシミュレーションと同様のシミュレーションを行った。そして、減少率と肉盛部30a,30bとの関係について同様の検討を行った。なお、ベース金属部材14の厚みが3.5mmおよび3.0mmの場合は、肉盛部30a,30bの長さを、10.0mm、12.0mm、14.0mm、16.0mm、20.0mm、24.0mm、28.0mmとした。これらの検討結果を、ベース金属部材14の厚みが2.6mmの場合の検討結果とともに図11A~図14Dに示す。
 図11Aから分かるように、ベース金属部材14の厚みおよび肉盛部30a,30bの長さにかかわらず、肉盛部30a,30bの前端位置の下限が-1.9mm以上であれば、減少率を少なくとも30%にすることができる。言い換えると、(A)肉盛部30a,30bの前端を、突き当て端部32a,32bから後方に1.9mmの位置よりも前方に位置させることによって、少なくとも30%の減少率を実現できる。また、図11B、11C、11Dから、肉盛部30a,30bの前端を、突き当て端部32a,32bから後方に0.4mmの位置よりも前方に位置させることが好ましく、突き当て端部32a,32bから前方に0.7mmの位置よりも前方に位置させることがより好ましく、突き当て端部32a,32bよりも前方に1.7mmの位置よりも前方に位置させることがさらに好ましいことが分かった。
 図12Aから分かるように、減少率が30%になるときの肉盛部30a,30bの前端位置の上限は、肉盛部30a,30bの長さの増加に従って上昇した。このような関係は、図12Bおよび図12Cに示すように、減少率が50%および75%の場合にも確認できた。一方、図12Dに示すように、減少率が90%の場合には、肉盛部30a,30bの長さが増加しても、肉盛部30a,30bの前端位置の上限は大きく上昇しなかった。具体的には、肉盛部30a,30bの長さにかかわらず、肉盛部30a,30bの前端位置の上限が7.5mm以下の場合に、減少率を少なくとも90%にすることができた。図12Dに示した結果から、肉盛部30a,30bの前端を、突き当て端部32a,32b(図4参照)から前方に7.5mmの位置、より好ましくは突き当て端部32a,32bから前方に7.0mmの位置よりも後方に位置させることによって、最大主応力の最大値を十分に減少させることができることが分かる。
 図13Aから分かるように、減少率が30%になるときの肉盛部30a,30bの後端位置の下限は、肉盛部30a,30bの長さの増加に従って低下した。このような関係は、図13B、13C、13Dに示すように、減少率が50%、75%および90%の場合にも確認できた。
 また、図14B、14C、14Dに示すように、減少率が50%および75%および90%の場合の肉盛部30a,30bの後端位置の上限は、肉盛部30a,30bの長さの増加に従って低下した。一方、図14Aに示すように、減少率が30%の場合には、肉盛部30a,30bの長さが増加しても、肉盛部30a,30bの後端位置の上限は大きく低下しなかった。
 なお、図14Aから分かるように、ベース金属部材14の板厚が2.6mmの場合、肉盛部30a,30bの長さにかかわらず、肉盛部30a,30bの後端位置の上限が-7.0mm以下であれば、減少率を少なくとも30%にすることができる。ここで、突き当て端部32a,32bの近傍に発生する最大主応力の最大値は、ベース金属部材14の厚みが3.5mmの場合よりも3.0mmの場合の方が高くなり、ベース金属部材14の厚みが3.0mmの場合よりも2.6mmの場合の方が高くなる。したがって、特に、ベース金属部材14の厚みが小さい場合に、減少率を大きくすることが好ましい。この観点からは、肉盛部30a,30bの後端位置の上限を-7.0mm以下にすることが好ましいといえる。言い換えると、(B)肉盛部30a,30bの後端を、突き当て端部32a,32bから後方に7.0mmの位置よりも後方に位置させることによって、少なくとも30%の減少率を実現できる。これにより、突き当て端部32a,32b近傍に発生する最大主応力の最大値を十分に低減できるので、ベース金属部材14の厚みが小さい場合でも、溶接構造部材10の疲労強度を十分に確保できる。
 上記(A)、(B)を踏まえると、より確実に30%以上の減少率を実現させるためには、少なくとも突き当て端部32a,32bから後方に1.9mmから7.0mm離間した位置に亘って肉盛部30a,30bが設けられることが好ましいと言える。
 また、さらに改善率の向上する90%で考えると図11D、図12Dのように、肉盛り部前端位置は、上限、下限とも正の値となる。また、図13D、図14Dのように、肉盛り部後端位置は上限、下限とも負の値となる。これらのことから、よりよい改善を実施するためには、肉盛り部30a,30bは突き当て端部32a,32bを跨ぐように設けられることが好ましいと言える。
(シミュレーションに基づく検討3)
 以下、コンピュータを用いたシミュレーション結果とともに、第二実施形態に係る構成の効果をより詳細に説明する。このシミュレーションでは、図6~9で説明した溶接構造部材10Bと同様の構成を有する解析モデル(以下、第3モデルともいう。)を作成した。そして、第3モデルにおいて、肉盛部30a,30bの前後方向における位置および長さを変化させて、溶接ビード端部24a,24b近傍に生じる最大主応力を求めた。また、比較のために、肉盛部30a,30bを有していない解析モデル(以下、第4モデルともいう。)を作成し、溶接ビード端部24a,24b近傍に生じる最大主応力を求めた。
 なお、第3モデルおよび第4モデルともに、図6および図7において点線の丸41a,41b,42a,42b,43a,43b,44a,44b,45a,45bで示す位置に穴を形成した(以下、点線で示したこれらの丸をそれぞれ穴という。)。シミュレーションでは、穴42a,42b,43a,43b,44a,44b,45a,45bにそれぞれ固定治具(剛体)を配置して、ベース金属部材14を固定した。そして、穴41a,41bに円柱状の部材(剛体)を通し、その部材を介して板状部121(接合金属部材12)を板状部141の表面14aに対して垂直な方向に2.0kNの力で引っ張った。
 第3モデルおよび第4モデルの構成はともに、下記のように規定した。なお、上述のように、第3モデルにおいて、肉盛部30a,30bの前後方向における位置は種々変化させた。
(解析モデルの構成)
・接合金属部材
  材質:鋼
  厚み:2.6mm
  高さ(第1方向D1の長さ):80mm
  左右方向(第2方向D2)の長さ:70mm
  前後方向(図9参照)の長さ:80mm
  穴41aの位置:側壁部121aの中央
  穴41bの位置:側壁部121bの中央
  ヤング率:210000MPa
  ポアソン比:0.3
・ベース金属部材
  材質:鋼
  厚み:2.0m
  高さ(第1方向D1の長さ):50mm
  左右方向(第2方向D2)の長さ:300mm
  前後方向(図9参照)の長さ:150mm
  穴42a,42bの中心間距離:230mm
  穴43a,43bの中心間距離:230mm
  穴44a,44bの中心間距離:230mm
  穴45a,45bの中心間距離:230mm
  穴42a,43aの中心間距離:100mm
  穴42b,43bの中心間距離:100mm
  表面14aから穴44a,44b,45a,45bの中心までの上下方向の距離:25mm
  ヤング率:210000MPa
  ポアソン比:0.3
・溶接ビード
  幅(突き当て端部32a,32b(図9参照)から前方に突出する部分を除く部分の幅):4.3mm
  高さ(突き当て端部32a,32bから前方に突出する部分を除く部分の高さ):5.0mm
  幅(突き当て端部32a,32bから前方に突出する部分の幅):10.6mm
  高さ(突き当て端部32a,32bから前方に突出する部分の高さ):2.2mm
  突き当て端部32a,32bからの突出量(距離L):13.7mm
  ヤング率:210000MPa
  ポアソン比:0.3
・肉盛部(第3モデル)
  幅:6.0mm
  高さ:2.0mm
  長さ:6.0mm、10.0mm、12.0mm、14.0mm、16.0mm、20.0mm、24.0mm、28.0mm
  肉盛部30aの左右方向の位置:肉盛部30aの中心線と突き当て側面322a(図9参照)の左縁とが一致
  肉盛部30bの左右方向の位置:肉盛部30bの中心線と突き当て側面322b(図9参照)の右縁とが一致
  ヤング率:210000MPa
  ポアソン比:0.3
 なお、接合金属部材12およびベース金属部材14の材料の降伏を考慮して解析を行った場合と、降伏を考慮せずに解析を行った場合とで、第3モデルに生じる応力と第4モデルに生じる応力との大小関係は変わらない。したがって、第3モデルに生じる最大主応力と第4モデルに生じる最大主応力との大小関係を相対的に評価する場合には、材料の降伏の有無を考慮しなくてもよい。そこで、本シミュレーションでは、解析を簡単にするため、接合金属部材12およびベース金属部材14の材料の降伏を考慮せずに、弾性解析を行った。また、上記のように最大主応力の大小関係を相対的に評価する場合には材料の降伏を考慮しなくてもよいので、本シミュレーションによって、任意の引張強度の接合金属部材12およびベース金属部材14を備えた溶接構造部材の評価を行うことができる。すなわち、本シミュレーションによって、たとえば、引張強度が270MPaの材料を用いた溶接構造部材の評価を行うこともできるし、引張強度が1500MPaの材料を用いた溶接構造部材の評価を行うこともできる。
 図15Aに、肉盛部30a(図9参照)の長さごとの、肉盛部30aの前端位置と溶接ビード端部24a近傍に生じる最大主応力の最大値との関係を示す。なお、肉盛部30aの前端位置とは、前後方向において、溶接ビード端部24a(図9参照)を基準とした場合における肉盛部30aの前端の位置を意味する。図15Aにおいては、肉盛部30aの前端が溶接ビード端部24aよりも前方に位置している場合に肉盛部30aの前端位置を正の値で示し、肉盛部30aの前端が溶接ビード端部24aよりも後方に位置している場合に肉盛部30aの前端位置を負の値で示している。たとえば、図9に示した溶接構造部材10Bでは、肉盛部30aの前端が溶接ビード端部24aよりも前方に位置しているので、肉盛部30aの前端位置は正の値で示される。また、図15Aにおいては、肉盛部30a,30bを有していない解析モデルにおける最大主応力の最大値(1273MPa)を破線で示している。なお、説明は省略するが、肉盛部30bの前端位置と溶接ビード端部24b近傍に生じる最大主応力の最大値との関係も、図15Aに示す関係と同様の関係になった。
 図15Bに、肉盛部30a(図9参照)の長さごとの、肉盛部30aの後端位置と溶接ビード端部24a近傍に生じる最大主応力の最大値との関係を示す。なお、肉盛部30aの後端位置とは、前後方向において、溶接ビード端部24a(図9参照)を基準とした場合における肉盛部30aの後端の位置を意味する。図15Bにおいては、肉盛部30aの後端が溶接ビード端部24aよりも前方に位置している場合に肉盛部30aの後端位置を正の値で示し、肉盛部30aの後端が溶接ビード端部24aよりも後方に位置している場合に肉盛部30aの後端位置を負の値で示している。たとえば、図9に示した溶接構造部材10Bでは、肉盛部30aの後端が溶接ビード端部24aよりも後方に位置しているので、肉盛部30aの後端位置は負の値で示される。また、図15Bにおいても図15Aと同様に、肉盛部30a,30bを有していない解析モデルにおける最大主応力の最大値(1273MPa)を破線で示している。なお、説明は省略するが、肉盛部30bの後端位置と溶接ビード端部24b近傍に生じる最大主応力の最大値との関係も、図15Bに示す関係と同様の関係になった。
 図15Aおよび図15Bから、本発明によれば、肉盛部30a,30bの前端位置および後端位置を適切に設定することによって、溶接ビード端部24a,24bにおける最大主応力の最大値を低減できることが分かる。具体的には、図15Aから、肉盛部30a,30bの長さが6.0mmと短い場合でも、肉盛部30a,30bの前端位置を-1.7mm以上4.7mm以下に設定することによって、肉盛部が無い場合よりも最大主応力の最大値を確実に低減できることが分かる。また、肉盛部30a,30bの前端位置を-0.1mm~3.7mm、好ましくは0.5mm~3.0mm、さらに好ましくは1.0mm~2.4mmに設定することによって、最大主応力の最大値を十分に低減できることが分かる。また、図15Bから分かるように、肉盛部30a,30bの長さにかかわらず、肉盛部30a,30bの後端位置を-1.3mm以下にすることによって、肉盛部が無い場合よりも最大主応力の最大値を低減できた。
(シミュレーションに基づく検討4)
 図15Aを参照して、上述のシミュレーションでは、肉盛部30a,30bの長さが6.0mmの場合、肉盛部30a,30bの前端位置が1.3mmのときに最大主応力の最大値が958MPaまで減少した。上述のように、肉盛部を有していない解析モデルにおける最大主応力の最大値は1273MPaであった。したがって、肉盛部30a,30bを設けることによって、最大主応力の最大値が最大で315MPa減少したことが分かる。このときの最大主応力の最大値の減少率(肉盛部を有していない解析モデルに対する最大主応力の最大値の減少率)を100%とすると、減少率が30%(95MPaの減少)になるときの肉盛部30a,30bの前端位置は、-0.5mmおよび4.1mmであった。すなわち、肉盛部30a,30bの前端位置が-0.5mm~4.1mmの範囲にある場合に、最大主応力の最大値の減少率(以下、単に減少率という。)を30%以上にすることができる。すなわち、減少率を30%以上にするための肉盛部30a,30bの前端位置の下限は-0.5mmであり、上限は4.1mmである。
 同様に、肉盛部30a,30bの長さが10.0mmの場合、肉盛部30a,30bの前端位置が2.3mmのときに最大主応力の最大値が940MPaまで減少した。上述のように、肉盛部を有していない解析モデルにおける最大主応力の最大値は1273MPaであった。したがって、肉盛部30a,30bを設けることによって、最大主応力の最大値が最大で333MPa減少したことが分かる。このときの減少率を100%とすると、減少率が30%(100MPaの減少)になるときの肉盛部30a,30bの前端位置は、-0.3mmおよび7.6mmであった。すなわち、減少率を30%以上にするための肉盛部30a,30bの前端位置の下限は-0.3mmであり、上限は7.6mmである。
 詳細な説明は省略するが、肉盛部30a,30bの長さが12.0mm、14.0mm、16.0mm、20.0mm、24.0mm、28.0mmの場合について、減少率を50%以上、75%以上、および90%以上にするための肉盛部30a,30bの位置についても同様に検討を行った。さらに、上述の第3モデルにおいて、ベース金属部材14の厚みを2.3mm、1.6mm、および1.2mmに設定して上述のシミュレーションと同様のシミュレーションを行った。そして、減少率と肉盛部30a,30bとの関係について同様の検討を行った。なお、ベース金属部材14の厚みが2.3mm、1.6mm、および1.2mmの場合についても、肉盛部30a,30bの長さを、6.0mm、10.0mm、12.0mm、14.0mm、16.0mm、20.0mm、24.0mm、28.0mmとした。これらの検討結果を、ベース金属部材14の厚みが2.0mmの場合の検討結果とともに図16A~図19Dに示す。
 図16Aから分かるように、ベース金属部材14の厚みおよび肉盛部30a,30bの長さにかかわらず、肉盛部30a,30bの前端位置の下限が-0.1mm以上であれば、減少率を少なくとも30%にすることができる。言い換えると、(C)肉盛部30a,30bの前端を、溶接ビード端部24a,24b(図9参照)から後方に0.1mmの位置よりも前方に位置させることによって、少なくとも30%の減少率を実現できる。また、図16B~図16Dから、肉盛部30a,30bの前端を、溶接ビード端部24a,24bから前方に0.3mmの位置よりも前方に位置させることが好ましく、溶接ビード端部24a,24bから前方に1.2mmの位置よりも前方に位置させることがより好ましく、溶接ビード端部24a,24bよりも前方に1.9mmの位置よりも前方に位置させることがさらに好ましいことが分かった。
 図17Aから分かるように、減少率が30%になるときの肉盛部30a,30bの前端位置の上限は、肉盛部30a,30bの長さの増加に従って上昇した。このような関係は、図17Bに示すように、減少率が50%の場合にも確認できた。一方、図17C、図17Dに示すように、減少率が75%及び90%の場合には、肉盛部30a,30bの長さが増加しても、肉盛部30a,30bの前端位置の上限は大きく上昇しなかった。具体的には、肉盛部30a,30bの長さにかかわらず、肉盛部30a,30bの前端位置の上限が2.3mm以下の場合に、減少率を90%にすることができた。
 図18Aから分かるように、減少率が30%になるときの肉盛部30a,30bの後端位置の下限は、肉盛部30a,30bの長さの増加に従って低下した。このような関係は、図18B~図18Dに示すように、減少率が50%、75%および90%の場合にも確認できた。
 図19A、図19Bから分かるように、減少率が30%又は50%になるときの肉盛部30a,30bの後端位置の上限は、ほぼ一定であった。一方、図19C、図19Dから分かるように、減少率が75%又は90%になるときの肉盛部30a,30bの後端位置の上限は、肉盛部30a,30bの長さの増加に従って低下した。
 なお、図19Aから分かるように、ベース金属部材14の板厚および、肉盛部30a,30bの長さにかかわらず、肉盛部30a,30bの後端位置の上限が-3.0mm以下であれば、減少率を少なくとも30%にすることができる。言い換えると、(D)肉盛部30a,30bの後端を、溶接ビード端部24a,24bから後方に3.0mmの位置よりも後方に位置させることによって、少なくとも30%の減少率を実現できる。これにより、溶接ビード端部24a,24b近傍に発生する最大主応力の最大値を十分に低減できるので、ベース金属部材14の厚みが小さい場合でも、溶接構造部材10の疲労強度を十分に確保できる。
 上記(C)、(D)を踏まえると、より確実に30%以上の減少率を実現させるためには、少なくとも溶接ビード端部から後方に0.1mmから3.0mm離間した位置に亘って肉盛部30a,30bが設けられることが好ましいと言える。
 また、さらに改善率の向上する90%で考えると図16D、図17Dのように、肉盛り部前端位置は上限、下限とも正の値となる。また、図18D、図19Dのように、肉盛り部後端位置は上限、下限とも負の値となる。これらのことから、よりよい改善を実施するためには、肉盛り部30a,30bは溶接ビード端部24a,24bを跨ぐように設けられることが好ましいと言える。
(シミュレーションに基づく検討5)
 以下、コンピュータを用いたシミュレーション結果とともに、ベース金属部材14の板厚を変化させた場合における、突き当て端部32a,32b近傍に生じる最大主応力と溶接ビード端部24a,24b近傍に生じる最大主応力との関係を詳細に説明する。このシミュレーションでは、図1~図4で説明した溶接構造部材10Aと同様の構成であって、肉盛り部30a,30bを有していない解析モデル(以下、第5モデルともいう。)を作成し、突き当て端部32a,32b近傍に生じる最大主応力と溶接ビード端部24a,24b近傍に生じる最大主応力を求めた。
 なお、第5モデルに、図1および図2において点線の丸41a,41b,42a,42b,43a,43b,44a,44b,45a,45bで示す位置に穴を形成した(以下、点線で示したこれらの丸をそれぞれ穴という。)。シミュレーションでは、穴42a,42b,43a,43b,44a,44b,45a,45bにそれぞれ固定治具(剛体)を配置して、ベース金属部材14を固定した。そして、穴41a,41bに円柱状の部材(剛体)を通し、その部材を介して板状部121(接合金属部材12)を板状部141の表面14aに対して垂直な方向に2.0kNの力で引っ張った。
 第5モデルの構成は下記のように規定した。なお、上述のように、ベース金属部材14の板厚を種々変化させた。
(解析モデルの構成)
・接合金属部材
  材質:鋼
  厚み:2.6mm
  高さ(第1方向D1の長さ):80mm
  左右方向(第2方向D2)の長さ:70mm
  前後方向(図9参照)の長さ:80mm
  穴41aの位置:側壁部121aの中央
  穴41bの位置:側壁部121bの中央
  ヤング率:210000MPa
  ポアソン比:0.3
・ベース金属部材
  材質:鋼
  厚み:1.2mm、1.6mm、2.0mm、2.3mm、2.6mm、3.0mm、3.5mm
  高さ(第1方向D1の長さ):50mm
  左右方向(第2方向D2)の長さ:300mm
  前後方向(図9参照)の長さ:150mm
  穴42a,42bの中心間距離:230mm
  穴43a,43bの中心間距離:230mm
  穴44a,44bの中心間距離:230mm
  穴45a,45bの中心間距離:230mm
  穴42a,43aの中心間距離:100mm
  穴42b,43bの中心間距離:100mm
  表面14aから穴44a,44b,45a,45bの中心までの上下方向の距離:25mm
  ヤング率:210000MPa
  ポアソン比:0.3
・溶接ビード
  幅(突き当て端部32a,32b(図9参照)から前方に突出する部分を除く部分の幅):4.3mm
  高さ(突き当て端部32a,32bから前方に突出する部分を除く部分の高さ):5.0mm
  幅(突き当て端部32a,32bから前方に突出する部分の幅):10.6mm
  高さ(突き当て端部32a,32bから前方に突出する部分の高さ):2.2mm
  突き当て端部32a,32bからの突出量(距離L):10.4mm、13.7mm、17.0mm、20.0mm
  ヤング率:210000MPa
  ポアソン比:0.3
 溶接ビードの突き当て端部32a,32bからの突出量(距離L)を10.4mm、13.7mm、17.0mm、20.0mmの場合について、ベース金属部材14の板厚を変化させたときの突き当て端部32a,32b近傍に生じる最大主応力と溶接ビード端部24a,24b近傍に生じる最大主応力をシミレーションした結果を図20、図21、図22、図23に示す。突き当て端部32a,32b近傍に生じる最大主応力と溶接ビード端部24a,24b近傍に生じる最大主応力の大小関係は、板厚と溶接ビードの突き当て端部32a,32bからの突出量(距離L)と相関があることが分かった。さらに、突き当て端部32a,32b近傍に生じる最大主応力と溶接ビード端部24a,24b近傍に生じる最大主応力が一致するベース金属部材14の板厚と溶接ビードの突き当て端部32a,32bからの突出量(距離L)の関係を、図24に示す。図24から、突き当て端部32a,32b近傍に生じる最大主応力と溶接ビード端部24a,24b近傍に生じる最大主応力が一致する条件は、ベース金属部材14の板厚T(mm)下記式(C)を満足するときであることが分かった。
-0.125L+4.06mm=Tmm・・・式(C)
 この結果より、式(C)の左辺よりも右辺が大きい場合は、突き当て端部32a,32b近傍に生じる最大主応力が溶接ビード端部24a,24b近傍に生じる最大主応力より大きくなり、突き当て端部32a,32b近傍に肉盛部30a,30bを設けることが好ましいことが分かった。また、式(C)の左辺よりも右辺が小さい場合は、溶接ビード端部24a,24b近傍に生じる最大主応力が突き当て端部32a,32b近傍に生じる最大主応力よりも大きくなり、溶接ビード端部24a,24b近傍に肉盛部30a,30bを設けることが好ましいことが分かった。
 特に上述の式(C)の左辺の値と右辺の値が近い場合は、溶接ビード端部24a,24b近傍と突き当て端部32a,32b近傍の双方に肉盛部30a,30bを設けることが好ましい、上述の式(C)の左辺の値よりも右辺の値が大きい場合でも、最大主応力が大きい突き当て端部32a,32b近傍に肉盛部を設置した結果、溶接ビード端部24a,24b近傍の最大主応力が大きくなり、突き当て端部32a,32b近傍の最大主応力の低減が疲労強度の向上の対策となるためである。
 本発明によれば、T字形状の接合部を有する溶接構造部材において、疲労強度を容易に向上できる構成を提供することができる。
 10A、10A’、10B 溶接構造部材
 12 接合金属部材
 121 板状部
 121a,121b 側壁部
 121c 底壁部
 14 ベース金属部材
 14a 表面(第一の面)
 14b 裏面(第二の面)
 141 板状部
 141a,141b 側壁部
 141c 天板部
 24 溶接ビード
 24a,24b 溶接ビード端部
 241a、241b 側壁ビード部
 241c 底壁ビード部
 30a,30b 肉盛部
 32 突き当て面
 32a,32b 突き当て端部
 322a、322b 突き当て側面
 322c 突き当て底面

Claims (17)

  1.  互いに表裏をなす第一の面及び第二の面を有するベース金属部材と;
     前記第一の面に対して、突き当て面をもって端面が突き当てられた接合金属部材と;
     前記第一の面に形成されるとともに、前記接合金属部材を前記ベース金属部材に対して接合する溶接ビードと;
     前記ベース金属部材の前記第二の面に形成されるとともに、前記第二の面に対向してかつ前記ベース金属部材を透過する視線で見た場合に前記突き当て面と前記溶接ビードとの少なくとも一方に重なるように線状に形成される肉盛部と;
    を備え、
     前記突き当て面の端部である突き当て端部から当該突き当て面が存在する方向に向かう方向を後方、その逆の方向を前方とするとき、前記溶接ビードは、前記突き当て端部の前方に離間した位置に溶接ビード端部を有する
    ことを特徴とする溶接構造部材。
  2.  前記第二の面に対向してかつ前記ベース金属部材を透過する視線で見た場合に、前記肉盛部が前記突き当て端部から後方に1.9mmから7.0mm離間した位置に亘って設けられる
    ことを特徴とする請求項1に記載の溶接構造部材。
  3. 前記第二の面に対向してかつ前記ベース金属部材を透過する視線で見た場合に、前記突き当て端部から前方に前記肉盛り部前端が位置し、かつ前記突き当て端部から後方に前記肉盛り部後端が位置していることを特徴とする請求項2に記載の溶接構造部材。
  4.  前記第二の面に対向してかつ前記ベース金属部材を透過する視線で見た場合に、前記肉盛部が前記突き当て面に対し平行である
    ことを特徴とする請求項2または請求項3に記載の溶接構造部材。
  5.  前記突き当て端部と前記溶接ビード端部との離間距離L(mm)と、前記ベース金属部材の板厚T(mm)とが下記式(A)を満たす
    ことを特徴とする請求項2から4のいずれか一項に記載の溶接構造部材。
    -0.125L+4.06mm≦T≦4.5mm ・・・式(A)
  6.  前記肉盛部の長さが10.0mm以上である
    ことを特徴とする請求項2から5のいずれか一項に記載の溶接構造部材。
  7.  前記第二の面に対向してかつ前記ベース金属部材を透過する視線で見た場合に、前記肉盛部が前記溶接ビード端部から後方に0.1mmから3.0mm離間した位置に亘って設けられる
    ことを特徴とする請求項1に記載の溶接構造部材。
  8.  前記第二の面に対向してかつ前記ベース金属部材を透過する視線で見た場合に、前記溶接ビード端部から前方に前記肉盛り部前端が位置し、かつ前記溶接ビード端部から後方に前記肉盛り部後端が位置していることを特徴とする請求項7に記載の溶接構造部材。
  9.  前記第二の面に対向してかつ前記ベース金属部材を透過する視線で見た場合に、前記肉盛部が前記溶接ビードに対し平行である
    ことを特徴とする請求項7または請求項8に記載の溶接構造部材。
  10.  前記突き当て端部と前記溶接ビード端部との離間距離L(mm)と、前記ベース金属部材の板厚T(mm)とが下記式(B)を満たす
    ことを特徴とする請求項7から9のいずれか一項に記載の溶接構造部材。
    0.8mm≦T<-0.125L+4.06mm ・・・式(B)
  11.  前記肉盛部の長さが6.0mm以上である
    ことを特徴とする請求項7から10のいずれか一項に記載の溶接構造部材。
  12.  前記肉盛部は、前記第二の面からの高さが2.0mm以上20.0mm以下である
    ことを特徴とする請求項1から11のいずれか一項に記載の溶接構造部材。
  13.  前記肉盛部が、前記ベース金属部材と他の部材との接合に関与しない肉盛りビードである
    ことを特徴とする請求項1から12のいずれか一項に記載の溶接構造部材。
  14.  前記肉盛部が、前記ベース金属部材の内部まで侵入するように形成されている
    ことを特徴とする請求項1から13のいずれか一項に記載の溶接構造部材。
  15.  前記溶接ビードが前記ベース金属部材を貫通しない
    ことを特徴とする請求項1から14のいずれか一項に記載の溶接構造部材。
  16.  前記ベース金属部材が、270MPa以上の引張強度を有する鋼板である
    ことを特徴とする請求項1から15のいずれか一項に記載の溶接構造部材。
  17.  請求項1~16のいずれか一項に記載の前記溶接構造部材を製造する方法であって、
     前記ベース金属部材の前記第一の面と、前記接合金属部材の前記端面とを前記突き当て面で接合する溶接ビードを付与する溶接ビード付与工程と;
     前記溶接ビード付与工程の前、又は、前記溶接ビード付与工程の後に、前記ベース金属部材の前記第二の面に、アーク溶接又はロウ付けにより前記肉盛部を付与する肉盛部付与工程と;
    を備えることを特徴とする溶接構造部材の製造方法。
PCT/JP2015/078039 2014-10-03 2015-10-02 溶接構造部材及びその製造方法 WO2016052722A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
BR112017006371A BR112017006371A2 (pt) 2014-10-03 2015-10-02 membro de estrutura soldado e método de produção do mesmo
US15/515,937 US10688580B2 (en) 2014-10-03 2015-10-02 Welded structure member and manufacturing method thereof
JP2016552173A JP6344478B2 (ja) 2014-10-03 2015-10-02 溶接構造部材及びその製造方法
MX2017004179A MX2017004179A (es) 2014-10-03 2015-10-02 Miembro de construccion de soldadura y metodo de fabricacion del mismo.
RU2017111030A RU2665657C1 (ru) 2014-10-03 2015-10-02 Сварной конструктивный элемент и способ его изготовления
CA2962380A CA2962380C (en) 2014-10-03 2015-10-02 Welded structure member and manufacturing method thereof
KR1020177009629A KR101941385B1 (ko) 2014-10-03 2015-10-02 용접 구조 부재 및 그 제조 방법
CN201580053164.3A CN106794554B (zh) 2014-10-03 2015-10-02 焊接结构构件以及其制造方法
EP15847981.6A EP3202528B1 (en) 2014-10-03 2015-10-02 Weld construction member and manufacturing method thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014204583 2014-10-03
JP2014-204583 2014-10-03
JP2015-158817 2015-08-11
JP2015158817 2015-08-11

Publications (1)

Publication Number Publication Date
WO2016052722A1 true WO2016052722A1 (ja) 2016-04-07

Family

ID=55630742

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/078039 WO2016052722A1 (ja) 2014-10-03 2015-10-02 溶接構造部材及びその製造方法

Country Status (10)

Country Link
US (1) US10688580B2 (ja)
EP (1) EP3202528B1 (ja)
JP (1) JP6344478B2 (ja)
KR (1) KR101941385B1 (ja)
CN (1) CN106794554B (ja)
BR (1) BR112017006371A2 (ja)
CA (1) CA2962380C (ja)
MX (1) MX2017004179A (ja)
RU (1) RU2665657C1 (ja)
WO (1) WO2016052722A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018167305A (ja) * 2017-03-30 2018-11-01 新日鐵住金株式会社 溶接構造部材
JP2019122965A (ja) * 2018-01-11 2019-07-25 日本製鉄株式会社 溶接構造部材

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6570989B2 (ja) * 2015-12-09 2019-09-04 日本製鉄株式会社 サスペンションのコントロールアーム
CN113263281B (zh) * 2021-05-18 2022-02-11 广州中益机械有限公司 一种薄板与厚板的焊接方法
CN113751917B (zh) * 2021-10-18 2023-12-22 重庆兴意电梯部件有限公司 一种立柱自动化焊接设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53141140A (en) * 1977-05-16 1978-12-08 Hitachi Ltd Process for forming weld joint of pipeline or vessel
JPH04135067A (ja) * 1990-09-25 1992-05-08 Ishikawajima Harima Heavy Ind Co Ltd 管内面取付溶接部の残留応力低減方法
JPH07299578A (ja) * 1994-05-10 1995-11-14 Sky Alum Co Ltd アルミニウム薄板隅肉溶接継手の変形防止・修正法
JPH08118012A (ja) * 1994-10-31 1996-05-14 Mitsubishi Heavy Ind Ltd 疲労き裂発生防止法
JPH08132273A (ja) * 1994-11-10 1996-05-28 Mitsubishi Heavy Ind Ltd 溶接歪み低減法
WO2014084317A1 (ja) * 2012-11-29 2014-06-05 新日鐵住金株式会社 隅肉アーク溶接継手の形成方法及び隅肉アーク溶接継手

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5114844A (ja) 1974-07-29 1976-02-05 Mitsubishi Heavy Ind Ltd Suminikuyosetsuho
CN1011391B (zh) 1988-07-13 1991-01-30 天津石油化工公司建筑安装工程公司机械厂 齿状堆焊法
SU1698021A1 (ru) 1990-01-29 1991-12-15 Ворошиловградский машиностроительный институт Способ уменьшени сварочных напр жений и деформаций
JPH0663756A (ja) 1992-08-14 1994-03-08 Sky Alum Co Ltd T形継手パネルの溶接歪防止法
JP4908476B2 (ja) 2007-10-12 2012-04-04 日立建機株式会社 T型継手の溶接方法
JP2012110950A (ja) 2010-11-26 2012-06-14 Komatsu Ltd 溶接構造体及びその製造方法
KR101222128B1 (ko) 2011-02-23 2013-01-14 신닛테츠스미킨 카부시키카이샤 용접 이음부의 제조 방법 및 용접 이음부
CA2868546C (en) 2012-04-17 2016-09-06 Nippon Steel & Sumitomo Metal Corporation Fillet arc welded joint and method of forming the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53141140A (en) * 1977-05-16 1978-12-08 Hitachi Ltd Process for forming weld joint of pipeline or vessel
JPH04135067A (ja) * 1990-09-25 1992-05-08 Ishikawajima Harima Heavy Ind Co Ltd 管内面取付溶接部の残留応力低減方法
JPH07299578A (ja) * 1994-05-10 1995-11-14 Sky Alum Co Ltd アルミニウム薄板隅肉溶接継手の変形防止・修正法
JPH08118012A (ja) * 1994-10-31 1996-05-14 Mitsubishi Heavy Ind Ltd 疲労き裂発生防止法
JPH08132273A (ja) * 1994-11-10 1996-05-28 Mitsubishi Heavy Ind Ltd 溶接歪み低減法
WO2014084317A1 (ja) * 2012-11-29 2014-06-05 新日鐵住金株式会社 隅肉アーク溶接継手の形成方法及び隅肉アーク溶接継手

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3202528A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018167305A (ja) * 2017-03-30 2018-11-01 新日鐵住金株式会社 溶接構造部材
JP2019122965A (ja) * 2018-01-11 2019-07-25 日本製鉄株式会社 溶接構造部材

Also Published As

Publication number Publication date
US10688580B2 (en) 2020-06-23
JPWO2016052722A1 (ja) 2017-06-29
EP3202528A1 (en) 2017-08-09
EP3202528B1 (en) 2020-12-02
CA2962380A1 (en) 2016-04-07
BR112017006371A2 (pt) 2017-12-19
EP3202528A4 (en) 2018-07-25
CA2962380C (en) 2019-10-15
MX2017004179A (es) 2017-06-19
JP6344478B2 (ja) 2018-06-20
KR101941385B1 (ko) 2019-01-22
CN106794554A (zh) 2017-05-31
RU2665657C1 (ru) 2018-09-03
US20170297132A1 (en) 2017-10-19
CN106794554B (zh) 2019-08-27
KR20170045357A (ko) 2017-04-26

Similar Documents

Publication Publication Date Title
JP6344478B2 (ja) 溶接構造部材及びその製造方法
JP6462552B2 (ja) 車体前部構造
US10160493B2 (en) Vehicle framework structure
KR20040087885A (ko) 자동차의 차체 후부의 결합 구조
JP6066313B2 (ja) 車両前部構造
US20170144711A1 (en) Vehicle lower portion structure
JP5754643B2 (ja) 車体の上部構造の製造方法
JP2019073152A (ja) サイドレールおよびサイドレールの製造方法
CN104349936A (zh) 车辆用座椅
JP2014083881A (ja) 車両のフロントピラー構造
JP2006111228A (ja) トラックシャ−シフレ−ムおよびフレ−ム用アルミニウム合金材
US10336374B2 (en) Vehicle rear portion structure
WO2015182401A1 (ja) 骨格構造体及びその製造方法
JP6885153B2 (ja) 溶接構造部材
KR102604218B1 (ko) 조인트 구조, 자동차 부품 및 조인트 구조의 제조 방법
JP2018140410A (ja) 自動車用パネル部材
JP2003261072A (ja) 車両骨格部材構造
JP6939585B2 (ja) 溶接構造部材
JP7252456B2 (ja) 溶接構造部材
JP7081430B2 (ja) 溶接構造部材
JP2019171462A (ja) 溶接構造部材
JP2014008515A (ja) 鋼材の溶接接合部
JP2008132988A (ja) 自動車用バンパ装置
JP2009023593A (ja) 車体の前部構造
JP2008273459A (ja) 車両の外板への当てがい部材の加工方法とそれにより得られた当てがい部材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15847981

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016552173

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2962380

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15515937

Country of ref document: US

Ref document number: MX/A/2017/004179

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015847981

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015847981

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017006371

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20177009629

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017111030

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112017006371

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170328