WO2016052601A1 - Inspection device, inspection program and inspection method - Google Patents

Inspection device, inspection program and inspection method Download PDF

Info

Publication number
WO2016052601A1
WO2016052601A1 PCT/JP2015/077699 JP2015077699W WO2016052601A1 WO 2016052601 A1 WO2016052601 A1 WO 2016052601A1 JP 2015077699 W JP2015077699 W JP 2015077699W WO 2016052601 A1 WO2016052601 A1 WO 2016052601A1
Authority
WO
WIPO (PCT)
Prior art keywords
holder
measurement
rotation
inspection
rotated
Prior art date
Application number
PCT/JP2015/077699
Other languages
French (fr)
Japanese (ja)
Inventor
井上 浩
邦宏 伊藤
Original Assignee
ブラザー工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ブラザー工業株式会社 filed Critical ブラザー工業株式会社
Publication of WO2016052601A1 publication Critical patent/WO2016052601A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor

Definitions

  • the present invention relates to an inspection apparatus, an inspection program, and an inspection method.
  • Patent Document 1 an inspection apparatus that rotates a spindle and applies centrifugal force to a microchip is known from Patent Document 1 and the like.
  • the inspection apparatus disclosed in this patent document includes a rotary drive source including a DC motor and an encoder, a light source, a detector, and a control unit.
  • a rotary drive source including a DC motor and an encoder
  • a light source a detector
  • a control unit controls the rotational drive source so that the absorbance measurement unit stops at a stop position corresponding to the light source and the detector.
  • the light from the light source is transmitted to the absorptiometry unit of the microchip stopped at the stop position.
  • the transmitted light is detected by the detector, and the absorbance of the liquid to be measured is measured.
  • the control unit stops at one position before stopping at the stop position, and based on the position information detected from the encoder at that position, the stop position It is conceivable to output a drive signal for stopping the motor to the motor.
  • the plasma separated from the blood and the reagent are mixed inside the microchip before stopping at the stop position. Therefore, if the period from the time when the plasma and the reagent are mixed to the time when the absorbance measurement using the light emitted from the light source is varied for each measurement, the measurement accuracy for each measurement may be lowered. That is, if the movement time from an arbitrary position to the stop position varies, the period from the mixing point to the start of absorption spectrophotometry varies, which may reduce the measurement accuracy.
  • the present invention has been made to solve the above-described problems, and provides an inspection apparatus, an inspection program, and an inspection method capable of suppressing variations in a period until the start of measurement and suppressing a decrease in measurement accuracy. With the goal.
  • an inspection apparatus includes a holder for holding an inspection chip, a rotation mechanism for rotating the holder around a main shaft, and a position of the holder rotated by the rotation mechanism.
  • a position detection unit that detects light, a light emitting unit that emits measurement light, a light receiving unit that receives transmitted light that has passed through an inspection chip held by the holder, and the measurement light emitted from the light emitting unit, and the rotation
  • a control unit that controls rotation by a mechanism, and the control unit holds the measurement light held by the holder from a position detected by the position detection unit within a predetermined period of time.
  • the holder stopped at an arbitrary position is rotated to a measurement position where light can be transmitted, and measurement is started based on the transmitted light received by the light receiving unit after the predetermined period.
  • the holder stopped at an arbitrary position is moved within a predetermined period from the detected position to the measurement position, and the measurement is started after the predetermined period. Even if there is a holder at an arbitrary position, the period until the measurement is started is constant. Therefore, it is possible to suppress variations in the period until the start of measurement for each measurement and to suppress a decrease in measurement accuracy.
  • control unit may be rotated in a first clockwise direction that is predetermined clockwise or counterclockwise to stop the holder at the measurement position.
  • first clockwise direction that is predetermined clockwise or counterclockwise to stop the holder at the measurement position.
  • the spindle is rotated. Since the stopping accuracy to the measurement position varies depending on the cogging of the motor to be performed, the measurement accuracy for each measurement is lowered.
  • the holder is rotated in the first rotation direction and stopped at the measurement position. Therefore, the possibility that the measurement accuracy for each measurement is lowered can be reduced.
  • control unit may rotate the first rotation direction from the detected position to stop the holder at the measurement position.
  • the holder is rotated without reversely rotating in the middle from the second rotation direction to the first rotation direction. Therefore, by reversely rotating in the middle, it is possible to reduce the inertia or the liquid injected into the inspection chip held by the holder by stopping. Therefore, the possibility of a decrease in measurement accuracy can be reduced.
  • control unit calculates a rotation speed when rotating the holder in the first rotation direction from the detected position and stopping the holder at the measurement position in the certain period, and calculates the calculated rotation speed.
  • the holder may be rotated in the first rotation direction from the detected position.
  • the holder since the holder is rotated at the calculated rotational speed, the holder is reliably moved from the detected position to the measurement position within a predetermined period. Even if there is a holder at an arbitrary position, the period until the measurement is started is more reliably constant. Therefore, it is possible to suppress variations in the period until the start of measurement for each measurement, and to further suppress a decrease in measurement accuracy.
  • control unit rotates in the first rotation direction from the detected position to stop the holder at the measurement position, and from the detected position to the first rotation direction.
  • One of a second route that rotates in a second direction opposite to pass through the measurement position rotates in a first rotation direction from a predetermined folding position, and stops the holder at the measurement position. May be determined based on the position detected by the position detector, and rotated by the determined route to stop the holder at the measurement position.
  • the rotation speed can be reduced, the power consumption is reduced, and the rotation speed is increased.
  • the liquid injected into the inspection chip can be prevented from jumping out. Therefore, the possibility of a decrease in measurement accuracy can be reduced.
  • control unit determines to rotate the holder in the first route during the certain period
  • the control unit rotates the holder in the first rotation direction from the detected position, and moves the holder to the measurement position.
  • the control unit rotates the holder in the first rotation direction from the detected position, and moves the holder to the measurement position.
  • calculating the rotation speed in the case of stopping, and rotating the holder in the first rotation direction from the detected position at the calculated rotation speed, and determining to rotate the holder in the second route When the holder is rotated in the second rotation direction from the detected position to stop the holder in the folding position, and is rotated in the first rotation direction from the folding position to stop the holder in the measurement position. May be calculated based on the remaining time of the predetermined period, and the holder may be rotated in the first rotation direction from the folding position at the calculated rotation speed.
  • the holder since the holder is rotated at the calculated rotational speed, the holder is reliably moved from the detected position to the measurement position within a predetermined period. Even if there is a holder at an arbitrary position, the period until the measurement is started is more reliably constant. Therefore, it is possible to suppress variations in the period until the start of measurement for each measurement, and to further suppress a decrease in measurement accuracy.
  • control unit determines whether or not the predetermined period has elapsed in a state where the holder is stopped at the measurement position, and when it is determined that the predetermined period has elapsed, the light receiving unit receives light. Measurement may be started based on the transmitted light. According to the present disclosure, since the measurement is started when it is determined that a certain period has elapsed, the timing at which the measurement is started becomes more accurate. Therefore, it is possible to suppress variations in the period until the start of measurement for each measurement, and to further suppress a decrease in measurement accuracy.
  • the control unit stops the holder at a position different from the measurement position, either the clockwise or counterclockwise first rotation direction from the detected position to the designated position is selected.
  • the holder may be rotated to a designated position along a route closer to the second direction opposite to the first rotation direction. According to the present disclosure, when the holder is moved to the designated position, the holder is moved along the closer route, so that the holder can be moved to the designated position earlier.
  • an inspection program of the present disclosure detects a holder that holds an inspection chip, a rotation mechanism that rotates the holder around a main axis, and a position of the holder that is rotated by the rotation mechanism.
  • a position detecting unit that emits measurement light, a light emitting unit that emits measurement light, a light receiving unit that receives transmitted light that has passed through an inspection chip held by the holder, and the measurement light emitted from the light emitting unit, and the rotation mechanism
  • a control unit that controls rotation, and the measurement light is transmitted from the position detected by the position detection unit through the inspection chip held by the holder within a predetermined period of time to a computer of the inspection apparatus.
  • the inspection method of the present disclosure includes a holder that holds an inspection chip, a rotation mechanism that rotates the holder around a main shaft, a position detection unit that detects a position of the holder rotated by the rotation mechanism, A light emitting unit that emits measurement light, a light receiving unit that receives transmitted light that has passed through the inspection chip held by the holder, and a control unit that controls rotation by the rotating mechanism.
  • An inspection method for an inspection apparatus comprising: a measurement capable of transmitting the measurement light from the position detected by the position detection unit through the inspection chip held by the holder within a predetermined period of time.
  • the holder stopped at an arbitrary position is moved within a predetermined period from the detected position to the measurement position, and measurement is started after the predetermined period. Even if there is a holder at an arbitrary position, the period until the measurement is started is constant. Therefore, it is possible to suppress variations in the period until the start of measurement for each measurement and to suppress a decrease in measurement accuracy.
  • FIG. 1 is a perspective view showing a configuration of an inspection apparatus 1.
  • FIG. FIG. 2 is a sectional view taken along the line II-II in FIG. 1 and a perspective view of a test chip 2. It is an expansion perspective view of the upper part of inspection system 3 in the state where upper case 11 was removed.
  • 2 is a block diagram showing an electrical configuration of the inspection apparatus 1.
  • FIG. It is a flowchart which shows the flow of the test
  • the inspection system 3 of the present embodiment includes the inspection chip 2 shown in FIG. 2 that can store a sample and a reagent that are liquids, and the inspection apparatus 1 that performs inspection using the inspection chip 2. As shown in FIGS. 2 and 3, the inspection chip 2 is supported by a holder 61 of the inspection apparatus 1. When the inspection apparatus 1 rotates the holder 61 and the inspection chip 2 around the vertical axis A ⁇ b> 1 separated from the holder 61 and the inspection chip 2, centrifugal force acts on the holder 61 and the inspection chip 2.
  • the centrifugal direction which is the direction of the centrifugal force acting on the holder 61 and the inspection chip 2, is switched with respect to the inspection chip 2.
  • FIG. 1 shows a state in which the upper housing 11 and the pair of side housings 13 shown in FIG. 1 of the inspection apparatus 1 are removed.
  • the inspection apparatus 1 includes a housing 10.
  • the housing 10 has a box-shaped frame structure.
  • the housing 10 includes an upper housing 11, a lower housing 12, and a pair of side housings 13.
  • casing 13 is a rectangular board
  • the pair of side housings 13 are separated in the left-right direction.
  • the lower housing 12 is a plate member spanned between the lower end of each of the pair of side housings 13, the lower side of the front end, and the lower side of the rear end.
  • the upper housing 11 is a plate member spanned between the upper ends of the pair of side housings 13, the upper side of the front end, and the upper side of the rear end.
  • a hole 11A is formed in the upper housing 11 between the front portion and the upper portion.
  • the upper housing 11 rotatably supports one end of a lid member 11B that is a rectangular plate material. When the other end facing the one end of the lid member 11B approaches the upper housing 11 by rotation, the lid member 11B covers the hole 11A.
  • An operation unit 94 including a power switch and a plurality of operation switches is provided on the right side of the upper portion of the upper housing 11.
  • the inspection apparatus 1 includes a case 80, an upper plate 32, a turntable 33, an angle changing mechanism 34, a holder 61, and a control device 90 shown in FIG. Provided inside the body 10.
  • the upper plate 32 is a rectangular plate material spanned between the front upper end and the rear upper end of the lower housing 12.
  • the turntable 33 is a disk provided rotatably on the upper plate 32.
  • An inspection chip 2 to be described later is supported by a holder 61 disposed above the turntable 33.
  • the inspection chip 2 is mainly composed of a transparent synthetic resin plate 20.
  • One surface of the plate material 20 is sealed with a sheet 291, and the other surface of the plate material 20 is sealed with a sheet 292.
  • the sheets 291 and 292 are transparent synthetic resin thin plates. Between the plate member 20 and the sheet 291 and between the plate member 20 and the sheet 292, a liquid flow path (not shown) through which the liquid sealed in the inspection chip 2 can flow is formed.
  • the sheets 291 and 292 seal the flow path forming surface of the plate material 20.
  • the reagent and specimen injected into the test chip 2 are quantified or mixed in the process of flowing through the liquid flow path, and a mixed liquid is generated.
  • the liquid mixture is stored in a measurement unit 293 formed in a part of the liquid channel.
  • the inspection chip 2 is held by the holder 61 with the thickness direction extending in the front-rear direction and the left-right direction.
  • the angle changing mechanism 34 is a drive mechanism provided on the turntable 33.
  • the angle changing mechanism 34 rotates the inspection chip 2 by rotating the holder 61 around the horizontal axis A2.
  • the case 80 is provided above the upper plate 32 and covers the turntable 33, the angle changing mechanism 34, and the holder 61.
  • the light source 71 and the optical sensor 72 of the measuring unit 7 shown in FIG. 3 that perform optical measurement on the inspection chip 2 are provided on the upper side of the upper plate 32 and outside the case 80.
  • the control device 90 is a controller that controls various processes of the inspection device 1. As shown in FIG. 3, the control device 90 is disposed below the upper plate 32.
  • a rotating mechanism for rotating the turntable 33 around the vertical axis A1 is provided at the lower part of the upper plate 32 as follows.
  • a spindle motor 35 that supplies driving force for rotating the turntable 33, and a spindle 57 that extends upward from the inside of the lower casing 12, closer to the lower part of the central portion in the casing 10.
  • the main shaft motor 35 is a DC motor.
  • the shaft 36 of the main shaft motor 35 protrudes upward and is connected to the main shaft 57.
  • the main shaft 57 passes through the upper plate 32 and protrudes above the upper plate 32.
  • the upper end portion of the main shaft 57 is connected to the center portion of the turntable 33.
  • An encoder 96 is disposed below the spindle motor 35, and an origin sensor 97 is disposed above the spindle motor 35.
  • the rotating disks of the encoder 96 and the origin sensor 97 are illustrated, but the light emitting unit and the light receiving unit are not illustrated.
  • the main shaft 57 is a hollow cylindrical body.
  • the inner shaft 40 is a shaft that can move in the vertical direction inside the main shaft 57. As shown in FIG. 3, the inner shaft 40 extends through the main shaft 57 and above the turntable 33, and is connected to a pair of rack gears 43 described later.
  • a stepping motor 51 for moving the inner shaft 40 up and down is fixed near the rear of the central portion of the housing 10.
  • the shaft 58 of the stepping motor 51 protrudes rightward.
  • a pinion gear (not shown) is fixed to the tip of the shaft 58.
  • the pinion gear meshes with a rack gear (not shown).
  • the main shaft 57 is provided with a slit 57A that extends in the vertical direction.
  • a connecting portion (not shown) extending from the outside of the main shaft 57 to the inside through the slit 57A is provided.
  • the inner end of the connecting portion is connected to the inner shaft 40.
  • the angle changing mechanism 34 includes a pair of rack gears 43.
  • the pair of rack gears 43 are metal plate-like members. As shown in FIG. 3, the pair of rack gears 43 are fixed to the upper ends of mutually opposing surfaces of the inner shaft 40 having a prismatic shape.
  • One rack gear 43 extends from the inner shaft 40 in one direction perpendicular to the vertical direction when viewed from above, and the other rack gear 43 extends to the opposite side to the one direction side.
  • a gear 431 is formed in the vertical direction at the end of the pair of rack gears 43 opposite to the inner shaft 40 side. The rack gear 43 moves up and down as the inner shaft 40 moves up and down.
  • support portions 47 are provided on the counterclockwise direction side of each rack gear 43 as viewed from above.
  • the support part 47 supports the holder 61 rotatably. More specifically, as shown in FIGS. 2 and 3, the support portion 47 includes two cylindrical portions 471, an extending portion 472, and a support shaft 473.
  • the two cylindrical portions 471 are arranged side by side along the rack gear 43 and extend in the vertical direction.
  • the extending portion 472 extends from the upper end of the cylindrical portion 471 in a direction away from the inner shaft 40 along the rack gear 43, and the distal end fixes the support shaft 473.
  • the support shaft 473 extends in the clockwise direction when viewed from above from the position fixed to the extending portion 472, and the tip thereof is disposed inside the gear portion 76 formed in the holder 61.
  • the gear portion 76 meshes with the gear 431 of the rack gear 43. As the rack gear 43 moves up and down, the gear portion 76 rotates around the support shaft 473, whereby the holder 61 rotates. Therefore, the inspection chip 2 held by the holder 61 rotates around the support shaft 473.
  • the holder 61 and the inspection chip 2 rotate around the main shaft 57, which is a vertical axis, and a centrifugal force is applied to the holder 61 and the inspection chip 2. Act.
  • the rotation around the vertical axis A1 of the holder 61 and the inspection chip 2 is referred to as revolution.
  • the stepping motor 51 moves the inner shaft 40 up and down
  • the holder 61 and the inspection chip 2 rotate around the support shaft 473 that is a horizontal axis, and the centrifugal force acting on the holder 61 and the inspection chip 2.
  • the rotation around the horizontal axis A2 of the holder 61 and the inspection chip 2 is referred to as rotation.
  • the case 80 is a cylindrical member whose upper side is closed.
  • the case 80 has a side surface portion 80A and an upper surface portion 80B.
  • a hole 80C is formed from the front upper side of the side surface 80A to the front of the upper surface 80B.
  • the case 80 is installed on the upper side of the upper plate 32. More specifically, the case 80 is provided outside the rotation range in which the holder 61 and the inspection chip 2 are rotated as seen from the main shaft 57 at the rotation center of the turntable 33. Case 80 covers the rotation range from above.
  • an area in the case 80 is referred to as a rotation area 81.
  • a hole 80D is formed on the diagonally right rear side of the side surface 80A of the case 80.
  • a hole 80E is formed on the diagonally left rear side of the side surface 80A of the case 80.
  • the measurement unit 7 that performs optical measurement on the inspection chip 2 includes a light source 71 as a light emitting unit that emits measurement light, and an optical sensor 72 as a light receiving unit that detects measurement light emitted from the light source 71.
  • the light source 71 is disposed on the right side of the hole 80D and the height at which the measurement light from the light source 71 passes through the hole 80D and the hole 80E by a fixing member (not shown).
  • the optical sensor 72 is disposed on the left side of the hole 80E and the height of receiving the measurement light that has passed through the hole 80D and the hole 80E by a fixing member (not shown).
  • the rear position of the spindle 57 in the reciprocable range of the inspection chip 2 is a measurement position where the inspection chip 2 is irradiated with measurement light.
  • the measurement light 70 connecting the light source 71 and the optical sensor 72 intersects the sheets 291 and 292 of the inspection chip 2 shown in FIG.
  • a hole 61A is formed in the holder 61 at a position close to the measurement unit 293 in a state where the inspection chip 2 shown in FIG.
  • the measurement light 70 emitted from the light source 71 passes through the measurement unit 293 of the inspection chip 2 at the measurement position, and further passes through the hole 61 ⁇ / b> A of the holder 61 and is detected by the optical sensor 72.
  • optical measurement by the measurement unit 7 is performed.
  • the front side position of the main shaft 57 is located through the hole 11 ⁇ / b> A formed in the upper housing 11 and the hole 80 ⁇ / b> C of the case 80.
  • This take-out position is also a position where the inspection chip 2 is inserted into the holder 61 through the hole 11A and the hole 80C.
  • the measurement position and the extraction position have a positional relationship reversed with respect to the main shaft 57.
  • control device 90 includes a CPU 91 that controls the main control of the inspection device 1, a RAM 92 that temporarily stores various data, a flash memory 93 that stores parameters, and a ROM 95 that stores control programs.
  • An operation unit 94 is connected to the CPU 91.
  • a personal computer connected to the inspection device 1 from the outside may be used, or a dedicated control device connected to the inspection device 1 from the outside may be used.
  • the CPU 91 has a timer function. In the following description, the timer function is referred to as a timer.
  • a DC motor that is the spindle motor 35, an encoder 96 as a position detection unit, an LED (Light Emitting Diode) as a light source 71, and a PD (Photo Detector) as an optical sensor 72 are connected to the CPU 91.
  • the CPU 91 controls the revolution of the holder 61 and the inspection chip 2 by transmitting a control signal for rotating the spindle motor 35 to the spindle motor 35 via a motor driver (not shown).
  • the encoder 96 applies light to the rotating disk provided with a plurality of optical slits arranged in parallel on the circumference through the slit and detects the light
  • the CPU 91 measures the rotation angle and the rotation speed. .
  • a control signal is sent from the CPU 91 to the spindle motor 35, whereby the turntable 33 is rotated at a desired speed and stopped at a desired angle.
  • the CPU 91 detects a signal from the origin sensor 97, associates each optical slit of the encoder 96 with the position of the holder 61 in the rotation region 81, and controls the revolution of the holder 61.
  • the origin sensor 97 has a rotating disk having regions with different diameters. When this rotating disk is rotated, a period in which light from the light emitting part is shielded and a period in which light from the light emitting part is received are generated in the light receiving part.
  • the position of the optical slit through which the light from the light emitting portion of the encoder 96 passes is set as the origin. Revolution control in the rotation area 81 of the holder 61 is executed with this origin as a reference.
  • the number of optical slits of the encoder 96 that is, the total number of pulses is described as 2812 pulses.
  • the CPU 91 controls the rotation of the holder 61 and the inspection chip 2 by transmitting a control signal for rotating the stepping motor 51 to the stepping motor 51 via a motor driver (not shown).
  • the CPU 91 controls the light emission timing and light emission intensity of the light source 71 by transmitting a control signal. Further, the CPU 91 receives the signal intensity from the optical sensor 72.
  • the inspection apparatus 2 includes two holders 61.
  • the two holders 61 are provided at positions inverted with respect to the main shaft.
  • the inspection chip 2 held by one holder 61 will be described.
  • An inspection program for executing the flowchart shown in FIG. This inspection program may be stored in the ROM 95 at the time of shipment of the inspection apparatus 1, or after the inspection, the inspection apparatus 1 may be connected to the Internet, downloaded from a server (not shown), and stored in the ROM 95.
  • the movement instruction to the designated position is a control signal sent from the CPU 91 to the spindle motor 35 in the following three cases.
  • the first is a case where the inspection chip 2A is inserted into the holder 61. In this case, a control signal is transmitted to the spindle motor 35 so that the holder 61 is positioned at a take-out position described later.
  • the second case is a case where the holder 61 is positioned at a measurement position, which will be described later, after executing a predetermined centrifugal process for transmitting a control signal to the spindle motor 35 and the stepping motor 51 for the inspection chip 2.
  • the predetermined centrifugation process is a process of mixing the reagent and the sample injected into the test chip 2 and storing the generated mixed solution in the measurement unit 293.
  • the third is a case where the inspection chip 2A is taken out from the holder 61. In this case, a control signal is transmitted to the spindle motor 35 so that the holder 61 is positioned at a take-out position described later. If there is an instruction to move to the designated position, the process proceeds to S2. If it is determined that there is no instruction to move to the designated position, the process of S1 is executed again.
  • S2 it is determined whether or not the spindle motor 35 is stopped. This determination is performed based on a signal from the encoder 96. If it is determined that the spindle motor 35 is stopped, the process proceeds to S4. If it is determined that the spindle motor 35 has not stopped, the process proceeds to S3.
  • stop control of the spindle motor 35 is executed.
  • This stop control is to transmit a control signal for stopping the revolution of the holder 61 to the spindle motor 35.
  • the revolution of the holder 61 is decelerated by transmitting a reverse pulse to the spindle motor 35.
  • the rotation speed of the holder 61 when mixing the reagent and the sample injected into the test chip 2 is approximately 4000 rpm.
  • the revolution is stopped by decelerating 1000 rpm per second from this rotation speed.
  • the holder 61 may be stopped suddenly by executing a control for applying a sudden brake by short-circuiting both terminals of the spindle motor 35 with a motor driver or a relay. Further, a holder (not shown) may be connected to the main shaft 57 to stop the holder 61 suddenly.
  • the stop position is acquired.
  • the stop position will be described with reference to the schematic diagram shown in FIG.
  • the holder 61 is stopped at an arbitrary position in the rotation area 81.
  • the rotational speed is gradually decreased.
  • the main shaft motor 35 is a low speed rotation such as 20 rpm, the main shaft motor 35 does not rotate smoothly. There is a possibility that the position and rotation speed of the holder 61 cannot be accurately detected.
  • the measurement light 70 is stopped at a position substantially perpendicular to the sheets 291 and 292 of the inspection chip 2 held by the holder 61. Have difficulty. Further, in the spindle motor 35 that rotates the holder 61 at a high speed of 4000 rpm, it is difficult to accurately stop the holder 61 without stopping the rotation.
  • the rotating holder 61 is temporarily stopped at an arbitrary position, and the position information of the position of the holder 61 stopped at the arbitrary position is received from the encoder 96. Then, based on the position information of the position of the holder 61 stopped at an arbitrary position, the holder 61 is moved to the desired position more accurately and earlier by executing the rotation control to move to the measurement position Pm or the extraction position P1. Can be moved.
  • the rotation area 81 is divided into area 1, area 2, and area 3, and the process is executed.
  • the measurement position Pm is a measurement position at which the measurement light is irradiated to the inspection chip 2 held by the holder 61 as shown in FIG.
  • the take-out position P1 is a position where the inspection chip 2 held by the holder 61 can be taken out and inserted from the hole 80C of the cover 80, and is a position reversed from the measurement position Pm with respect to the main shaft 57.
  • Area 1 is an area from the measurement position Pm to the extraction position P1 counterclockwise.
  • Area 2 is an area from the take-out position P1 to a later-described branch position P2 counterclockwise.
  • Area 3 is an area from the branch position P2 to the measurement position Pm counterclockwise.
  • S5 it is determined whether or not to move to the measurement position. This determination is executed depending on whether or not the movement instruction to the designated position determined in S1 is a movement instruction to the measurement position. If it is determined that the instruction is to move to the measurement position, the process proceeds to S6. If it is not a movement instruction to the measurement position, that is, a movement instruction to the take-out position, the process proceeds to S21.
  • S8 it is determined whether or not the stop position acquired in S4 is area 3. If it is determined that the stop position is area 3, the process proceeds to S9. If it is determined that the stop position is not area 3, that is, the stop position is area 1 or area 2, the process proceeds to S11.
  • the movement control of the holder 61 stopped at an arbitrary position to the measurement position Pm will be described.
  • the stop position acquired in S4 is area 1, as shown in FIG. 6, the movement distance is shorter when moving to the measurement position Pm in the clockwise direction (Clockwise).
  • the stop position acquired in S4 is area 2 or area 3, as shown in FIG. 6, the movement distance is shorter when moving counterclockwise to the measurement position Pm.
  • a DC motor that is an example of the main motor 35 is used. The stopping accuracy varies depending on the cogging.
  • the movement from the arbitrary stop position to the measurement position Pm is controlled clockwise and counterclockwise according to the stop position, the distribution of the displacement of the stop position with respect to the measurement position Pm for each measurement becomes large. As a result, the measurement accuracy varies from measurement to measurement.
  • the movement from an arbitrary stop position to the measurement position Pm is controlled in a clockwise direction regardless of the stop position. Therefore, in this embodiment, when the stop position is the area 3, after moving the holder 61 counterclockwise, the holder 61 is moved clockwise to stop at the measurement position Pm. That is, as shown in FIG.
  • the turn-back position Pr will be described.
  • the rotation control of the DC motor that is the spindle motor 35 shown in FIG. 4 is controlled by pulse control.
  • pulse control since the minute rotation operation of the DC motor requires time, it takes more time to change the position smaller than to change the position greatly. For example, it takes a long time to change the position by transmitting a PWM (Pulse Width Modulation) signal to the DC motor so as to move it by a distance of one pulse detected by the encoder 96.
  • PWM Pulse Width Modulation
  • the turn-back position Pr is set at a position shifted by three pulses counterclockwise from the measurement position Pm.
  • the number of pulses required for rotating the holder 61 around the rotation region 81 is 2812 pulses
  • (3 pulses / 2812 pulses) * 360 ° 0.384 °
  • the position where the angle is changed counterclockwise by 0.384 ° from the measurement position Pm around the main shaft 57 is the turn-back position Pr. If the holder 61 is moved by transmitting a PWM signal to the spindle motor 35 so as to be moved by a distance corresponding to three pulses detected by the encoder 96, it takes about 100 ms.
  • the branch position P2 will be described. In the present embodiment, it is controlled whether the holder 61 is moved counterclockwise from the arbitrary stop position or the holder 61 is moved clockwise from the branch position P2. Since the return position Pr is a position deviated counterclockwise by 3 pulses from the measurement position Pm, the branch position P2 may be a position deviated counterclockwise by 3 pulses from the extraction position P1. Since the time required to change the rotation direction from the counterclockwise direction to the clockwise direction at the turn-back position Pr is required, the branch position P2 is set as follows.
  • the time required for the branch position P2 to move clockwise from the branch position P2 and stop at the measurement position Pm is the time required to move counterclockwise from the branch position P2 to the turn-back position Pr, and counterclockwise. This is a position that is equal to the sum of the time required to change the direction of rotation from clockwise to clockwise and the time required to move clockwise from the turn-back position Pr to the measurement position Pm.
  • the branch position P2 is determined in advance by the maximum rotational speed Xrpm, the stop time at the turn-back position Pr, and the time required to move from the turn-back position Pr to the measurement position Pm in the clockwise direction.
  • the maximum rotational speed Xrpm is the maximum rotational speed of the spindle motor 35 that can be stopped with good stopping accuracy, and is, for example, about 20 rpm.
  • the stop time at the turn-back position Pr the time required to change the rotation direction from counterclockwise to clockwise is measured and stored in the FLASH 93 in advance. This stop period is, for example, 0.2 seconds.
  • the time required to move clockwise from the turn-back position Pr to the measurement position Pm is measured in advance and stored in the FLASH 93. The time required for this movement is, for example, 0.1 seconds.
  • the total number of pulses of the encoder 96 is 2812 pulses, the pulse position of the encoder 96 corresponding to the measurement position Pm is 0 pulse, the number of pulses increases clockwise from there, and the pulse position corresponding to the branch position P2 is ⁇ .
  • the time required to move counterclockwise from the branch position P2 to the folding position Pr is expressed by the equation (2), and the time required to move counterclockwise from the branch position P2 to the folding position Pr It is represented by (3).
  • the arrival time is set to the measurement mode.
  • the measurement mode is a preset travel time from an arbitrary stop position to the turn-back position Pr. For example, when the rotation speed of the spindle motor is set to a preset speed, and the holder 61 is rotated at this rotation speed, the moving liquid is stored in the measurement unit 293 of the test chip 2. , Based on the highest speed among the speeds that do not flow out of the measurement unit 293 due to centrifugal force.
  • the arrival time is set to the measurement mode, the process proceeds to S12.
  • S13 it is determined whether or not the target position has been reached. That is, in S9, since the folding position Pr is set as the target position, it is determined whether or not the folding position Pr has been reached. This determination is performed based on a signal from the encoder 96. If it is determined that the return position Pr has been reached, the process proceeds to S14. If it is determined that it has not reached, the process proceeds to S13.
  • the rotation direction is set clockwise.
  • the clockwise direction is an example of the first rotation direction of the present invention.
  • the arrival time is set to (3-t) seconds.
  • Time t is the time indicated by the timer in S16.
  • the time indicated by the timer in S16 is the elapsed time from the time when the timer was started in S7. That is, the subsequent movement time to the measurement position Pm is (3-t) seconds. That is, the time from moving from an arbitrary stop position to the measurement position Pm and starting measurement is 3 seconds.
  • the rotational speed at which the holder 61 is moved in (3-t) seconds from the position detected by the encoder 96, that is, the position detected in S4, or from the return position Pr to the measurement position Pm is calculated.
  • the holder 61 stopped at an arbitrary position is moved to the measurement position Pm for a predetermined period.
  • the time until the start of measurement is set to 3 seconds in advance, but an arbitrary time such as 5 seconds, 10 seconds, and 1 second may be set in advance.
  • the movement to the target position is started. That is, since the measurement position Pm is set as the target position in S14, the movement to the measurement position Pm is started.
  • the movement to the measurement position Pm is executed by rotating the spindle 57 at the clockwise rotation direction set in S15 and the arrival time (3-t) set in S16, that is, the calculated rotation speed. .
  • the process proceeds to S19.
  • S19 it is determined whether or not the target position has been reached. That is, in S14, since the measurement position Pm is set as the target position, it is determined whether or not the measurement position Pm has been reached. This determination is performed based on a signal from the encoder 96. If it is determined that the measurement position Pm has been reached, the process proceeds to S20. If it is determined that it has not reached, the process is executed again in S19.
  • the extraction position P1 is set as the target position in S21.
  • the process proceeds to S22.
  • the stop position acquired in S4 is area 1. Compared to the case where the stop position is displaced from the measurement position Pm, the stop position may be displaced from the take-out position P1, and in the subsequent processing, the take-out is performed from the stop position acquired in S4. Control is executed so that the moving distance is shortened to the position P1. Therefore, it is determined whether the stop position acquired in S4 is area 1, area 2, or area 3. If it is determined that it is area 1, the process proceeds to S22. If it is determined that it is not area 1, that is, the stop position is area 2 or area 3, the process proceeds to S24.
  • the arrival time is set to the extraction mode.
  • the take-out mode is a preset movement time from an arbitrary stop position to the measurement position P1. This moving time is based on, for example, the maximum speed of the spindle motor 35 that can be set.
  • the movement to the target position is started. That is, since the extraction position P1 is set as the target position in S21, the movement to the extraction position P1 is started.
  • the movement to the take-out position P1 rotates the main shaft 57 in the counterclockwise rotation direction set in S23 or the clockwise rotation direction set in S24. Further, the main shaft 57 is rotated at the arrival time set in S25.
  • the process proceeds to S27.
  • S27 it is determined whether or not the target position has been reached. That is, in S21, since the extraction position P1 is set as the target position, it is determined whether or not the extraction position P1 has been reached. This determination is performed based on a signal from the encoder 96. If it is determined that the extraction position P1 has been reached, the process proceeds to S28. If it is determined that it has not reached, the process of S27 is re-executed.
  • a notification that it can be taken out is notified.
  • the notification that can be taken out is an example of a message that the lid member 11B is opened and can be taken out when the display unit (not shown) is provided in the inspection apparatus 1.
  • the same message displayed on the display unit of a personal computer connected to the inspection apparatus 1 from the outside may be used.
  • the holder 61 when the holder 61 stopped at an arbitrary position is located in the area 3 in S8, the holder 61 is moved to the folding position P1 and moved from the folding position Pr to the measurement position Pm.
  • the present invention is not limited to this.
  • the process may move to S14. That is, the holder 61 may be moved clockwise from an arbitrary position to the measurement position Pm for a predetermined period.
  • the clockwise direction is described as the first rotation direction
  • the counterclockwise direction is the second rotation direction
  • the clockwise direction may be the second rotation direction
  • the counterclockwise direction may be the first rotation direction
  • the turn-back position Pr is described as a position shifted by three pulses counterclockwise from the measurement position Pm.
  • the turn-back position Pr may be a position shifted by several pulses clockwise from the measurement position Pm. Good.
  • the movement time from the acquired arbitrary stop position to the measurement position Pm is set in advance to a predetermined time, and the arbitrary stop position included in the area 1 or the return position Pr to the measurement position.
  • the rotational speed of the main shaft 57 is determined so as to move in (3-t) seconds, but is not limited thereto.
  • the time from the arbitrary stop position to the start of measurement may be constant, and after reaching the measurement position Pm, it may wait until a predetermined measurement start time.
  • S1 to S15 and S21 to S28 are the same as the follow chart shown in FIG. In S15 shown in FIG. 7, when the rotation direction is set clockwise, the process proceeds to S16A.
  • the arrival time is set to the measurement mode.
  • the measurement mode is a preset movement time from an arbitrary stop position to the measurement position Pm. For example, when the rotation speed of the spindle motor is set to a preset speed, and the holder 61 is rotated at this rotation speed, the moving liquid is stored in the measurement unit 293 of the test chip 2. , Based on the highest speed among the speeds that do not flow out of the measurement unit 293 due to centrifugal force. Further, the rotation speed is calculated so that the movement time is within a predetermined period.
  • the arrival time is set to the measurement mode, the process proceeds to S17A.
  • the movement to the target position is started. That is, since the measurement position Pm is set as the target position in S14, the movement to the measurement position Pm is started.
  • the movement to the measurement position Pm is executed by rotating the main shaft 57 at the clockwise rotation direction set in S15 and the preset rotation speed set in S16A.
  • the process proceeds to S18A.
  • S18A it is determined whether or not the target position has been reached. That is, in S14, since the measurement position Pm is set as the target position, it is determined whether or not the measurement position Pm has been reached. This determination is performed based on a signal from the encoder 96. If it is determined that the measurement position Pm has been reached, the process proceeds to S19A. If it is determined that it has not reached, the process is executed again in S19.
  • S19A it is determined whether or not the time indicated by the timer is longer than 3 seconds. If it is determined that it is long, that is, if it is 3 seconds, the process proceeds to S20A. If it is determined to be short, the process of S19A is re-executed.
  • S21A measurement is started. That is, the received light intensity obtained in the optical sensor 72 is adopted as measurement data. Therefore, in S16A, the rotation speed is calculated so that the moving time is within a predetermined period, and in S19A, if it is determined that the time indicated by the timer is 3 seconds, the measurement is started in S20A. The Accordingly, since the measurement is started when it is determined that a certain period has elapsed, the timing at which the measurement is started becomes more accurate. Therefore, it is possible to suppress variations in the period until the start of measurement for each measurement, and to further suppress a decrease in measurement accuracy. When the measurement data is collected, the process proceeds to S1.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

In order to suppress variations in the time until measurements begin, and suppress decreases in measurement precision, the present invention is provided with: a rotation mechanism for rotating, about a main shaft, a holder that holds an inspection chip; a position detection unit for detecting the position of the holder rotated by the rotation mechanism; a light emitting unit for emitting a measurement beam; a light receiving unit for receiving a transmitted beam which is the measurement beam emitted by the light emitting unit and transmitted through the inspection chip held by the holder; and a control unit for controlling the rotation by the rotation mechanism; wherein the control unit, within a predetermined standard period of time, rotates a holder that has stopped at an arbitrary position from a position detected by the position detection unit to a measurement position where the measurement beam can be transmitted through the inspection chip held by the holder, and begins measurements on the basis of the transmitted beam received by the light receiving unit after the standard period of time.

Description

検査装置、検査プログラム、検査方法Inspection device, inspection program, inspection method
 本発明は、検査装置、検査プログラム、および検査方法に関するものである。 The present invention relates to an inspection apparatus, an inspection program, and an inspection method.
 従来、主軸を回転させてマイクロチップに遠心力を作用させる検査装置が特許文献1などにより知られている。この特許文献に開示された検査装置は、DCモータとエンコーダとを備える回転駆動源、光源、検出器、および制御部を備える。マイクロチップに設けられた吸光光度測定部が、光源と検出器とに対応する停止位置に停止する前に、マイクロチップの内部において、血液から分離された血漿と試薬とが混合され、測定対象液が得られる。吸光光度測定部が、光源と検出器とに対応する停止位置に停止するよう制御部は、回転駆動源を制御する。停止位置に停止されたマイクロチップの吸光光度測定部に光源からの光が透過される。この透過光を検出器が検出して測定対象液の吸光光度が測定される。 Conventionally, an inspection apparatus that rotates a spindle and applies centrifugal force to a microchip is known from Patent Document 1 and the like. The inspection apparatus disclosed in this patent document includes a rotary drive source including a DC motor and an encoder, a light source, a detector, and a control unit. Before the absorptiometric measurement unit provided on the microchip stops at the stop position corresponding to the light source and the detector, the plasma separated from the blood and the reagent are mixed inside the microchip, and the liquid to be measured Is obtained. The control unit controls the rotational drive source so that the absorbance measurement unit stops at a stop position corresponding to the light source and the detector. The light from the light source is transmitted to the absorptiometry unit of the microchip stopped at the stop position. The transmitted light is detected by the detector, and the absorbance of the liquid to be measured is measured.
特開2008-8875号公報JP 2008-8875 A
 吸光光度測定部を停止位置に正確に停止させるために、制御部は、停止位置に停止させる前に、任意の位置に一端停止させ、その位置でエンコーダから検出された位置情報に基づき、停止位置まで停止させる駆動信号をモータに出力することが考えられる。一方、停止位置に停止させる前に、マイクロチップの内部では、血液から分離された血漿と試薬とが混合される。よって、血漿と試薬とが混合された混合時点から、光源から発光された光による吸光光度測定の開始時点までの期間が測定毎にばらつくと、測定毎の測定精度が低下する可能性がある。すなわち、任意の位置から停止位置までの移動時間がばらつくと、混合時点から、吸光光度測定の開始までの期間がばらつくので、測定精度が低下する可能性がある。 In order to accurately stop the absorbance measurement unit at the stop position, the control unit stops at one position before stopping at the stop position, and based on the position information detected from the encoder at that position, the stop position It is conceivable to output a drive signal for stopping the motor to the motor. On the other hand, the plasma separated from the blood and the reagent are mixed inside the microchip before stopping at the stop position. Therefore, if the period from the time when the plasma and the reagent are mixed to the time when the absorbance measurement using the light emitted from the light source is varied for each measurement, the measurement accuracy for each measurement may be lowered. That is, if the movement time from an arbitrary position to the stop position varies, the period from the mixing point to the start of absorption spectrophotometry varies, which may reduce the measurement accuracy.
 本発明は、上述した問題を解決するためになされたものであり、測定開始までの期間のばらつきを抑え、測定精度の低下を抑えることが出来る検査装置、検査プログラム、および検査方法を提供することを目的とする。 The present invention has been made to solve the above-described problems, and provides an inspection apparatus, an inspection program, and an inspection method capable of suppressing variations in a period until the start of measurement and suppressing a decrease in measurement accuracy. With the goal.
 上記目的を達成する為に、請求項1記載の検査装置は、検査チップを保持するホルダと、前記ホルダを、主軸を中心に回転させる回転機構と、前記回転機構により回転される前記ホルダの位置を検出する位置検出部と、測定光を発光する発光部と、前記発光部により発光された測定光が、前記ホルダに保持された検査チップを透過した透過光を受光する受光部と、前記回転機構による回転を制御する制御部と、を備え、前記制御部は、予め定められた一定期間以内に、前記位置検出部により検出された位置から前記測定光が前記ホルダに保持された前記検査チップを透過可能な測定位置まで、任意の位置に停止したホルダを回転させ、前記一定期間後に前記受光部が受光した透過光に基づき、測定を開始することを特徴とする。 In order to achieve the above object, an inspection apparatus according to claim 1 includes a holder for holding an inspection chip, a rotation mechanism for rotating the holder around a main shaft, and a position of the holder rotated by the rotation mechanism. A position detection unit that detects light, a light emitting unit that emits measurement light, a light receiving unit that receives transmitted light that has passed through an inspection chip held by the holder, and the measurement light emitted from the light emitting unit, and the rotation A control unit that controls rotation by a mechanism, and the control unit holds the measurement light held by the holder from a position detected by the position detection unit within a predetermined period of time. The holder stopped at an arbitrary position is rotated to a measurement position where light can be transmitted, and measurement is started based on the transmitted light received by the light receiving unit after the predetermined period.
 請求項1記載の検査装置によれば、任意の位置に停止したホルダは、検出された位置から測定位置まで予め定められた一定期間以内に移動され、一定期間後に測定が開始される。任意の位置にホルダがあっても、測定が開始されるまでの期間が一定となる。従って、測定毎の測定開始までの期間のばらつきを抑え、測定精度の低下を抑えることが出来る。 According to the inspection apparatus of the first aspect, the holder stopped at an arbitrary position is moved within a predetermined period from the detected position to the measurement position, and the measurement is started after the predetermined period. Even if there is a holder at an arbitrary position, the period until the measurement is started is constant. Therefore, it is possible to suppress variations in the period until the start of measurement for each measurement and to suppress a decrease in measurement accuracy.
 また、前記制御部は、予め定められた時計回り、または反時計回りのいずれか一方の第1回転方向に回転させて、前記ホルダを前記測定位置に停止させてもよい。
測定毎に、ホルダが、第1回転方向で回転されて測定位置に停止される、または第1回転方向と反対方向の第2回転方向で回転されて測定位置に停止されると、主軸を回転させるモータのコギングにより測定位置への停止精度が異なるので、測定毎の測定精度が低下する。本開示によれば、ホルダは、第1回転方向で回転されて測定位置に停止される。従って、測定毎の測定精度が低下する可能性を低減できる。
Further, the control unit may be rotated in a first clockwise direction that is predetermined clockwise or counterclockwise to stop the holder at the measurement position.
For each measurement, when the holder is rotated in the first rotation direction and stopped at the measurement position, or rotated in the second rotation direction opposite to the first rotation direction and stopped at the measurement position, the spindle is rotated. Since the stopping accuracy to the measurement position varies depending on the cogging of the motor to be performed, the measurement accuracy for each measurement is lowered. According to the present disclosure, the holder is rotated in the first rotation direction and stopped at the measurement position. Therefore, the possibility that the measurement accuracy for each measurement is lowered can be reduced.
 また、前記制御部は、前記検出された位置から前記第1回転方向に回転させて、前記ホルダを前記測定位置に停止させてもよい。
本開示によれば、第2回転方向から第1回転方向へ途中で逆回転することなく、ホルダは回転される。従って、途中で逆回転することにより、慣性、もしくは、停止によりホルダにより保持される検査チップに注入された液体が飛び出すことを低減できる。従って測定精度の低下の可能性を低減できる。
Further, the control unit may rotate the first rotation direction from the detected position to stop the holder at the measurement position.
According to the present disclosure, the holder is rotated without reversely rotating in the middle from the second rotation direction to the first rotation direction. Therefore, by reversely rotating in the middle, it is possible to reduce the inertia or the liquid injected into the inspection chip held by the holder by stopping. Therefore, the possibility of a decrease in measurement accuracy can be reduced.
 また、前記制御部は、前記一定期間で、前記検出された位置から前記第1回転方向に回転させて、前記ホルダを前記測定位置に停止させる場合の回転速度を算出し、算出された回転速度で、前記検出された位置から前記第1回転方向に前記ホルダを回転させてもよい。
本開示によれば、算出された回転速度でホルダが回転されるので、検出された位置から測定位置まで予め定められた一定期間以内により確実に移動される。任意の位置にホルダがあっても、測定が開始されるまでの期間がより確実に一定となる。従って、測定毎の測定開始までの期間のばらつきを抑え、測定精度の低下をより抑えることが出来る。
Further, the control unit calculates a rotation speed when rotating the holder in the first rotation direction from the detected position and stopping the holder at the measurement position in the certain period, and calculates the calculated rotation speed. Thus, the holder may be rotated in the first rotation direction from the detected position.
According to the present disclosure, since the holder is rotated at the calculated rotational speed, the holder is reliably moved from the detected position to the measurement position within a predetermined period. Even if there is a holder at an arbitrary position, the period until the measurement is started is more reliably constant. Therefore, it is possible to suppress variations in the period until the start of measurement for each measurement, and to further suppress a decrease in measurement accuracy.
 また、前記制御部は、前記検出された位置から前記第1回転方向に回転させて、前記ホルダを前記測定位置に停止させる第1ルートと、前記検出された位置から、前記第1回転方向と反対方向の第2方向に回転させて、前記測定位置を通過させ、所定の折返し位置から前記第1回転方向に回転させて、前記ホルダを前記測定位置に停止させる第2ルートと、のいずれかを前記位置検出部より検出された位置により決定し、決定されたルートで回転させて、前記ホルダを前記測定位置に停止させてもよい。
本開示によれば、第1ルートと第2ルートとのいずれかで測定位置までホルダを移動させることが可能なので、回転速度を低速化することができ、消費電力の低下、および回転速度が高速化することによって検査チップに注入された液体が飛び出すことを低減できる。従って、測定精度の低下の可能性を低減できる。
Further, the control unit rotates in the first rotation direction from the detected position to stop the holder at the measurement position, and from the detected position to the first rotation direction. One of a second route that rotates in a second direction opposite to pass through the measurement position, rotates in a first rotation direction from a predetermined folding position, and stops the holder at the measurement position. May be determined based on the position detected by the position detector, and rotated by the determined route to stop the holder at the measurement position.
According to the present disclosure, since the holder can be moved to the measurement position in either the first route or the second route, the rotation speed can be reduced, the power consumption is reduced, and the rotation speed is increased. As a result, the liquid injected into the inspection chip can be prevented from jumping out. Therefore, the possibility of a decrease in measurement accuracy can be reduced.
 また、前記制御部は、前記一定期間で、前記第1ルートで前記ホルダを回転させると決定した場合、前記検出された位置から前記第1回転方向に回転させて、前記ホルダを前記測定位置に停止させる場合の回転速度を算出し、算出された回転速度で、前記検出された位置から前記第1回転方向に前記ホルダを回転させ、前記第2ルートで前記ホルダを回転させると決定した場合、前記検出された位置から前記第2回転方向に回転させて、前記ホルダを前記折返し位置に停止させ、前記折返し位置から前記第1回転方向に回転させて、前記ホルダを前記測定位置に停止させる場合の回転速度を前記一定期間の残り時間に基づき算出し、算出された回転速度で、前記折返し位置から前記第1回転方向に前記ホルダを回転させてもよい。
本開示によれば、算出された回転速度でホルダが回転されるので、検出された位置から測定位置まで予め定められた一定期間以内により確実に移動される。任意の位置にホルダがあっても、測定が開始されるまでの期間がより確実に一定となる。従って、測定毎の測定開始までの期間のばらつきを抑え、測定精度の低下をより抑えることが出来る。
In addition, when the control unit determines to rotate the holder in the first route during the certain period, the control unit rotates the holder in the first rotation direction from the detected position, and moves the holder to the measurement position. When calculating the rotation speed in the case of stopping, and rotating the holder in the first rotation direction from the detected position at the calculated rotation speed, and determining to rotate the holder in the second route, When the holder is rotated in the second rotation direction from the detected position to stop the holder in the folding position, and is rotated in the first rotation direction from the folding position to stop the holder in the measurement position. May be calculated based on the remaining time of the predetermined period, and the holder may be rotated in the first rotation direction from the folding position at the calculated rotation speed.
According to the present disclosure, since the holder is rotated at the calculated rotational speed, the holder is reliably moved from the detected position to the measurement position within a predetermined period. Even if there is a holder at an arbitrary position, the period until the measurement is started is more reliably constant. Therefore, it is possible to suppress variations in the period until the start of measurement for each measurement, and to further suppress a decrease in measurement accuracy.
 また、前記制御部は、前記ホルダが前記測定位置に停止された状態において、前記一定期間が経過したか否かを判断し、前記一定期間が経過したと判断した場合に、前記受光部が受光した透過光に基づき、測定を開始してもよい。
本開示によれば、一定期間が経過したと判断した場合に測定が開始されるので、測定が開始されるタイミングがより正確になる。従って、測定毎の測定開始までの期間のばらつきを抑え、測定精度の低下をより抑えることが出来る。
In addition, the control unit determines whether or not the predetermined period has elapsed in a state where the holder is stopped at the measurement position, and when it is determined that the predetermined period has elapsed, the light receiving unit receives light. Measurement may be started based on the transmitted light.
According to the present disclosure, since the measurement is started when it is determined that a certain period has elapsed, the timing at which the measurement is started becomes more accurate. Therefore, it is possible to suppress variations in the period until the start of measurement for each measurement, and to further suppress a decrease in measurement accuracy.
 また、前記制御部は、前記測定位置とは異なる位置に前記ホルダを停止させる際は、前記検出された位置から前記指定位置まで、時計回り、または反時計回りのいずれか一方の第1回転方向と前記第1回転方向と反対方向の第2方向との近い方のルートで、ホルダを指定位置に回転させてもよい。
本開示によれば、指定位置に移動させる際は、近い方のルートでホルダが移動されるので、より早く、指定位置に移動させることが出来る。
Further, when the control unit stops the holder at a position different from the measurement position, either the clockwise or counterclockwise first rotation direction from the detected position to the designated position is selected. The holder may be rotated to a designated position along a route closer to the second direction opposite to the first rotation direction.
According to the present disclosure, when the holder is moved to the designated position, the holder is moved along the closer route, so that the holder can be moved to the designated position earlier.
 上記目的を達成する為に、本開示の検査プログラムは、検査チップを保持するホルダと、前記ホルダを、主軸を中心に回転させる回転機構と、前記回転機構により回転される前記ホルダの位置を検出する位置検出部と、測定光を発光する発光部と、前記発光部により発光された測定光が、前記ホルダに保持された検査チップを透過した透過光を受光する受光部と、前記回転機構による回転を制御する制御部と、を備える検査装置のコンピュータに、予め定められた一定期間以内に、前記位置検出部により検出された位置から前記測定光が前記ホルダに保持された前記検査チップを透過可能な測定位置まで、任意の位置に停止したホルダを回転させる回転ステップと、前記一定期間後に前記受光部が受光した透過光に基づき、測定を開始させる測定ステップとを実行させることを特徴とする。
また、本開示の検査方法は、検査チップを保持するホルダと、前記ホルダを、主軸を中心に回転させる回転機構と、前記回転機構により回転される前記ホルダの位置を検出する位置検出部と、測定光を発光する発光部と、前記発光部により発光された測定光が、前記ホルダに保持された検査チップを透過した透過光を受光する受光部と、前記回転機構による回転を制御する制御部と、を備える検査装置の検査方法であって、予め定められた一定期間以内に、前記位置検出部により検出された位置から前記測定光が前記ホルダに保持された前記検査チップを透過可能な測定位置まで、任意の位置に停止したホルダを回転させる回転ステップと、前記一定期間後に前記受光部が受光した透過光に基づき、測定を開始させる測定ステップと、を備えることを特徴とする。
本開示の検査プログラム、および検査方法によれば、任意の位置に停止したホルダは、検出された位置から測定位置まで予め定められた一定期間以内に移動され、一定期間後に測定が開始される。任意の位置にホルダがあっても、測定が開始されるまでの期間が一定となる。従って、測定毎の測定開始までの期間のばらつきを抑え、測定精度の低下を抑えることが出来る。
In order to achieve the above object, an inspection program of the present disclosure detects a holder that holds an inspection chip, a rotation mechanism that rotates the holder around a main axis, and a position of the holder that is rotated by the rotation mechanism. A position detecting unit that emits measurement light, a light emitting unit that emits measurement light, a light receiving unit that receives transmitted light that has passed through an inspection chip held by the holder, and the measurement light emitted from the light emitting unit, and the rotation mechanism And a control unit that controls rotation, and the measurement light is transmitted from the position detected by the position detection unit through the inspection chip held by the holder within a predetermined period of time to a computer of the inspection apparatus. The measurement is started based on the rotation step of rotating the holder stopped at an arbitrary position to a possible measurement position and the transmitted light received by the light receiving unit after the predetermined period. Characterized in that to execute a constant step.
Further, the inspection method of the present disclosure includes a holder that holds an inspection chip, a rotation mechanism that rotates the holder around a main shaft, a position detection unit that detects a position of the holder rotated by the rotation mechanism, A light emitting unit that emits measurement light, a light receiving unit that receives transmitted light that has passed through the inspection chip held by the holder, and a control unit that controls rotation by the rotating mechanism. An inspection method for an inspection apparatus comprising: a measurement capable of transmitting the measurement light from the position detected by the position detection unit through the inspection chip held by the holder within a predetermined period of time. A rotation step for rotating the holder stopped at an arbitrary position up to a position, and a measurement step for starting measurement based on the transmitted light received by the light receiving unit after the predetermined period. It is characterized in.
According to the inspection program and the inspection method of the present disclosure, the holder stopped at an arbitrary position is moved within a predetermined period from the detected position to the measurement position, and measurement is started after the predetermined period. Even if there is a holder at an arbitrary position, the period until the measurement is started is constant. Therefore, it is possible to suppress variations in the period until the start of measurement for each measurement and to suppress a decrease in measurement accuracy.
検査装置1の構成を示す斜視図である。1 is a perspective view showing a configuration of an inspection apparatus 1. FIG. 図1のII-II線矢視方向断面図、及び、検査チップ2の斜視図である。FIG. 2 is a sectional view taken along the line II-II in FIG. 1 and a perspective view of a test chip 2. 上部筐体11を外した状態の検査システム3の上部の拡大斜視図である。It is an expansion perspective view of the upper part of inspection system 3 in the state where upper case 11 was removed. 検査装置1の電気的構成を示すブロック図である。2 is a block diagram showing an electrical configuration of the inspection apparatus 1. FIG. 実施形態における検査処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the test | inspection process in embodiment. 平面視のホルダ61の回転制御を説明する説明図である。It is explanatory drawing explaining rotation control of the holder 61 of planar view. 変形例における検査処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the test | inspection process in a modification.
<1.検査システム3の概略構造>
 本開示を具体化した実施形態について、図面を参照して説明する。図1~図3を参照して、検査システム3の概略構造について説明する。本実施形態の検査システム3は、液体である検体及び試薬を収容可能な図2に示す検査チップ2と、検査チップ2を用いて検査を行う検査装置1とを含む。図2及び図3に示すように、検査チップ2は、検査装置1のホルダ61に支持される。検査装置1がホルダ61と検査チップ2とから離間した垂直軸線A1を中心としてホルダ61及び検査チップ2を回転させると、遠心力がホルダ61及び検査チップ2に作用する。検査装置1が水平軸線A2を中心にホルダ61及び検査チップ2を回転させると、ホルダ61及び検査チップ2に作用する遠心力の方向である遠心方向が検査チップ2に対して切り替えられる。
<1. Schematic structure of inspection system 3>
An embodiment embodying the present disclosure will be described with reference to the drawings. The schematic structure of the inspection system 3 will be described with reference to FIGS. The inspection system 3 of the present embodiment includes the inspection chip 2 shown in FIG. 2 that can store a sample and a reagent that are liquids, and the inspection apparatus 1 that performs inspection using the inspection chip 2. As shown in FIGS. 2 and 3, the inspection chip 2 is supported by a holder 61 of the inspection apparatus 1. When the inspection apparatus 1 rotates the holder 61 and the inspection chip 2 around the vertical axis A <b> 1 separated from the holder 61 and the inspection chip 2, centrifugal force acts on the holder 61 and the inspection chip 2. When the inspection apparatus 1 rotates the holder 61 and the inspection chip 2 about the horizontal axis A2, the centrifugal direction, which is the direction of the centrifugal force acting on the holder 61 and the inspection chip 2, is switched with respect to the inspection chip 2.
<2.検査装置1の構造>
 図1~図3を参照して、検査装置1の構造について説明する。以下の説明では、図2の上方、下方、右方、左方、紙面手前側、及び、紙面奥側を、夫々、検査装置1の上方、下方、前方、後方、左方、及び、右方とする。本実施形態では、垂直軸線A1の方向は検査装置1の上下方向であり、水平軸線A2の方向は、ホルダ61及び検査チップ2が垂直軸線A1を中心として回転される際の速度の方向である。なお、図3の斜視図は、検査装置1の図1に示す上部筐体11及び一対の側部筐体13が取り除かれた状態を示す。
<2. Structure of the inspection apparatus 1>
The structure of the inspection apparatus 1 will be described with reference to FIGS. In the following description, the upper, lower, right, left, front side, and back side of FIG. 2 are respectively the upper, lower, front, rear, left, and right sides of the inspection apparatus 1. And In the present embodiment, the direction of the vertical axis A1 is the vertical direction of the inspection apparatus 1, and the direction of the horizontal axis A2 is the direction of the speed when the holder 61 and the inspection chip 2 are rotated about the vertical axis A1. . 3 shows a state in which the upper housing 11 and the pair of side housings 13 shown in FIG. 1 of the inspection apparatus 1 are removed.
 図1に示すように、検査装置1は筐体10を備える。筐体10は箱状のフレーム構造を有する。筐体10は、上部筐体11、下部筐体12、及び、一対の側部筐体13を備える。一対の側部筐体13は、上下方向に長い長方形の板材である。一対の側部筐体13の夫々の面は左右方向を向く。一対の側部筐体13は左右方向に離隔する。下部筐体12は、一対の側部筐体13の夫々の下端、前端の下側、及び、後端の下側の間に架け渡された板材である。上部筐体11は、一対の側部筐体13の夫々の上端、前端の上側、及び、後端の上側の間に架け渡された板材である。上部筐体11には、前側部分と上側部分との間に亘って穴部11Aが形成されている。上部筐体11は、長方形の板材である蓋部材11Bの一端部を、回転可能に支持する。蓋部材11Bの一端部と対向する他端部が、回転によって上部筐体11に近接した場合、蓋部材11Bは穴部11Aを覆う。又、上部筐体11の上側部分の右側に、電源スイッチ及び複数の操作スイッチを含む操作部94が設けられる。 As shown in FIG. 1, the inspection apparatus 1 includes a housing 10. The housing 10 has a box-shaped frame structure. The housing 10 includes an upper housing 11, a lower housing 12, and a pair of side housings 13. A pair of side housing | casing 13 is a rectangular board | plate material long in an up-down direction. Each surface of the pair of side housings 13 faces in the left-right direction. The pair of side housings 13 are separated in the left-right direction. The lower housing 12 is a plate member spanned between the lower end of each of the pair of side housings 13, the lower side of the front end, and the lower side of the rear end. The upper housing 11 is a plate member spanned between the upper ends of the pair of side housings 13, the upper side of the front end, and the upper side of the rear end. A hole 11A is formed in the upper housing 11 between the front portion and the upper portion. The upper housing 11 rotatably supports one end of a lid member 11B that is a rectangular plate material. When the other end facing the one end of the lid member 11B approaches the upper housing 11 by rotation, the lid member 11B covers the hole 11A. An operation unit 94 including a power switch and a plurality of operation switches is provided on the right side of the upper portion of the upper housing 11.
 図2及び図3に示すように、検査装置1は、ケース80、上板32、ターンテーブル33、角度変更機構34、ホルダ61、及び、図3に示す制御装置90を、図1に示す筐体10の内部に備える。上板32は、下部筐体12の前側の上端と後側の上端との間に架け渡された、長方形の板材である。ターンテーブル33は、上板32の上側に回転可能に設けられた円盤である。後述する検査チップ2は、ターンテーブル33の上方に配置されたホルダ61に支持される。 As shown in FIGS. 2 and 3, the inspection apparatus 1 includes a case 80, an upper plate 32, a turntable 33, an angle changing mechanism 34, a holder 61, and a control device 90 shown in FIG. Provided inside the body 10. The upper plate 32 is a rectangular plate material spanned between the front upper end and the rear upper end of the lower housing 12. The turntable 33 is a disk provided rotatably on the upper plate 32. An inspection chip 2 to be described later is supported by a holder 61 disposed above the turntable 33.
 図2に示すように、検査チップ2は、透明な合成樹脂の板材20を主体とする。板材20の一方側の面は、シート291により封止され、板材20の他方側の面は、シート292により封止されている。シート291、292は透明の合成樹脂の薄板である。板材20とシート291との間、及び、板材20とシート292との間には、検査チップ2に封入された液体が流動可能な図示外の液体流路が形成されている。シート291,292は、板材20の流路形成面を封止する。検査チップ2に注入された試薬及び検体は、液体流路を流動する過程で定量又は混合され、混合液が生成される。混合液は、液体流路のうち一部分に形成された測定部293に貯留される。検査チップ2は、厚み方向が前後方向、及び左右方向に延びる向きで、ホルダ61に保持される。 As shown in FIG. 2, the inspection chip 2 is mainly composed of a transparent synthetic resin plate 20. One surface of the plate material 20 is sealed with a sheet 291, and the other surface of the plate material 20 is sealed with a sheet 292. The sheets 291 and 292 are transparent synthetic resin thin plates. Between the plate member 20 and the sheet 291 and between the plate member 20 and the sheet 292, a liquid flow path (not shown) through which the liquid sealed in the inspection chip 2 can flow is formed. The sheets 291 and 292 seal the flow path forming surface of the plate material 20. The reagent and specimen injected into the test chip 2 are quantified or mixed in the process of flowing through the liquid flow path, and a mixed liquid is generated. The liquid mixture is stored in a measurement unit 293 formed in a part of the liquid channel. The inspection chip 2 is held by the holder 61 with the thickness direction extending in the front-rear direction and the left-right direction.
 角度変更機構34は、ターンテーブル33に設けられた駆動機構である。この角度変更機構34は、水平軸線A2を中心にホルダ61を回転させることで検査チップ2を回転させる。ケース80は、上板32の上側に設けられ、ターンテーブル33、角度変更機構34、及び、ホルダ61を覆う。検査チップ2に対して光学測定を行う図3に示す測定部7の光源71、および光センサ72は、上板32の上側、且つ、ケース80の外部に設けられている。制御装置90は、検査装置1の各種処理を制御するコントローラである。図3に示すように、制御装置90は、上板32の下側に配置される。上板32の下部には、垂直軸線A1を中心にターンテーブル33を回転させる回転機構が、次のように設けられている。 The angle changing mechanism 34 is a drive mechanism provided on the turntable 33. The angle changing mechanism 34 rotates the inspection chip 2 by rotating the holder 61 around the horizontal axis A2. The case 80 is provided above the upper plate 32 and covers the turntable 33, the angle changing mechanism 34, and the holder 61. The light source 71 and the optical sensor 72 of the measuring unit 7 shown in FIG. 3 that perform optical measurement on the inspection chip 2 are provided on the upper side of the upper plate 32 and outside the case 80. The control device 90 is a controller that controls various processes of the inspection device 1. As shown in FIG. 3, the control device 90 is disposed below the upper plate 32. A rotating mechanism for rotating the turntable 33 around the vertical axis A1 is provided at the lower part of the upper plate 32 as follows.
 図2に示すように、筐体10内の中央部の下方寄りに、ターンテーブル33を回転させるための駆動力を供給する主軸モータ35、及び、下部筐体12の内部から上方に延びる主軸57が設置されている。主軸モータ35はDCモータである。主軸モータ35の軸36は、上方に突出し、主軸57に連結している。主軸57は、上板32を貫通して、上板32の上側に突出している。主軸57の上端部は、ターンテーブル33の中央部に接続されている。主軸モータ35が軸36を回転させると、駆動力が主軸57に伝達される。このとき、主軸57の回転に連動して、ターンテーブル33が主軸57を中心に回転する。また、主軸モータ35の下側にエンコーダ96が配置され、主軸モータ35の上側に原点センサ97が配置される。図2において、エンコーダ96、および原点センサ97の回転円板は図示されているが、これらの発光部、および受光部は図示されていない。 As shown in FIG. 2, a spindle motor 35 that supplies driving force for rotating the turntable 33, and a spindle 57 that extends upward from the inside of the lower casing 12, closer to the lower part of the central portion in the casing 10. Is installed. The main shaft motor 35 is a DC motor. The shaft 36 of the main shaft motor 35 protrudes upward and is connected to the main shaft 57. The main shaft 57 passes through the upper plate 32 and protrudes above the upper plate 32. The upper end portion of the main shaft 57 is connected to the center portion of the turntable 33. When the main shaft motor 35 rotates the shaft 36, the driving force is transmitted to the main shaft 57. At this time, the turntable 33 rotates around the main shaft 57 in conjunction with the rotation of the main shaft 57. An encoder 96 is disposed below the spindle motor 35, and an origin sensor 97 is disposed above the spindle motor 35. In FIG. 2, the rotating disks of the encoder 96 and the origin sensor 97 are illustrated, but the light emitting unit and the light receiving unit are not illustrated.
 主軸57は、内部が中空の筒状体である。内軸40は、主軸57の内部において上下方向に移動可能な軸である。図3に示すように、内軸40は、主軸57内を貫通してターンテーブル33の上方に延び、後述する一対のラックギア43に接続されている。 The main shaft 57 is a hollow cylindrical body. The inner shaft 40 is a shaft that can move in the vertical direction inside the main shaft 57. As shown in FIG. 3, the inner shaft 40 extends through the main shaft 57 and above the turntable 33, and is connected to a pair of rack gears 43 described later.
 図2に示すように、筐体10の中央部の後方寄りには、内軸40を上下動させるためのステッピングモータ51が固定されている。ステッピングモータ51の軸58は右方に向けて突出している。軸58の先端には、図示外のピニオンギアが固定されている。ピニオンギアは、図示外のラックギアに噛み合っている。主軸57には、上下方向に延びるスリット57Aが設けられる。スリット57Aを介して主軸57の外側から内側に延びる図示外の連結部が設けられる。連結部の内側の端部は、内軸40に接続する。ステッピングモータ51が軸58を回転させると、軸58の先端に固定されたピニオンギアの回転に連動して、連結部が、スリット57Aに沿って上下動する。内軸40は、連結部に連動して上下動する。 As shown in FIG. 2, a stepping motor 51 for moving the inner shaft 40 up and down is fixed near the rear of the central portion of the housing 10. The shaft 58 of the stepping motor 51 protrudes rightward. A pinion gear (not shown) is fixed to the tip of the shaft 58. The pinion gear meshes with a rack gear (not shown). The main shaft 57 is provided with a slit 57A that extends in the vertical direction. A connecting portion (not shown) extending from the outside of the main shaft 57 to the inside through the slit 57A is provided. The inner end of the connecting portion is connected to the inner shaft 40. When the stepping motor 51 rotates the shaft 58, the connecting portion moves up and down along the slit 57A in conjunction with the rotation of the pinion gear fixed to the tip of the shaft 58. The inner shaft 40 moves up and down in conjunction with the connecting portion.
 角度変更機構34の詳細構造を説明する。角度変更機構34は、一対のラックギア43を備えている。一対のラックギア43は、金属製の板状部材である。図3に示すように、一対のラックギア43は、夫々、角柱形状を有する内軸40における互いに対向する面の上端に固定される。一方のラックギア43は、上側から見て内軸40から上下方向に垂直な一方向側に延び、他方のラックギア43は、一方向側とは反対側に延びる。図2に示すように、一対のラックギア43における内軸40側とは反対側の端部には、ギア431が上下方向に形成されている。ラックギア43は、内軸40の上下動に伴って上下動する。 The detailed structure of the angle changing mechanism 34 will be described. The angle changing mechanism 34 includes a pair of rack gears 43. The pair of rack gears 43 are metal plate-like members. As shown in FIG. 3, the pair of rack gears 43 are fixed to the upper ends of mutually opposing surfaces of the inner shaft 40 having a prismatic shape. One rack gear 43 extends from the inner shaft 40 in one direction perpendicular to the vertical direction when viewed from above, and the other rack gear 43 extends to the opposite side to the one direction side. As shown in FIG. 2, a gear 431 is formed in the vertical direction at the end of the pair of rack gears 43 opposite to the inner shaft 40 side. The rack gear 43 moves up and down as the inner shaft 40 moves up and down.
 図3に示すように、上側から見て各ラックギア43の反時計回り方向側には、夫々、支持部47が設けられている。支持部47は、ホルダ61を回転可能に支持する。より詳細には、図2及び図3に示すように、支持部47は、2つの円柱部471、延伸部472、及び支軸473を備えている。2つの円柱部471は、ラックギア43に沿って並べて配置され、上下方向に延びる。延伸部472は、円柱部471の上端から、ラックギア43に沿って内軸40から離れる方向に延び、その先端が支軸473を固定する。支軸473は、延伸部472との固定位置から上側から見て時計回り方向側に延び、その先端が、ホルダ61に形成されたギア部76の内側に配置されている。ギア部76は、ラックギア43のギア431と噛み合っている。ラックギア43の上下動に伴ってギア部76が支軸473を中心に回転することで、ホルダ61が回転する。故に、ホルダ61に保持された検査チップ2が支軸473を中心に回転する。 As shown in FIG. 3, support portions 47 are provided on the counterclockwise direction side of each rack gear 43 as viewed from above. The support part 47 supports the holder 61 rotatably. More specifically, as shown in FIGS. 2 and 3, the support portion 47 includes two cylindrical portions 471, an extending portion 472, and a support shaft 473. The two cylindrical portions 471 are arranged side by side along the rack gear 43 and extend in the vertical direction. The extending portion 472 extends from the upper end of the cylindrical portion 471 in a direction away from the inner shaft 40 along the rack gear 43, and the distal end fixes the support shaft 473. The support shaft 473 extends in the clockwise direction when viewed from above from the position fixed to the extending portion 472, and the tip thereof is disposed inside the gear portion 76 formed in the holder 61. The gear portion 76 meshes with the gear 431 of the rack gear 43. As the rack gear 43 moves up and down, the gear portion 76 rotates around the support shaft 473, whereby the holder 61 rotates. Therefore, the inspection chip 2 held by the holder 61 rotates around the support shaft 473.
 本実施形態では、主軸モータ35がターンテーブル33を回転駆動するのに伴って、ホルダ61及び検査チップ2が垂直軸である主軸57を中心に回転して、ホルダ61及び検査チップ2に遠心力が作用する。ホルダ61及び検査チップ2の垂直軸線A1を中心とした回転を、公転と呼ぶ。一方、ステッピングモータ51が内軸40を上下動させるのに伴って、ホルダ61及び検査チップ2が水平軸である支軸473を中心に回転して、ホルダ61及び検査チップ2に作用する遠心力の遠心方向が相対変化する。ホルダ61及び検査チップ2の水平軸線A2を中心とした回転を、自転と呼ぶ。 In the present embodiment, as the main shaft motor 35 rotationally drives the turntable 33, the holder 61 and the inspection chip 2 rotate around the main shaft 57, which is a vertical axis, and a centrifugal force is applied to the holder 61 and the inspection chip 2. Act. The rotation around the vertical axis A1 of the holder 61 and the inspection chip 2 is referred to as revolution. On the other hand, as the stepping motor 51 moves the inner shaft 40 up and down, the holder 61 and the inspection chip 2 rotate around the support shaft 473 that is a horizontal axis, and the centrifugal force acting on the holder 61 and the inspection chip 2. The centrifugal direction of the relative change. The rotation around the horizontal axis A2 of the holder 61 and the inspection chip 2 is referred to as rotation.
 ケース80の詳細構造を説明する。図3に示すように、ケース80は、上側が閉塞した円筒部材である。ケース80は、側面部80A及び上面部80Bを有する。側面部80Aの前方上側から上面部80Bの前方に亘って穴部80Cが形成されている。ケース80は、上板32の上側に設置されている。より詳細には、ケース80は、ターンテーブル33の回転中心にある主軸57からみて、ホルダ61及び検査チップ2が回転される回転範囲の外側に設けられている。ケース80は、回転範囲を上側から覆う。以下、ケース80内の領域を回転領域81という。 The detailed structure of the case 80 will be described. As shown in FIG. 3, the case 80 is a cylindrical member whose upper side is closed. The case 80 has a side surface portion 80A and an upper surface portion 80B. A hole 80C is formed from the front upper side of the side surface 80A to the front of the upper surface 80B. The case 80 is installed on the upper side of the upper plate 32. More specifically, the case 80 is provided outside the rotation range in which the holder 61 and the inspection chip 2 are rotated as seen from the main shaft 57 at the rotation center of the turntable 33. Case 80 covers the rotation range from above. Hereinafter, an area in the case 80 is referred to as a rotation area 81.
 ケース80の側面部80Aの右斜め後側に、穴部80Dが形成される。ケース80の側面部80Aの左斜め後側に、穴部80Eが形成される。検査チップ2に対して光学測定を行う測定部7は、測定光を発光する発光部としての光源71と、光源71から発せられた測定光を検出する受光部としての光センサ72とを有する。光源71は、図示しない固定部材により、光源71からの測定光が穴部80D、および穴部80Eを通過する高さ、および穴部80Dの右側に配置されている。光センサ72は、図示しない固定部材により、穴部80D、および穴部80Eを通過した測定光を受光する高さ、および穴部80Eの左側に配置されている。 A hole 80D is formed on the diagonally right rear side of the side surface 80A of the case 80. A hole 80E is formed on the diagonally left rear side of the side surface 80A of the case 80. The measurement unit 7 that performs optical measurement on the inspection chip 2 includes a light source 71 as a light emitting unit that emits measurement light, and an optical sensor 72 as a light receiving unit that detects measurement light emitted from the light source 71. The light source 71 is disposed on the right side of the hole 80D and the height at which the measurement light from the light source 71 passes through the hole 80D and the hole 80E by a fixing member (not shown). The optical sensor 72 is disposed on the left side of the hole 80E and the height of receiving the measurement light that has passed through the hole 80D and the hole 80E by a fixing member (not shown).
 本実施形態では、検査チップ2の公転可能範囲のうちで主軸57の後側位置が、検査チップ2に測定光が照射される測定位置である。検査チップ2が測定位置にある場合、光源71と光センサ72とを結ぶ測定光70が、検査チップ2の図2に示すシート291、292に対して略垂直に交差する。ホルダ61には、図2に示す検査チップ2が装着された状態で測定部293に近接する位置に、穴部61Aが形成されている。光源71からから射出した測定光70は、測定位置にある検査チップ2の測定部293を通過し、更に、ホルダ61の穴部61Aを通過して、光センサ72によって検出される。以上のようにして、測定部7による光学測定が行われる。 In the present embodiment, the rear position of the spindle 57 in the reciprocable range of the inspection chip 2 is a measurement position where the inspection chip 2 is irradiated with measurement light. When the inspection chip 2 is at the measurement position, the measurement light 70 connecting the light source 71 and the optical sensor 72 intersects the sheets 291 and 292 of the inspection chip 2 shown in FIG. A hole 61A is formed in the holder 61 at a position close to the measurement unit 293 in a state where the inspection chip 2 shown in FIG. The measurement light 70 emitted from the light source 71 passes through the measurement unit 293 of the inspection chip 2 at the measurement position, and further passes through the hole 61 </ b> A of the holder 61 and is detected by the optical sensor 72. As described above, optical measurement by the measurement unit 7 is performed.
 本実施形態では、検査チップ2の公転可能範囲のうちで、主軸57の前側位置が、検査チップ2が、上部筐体11に形成された穴部11A、およびケース80の穴部80Cを介してホルダ61から取り出される取出位置である。この取出位置は、穴部11A、および穴部80Cを介してホルダ61に検査チップ2が挿入される位置でもある。測定位置と取出位置とは主軸57に対して反転した位置関係を有する。 In the present embodiment, within the reciprocable range of the inspection chip 2, the front side position of the main shaft 57 is located through the hole 11 </ b> A formed in the upper housing 11 and the hole 80 </ b> C of the case 80. This is the take-out position to be taken out from the holder 61. This take-out position is also a position where the inspection chip 2 is inserted into the holder 61 through the hole 11A and the hole 80C. The measurement position and the extraction position have a positional relationship reversed with respect to the main shaft 57.
<3.制御装置90の電気的構成>
 図4を参照して、制御部としての制御装置90の電気的構成について説明する。制御装置90は、検査装置1の主制御を司るCPU91と、各種データを一時的に記憶するRAM92と、パラメータを記憶したフラッシュメモリ93と、制御プログラムを記憶したROM95とを有する。CPU91には、操作部94が接続されている。制御装置90としては、検査装置1に外部から接続されるパーソナルコンピュータを用いてもよいし、検査装置1に外部から接続される専用の制御装置を用いてもよい。CPU91はタイマー機能を有する。以降の記載において、タイマー機能をタイマーと記載する。
<3. Electrical configuration of control device 90>
With reference to FIG. 4, the electrical configuration of the control device 90 as a control unit will be described. The control device 90 includes a CPU 91 that controls the main control of the inspection device 1, a RAM 92 that temporarily stores various data, a flash memory 93 that stores parameters, and a ROM 95 that stores control programs. An operation unit 94 is connected to the CPU 91. As the control device 90, a personal computer connected to the inspection device 1 from the outside may be used, or a dedicated control device connected to the inspection device 1 from the outside may be used. The CPU 91 has a timer function. In the following description, the timer function is referred to as a timer.
 更に、CPU91には、主軸モータ35であるDCモータ、位置検出部としてのエンコーダ96、光源71としてのLED(Light Emitting Diode)、および光センサ72としてのPD(Photo Ditecter)が接続されている。CPU91は、主軸モータ35を回転駆動させる制御信号を図示しないモータドライバを介して主軸モータ35に送信することによって、ホルダ61及び検査チップ2の公転を制御する。エンコーダ96が、円周上に複数の光学的スリットを並列して設けられた回転円板に、光をスリットを通して当て、その光を検出することによって、CPU91は回転角度、および回転速度を測定する。この測定値に基づいて、CPU91から主軸モータ35に制御信号を送ることによって、ターンテーブル33を所望の速度で回転させ、所望の角度に停止させる。尚、CPU91は、原点センサ97からの信号を検出し、エンコーダ96の各光学的スリットと回転領域81におけるホルダ61の位置とを関連付けて、ホルダ61の公転を制御する。原点センサ97は、一例として、径が異なる領域を有する回転円板を有する。この回転円板が回転されると、受光部において、発光部からの光が遮光される期間と発光部からの光が受光される期間とが生じる。この遮光期間と受光期間との境界において、エンコーダ96の発光部からの光が通過する光学的スリットの位置が原点とされる。この原点を基準に、ホルダ61の回転領域81における公転制御が実行される。また、以降の説明において、エンコーダ96の光学的スリットの数、すなわち総パルス数は2812パルスとして説明する。CPU91は、ステッピングモータ51を回転駆動させる制御信号を図示しないモータドライバを介してステッピングモータ51に送信することによって、ホルダ61及び検査チップ2の自転を制御する。 Furthermore, a DC motor that is the spindle motor 35, an encoder 96 as a position detection unit, an LED (Light Emitting Diode) as a light source 71, and a PD (Photo Detector) as an optical sensor 72 are connected to the CPU 91. The CPU 91 controls the revolution of the holder 61 and the inspection chip 2 by transmitting a control signal for rotating the spindle motor 35 to the spindle motor 35 via a motor driver (not shown). When the encoder 96 applies light to the rotating disk provided with a plurality of optical slits arranged in parallel on the circumference through the slit and detects the light, the CPU 91 measures the rotation angle and the rotation speed. . Based on this measurement value, a control signal is sent from the CPU 91 to the spindle motor 35, whereby the turntable 33 is rotated at a desired speed and stopped at a desired angle. The CPU 91 detects a signal from the origin sensor 97, associates each optical slit of the encoder 96 with the position of the holder 61 in the rotation region 81, and controls the revolution of the holder 61. As an example, the origin sensor 97 has a rotating disk having regions with different diameters. When this rotating disk is rotated, a period in which light from the light emitting part is shielded and a period in which light from the light emitting part is received are generated in the light receiving part. At the boundary between the light shielding period and the light receiving period, the position of the optical slit through which the light from the light emitting portion of the encoder 96 passes is set as the origin. Revolution control in the rotation area 81 of the holder 61 is executed with this origin as a reference. In the following description, the number of optical slits of the encoder 96, that is, the total number of pulses is described as 2812 pulses. The CPU 91 controls the rotation of the holder 61 and the inspection chip 2 by transmitting a control signal for rotating the stepping motor 51 to the stepping motor 51 via a motor driver (not shown).
 CPU91は、制御信号を送信することによって、光源71の発光タイミング、および発光強度を制御する。また、CPU91は、光センサ72からの信号強度を受信する。 The CPU 91 controls the light emission timing and light emission intensity of the light source 71 by transmitting a control signal. Further, the CPU 91 receives the signal intensity from the optical sensor 72.
<4.検査処理の流れ> <4. Flow of inspection process>
 図5に示すフローチャートを参照して、本実施形態の検査処理の流れを説明する。図5に示すフローチャートは、ユーザーが操作部94の電源スイッチを操作し、電力が検査装置1に供給された場合にCPU91が実行する処理を示す。本実施形態では、検査装置2は、2つのホルダ61を備える。この2つのホルダ61は、主軸に対して反転した位置に設けられる。以下の記載において、一方のホルダ61に保持される検査チップ2について説明する。また図5に示すフローチャートを実行させる検査プログラムは、ROM95に記憶される。この検査プログラムは、検査装置1の出荷時にROM95に記憶されてもよいし、出荷後に、検査装置1がインターネットに接続され、図示しないサーバからダウンロードされて、ROM95に記憶されてもよい。 The flow of the inspection process of this embodiment will be described with reference to the flowchart shown in FIG. The flowchart illustrated in FIG. 5 illustrates processing executed by the CPU 91 when the user operates the power switch of the operation unit 94 and power is supplied to the inspection apparatus 1. In the present embodiment, the inspection apparatus 2 includes two holders 61. The two holders 61 are provided at positions inverted with respect to the main shaft. In the following description, the inspection chip 2 held by one holder 61 will be described. An inspection program for executing the flowchart shown in FIG. This inspection program may be stored in the ROM 95 at the time of shipment of the inspection apparatus 1, or after the inspection, the inspection apparatus 1 may be connected to the Internet, downloaded from a server (not shown), and stored in the ROM 95.
 S1において、指定位置への移動指示があるか否かを判断する。指定位置への移動指示は、以下の3つの場合において、CPU91から主軸モータ35に送られる制御信号である。1つ目は、検査チップ2Aをホルダ61に挿入させる場合である。この場合、ホルダ61を、後述する取出し位置に位置させるように主軸モータ35に制御信号を送信する。2つ目は、検査チップ2に対して、主軸モータ35、およびステッピングモータ51に制御信号を送信する所定の遠心処理を実行した後に、ホルダ61を後述する測定位置に位置させる場合である。所定の遠心処理とは、検査チップ2に注入された試薬及び検体を混合させ、生成された混合液を測定部293に貯留させる処理である。3つ目は、検査チップ2Aをホルダ61から取り出させる場合である。この場合、ホルダ61を、後述する取出し位置に位置させるように主軸モータ35に制御信号を送信する。指定位置への移動指示があると、S2へ処理を移行する。指定位置への移動指示が無いと判断すると、再び、S1の処理を実行する。 In S1, it is determined whether or not there is an instruction to move to the designated position. The movement instruction to the designated position is a control signal sent from the CPU 91 to the spindle motor 35 in the following three cases. The first is a case where the inspection chip 2A is inserted into the holder 61. In this case, a control signal is transmitted to the spindle motor 35 so that the holder 61 is positioned at a take-out position described later. The second case is a case where the holder 61 is positioned at a measurement position, which will be described later, after executing a predetermined centrifugal process for transmitting a control signal to the spindle motor 35 and the stepping motor 51 for the inspection chip 2. The predetermined centrifugation process is a process of mixing the reagent and the sample injected into the test chip 2 and storing the generated mixed solution in the measurement unit 293. The third is a case where the inspection chip 2A is taken out from the holder 61. In this case, a control signal is transmitted to the spindle motor 35 so that the holder 61 is positioned at a take-out position described later. If there is an instruction to move to the designated position, the process proceeds to S2. If it is determined that there is no instruction to move to the designated position, the process of S1 is executed again.
 S2において、主軸モータ35が停止しているか否かを判断する。この判断は、エンコーダ96からの信号に基づき実行される。主軸モータ35が停止していると判断すると、S4へ処理を移行する。主軸モータ35が停止していないと判断すると、S3に処理を移行する。 In S2, it is determined whether or not the spindle motor 35 is stopped. This determination is performed based on a signal from the encoder 96. If it is determined that the spindle motor 35 is stopped, the process proceeds to S4. If it is determined that the spindle motor 35 has not stopped, the process proceeds to S3.
 S3において、主軸モータ35の停止制御を実行する。この停止制御は、主軸モータ35にホルダ61の公転を停止させる制御信号を送信することである。例えば、主軸モータ35に逆パルスを送信することで、ホルダ61の公転を減速する。検査チップ2に注入された試薬及び検体を混合させる際のホルダ61の回転速度は、おおよそ4000rpmであるが、この回転速度から1秒間に1000rpm減速させて、公転を停止させる。主軸モータ35の両端子を、モータドライバ、またはリレー等でショートさせる事により急ブレーキをかける制御を実行し、ホルダ61を急停止させてもよい。また、図示しないストッパを主軸57に連結させて、ホルダ61を急停止させてもよい。停止制御の実行を終了すると、S4へ処理を移行する。 In S3, stop control of the spindle motor 35 is executed. This stop control is to transmit a control signal for stopping the revolution of the holder 61 to the spindle motor 35. For example, the revolution of the holder 61 is decelerated by transmitting a reverse pulse to the spindle motor 35. The rotation speed of the holder 61 when mixing the reagent and the sample injected into the test chip 2 is approximately 4000 rpm. The revolution is stopped by decelerating 1000 rpm per second from this rotation speed. The holder 61 may be stopped suddenly by executing a control for applying a sudden brake by short-circuiting both terminals of the spindle motor 35 with a motor driver or a relay. Further, a holder (not shown) may be connected to the main shaft 57 to stop the holder 61 suddenly. When the stop control is finished, the process proceeds to S4.
 S4において、停止位置を取得する。この停止位置について、図6に示す模式図を参照して説明する。ホルダ61は、回転領域81のうちの任意の位置に停止している。一般に、回転しているホルダ61をある特定の位置に停止させるためには、徐々に回転速度を落とし、エンコーダ96からの信号に基づき、回転速度、回転時間などを制御する必要がある。しかし、徐々に回転速度を落とし、例えば、主軸モータ35の回転速度が20rpmなどの低速回転である状況では、主軸モータ35がスムーズに回転せず、エンコーダ96からの信号に基づいて、回転中のホルダ61の位置、および回転速度が正確に検出できない可能性がある。この結果、回転しているホルダ61を、回転を止めずにある特定の位置に精度よく停止させるのが困難になる可能性がある。また、ある特定の位置に精度よく停止させるのに時間がかかる可能性がある。特に、鉛直方向に延びる主軸57の主軸モータ35の制御においては、ホルダ61に保持された検査チップ2のシート291、292に対して略垂直に測定光70が交差する位置に停止させるのは、困難である。更に、ホルダ61の回転速度を4000rpmといった高速に回転させる主軸モータ35において、回転を停止させずに、精度よくホルダ61を停止させるのは、困難である。本実施形態では、回転しているホルダ61を任意の位置にいったん停止させ、その任意の位置に停止したホルダ61の位置の位置情報をエンコーダ96から受信する。そして、任意の位置に停止したホルダ61の位置の位置情報に基づき、測定位置Pm、または取出位置P1へ移動させる回転制御を実行することにより、より正確に、またより早く所望の位置にホルダ61を移動させることが出来る。本実施形態では、回転領域81をエリア1、エリア2、エリア3に分割して処理を実行する。尚、測定位置Pmは、図3に示すようにホルダ61に保持された検査チップ2に測定光が照射される測定位置である。この測定位置Pmにおいて光源71からの測定光70が、検査チップ2の図2に示すシート291、292に対して略垂直に交差する。また取出位置P1は、カバー80の穴部80Cからホルダ61に保持された検査チップ2を取り出し、および挿入可能な位置であり、主軸57に対して測定位置Pmと反転した位置である。エリア1は、測定位置Pmから反時計回りに取出位置P1までの領域である。エリア2は、取出位置P1から反時計回りに後述する分岐位置P2までの領域である。エリア3は分岐位置P2から反時計回りに測定位置Pmまでの領域である。エンコーダ96からの信号に基づき、任意の位置に停止したホルダ61の停止位置を示すデータをRAM92に記憶する。この際、停止位置がエリア1に含まれる場合は、停止位置を示すデータを、エリア1を示すデータと関連付けて記憶する。同様に、停止位置がエリア2に含まれる場合は、停止位置を示すデータを、エリア2を示すデータと関連付けて記憶する。停止位置がエリア3に含まれる場合は、停止位置を示すデータを、エリア3を示すデータと関連付けて記憶する。停止位置の取得が終了すると、S5に処理を移行する。 In S4, the stop position is acquired. The stop position will be described with reference to the schematic diagram shown in FIG. The holder 61 is stopped at an arbitrary position in the rotation area 81. In general, in order to stop the rotating holder 61 at a specific position, it is necessary to gradually decrease the rotation speed and control the rotation speed, the rotation time, and the like based on a signal from the encoder 96. However, the rotational speed is gradually decreased. For example, in a situation where the rotational speed of the main shaft motor 35 is a low speed rotation such as 20 rpm, the main shaft motor 35 does not rotate smoothly. There is a possibility that the position and rotation speed of the holder 61 cannot be accurately detected. As a result, it may be difficult to accurately stop the rotating holder 61 at a specific position without stopping the rotation. In addition, it may take time to stop at a specific position with high accuracy. In particular, in the control of the spindle motor 35 of the spindle 57 extending in the vertical direction, the measurement light 70 is stopped at a position substantially perpendicular to the sheets 291 and 292 of the inspection chip 2 held by the holder 61. Have difficulty. Further, in the spindle motor 35 that rotates the holder 61 at a high speed of 4000 rpm, it is difficult to accurately stop the holder 61 without stopping the rotation. In the present embodiment, the rotating holder 61 is temporarily stopped at an arbitrary position, and the position information of the position of the holder 61 stopped at the arbitrary position is received from the encoder 96. Then, based on the position information of the position of the holder 61 stopped at an arbitrary position, the holder 61 is moved to the desired position more accurately and earlier by executing the rotation control to move to the measurement position Pm or the extraction position P1. Can be moved. In the present embodiment, the rotation area 81 is divided into area 1, area 2, and area 3, and the process is executed. The measurement position Pm is a measurement position at which the measurement light is irradiated to the inspection chip 2 held by the holder 61 as shown in FIG. At this measurement position Pm, the measurement light 70 from the light source 71 intersects the sheets 291 and 292 shown in FIG. The take-out position P1 is a position where the inspection chip 2 held by the holder 61 can be taken out and inserted from the hole 80C of the cover 80, and is a position reversed from the measurement position Pm with respect to the main shaft 57. Area 1 is an area from the measurement position Pm to the extraction position P1 counterclockwise. Area 2 is an area from the take-out position P1 to a later-described branch position P2 counterclockwise. Area 3 is an area from the branch position P2 to the measurement position Pm counterclockwise. Based on the signal from the encoder 96, data indicating the stop position of the holder 61 stopped at an arbitrary position is stored in the RAM 92. At this time, when the stop position is included in the area 1, the data indicating the stop position is stored in association with the data indicating the area 1. Similarly, when the stop position is included in area 2, data indicating the stop position is stored in association with data indicating area 2. When the stop position is included in the area 3, the data indicating the stop position is stored in association with the data indicating the area 3. When the acquisition of the stop position ends, the process proceeds to S5.
 図5に示すように、S5において、測定位置へ移動するか否かを判断する。この判断は、S1において判断した指定位置への移動指示が、測定位置への移動指示であるか否かによって実行される。測定位置への移動指示であると判断すると、S6へ処理を移行する。測定位置への移動指示でない、すなわち取出位置への移動指示と判断すると、S21へ処理を移行する。 As shown in FIG. 5, in S5, it is determined whether or not to move to the measurement position. This determination is executed depending on whether or not the movement instruction to the designated position determined in S1 is a movement instruction to the measurement position. If it is determined that the instruction is to move to the measurement position, the process proceeds to S6. If it is not a movement instruction to the measurement position, that is, a movement instruction to the take-out position, the process proceeds to S21.
 S6において、タイマーをリセットする。すなわち、タイマーが示す時間tはゼロである。タイマーのリセットが終了すると、S7へ処理を移行する。 In S6, the timer is reset. That is, the time t indicated by the timer is zero. When the timer reset is completed, the process proceeds to S7.
 S7において、タイマーをスタートする。タイマーのスタートを終了すると、S8へ処理を移行する。 In S7, the timer is started. When the start of the timer is completed, the process proceeds to S8.
 S8において、S4において、取得された停止位置が、エリア3であるか否かを判断する。停止位置がエリア3であると判断すると、S9へ処理を移行する。停止位置がエリア3でない、すなわち、停止位置がエリア1、またはエリア2であると判断すると、S11へ処理を移行する。 In S8, it is determined whether or not the stop position acquired in S4 is area 3. If it is determined that the stop position is area 3, the process proceeds to S9. If it is determined that the stop position is not area 3, that is, the stop position is area 1 or area 2, the process proceeds to S11.
 ここで、任意の位置に停止したホルダ61の測定位置Pmまでの移動制御について説明する。S4において取得された停止位置がエリア1である場合、図6に示すように、測定位置Pmまで時計回り(Clockwise)で移動したほうが、移動距離が短い。一方、S4において取得された停止位置がエリア2、またはエリア3である場合、図6に示すように、測定位置Pmまで反時計回り(CounterClockwise)で移動したほうが、移動距離が短い。一般に、時計回りでホルダ61が回転されて測定位置Pmに停止する場合と、反時計まわりでホルダ61が回転されて測定位置Pmに停止する場合とでは、主時モータ35の一例であるDCモータのコギングにより停止精度が異なる。よって、任意の停止位置から測定位置Pmまでの移動を、停止位置に応じて時計回りと反時計回りとで制御すると、測定毎の測定位置Pmに対する停止位置の位置ずれの分布が大きくなる。この結果、測定毎の測定精度のばらつきが生じる。本実施形態において、任意の停止位置から測定位置Pmまでの移動を、停止位置によらず時計回りの一通りで制御する。よって、本実施形態において、停止位置がエリア3である場合、反時計回りでホルダ61を移動させた後、時計回りでホルダ61を移動させて測定位置Pmに停止させる。すなわち、図6に示すように、エリア3に含まれる停止位置から折返し位置Prまで反時計回りで移動させ、折返し位置Prから時計回りで移動させて、測定位置Pmに停止させる。この移動方法が、本発明の第2ルートの一例である。停止位置がエリア2である場合、反時計回りで測定位置Pmまで移動させた方が、移動距離は短くなるが、エリア2に含まれる停止位置から時計回りでホルダ61を移動させ、測定位置Pmに停止させる。停止位置がエリア1である場合、エリア1に含まれる停止位置から時計回りでホルダ61を移動させ、測定位置Pmに停止させる。停止位置がエリア1、またはエリア2である場合に、停止位置から、測定位置まで時計回りで移動させる移動方法が本発明の第1ルートの一例である。 Here, the movement control of the holder 61 stopped at an arbitrary position to the measurement position Pm will be described. When the stop position acquired in S4 is area 1, as shown in FIG. 6, the movement distance is shorter when moving to the measurement position Pm in the clockwise direction (Clockwise). On the other hand, when the stop position acquired in S4 is area 2 or area 3, as shown in FIG. 6, the movement distance is shorter when moving counterclockwise to the measurement position Pm. In general, when the holder 61 is rotated clockwise and stopped at the measurement position Pm, and when the holder 61 is rotated counterclockwise and stopped at the measurement position Pm, a DC motor that is an example of the main motor 35 is used. The stopping accuracy varies depending on the cogging. Therefore, if the movement from the arbitrary stop position to the measurement position Pm is controlled clockwise and counterclockwise according to the stop position, the distribution of the displacement of the stop position with respect to the measurement position Pm for each measurement becomes large. As a result, the measurement accuracy varies from measurement to measurement. In this embodiment, the movement from an arbitrary stop position to the measurement position Pm is controlled in a clockwise direction regardless of the stop position. Therefore, in this embodiment, when the stop position is the area 3, after moving the holder 61 counterclockwise, the holder 61 is moved clockwise to stop at the measurement position Pm. That is, as shown in FIG. 6, it is moved counterclockwise from the stop position included in the area 3 to the turn-back position Pr, moved clockwise from the turn-back position Pr, and stopped at the measurement position Pm. This movement method is an example of the second route of the present invention. When the stop position is the area 2, the movement distance is shortened by moving it counterclockwise to the measurement position Pm. However, the holder 61 is moved clockwise from the stop position included in the area 2 to measure the measurement position Pm. To stop. When the stop position is area 1, the holder 61 is moved clockwise from the stop position included in area 1 and stopped at the measurement position Pm. When the stop position is Area 1 or Area 2, a moving method of moving from the stop position to the measurement position in a clockwise direction is an example of the first route of the present invention.
 折返し位置Prについて説明する。図4に示す主軸モータ35であるDCモータの回転制御は、パルス制御によって制御される。一般に、DCモータの微少な回転動作は時間を要するため、大きく位置変更させるよりも小さく位置変更させる方が時間を要する。例えば、エンコーダ96により検出される1パルス分の距離だけ移動させる様にDCモータにPWM(Pulse Width Modulation)信号を送信して、位置変更させると、長時間要することになる。本実施形態では、測定位置Pmから±2パルス分の位置ずれが生じても、測定位置Pmに停止しているとして処理を進める。この結果、測定位置Pmから3パルス分だけ位置ずれが生じた場合に、測定位置Pmに移動させる制御を再度実行する。これにより、位置変更させる際に最も少ないパルス数は、3パルスとなり、位置変更に要する時間を短縮させる。従って、折返し位置Prは、測定位置Pmから反時計回りに3パルス分だけずれた位置に設定される。例えば、ホルダ61を、回転領域81を一周させるのに要するパルス数が2812パルスである場合、
(3パルス/2812パルス)*360°=0.384°・・・(1)
式(1)から、主軸57を中心として測定位置Pmから0.384°分、反時計回りに角度変更された位置が折返し位置Prである。尚、エンコーダ96により検出される3パルス分の距離だけ移動させる様に主軸モータ35にPWM信号を送信してホルダ61を移動させた場合、100ms程度時間を要する。
The turn-back position Pr will be described. The rotation control of the DC motor that is the spindle motor 35 shown in FIG. 4 is controlled by pulse control. In general, since the minute rotation operation of the DC motor requires time, it takes more time to change the position smaller than to change the position greatly. For example, it takes a long time to change the position by transmitting a PWM (Pulse Width Modulation) signal to the DC motor so as to move it by a distance of one pulse detected by the encoder 96. In the present embodiment, even if a positional deviation of ± 2 pulses from the measurement position Pm occurs, the process proceeds assuming that the measurement position Pm is stopped. As a result, when the position shift is generated by 3 pulses from the measurement position Pm, the control for moving to the measurement position Pm is executed again. As a result, the smallest number of pulses when changing the position is three pulses, and the time required for the position change is shortened. Accordingly, the turn-back position Pr is set at a position shifted by three pulses counterclockwise from the measurement position Pm. For example, when the number of pulses required for rotating the holder 61 around the rotation region 81 is 2812 pulses,
(3 pulses / 2812 pulses) * 360 ° = 0.384 ° (1)
From Expression (1), the position where the angle is changed counterclockwise by 0.384 ° from the measurement position Pm around the main shaft 57 is the turn-back position Pr. If the holder 61 is moved by transmitting a PWM signal to the spindle motor 35 so as to be moved by a distance corresponding to three pulses detected by the encoder 96, it takes about 100 ms.
 分岐位置P2について説明する。本実施形態において、分岐位置P2を境に、任意の停止位置から反時計回りでホルダ61が移動されるか、時計回りでホルダ61を移動されるかが制御される。折返し位置Prが測定位置Pmから3パルス分だけ反時計回りにずれた位置であるので、分岐位置P2は、取出し位置P1から3パルス分だけ、反時計回りにずれた位置であってもよいが、折返し位置Prにおいて反時計回りから時計回りに回転方向を変更するのに要する時間が必要なので、以下のように分岐位置P2を設定する。分岐位置P2は、分岐位置P2から時計回りで移動させて、測定位置Pmに停止させるのに要する時間が、分岐位置P2から反時計回りで折返し位置Prまで移動させるのに要する時間と、反時計回りから時計回りに回転方向を変更するのに要する時間と、折返し位置Prから時計回りで測定位置Pmまで移動させるのに要する時間との和と等しくなる位置である。例えば、分岐位置P2は、最大回転数Xrpm、折返し位置Prにおける停止時間、および折返し位置Prから時計回りで測定位置Pmまで移動するのに要する時間により、予め定められる。最大回転数Xrpmは、停止精度良く、停止させられる主軸モータ35の最大回転数であり、例えば20rpm程度である。折返し位置Prにおける停止時間は、予め、反時計回りから時計回りに回転方向を変更するのに要する時間が測定され、FLASH93に記憶されている。この停止期間は、例えば0.2秒である。折返し位置Prから時計回りで測定位置Pmまで移動するのに要する時間は、予め測定され、FLASH93に記憶されている。この移動に要する時間は、例えば0.1秒である。エンコーダ96の総パルス数が2812パルスであり、測定位置Pmに対応するエンコーダ96のパルス位置が0パルス、そこから時計回りにパルス数が増加し、分岐位置P2に対応するパルス位置がαとした場合、分岐位置P2から反時計回りで折返し位置Prまで移動させるのに要する時間は、式(2)で表され、分岐位置P2から反時計回りで折返し位置Prまで移動させるのに要する時間が式(3)で表される。
(1/X)×((2812-α)/2812)・・・(2)
(1/X)(α/2812)・・・(3)
最大回転数、式(2)、式(3)、折返し位置Prにおける停止時間である0.2秒、および折返し位置Prから時計回りで測定位置Pmまで移動するのに要する時間である0.1から式(4)が導出される。
(1/X)×((2812-α)/2812)=(1/X)(α/2812)+0.2+0.1・・・(4)
この式(4)を満たすαが、分岐位置P2を示す。
The branch position P2 will be described. In the present embodiment, it is controlled whether the holder 61 is moved counterclockwise from the arbitrary stop position or the holder 61 is moved clockwise from the branch position P2. Since the return position Pr is a position deviated counterclockwise by 3 pulses from the measurement position Pm, the branch position P2 may be a position deviated counterclockwise by 3 pulses from the extraction position P1. Since the time required to change the rotation direction from the counterclockwise direction to the clockwise direction at the turn-back position Pr is required, the branch position P2 is set as follows. The time required for the branch position P2 to move clockwise from the branch position P2 and stop at the measurement position Pm is the time required to move counterclockwise from the branch position P2 to the turn-back position Pr, and counterclockwise. This is a position that is equal to the sum of the time required to change the direction of rotation from clockwise to clockwise and the time required to move clockwise from the turn-back position Pr to the measurement position Pm. For example, the branch position P2 is determined in advance by the maximum rotational speed Xrpm, the stop time at the turn-back position Pr, and the time required to move from the turn-back position Pr to the measurement position Pm in the clockwise direction. The maximum rotational speed Xrpm is the maximum rotational speed of the spindle motor 35 that can be stopped with good stopping accuracy, and is, for example, about 20 rpm. As the stop time at the turn-back position Pr, the time required to change the rotation direction from counterclockwise to clockwise is measured and stored in the FLASH 93 in advance. This stop period is, for example, 0.2 seconds. The time required to move clockwise from the turn-back position Pr to the measurement position Pm is measured in advance and stored in the FLASH 93. The time required for this movement is, for example, 0.1 seconds. The total number of pulses of the encoder 96 is 2812 pulses, the pulse position of the encoder 96 corresponding to the measurement position Pm is 0 pulse, the number of pulses increases clockwise from there, and the pulse position corresponding to the branch position P2 is α. In this case, the time required to move counterclockwise from the branch position P2 to the folding position Pr is expressed by the equation (2), and the time required to move counterclockwise from the branch position P2 to the folding position Pr It is represented by (3).
(1 / X) × ((2812-α) / 2812) (2)
(1 / X) (α / 2812) (3)
Maximum rotation speed, Formula (2), Formula (3), 0.2 seconds that is the stop time at the turn-back position Pr, and 0.1 time that is required to move clockwise from the turn-back position Pr to the measurement position Pm Equation (4) is derived from
(1 / X) × ((2812-α) / 2812) = (1 / X) (α / 2812) + 0.2 + 0.1 (4)
Α satisfying the equation (4) indicates the branch position P2.
 すなわち、S8において、以降の処理において、反時計回りで回転させるか、時計回りで回転させるかを判断するため、S4において取得された停止位置が、エリア3であるか否かを判断する。以下、任意の停止位置から測定位置Pmまでの移動時間を短縮化しつつ、測定毎の測定精度のばらつきを抑える検査処理の流れを説明する。 That is, in S8, in the subsequent processing, it is determined whether or not the stop position acquired in S4 is the area 3 in order to determine whether to rotate counterclockwise or clockwise. Hereinafter, a flow of inspection processing for reducing variation in measurement accuracy for each measurement while shortening the movement time from an arbitrary stop position to the measurement position Pm will be described.
 S9において、目標位置を折返し位置Prに設定する。設定が終了すると、S10へ処理を移行する。 In S9, the target position is set to the folding position Pr. When the setting is completed, the process proceeds to S10.
 S10において、回転方向を反時計回りに設定する。設定が終了すると、S11へ処理を移行する。反時計回りが本発明の第2回転方向の一例である。 In S10, the rotation direction is set counterclockwise. When the setting is completed, the process proceeds to S11. Counterclockwise is an example of the second rotational direction of the present invention.
 S11において、到達時間を測定モードに設定する。本実施形態において、測定モードとは、予め設定された、任意の停止位置から折返し位置Prまでの移動時間である。この移動時間は、例えば、主軸モータの回転速度を、予め設定された速度に設定し、この回転速度でホルダ61を回転させた際に、検査チップ2の測定部293に貯留された混合液が、遠心力により測定部293から流出しない程度の速度のうちの最高速度に基づく。到達時間を測定モードに設定すると、S12に処理を移行する。 In S11, the arrival time is set to the measurement mode. In the present embodiment, the measurement mode is a preset travel time from an arbitrary stop position to the turn-back position Pr. For example, when the rotation speed of the spindle motor is set to a preset speed, and the holder 61 is rotated at this rotation speed, the moving liquid is stored in the measurement unit 293 of the test chip 2. , Based on the highest speed among the speeds that do not flow out of the measurement unit 293 due to centrifugal force. When the arrival time is set to the measurement mode, the process proceeds to S12.
 S12において、目標位置への移動を開始させる。すなわち、S9において折返し位置Prが目標位置に設定されているので、折返し点への移動を開始させる。折返し位置Prへの移動は、S10において設定された反時計回りの回転方向、およびS11において設定された到達時間で主軸を回転させる。折返し位置Prへの移動を開始させると、S13へ処理を移行する。 In S12, the movement to the target position is started. That is, since the folding position Pr is set as the target position in S9, the movement to the folding point is started. The movement to the turn-back position Pr rotates the spindle in the counterclockwise rotation direction set in S10 and the arrival time set in S11. When the movement to the folding position Pr is started, the process proceeds to S13.
 S13において、目標位置に到達したか否かを判断する。すなわち、S9において、折返し位置Prが目標位置に設定されているので、折返し位置Prに到達したか否かを判断する。この判断は、エンコーダ96からの信号に基づき実行される。折返し位置Prに到達したと判断すると、S14に処理を移行する。到達していないと判断すると、S13に処理を移行する。 In S13, it is determined whether or not the target position has been reached. That is, in S9, since the folding position Pr is set as the target position, it is determined whether or not the folding position Pr has been reached. This determination is performed based on a signal from the encoder 96. If it is determined that the return position Pr has been reached, the process proceeds to S14. If it is determined that it has not reached, the process proceeds to S13.
 S14において、目標位置を測定位置Pmに設定する。設定が終了すると、S15へ処理を移行する。 In S14, the target position is set to the measurement position Pm. When the setting is completed, the process proceeds to S15.
 S15において、回転方向を時計回りに設定する。設定が終了すると、S16へ処理を移行する。時計回りが本発明の第1回転方向の一例である。 In S15, the rotation direction is set clockwise. When the setting is completed, the process proceeds to S16. The clockwise direction is an example of the first rotation direction of the present invention.
 S16において、到達時間を(3-t)秒に設定する。時間tは、S16においてタイマーが示す時間である。S16においてタイマーが示す時間は、S7においてタイマーをスタートした時点からの経過時間である。すなわち、以降の測定位置Pmへの移動時間は、(3-t)秒で実施される。すなわち、任意の停止位置から測定位置Pmへ移動し、測定を開始するまでの時間は3秒である。S16において、エンコーダ96により検出された位置、すなわちS4において検出された位置、または折返し位置Prから測定位置Pmまで(3-t)秒でホルダ61を移動させる回転速度を算出する。従って、本実施形態において、任意の位置に停止したホルダ61を測定位置Pmまで予め定められた一定期間で移動させる。本実施形態では、この測定開始までの時間を予め3秒と設定されているが、5秒、10秒、1秒など任意の時間が予め設定されればよい。 In S16, the arrival time is set to (3-t) seconds. Time t is the time indicated by the timer in S16. The time indicated by the timer in S16 is the elapsed time from the time when the timer was started in S7. That is, the subsequent movement time to the measurement position Pm is (3-t) seconds. That is, the time from moving from an arbitrary stop position to the measurement position Pm and starting measurement is 3 seconds. In S16, the rotational speed at which the holder 61 is moved in (3-t) seconds from the position detected by the encoder 96, that is, the position detected in S4, or from the return position Pr to the measurement position Pm is calculated. Therefore, in the present embodiment, the holder 61 stopped at an arbitrary position is moved to the measurement position Pm for a predetermined period. In the present embodiment, the time until the start of measurement is set to 3 seconds in advance, but an arbitrary time such as 5 seconds, 10 seconds, and 1 second may be set in advance.
 S17において、タイマーを停止する。タイマーを停止すると、S18に処理を移行する。 In S17, the timer is stopped. When the timer is stopped, the process proceeds to S18.
 S18において、目標位置への移動を開始させる。すなわち、S14において測定位置Pmが目標位置に設定されているので、測定位置Pmへの移動を開始させる。測定位置Pmへの移動は、S15において設定された時計回りの回転方向、およびS16において設定された到達時間(3-t)、すなわち算出された回転速度で主軸57を回転させることによって実行される。測定位置Pmへの移動を開始させると、S19へ処理を移行する。 In S18, the movement to the target position is started. That is, since the measurement position Pm is set as the target position in S14, the movement to the measurement position Pm is started. The movement to the measurement position Pm is executed by rotating the spindle 57 at the clockwise rotation direction set in S15 and the arrival time (3-t) set in S16, that is, the calculated rotation speed. . When the movement to the measurement position Pm is started, the process proceeds to S19.
 S19において、目標位置に到達したか否かを判断する。すなわち、S14において、測定位置Pmが目標位置に設定されているので、測定位置Pmに到達したか否かを判断する。この判断は、エンコーダ96からの信号に基づき実行される。測定位置Pmに到達したと判断すると、S20に処理を移行する。到達していないと判断すると、S19に処理を再度実行する。 In S19, it is determined whether or not the target position has been reached. That is, in S14, since the measurement position Pm is set as the target position, it is determined whether or not the measurement position Pm has been reached. This determination is performed based on a signal from the encoder 96. If it is determined that the measurement position Pm has been reached, the process proceeds to S20. If it is determined that it has not reached, the process is executed again in S19.
 S20において、測定を開始する。すなわち、光センサ72において得られた受光強度が、測定データとして採用される。よって、S16において、任意の位置に停止したホルダ61を測定位置Pmまで予め定められた一定期間で移動させるので、測定の開始は、予め定められた一定期間後である。測定データを取り終えると、S1に処理を移行させる。 In S20, measurement is started. That is, the received light intensity obtained in the optical sensor 72 is adopted as measurement data. Therefore, in S16, the holder 61 stopped at an arbitrary position is moved to the measurement position Pm in a predetermined period, so that the measurement is started after the predetermined period. When the measurement data is collected, the process proceeds to S1.
 一方、S5において、取出位置P1への移動指示と判断すると、S21において、取出位置P1が目標位置に設定される。設定が終了すると、S22に処理を移行する。 On the other hand, if it is determined in S5 that the movement instruction is to the extraction position P1, the extraction position P1 is set as the target position in S21. When the setting is completed, the process proceeds to S22.
 S22において、S4において取得された停止位置が、エリア1であるか否かを判断する。測定位置Pmに対して停止位置が位置ずれする場合に比べて、取出位置P1に対して停止位置が位置ずれしてもよいので、以降の処理においては、S4において取得された停止位置から、取出位置P1まで、移動距離が短くなるように制御が実行される。よって、S4において取得された停止位置が、エリア1であるか、エリア2、またはエリア3であるかを判断する。エリア1であると判断すると、S22に処理を移行する。エリア1でない、すなわち停止位置が、エリア2、またはエリア3であると判断すると、S24に処理を移行する。 In S22, it is determined whether or not the stop position acquired in S4 is area 1. Compared to the case where the stop position is displaced from the measurement position Pm, the stop position may be displaced from the take-out position P1, and in the subsequent processing, the take-out is performed from the stop position acquired in S4. Control is executed so that the moving distance is shortened to the position P1. Therefore, it is determined whether the stop position acquired in S4 is area 1, area 2, or area 3. If it is determined that it is area 1, the process proceeds to S22. If it is determined that it is not area 1, that is, the stop position is area 2 or area 3, the process proceeds to S24.
 S23において、回転方向を反時計回りに設定する。すなわち、停止位置がエリア1であるので、反時計回りで回転したほうが時計回りで回転するよりも、取出位置P1に早く到達できる。設定が終了すると、S25に処理を移行する。 In S23, the rotation direction is set counterclockwise. That is, since the stop position is area 1, it is possible to reach the take-out position P1 earlier when rotating counterclockwise than when rotating clockwise. When the setting is completed, the process proceeds to S25.
 一方、S24において、回転方向を時計回りに設定する。すなわち、停止位置がエリア2、またはエリア3であるので、時計回りで回転したほうが反時計回りで回転するよりも、取出位置P1に早く到達できる。設定が終了すると、S25に処理を移行する。 On the other hand, in S24, the rotation direction is set clockwise. That is, since the stop position is the area 2 or the area 3, it is possible to reach the take-out position P1 faster when rotating clockwise than when rotating counterclockwise. When the setting is completed, the process proceeds to S25.
 S25において、到達時間を取出モードに設定する。本実施形態において、取出モードとは、予め設定された、任意の停止位置から測定位置P1までの移動時間である。この移動時間は、例えば、設定可能な主軸モータ35の回転速度の最高速度に基づく。到達時間を測定モードに設定すると、S26に処理を移行する。 In S25, the arrival time is set to the extraction mode. In the present embodiment, the take-out mode is a preset movement time from an arbitrary stop position to the measurement position P1. This moving time is based on, for example, the maximum speed of the spindle motor 35 that can be set. When the arrival time is set to the measurement mode, the process proceeds to S26.
 S26において、目標位置への移動を開始させる。すなわち、S21において取出位置P1が目標位置に設定されているので、取出位置P1への移動を開始させる。取出位置P1への移動は、S23において設定された反時計回り、またはS24において設定された時計回りの回転方向で主軸57を回転させる。また、S25において設定された到達時間で主軸57を回転させる。取出位置P1への移動を開始させると、S27へ処理を移行する。 In S26, the movement to the target position is started. That is, since the extraction position P1 is set as the target position in S21, the movement to the extraction position P1 is started. The movement to the take-out position P1 rotates the main shaft 57 in the counterclockwise rotation direction set in S23 or the clockwise rotation direction set in S24. Further, the main shaft 57 is rotated at the arrival time set in S25. When the movement to the take-out position P1 is started, the process proceeds to S27.
 S27において、目標位置に到達したか否かを判断する。すなわち、S21において、取出位置P1が目標位置に設定されているので、取出位置P1に到達したか否かを判断する。この判断は、エンコーダ96からの信号に基づき実行される。取出位置P1に到達したと判断すると、S28に処理を移行する。到達していないと判断すると、S27の処理を再実行する。 In S27, it is determined whether or not the target position has been reached. That is, in S21, since the extraction position P1 is set as the target position, it is determined whether or not the extraction position P1 has been reached. This determination is performed based on a signal from the encoder 96. If it is determined that the extraction position P1 has been reached, the process proceeds to S28. If it is determined that it has not reached, the process of S27 is re-executed.
 S28において、取出し可能通知を通知する。この取出し可能通知は、図示しない表示部が検査装置1に設けられた場合は、この表示部に表示させる、蓋部材11Bを開いて取出し可能である旨のメッセージが一例である。このほかにも、検査装置1に外部から接続されるパーソナルコンピュータの表示部に表示させる同様のメッセージでもよい。取出し可能通知を通知すると、S1に処理を移行する。 In S28, a notification that it can be taken out is notified. The notification that can be taken out is an example of a message that the lid member 11B is opened and can be taken out when the display unit (not shown) is provided in the inspection apparatus 1. In addition, the same message displayed on the display unit of a personal computer connected to the inspection apparatus 1 from the outside may be used. When a notification of possible removal is notified, the process proceeds to S1.
 上記実施形態では、S8において、任意の位置に停止したホルダ61がエリア3に位置する場合、折返し位置P1まで移動させ、折返し位置Prから測定位置Pmまで移動させたが、これに限られない。S7においてタイマーをスタートさせると、S14に移行してもよい。すなわち、任意の位置から測定位置Pmまで予め定められた一定期間でホルダ61を時計回りで移動させてもよい。 In the above embodiment, when the holder 61 stopped at an arbitrary position is located in the area 3 in S8, the holder 61 is moved to the folding position P1 and moved from the folding position Pr to the measurement position Pm. However, the present invention is not limited to this. When the timer is started in S7, the process may move to S14. That is, the holder 61 may be moved clockwise from an arbitrary position to the measurement position Pm for a predetermined period.
 上記実施形態では、時計回りを第1回転方向、反時計回りを第2回転方向として説明したが、時計回りが第2回転方向、反時計回りが第1回転方向であってもよい。また、折返し位置Prは、測定位置Pmから反時計回りに3パルス分だけずれた位置として説明したが、折返し位置Prは、測定位置Pmから時計回りに数パルス分だけずれた位置であってもよい。 In the above embodiment, the clockwise direction is described as the first rotation direction, and the counterclockwise direction is the second rotation direction. However, the clockwise direction may be the second rotation direction, and the counterclockwise direction may be the first rotation direction. Further, the turn-back position Pr is described as a position shifted by three pulses counterclockwise from the measurement position Pm. However, the turn-back position Pr may be a position shifted by several pulses clockwise from the measurement position Pm. Good.
<変形例>
 上記実施形態では、S4において、取得された任意の停止位置から測定位置Pmまでの移動時間が予め所定の時間に設定され、エリア1に含まれる任意の停止位置、または折返し位置Prから測定位置まで、(3-t)秒で移動するように、主軸57の回転速度が決定されたが、これに限られない。例えば、任意の停止位置から測定を開始するまでの時間を一定とし、測定位置Pmに到達してから、予め定められた測定開始時間まで待機してもよい。以下、図7に示すフローチャートを参照して変形例の検査処理の流れを説明する。
<Modification>
In the above-described embodiment, in S4, the movement time from the acquired arbitrary stop position to the measurement position Pm is set in advance to a predetermined time, and the arbitrary stop position included in the area 1 or the return position Pr to the measurement position. , The rotational speed of the main shaft 57 is determined so as to move in (3-t) seconds, but is not limited thereto. For example, the time from the arbitrary stop position to the start of measurement may be constant, and after reaching the measurement position Pm, it may wait until a predetermined measurement start time. Hereinafter, the flow of the inspection process of the modification will be described with reference to the flowchart shown in FIG.
 図7に示すフローチャートにおいて、S1~S15、およびS21~S28は図5に示すフォローチャートと同一なので、説明を省略する。図7に示すS15において、回転方向を時計回りに設定すると、S16Aへ処理を移行する。 In the flowchart shown in FIG. 7, S1 to S15 and S21 to S28 are the same as the follow chart shown in FIG. In S15 shown in FIG. 7, when the rotation direction is set clockwise, the process proceeds to S16A.
 S16Aにおいて、到達時間を測定モードに設定する。変形例における、測定モードとは、予め設定された、任意の停止位置から測定位置Pmまでの移動時間である。この移動時間は、例えば、主軸モータの回転速度を、予め設定された速度に設定し、この回転速度でホルダ61を回転させた際に、検査チップ2の測定部293に貯留された混合液が、遠心力により測定部293から流出しない程度の速度のうちの最高速度に基づく。また、移動時間が予め定められた一定期間以内になるように回転速度が算出される。到達時間を測定モードに設定すると、S17Aに処理を移行する。 In S16A, the arrival time is set to the measurement mode. In the modification, the measurement mode is a preset movement time from an arbitrary stop position to the measurement position Pm. For example, when the rotation speed of the spindle motor is set to a preset speed, and the holder 61 is rotated at this rotation speed, the moving liquid is stored in the measurement unit 293 of the test chip 2. , Based on the highest speed among the speeds that do not flow out of the measurement unit 293 due to centrifugal force. Further, the rotation speed is calculated so that the movement time is within a predetermined period. When the arrival time is set to the measurement mode, the process proceeds to S17A.
 S17Aにおいて、目標位置への移動を開始させる。すなわち、S14において測定位置Pmが目標位置に設定されているので、測定位置Pmへの移動を開始させる。測定位置Pmへの移動は、S15において設定された時計回りの回転方向、およびS16Aにおいて設定された予め設定された回転速度で主軸57を回転させることによって実行される。測定位置Pmへの移動を開始させると、S18Aへ処理を移行する。 In S17A, the movement to the target position is started. That is, since the measurement position Pm is set as the target position in S14, the movement to the measurement position Pm is started. The movement to the measurement position Pm is executed by rotating the main shaft 57 at the clockwise rotation direction set in S15 and the preset rotation speed set in S16A. When the movement to the measurement position Pm is started, the process proceeds to S18A.
 S18Aにおいて、目標位置に到達したか否かを判断する。すなわち、S14において、測定位置Pmが目標位置に設定されているので、測定位置Pmに到達したか否かを判断する。この判断は、エンコーダ96からの信号に基づき実行される。測定位置Pmに到達したと判断すると、S19Aに処理を移行する。到達していないと判断すると、S19に処理を再度実行する。 In S18A, it is determined whether or not the target position has been reached. That is, in S14, since the measurement position Pm is set as the target position, it is determined whether or not the measurement position Pm has been reached. This determination is performed based on a signal from the encoder 96. If it is determined that the measurement position Pm has been reached, the process proceeds to S19A. If it is determined that it has not reached, the process is executed again in S19.
 S19Aにおいて、タイマーが示す時間が3秒より長いか否かを判断する。長いと判断する、すなわち3秒であると判断すると、S20Aに処理を移行する。短いと判断すると、S19Aの処理を再実行する。 In S19A, it is determined whether or not the time indicated by the timer is longer than 3 seconds. If it is determined that it is long, that is, if it is 3 seconds, the process proceeds to S20A. If it is determined to be short, the process of S19A is re-executed.
 S20Aにおいて、タイマーを停止する。タイマーを停止すると、S21Aに処理を移行する。 In S20A, the timer is stopped. When the timer is stopped, the process proceeds to S21A.
 S21Aにおいて、測定を開始する。すなわち、光センサ72において得られた受光強度が、測定データとして採用される。よって、S16Aにおいて、移動時間が予め定められた一定期間以内になるように回転速度が算出され、S19Aにおいて、タイマーが示す時間が3秒であると判断されると、S20Aにおいて、測定が開始される。従って、一定期間が経過したと判断した場合に測定が開始されるので、測定が開始されるタイミングがより正確になる。従って、測定毎の測定開始までの期間のばらつきを抑え、測定精度の低下をより抑えることが出来る。測定データを取り終えると、S1に処理を移行させる。 In S21A, measurement is started. That is, the received light intensity obtained in the optical sensor 72 is adopted as measurement data. Therefore, in S16A, the rotation speed is calculated so that the moving time is within a predetermined period, and in S19A, if it is determined that the time indicated by the timer is 3 seconds, the measurement is started in S20A. The Accordingly, since the measurement is started when it is determined that a certain period has elapsed, the timing at which the measurement is started becomes more accurate. Therefore, it is possible to suppress variations in the period until the start of measurement for each measurement, and to further suppress a decrease in measurement accuracy. When the measurement data is collected, the process proceeds to S1.
1   検査装置
2   検査チップ
3   検査システム
7   測定部
20   板材
293  測定部
33   ターンテーブル
34   角度変更機構
35   主軸モータ
40   内軸
57   主軸
61   ホルダ
70   測定光
71  光源
72  光センサ
81   回転領域
90   制御部
91   CPU
96   エンコーダ
A1   垂直軸線
A2   水平軸線
DESCRIPTION OF SYMBOLS 1 Inspection apparatus 2 Inspection chip 3 Inspection system 7 Measuring part 20 Plate material 293 Measuring part 33 Turntable 34 Angle changing mechanism 35 Spindle motor 40 Inner shaft 57 Spindle 61 Holder 70 Measuring light 71 Light source 72 Optical sensor 81 Rotation area 90 Control part 91 CPU
96 Encoder A1 Vertical axis A2 Horizontal axis

Claims (10)

  1.  検査チップを保持するホルダと、
     前記ホルダを、主軸を中心に回転させる回転機構と、
     前記回転機構により回転される前記ホルダの位置を検出する位置検出部と、
     測定光を発光する発光部と、
     前記発光部により発光された測定光が、前記ホルダに保持された検査チップを透過した透過光を受光する受光部と、
     前記回転機構による回転を制御する制御部と、
    を備え、
     前記制御部は、
     予め定められた一定期間以内に、前記位置検出部により検出された位置から前記測定光が前記ホルダに保持された前記検査チップを透過可能な測定位置まで、任意の位置に停止したホルダを回転させ、
     前記一定期間後に前記受光部が受光した透過光に基づき、測定を開始すること
    を特徴とする検査装置。
    A holder for holding an inspection chip;
    A rotation mechanism for rotating the holder about a main shaft;
    A position detector for detecting the position of the holder rotated by the rotation mechanism;
    A light emitting unit for emitting measurement light;
    A light receiving unit that receives the transmitted light that has passed through the inspection chip held by the holder, and the measurement light emitted by the light emitting unit;
    A control unit for controlling rotation by the rotation mechanism;
    With
    The controller is
    Within a predetermined period, a holder stopped at an arbitrary position is rotated from a position detected by the position detection unit to a measurement position where the measurement light can pass through the inspection chip held by the holder. ,
    An inspection apparatus that starts measurement based on transmitted light received by the light receiving unit after the predetermined period.
  2.  前記制御部は、予め定められた時計回り、または反時計回りのいずれか一方の第1回転方向に回転させて、前記ホルダを前記測定位置に停止させること
    を特徴とする請求項1記載の検査装置。
    2. The inspection according to claim 1, wherein the control unit is rotated in a first clockwise direction that is predetermined clockwise or counterclockwise to stop the holder at the measurement position. apparatus.
  3.  前記制御部は、前記検出された位置から前記第1回転方向に回転させて、前記ホルダを前記測定位置に停止させること
    を特徴とする請求項2記載の検査装置。
    The inspection apparatus according to claim 2, wherein the control unit is rotated in the first rotation direction from the detected position to stop the holder at the measurement position.
  4.  前記制御部は、前記一定期間で、前記検出された位置から前記第1回転方向に回転させて、前記ホルダを前記測定位置に停止させる場合の回転速度を算出し、算出された回転速度で、前記検出された位置から前記第1回転方向に前記ホルダを回転させること
    を特徴とする請求項3記載の検査装置。
    The control unit calculates a rotation speed when rotating the holder in the first rotation direction from the detected position and stopping the holder at the measurement position in the certain period, and at the calculated rotation speed, The inspection apparatus according to claim 3, wherein the holder is rotated in the first rotation direction from the detected position.
  5.  前記制御部は、前記検出された位置から前記第1回転方向に回転させて、前記ホルダを前記測定位置に停止させる第1ルートと、前記検出された位置から、前記第1回転方向と反対方向の第2方向に回転させて、前記測定位置を通過させ、所定の折返し位置から前記第1回転方向に回転させて、前記ホルダを前記測定位置に停止させる第2ルートと、のいずれかを前記位置検出部より検出された位置により決定し、決定されたルートで回転させて、前記ホルダを前記測定位置に停止させること
    を特徴とする請求項2記載の検査装置。
    The control unit rotates in the first rotation direction from the detected position to stop the holder at the measurement position, and from the detected position in a direction opposite to the first rotation direction. Or a second route that causes the measurement position to pass through, rotates from a predetermined folding position to the first rotation direction, and stops the holder at the measurement position. The inspection apparatus according to claim 2, wherein the inspection device is determined based on a position detected by a position detection unit, is rotated by the determined route, and the holder is stopped at the measurement position.
  6.  前記制御部は、
     前記一定期間で、前記第1ルートで前記ホルダを回転させると決定した場合、前記検出された位置から前記第1回転方向に回転させて、前記ホルダを前記測定位置に停止させる場合の回転速度を算出し、算出された回転速度で、前記検出された位置から前記第1回転方向に前記ホルダを回転させ、
     前記第2ルートで前記ホルダを回転させると決定した場合、前記検出された位置から前記前記第2回転方向に回転させて、前記ホルダを前記折返し位置に停止させ、前記折返し位置から前記第1回転方向に回転させて、前記ホルダを前記測定位置に停止させる場合の回転速度を前記一定期間の残り時間に基づき算出し、算出された回転速度で、前記折返し位置から前記第1回転方向に前記ホルダを回転させること
    を特徴とする請求項5記載の検査装置。
    The controller is
    When it is determined that the holder is to be rotated by the first route in the certain period, the rotation speed when rotating the holder from the detected position in the first rotation direction and stopping the holder at the measurement position is Calculating and rotating the holder in the first rotation direction from the detected position at the calculated rotation speed;
    When it is determined that the holder is to be rotated in the second route, the holder is rotated in the second rotation direction from the detected position, the holder is stopped at the folding position, and the first rotation is performed from the folding position. The rotation speed when rotating the holder in the direction and stopping the holder at the measurement position is calculated based on the remaining time of the fixed period, and the holder is moved from the turn-up position to the first rotation direction at the calculated rotation speed. The inspection apparatus according to claim 5, wherein the inspection apparatus is rotated.
  7.  前記制御部は、前記ホルダが前記測定位置に停止された状態において、前記一定期間が経過したか否かを判断し、
     前記一定期間が経過したと判断した場合に、前記受光部が受光した透過光に基づき、測定を開始すること
    を特徴とする請求項5記載の検査装置。
    The controller determines whether or not the predetermined period has elapsed in a state where the holder is stopped at the measurement position;
    The inspection apparatus according to claim 5, wherein when it is determined that the predetermined period has elapsed, measurement is started based on transmitted light received by the light receiving unit.
  8.  前記制御部は、前記測定位置とは異なる位置に前記ホルダを停止させる際は、前記検出された位置から前記指定位置まで、時計回り、または反時計回りのいずれか一方の第1回転方向と前記第1回転方向と反対方向の第2方向との近い方のルートで、ホルダを指定位置に回転させること
    を特徴とする請求項1~7のいずれか記載の検査装置。
    When the control unit stops the holder at a position different from the measurement position, either the clockwise direction or the counterclockwise direction from the detected position to the designated position and the first rotation direction 8. The inspection apparatus according to claim 1, wherein the holder is rotated to a specified position along a route closer to the second direction opposite to the first rotation direction.
  9.  検査チップを保持するホルダと、前記ホルダを、主軸を中心に回転させる回転機構と、前記回転機構により回転される前記ホルダの位置を検出する位置検出部と、測定光を発光する発光部と、前記発光部により発光された測定光が、前記ホルダに保持された検査チップを透過した透過光を受光する受光部と、前記回転機構による回転を制御する制御部と、を備える検査装置のコンピュータに、
     予め定められた一定期間以内に、前記位置検出部により検出された位置から前記測定光が前記ホルダに保持された前記検査チップを透過可能な測定位置まで、任意の位置に停止したホルダを回転させる回転ステップと、
     前記一定期間後に前記受光部が受光した透過光に基づき、測定を開始させる測定ステップと
    を実行させることを特徴とする検査プログラム。
    A holder for holding an inspection chip, a rotation mechanism for rotating the holder around a main axis, a position detection unit for detecting the position of the holder rotated by the rotation mechanism, a light emitting unit for emitting measurement light, In a computer of an inspection apparatus, comprising: a light receiving unit that receives transmitted light that has passed through an inspection chip held by the holder, and a control unit that controls rotation by the rotation mechanism. ,
    Within a predetermined period, a holder stopped at an arbitrary position is rotated from a position detected by the position detection unit to a measurement position where the measurement light can pass through the inspection chip held by the holder. A rotation step;
    And a measurement step of starting measurement based on transmitted light received by the light receiving unit after the predetermined period.
  10.  検査チップを保持するホルダと、前記ホルダを、主軸を中心に回転させる回転機構と、前記回転機構により回転される前記ホルダの位置を検出する位置検出部と、測定光を発光する発光部と、前記発光部により発光された測定光が、前記ホルダに保持された検査チップを透過した透過光を受光する受光部と、前記回転機構による回転を制御する制御部と、を備える検査装置の検査方法であって、
     予め定められた一定期間以内に、前記位置検出部により検出された位置から前記測定光が前記ホルダに保持された前記検査チップを透過可能な測定位置まで、任意の位置に停止したホルダを回転させる回転ステップと、
     前記一定期間後に前記受光部が受光した透過光に基づき、測定を開始させる測定ステップと、を備えることを特徴とする検査方法。
    A holder for holding an inspection chip, a rotation mechanism for rotating the holder around a main axis, a position detection unit for detecting the position of the holder rotated by the rotation mechanism, a light emitting unit for emitting measurement light, An inspection method for an inspection apparatus, comprising: a light receiving unit that receives transmitted light that has passed through an inspection chip held by the holder, and a control unit that controls rotation by the rotation mechanism. Because
    Within a predetermined period, a holder stopped at an arbitrary position is rotated from a position detected by the position detection unit to a measurement position where the measurement light can pass through the inspection chip held by the holder. A rotation step;
    And a measurement step of starting measurement based on the transmitted light received by the light receiving unit after the certain period of time.
PCT/JP2015/077699 2014-09-30 2015-09-30 Inspection device, inspection program and inspection method WO2016052601A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-199962 2014-09-30
JP2014199962A JP6164186B2 (en) 2014-09-30 2014-09-30 Inspection device, inspection program, inspection method

Publications (1)

Publication Number Publication Date
WO2016052601A1 true WO2016052601A1 (en) 2016-04-07

Family

ID=55630626

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/077699 WO2016052601A1 (en) 2014-09-30 2015-09-30 Inspection device, inspection program and inspection method

Country Status (2)

Country Link
JP (1) JP6164186B2 (en)
WO (1) WO2016052601A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020158192A1 (en) * 2019-01-31 2020-08-06 コニカミノルタ株式会社 Optical measurement method and optical measurement device
CN114935550A (en) 2021-04-30 2022-08-23 南京岚煜生物科技有限公司 Biochemical analyzer

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006077695A1 (en) * 2005-01-24 2006-07-27 Matsushita Electric Industrial Co., Ltd. Liquid delivery device and liquid delivery method
JP2008008875A (en) * 2006-06-30 2008-01-17 Ushio Inc Microchip inspecting apparatus
JP2009115534A (en) * 2007-11-05 2009-05-28 Nsk Ltd Centrifugal force applying device and specimen liquid analyzer
JP2011033477A (en) * 2009-07-31 2011-02-17 Beckman Coulter Inc Reaction plate and automatic analyzer
JP2013029444A (en) * 2011-07-29 2013-02-07 Brother Ind Ltd Inspection system and inspection method
WO2014133125A1 (en) * 2013-02-28 2014-09-04 ブラザー工業株式会社 Test chip and test system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2731423B2 (en) * 1989-06-30 1998-03-25 日本商事株式会社 Rotary cuvette
CN1864058B (en) * 2003-10-03 2012-07-18 独立行政法人物质·材料研究机构 Chip using method and test chip
JP2009115657A (en) * 2007-11-07 2009-05-28 Nsk Ltd Specimen liquid analyzer
EP2295985A4 (en) * 2008-07-10 2014-06-25 Brahms Gmbh Disc for clinical examination, disc pack and clinical examination device
JP5964555B2 (en) * 2011-05-20 2016-08-03 ローム株式会社 Microchip, and measurement system and measurement method using the same
JP2013217741A (en) * 2012-04-06 2013-10-24 Hitachi High-Technologies Corp Automatic analyzer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006077695A1 (en) * 2005-01-24 2006-07-27 Matsushita Electric Industrial Co., Ltd. Liquid delivery device and liquid delivery method
JP2008008875A (en) * 2006-06-30 2008-01-17 Ushio Inc Microchip inspecting apparatus
JP2009115534A (en) * 2007-11-05 2009-05-28 Nsk Ltd Centrifugal force applying device and specimen liquid analyzer
JP2011033477A (en) * 2009-07-31 2011-02-17 Beckman Coulter Inc Reaction plate and automatic analyzer
JP2013029444A (en) * 2011-07-29 2013-02-07 Brother Ind Ltd Inspection system and inspection method
WO2014133125A1 (en) * 2013-02-28 2014-09-04 ブラザー工業株式会社 Test chip and test system

Also Published As

Publication number Publication date
JP2016070773A (en) 2016-05-09
JP6164186B2 (en) 2017-07-19

Similar Documents

Publication Publication Date Title
US8248586B2 (en) Blood analysis apparatus and setting method of measurement position in blood analysis apparatus
JP6164186B2 (en) Inspection device, inspection program, inspection method
JP6011156B2 (en) Inspection chip
JP5998760B2 (en) Reagent container and test chip
JP5958238B2 (en) Inspection chip and inspection device
JP6028624B2 (en) Inspection chip and inspection system
WO2014061635A1 (en) Inspection device, inspection system, inspection method, and computer program
JP6012367B2 (en) Automatic analyzer
JP5900269B2 (en) Inspection chip
JP2011038841A (en) Automatic analyzer
JP6260486B2 (en) Inspection device and inspection program
WO2016158739A1 (en) Inspection apparatus
JP6477431B2 (en) Inspection device
JP2015118042A (en) Inspection device, inspection method and computer program
JP5958105B2 (en) Inspection system, inspection object receiver and inspection method
JP6477395B2 (en) Inspection method and inspection system
JP6160647B2 (en) Inspection chip
JP2015105886A (en) Inspection device
JP2014010043A (en) Inspection system, inspection object acceptor and inspection method
JP5958249B2 (en) Inspection chip and inspection device
JP2016033454A (en) Inspection chip
JP2012207945A (en) Drive unit
WO2014133126A1 (en) Test chip
JP2017067567A (en) Inspection chip and inspection system
JP2016142548A (en) Inspection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15846208

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15846208

Country of ref document: EP

Kind code of ref document: A1