WO2014133126A1 - Test chip - Google Patents

Test chip Download PDF

Info

Publication number
WO2014133126A1
WO2014133126A1 PCT/JP2014/055042 JP2014055042W WO2014133126A1 WO 2014133126 A1 WO2014133126 A1 WO 2014133126A1 JP 2014055042 W JP2014055042 W JP 2014055042W WO 2014133126 A1 WO2014133126 A1 WO 2014133126A1
Authority
WO
WIPO (PCT)
Prior art keywords
reagent
inlet
introduction port
capillary
flow path
Prior art date
Application number
PCT/JP2014/055042
Other languages
French (fr)
Japanese (ja)
Inventor
由美子 大鹿
千里 吉村
Original Assignee
ブラザー工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ブラザー工業株式会社 filed Critical ブラザー工業株式会社
Publication of WO2014133126A1 publication Critical patent/WO2014133126A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502715Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/02Adapting objects or devices to another
    • B01L2200/026Fluid interfacing between devices or objects, e.g. connectors, inlet details
    • B01L2200/027Fluid interfacing between devices or objects, e.g. connectors, inlet details for microfluidic devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0621Control of the sequence of chambers filled or emptied
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0864Configuration of multiple channels and/or chambers in a single devices comprising only one inlet and multiple receiving wells, e.g. for separation, splitting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0406Moving fluids with specific forces or mechanical means specific forces capillary forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0409Moving fluids with specific forces or mechanical means specific forces centrifugal forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00029Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides
    • G01N2035/00099Characterised by type of test elements
    • G01N2035/00158Elements containing microarrays, i.e. "biochip"

Definitions

  • the present disclosure relates to a test chip for performing a chemical, medical, or biological test of a test object.
  • the microfluidic chip disclosed in Patent Document 1 has a housing portion for housing a capillary.
  • An opening for inserting a capillary capable of taking a liquid sample into the housing is formed on the upper surface or the lower surface of the microfluidic chip.
  • the container is connected to a fluid circuit formed in the microfluidic chip.
  • an inlet of a fluid circuit may be provided on the downstream side in the direction of inserting the capillary with respect to the accommodating portion.
  • a part of the specimen or reagent held in the capillary may flow into the inlet of the fluid circuit. That is, there is a possibility that the specimen or reagent flows into the fluid circuit at an unintended timing. In this case, for example, the specimen or reagent may not be accurately mixed with other liquids, and the inspection accuracy may deteriorate.
  • An object of the present disclosure is to provide a test chip in which a specimen or a reagent held by a capillary force inside a liquid introduction unit can flow into a fluid circuit at an appropriate timing.
  • the inspection chip has an opening into which a liquid introduction unit that holds a specimen or a reagent inside by a capillary force can be inserted, and is a portion in which the liquid introduction unit inserted from the opening is accommodated.
  • An introduction port, and a holding unit which is provided on the opposite side of the opening with respect to the introduction port, and is a portion where the sample or the reagent flowing out from the liquid introduction means accommodated in the introduction port is held;
  • a fluid circuit that is a flow path for guiding the specimen or the reagent toward a site where the liquid containing the specimen or the reagent is measured, and the specimen or the reagent held in the holding section are
  • a channel inlet that is an opening that flows into the fluid circuit, and the channel inlet is provided closer to the inlet than the holder in an injection direction that is a direction from the inlet to the holder. That features To.
  • the inspection chip is provided with an introduction port for accommodating the liquid introduction means inserted from the opening.
  • a holding part for holding a specimen or a reagent is provided on the side opposite to the opening with respect to the introduction port.
  • the specimen or reagent held in the holding section can flow into the fluid circuit through which the specimen or reagent is guided toward the measurement site via the flow path inlet.
  • the flow path inlet is provided closer to the introduction port than the holding part in the injection direction.
  • a tilted surface that is provided between the introduction port and the holding portion and that is tilted with respect to the injection direction may be provided.
  • the inspection chip has a first surface and a second surface opposite to the first surface, the introduction port is provided on the first surface side, the holding portion, the fluid circuit, and the flow path
  • the inlet is provided on the second surface side, and the inclined surface is inclined in a direction from the first surface toward the second surface so that the first surface side and the second surface side communicate with each other. Also good.
  • a capillary part that is provided between the introduction port and the holding unit and that holds the sample or the reagent flowing out from the liquid introduction unit accommodated in the introduction port by capillary force may be provided.
  • a taper that is provided at an end of the capillary portion on the inlet side and is inclined with respect to the injection direction may be provided.
  • the introduction port and the capillary section communicate with the injection direction, and a cross section of the capillary section in a direction orthogonal to the injection direction is smaller than a cross section of the liquid introduction means in a direction orthogonal to the injection direction. Also good.
  • the connecting part being a flow path for the sample or the reagent, the introduction port, the capillary part, and the connection
  • the flow path communicates with the injection direction, and the cross section of the capillary section in the direction orthogonal to the injection direction is smaller than the cross section of the introduction port in the direction orthogonal to the injection direction, and the injection direction of the introduction port
  • the cross section in the direction perpendicular to the cross section may be smaller than the cross section in the direction perpendicular to the injection direction of the connection channel.
  • the inlet side wall part which is a wall part extended toward the said flow path inlet from the said holding
  • the holding unit may hold the specimen or the reagent by capillary force.
  • the inspection chip has a first surface and a second surface facing the first surface, and a width of the flow path inlet in a direction in which the first surface and the second surface are opposed is a width of the holding portion. It may be smaller than the width of the first surface and the second surface in the facing direction.
  • the inspection chip has a first surface and a second surface opposite to the first surface, and includes an inlet side wall portion that is a wall portion extending from the holding portion toward the flow channel inlet, A virtual direction extending from the end of the injection direction in parallel with the first surface and the second surface and extending perpendicular to the injection direction is a virtual direction, and the virtual direction and the inlet Of the angles formed with the side wall portions, the angle formed between the end portion of the introduction port in the injection direction and the flow channel inlet may be 90 degrees or less.
  • FIG. 5 is a cross-sectional view taken along the line II of FIG. 3 and FIG. 4.
  • FIG. 3 is an enlarged view of the back surface of the inspection chip 2 into which capillaries 401 to 406 are inserted. It is a front view of the test
  • FIG. 1 shows a plane of the inspection apparatus 1 constituting the inspection system 3 and functional blocks inside the control apparatus 90.
  • the inspection system 3 of the present embodiment includes an inspection chip 2 that can store a sample and a reagent that are liquids, and an inspection apparatus 1 that performs an inspection using the inspection chip 2.
  • the inspection device 1 rotates the inspection chip 2 around the vertical axis A ⁇ b> 1 separated from the inspection chip 2, centrifugal force acts on the inspection chip 2.
  • the inspection apparatus 1 rotates the inspection chip 2 around the horizontal axis A2
  • the centrifugal direction which is the direction of the centrifugal force acting on the inspection chip 2 is switched.
  • the inspection system 3 and the inspection apparatus 1 of the present embodiment have a known structure as described in JP 2012-78107 A, and therefore, in the following description, an outline of the structure of the inspection apparatus 1 will be described. To do.
  • FIG. 1 shows a state where the top plate of the upper housing 30 of the inspection apparatus 1 is removed.
  • the inspection apparatus 1 includes an upper housing 30, a lower housing 31, an upper plate 32, a turntable 33, an angle changing mechanism 34, and a control device 90.
  • the turntable 33 is a disk rotatably provided on the upper side of an upper plate 32 described later.
  • the inspection chip 2 is held above the turntable 33.
  • the angle changing mechanism 34 is a drive mechanism provided on the turntable 33.
  • the angle changing mechanism 34 rotates the inspection chip 2 around the horizontal axis A2.
  • the upper housing 30 is fixed to an upper plate 32 described later, and a measurement unit 7 that performs optical measurement on the inspection chip 2 is provided inside.
  • the control device 90 is a controller that controls various processes of the inspection device 1.
  • the schematic structure of the lower housing 31 will be described.
  • the lower housing 31 has a box-shaped frame structure in which frame members are combined.
  • An upper plate 32 that is a rectangular plate material is provided on the upper surface of the lower housing 31.
  • a drive mechanism that rotates the turntable 33 around the vertical axis A1 is provided in the lower housing 31 as follows.
  • a spindle motor 35 that supplies a driving force for rotating the turntable 33 is installed on the left side of the lower housing 31.
  • a shaft 36 of the main shaft motor 35 protrudes upward, and a pulley 37 is fixed.
  • a vertical main shaft 57 extending upward from the inside of the lower housing 31 is provided at the center of the lower housing 31.
  • the main shaft 57 passes through the upper plate 32 and protrudes above the lower housing 31.
  • the upper end portion of the main shaft 57 is connected to the center portion of the turntable 33.
  • the main shaft 57 is rotatably held by a support member (not shown) provided immediately below the upper plate 32.
  • a pulley 38 is fixed to the main shaft 57 below the support member.
  • a belt 39 is stretched over the pulley 37 and the pulley 38.
  • a guide rail (not shown) extending in the vertical direction inside the lower housing 31 is provided on the right side in the lower housing 31.
  • a T-shaped plate (not shown) is movable in the vertical direction in the lower housing 31 along the guide rail.
  • the above-described main shaft 57 is a hollow cylindrical body.
  • An inner shaft (not shown) is a shaft that can move in the vertical direction inside the main shaft 57.
  • the upper end portion of the inner shaft passes through the main shaft 57 and is connected to the rack gear 43.
  • a bearing (not shown) is provided at the left end of the T-shaped plate. Inside the bearing, the lower end portion of the inner shaft is rotatably held.
  • a stepping motor 51 for moving the T-shaped plate up and down is fixed in front of the T-shaped plate.
  • the shaft 58 of the stepping motor 51 protrudes rearward, that is, downward in FIG.
  • a disc-shaped cam plate (not shown) is fixed to the tip of the shaft 58.
  • a cylindrical projection (not shown) is provided on the rear surface of the cam plate.
  • the tip of the protrusion is inserted into a groove (not shown). The protrusion can slide in the groove.
  • the angle changing mechanism 34 has a pair of L-shaped plates 60 fixed to the upper surface of the turntable 33. Each L-shaped plate 60 extends upward from a base portion fixed in the vicinity of the center of the turntable 33, and its upper end portion extends outward in the radial direction of the turntable 33.
  • a rack gear 43 (not shown) fixed to the inner shaft is provided between the pair of L-shaped plates 60.
  • the rack gear 43 is a metal plate-like member that is long in the vertical direction, and gears are respectively carved on both end faces.
  • a horizontal support shaft 46 having a gear 45 is rotatably supported at the distal end side in the extending direction of each L-shaped plate 60.
  • the support shaft 46 is fixed to the inspection chip 2 via a mounting holder (not shown). For this reason, the inspection chip 2 also rotates around the support shaft 46 in conjunction with the rotation of the gear 45.
  • a pinion gear 44 supported by an L-shaped plate 60 so as to be rotatable about a horizontal axis (not shown) is interposed.
  • the pinion gear 44 meshes with the gear 45 and the rack gear 43, respectively. In conjunction with the vertical movement of the rack gear 43, the pinion gear 44 and the gear 45 are driven to rotate, and the inspection chip 2 rotates about the support shaft 46.
  • the inspection chip 2 rotates around the main shaft 57, which is a vertical axis, and centrifugal force is applied to the inspection chip 2.
  • the rotation around the vertical axis A1 of the inspection chip 2 is referred to as revolution.
  • the inspection chip 2 rotates about the support shaft 46 which is a horizontal axis, and the direction of the centrifugal force acting on the inspection chip 2 changes relatively.
  • the rotation around the horizontal axis A2 of the inspection chip 2 is called autorotation.
  • the rack gear 43 is also lowered to the lowermost end of the movable range.
  • the inspection chip 2 is in a steady state where the rotation angle is 0 degree.
  • the rack gear 43 is also raised to the uppermost end of the movable range.
  • inspection chip 2 will be in the state rotated 180 degree
  • the upper housing 30 has a box-like frame structure in which frame members are combined, and is installed on the upper left side of the upper plate 32. More specifically, the upper housing 30 is provided outside the range in which the inspection chip 2 is rotated as viewed from the main shaft 57 at the rotation center of the turntable 33.
  • the measurement unit 7 provided in the upper housing 30 includes a light source 71 that emits measurement light, and an optical sensor 72 that detects the measurement light emitted from the light source 71.
  • the light source 71 and the optical sensor 72 are disposed on both the front and rear sides of the turntable 33 outside the rotation range of the inspection chip 2.
  • the position on the left side of the main shaft 57 in the reciprocable range of the inspection chip 2 is the measurement position at which the inspection chip 2 is irradiated with the measurement light.
  • the measurement light connecting the light source 71 and the optical sensor 72 intersects the surface of the inspection chip 2 substantially perpendicularly.
  • the control device 90 includes a CPU 91 that performs main control of the inspection device 1, a RAM 92 that temporarily stores various data, and a ROM 93 that stores a control program. Connected to the CPU 91 are an operation unit 94 for a user to input instructions to the control device 90, a hard disk device 95 for storing various data and programs, and a display 96 for displaying various information.
  • a personal computer may be used, or a dedicated control device may be used.
  • the revolution controller 97, the rotation controller 98, and the measurement controller 99 are connected to the CPU 91.
  • the revolution controller 97 controls the revolution of the inspection chip 2 by transmitting a control signal for rotating the spindle motor 35 to the spindle motor 35.
  • the rotation controller 98 controls the rotation of the inspection chip 2 by transmitting a control signal for rotating the stepping motor 51 to the stepping motor 51.
  • the measurement controller 99 performs optical measurement of the inspection chip 2 by driving the measurement unit 7. Specifically, the measurement controller 99 transmits a control signal for executing light emission of the light source 71 and light detection of the optical sensor 72 to the light source 71 and the optical sensor 72.
  • the CPU 91 controls the revolution controller 97, the rotation controller 98 and the measurement controller 99.
  • test chip 2 The detailed structure of the test chip 2 according to the present embodiment will be described with reference to FIGS.
  • the upper, lower, lower left, upper right, lower right, and upper left in FIG. 2 are the upper, lower, left, right, front, and rear of the test chip 2, respectively.
  • the inspection chip 2 has a square shape when viewed from the front as an example, and mainly includes a transparent synthetic resin plate 20 having a predetermined thickness.
  • the front surface 25 of the plate member 20 is sealed with a sheet 27 made of a transparent synthetic resin thin plate.
  • the rear surface 26 of the plate 20 is sealed with a sheet 28 made of a transparent synthetic resin thin plate.
  • the sheets 27 and 28 are not shown except for FIG.
  • the test chip 2 of the present embodiment has a sample or reagent flow path formed on both the front surface 25 and the rear surface 26.
  • a liquid flow path 100 is formed in which the liquid sealed in the inspection chip 2 can flow.
  • the liquid flow path 100 is a recess formed at a predetermined depth on the front surface 25 side of the plate material 20 and extends in a direction orthogonal to the front-rear direction, which is the thickness direction of the plate material 20.
  • the liquid introduction part 300 and the liquid flow path 200 are recesses formed at a predetermined depth on the rear surface 26 side of the plate material 20 and extend in a direction orthogonal to the front-rear direction, which is the thickness direction of the plate material 20.
  • the liquid flow channel 100 includes a sample quantitative flow channel 110, reagent quantitative flow channels 130 and 150, a common flow channel 180, and a measurement unit 190.
  • the sample quantitative channel 110 is on the left side of the test chip 2
  • the reagent quantitative channel 130 is on the right side of the sample quantitative channel 110
  • the reagent quantitative channel 150 is on the right side of the reagent quantitative channel 130
  • the test chip 2 It is provided in the right part of.
  • the measurement unit 190 is provided in the lower right part of the inspection chip 2.
  • the common flow channel 180 is provided between the sample quantitative flow channel 110 and the reagent quantitative flow channels 130 and 150 and the measurement unit 190.
  • the sample quantification channel 110 includes a sample holding unit 111, a sample supply unit 112, a sample guide unit 113, a sample quantification unit 114, a channel 115, a sample surplus unit 116, and a channel 117.
  • a guide hole 311 that penetrates the plate member 20 in the front-rear direction is formed in the upper left portion of the specimen fixed amount flow channel 110.
  • Below the guide hole 311, an inclined surface 312 that is a surface that communicates the rear surface 26 and the front surface 25 is provided below the guide hole 311, an inclined surface 312 that is a surface that communicates the rear surface 26 and the front surface 25 is provided. As will be described later, the specimen 61 can flow into the specimen quantitative channel 110 from the specimen inlet 301 shown in FIG. 4 by moving through the guide hole 311 along the inclined surface 312.
  • the end on the front surface 25 side of the inclined surface 312 is an end 312A.
  • a specimen holding unit 111 that is a recess opening upward is provided below the end 312 ⁇ / b> A.
  • the sample holding unit 111 is a part where the sample 61 that has flowed into the sample fixed amount flow channel 110 through the guide hole 311 is held.
  • a wall portion extending in the upper right direction from the specimen holding portion 111 is an inlet side wall portion 121.
  • a flow path inlet 120 that communicates with the sample supply unit 112 is provided at the upper right end of the inlet side wall 121.
  • the channel inlet 120 is an opening through which the sample 61 held in the sample holding unit 111 flows into the sample supply unit 112.
  • a step that protrudes forward from the front surface 25 is provided across the vertical direction of the flow path inlet 120. Therefore, the channel width in the front-rear direction of the channel inlet 120 is smaller than the channel width in the front-rear direction of the specimen holding unit 111.
  • the specimen supply unit 112 is a flow path that extends downward from the flow path inlet 120.
  • the flow path inlet 120 is provided closer to the sample inlet 301 than the sample holder 111 in the first injection direction.
  • the first injection direction is a direction in which the capillary 401 is inserted into the sample introduction port 301. In other words, the first injection direction is a direction from the sample introduction port 301 toward the sample holding unit 111, that is, a downward direction.
  • the flow path inlet 120 of this embodiment is provided above the guide hole 311 and the inclined surface 312.
  • the lower end of the sample supply unit 112 is connected to a sample guide unit 113 having a narrow channel.
  • a sample quantitative unit 114 is provided below the sample guide unit 113.
  • the specimen quantification unit 114 is a part that quantifies the specimen 61, and is a recess that is recessed in the lower left. From the part where the sample guide unit 113 and the sample determination unit 114 communicate with each other, the passage 115 extends to the lower left and the passage 117 extends to the upper right. The passage 115 extends to the sample surplus part 116 provided below the sample determination unit 114.
  • the specimen surplus part 116 is a part where the specimen 61 overflowing from the specimen quantification part 114 is stored, and is a concave part provided in the right direction from the lower end part of the passage 115.
  • the upper right end of the passage 117 is connected to a common channel 180 described later.
  • the reagent fixed amount flow path 130 includes a reagent holding unit 131, a reagent supply unit 132, a reagent guide unit 133, a reagent fixed amount unit 134, a passage 135, a reagent surplus portion 136, and a passage 137.
  • a guide hole 313 that penetrates the plate member 20 in the front-rear direction is formed in the upper left portion of the reagent fixed amount flow path 130.
  • An inclined surface 314 that is a surface that communicates the rear surface 26 and the front surface 25 is provided below the guide hole 313.
  • the first reagent 62 can flow into the reagent quantitative flow channel 130 from the reagent inlet 303 shown in FIG. 4 by moving through the guide hole 313 along the inclined surface 314.
  • the end on the front surface 25 side of the inclined surface 314 is an end 314A.
  • a reagent holding part 131 which is a recess opening upward.
  • the reagent holding part 131 is a part that holds the first reagent 62 that has flowed into the reagent fixed amount flow path 130 via the guide hole 313.
  • a wall portion extending in the upper right direction from the reagent holding portion 131 is an inlet side wall portion 141.
  • a flow path inlet 140 communicating with the reagent supply unit 132 is provided at the upper right end of the inlet side wall 141.
  • the flow path inlet 140 is an opening through which the first reagent 62 held in the reagent holding unit 131 flows into the reagent supply unit 132.
  • the reagent supply unit 132 is a channel extending downward from the channel inlet 140.
  • the channel inlet 140 is provided closer to the reagent inlet 303 than the reagent holding part 131 in the second injection direction.
  • the second injection direction is the direction in which the capillary 403 is inserted into the reagent introduction port 303, in other words, the direction from the reagent introduction port 303 toward the reagent holding unit 131, that is, the lower left direction.
  • the channel inlet 140 of the present embodiment is provided above the guide hole 313 and the inclined surface 314.
  • the inlet side wall 141 has a smaller inclination angle with respect to the vertical direction of the inspection chip 2 than the above-described inlet side wall 121 and the inlet side wall 161 described later.
  • the inclination angle of the inlet side wall 121 and the inlet side wall 161 with respect to the vertical direction is 30 degrees, while the inclination angle of the inlet side wall 141 with respect to the vertical direction is 10 degrees.
  • the lower end of the reagent supply unit 132 is connected to a reagent guide unit 133 having a narrow channel.
  • a reagent quantitative unit 134 is provided below the reagent guide unit 133.
  • the reagent quantification unit 134 is a part that quantifies the first reagent 62, and is a recess that is recessed in the lower left direction.
  • a passage 135 extends to the lower left and a passage 137 extends to the upper right from a portion where the reagent guide 133 and the reagent quantitative unit 134 communicate with each other.
  • the passage 135 extends to the reagent surplus portion 136 provided below the reagent fixed amount portion 134.
  • the reagent surplus part 136 is a part in which the first reagent 62 overflowing from the reagent quantitative part 134 is stored, and is a concave part provided in the right direction from the lower end part of the passage 135.
  • the upper right end of the passage 137 is connected to a common channel 180 described later.
  • the reagent quantitative flow path 150 includes a reagent holding part 151, a reagent supply part 152, a reagent guide part 153, a reagent quantitative part 154, a passage 155, a reagent surplus part 156, and a passage 157.
  • a guide hole 315 that penetrates the plate member 20 in the front-rear direction is formed in the upper left portion of the reagent fixed amount flow path 150.
  • an inclined surface 316 that is a surface that connects the rear surface 26 and the front surface 25 is provided.
  • the second reagent 63 can flow into the reagent fixed amount flow path 150 from the reagent introduction port 305 shown in FIG. 4 by moving through the guide hole 315 along the inclined surface 316.
  • the end on the front surface 25 side of the inclined surface 316 is an end 316A.
  • a reagent holding portion 151 that is a recess opening upward is provided below the end portion 316A.
  • the reagent holding unit 151 is a part that holds the second reagent 63 that has flowed into the reagent fixed amount flow path 150 through the guide hole 315.
  • the wall portion extending from the reagent holding portion 151 in the upper right direction is the inlet side wall portion 161.
  • a flow path inlet 160 communicating with the reagent supply unit 152 is provided at the upper right end of the inlet side wall 161.
  • the channel inlet 160 is an opening through which the second reagent 63 held in the reagent holding unit 151 flows into the reagent supply unit 152.
  • the reagent supply unit 152 is a channel that extends downward from the channel inlet 160.
  • the channel inlet 160 is provided closer to the reagent inlet 305 than the reagent holding part 151 in the third injection direction.
  • the third injection direction is a direction in which the capillary 405 is inserted into the reagent introduction port 305, in other words, a direction from the reagent introduction port 305 toward the reagent holding unit 151, that is, a downward direction.
  • the channel inlet 160 of the present embodiment is provided above the guide hole 315 and the inclined surface 316.
  • a narrowed portion 165 is provided closer to the reagent holding portion 151 than the end portion 316A on the front surface 25 side of the inclined surface 316.
  • the narrowed portion 165 is a step that protrudes forward in the front surface 25. Due to this step, the flow path width in the front-rear direction of the portion where the narrowed portion 165 is provided is narrower than the portion where the narrowed portion 165 is not provided.
  • the narrowed portion 165 is provided from the lower position 165A of the end portion 316A to the lower end portion 151A of the reagent holding portion 151.
  • the narrowed portion 165 may be a taper inclined forward in the front surface 25.
  • the lower end of the reagent supply unit 152 is connected to a reagent guide unit 153 having a narrow channel.
  • a reagent quantitative unit 154 is provided below the reagent guide unit 153.
  • the reagent quantification unit 154 is a part that quantifies the second reagent 63, and is a recess that is recessed downward to the left.
  • a passage 155 extends to the lower left and a passage 157 extends to the upper right from a portion where the reagent guide unit 153 and the reagent quantitative unit 154 communicate with each other.
  • the passage 155 extends to a reagent surplus portion 156 provided below the reagent fixed amount portion 154.
  • the reagent surplus part 156 is a part in which the second reagent 63 overflowing from the reagent quantitative part 154 is stored, and is a concave part provided in the right direction from the lower end part of the passage 155.
  • the upper right end of the passage 157 is connected to a common channel 180 described later.
  • the common flow path 180 is a flow path that connects the passages 117, 137, and 157 and the measurement unit 190.
  • the common flow path 180 includes guide walls 181, 182 and 183.
  • the guide wall 181 is a wall portion provided on the right side of the passage 117 and extending in the lower right direction.
  • the guide wall 182 is a wall portion provided on the right side of the passage 137 and extending in the lower right direction.
  • the guide wall 183 is a wall provided on the right side of the passage 137 and extending downward to the measurement unit 190.
  • the measurement unit 190 is a concave portion provided in the lower right portion of the common channel 180 and recessed downward.
  • the measurement unit 190 is a part where the liquid mixture 64 shown in FIG. 11, which is a liquid containing the specimen 61, the first reagent 62, and the second reagent 63, is stored and measured. When optical measurement to be described later is performed, measurement light is transmitted through the measurement unit 190.
  • FIG. 5 shows the capillaries 405 accommodated in the reagent introduction port 305 with phantom lines.
  • FIG. 6 is an enlarged view of the upper portion of the rear surface 26 of the inspection chip 2 in which the capillaries 401 to 406 are accommodated.
  • the liquid introduction unit 300 includes sample introduction ports 301 and 302 and reagent introduction ports 303, 304, 305, and 306.
  • the sample introduction port 301 is provided at the upper left part of the rear surface 26 and extends downward from the upper side portion 21 to the approximate center of the test chip 2 in the vertical direction.
  • the upper end portion of the sample introduction port 301 is an opening 301 ⁇ / b> A formed in the upper side portion 21.
  • the capillary 301 can be inserted into the opening 301A.
  • the sample introduction port 301 is a part in which the capillary 401 inserted from the opening 301A is accommodated.
  • the capillary 401 is a hollow tube made of, for example, glass that can take in the specimen 61, and holds the specimen 61 inside by capillary force.
  • the sample introduction port 302 is provided on the rear surface 26 on the right side of the sample introduction port 301 and extends downward from the upper side portion 21 to the approximate center of the test chip 2 in the vertical direction.
  • An upper end portion of the sample introduction port 302 is an opening 302 ⁇ / b> A formed in the upper side portion 21.
  • the sample introduction port 302 is a part in which the capillary 402 inserted from the opening 302A is accommodated.
  • the capillary 402 is a hollow tube made of, for example, glass that can take in the specimen 81, and holds the specimen 81 inside by capillary force.
  • the specimens 61 and 81 are blood.
  • the reagent introduction port 303 is provided on the upper side of the substantially central portion of the rear surface 26 and extends from the upper side portion 21 to the lower left to the approximate center of the test chip 2 in the vertical direction.
  • An upper end portion of the reagent introduction port 303 is an opening 303 ⁇ / b> A formed in the upper side portion 21.
  • the reagent introduction port 303 is a part in which the capillary 403 inserted from the opening 303A is accommodated.
  • the capillary 403 is a hollow tube made of, for example, glass that can take in the first reagent 62, and holds the first reagent 62 inside by capillary force.
  • the first reagent 62 is a reagent for measuring glucose in blood.
  • the reagent introduction port 304 is provided on the rear surface 26 on the right side of the reagent introduction port 303, and extends downward from the upper side portion 21 to the approximate center of the test chip 2 in the vertical direction.
  • the upper end portion of the reagent introduction port 304 is an opening 304 ⁇ / b> A formed in the upper side portion 21.
  • the capillary 304 can be inserted into the opening 304A.
  • the reagent introduction port 304 is a part in which the capillary 404 inserted from the opening 304A is accommodated.
  • the capillary 404 is a hollow tube made of, for example, glass that can take in the first reagent 82, and holds the first reagent 82 inside by capillary force.
  • the first reagent 82 is a reagent for measuring total cholesterol in blood.
  • the reagent introduction port 305 is provided at the upper right portion of the rear surface 26 and extends downward from the upper side portion 21 to the approximate center of the test chip 2 in the vertical direction.
  • An upper end portion of the reagent introduction port 305 is an opening 305 ⁇ / b> A formed in the upper side portion 21.
  • the capillary 405 can be inserted into the opening 305A.
  • the reagent introduction port 305 is a part in which the capillary 405 inserted from the opening 305A is accommodated.
  • the capillary 405 is a hollow tube made of, for example, glass that can take in the second reagent 63, and holds the second reagent 63 inside by capillary force.
  • An example is a reagent for measuring glucose in blood.
  • the reagent inlet 306 is provided on the rear surface 26 on the right side of the reagent inlet 305 and is recessed downward from the upper side 21.
  • An upper end portion of the reagent introduction port 306 is an opening 306 ⁇ / b> A formed in the upper side portion 21.
  • the capillary 406 can be inserted into the opening 306A.
  • the opening width that is the length in the left-right direction of the reagent introduction port 306 is larger than the opening width that is the length in the left-right direction of the sample introduction ports 301 and 302 and the reagent introduction ports 303, 304, and 305.
  • the reagent introduction port 306 is a part in which the capillary 406 inserted from the opening 306A is accommodated.
  • the capillary 406 is a hollow tube made of, for example, glass that can take in the second reagent 83, and holds the second reagent 83 inside by capillary force.
  • the second reagent 83 is a reagent for measuring total cholesterol in blood.
  • a guide hole 315 is provided from the lower end of the reagent introduction port 305 toward the front.
  • the inclined surface 316 is a surface inclined downward on the front side that forms the lower surface of the reagent introduction port 305 and the inner lower surface that forms the guide hole 315.
  • the inclined surface 316 connects the reagent introduction port 305 on the rear surface 26 side and the reagent quantitative flow path 150 on the front surface 25 side. That is, the inclined surface 316 is provided in the flow path between the reagent introduction port 305 and the reagent holding unit 151, and is inclined with respect to the downward direction that is the third injection direction.
  • a guide hole 311 is provided from the lower end of the sample introduction port 301 toward the front.
  • the inclined surface 312 is a surface inclined downward on the front side that forms the lower surface of the sample introduction port 301 and the inner lower surface forming the guide hole 311.
  • the inclined surface 312 connects the sample inlet 301 on the rear surface 26 side and the sample quantitative flow channel 110 on the front surface 25 side. That is, the inclined surface 312 is provided in the flow path between the sample introduction port 301 and the sample holding unit 111 and is inclined with respect to the downward direction that is the first injection direction.
  • the inclined surface 314 is a surface inclined downward in the front direction that forms the lower surface of the reagent inlet 303 and the inner lower surface forming the guide hole 313.
  • the inclined surface 314 connects the reagent introduction port 303 on the rear surface 26 side and the reagent fixed amount flow channel 130 on the front surface 25 side. That is, the inclined surface 314 is provided in the flow path between the reagent introduction port 303 and the reagent holding part 131 and is inclined with respect to the lower right direction that is the second injection direction.
  • the liquid flow path 200 includes a sample quantitative flow path 210, reagent quantitative flow paths 230 and 250, a common flow path 280, and a measurement unit 290.
  • the sample quantification channel 210 is provided on the left side of the test chip 2 and has a shape substantially corresponding to the sample quantification channel 110 shown in FIG.
  • the reagent quantitative channel 230 is provided on the right side of the sample quantitative channel 110 and has a shape substantially corresponding to the reagent quantitative channel 130 shown in FIG.
  • the reagent quantitative channel 250 is provided on the right side of the reagent quantitative channel 130 and on the right part of the test chip 2 and has a shape substantially corresponding to the reagent quantitative channel 150 shown in FIG.
  • the measuring unit 290 is provided at the lower right portion of the inspection chip 2 and has a shape substantially corresponding to the measuring unit 190 shown in FIG.
  • the common flow path 280 is provided between the sample quantitative flow path 210 and the reagent quantitative flow paths 230 and 250 and the measurement unit 290, and has a shape substantially corresponding to the common flow path 180 shown in FIG. Have.
  • the sample quantification channel 210 includes a sample holding unit 211, a sample supply unit 212, a sample guide unit 213, a sample quantification unit 214, a channel 215, a sample surplus unit 216, and a channel 217.
  • the lower end portion of the sample introduction port 302 is connected to the upper left end portion of the sample fixed amount flow path 210.
  • an inclined surface 222 which is a wall surface inclined in the lower right direction, is provided below the inclined surface 222.
  • a sample holder 211 that is a concave portion that opens upward is provided.
  • the specimen 81 can flow from the specimen introduction port 302 into the specimen quantitative channel 210 by moving to the lower right along the inclined surface 222. That is, the inclined surface 222 is provided between the sample introduction port 302 and the sample holder 211 and is inclined with respect to the downward direction, which is the fourth injection direction.
  • the fourth injection direction is the direction in which the capillary 402 is inserted into the sample introduction port 302, in other words, the direction from the sample introduction port 302 toward the sample holding unit 211, that is, the downward direction.
  • the inclined surface 222 is inclined toward an inlet side wall portion 221 described later. That is, the inlet side wall portion 221 is provided on an extension line in the direction in which the inclined surface 222 extends.
  • the specimen holding unit 211 is a part that holds the specimen 81 that has flowed into the specimen quantitative channel 210.
  • a wall portion extending in the upper right direction from the specimen holding portion 211 is an inlet side wall portion 221.
  • a flow path inlet 220 communicating with the sample supply unit 212 is provided at the upper right end of the inlet side wall 221.
  • the channel inlet 220 is an opening through which the sample 81 held in the sample holding unit 211 flows into the sample supply unit 212.
  • the sample supply unit 212 is a channel extending downward from the channel inlet 220.
  • the channel inlet 220 is provided closer to the sample introduction port 302 than the sample holder 211 in the fourth injection direction.
  • the flow path inlet 220 of this embodiment is provided above the inclined surface 222.
  • the lower end of the sample supply unit 212 is connected to a sample guide unit 213 having a narrow channel.
  • a sample determination unit 214 is provided below the sample guide unit 213.
  • the specimen quantification unit 214 is a part that quantifies the specimen 81, and is a recess that is recessed in the lower left direction.
  • a passage 215 extends to the lower left and a passage 217 extends to the upper right from a portion where the sample guide unit 213 and the sample determination unit 214 communicate with each other.
  • the passage 215 extends to the sample surplus part 216 provided below the sample determination unit 214.
  • the specimen surplus part 216 is a part where the specimen 81 overflowing from the specimen quantification part 214 is stored, and is a concave part provided in the right direction from the lower end part of the passage 215.
  • the upper right end of the passage 217 is connected to a common channel 280 described later.
  • the reagent fixed amount flow path 230 includes a reagent holding unit 231, a reagent supply unit 232, a reagent guide unit 233, a reagent fixed amount unit 234, a passage 235, a reagent surplus portion 236, and a passage 237.
  • a lower end portion of the reagent introduction port 304 is connected to the upper left portion of the reagent fixed amount flow channel 230.
  • a reagent holding portion 231 that is a recess opening upward is provided at the lower right of the reagent introduction port 304.
  • a wall portion extending in the upper right direction from the reagent holding portion 231 is an inlet side wall portion 241. The inlet side wall 241 is located below the reagent introduction port 304.
  • the first reagent 82 can flow from the reagent introduction port 304 into the reagent fixed amount flow channel 230 by moving to the lower left along the inlet side wall portion 241. That is, the inlet side wall part 241 is provided between the reagent introduction port 304 and the reagent holding part 231 and is inclined with respect to the downward direction which is the fifth injection direction.
  • the fifth injection direction is a direction in which the capillary 404 is inserted into the reagent introduction port 304, in other words, a direction from the reagent introduction port 304 toward the reagent holding unit 231, that is, a downward direction.
  • the reagent holding part 231 is a part where the first reagent 82 that has flowed into the reagent fixed amount flow channel 230 is held.
  • a flow path inlet 240 communicating with the reagent supply unit 232 is provided at the upper right end of the inlet side wall 241.
  • the channel inlet 240 is an opening through which the first reagent 82 held in the reagent holding unit 231 flows into the reagent supply unit 232.
  • the reagent supply unit 232 is a channel that extends downward from the channel inlet 240.
  • the flow path inlet 240 is provided closer to the reagent introduction port 304 than the reagent holding part 231 in the fifth injection direction.
  • the flow path inlet 240 of the present embodiment is provided above the portion of the inlet side wall 241 where the lower end of the capillary 404 contacts.
  • the lower end of the reagent supply unit 232 is connected to a reagent guide unit 233 having a narrow channel.
  • a reagent quantitative unit 234 is provided below the reagent guide unit 233.
  • the reagent quantification unit 234 is a part that quantifies the first reagent 82, and is a recess that is recessed downward and to the left. From the part where the reagent guide unit 233 and the reagent quantitative unit 234 communicate with each other, the passage 235 extends to the lower left and the passage 237 extends to the upper right.
  • the passage 235 extends to the reagent surplus portion 236 provided below the reagent fixed amount portion 234.
  • the reagent surplus portion 236 is a portion in which the first reagent 82 overflowing from the reagent quantitative portion 234 is stored, and is a concave portion provided in the right direction from the lower end portion of the passage 235.
  • the upper right end of the passage 237 is connected to a common channel 280 described later.
  • the reagent fixed amount flow channel 250 includes a reagent holding unit 251, a reagent supply unit 252, a reagent guide unit 253, a reagent fixed amount unit 254, a channel 255, a reagent surplus unit 256, a channel 257, a capillary unit 262, and a connection channel 263.
  • the capillary portion 262 is provided at the upper left end portion of the reagent fixed amount flow channel 250 and extends vertically below the reagent introduction port 306.
  • a taper 268 is provided at the upper end of the capillary portion 262. Within the taper 268, the width of the channel in the left-right direction decreases toward the bottom.
  • the capillary portion 262 and the reagent introduction port 306 communicate with each other in the vertical direction via the taper 268.
  • a taper 269 is provided at the lower end of the capillary portion 262. Within the taper 269, the channel width in the left-right direction decreases downward.
  • the connection channel 263 extends downward from the lower end of the taper 269. Below the connection channel 263, a reagent holding part 251 which is a concave part opening upward is provided.
  • a protruding wall 264 that is a wall portion protruding from the lower end portion of the right wall of the connection channel 263 to the lower side of the channel inlet 260 is provided between the connection channel 263 and a channel inlet 260 described later. .
  • the second reagent 83 can flow into the reagent fixed amount flow channel 250 from the reagent introduction port 306 by moving downward along the taper 268. That is, the taper 268 is provided between the reagent introduction port 306 and the reagent holding part 251 and is inclined with respect to the downward direction which is the sixth injection direction.
  • the sixth injection direction is a direction in which the capillary 406 is inserted into the reagent introduction port 306, in other words, a direction from the reagent introduction port 306 toward the reagent holding unit 251, that is, a downward direction.
  • the capillary part 262 is a part that is provided between the reagent introduction port 306 and the reagent holding part 251 and holds the second reagent 83 flowing out from the capillary 406 housed in the reagent introduction port 306 by capillary force.
  • the connection channel 263 is a channel provided between the capillary part 262 and the reagent holding part 251. The reagent introduction port 306, the capillary part 262, and the connection channel 263 communicate with each other in the sixth injection direction.
  • the outer diameter L1 which is the length in the left-right direction of the capillary 406 is smaller than the opening width L2 in the left-right direction of the reagent introduction port 306.
  • the left and right flow path width L3 of the capillary portion 262 is smaller than the left and right opening width L2 of the reagent introduction port 306. That is, the cross section of the capillary portion 262 in the direction orthogonal to the sixth injection direction is smaller than the cross section of the capillary 406 in the direction orthogonal to the sixth injection direction, and further in the direction orthogonal to the sixth injection direction of the reagent inlet 306. Smaller than cross section.
  • the left and right channel width L4 of the connection channel 263 is larger than the outer diameter L1 which is the length in the left and right direction of the capillary 406, and larger than the left and right opening width L2 of the reagent introduction port 306. That is, the cross section of the reagent introduction port 306 in the direction orthogonal to the sixth injection direction is smaller than the cross section of the connection channel 263 in the direction orthogonal to the sixth injection direction.
  • the reagent holding unit 251 is a part where the second reagent 83 that has flowed into the reagent fixed amount flow channel 250 is held.
  • a wall portion extending in the upper right direction from the reagent holding portion 251 is an inlet side wall portion 261.
  • a flow path inlet 260 communicating with the reagent supply unit 252 is provided at the upper right end of the inlet side wall 261.
  • the flow path inlet 260 is an opening through which the second reagent 83 held in the reagent holding unit 251 flows into the reagent supply unit 252.
  • the reagent supply unit 252 is a channel that extends downward from the channel inlet 260.
  • the channel inlet 260 is provided closer to the reagent inlet 306 than the reagent holding part 251 in the sixth injection direction.
  • the channel inlet 260 of the present embodiment is provided above the lower end portion of the protruding wall 264.
  • the lower end of the reagent supply unit 252 is connected to a reagent guide unit 253 having a narrow channel.
  • a reagent quantitative unit 254 is provided below the reagent guide unit 253.
  • the reagent quantification unit 254 is a part that quantifies the second reagent 83, and is a recess that is recessed in the lower left direction.
  • a passage 255 extends to the lower left and a passage 257 extends to the upper right from a portion where the reagent guide unit 253 and the reagent quantitative unit 254 communicate with each other.
  • the passage 255 extends to the reagent surplus portion 256 provided below the reagent fixed amount portion 254.
  • the reagent surplus portion 256 is a portion in which the second reagent 83 overflowing from the reagent fixed amount portion 254 is stored, and is a concave portion provided in the right direction from the lower end portion of the passage 255.
  • the upper right end of the passage 257 is connected to a common channel 280 described later.
  • the common flow path 280 is a flow path that connects the passages 217, 237, and 257 and the measurement unit 290.
  • the common flow path 280 includes guide walls 281, 282, and 283.
  • the guide wall 281 is a wall portion provided on the right side of the passage 217 and extending in the lower right direction.
  • the guide wall 282 is a wall portion provided on the right side of the passage 237 and extending in the lower right direction.
  • the guide wall 283 is a wall portion provided on the right side of the passage 237 and extending downward to the measurement unit 290.
  • the measurement unit 290 is a concave portion provided in the lower right portion of the common flow path 280 and recessed downward.
  • the measurement unit 290 is a part where the liquid mixture 84 shown in FIG. 11 which is a liquid containing the specimen 81, the first reagent 82, and the second reagent 83 is stored and measured. When optical measurement to be described later is performed, measurement light is transmitted through the measurement unit 290.
  • the support shaft 46 extending from the L-shaped plate 60 is vertically connected to the center of the rear surface of the plate member 20 via a mounting holder (not shown). As the support shaft 46 rotates, the inspection chip 2 rotates around the support shaft 46. When the inspection chip 2 is in the steady state shown in FIGS. 3 and 4, the upper side 21 and the lower side 24 are orthogonal to the direction of gravity G, the right side 22 and the left side 23 are parallel to the direction of gravity G, and The left side portion 23 is disposed closer to the main shaft 57 than the right side portion 22.
  • the inspection apparatus 1 performs inspection by optical measurement by allowing the measurement light connecting the light source 71 and the optical sensor 72 to pass through the measurement units 190 and 290. .
  • the measurement units 190 and 290 are in a state of being aligned in the traveling direction of the measurement light. That is, the front-rear direction in which the measurement units 190 and 290 are arranged is parallel to the traveling direction of the measurement light in the optical measurement.
  • Example of inspection method> An inspection method using the inspection apparatus 1 and the inspection chip 2 will be described with reference to FIGS. 7 to 11, portions of the liquid introduction unit 300 and the liquid channel 200 that do not correspond to the liquid channel 100 in the front-rear direction are indicated by dotted lines.
  • the user inserts the capillary 401 holding the sample 61 into the opening 301A.
  • the lower end portion 401A which is the end portion in the first injection direction of the capillary 401 accommodated in the sample introduction port 301, is positioned by contacting the inclined surface 312.
  • the inclined surface 312 is a surface that is provided between the sample introduction port 301 and the sample holder 111 and is inclined with respect to the first injection direction.
  • the capillary 401 accommodated in the sample introduction port 301 is prevented from coming into contact with the inclined surface 312 and entering the sample holding unit 111. Therefore, the sample 61 flowing out from the positioned capillary 401 is likely to flow into the sample holding unit 111.
  • the sample 61 is more reliably held in the sample holding unit 111, the sample 61 is less likely to move to the flow channel inlet 120 when the capillary 401 is inserted into the sample introduction port 301. Therefore, the possibility that the sample 61 flows out to the sample holding unit 111 and further flows into the sample supply unit 112 via the flow path inlet 120 at an unintended timing is suppressed.
  • the intended timing that is, the appropriate timing is the timing at which the measurement operation shown in FIG.
  • the user inserts the capillary 402 in which the specimen 81 is held in the opening 302A.
  • the lower end portion 402 ⁇ / b> A that is the end portion of the capillary 402 accommodated in the sample introduction port 302 in the second injection direction is positioned by contacting the inclined surface 222.
  • the inclined surface 222 is a surface that is provided between the sample introduction port 302 and the sample holding unit 211 and is inclined with respect to the second injection direction.
  • the capillary 402 accommodated in the sample introduction port 302 is prevented from coming into contact with the inclined surface 222 and entering the sample holding unit 211. Accordingly, the sample 81 flowing out from the positioned capillary 402 is likely to flow into the sample holding unit 211.
  • the sample 81 since the sample 81 is more reliably held in the sample holding unit 211, the sample 81 is less likely to move to the flow channel inlet 220 when the capillary 402 is inserted into the sample introduction port 302. Therefore, the possibility that the sample 81 flows out to the sample holding unit 211 and further flows into the sample supply unit 212 via the flow path inlet 220 at an unintended timing is suppressed.
  • the user inserts the capillary 403 in which the first reagent 62 is held in the opening 303A.
  • the left lower end portion 403A which is the end portion in the third injection direction of the capillary 403 accommodated in the reagent introduction port 303, is positioned by contacting the inclined surface 314.
  • the inclined surface 314 is provided between the reagent introduction port 303 and the reagent holding unit 131 and is an inclined surface with respect to the third injection direction.
  • the capillary 403 accommodated in the reagent introduction port 303 is prevented from coming into contact with the inclined surface 314 and entering the reagent holding unit 131.
  • the first reagent 62 flowing out from the positioned capillary 403 is likely to flow into the reagent holding unit 131. Therefore, since the first reagent 62 is more reliably held in the reagent holding part 131, the first reagent 62 is less likely to move to the channel inlet 140 when the capillary 403 is inserted into the reagent introduction port 303. Therefore, the possibility that the first reagent 62 flows out to the reagent holding unit 131 and further flows into the reagent supply unit 132 through the flow path inlet 140 at an unintended timing is suppressed.
  • the user inserts the capillary 404 in which the first reagent 82 is held in the opening 304A.
  • the lower end 404A which is the end in the fourth injection direction of the capillary 404 accommodated in the reagent introduction port 304, is positioned by contacting the inlet side wall 241.
  • the inlet side wall portion 241 is a surface that is provided between the reagent introduction port 304 and the reagent holding portion 231 and is inclined with respect to the fourth injection direction.
  • the capillary 404 accommodated in the reagent introduction port 304 is prevented from coming into contact with the inlet side wall 241 and entering the reagent holding unit 231.
  • the first reagent 82 flowing out from the positioned capillary 404 is likely to flow into the reagent holding unit 231. Therefore, since the first reagent 82 is more reliably held in the reagent holding unit 231, the first reagent 82 is less likely to move to the channel inlet 240 when the capillary 404 is inserted into the reagent introduction port 304. Therefore, the possibility that the first reagent 82 flows out to the reagent holding unit 231 and further flows into the reagent supply unit 232 via the flow path inlet 240 at an unintended timing is suppressed.
  • the user inserts the capillary 405 in which the second reagent 63 is held in the opening 305A.
  • the lower end portion 405A which is the end portion in the fifth injection direction of the capillary 405 accommodated in the reagent introduction port 305, is positioned by contacting the inclined surface 316.
  • the inclined surface 316 is a surface that is provided between the reagent introduction port 305 and the reagent holding unit 151 and is inclined with respect to the fifth injection direction.
  • the capillary 405 accommodated in the reagent inlet 305 is prevented from coming into contact with the inclined surface 316 and entering the reagent holding unit 151.
  • the second reagent 63 flowing out from the positioned capillary 405 is likely to flow into the reagent holding unit 151. Therefore, since the second reagent 63 is more reliably held in the reagent holding part 151, the second reagent 63 is unlikely to move to the flow path inlet 160 when the capillary 405 is inserted into the reagent introduction port 305. Therefore, the possibility that the second reagent 63 flows out to the reagent holding unit 151 and further flows into the reagent supply unit 152 via the flow path inlet 160 at an unintended timing is suppressed.
  • the user inserts the capillary 406 in which the second reagent 83 is held in the opening 306A.
  • the cross section of the capillary portion 262 in the direction orthogonal to the sixth injection direction is smaller than the cross section of the capillary 406 in the direction orthogonal to the sixth injection direction. Therefore, the lower end portion 406A, which is the end portion in the sixth injection direction of the capillary 406 accommodated in the reagent introduction port 306, is positioned by contacting the taper 268.
  • the capillary 406 accommodated in the reagent introduction port 306 is prevented from coming into contact with the taper 268 and entering the reagent holding unit 251.
  • the second reagent 83 flowing out from the positioned capillary 406 tends to flow into the reagent holding unit 251. Therefore, since the second reagent 83 is more reliably held in the reagent holding unit 251, the second reagent 83 is unlikely to move to the flow path inlet 260 when the capillary 406 is inserted into the reagent introduction port 306. Therefore, the possibility that the second reagent 83 flows out to the reagent holding unit 251 and further flows into the reagent supply unit 252 via the flow path inlet 260 at an unintended timing is suppressed.
  • the taper 268 is a surface that is provided between the reagent introduction port 306 and the reagent holding unit 251 and is inclined with respect to the sixth injection direction.
  • the second reagent 83 that flows out from the capillary 406 flows smoothly into the capillary portion 262 along the taper 268. Therefore, since the second reagent 83 is more reliably held in the capillary portion 262, the second reagent 83 is unlikely to move to the flow path inlet 260 when the capillary 406 is inserted into the reagent inlet 306. Therefore, the possibility that the second reagent 83 flows out to the reagent holding unit 251 and further flows into the reagent supply unit 252 via the flow path inlet 260 at an unintended timing is suppressed.
  • the second reagent 83 supplied into the reagent introduction port 306 is sucked by the capillary force generated in the capillary part 262 and held in the capillary part 262. Therefore, when the capillary 406 is accommodated in the reagent introduction port 306, the second reagent 83 flowing out from the capillary 406 is prevented from flowing into the flow path inlet 260. Therefore, the possibility that the second reagent 83 flows out to the reagent holding unit 251 and further flows into the reagent supply unit 252 via the flow path inlet 260 at an unintended timing is suppressed.
  • the flow path width L3 that is a cross section in the direction orthogonal to the sixth injection direction of the capillary portion 262 is the opening width L2 that is a cross section in the direction orthogonal to the sixth injection direction of the reagent introduction port 306 and the first flow path 263. It is smaller than the channel width L4 which is a cross section in a direction orthogonal to the six injection directions. That is, among the opening width L2 of the reagent inlet 306, the flow path width L3 of the capillary section 262, and the flow path width L4 of the connection flow path 263, the flow path width L3 of the capillary section 262 is the smallest.
  • the capillary force generated in the capillary portion 262 is larger than the capillary force generated in the reagent introduction port 306 and the capillary force generated in the connection channel 263. Accordingly, the second reagent 83 flowing out from the capillary 406 is held in the capillary portion 262 in preference to the reagent introduction port 306 and the connection channel 263. Therefore, the possibility that the second reagent 83 flows out to the reagent holding unit 251 and further flows into the reagent supply unit 252 via the flow path inlet 260 at an unintended timing is suppressed.
  • the opening width L2 which is a cross section in the direction orthogonal to the sixth injection direction of the reagent introduction port 306 is smaller than the flow path width L4 which is a cross section in the direction orthogonal to the sixth injection direction of the connection flow path 263. That is, the opening width L2 of the reagent introduction port 306 is smaller than the channel width L4 of the connection channel 263. Therefore, the capillary force generated in the reagent introduction port 306 is larger than the capillary force generated in the connection channel 263. Therefore, the surplus second reagent 83 that cannot be held by the capillary portion 262 is held not in the connection channel 263 but in the reagent introduction port 306.
  • the surplus second reagent 83 is prevented from flowing from the connection channel 263 to the channel inlet 260.
  • the second reagent 83 flowing out from the capillary 406 is held on the reagent inlet 306 side with respect to the connection channel 263.
  • the possibility that the second reagent 83 flows into the reagent supply unit 252 via the flow path inlet 260 at an unintended timing is suppressed.
  • the inspection apparatus 1 can inspect two inspection chips 2 at the same time.
  • a procedure for inspecting one inspection chip 2 will be described below.
  • the steady state of the inspection chip 2 shown in FIGS. 3 and 4 is defined as a rotation angle of 0 degree
  • the state rotated 90 degrees counterclockwise from the steady state is defined as a rotation angle of 90 degrees.
  • the rotation controller 98 drives and controls the stepping motor 51, whereby the inspection chip 2 in a steady state rotates 90 degrees counterclockwise when viewed from the front.
  • the revolution controller 97 controls the spindle motor 35 to start driving the turntable 33.
  • the front direction of the test chip 2 is the direction of revolution.
  • the revolution controller 97 controls the spindle motor 35 to increase the rotation speed of the turntable 33. When the rotational speed reaches, for example, 3000 rpm, the spindle motor 35 maintains this rotational speed. Thereby, as shown in FIG.
  • the change in the liquid position in the liquid channel 100 will be described. Due to the action of the centrifugal force X, the sample 61 flows downward from the capillary 401 accommodated in the sample introduction port 301 shown in FIG.
  • An inclined surface 312 is provided that is inclined in a direction from the front surface 25 toward the rear surface 26 and communicates the front surface 25 side and the rear surface 26 side.
  • the specimen 61 flows from the specimen introduction port 301 into the specimen quantitative channel 110 by moving through the guide hole 311 along the inclined surface 312.
  • the sample 61 moves downward from the end 312 ⁇ / b> A of the inclined surface 312 and is held by the sample holding unit 111.
  • the sample 61 is more reliably held in the sample holding unit 111, the sample 61 is less likely to move to the flow channel inlet 120 when the capillary 401 is inserted into the sample introduction port 301. Therefore, the possibility that the sample 61 flows out to the sample holding unit 111 and further flows into the sample supply unit 112 via the flow path inlet 120 at an unintended timing is suppressed.
  • the flow channel inlet 120 is provided closer to the sample introduction port 301 than the sample holding unit 111 in the first injection direction from the sample introduction port 301 toward the sample holding unit 111.
  • the sample 61 flowing out from the capillary 401 accommodated in the sample introduction port 301 is held in the sample holding unit 111 before flowing into the flow path inlet 120. Therefore, the specimen 61 is unlikely to move to the flow path inlet 120 when the capillary 401 is inserted into the specimen introduction port 301.
  • the sample 61 flowing out from the capillary 401 can be moved from the sample holding unit 111 to the flow channel inlet 120 at an appropriate timing and can flow into the sample supply unit 112.
  • the possibility that the sample 61 flows into the sample supply unit 112 via the channel inlet 120 at an unintended timing is suppressed.
  • the flow path width L5 which is the width in the direction in which the front surface 25 and the rear surface 26 of the flow path inlet 120 face each other, is a flow that is the width in the direction in which the front surface 25 and the rear surface 26 of the specimen holder 111 face each other. It is smaller than the road width L6. Accordingly, when the sample 61 moves from the sample holding unit 111 to the flow channel inlet 120 side at an unintended timing, it is difficult for the sample 61 to pass through the flow channel inlet 120. As a result, the sample can be moved from the sample holding unit 111 to the flow path inlet 120 at an appropriate timing and can flow into the sample supply unit 112.
  • the first reagent 62 flows downward from the capillary 403 accommodated in the reagent introduction port 303 shown in FIG.
  • An inclined surface 314 that is inclined in a direction from the front surface 25 toward the rear surface 26 and communicates the front surface 25 side and the rear surface 26 side is provided.
  • the first reagent 62 flows through the guide hole 313 along the inclined surface 314 and flows into the reagent fixed amount flow path 130 from the reagent introduction port 303.
  • the first reagent 62 moves downward from the end 314 ⁇ / b> A of the inclined surface 314 and is held by the reagent holding unit 131.
  • the first reagent 62 is more reliably held in the reagent holding part 131, the first reagent 62 is less likely to move to the channel inlet 140 when the capillary 403 is inserted into the reagent introduction port 303. Therefore, the possibility that the first reagent 62 flows out to the reagent holding unit 131 and further flows into the reagent supply unit 132 through the flow path inlet 140 at an unintended timing is suppressed.
  • the flow path inlet 140 is provided closer to the reagent introduction port 303 than the reagent holding unit 131 in the third injection direction from the reagent introduction port 303 toward the reagent holding unit 131.
  • the first reagent 62 flowing out from the capillary 403 accommodated in the reagent introduction port 303 is held in the reagent holding unit 131 before flowing into the flow path inlet 140. Therefore, the first reagent 62 is difficult to move to the flow path inlet 140 when the capillary 403 is inserted into the reagent introduction port 303.
  • the user can move the first reagent 62 flowing out from the capillary 403 from the reagent holding unit 131 to the flow path inlet 140 at an appropriate timing and flow into the reagent supply unit 132.
  • the possibility that the first reagent 62 flows into the reagent supply unit 132 via the flow path inlet 140 at an unintended timing is suppressed.
  • the guide hole 313 is located at the lower left end which is the end of the reagent introduction port 303 in the third injection direction.
  • the imaginary line extending from the guide hole 313 toward the inlet side wall 141 indicates the imaginary direction K.
  • the virtual direction K is a virtual direction extending in parallel with the front surface 25 and the rear surface 26 from the end of the reagent introduction port 303 in the third injection direction and extending perpendicularly to the third injection direction.
  • the angle ⁇ formed between the guide hole 313 and the flow path inlet 140 is 90 degrees or less.
  • the first reagent 62 that has flowed out of the capillary 403 accommodated in the reagent introduction port 303 may move in the virtual direction K due to, for example, vibration of the test chip 2.
  • the angle ⁇ is 90 degrees or less
  • the first reagent 62 moved in the virtual direction K is guided to the reagent holding unit 131 provided on the side opposite to the flow path inlet 140 by the inlet side wall 141. Therefore, the first reagent 62 flowing out from the capillary 403 is suppressed from moving to the flow path inlet 140 beyond the inlet side wall portion 141.
  • the possibility that the first reagent 62 flows into the reagent supply unit 132 via the flow path inlet 140 at an unintended timing is suppressed.
  • the second reagent 63 flows downward from the capillary 405 accommodated in the reagent inlet 305 shown in FIG.
  • An inclined surface 316 that is inclined in a direction from the front surface 25 toward the rear surface 26 and that communicates the front surface 25 side and the rear surface 26 side is provided.
  • the second reagent 63 flows through the guide hole 315 along the inclined surface 316 and flows into the reagent fixed amount flow path 150 from the reagent introduction port 305.
  • the second reagent 63 moves downward from the end 316A of the inclined surface 316.
  • the second reagent 63 moves downward from the end portion 316A of the inclined surface 316 and is held by the reagent holding portion 151.
  • the second reagent 63 is more reliably held in the reagent holding part 151, the second reagent 63 is unlikely to move to the flow path inlet 160 when the capillary 405 is inserted into the reagent introduction port 305. Therefore, the possibility that the second reagent 63 flows out to the reagent holding unit 151 and further flows into the reagent supply unit 152 via the flow path inlet 160 at an unintended timing is suppressed.
  • a constricted portion 165 is provided. Since the narrow portion 165 has a small flow path width in the front-rear direction in which the front surface 25 and the rear surface 26 face each other, a capillary force is generated. The second reagent 63 moving downward from the end portion 316A is sucked by the capillary force generated in the narrowed portion 165 and guided to the reagent holding portion 151.
  • the second reagent 63 guided to the front surface 25 side by the inclined surface 316 flows into the reagent holding portion 151 by the capillary force generated in the narrowed portion 165.
  • the possibility that the second reagent 63 moved from the rear surface 26 side to the front surface 25 side flows into the reagent supply unit 152 through the flow path inlet 160 at an unintended timing is suppressed.
  • the flow channel inlet 160 is provided closer to the reagent introduction port 305 than the reagent holding unit 151 in the fifth injection direction from the reagent introduction port 305 toward the reagent holding unit 151.
  • the second reagent 63 flowing out from the capillary 405 accommodated in the reagent introduction port 305 is held in the reagent holding unit 151 before flowing into the flow path inlet 160. Therefore, the second reagent 63 is difficult to move to the flow path inlet 160 when the capillary 405 is inserted into the reagent inlet 305.
  • the user can move the second reagent 63 flowing out from the capillary 405 from the reagent holding unit 151 to the flow channel inlet 160 at an appropriate timing and flow into the reagent supply unit 152.
  • the possibility that the second reagent 63 flows into the reagent supply unit 152 via the flow path inlet 160 at an unintended timing is suppressed.
  • the lower part of the constriction part 165 is provided in the reagent holding part 151.
  • a capillary force resulting from the constriction 165 is also generated in the reagent holding unit 151.
  • the reagent holding unit 151 holds the second reagent 63 that has flowed out of the capillary 405 due to the capillary force resulting from the constriction 165. Accordingly, the second reagent 63 held by the reagent holding unit 151 is prevented from flowing out of the reagent holding unit 151 due to, for example, vibration of the test chip 2. As a result, the possibility that the second reagent 63 flows into the reagent supply unit 152 via the flow path inlet 160 at an unintended timing is suppressed.
  • the change of the liquid position in the liquid flow path 200 will be described. Due to the action of the centrifugal force X, the sample 81 flows downward from the capillary 402 accommodated in the sample introduction port 302 shown in FIG. The sample 81 flows into the sample determination channel 210 and moves to the lower right along the inclined surface 222. Since the inclined surface 222 is inclined toward the inlet side wall 221, the specimen 81 is guided toward the inlet side wall 221 by the inclined surface 222. The sample 81 moves to the lower left along the inlet side wall portion 221 and is held by the sample holding portion 211.
  • the inclined surface 222 guides the specimen 81 that has flowed out of the capillary 402 toward the inlet side wall portion 221 that guides the specimen 81 toward the specimen holding portion 211. Therefore, the possibility that the sample 81 flows into the sample supply unit 212 via the flow path inlet 220 at an unintended timing is suppressed.
  • the flow path inlet 220 is provided closer to the sample introduction port 302 than the sample holding unit 211 in the second injection direction from the sample introduction port 302 toward the sample holding unit 211.
  • the sample 81 flowing out from the capillary 402 accommodated in the sample introduction port 302 is held in the sample holding unit 211 before flowing into the flow path inlet 220. Therefore, the specimen 81 is unlikely to move to the flow path inlet 220 when the capillary 402 is inserted into the specimen introduction port 302.
  • the user can move the sample 81 flowing out from the capillary 402 from the sample holding unit 211 to the flow channel inlet 220 at an appropriate timing and flow into the sample supply unit 212.
  • the possibility that the sample 81 flows into the sample supply unit 212 via the flow path inlet 220 at an unintended timing is suppressed.
  • the first reagent 82 flows downward from the capillary 404 accommodated in the reagent introduction port 304 shown in FIG. 6 by the action of the centrifugal force X. As a result, the first reagent 82 flows into the reagent fixed amount flow channel 230, moves to the lower right along the inlet side wall portion 241, and is then held in the reagent holding portion 231.
  • the channel inlet 240 is provided closer to the reagent introduction port 304 than the reagent holding unit 231 in the fourth injection direction from the reagent introduction port 304 toward the reagent holding unit 231.
  • the first reagent 82 flowing out from the capillary 404 accommodated in the reagent introduction port 304 is held in the reagent holding unit 231 before flowing into the flow path inlet 240. Therefore, the first reagent 82 is unlikely to move to the flow path inlet 240 when the capillary 404 is inserted into the reagent inlet 304. As a result, the user can move the first reagent 82 flowing out from the capillary 404 from the reagent holding unit 231 to the flow path inlet 240 at an appropriate timing and flow into the reagent supply unit 232. As a result, the possibility that the first reagent 82 flows into the reagent supply unit 232 via the flow path inlet 240 at an unintended timing is suppressed.
  • the second reagent 83 held in the capillary part 262 flows downward by the action of the centrifugal force X.
  • the second reagent 83 moves downward via the connection channel 263 and is held by the reagent holding unit 251.
  • a protruding wall 264 is provided between the connection channel 263 and the channel inlet 260 so as to protrude below the channel inlet 260. Even when the second reagent 83 existing in the connection channel 263 moves to the channel inlet 260 side due to vibration of the test chip 2, for example, the protruding wall 264 prevents the second reagent 83 from flowing into the channel inlet 260. Is done.
  • the flow path inlet 260 is provided closer to the reagent inlet 306 than the reagent holder 251 in the sixth injection direction from the reagent inlet 306 toward the reagent holder 251.
  • the second reagent 83 flowing out from the capillary 406 accommodated in the reagent introduction port 306 is held in the reagent holding unit 251 before flowing into the flow path inlet 260. Therefore, the second reagent 83 is unlikely to move to the flow path inlet 260 when the capillary 406 is inserted into the reagent inlet 306.
  • the user can move the second reagent 83 flowing out of the capillary 406 from the reagent holding unit 251 to the flow path inlet 260 at an appropriate timing and flow into the reagent supply unit 252.
  • the possibility that the second reagent 83 flows into the reagent supply unit 252 via the flow path inlet 260 at an unintended timing is suppressed.
  • the rotation controller 98 drives and controls the stepping motor 51 based on an instruction from the CPU 91, so that the inspection chip 2 that is revolving is rotated 90 degrees clockwise as viewed from the front.
  • inspection chip 2 whose autorotation angle is 0 degree
  • a centrifugal force acts on the test chip 2 from the left side 23 toward the right side 22. Due to the action of the centrifugal force X, the position of the liquid changes in the inspection chip 2 as follows.
  • the change of the liquid position in the liquid flow path 100 and the liquid flow path 200 is demonstrated.
  • the sample 61 moves to the upper right along the inlet side wall 121 by the action of the centrifugal force X, and flows into the sample supply unit 112 through the channel inlet 120.
  • the first reagent 62 moves to the upper right along the inlet side wall portion 141 by the action of the centrifugal force X, and flows into the reagent supply portion 132 via the flow path inlet 140.
  • the second reagent 63 moves to the upper right along the inlet side wall portion 161 by the action of the centrifugal force X, and flows into the reagent supply portion 152 through the flow path inlet 160.
  • the sample quantification channel 210 the sample 81 moves to the upper right along the inlet side wall 221 by the action of the centrifugal force X, and flows into the sample supply unit 212 through the channel inlet 220.
  • the first reagent 82 moves to the upper right along the inlet side wall 241 by the action of the centrifugal force X, and flows into the reagent supply unit 232 through the flow channel inlet 240.
  • the second reagent 83 moves to the upper right along the inlet side wall portion 261 by the action of the centrifugal force X, and flows into the reagent supply portion 252 through the flow channel inlet 260.
  • the rotation controller 98 drives and controls the stepping motor 51 based on an instruction from the CPU 91, so that the inspection chip 2 that is revolving is rotated 90 degrees counterclockwise when viewed from the front.
  • times is revolved.
  • a centrifugal force acts on the inspection chip 2 from the upper side 21 toward the lower side 24. Due to the action of the centrifugal force X, the position of the liquid changes in the inspection chip 2 as follows.
  • the sample 61 is supplied to the sample quantification unit 114 via the sample guide unit 113 by the action of the centrifugal force X.
  • the surplus specimen 61 overflowing from the specimen quantification part 114 flows into the specimen surplus part 116 via the passage 115.
  • the sample 61 corresponding to the volume of the sample quantitative unit 114 remains in the sample quantitative unit 114.
  • the first reagent 62 is supplied to the reagent fixed amount section 134 via the reagent guide section 133 by the action of the centrifugal force X.
  • the surplus first reagent 62 overflowing from the reagent quantitative unit 134 flows into the reagent surplus unit 136 via the passage 135.
  • the first reagent 62 corresponding to the volume of the reagent quantitative unit 134 remains in the reagent quantitative unit 134.
  • the second reagent 63 is supplied to the reagent quantitative unit 154 through the reagent guide unit 153 by the action of the centrifugal force X.
  • the surplus second reagent 63 overflowing from the reagent quantification unit 154 flows into the reagent surplus unit 156 via the passage 155.
  • the second reagent 63 corresponding to the capacity of the reagent quantitative unit 154 remains in the reagent quantitative unit 154.
  • the sample 81 is supplied to the sample quantification unit 214 via the sample guide unit 213 by the action of the centrifugal force X.
  • the surplus sample 81 overflowing from the sample quantification unit 214 flows into the sample surplus unit 216 via the passage 215.
  • the sample 81 corresponding to the volume of the sample quantitative unit 214 remains in the sample quantitative unit 214.
  • the first reagent 82 is supplied to the reagent quantitative unit 234 via the reagent guide unit 233 by the action of the centrifugal force X.
  • the surplus first reagent 82 overflowing from the reagent quantitative unit 234 flows into the reagent surplus unit 236 via the passage 235.
  • the first reagent 82 corresponding to the volume of the reagent quantitative unit 234 remains in the reagent quantitative unit 234.
  • the second reagent 83 is supplied to the reagent quantitative unit 254 via the reagent guide unit 253 by the action of the centrifugal force X.
  • the surplus second reagent 83 overflowing from the reagent quantification unit 254 flows into the reagent surplus unit 256 via the passage 255.
  • the second reagent 83 corresponding to the capacity of the reagent quantitative unit 254 remains in the reagent quantitative unit 254.
  • the rotation controller 98 drives and controls the stepping motor 51 based on an instruction from the CPU 91, so that the inspection chip 2 that is revolving is rotated 90 degrees clockwise as viewed from the front.
  • inspection chip 2 whose autorotation angle is 0 degree
  • a centrifugal force acts on the test chip 2 from the left side 23 toward the right side 22. Due to the action of the centrifugal force X, the position of the liquid changes in the inspection chip 2 as follows.
  • the change of the liquid position in the liquid flow path 100 and the liquid flow path 200 is demonstrated.
  • the sample 61 remaining in the sample quantification unit 114 flows into the common channel 180 via the passage 117 by the action of the centrifugal force X.
  • the specimen 61 moves to the lower right along the guide wall 181, and further moves to the right to the guide wall 183.
  • the surplus specimen 61 that has flowed into the specimen surplus section 116 is held in the specimen surplus section 116.
  • the first reagent 62 remaining in the reagent fixed amount portion 134 flows into the common flow channel 180 through the passage 137 by the action of the centrifugal force X.
  • the first reagent 62 moves to the lower right along the guide wall 182, and further moves to the right to the guide wall 183.
  • the surplus first reagent 62 that has flowed into the reagent surplus portion 136 is held in the reagent surplus portion 136.
  • the second reagent 63 remaining in the reagent fixed amount portion 154 flows into the common flow channel 180 through the passage 157 by the action of the centrifugal force X, and moves rightward to the guide wall 183.
  • the surplus second reagent 63 that has flowed into the reagent surplus portion 156 is held in the reagent surplus portion 156.
  • the specimen 61, the first reagent 62, and the second reagent 63 that have moved to the guide wall 183 are mixed by the action of the centrifugal force X, and a mixed liquid 64 is generated.
  • the sample 81 remaining in the sample quantification unit 214 flows into the common channel 280 via the passage 217 by the action of the centrifugal force X.
  • the specimen 81 moves to the lower right along the guide wall 281, and further moves to the right to the guide wall 283.
  • the surplus specimen 81 that has flowed into the specimen surplus part 216 is held in the specimen surplus part 216.
  • the first reagent 82 remaining in the reagent fixed amount portion 234 flows into the common flow channel 280 through the passage 237 by the action of the centrifugal force X.
  • the first reagent 82 moves to the lower right along the guide wall 282, and further moves to the right to the guide wall 283.
  • the surplus first reagent 82 that has flowed into the reagent surplus portion 236 is held in the reagent surplus portion 236.
  • the second reagent 83 remaining in the reagent fixed amount portion 254 flows into the common flow channel 280 through the passage 257 by the action of the centrifugal force X and moves to the right to the guide wall 283.
  • the surplus second reagent 83 that has flowed into the reagent surplus portion 256 is held in the reagent surplus portion 256.
  • the specimen 81, the first reagent 82, and the second reagent 83 that have moved to the guide wall 283 are mixed by the action of the centrifugal force X, and a mixed solution 84 is generated.
  • the revolution controller 97 drives the spindle motor 35 to decelerate.
  • the revolution controller 97 stops the spindle motor 35 after rotating the inspection chip 2 to the angle of the measurement position.
  • inspection chip 2 whose autorotation angle is 0 degree
  • Gravity G acts on the inspection chip 2 from the upper side 21 toward the lower side 24.
  • the mixed solution 64 is moved and stored in the measurement unit 190 by the action of gravity G.
  • the mixed solution 84 is moved and stored in the measurement unit 290 by the action of gravity G.
  • the measurement units 190 and 290 are arranged in the traveling direction of the measurement light emitted by the light source 71.
  • the measurement controller 99 emits the light source 71 based on an instruction from the CPU 91
  • the measurement light passes through the mixed solution 64 stored in the measurement unit 190 and the mixed solution 84 stored in the measurement unit 290.
  • the CPU 91 measures the mixed liquids 64 and 84 based on the change amount of the measurement light received by the optical sensor 72. In the present embodiment, different components are measured from the mixed liquids 64 and 84 based on the wavelength of the light transmitted through the mixed liquids 64 and 84.
  • the mixed solution 64 is a mixed solution for measuring glucose and reacts with a light component having a wavelength of 340 nm.
  • the mixed solution 84 is a mixed solution for measuring total cholesterol and reacts with a light component having a wavelength of 650 nm.
  • the optical sensor 72 detects a light component having a wavelength of 340 nm through a bandpass filter (not shown).
  • the CPU 91 measures glucose from the mixed solution 64 based on the light component having a wavelength of 340 nm detected by the optical sensor 72.
  • the optical sensor 72 detects a light component having a wavelength of 650 nm through a bandpass filter (not shown).
  • the CPU 91 measures total cholesterol from the mixed solution 84 based on the light component with a wavelength of 650 nm detected by the optical sensor 72.
  • the CPU 91 displays the measurement result on the display 96.
  • the measuring method of the liquid mixtures 64 and 84 is not restricted to an optical measurement, Other methods may be used.
  • the sample introduction ports 301 and 302 and the reagent introduction ports 303, 304, 305, and 306 respectively correspond to “introduction ports” of the present disclosure.
  • the sample holding units 111 and 211 and the reagent holding units 131, 151, 231, and 251 correspond to the “holding unit” of the present disclosure.
  • the sample supply units 112 and 212 and the reagent supply units 132, 152, 232, and 252 each correspond to a “fluid circuit” of the present disclosure.
  • the inclined surfaces 222, 312, 314, 316, the inlet side wall portion 241, and the taper 268 each correspond to an “inclined surface” of the present disclosure.
  • the rear surface 26 corresponds to a “first surface” of the present disclosure.
  • the front surface 25 corresponds to a “second surface” of the present disclosure.
  • the liquid channels provided in the front surface 25 are not limited to the three channels of the sample quantification channel 110 and the reagent quantification channels 130 and 150, and may be one channel or a plurality of channels.
  • the liquid channels provided on the rear surface 26 are not limited to the three channels of the sample quantification channel 210 and the reagent quantification channels 230 and 250, and may be one channel or a plurality of channels.
  • a liquid channel may be provided only on one of the front surface 25 and the rear surface 26.
  • the inlets of the liquid inlet 300 are not limited to the six inlets of the specimen inlets 301 and 302 and the reagent inlets 303, 304, 305, and 306.
  • One inlet may supply liquid to two or more liquid flow paths.
  • the introduction port of the liquid introduction unit 300 may be provided on the front surface 25 or may be provided on both the front surface 25 and the rear surface 26.
  • At least one of the liquid channels provided on the front surface 25 or the rear surface 26 may have any one of the sample quantitative channels 110 and 210 and the reagent quantitative channels 130, 150, 230, and 250.
  • the test chip 2 has the sample quantitative channel 110, the reagent quantitative channel 130, and the sample inlet 301 formed on the front surface 25 and the reagent inlet 303 formed on the rear surface 26.
  • the sample determination channel 110 may be supplied with the sample 61 via the inclined surface 312, and the sample holding unit 111 may have a constriction 165.
  • the capillary 403 may be positioned by an inclined surface 222 inclined toward the inlet side wall portion 141.
  • the specimens 61 and 81 are not limited to blood.
  • the specimens 61 and 81 may be, for example, a liquid containing components such as plasma, blood cells, bone marrow, urine, vaginal tissue, epithelial tissue, tumor, semen, saliva, or foodstuff.
  • the first reagent 62 and 82 and the second reagent 63 and 83 may be appropriately changed according to the specimens 61 and 81 and the inspection purpose.
  • the inspection chip 2 may not include the sheets 27 and 28.
  • the inspection chip 2 in which the liquid flow paths 100 and 200 and the liquid introduction part 300 are directly formed inside the plate member 20 may be used.
  • Test chip 25 Front surface 26 Rear surface 61, 81 Sample 62, 82 First reagent 63, 83 Second reagent 111, 211 Sample holding unit 112, 212

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

Provided is a test chip that allows a specimen or reagent, which is retained inside a liquid introduction means by capillary forces, to flow into a fluid circuit at an appropriate time. A specimen introduction port that accommodates capillaries inserted from an opening (301A) is provided to the test chip (2). A specimen holding part (111), which holds a specimen, is provided to the specimen introduction port, on the opposite side to the opening (301A). The specimen held by the specimen holding part (111) is able to flow into a specimen supply part (112), whereby the specimen is guided towards a measurement part (190), via a flow passage inlet (120). The flow passage inlet (120) is provided closer to the specimen introduction port than the specimen holding part (111) in the direction of the specimen holding part (111) from the specimen introduction port.

Description

検査チップInspection chip
 本開示は、検査対象物の化学的、医学的、又は生物学的な検査を行うための検査チップに関する。 The present disclosure relates to a test chip for performing a chemical, medical, or biological test of a test object.
 従来、検体又は試薬を毛管力により内部に保持する液体導入手段を挿入可能な検査チップが知られている。例えば特許文献1に開示のマイクロ流体チップは、キャピラリを収容するための収容部を有する。液体試料を取り込むことができるキャピラリを収容部に挿入するための開口部が、マイクロ流体チップの上面又は下面に形成されている。収容部は、マイクロ流体チップ内に形成された流体回路と接続されている。収容部に収容されたキャピラリに遠心力が付与されると、液体試料がキャピラリから流出して流体回路内に導入される。 Conventionally, a test chip capable of inserting a liquid introducing means for holding a specimen or a reagent inside by a capillary force is known. For example, the microfluidic chip disclosed in Patent Document 1 has a housing portion for housing a capillary. An opening for inserting a capillary capable of taking a liquid sample into the housing is formed on the upper surface or the lower surface of the microfluidic chip. The container is connected to a fluid circuit formed in the microfluidic chip. When a centrifugal force is applied to the capillary housed in the housing portion, the liquid sample flows out of the capillary and is introduced into the fluid circuit.
特開2009-14450号公報JP 2009-14450 A
 上記のようにキャピラリを挿入可能なマイクロチップでは、収容部に対してキャピラリを挿入する方向の下流側に、流体回路の入口が設けられていることがある。この場合、ユーザがキャピラリを収容部に挿入した場合に、キャピラリの内部に保持されている検体又は試薬の一部が、流体回路の入口に流入する可能性がある。つまり、意図しないタイミングにおいて、検体又は試薬が流体回路に流入する可能性がある。この場合、例えば検体又は試薬が他の液体と正確に混合されず、検査精度が悪化する可能性があった。 As described above, in a microchip into which a capillary can be inserted, an inlet of a fluid circuit may be provided on the downstream side in the direction of inserting the capillary with respect to the accommodating portion. In this case, when the user inserts the capillary into the container, a part of the specimen or reagent held in the capillary may flow into the inlet of the fluid circuit. That is, there is a possibility that the specimen or reagent flows into the fluid circuit at an unintended timing. In this case, for example, the specimen or reagent may not be accurately mixed with other liquids, and the inspection accuracy may deteriorate.
 本開示の目的は、液体導入手段の内部に毛管力により保持されている検体又は試薬が、適切なタイミングにおいて流体回路に流入可能な検査チップを提供することである。 An object of the present disclosure is to provide a test chip in which a specimen or a reagent held by a capillary force inside a liquid introduction unit can flow into a fluid circuit at an appropriate timing.
 本開示の一態様の検査チップは、検体又は試薬を毛管力により内部に保持する液体導入手段を挿入可能な開口を有し、前記開口から挿入された前記液体導入手段が収容される部位である導入口と、前記導入口に対して前記開口とは反対側に設けられ、前記導入口に収容された前記液体導入手段から流出する前記検体又は前記試薬が保持される部位である保持部と、前記検体又は前記試薬が含まれる液体が測定される部位に向けて、前記検体又は前記試薬が案内される流路である流体回路と、前記保持部に保持された前記検体又は前記試薬が、前記流体回路に流入される開口である流路入口とを備え、前記流路入口は、前記導入口から前記保持部に向かう方向である注入方向において、前記保持部よりも前記導入口側に設けられることを特徴とする。 The inspection chip according to one aspect of the present disclosure has an opening into which a liquid introduction unit that holds a specimen or a reagent inside by a capillary force can be inserted, and is a portion in which the liquid introduction unit inserted from the opening is accommodated. An introduction port, and a holding unit which is provided on the opposite side of the opening with respect to the introduction port, and is a portion where the sample or the reagent flowing out from the liquid introduction means accommodated in the introduction port is held; A fluid circuit that is a flow path for guiding the specimen or the reagent toward a site where the liquid containing the specimen or the reagent is measured, and the specimen or the reagent held in the holding section are A channel inlet that is an opening that flows into the fluid circuit, and the channel inlet is provided closer to the inlet than the holder in an injection direction that is a direction from the inlet to the holder. That features To.
 上記態様に係る検査チップは、開口から挿入された液体導入手段を収容する導入口が設けられる。導入口に対して開口とは反対側に、検体又は試薬が保持される保持部が設けられる。保持部に保持された検体又は試薬は、検体又は試薬が測定部位に向けて案内される流体回路に、流路入口を介して流入可能である。流路入口は、注入方向において保持部よりも導入口側に設けられる。これにより、導入口に収容された液体導入手段から流出する検体又は試薬は、流路入口に流入する前に保持部に保持される。その結果、液体導入手段から流出する検体又は試薬は、適切なタイミングにおいて保持部から流路入口に移動して、流体回路に流入することができる。 The inspection chip according to the above aspect is provided with an introduction port for accommodating the liquid introduction means inserted from the opening. A holding part for holding a specimen or a reagent is provided on the side opposite to the opening with respect to the introduction port. The specimen or reagent held in the holding section can flow into the fluid circuit through which the specimen or reagent is guided toward the measurement site via the flow path inlet. The flow path inlet is provided closer to the introduction port than the holding part in the injection direction. Thereby, the specimen or reagent flowing out from the liquid introduction means accommodated in the introduction port is held in the holding unit before flowing into the flow path inlet. As a result, the specimen or reagent flowing out from the liquid introduction means can move from the holding unit to the flow path inlet at an appropriate timing and flow into the fluid circuit.
 前記導入口と前記保持部との間に設けられ、前記注入方向に対して傾斜する面である傾斜面を備えてもよい。 A tilted surface that is provided between the introduction port and the holding portion and that is tilted with respect to the injection direction may be provided.
 前記検査チップは、第一面、及び前記第一面と対向する第二面を有し、前記導入口は、前記第一面側に設けられ、前記保持部、前記流体回路、及び前記流路入口は、前記第二面側に設けられ、前記傾斜面は、前記第一面から前記第二面に向かう方向に傾斜して、前記第一面側と前記第二面側とを連通してもよい。 The inspection chip has a first surface and a second surface opposite to the first surface, the introduction port is provided on the first surface side, the holding portion, the fluid circuit, and the flow path The inlet is provided on the second surface side, and the inclined surface is inclined in a direction from the first surface toward the second surface so that the first surface side and the second surface side communicate with each other. Also good.
 前記導入口と前記保持部との間に設けられ、前記導入口に収容された前記液体導入手段から流出する前記検体又は前記試薬を、毛管力により保持する部位である毛管部を備えてもよい。 A capillary part that is provided between the introduction port and the holding unit and that holds the sample or the reagent flowing out from the liquid introduction unit accommodated in the introduction port by capillary force may be provided. .
 前記毛管部の前記導入口側の端部に設けられ、前記注入方向に対して傾斜するテーパを備えてもよい。 A taper that is provided at an end of the capillary portion on the inlet side and is inclined with respect to the injection direction may be provided.
 前記導入口と前記毛管部とは、前記注入方向に連通し、前記毛管部の前記注入方向と直交する方向の断面は、前記液体導入手段の前記注入方向と直交する方向の断面よりも小さくてもよい。 The introduction port and the capillary section communicate with the injection direction, and a cross section of the capillary section in a direction orthogonal to the injection direction is smaller than a cross section of the liquid introduction means in a direction orthogonal to the injection direction. Also good.
 前記毛管部の前記保持部側の端部と前記保持部との間に設けられた、前記検体又は前記試薬の流路である接続流路を備え、前記導入口、前記毛管部、及び前記接続流路は、前記注入方向に連通し、前記毛管部の前記注入方向と直交する方向の断面は、前記導入口の前記注入方向と直交する方向の断面よりも小さく、前記導入口の前記注入方向と直交する方向の断面は、前記接続流路の前記注入方向と直交する方向の断面よりも小さくてもよい。 Provided between an end of the capillary part on the holding part side and the holding part, the connecting part being a flow path for the sample or the reagent, the introduction port, the capillary part, and the connection The flow path communicates with the injection direction, and the cross section of the capillary section in the direction orthogonal to the injection direction is smaller than the cross section of the introduction port in the direction orthogonal to the injection direction, and the injection direction of the introduction port The cross section in the direction perpendicular to the cross section may be smaller than the cross section in the direction perpendicular to the injection direction of the connection channel.
 前記保持部から前記流路入口に向けて延びる壁部である入口側壁部を備え、前記傾斜面は、前記入口側壁部に向かって傾斜してもよい。 The inlet side wall part which is a wall part extended toward the said flow path inlet from the said holding | maintenance part may be provided, and the said inclined surface may incline toward the said inlet side wall part.
 前記保持部は、前記検体又は前記試薬を毛管力により保持してもよい。 The holding unit may hold the specimen or the reagent by capillary force.
 前記傾斜面の前記第二面側の端部よりも前記保持部側に設けられ、前記第二面において前記第一面とは反対方向に向かって突出する段差又は前記第二面において前記反対方向に向かって傾斜するテーパである狭窄部を備えてもよい。 A step that is provided closer to the holding portion than the end of the inclined surface on the second surface side and projects in the second surface in the opposite direction to the first surface, or the opposite direction in the second surface. You may provide the constriction part which is a taper which inclines toward.
 前記検査チップは、第一面、及び前記第一面と対向する第二面を有し、前記流路入口の前記第一面及び前記第二面の対向する方向の幅は、前記保持部の前記第一面及び第二面の対向する方向の幅よりも小さくてもよい。 The inspection chip has a first surface and a second surface facing the first surface, and a width of the flow path inlet in a direction in which the first surface and the second surface are opposed is a width of the holding portion. It may be smaller than the width of the first surface and the second surface in the facing direction.
 前記検査チップは、第一面、及び前記第一面と対向する第二面を有し、前記保持部から前記流路入口に向けて延びる壁部である入口側壁部を備え、前記導入口の前記注入方向の端部から、前記第一面及び前記第二面と平行に延び、且つ、前記注入方向に対して垂直に延びる仮想的な方向は、仮想方向であり、前記仮想方向と前記入口側壁部とのなす角のうち、前記導入口の前記注入方向の端部と前記流路入口との間に形成される角は、90度以下であってもよい。 The inspection chip has a first surface and a second surface opposite to the first surface, and includes an inlet side wall portion that is a wall portion extending from the holding portion toward the flow channel inlet, A virtual direction extending from the end of the injection direction in parallel with the first surface and the second surface and extending perpendicular to the injection direction is a virtual direction, and the virtual direction and the inlet Of the angles formed with the side wall portions, the angle formed between the end portion of the introduction port in the injection direction and the flow channel inlet may be 90 degrees or less.
検査装置1及び制御装置90を含む検査システム3の構成を示す図である。It is a figure which shows the structure of the test | inspection system 3 containing the test | inspection apparatus 1 and the control apparatus 90. FIG. 検査チップ2の右上側から見た斜視図である。It is the perspective view seen from the upper right side of the test | inspection chip 2. FIG. 検査チップ2の正面図である。It is a front view of the test | inspection chip 2. FIG. 検査チップ2の背面図である。It is a rear view of the test | inspection chip 2. FIG. 図3及び図4のI-I線矢視方向断面図である。FIG. 5 is a cross-sectional view taken along the line II of FIG. 3 and FIG. 4. キャピラリ401~406が挿入された検査チップ2の背面拡大図である。FIG. 3 is an enlarged view of the back surface of the inspection chip 2 into which capillaries 401 to 406 are inserted. 自転角度90度において公転される検査チップ2の正面図である。It is a front view of the test | inspection chip 2 revolved in 90 autorotation angles. 図7の後、自転角度0度において公転される検査チップ2の正面図である。It is a front view of the test | inspection chip 2 revolved in the autorotation angle 0 degree after FIG. 図8の後、自転角度90度において公転される検査チップ2の正面図である。It is a front view of the test | inspection chip 2 revolved in 90 autorotation angles after FIG. 図9の後、自転角度0度において公転される検査チップ2の正面図である。It is a front view of the test | inspection chip 2 revolved in the autorotation angle 0 degree after FIG. 測定動作後の検査チップ2の正面図である。It is a front view of the test | inspection chip 2 after measurement operation | movement.
 本開示を具体化した実施の形態について、図面を参照して説明する。尚、図1は、検査システム3を構成する検査装置1の平面及び制御装置90の内部の機能ブロックを示している。 Embodiments embodying the present disclosure will be described with reference to the drawings. FIG. 1 shows a plane of the inspection apparatus 1 constituting the inspection system 3 and functional blocks inside the control apparatus 90.
<1.検査システム3の概略構造>
 本開示の実施形態を説明する。図1を参照して、検査システム3の概略構造について説明する。本実施形態の検査システム3は、液体である検体及び試薬を収容可能な検査チップ2と、検査チップ2を用いて検査を行う検査装置1とを含む。検査装置1が検査チップ2から離間した垂直軸線A1を中心として検査チップ2を回転させると、遠心力が検査チップ2に作用する。検査装置1が水平軸線A2を中心に検査チップ2を回転させると、検査チップ2に作用する遠心力の方向である遠心方向が切り替えられる。尚、本実施形態の検査システム3及び検査装置1は、特開2012-78107号公報に記載されているように周知の構造であるので、以下の説明では、検査装置1の構造の概略について説明する。
<1. Schematic structure of inspection system 3>
An embodiment of the present disclosure will be described. A schematic structure of the inspection system 3 will be described with reference to FIG. The inspection system 3 of the present embodiment includes an inspection chip 2 that can store a sample and a reagent that are liquids, and an inspection apparatus 1 that performs an inspection using the inspection chip 2. When the inspection device 1 rotates the inspection chip 2 around the vertical axis A <b> 1 separated from the inspection chip 2, centrifugal force acts on the inspection chip 2. When the inspection apparatus 1 rotates the inspection chip 2 around the horizontal axis A2, the centrifugal direction, which is the direction of the centrifugal force acting on the inspection chip 2, is switched. Note that the inspection system 3 and the inspection apparatus 1 of the present embodiment have a known structure as described in JP 2012-78107 A, and therefore, in the following description, an outline of the structure of the inspection apparatus 1 will be described. To do.
<2.検査装置1の構造>
 図1を参照して、検査装置1の構造について説明する。以下の説明では、図1の上方、下方、右方、左方、紙面手前側、及び紙面奥側を、それぞれ、検査装置1の前方、後方、右方、左方、上方、及び下方とする。本実施形態では、垂直軸線A1の方向は検査装置1の上下方向であり、水平軸線A2の方向は、検査チップ2が垂直軸線A1を中心として回転される際の速度の方向である。なお、図1は検査装置1の上部筐体30の天板が取り除かれた状態を示す。
<2. Structure of the inspection apparatus 1>
The structure of the inspection apparatus 1 will be described with reference to FIG. In the following description, the upper, lower, right, left, front side, and back side of FIG. 1 are defined as the front, rear, right, left, upper, and lower sides of the inspection apparatus 1, respectively. . In the present embodiment, the direction of the vertical axis A1 is the vertical direction of the inspection apparatus 1, and the direction of the horizontal axis A2 is the direction of the speed when the inspection chip 2 is rotated about the vertical axis A1. FIG. 1 shows a state where the top plate of the upper housing 30 of the inspection apparatus 1 is removed.
 図1に示すように、検査装置1は、上部筐体30、下部筐体31、上板32、ターンテーブル33、角度変更機構34、及び制御装置90を備える。ターンテーブル33は、後述する上板32の上側に回転可能に設けられた円盤である。検査チップ2は、ターンテーブル33の上方に保持される。角度変更機構34は、ターンテーブル33に設けられた駆動機構である。この角度変更機構34は、水平軸線A2を中心に検査チップ2を各々回転させる。上部筐体30は、後述する上板32に固定されており、検査チップ2に対して光学測定を行う測定部7が内部に設けられている。制御装置90は、検査装置1の各種処理を制御するコントローラである。 As shown in FIG. 1, the inspection apparatus 1 includes an upper housing 30, a lower housing 31, an upper plate 32, a turntable 33, an angle changing mechanism 34, and a control device 90. The turntable 33 is a disk rotatably provided on the upper side of an upper plate 32 described later. The inspection chip 2 is held above the turntable 33. The angle changing mechanism 34 is a drive mechanism provided on the turntable 33. The angle changing mechanism 34 rotates the inspection chip 2 around the horizontal axis A2. The upper housing 30 is fixed to an upper plate 32 described later, and a measurement unit 7 that performs optical measurement on the inspection chip 2 is provided inside. The control device 90 is a controller that controls various processes of the inspection device 1.
 下部筐体31の概略構造を説明する。下部筐体31は、枠部材を組み合わせた箱状のフレーム構造を有する。下部筐体31の上面には、長方形の板材である上板32が設けられている。下部筐体31の内部には、垂直軸線A1を中心にターンテーブル33を回転させる駆動機構が、次のように設けられている。 The schematic structure of the lower housing 31 will be described. The lower housing 31 has a box-shaped frame structure in which frame members are combined. An upper plate 32 that is a rectangular plate material is provided on the upper surface of the lower housing 31. A drive mechanism that rotates the turntable 33 around the vertical axis A1 is provided in the lower housing 31 as follows.
 下部筐体31内の左方寄りに、ターンテーブル33を回転させるための駆動力を供給する主軸モータ35が設置されている。主軸モータ35の軸36は、上方に突出しており、プーリ37が固定されている。下部筐体31の中央部には、下部筐体31の内部から上方に延びる垂直な主軸57が設けられている。主軸57は、上板32を貫通して、下部筐体31の上側に突出している。主軸57の上端部は、ターンテーブル33の中央部に接続されている。 A spindle motor 35 that supplies a driving force for rotating the turntable 33 is installed on the left side of the lower housing 31. A shaft 36 of the main shaft motor 35 protrudes upward, and a pulley 37 is fixed. A vertical main shaft 57 extending upward from the inside of the lower housing 31 is provided at the center of the lower housing 31. The main shaft 57 passes through the upper plate 32 and protrudes above the lower housing 31. The upper end portion of the main shaft 57 is connected to the center portion of the turntable 33.
 主軸57は、上板32の直下に設けられた図示しない支持部材により、回転自在に保持されている。支持部材の下側では、主軸57にプーリ38が固定されている。プーリ37とプーリ38とに亘って、ベルト39が掛け渡されている。主軸モータ35が軸36を回転させると、プーリ37、ベルト39、及びプーリ38を介して駆動力が主軸57に伝達される。このとき、主軸57の回転に連動して、ターンテーブル33が主軸57を中心に回転する。 The main shaft 57 is rotatably held by a support member (not shown) provided immediately below the upper plate 32. A pulley 38 is fixed to the main shaft 57 below the support member. A belt 39 is stretched over the pulley 37 and the pulley 38. When the main shaft motor 35 rotates the shaft 36, the driving force is transmitted to the main shaft 57 via the pulley 37, the belt 39, and the pulley 38. At this time, the turntable 33 rotates around the main shaft 57 in conjunction with the rotation of the main shaft 57.
 下部筐体31内の右方寄りに、下部筐体31の内部において上下方向に延びる図示しないガイドレールが設けられている。図示しないT型プレートは、ガイドレールに沿って下部筐体31内において上下方向に移動可能である。 A guide rail (not shown) extending in the vertical direction inside the lower housing 31 is provided on the right side in the lower housing 31. A T-shaped plate (not shown) is movable in the vertical direction in the lower housing 31 along the guide rail.
 先述の主軸57は、内部が中空の筒状体である。図示しない内軸は、主軸57の内部において上下方向に移動可能な軸である。内軸の上端部は、主軸57内を貫通してラックギア43に接続されている。T型プレートの左端部には、図示しない軸受が設けられている。軸受の内部では、内軸の下端部が回転自在に保持される。 The above-described main shaft 57 is a hollow cylindrical body. An inner shaft (not shown) is a shaft that can move in the vertical direction inside the main shaft 57. The upper end portion of the inner shaft passes through the main shaft 57 and is connected to the rack gear 43. A bearing (not shown) is provided at the left end of the T-shaped plate. Inside the bearing, the lower end portion of the inner shaft is rotatably held.
 T型プレートの前方には、T型プレートを上下動させるためのステッピングモータ51が固定されている。ステッピングモータ51の軸58は後方、すなわち図1では下方側に向けて突出している。軸58の先端には、図示しない円盤状のカム板が固定されている。カム板の後側の面には、図示しない円柱状の突起が設けられている。突起の先端部は、図示しない溝部に挿入されている。突起は、溝部内を摺動可能である。ステッピングモータ51が軸58を回転させると、カム板の回転に連動して突起が上下動する。このとき、溝部に挿入されている突起に連動して、T型プレートがガイドレールに沿って上下動する。 A stepping motor 51 for moving the T-shaped plate up and down is fixed in front of the T-shaped plate. The shaft 58 of the stepping motor 51 protrudes rearward, that is, downward in FIG. A disc-shaped cam plate (not shown) is fixed to the tip of the shaft 58. A cylindrical projection (not shown) is provided on the rear surface of the cam plate. The tip of the protrusion is inserted into a groove (not shown). The protrusion can slide in the groove. When the stepping motor 51 rotates the shaft 58, the protrusion moves up and down in conjunction with the rotation of the cam plate. At this time, the T-shaped plate moves up and down along the guide rail in conjunction with the protrusion inserted in the groove.
 角度変更機構34の詳細構造を説明する。角度変更機構34は、ターンテーブル33の上面に固定された一対のL型プレート60を有する。各L型プレート60は、ターンテーブル33の中心近傍に固定された基部から上方に延び、且つ、その上端部がターンテーブル33の径方向外側に向けて延びている。一対のL型プレート60の間には、内軸に固定された図示しないラックギア43が設けられている。ラックギア43は、上下方向に長い金属製の板状部材であり、両端面にギアが各々刻まれている。 The detailed structure of the angle changing mechanism 34 will be described. The angle changing mechanism 34 has a pair of L-shaped plates 60 fixed to the upper surface of the turntable 33. Each L-shaped plate 60 extends upward from a base portion fixed in the vicinity of the center of the turntable 33, and its upper end portion extends outward in the radial direction of the turntable 33. A rack gear 43 (not shown) fixed to the inner shaft is provided between the pair of L-shaped plates 60. The rack gear 43 is a metal plate-like member that is long in the vertical direction, and gears are respectively carved on both end faces.
 各L型プレート60の延設方向の先端側では、ギア45を有する水平な支軸46が回転自在に軸支されている。支軸46は図示外の装着用ホルダを介して検査チップ2に固定されている。このため、ギア45の回転に連動して検査チップ2も支軸46を中心に回転する。ギア45とラックギア43との間には、L型プレート60により図示略の水平軸線を中心に回転自在に支持されたピニオンギア44が介在している。ピニオンギア44は、ギア45及びラックギア43にそれぞれ噛合している。ラックギア43の上下動に連動して、ピニオンギア44、及びギア45がそれぞれ従動回転し、ひいては検査チップ2が支軸46を中心に回転する。 A horizontal support shaft 46 having a gear 45 is rotatably supported at the distal end side in the extending direction of each L-shaped plate 60. The support shaft 46 is fixed to the inspection chip 2 via a mounting holder (not shown). For this reason, the inspection chip 2 also rotates around the support shaft 46 in conjunction with the rotation of the gear 45. Between the gear 45 and the rack gear 43, a pinion gear 44 supported by an L-shaped plate 60 so as to be rotatable about a horizontal axis (not shown) is interposed. The pinion gear 44 meshes with the gear 45 and the rack gear 43, respectively. In conjunction with the vertical movement of the rack gear 43, the pinion gear 44 and the gear 45 are driven to rotate, and the inspection chip 2 rotates about the support shaft 46.
 本実施形態では、主軸モータ35がターンテーブル33を回転駆動するのに伴って、検査チップ2が垂直軸である主軸57を中心に回転して、検査チップ2に遠心力が付与される。検査チップ2の垂直軸線A1を中心とした回転を、公転と呼ぶ。一方、ステッピングモータ51が内軸を上下動させるのに伴って、検査チップ2が水平軸である支軸46を中心に回転して、検査チップ2に作用する遠心力の方向が相対変化する。検査チップ2の水平軸線A2を中心とした回転を、自転と呼ぶ。 In this embodiment, as the main shaft motor 35 rotates and drives the turntable 33, the inspection chip 2 rotates around the main shaft 57, which is a vertical axis, and centrifugal force is applied to the inspection chip 2. The rotation around the vertical axis A1 of the inspection chip 2 is referred to as revolution. On the other hand, as the stepping motor 51 moves the inner shaft up and down, the inspection chip 2 rotates about the support shaft 46 which is a horizontal axis, and the direction of the centrifugal force acting on the inspection chip 2 changes relatively. The rotation around the horizontal axis A2 of the inspection chip 2 is called autorotation.
 T型プレートが可動範囲の最下端まで下降した状態では、ラックギア43も可動範囲の最下端まで下降する。このとき、検査チップ2は、自転角度が0度の定常状態になる。また、T型プレートが可動範囲の最上端まで上昇した状態では、ラックギア43も可動範囲の最上端まで上昇する。このとき、検査チップ2は、定常状態から水平軸線A2を中心に180度回転した状態になる。つまり、本実施形態では検査チップ2が自転可能な角度幅は、自転角度0度~180度である。 When the T plate is lowered to the lowermost end of the movable range, the rack gear 43 is also lowered to the lowermost end of the movable range. At this time, the inspection chip 2 is in a steady state where the rotation angle is 0 degree. Further, in the state where the T-shaped plate is raised to the uppermost end of the movable range, the rack gear 43 is also raised to the uppermost end of the movable range. At this time, the test | inspection chip 2 will be in the state rotated 180 degree | times centering on the horizontal axis line A2 from the steady state. That is, in this embodiment, the angular width that the test chip 2 can rotate is the rotation angle of 0 degrees to 180 degrees.
 上部筐体30の詳細構造を説明する。図1に示すように、上部筐体30は、枠部材を組み合わせた箱状のフレーム構造を有し、上板32の左部上側に設置されている。より詳細には、上部筐体30は、ターンテーブル33の回転中心にある主軸57からみて、検査チップ2が回転される範囲の外側に設けられている。 The detailed structure of the upper housing 30 will be described. As shown in FIG. 1, the upper housing 30 has a box-like frame structure in which frame members are combined, and is installed on the upper left side of the upper plate 32. More specifically, the upper housing 30 is provided outside the range in which the inspection chip 2 is rotated as viewed from the main shaft 57 at the rotation center of the turntable 33.
 上部筐体30の内部に設けられた測定部7は、測定光を発光する光源71と、光源71から発せられた測定光を検出する光センサ72とを有する。光源71及び光センサ72は、検査チップ2の回転範囲の外側において、ターンテーブル33の前後両側に配置されている。本実施形態では、検査チップ2の公転可能範囲のうちで主軸57の左側位置が、検査チップ2に測定光が照射される測定位置である。検査チップ2が測定位置にある場合、光源71と光センサ72とを結ぶ測定光が、検査チップ2の表面に対して略垂直に交差する。 The measurement unit 7 provided in the upper housing 30 includes a light source 71 that emits measurement light, and an optical sensor 72 that detects the measurement light emitted from the light source 71. The light source 71 and the optical sensor 72 are disposed on both the front and rear sides of the turntable 33 outside the rotation range of the inspection chip 2. In the present embodiment, the position on the left side of the main shaft 57 in the reciprocable range of the inspection chip 2 is the measurement position at which the inspection chip 2 is irradiated with the measurement light. When the inspection chip 2 is at the measurement position, the measurement light connecting the light source 71 and the optical sensor 72 intersects the surface of the inspection chip 2 substantially perpendicularly.
<3.制御装置90の電気的構成>
 図1を参照して、制御装置90の電気的構成について説明する。制御装置90は、検査装置1の主制御を司るCPU91と、各種データを一時的に記憶するRAM92と、制御プログラムを記憶したROM93とを有する。CPU91には、ユーザが制御装置90に対する指示を入力するための操作部94と、各種データ、及びプログラムを記憶するハードディスク装置95と、各種情報を表示するディスプレイ96とが接続されている。制御装置90としては、パーソナルコンピュータを用いてもよいし、専用の制御装置を用いてもよい。
<3. Electrical configuration of control device 90>
The electrical configuration of the control device 90 will be described with reference to FIG. The control device 90 includes a CPU 91 that performs main control of the inspection device 1, a RAM 92 that temporarily stores various data, and a ROM 93 that stores a control program. Connected to the CPU 91 are an operation unit 94 for a user to input instructions to the control device 90, a hard disk device 95 for storing various data and programs, and a display 96 for displaying various information. As the control device 90, a personal computer may be used, or a dedicated control device may be used.
 CPU91には、公転コントローラ97、自転コントローラ98、及び測定コントローラ99が接続されている。公転コントローラ97は、主軸モータ35を回転駆動させる制御信号を主軸モータ35に送信することにより、検査チップ2の公転を制御する。自転コントローラ98は、ステッピングモータ51を回転駆動させる制御信号をステッピングモータ51に送信することにより、検査チップ2の自転を制御する。測定コントローラ99は、測定部7を駆動することにより、検査チップ2の光学測定を実行する。詳細には、測定コントローラ99は、光源71の発光、及び光センサ72の光検出を実行させる制御信号を、光源71及び光センサ72に送信する。CPU91が公転コントローラ97、自転コントローラ98及び測定コントローラ99を制御する。 The revolution controller 97, the rotation controller 98, and the measurement controller 99 are connected to the CPU 91. The revolution controller 97 controls the revolution of the inspection chip 2 by transmitting a control signal for rotating the spindle motor 35 to the spindle motor 35. The rotation controller 98 controls the rotation of the inspection chip 2 by transmitting a control signal for rotating the stepping motor 51 to the stepping motor 51. The measurement controller 99 performs optical measurement of the inspection chip 2 by driving the measurement unit 7. Specifically, the measurement controller 99 transmits a control signal for executing light emission of the light source 71 and light detection of the optical sensor 72 to the light source 71 and the optical sensor 72. The CPU 91 controls the revolution controller 97, the rotation controller 98 and the measurement controller 99.
<4.検査チップ2の構造>
 図2~図6を参照して、本実施形態に係る検査チップ2の詳細構造を説明する。以下の説明では、図2の上方、下方、左下方、右上方、右下方、及び左上方を、それぞれ、検査チップ2の上方、下方、左方、右方、前方、及び後方とする。
<4. Structure of inspection chip 2>
The detailed structure of the test chip 2 according to the present embodiment will be described with reference to FIGS. In the following description, the upper, lower, lower left, upper right, lower right, and upper left in FIG. 2 are the upper, lower, left, right, front, and rear of the test chip 2, respectively.
 図2に示すように、検査チップ2は一例として前方から見た場合に正方形状であり、所定の厚みを有する透明な合成樹脂の板材20を主体とする。板材20の前面25は、透明の合成樹脂の薄板から構成されたシート27により封止されている。板材20の後面26は、透明の合成樹脂の薄板から構成されたシート28により封止されている。シート27,28は、図2以外では図示を省略している。 As shown in FIG. 2, the inspection chip 2 has a square shape when viewed from the front as an example, and mainly includes a transparent synthetic resin plate 20 having a predetermined thickness. The front surface 25 of the plate member 20 is sealed with a sheet 27 made of a transparent synthetic resin thin plate. The rear surface 26 of the plate 20 is sealed with a sheet 28 made of a transparent synthetic resin thin plate. The sheets 27 and 28 are not shown except for FIG.
 図3に示すように、本実施形態の検査チップ2は、前面25及び後面26の両面に、検体又は試薬の流路が形成されている。板材20とシート27との間には、検査チップ2に封入された液体が流動可能な液体流路100が形成されている。液体流路100は、板材20の前面25側に所定深さに形成された凹部であり、板材20の厚み方向である前後方向と直交する方向に延びる。図4に示すように、板材20とシート28との間には、検査チップ2に液体を注入するための液体導入部300と、検査チップ2に注入された液体が流動可能な液体流路200とが形成されている。液体導入部300及び液体流路200は、板材20の後面26側に所定深さに形成された凹部であり、板材20の厚み方向である前後方向と直交する方向に延びる。 As shown in FIG. 3, the test chip 2 of the present embodiment has a sample or reagent flow path formed on both the front surface 25 and the rear surface 26. Between the plate member 20 and the sheet 27, a liquid flow path 100 is formed in which the liquid sealed in the inspection chip 2 can flow. The liquid flow path 100 is a recess formed at a predetermined depth on the front surface 25 side of the plate material 20 and extends in a direction orthogonal to the front-rear direction, which is the thickness direction of the plate material 20. As shown in FIG. 4, between the plate member 20 and the sheet 28, a liquid introduction part 300 for injecting a liquid into the inspection chip 2 and a liquid flow path 200 through which the liquid injected into the inspection chip 2 can flow. And are formed. The liquid introduction part 300 and the liquid flow path 200 are recesses formed at a predetermined depth on the rear surface 26 side of the plate material 20 and extend in a direction orthogonal to the front-rear direction, which is the thickness direction of the plate material 20.
<4-1.液体流路100の詳細構造>
 図3を参照して、液体流路100の詳細構造を説明する。液体流路100は、検体定量流路110、試薬定量流路130,150、共通流路180、及び測定部190を含む。検体定量流路110は、検査チップ2の左部に、試薬定量流路130は、検体定量流路110の右側に、試薬定量流路150は、試薬定量流路130の右側、且つ検査チップ2の右部に設けられている。測定部190は、検査チップ2の右下部に設けられている。共通流路180は、検体定量流路110及び試薬定量流路130,150と、測定部190との間に設けられる。
<4-1. Detailed Structure of Liquid Channel 100>
The detailed structure of the liquid channel 100 will be described with reference to FIG. The liquid flow channel 100 includes a sample quantitative flow channel 110, reagent quantitative flow channels 130 and 150, a common flow channel 180, and a measurement unit 190. The sample quantitative channel 110 is on the left side of the test chip 2, the reagent quantitative channel 130 is on the right side of the sample quantitative channel 110, the reagent quantitative channel 150 is on the right side of the reagent quantitative channel 130, and the test chip 2. It is provided in the right part of. The measurement unit 190 is provided in the lower right part of the inspection chip 2. The common flow channel 180 is provided between the sample quantitative flow channel 110 and the reagent quantitative flow channels 130 and 150 and the measurement unit 190.
 検体定量流路110は、検体保持部111、検体供給部112、検体案内部113、検体定量部114、通路115、検体余剰部116、及び通路117を含む。検体定量流路110の左上部には、板材20を前後方向に貫通する案内穴311が形成されている。案内穴311の下部には、後面26と前面25とを連通する面である傾斜面312が設けられている。後述するが、検体61は傾斜面312に沿って案内穴311を移動することにより、図4に示す検体導入口301から検体定量流路110に流入可能である。 The sample quantification channel 110 includes a sample holding unit 111, a sample supply unit 112, a sample guide unit 113, a sample quantification unit 114, a channel 115, a sample surplus unit 116, and a channel 117. A guide hole 311 that penetrates the plate member 20 in the front-rear direction is formed in the upper left portion of the specimen fixed amount flow channel 110. Below the guide hole 311, an inclined surface 312 that is a surface that communicates the rear surface 26 and the front surface 25 is provided. As will be described later, the specimen 61 can flow into the specimen quantitative channel 110 from the specimen inlet 301 shown in FIG. 4 by moving through the guide hole 311 along the inclined surface 312.
 傾斜面312の前面25側の端部は、端部312Aである。端部312Aよりも下方に、上方に開口する凹部である検体保持部111が設けられている。検体保持部111は、案内穴311を介して検体定量流路110に流入した検体61が保持される部位である。検体保持部111から右上方向に延びる壁部は、入口側壁部121である。入口側壁部121の右上端部には、検体供給部112に連通する流路入口120が設けられている。流路入口120は、検体保持部111に保持された検体61が検体供給部112に流入される開口である。流路入口120の上下方向に亘って、前面25から前方に突出する段差が設けられている。そのため、流路入口120の前後方向の流路幅は、検体保持部111の前後方向の流路幅よりも小さい。 The end on the front surface 25 side of the inclined surface 312 is an end 312A. Below the end 312 </ b> A, a specimen holding unit 111 that is a recess opening upward is provided. The sample holding unit 111 is a part where the sample 61 that has flowed into the sample fixed amount flow channel 110 through the guide hole 311 is held. A wall portion extending in the upper right direction from the specimen holding portion 111 is an inlet side wall portion 121. A flow path inlet 120 that communicates with the sample supply unit 112 is provided at the upper right end of the inlet side wall 121. The channel inlet 120 is an opening through which the sample 61 held in the sample holding unit 111 flows into the sample supply unit 112. A step that protrudes forward from the front surface 25 is provided across the vertical direction of the flow path inlet 120. Therefore, the channel width in the front-rear direction of the channel inlet 120 is smaller than the channel width in the front-rear direction of the specimen holding unit 111.
 検体供給部112は、流路入口120から下方向に延びる流路である。流路入口120は、第一注入方向において検体保持部111よりも検体導入口301側に設けられる。第一注入方向は、検体導入口301に対してキャピラリ401が挿入される方向であり、換言すると検体導入口301から検体保持部111に向かう方向であり、すなわち下方向である。本実施形態の流路入口120は、案内穴311及び傾斜面312よりも上側に設けられる。 The specimen supply unit 112 is a flow path that extends downward from the flow path inlet 120. The flow path inlet 120 is provided closer to the sample inlet 301 than the sample holder 111 in the first injection direction. The first injection direction is a direction in which the capillary 401 is inserted into the sample introduction port 301. In other words, the first injection direction is a direction from the sample introduction port 301 toward the sample holding unit 111, that is, a downward direction. The flow path inlet 120 of this embodiment is provided above the guide hole 311 and the inclined surface 312.
 検体供給部112の下端部は、流路が狭く形成された検体案内部113に接続する。検体案内部113の下方には、検体定量部114が設けられている。検体定量部114は、検体61を定量する部位であり、左下方に凹む凹部である。検体案内部113と検体定量部114とが連通する部位から、通路115が左下方に延び、通路117が右上方に延びている。通路115は、検体定量部114の下方に設けられた検体余剰部116まで延びている。検体余剰部116は、検体定量部114から溢れ出た検体61が貯留される部位であり、通路115の下端部から右方向に設けられた凹部である。通路117の右上方の端部は、後述する共通流路180に繋がっている。 The lower end of the sample supply unit 112 is connected to a sample guide unit 113 having a narrow channel. Below the sample guide unit 113, a sample quantitative unit 114 is provided. The specimen quantification unit 114 is a part that quantifies the specimen 61, and is a recess that is recessed in the lower left. From the part where the sample guide unit 113 and the sample determination unit 114 communicate with each other, the passage 115 extends to the lower left and the passage 117 extends to the upper right. The passage 115 extends to the sample surplus part 116 provided below the sample determination unit 114. The specimen surplus part 116 is a part where the specimen 61 overflowing from the specimen quantification part 114 is stored, and is a concave part provided in the right direction from the lower end part of the passage 115. The upper right end of the passage 117 is connected to a common channel 180 described later.
 試薬定量流路130は、試薬保持部131、試薬供給部132、試薬案内部133、試薬定量部134、通路135、試薬余剰部136、及び通路137を含む。試薬定量流路130の左上部には、板材20を前後方向に貫通する案内穴313が形成されている。案内穴313の下部には、後面26と前面25とを連通する面である傾斜面314が設けられている。後述するが、第一試薬62は傾斜面314に沿って案内穴313を移動することにより、図4に示す試薬導入口303から試薬定量流路130に流入可能である。 The reagent fixed amount flow path 130 includes a reagent holding unit 131, a reagent supply unit 132, a reagent guide unit 133, a reagent fixed amount unit 134, a passage 135, a reagent surplus portion 136, and a passage 137. A guide hole 313 that penetrates the plate member 20 in the front-rear direction is formed in the upper left portion of the reagent fixed amount flow path 130. An inclined surface 314 that is a surface that communicates the rear surface 26 and the front surface 25 is provided below the guide hole 313. As will be described later, the first reagent 62 can flow into the reagent quantitative flow channel 130 from the reagent inlet 303 shown in FIG. 4 by moving through the guide hole 313 along the inclined surface 314.
 傾斜面314の前面25側の端部は、端部314Aである。端部314Aよりも下方に、上方に開口する凹部である試薬保持部131が設けられている。試薬保持部131は、案内穴313を介して試薬定量流路130に流入した第一試薬62が保持される部位である。試薬保持部131から右上方向に延びる壁部は、入口側壁部141である。入口側壁部141の右上端部には、試薬供給部132に連通する流路入口140が設けられている。流路入口140は、試薬保持部131に保持された第一試薬62が試薬供給部132に流入される開口である。試薬供給部132は、流路入口140から下方向に延びる流路である。流路入口140は、第二注入方向において試薬保持部131よりも試薬導入口303側に設けられる。第二注入方向は、試薬導入口303に対してキャピラリ403が挿入される方向であり、換言すると試薬導入口303から試薬保持部131に向かう方向であり、すなわち左下方向である。本実施形態の流路入口140は、案内穴313及び傾斜面314よりも上側に設けられる。 The end on the front surface 25 side of the inclined surface 314 is an end 314A. Below the end 314A, there is provided a reagent holding part 131 which is a recess opening upward. The reagent holding part 131 is a part that holds the first reagent 62 that has flowed into the reagent fixed amount flow path 130 via the guide hole 313. A wall portion extending in the upper right direction from the reagent holding portion 131 is an inlet side wall portion 141. A flow path inlet 140 communicating with the reagent supply unit 132 is provided at the upper right end of the inlet side wall 141. The flow path inlet 140 is an opening through which the first reagent 62 held in the reagent holding unit 131 flows into the reagent supply unit 132. The reagent supply unit 132 is a channel extending downward from the channel inlet 140. The channel inlet 140 is provided closer to the reagent inlet 303 than the reagent holding part 131 in the second injection direction. The second injection direction is the direction in which the capillary 403 is inserted into the reagent introduction port 303, in other words, the direction from the reagent introduction port 303 toward the reagent holding unit 131, that is, the lower left direction. The channel inlet 140 of the present embodiment is provided above the guide hole 313 and the inclined surface 314.
 入口側壁部141は、先述の入口側壁部121及び後述の入口側壁部161と比べて、検査チップ2の上下方向に対する傾斜角度が小さい。一例として、入口側壁部121及び入口側壁部161の上下方向に対する傾斜角度は30度であるのに対し、入口側壁部141の上下方向に対する傾斜角度は10度である。図4に示す後述の入口側壁部221,241,261の上下方向に対する傾斜角度は、入口側壁部121,161と同様に30度である。 The inlet side wall 141 has a smaller inclination angle with respect to the vertical direction of the inspection chip 2 than the above-described inlet side wall 121 and the inlet side wall 161 described later. As an example, the inclination angle of the inlet side wall 121 and the inlet side wall 161 with respect to the vertical direction is 30 degrees, while the inclination angle of the inlet side wall 141 with respect to the vertical direction is 10 degrees. The inclination angle with respect to the vertical direction of the inlet side wall portions 221, 241, 261 described later shown in FIG.
 試薬供給部132の下端部は、流路が狭く形成された試薬案内部133に接続する。試薬案内部133の下方には、試薬定量部134が設けられている。試薬定量部134は、第一試薬62を定量する部位であり、左下方に凹む凹部である。試薬案内部133と試薬定量部134とが連通する部位から、通路135が左下方に延び、通路137が右上方に延びている。通路135は、試薬定量部134の下方に設けられた試薬余剰部136まで延びている。試薬余剰部136は、試薬定量部134から溢れ出た第一試薬62が貯留される部位であり、通路135の下端部から右方向に設けられた凹部である。通路137の右上方の端部は、後述する共通流路180に繋がっている。 The lower end of the reagent supply unit 132 is connected to a reagent guide unit 133 having a narrow channel. A reagent quantitative unit 134 is provided below the reagent guide unit 133. The reagent quantification unit 134 is a part that quantifies the first reagent 62, and is a recess that is recessed in the lower left direction. A passage 135 extends to the lower left and a passage 137 extends to the upper right from a portion where the reagent guide 133 and the reagent quantitative unit 134 communicate with each other. The passage 135 extends to the reagent surplus portion 136 provided below the reagent fixed amount portion 134. The reagent surplus part 136 is a part in which the first reagent 62 overflowing from the reagent quantitative part 134 is stored, and is a concave part provided in the right direction from the lower end part of the passage 135. The upper right end of the passage 137 is connected to a common channel 180 described later.
 試薬定量流路150は、試薬保持部151、試薬供給部152、試薬案内部153、試薬定量部154、通路155、試薬余剰部156、及び通路157を含む。試薬定量流路150の左上部には、板材20を前後方向に貫通する案内穴315が形成されている。案内穴315の下部には、後面26と前面25とを連通する面である傾斜面316が設けられている。後述するが、第二試薬63は傾斜面316に沿って案内穴315を移動することにより、図4に示す試薬導入口305から試薬定量流路150に流入可能である。 The reagent quantitative flow path 150 includes a reagent holding part 151, a reagent supply part 152, a reagent guide part 153, a reagent quantitative part 154, a passage 155, a reagent surplus part 156, and a passage 157. A guide hole 315 that penetrates the plate member 20 in the front-rear direction is formed in the upper left portion of the reagent fixed amount flow path 150. Under the guide hole 315, an inclined surface 316 that is a surface that connects the rear surface 26 and the front surface 25 is provided. As will be described later, the second reagent 63 can flow into the reagent fixed amount flow path 150 from the reagent introduction port 305 shown in FIG. 4 by moving through the guide hole 315 along the inclined surface 316.
 傾斜面316の前面25側の端部は、端部316Aである。端部316Aよりも下方に、上方に開口する凹部である試薬保持部151が設けられている。試薬保持部151は、案内穴315を介して試薬定量流路150に流入した第二試薬63が保持される部位である。試薬保持部151から右上方向に延びる壁部は、入口側壁部161である。入口側壁部161の右上端部には、試薬供給部152に連通する流路入口160が設けられている。流路入口160は、試薬保持部151に保持された第二試薬63が試薬供給部152に流入される開口である。試薬供給部152は、流路入口160から下方向に延びる流路である。流路入口160は、第三注入方向において試薬保持部151よりも試薬導入口305側に設けられる。第三注入方向は、試薬導入口305に対してキャピラリ405が挿入される方向であり、換言すると試薬導入口305から試薬保持部151に向かう方向であり、すなわち下方向である。本実施形態の流路入口160は、案内穴315及び傾斜面316よりも上側に設けられる。 The end on the front surface 25 side of the inclined surface 316 is an end 316A. A reagent holding portion 151 that is a recess opening upward is provided below the end portion 316A. The reagent holding unit 151 is a part that holds the second reagent 63 that has flowed into the reagent fixed amount flow path 150 through the guide hole 315. The wall portion extending from the reagent holding portion 151 in the upper right direction is the inlet side wall portion 161. A flow path inlet 160 communicating with the reagent supply unit 152 is provided at the upper right end of the inlet side wall 161. The channel inlet 160 is an opening through which the second reagent 63 held in the reagent holding unit 151 flows into the reagent supply unit 152. The reagent supply unit 152 is a channel that extends downward from the channel inlet 160. The channel inlet 160 is provided closer to the reagent inlet 305 than the reagent holding part 151 in the third injection direction. The third injection direction is a direction in which the capillary 405 is inserted into the reagent introduction port 305, in other words, a direction from the reagent introduction port 305 toward the reagent holding unit 151, that is, a downward direction. The channel inlet 160 of the present embodiment is provided above the guide hole 315 and the inclined surface 316.
 傾斜面316の前面25側の端部316Aよりも試薬保持部151側に、狭窄部165が設けられている。狭窄部165は、図2に示すように、前面25において前方向に突出する段差である。この段差により、狭窄部165が設けられている部分の前後方向の流路幅は、狭窄部165が設けられていない部分よりも狭い。狭窄部165は、端部316Aの下方位置165Aから試薬保持部151の下端部151Aに亘って設けられている。狭窄部165は、前面25において前方向に傾斜するテーパでもよい。 A narrowed portion 165 is provided closer to the reagent holding portion 151 than the end portion 316A on the front surface 25 side of the inclined surface 316. As shown in FIG. 2, the narrowed portion 165 is a step that protrudes forward in the front surface 25. Due to this step, the flow path width in the front-rear direction of the portion where the narrowed portion 165 is provided is narrower than the portion where the narrowed portion 165 is not provided. The narrowed portion 165 is provided from the lower position 165A of the end portion 316A to the lower end portion 151A of the reagent holding portion 151. The narrowed portion 165 may be a taper inclined forward in the front surface 25.
 試薬供給部152の下端部は、流路が狭く形成された試薬案内部153に接続する。試薬案内部153の下方には、試薬定量部154が設けられている。試薬定量部154は、第二試薬63を定量する部位であり、左下方に凹む凹部である。試薬案内部153と試薬定量部154とが連通する部位から、通路155が左下方に延び、通路157が右上方に延びている。通路155は、試薬定量部154の下方に設けられた試薬余剰部156まで延びている。試薬余剰部156は、試薬定量部154から溢れ出た第二試薬63が貯留される部位であり、通路155の下端部から右方向に設けられた凹部である。通路157の右上方の端部は、後述する共通流路180に繋がっている。 The lower end of the reagent supply unit 152 is connected to a reagent guide unit 153 having a narrow channel. A reagent quantitative unit 154 is provided below the reagent guide unit 153. The reagent quantification unit 154 is a part that quantifies the second reagent 63, and is a recess that is recessed downward to the left. A passage 155 extends to the lower left and a passage 157 extends to the upper right from a portion where the reagent guide unit 153 and the reagent quantitative unit 154 communicate with each other. The passage 155 extends to a reagent surplus portion 156 provided below the reagent fixed amount portion 154. The reagent surplus part 156 is a part in which the second reagent 63 overflowing from the reagent quantitative part 154 is stored, and is a concave part provided in the right direction from the lower end part of the passage 155. The upper right end of the passage 157 is connected to a common channel 180 described later.
 共通流路180は、通路117,137,157と測定部190とを接続する流路である。共通流路180は、案内壁181,182,183を含む。案内壁181は、通路117の右側に設けられた、右下方向に延びる壁部である。案内壁182は、通路137の右側に設けられた、右下方向に延びる壁部である。案内壁183は、通路137の右側に設けられた、測定部190まで下方向に延びる壁部である。測定部190は、共通流路180の右下部に設けられた、下方に凹む凹部である。測定部190は、検体61、第一試薬62、及び第二試薬63が含まれる液体である図11に示す混合液64が貯留及び測定される部位である。後述する光学測定が行われる際には、測定光が測定部190に透過される。 The common flow path 180 is a flow path that connects the passages 117, 137, and 157 and the measurement unit 190. The common flow path 180 includes guide walls 181, 182 and 183. The guide wall 181 is a wall portion provided on the right side of the passage 117 and extending in the lower right direction. The guide wall 182 is a wall portion provided on the right side of the passage 137 and extending in the lower right direction. The guide wall 183 is a wall provided on the right side of the passage 137 and extending downward to the measurement unit 190. The measurement unit 190 is a concave portion provided in the lower right portion of the common channel 180 and recessed downward. The measurement unit 190 is a part where the liquid mixture 64 shown in FIG. 11, which is a liquid containing the specimen 61, the first reagent 62, and the second reagent 63, is stored and measured. When optical measurement to be described later is performed, measurement light is transmitted through the measurement unit 190.
<4-2.液体導入部300の詳細構造>
 図4~図6を参照して、液体導入部300の詳細構造を説明する。図5は、試薬導入口305に収容されたキャピラリ405を仮想線で示している。図6は、キャピラリ401~406が収容された検査チップ2の後面26の上側部分を拡大して表している。図4に示すように、液体導入部300は、検体導入口301,302、及び試薬導入口303,304,305,306を含む。
<4-2. Detailed Structure of Liquid Introducing Unit 300>
The detailed structure of the liquid introduction unit 300 will be described with reference to FIGS. FIG. 5 shows the capillaries 405 accommodated in the reagent introduction port 305 with phantom lines. FIG. 6 is an enlarged view of the upper portion of the rear surface 26 of the inspection chip 2 in which the capillaries 401 to 406 are accommodated. As shown in FIG. 4, the liquid introduction unit 300 includes sample introduction ports 301 and 302 and reagent introduction ports 303, 304, 305, and 306.
 図6に示すように、検体導入口301は、後面26の左上部に設けられ、上辺部21から上下方向における検査チップ2の略中心まで下方に延びている。検体導入口301の上端部は、上辺部21に形成された開口301Aである。開口301Aは、キャピラリ401を挿入可能である。検体導入口301は、開口301Aから挿入されたキャピラリ401が収容される部位である。キャピラリ401は、検体61を取り込むことができる、例えばガラス製の中空管であり、検体61を毛管力により内部に保持する。 As shown in FIG. 6, the sample introduction port 301 is provided at the upper left part of the rear surface 26 and extends downward from the upper side portion 21 to the approximate center of the test chip 2 in the vertical direction. The upper end portion of the sample introduction port 301 is an opening 301 </ b> A formed in the upper side portion 21. The capillary 301 can be inserted into the opening 301A. The sample introduction port 301 is a part in which the capillary 401 inserted from the opening 301A is accommodated. The capillary 401 is a hollow tube made of, for example, glass that can take in the specimen 61, and holds the specimen 61 inside by capillary force.
 検体導入口302は、後面26において検体導入口301の右側に設けられ、上辺部21から上下方向における検査チップ2の略中心まで下方に延びている。検体導入口302の上端部は、上辺部21に形成された開口302Aである。開口302Aは、キャピラリ402を挿入可能である。検体導入口302は、開口302Aから挿入されたキャピラリ402が収容される部位である。キャピラリ402は、検体81を取り込むことができる、例えばガラス製の中空管であり、検体81を毛管力により内部に保持する。一例として、検体61,81は血液である。 The sample introduction port 302 is provided on the rear surface 26 on the right side of the sample introduction port 301 and extends downward from the upper side portion 21 to the approximate center of the test chip 2 in the vertical direction. An upper end portion of the sample introduction port 302 is an opening 302 </ b> A formed in the upper side portion 21. Through the opening 302A, the capillary 402 can be inserted. The sample introduction port 302 is a part in which the capillary 402 inserted from the opening 302A is accommodated. The capillary 402 is a hollow tube made of, for example, glass that can take in the specimen 81, and holds the specimen 81 inside by capillary force. As an example, the specimens 61 and 81 are blood.
 試薬導入口303は、後面26における略中央部の上側に設けられ、上辺部21から上下方向における検査チップ2の略中心まで左下方に延びている。試薬導入口303の上端部は、上辺部21に形成された開口303Aである。開口303Aは、キャピラリ403を挿入可能である。試薬導入口303は、開口303Aから挿入されたキャピラリ403が収容される部位である。キャピラリ403は、第一試薬62を取り込むことができる、例えばガラス製の中空管であり、第一試薬62を毛管力により内部に保持する。一例として、第一試薬62は血中のグルコースを測定するための試薬である。 The reagent introduction port 303 is provided on the upper side of the substantially central portion of the rear surface 26 and extends from the upper side portion 21 to the lower left to the approximate center of the test chip 2 in the vertical direction. An upper end portion of the reagent introduction port 303 is an opening 303 </ b> A formed in the upper side portion 21. Through the opening 303A, the capillary 403 can be inserted. The reagent introduction port 303 is a part in which the capillary 403 inserted from the opening 303A is accommodated. The capillary 403 is a hollow tube made of, for example, glass that can take in the first reagent 62, and holds the first reagent 62 inside by capillary force. As an example, the first reagent 62 is a reagent for measuring glucose in blood.
 試薬導入口304は、後面26において試薬導入口303の右側に設けられ、上辺部21から上下方向における検査チップ2の略中心まで下方に延びている。試薬導入口304の上端部は、上辺部21に形成された開口304Aである。開口304Aは、キャピラリ404を挿入可能である。試薬導入口304は、開口304Aから挿入されたキャピラリ404が収容される部位である。キャピラリ404は、第一試薬82を取り込むことができる、例えばガラス製の中空管であり、第一試薬82を毛管力により内部に保持する。一例として、第一試薬82は血中の総コレステロールを測定するための試薬である。 The reagent introduction port 304 is provided on the rear surface 26 on the right side of the reagent introduction port 303, and extends downward from the upper side portion 21 to the approximate center of the test chip 2 in the vertical direction. The upper end portion of the reagent introduction port 304 is an opening 304 </ b> A formed in the upper side portion 21. The capillary 304 can be inserted into the opening 304A. The reagent introduction port 304 is a part in which the capillary 404 inserted from the opening 304A is accommodated. The capillary 404 is a hollow tube made of, for example, glass that can take in the first reagent 82, and holds the first reagent 82 inside by capillary force. As an example, the first reagent 82 is a reagent for measuring total cholesterol in blood.
 試薬導入口305は、後面26の右上部に設けられ、上辺部21から上下方向における検査チップ2の略中心まで下方に延びている。試薬導入口305の上端部は、上辺部21に形成された開口305Aである。開口305Aは、キャピラリ405を挿入可能である。試薬導入口305は、開口305Aから挿入されたキャピラリ405が収容される部位である。キャピラリ405は、第二試薬63を取り込むことができる、例えばガラス製の中空管であり、第二試薬63を毛管力により内部に保持する。一例として、血中のグルコースを測定するための試薬である。 The reagent introduction port 305 is provided at the upper right portion of the rear surface 26 and extends downward from the upper side portion 21 to the approximate center of the test chip 2 in the vertical direction. An upper end portion of the reagent introduction port 305 is an opening 305 </ b> A formed in the upper side portion 21. The capillary 405 can be inserted into the opening 305A. The reagent introduction port 305 is a part in which the capillary 405 inserted from the opening 305A is accommodated. The capillary 405 is a hollow tube made of, for example, glass that can take in the second reagent 63, and holds the second reagent 63 inside by capillary force. An example is a reagent for measuring glucose in blood.
 試薬導入口306は、後面26において試薬導入口305の右側に設けられ、上辺部21から下方に凹んでいる。試薬導入口306の上端部は、上辺部21に形成された開口306Aである。開口306Aは、キャピラリ406を挿入可能である。試薬導入口306の左右方向の長さである開口幅は、先述の検体導入口301,302及び試薬導入口303,304,305の左右方向の長さである開口幅よりも、大きい。試薬導入口306は、開口306Aから挿入されたキャピラリ406が収容される部位である。キャピラリ406は、第二試薬83を取り込むことができる、例えばガラス製の中空管であり、第二試薬83を毛管力により内部に保持する。一例として、第二試薬83は血中の総コレステロールを測定するための試薬である。 The reagent inlet 306 is provided on the rear surface 26 on the right side of the reagent inlet 305 and is recessed downward from the upper side 21. An upper end portion of the reagent introduction port 306 is an opening 306 </ b> A formed in the upper side portion 21. The capillary 406 can be inserted into the opening 306A. The opening width that is the length in the left-right direction of the reagent introduction port 306 is larger than the opening width that is the length in the left-right direction of the sample introduction ports 301 and 302 and the reagent introduction ports 303, 304, and 305. The reagent introduction port 306 is a part in which the capillary 406 inserted from the opening 306A is accommodated. The capillary 406 is a hollow tube made of, for example, glass that can take in the second reagent 83, and holds the second reagent 83 inside by capillary force. As an example, the second reagent 83 is a reagent for measuring total cholesterol in blood.
 図5に示すように、試薬導入口305の下端部から前方に向けて、案内穴315が設けられている。傾斜面316は、試薬導入口305の下端面及び案内穴315を形成する内側下面をなす、前側下方に傾斜した面である。傾斜面316は、後面26側の試薬導入口305と、前面25側の試薬定量流路150とを繋ぐ。つまり傾斜面316は、試薬導入口305と試薬保持部151との間の流路に設けられ、第三注入方向である下方向に対して傾斜する。 As shown in FIG. 5, a guide hole 315 is provided from the lower end of the reagent introduction port 305 toward the front. The inclined surface 316 is a surface inclined downward on the front side that forms the lower surface of the reagent introduction port 305 and the inner lower surface that forms the guide hole 315. The inclined surface 316 connects the reagent introduction port 305 on the rear surface 26 side and the reagent quantitative flow path 150 on the front surface 25 side. That is, the inclined surface 316 is provided in the flow path between the reagent introduction port 305 and the reagent holding unit 151, and is inclined with respect to the downward direction that is the third injection direction.
 図3及び図4に示すように、検体導入口301の下端部から前方に向けて、案内穴311が設けられている。傾斜面312は、検体導入口301の下端面及び案内穴311を形成する内側下面をなす、前側下方に傾斜した面である。傾斜面312は、後面26側の検体導入口301と、前面25側の検体定量流路110とを繋ぐ。つまり傾斜面312は、検体導入口301と検体保持部111との間の流路に設けられ、第一注入方向である下方向に対して傾斜する。 As shown in FIGS. 3 and 4, a guide hole 311 is provided from the lower end of the sample introduction port 301 toward the front. The inclined surface 312 is a surface inclined downward on the front side that forms the lower surface of the sample introduction port 301 and the inner lower surface forming the guide hole 311. The inclined surface 312 connects the sample inlet 301 on the rear surface 26 side and the sample quantitative flow channel 110 on the front surface 25 side. That is, the inclined surface 312 is provided in the flow path between the sample introduction port 301 and the sample holding unit 111 and is inclined with respect to the downward direction that is the first injection direction.
 傾斜面314は、試薬導入口303の下端面及び案内穴313を形成する内側下面をなす、前側下方に傾斜した面である。傾斜面314は、後面26側の試薬導入口303と、前面25側の試薬定量流路130とを繋ぐ。つまり傾斜面314は、試薬導入口303と試薬保持部131との間の流路に設けられ、第二注入方向である右下方向に対して傾斜する。 The inclined surface 314 is a surface inclined downward in the front direction that forms the lower surface of the reagent inlet 303 and the inner lower surface forming the guide hole 313. The inclined surface 314 connects the reagent introduction port 303 on the rear surface 26 side and the reagent fixed amount flow channel 130 on the front surface 25 side. That is, the inclined surface 314 is provided in the flow path between the reagent introduction port 303 and the reagent holding part 131 and is inclined with respect to the lower right direction that is the second injection direction.
<4-3.液体流路200の詳細構造>
 図4を参照して、液体流路200の詳細構造を説明する。液体流路200は、検体定量流路210、試薬定量流路230,250、共通流路280、及び測定部290を含む。検体定量流路210は、検査チップ2の左部に設けられ、且つ、図3に示す検体定量流路110と前後方向に略対応した形状を有する。試薬定量流路230は、検体定量流路110の右側に設けられ、且つ、図3に示す試薬定量流路130と前後方向に略対応した形状を有する。試薬定量流路250は、試薬定量流路130の右側、且つ検査チップ2の右部に設けられ、図3に示す試薬定量流路150と前後方向に略対応した形状を有する。測定部290は、検査チップ2の右下部に設けられ、図3に示す測定部190と前後方向に略対応した形状を有する。共通流路280は、検体定量流路210及び試薬定量流路230,250と、測定部290との間に設けられ、且つ、図3に示す共通流路180と前後方向に略対応した形状を有する。
<4-3. Detailed Structure of Liquid Channel 200>
With reference to FIG. 4, the detailed structure of the liquid flow path 200 is demonstrated. The liquid flow path 200 includes a sample quantitative flow path 210, reagent quantitative flow paths 230 and 250, a common flow path 280, and a measurement unit 290. The sample quantification channel 210 is provided on the left side of the test chip 2 and has a shape substantially corresponding to the sample quantification channel 110 shown in FIG. The reagent quantitative channel 230 is provided on the right side of the sample quantitative channel 110 and has a shape substantially corresponding to the reagent quantitative channel 130 shown in FIG. The reagent quantitative channel 250 is provided on the right side of the reagent quantitative channel 130 and on the right part of the test chip 2 and has a shape substantially corresponding to the reagent quantitative channel 150 shown in FIG. The measuring unit 290 is provided at the lower right portion of the inspection chip 2 and has a shape substantially corresponding to the measuring unit 190 shown in FIG. The common flow path 280 is provided between the sample quantitative flow path 210 and the reagent quantitative flow paths 230 and 250 and the measurement unit 290, and has a shape substantially corresponding to the common flow path 180 shown in FIG. Have.
 検体定量流路210は、検体保持部211、検体供給部212、検体案内部213、検体定量部214、通路215、検体余剰部216、及び通路217を含む。検体定量流路210における左上端部に、検体導入口302の下端部が接続されている。検体導入口302の下方には、右下方向に傾斜する壁面である傾斜面222が設けられている。傾斜面222よりも下方に、上方に開口する凹部である検体保持部211が設けられている。 The sample quantification channel 210 includes a sample holding unit 211, a sample supply unit 212, a sample guide unit 213, a sample quantification unit 214, a channel 215, a sample surplus unit 216, and a channel 217. The lower end portion of the sample introduction port 302 is connected to the upper left end portion of the sample fixed amount flow path 210. Below the sample introduction port 302, an inclined surface 222, which is a wall surface inclined in the lower right direction, is provided. Below the inclined surface 222, a sample holder 211 that is a concave portion that opens upward is provided.
 後述するが、検体81は傾斜面222に沿って右下方に移動することにより、検体導入口302から検体定量流路210に流入可能である。つまり傾斜面222は、検体導入口302と検体保持部211との間に設けられ、第四注入方向である下方向に対して傾斜する。第四注入方向は、検体導入口302に対してキャピラリ402が挿入される方向であり、換言すると検体導入口302から検体保持部211に向かう方向であり、すなわち下方向である。傾斜面222は、後述の入口側壁部221に向かって傾斜している。つまり、傾斜面222が延びる方向の延長線上に、入口側壁部221が設けられている。 As will be described later, the specimen 81 can flow from the specimen introduction port 302 into the specimen quantitative channel 210 by moving to the lower right along the inclined surface 222. That is, the inclined surface 222 is provided between the sample introduction port 302 and the sample holder 211 and is inclined with respect to the downward direction, which is the fourth injection direction. The fourth injection direction is the direction in which the capillary 402 is inserted into the sample introduction port 302, in other words, the direction from the sample introduction port 302 toward the sample holding unit 211, that is, the downward direction. The inclined surface 222 is inclined toward an inlet side wall portion 221 described later. That is, the inlet side wall portion 221 is provided on an extension line in the direction in which the inclined surface 222 extends.
 検体保持部211は、検体定量流路210に流入した検体81が保持される部位である。検体保持部211から右上方向に延びる壁部は、入口側壁部221である。入口側壁部221の右上端部には、検体供給部212に連通する流路入口220が設けられている。流路入口220は、検体保持部211に保持された検体81が検体供給部212に流入される開口である。検体供給部212は、流路入口220から下方向に延びる流路である。流路入口220は、第四注入方向において検体保持部211よりも検体導入口302側に設けられる。本実施形態の流路入口220は、傾斜面222よりも上側に設けられる。 The specimen holding unit 211 is a part that holds the specimen 81 that has flowed into the specimen quantitative channel 210. A wall portion extending in the upper right direction from the specimen holding portion 211 is an inlet side wall portion 221. A flow path inlet 220 communicating with the sample supply unit 212 is provided at the upper right end of the inlet side wall 221. The channel inlet 220 is an opening through which the sample 81 held in the sample holding unit 211 flows into the sample supply unit 212. The sample supply unit 212 is a channel extending downward from the channel inlet 220. The channel inlet 220 is provided closer to the sample introduction port 302 than the sample holder 211 in the fourth injection direction. The flow path inlet 220 of this embodiment is provided above the inclined surface 222.
 検体供給部212の下端部は、流路が狭く形成された検体案内部213に接続する。検体案内部213の下方には、検体定量部214が設けられている。検体定量部214は、検体81を定量する部位であり、左下方に凹む凹部である。検体案内部213と検体定量部214とが連通する部位から、通路215が左下方に延び、通路217が右上方に延びている。通路215は、検体定量部214の下方に設けられた検体余剰部216まで延びている。検体余剰部216は、検体定量部214から溢れ出た検体81が貯留される部位であり、通路215の下端部から右方向に設けられた凹部である。通路217の右上方の端部は、後述する共通流路280に繋がっている。 The lower end of the sample supply unit 212 is connected to a sample guide unit 213 having a narrow channel. Below the sample guide unit 213, a sample determination unit 214 is provided. The specimen quantification unit 214 is a part that quantifies the specimen 81, and is a recess that is recessed in the lower left direction. A passage 215 extends to the lower left and a passage 217 extends to the upper right from a portion where the sample guide unit 213 and the sample determination unit 214 communicate with each other. The passage 215 extends to the sample surplus part 216 provided below the sample determination unit 214. The specimen surplus part 216 is a part where the specimen 81 overflowing from the specimen quantification part 214 is stored, and is a concave part provided in the right direction from the lower end part of the passage 215. The upper right end of the passage 217 is connected to a common channel 280 described later.
 試薬定量流路230は、試薬保持部231、試薬供給部232、試薬案内部233、試薬定量部234、通路235、試薬余剰部236、及び通路237を含む。試薬定量流路230の左上部に、試薬導入口304の下端部が接続されている。試薬導入口304の右下方には、上方に開口する凹部である試薬保持部231が設けられている。試薬保持部231から右上方向に延びる壁部は、入口側壁部241である。入口側壁部241は、試薬導入口304の下方に位置する。 The reagent fixed amount flow path 230 includes a reagent holding unit 231, a reagent supply unit 232, a reagent guide unit 233, a reagent fixed amount unit 234, a passage 235, a reagent surplus portion 236, and a passage 237. A lower end portion of the reagent introduction port 304 is connected to the upper left portion of the reagent fixed amount flow channel 230. A reagent holding portion 231 that is a recess opening upward is provided at the lower right of the reagent introduction port 304. A wall portion extending in the upper right direction from the reagent holding portion 231 is an inlet side wall portion 241. The inlet side wall 241 is located below the reagent introduction port 304.
 後述するが、第一試薬82は入口側壁部241に沿って左下方に移動することにより、試薬導入口304から試薬定量流路230に流入可能である。つまり入口側壁部241は、試薬導入口304と試薬保持部231との間に設けられ、第五注入方向である下方向に対して傾斜する。第五注入方向は、試薬導入口304に対してキャピラリ404が挿入される方向であり、換言すると試薬導入口304から試薬保持部231に向かう方向であり、すなわち下方向である。 As will be described later, the first reagent 82 can flow from the reagent introduction port 304 into the reagent fixed amount flow channel 230 by moving to the lower left along the inlet side wall portion 241. That is, the inlet side wall part 241 is provided between the reagent introduction port 304 and the reagent holding part 231 and is inclined with respect to the downward direction which is the fifth injection direction. The fifth injection direction is a direction in which the capillary 404 is inserted into the reagent introduction port 304, in other words, a direction from the reagent introduction port 304 toward the reagent holding unit 231, that is, a downward direction.
 試薬保持部231は、試薬定量流路230に流入した第一試薬82が保持される部位である。入口側壁部241の右上端部には、試薬供給部232に連通する流路入口240が設けられている。流路入口240は、試薬保持部231に保持された第一試薬82が試薬供給部232に流入される開口である。試薬供給部232は、流路入口240から下方向に延びる流路である。流路入口240は、第五注入方向において試薬保持部231よりも試薬導入口304側に設けられる。本実施形態の流路入口240は、入口側壁部241においてキャピラリ404の下端部が接触する部位よりも上側に設けられる。 The reagent holding part 231 is a part where the first reagent 82 that has flowed into the reagent fixed amount flow channel 230 is held. A flow path inlet 240 communicating with the reagent supply unit 232 is provided at the upper right end of the inlet side wall 241. The channel inlet 240 is an opening through which the first reagent 82 held in the reagent holding unit 231 flows into the reagent supply unit 232. The reagent supply unit 232 is a channel that extends downward from the channel inlet 240. The flow path inlet 240 is provided closer to the reagent introduction port 304 than the reagent holding part 231 in the fifth injection direction. The flow path inlet 240 of the present embodiment is provided above the portion of the inlet side wall 241 where the lower end of the capillary 404 contacts.
 試薬供給部232の下端部は、流路が狭く形成された試薬案内部233に接続する。試薬案内部233の下方には、試薬定量部234が設けられている。試薬定量部234は、第一試薬82を定量する部位であり、左下方に凹む凹部である。試薬案内部233と試薬定量部234とが連通する部位から、通路235が左下方に延び、通路237が右上方に延びている。通路235は、試薬定量部234の下方に設けられた試薬余剰部236まで延びている。試薬余剰部236は、試薬定量部234から溢れ出た第一試薬82が貯留される部位であり、通路235の下端部から右方向に設けられた凹部である。通路237の右上方の端部は、後述する共通流路280に繋がっている。 The lower end of the reagent supply unit 232 is connected to a reagent guide unit 233 having a narrow channel. A reagent quantitative unit 234 is provided below the reagent guide unit 233. The reagent quantification unit 234 is a part that quantifies the first reagent 82, and is a recess that is recessed downward and to the left. From the part where the reagent guide unit 233 and the reagent quantitative unit 234 communicate with each other, the passage 235 extends to the lower left and the passage 237 extends to the upper right. The passage 235 extends to the reagent surplus portion 236 provided below the reagent fixed amount portion 234. The reagent surplus portion 236 is a portion in which the first reagent 82 overflowing from the reagent quantitative portion 234 is stored, and is a concave portion provided in the right direction from the lower end portion of the passage 235. The upper right end of the passage 237 is connected to a common channel 280 described later.
 試薬定量流路250は、試薬保持部251、試薬供給部252、試薬案内部253、試薬定量部254、通路255、試薬余剰部256、通路257、毛管部262、及び接続流路263を含む。毛管部262は、試薬定量流路250の左上端部に設けられ、且つ試薬導入口306の下方において上下方向に延びている。毛管部262の上端部には、テーパ268が設けられている。テーパ268内では、左右方向の流路幅が下方に向けて小さくなる。毛管部262及び試薬導入口306は、テーパ268を介して上下方向に連通している。毛管部262の下端部には、テーパ269が設けられている。テーパ269内では、左右方向の流路幅が下方に向けて小さくなる。接続流路263は、テーパ269の下端部から下方に延びている。接続流路263の下方には、上方に開口する凹部である試薬保持部251が設けられている。接続流路263と後述の流路入口260との間には、接続流路263の右壁の下端部から流路入口260よりも下方まで突出する壁部である突出壁264が設けられている。 The reagent fixed amount flow channel 250 includes a reagent holding unit 251, a reagent supply unit 252, a reagent guide unit 253, a reagent fixed amount unit 254, a channel 255, a reagent surplus unit 256, a channel 257, a capillary unit 262, and a connection channel 263. The capillary portion 262 is provided at the upper left end portion of the reagent fixed amount flow channel 250 and extends vertically below the reagent introduction port 306. A taper 268 is provided at the upper end of the capillary portion 262. Within the taper 268, the width of the channel in the left-right direction decreases toward the bottom. The capillary portion 262 and the reagent introduction port 306 communicate with each other in the vertical direction via the taper 268. A taper 269 is provided at the lower end of the capillary portion 262. Within the taper 269, the channel width in the left-right direction decreases downward. The connection channel 263 extends downward from the lower end of the taper 269. Below the connection channel 263, a reagent holding part 251 which is a concave part opening upward is provided. A protruding wall 264 that is a wall portion protruding from the lower end portion of the right wall of the connection channel 263 to the lower side of the channel inlet 260 is provided between the connection channel 263 and a channel inlet 260 described later. .
 後述するが、第二試薬83はテーパ268に沿って下方に移動することにより、試薬導入口306から試薬定量流路250に流入可能である。つまりテーパ268は、試薬導入口306と試薬保持部251との間に設けられ、第六注入方向である下方向に対して傾斜する。第六注入方向は、試薬導入口306に対してキャピラリ406が挿入される方向であり、換言すると試薬導入口306から試薬保持部251に向かう方向であり、すなわち下方向である。 As will be described later, the second reagent 83 can flow into the reagent fixed amount flow channel 250 from the reagent introduction port 306 by moving downward along the taper 268. That is, the taper 268 is provided between the reagent introduction port 306 and the reagent holding part 251 and is inclined with respect to the downward direction which is the sixth injection direction. The sixth injection direction is a direction in which the capillary 406 is inserted into the reagent introduction port 306, in other words, a direction from the reagent introduction port 306 toward the reagent holding unit 251, that is, a downward direction.
 毛管部262は、試薬導入口306と試薬保持部251との間に設けられた、試薬導入口306に収容されたキャピラリ406から流出する第二試薬83を、毛管力により保持する部位である。接続流路263は、毛管部262と試薬保持部251との間に設けられた流路である。試薬導入口306、毛管部262、及び接続流路263は、第六注入方向において互いに連通している。 The capillary part 262 is a part that is provided between the reagent introduction port 306 and the reagent holding part 251 and holds the second reagent 83 flowing out from the capillary 406 housed in the reagent introduction port 306 by capillary force. The connection channel 263 is a channel provided between the capillary part 262 and the reagent holding part 251. The reagent introduction port 306, the capillary part 262, and the connection channel 263 communicate with each other in the sixth injection direction.
 図6に示すように、キャピラリ406の左右方向長さである外径L1は、試薬導入口306の左右方向の開口幅L2よりも小さい。毛管部262の左右方向の流路幅L3は、試薬導入口306の左右方向の開口幅L2よりも小さい。つまり、毛管部262の第六注入方向と直交する方向の断面は、キャピラリ406の第六注入方向と直交する方向の断面よりも小さく、さらに試薬導入口306の第六注入方向と直交する方向の断面よりも小さい。接続流路263の左右方向の流路幅L4は、キャピラリ406の左右方向長さである外径L1よりも大きく、試薬導入口306の左右方向の開口幅L2よりも大きい。つまり、試薬導入口306の第六注入方向と直交する方向の断面は、接続流路263の第六注入方向と直交する方向の断面よりも小さい。 As shown in FIG. 6, the outer diameter L1 which is the length in the left-right direction of the capillary 406 is smaller than the opening width L2 in the left-right direction of the reagent introduction port 306. The left and right flow path width L3 of the capillary portion 262 is smaller than the left and right opening width L2 of the reagent introduction port 306. That is, the cross section of the capillary portion 262 in the direction orthogonal to the sixth injection direction is smaller than the cross section of the capillary 406 in the direction orthogonal to the sixth injection direction, and further in the direction orthogonal to the sixth injection direction of the reagent inlet 306. Smaller than cross section. The left and right channel width L4 of the connection channel 263 is larger than the outer diameter L1 which is the length in the left and right direction of the capillary 406, and larger than the left and right opening width L2 of the reagent introduction port 306. That is, the cross section of the reagent introduction port 306 in the direction orthogonal to the sixth injection direction is smaller than the cross section of the connection channel 263 in the direction orthogonal to the sixth injection direction.
 図4に示すように、試薬保持部251は、試薬定量流路250に流入した第二試薬83が保持される部位である。試薬保持部251から右上方向に延びる壁部は、入口側壁部261である。入口側壁部261の右上端部には、試薬供給部252に連通する流路入口260が設けられている。流路入口260は、試薬保持部251に保持された第二試薬83が試薬供給部252に流入される開口である。試薬供給部252は、流路入口260から下方向に延びる流路である。流路入口260は、第六注入方向において試薬保持部251よりも試薬導入口306側に設けられる。本実施形態の流路入口260は、突出壁264の下端部よりも上側に設けられる。 As shown in FIG. 4, the reagent holding unit 251 is a part where the second reagent 83 that has flowed into the reagent fixed amount flow channel 250 is held. A wall portion extending in the upper right direction from the reagent holding portion 251 is an inlet side wall portion 261. A flow path inlet 260 communicating with the reagent supply unit 252 is provided at the upper right end of the inlet side wall 261. The flow path inlet 260 is an opening through which the second reagent 83 held in the reagent holding unit 251 flows into the reagent supply unit 252. The reagent supply unit 252 is a channel that extends downward from the channel inlet 260. The channel inlet 260 is provided closer to the reagent inlet 306 than the reagent holding part 251 in the sixth injection direction. The channel inlet 260 of the present embodiment is provided above the lower end portion of the protruding wall 264.
 試薬供給部252の下端部は、流路が狭く形成された試薬案内部253に接続する。試薬案内部253の下方には、試薬定量部254が設けられている。試薬定量部254は、第二試薬83を定量する部位であり、左下方に凹む凹部である。試薬案内部253と試薬定量部254とが連通する部位から、通路255が左下方に延び、通路257が右上方に延びている。通路255は、試薬定量部254の下方に設けられた試薬余剰部256まで延びている。試薬余剰部256は、試薬定量部254から溢れ出た第二試薬83が貯留される部位であり、通路255の下端部から右方向に設けられた凹部である。通路257の右上方の端部は、後述する共通流路280に繋がっている。 The lower end of the reagent supply unit 252 is connected to a reagent guide unit 253 having a narrow channel. A reagent quantitative unit 254 is provided below the reagent guide unit 253. The reagent quantification unit 254 is a part that quantifies the second reagent 83, and is a recess that is recessed in the lower left direction. A passage 255 extends to the lower left and a passage 257 extends to the upper right from a portion where the reagent guide unit 253 and the reagent quantitative unit 254 communicate with each other. The passage 255 extends to the reagent surplus portion 256 provided below the reagent fixed amount portion 254. The reagent surplus portion 256 is a portion in which the second reagent 83 overflowing from the reagent fixed amount portion 254 is stored, and is a concave portion provided in the right direction from the lower end portion of the passage 255. The upper right end of the passage 257 is connected to a common channel 280 described later.
 共通流路280は、通路217,237,257と測定部290とを接続する流路である。共通流路280は、案内壁281,282,283を含む。案内壁281は、通路217の右側に設けられた、右下方向に延びる壁部である。案内壁282は、通路237の右側に設けられた、右下方向に延びる壁部である。案内壁283は、通路237の右側に設けられた、測定部290まで下方向に延びる壁部である。測定部290は、共通流路280の右下部に設けられた、下方に凹む凹部である。測定部290は、検体81、第一試薬82、及び第二試薬83が含まれる液体である図11に示す混合液84が貯留及び測定される部位である。後述する光学測定が行われる際には、測定光が測定部290に透過される。 The common flow path 280 is a flow path that connects the passages 217, 237, and 257 and the measurement unit 290. The common flow path 280 includes guide walls 281, 282, and 283. The guide wall 281 is a wall portion provided on the right side of the passage 217 and extending in the lower right direction. The guide wall 282 is a wall portion provided on the right side of the passage 237 and extending in the lower right direction. The guide wall 283 is a wall portion provided on the right side of the passage 237 and extending downward to the measurement unit 290. The measurement unit 290 is a concave portion provided in the lower right portion of the common flow path 280 and recessed downward. The measurement unit 290 is a part where the liquid mixture 84 shown in FIG. 11 which is a liquid containing the specimen 81, the first reagent 82, and the second reagent 83 is stored and measured. When optical measurement to be described later is performed, measurement light is transmitted through the measurement unit 290.
<4-4.検査チップ2のその他構造>
 図1に示すように、L型プレート60から延びる支軸46は、図示外の装着用ホルダを介して板材20の後面中央に垂直に連結される。支軸46の回転に伴って、検査チップ2が支軸46を中心に自転する。検査チップ2は図3及び図4に示す定常状態である場合、上辺部21及び下辺部24が重力Gの方向と直交し、右辺部22及び左辺部23が重力Gの方向と平行、且つ、左辺部23が右辺部22よりも主軸57側に配置される。定常状態の検査チップ2が測定位置に配置されている状態において、光源71と光センサ72とを結ぶ測定光を測定部190,290に通過させることで、検査装置1は光学測定による検査を行う。このとき、測定部190,290は、測定光の進行方向に並んだ状態となっている。すなわち、測定部190,290が並ぶ前後方向は、光学測定における測定光の進行方向と平行である。
<4-4. Other structures of inspection chip 2>
As shown in FIG. 1, the support shaft 46 extending from the L-shaped plate 60 is vertically connected to the center of the rear surface of the plate member 20 via a mounting holder (not shown). As the support shaft 46 rotates, the inspection chip 2 rotates around the support shaft 46. When the inspection chip 2 is in the steady state shown in FIGS. 3 and 4, the upper side 21 and the lower side 24 are orthogonal to the direction of gravity G, the right side 22 and the left side 23 are parallel to the direction of gravity G, and The left side portion 23 is disposed closer to the main shaft 57 than the right side portion 22. In a state where the inspection chip 2 in the steady state is arranged at the measurement position, the inspection apparatus 1 performs inspection by optical measurement by allowing the measurement light connecting the light source 71 and the optical sensor 72 to pass through the measurement units 190 and 290. . At this time, the measurement units 190 and 290 are in a state of being aligned in the traveling direction of the measurement light. That is, the front-rear direction in which the measurement units 190 and 290 are arranged is parallel to the traveling direction of the measurement light in the optical measurement.
<5.検査方法の一例>
 図6~図11を参照して、検査装置1及び検査チップ2を用いた検査方法について説明する。図7~図11では、液体導入部300、及び液体流路200のうちで液体流路100と前後方向に対応しない部分を、点線で図示している。
<5. Example of inspection method>
An inspection method using the inspection apparatus 1 and the inspection chip 2 will be described with reference to FIGS. 7 to 11, portions of the liquid introduction unit 300 and the liquid channel 200 that do not correspond to the liquid channel 100 in the front-rear direction are indicated by dotted lines.
 図6に示すように、ユーザは検体61が内部に保持されたキャピラリ401を、開口301Aに挿入する。このとき、検体導入口301に収容されたキャピラリ401の第一注入方向の端部である下端部401Aは、傾斜面312に接触することにより位置決めされる。傾斜面312は、検体導入口301と検体保持部111との間に設けられ、第一注入方向に対して傾斜する面である。検体導入口301に収容されたキャピラリ401は、傾斜面312に接触して、検体保持部111に進入することが抑制される。従って、位置決めされたキャピラリ401から流出する検体61は、検体保持部111に流入しやすい。よって、より確実に検体61は検体保持部111に保持されるので、キャピラリ401が検体導入口301に挿入された時に、検体61は流路入口120に移動しにくい。従って、意図しないタイミングにおいて、検体61が検体保持部111に流出し、さらに流路入口120を介して検体供給部112に流入する可能性が抑制される。尚、意図するタイミング、すなわち適切なタイミングは、後述する図8に示す測定動作が開始されるタイミングである。 As shown in FIG. 6, the user inserts the capillary 401 holding the sample 61 into the opening 301A. At this time, the lower end portion 401A, which is the end portion in the first injection direction of the capillary 401 accommodated in the sample introduction port 301, is positioned by contacting the inclined surface 312. The inclined surface 312 is a surface that is provided between the sample introduction port 301 and the sample holder 111 and is inclined with respect to the first injection direction. The capillary 401 accommodated in the sample introduction port 301 is prevented from coming into contact with the inclined surface 312 and entering the sample holding unit 111. Therefore, the sample 61 flowing out from the positioned capillary 401 is likely to flow into the sample holding unit 111. Therefore, since the sample 61 is more reliably held in the sample holding unit 111, the sample 61 is less likely to move to the flow channel inlet 120 when the capillary 401 is inserted into the sample introduction port 301. Therefore, the possibility that the sample 61 flows out to the sample holding unit 111 and further flows into the sample supply unit 112 via the flow path inlet 120 at an unintended timing is suppressed. The intended timing, that is, the appropriate timing is the timing at which the measurement operation shown in FIG.
 ユーザは検体81が内部に保持されたキャピラリ402を、開口302Aに挿入する。このとき、検体導入口302に収容されたキャピラリ402の第二注入方向の端部である下端部402Aは、傾斜面222に接触することにより位置決めされる。傾斜面222は、検体導入口302と検体保持部211との間に設けられ、第二注入方向に対して傾斜する面である。検体導入口302に収容されたキャピラリ402は、傾斜面222に接触して、検体保持部211に進入することが抑制される。従って、位置決めされたキャピラリ402から流出する検体81は、検体保持部211に流入しやすい。よって、より確実に検体81は検体保持部211に保持されるので、キャピラリ402が検体導入口302に挿入された時に、検体81は流路入口220に移動しにくい。従って、意図しないタイミングにおいて、検体81が検体保持部211に流出し、さらに流路入口220を介して検体供給部212に流入する可能性が抑制される。 The user inserts the capillary 402 in which the specimen 81 is held in the opening 302A. At this time, the lower end portion 402 </ b> A that is the end portion of the capillary 402 accommodated in the sample introduction port 302 in the second injection direction is positioned by contacting the inclined surface 222. The inclined surface 222 is a surface that is provided between the sample introduction port 302 and the sample holding unit 211 and is inclined with respect to the second injection direction. The capillary 402 accommodated in the sample introduction port 302 is prevented from coming into contact with the inclined surface 222 and entering the sample holding unit 211. Accordingly, the sample 81 flowing out from the positioned capillary 402 is likely to flow into the sample holding unit 211. Therefore, since the sample 81 is more reliably held in the sample holding unit 211, the sample 81 is less likely to move to the flow channel inlet 220 when the capillary 402 is inserted into the sample introduction port 302. Therefore, the possibility that the sample 81 flows out to the sample holding unit 211 and further flows into the sample supply unit 212 via the flow path inlet 220 at an unintended timing is suppressed.
 ユーザは第一試薬62が内部に保持されたキャピラリ403を、開口303Aに挿入する。このとき、試薬導入口303に収容されたキャピラリ403の第三注入方向の端部である左下端部403Aは、傾斜面314に接触することにより位置決めされる。傾斜面314は、試薬導入口303と試薬保持部131との間に設けられ、第三注入方向に対して傾斜する面である。試薬導入口303に収容されたキャピラリ403は、傾斜面314に接触して、試薬保持部131に進入することが抑制される。従って、位置決めされたキャピラリ403から流出する第一試薬62は、試薬保持部131に流入しやすい。よって、より確実に第一試薬62は試薬保持部131に保持されるので、キャピラリ403が試薬導入口303に挿入された時に、第一試薬62は流路入口140に移動しにくい。従って、意図しないタイミングにおいて、第一試薬62が試薬保持部131に流出し、さらに流路入口140を介して試薬供給部132に流入する可能性が抑制される。 The user inserts the capillary 403 in which the first reagent 62 is held in the opening 303A. At this time, the left lower end portion 403A, which is the end portion in the third injection direction of the capillary 403 accommodated in the reagent introduction port 303, is positioned by contacting the inclined surface 314. The inclined surface 314 is provided between the reagent introduction port 303 and the reagent holding unit 131 and is an inclined surface with respect to the third injection direction. The capillary 403 accommodated in the reagent introduction port 303 is prevented from coming into contact with the inclined surface 314 and entering the reagent holding unit 131. Accordingly, the first reagent 62 flowing out from the positioned capillary 403 is likely to flow into the reagent holding unit 131. Therefore, since the first reagent 62 is more reliably held in the reagent holding part 131, the first reagent 62 is less likely to move to the channel inlet 140 when the capillary 403 is inserted into the reagent introduction port 303. Therefore, the possibility that the first reagent 62 flows out to the reagent holding unit 131 and further flows into the reagent supply unit 132 through the flow path inlet 140 at an unintended timing is suppressed.
 ユーザは第一試薬82が内部に保持されたキャピラリ404を、開口304Aに挿入する。このとき、試薬導入口304に収容されたキャピラリ404の第四注入方向の端部である下端部404Aは、入口側壁部241に接触することにより位置決めされる。入口側壁部241は、試薬導入口304と試薬保持部231との間に設けられ、第四注入方向に対して傾斜する面である。試薬導入口304に収容されたキャピラリ404は、入口側壁部241に接触して、試薬保持部231に進入することが抑制される。従って、位置決めされたキャピラリ404から流出する第一試薬82は、試薬保持部231に流入しやすい。よって、より確実に第一試薬82は試薬保持部231に保持されるので、キャピラリ404が試薬導入口304に挿入された時に、第一試薬82は流路入口240に移動しにくい。従って、意図しないタイミングにおいて、第一試薬82が試薬保持部231に流出し、さらに流路入口240を介して試薬供給部232に流入する可能性が抑制される。 The user inserts the capillary 404 in which the first reagent 82 is held in the opening 304A. At this time, the lower end 404A, which is the end in the fourth injection direction of the capillary 404 accommodated in the reagent introduction port 304, is positioned by contacting the inlet side wall 241. The inlet side wall portion 241 is a surface that is provided between the reagent introduction port 304 and the reagent holding portion 231 and is inclined with respect to the fourth injection direction. The capillary 404 accommodated in the reagent introduction port 304 is prevented from coming into contact with the inlet side wall 241 and entering the reagent holding unit 231. Therefore, the first reagent 82 flowing out from the positioned capillary 404 is likely to flow into the reagent holding unit 231. Therefore, since the first reagent 82 is more reliably held in the reagent holding unit 231, the first reagent 82 is less likely to move to the channel inlet 240 when the capillary 404 is inserted into the reagent introduction port 304. Therefore, the possibility that the first reagent 82 flows out to the reagent holding unit 231 and further flows into the reagent supply unit 232 via the flow path inlet 240 at an unintended timing is suppressed.
 ユーザは第二試薬63が内部に保持されたキャピラリ405を、開口305Aに挿入する。このとき、試薬導入口305に収容されたキャピラリ405の第五注入方向の端部である下端部405Aは、傾斜面316に接触することにより位置決めされる。傾斜面316は、試薬導入口305と試薬保持部151との間に設けられ、第五注入方向に対して傾斜する面である。試薬導入口305に収容されたキャピラリ405は、傾斜面316に接触して、試薬保持部151に進入することが抑制される。従って、位置決めされたキャピラリ405から流出する第二試薬63は、試薬保持部151に流入しやすい。よって、より確実に第二試薬63は試薬保持部151に保持されるので、キャピラリ405が試薬導入口305に挿入された時に、第二試薬63は流路入口160に移動しにくい。従って、意図しないタイミングにおいて、第二試薬63が試薬保持部151に流出し、さらに流路入口160を介して試薬供給部152に流入する可能性が抑制される。 The user inserts the capillary 405 in which the second reagent 63 is held in the opening 305A. At this time, the lower end portion 405A, which is the end portion in the fifth injection direction of the capillary 405 accommodated in the reagent introduction port 305, is positioned by contacting the inclined surface 316. The inclined surface 316 is a surface that is provided between the reagent introduction port 305 and the reagent holding unit 151 and is inclined with respect to the fifth injection direction. The capillary 405 accommodated in the reagent inlet 305 is prevented from coming into contact with the inclined surface 316 and entering the reagent holding unit 151. Therefore, the second reagent 63 flowing out from the positioned capillary 405 is likely to flow into the reagent holding unit 151. Therefore, since the second reagent 63 is more reliably held in the reagent holding part 151, the second reagent 63 is unlikely to move to the flow path inlet 160 when the capillary 405 is inserted into the reagent introduction port 305. Therefore, the possibility that the second reagent 63 flows out to the reagent holding unit 151 and further flows into the reagent supply unit 152 via the flow path inlet 160 at an unintended timing is suppressed.
 ユーザは第二試薬83が内部に保持されたキャピラリ406を、開口306Aに挿入する。毛管部262の第六注入方向と直交する方向の断面は、キャピラリ406の第六注入方向と直交する方向の断面よりも小さい。そのため、試薬導入口306に収容されたキャピラリ406の第六注入方向の端部である下端部406Aは、テーパ268に接触することにより位置決めされる。試薬導入口306に収容されたキャピラリ406は、テーパ268に接触して、試薬保持部251に進入することが抑制される。従って、位置決めされたキャピラリ406から流出する第二試薬83は、試薬保持部251に流入しやすい。よって、より確実に第二試薬83は試薬保持部251に保持されるので、キャピラリ406が試薬導入口306に挿入された時に、第二試薬83は流路入口260に移動しにくい。従って、意図しないタイミングにおいて、第二試薬83が試薬保持部251に流出し、さらに流路入口260を介して試薬供給部252に流入する可能性が抑制される。 The user inserts the capillary 406 in which the second reagent 83 is held in the opening 306A. The cross section of the capillary portion 262 in the direction orthogonal to the sixth injection direction is smaller than the cross section of the capillary 406 in the direction orthogonal to the sixth injection direction. Therefore, the lower end portion 406A, which is the end portion in the sixth injection direction of the capillary 406 accommodated in the reagent introduction port 306, is positioned by contacting the taper 268. The capillary 406 accommodated in the reagent introduction port 306 is prevented from coming into contact with the taper 268 and entering the reagent holding unit 251. Therefore, the second reagent 83 flowing out from the positioned capillary 406 tends to flow into the reagent holding unit 251. Therefore, since the second reagent 83 is more reliably held in the reagent holding unit 251, the second reagent 83 is unlikely to move to the flow path inlet 260 when the capillary 406 is inserted into the reagent introduction port 306. Therefore, the possibility that the second reagent 83 flows out to the reagent holding unit 251 and further flows into the reagent supply unit 252 via the flow path inlet 260 at an unintended timing is suppressed.
 テーパ268は、試薬導入口306と試薬保持部251との間に設けられ、第六注入方向に対して傾斜する面である。キャピラリ406から流出する第二試薬83は、テーパ268に沿って毛管部262内にスムーズに流入される。従って、より確実に第二試薬83は毛管部262に保持されるので、キャピラリ406が試薬導入口306に挿入された時に、第二試薬83は流路入口260に移動しにくい。従って、意図しないタイミングにおいて、第二試薬83が試薬保持部251に流出し、さらに流路入口260を介して試薬供給部252に流入する可能性が抑制される。 The taper 268 is a surface that is provided between the reagent introduction port 306 and the reagent holding unit 251 and is inclined with respect to the sixth injection direction. The second reagent 83 that flows out from the capillary 406 flows smoothly into the capillary portion 262 along the taper 268. Therefore, since the second reagent 83 is more reliably held in the capillary portion 262, the second reagent 83 is unlikely to move to the flow path inlet 260 when the capillary 406 is inserted into the reagent inlet 306. Therefore, the possibility that the second reagent 83 flows out to the reagent holding unit 251 and further flows into the reagent supply unit 252 via the flow path inlet 260 at an unintended timing is suppressed.
 試薬導入口306内に供給された第二試薬83は、毛管部262に生じる毛管力により吸引されて、毛管部262内に保持される。従って、キャピラリ406が試薬導入口306に収容されたときに、キャピラリ406から流出した第二試薬83が流路入口260に流入することが抑制される。従って、意図しないタイミングにおいて、第二試薬83が試薬保持部251に流出し、さらに流路入口260を介して試薬供給部252に流入する可能性が抑制される。 The second reagent 83 supplied into the reagent introduction port 306 is sucked by the capillary force generated in the capillary part 262 and held in the capillary part 262. Therefore, when the capillary 406 is accommodated in the reagent introduction port 306, the second reagent 83 flowing out from the capillary 406 is prevented from flowing into the flow path inlet 260. Therefore, the possibility that the second reagent 83 flows out to the reagent holding unit 251 and further flows into the reagent supply unit 252 via the flow path inlet 260 at an unintended timing is suppressed.
 毛管部262の第六注入方向と直交する方向の断面である流路幅L3は、試薬導入口306の第六注入方向と直交する方向の断面である開口幅L2、及び接続流路263の第六注入方向と直交する方向の断面である流路幅L4よりも小さい。つまり、試薬導入口306の開口幅L2、毛管部262の流路幅L3、及び接続流路263の流路幅L4のうち、毛管部262の流路幅L3が最も小さい。そのため、毛管部262に生じる毛管力は、試薬導入口306に生じる毛管力及び接続流路263に生じる毛管力よりも大きい。従って、キャピラリ406から流出する第二試薬83は、試薬導入口306及び接続流路263よりも優先して毛管部262に保持される。従って、意図しないタイミングにおいて、第二試薬83が試薬保持部251に流出し、さらに流路入口260を介して試薬供給部252に流入する可能性が抑制される。 The flow path width L3 that is a cross section in the direction orthogonal to the sixth injection direction of the capillary portion 262 is the opening width L2 that is a cross section in the direction orthogonal to the sixth injection direction of the reagent introduction port 306 and the first flow path 263. It is smaller than the channel width L4 which is a cross section in a direction orthogonal to the six injection directions. That is, among the opening width L2 of the reagent inlet 306, the flow path width L3 of the capillary section 262, and the flow path width L4 of the connection flow path 263, the flow path width L3 of the capillary section 262 is the smallest. Therefore, the capillary force generated in the capillary portion 262 is larger than the capillary force generated in the reagent introduction port 306 and the capillary force generated in the connection channel 263. Accordingly, the second reagent 83 flowing out from the capillary 406 is held in the capillary portion 262 in preference to the reagent introduction port 306 and the connection channel 263. Therefore, the possibility that the second reagent 83 flows out to the reagent holding unit 251 and further flows into the reagent supply unit 252 via the flow path inlet 260 at an unintended timing is suppressed.
 試薬導入口306の第六注入方向と直交する方向の断面である開口幅L2は、接続流路263の第六注入方向と直交する方向の断面である流路幅L4よりも小さい。つまり、試薬導入口306の開口幅L2は、接続流路263の流路幅L4よりも小さい。そのため、試薬導入口306に生じる毛管力は、接続流路263に生じる毛管力よりも大きい。従って、毛管部262が保持しきれない余剰の第二試薬83は、接続流路263ではなく、試薬導入口306に保持される。そのため、後述の測定動作を実行する前に、余剰の第二試薬83が接続流路263から流路入口260に流入することが抑制される。以上のように、キャピラリ406から流出する第二試薬83は、接続流路263よりも試薬導入口306側で保持される。その結果、意図しないタイミングにおいて、第二試薬83が流路入口260を介して試薬供給部252に流入する可能性が抑制される。 The opening width L2 which is a cross section in the direction orthogonal to the sixth injection direction of the reagent introduction port 306 is smaller than the flow path width L4 which is a cross section in the direction orthogonal to the sixth injection direction of the connection flow path 263. That is, the opening width L2 of the reagent introduction port 306 is smaller than the channel width L4 of the connection channel 263. Therefore, the capillary force generated in the reagent introduction port 306 is larger than the capillary force generated in the connection channel 263. Therefore, the surplus second reagent 83 that cannot be held by the capillary portion 262 is held not in the connection channel 263 but in the reagent introduction port 306. Therefore, before the measurement operation described later is executed, the surplus second reagent 83 is prevented from flowing from the connection channel 263 to the channel inlet 260. As described above, the second reagent 83 flowing out from the capillary 406 is held on the reagent inlet 306 side with respect to the connection channel 263. As a result, the possibility that the second reagent 83 flows into the reagent supply unit 252 via the flow path inlet 260 at an unintended timing is suppressed.
 次いで、図1に示すように、検査チップ2が支軸46に取り付けられて、制御装置90に処理開始のコマンドが入力されると、以下の測定動作が実行される。なお、検査装置1は二つの検査チップ2を同時に検査可能であるが、以下では説明の便宜のため、1つの検査チップ2を検査する手順を説明する。以下の説明では、図3及び図4に示す検査チップ2の定常状態を自転角度0度とし、定常状態から90度反時計回りに回転した状態を自転角度90度とする。 Next, as shown in FIG. 1, when the inspection chip 2 is attached to the spindle 46 and a processing start command is input to the control device 90, the following measurement operation is executed. The inspection apparatus 1 can inspect two inspection chips 2 at the same time. For convenience of explanation, a procedure for inspecting one inspection chip 2 will be described below. In the following description, the steady state of the inspection chip 2 shown in FIGS. 3 and 4 is defined as a rotation angle of 0 degree, and the state rotated 90 degrees counterclockwise from the steady state is defined as a rotation angle of 90 degrees.
 まず、CPU91の指示に基づき、自転コントローラ98がステッピングモータ51を駆動制御することにより、定常状態の検査チップ2が前方からみて反時計回りに90度自転される。CPU91の指示に基づき、公転コントローラ97が主軸モータ35を制御してターンテーブル33の駆動を開始する。本実施形態では、検査チップ2の前方向が公転の方向である。CPU91の指示に基づき、公転コントローラ97が主軸モータ35を制御してターンテーブル33の回転速度を上げる。回転速度が例えば3000rpmに達すると、主軸モータ35はこの回転速度を保持する。これにより、図7に示すように、自転角度が90度の検査チップ2が公転される。上辺部21から下辺部24に向けて、検査チップ2に遠心力Xが作用する。遠心力Xの作用により、検査チップ2では次のように液体の位置が変化する。 First, based on an instruction from the CPU 91, the rotation controller 98 drives and controls the stepping motor 51, whereby the inspection chip 2 in a steady state rotates 90 degrees counterclockwise when viewed from the front. Based on the instruction from the CPU 91, the revolution controller 97 controls the spindle motor 35 to start driving the turntable 33. In the present embodiment, the front direction of the test chip 2 is the direction of revolution. Based on the instruction from the CPU 91, the revolution controller 97 controls the spindle motor 35 to increase the rotation speed of the turntable 33. When the rotational speed reaches, for example, 3000 rpm, the spindle motor 35 maintains this rotational speed. Thereby, as shown in FIG. 7, the test | inspection chip 2 whose autorotation angle is 90 degree | times is revolved. Centrifugal force X acts on the inspection chip 2 from the upper side 21 toward the lower side 24. Due to the action of the centrifugal force X, the position of the liquid changes in the inspection chip 2 as follows.
 図7を参照して、液体流路100における液体位置の変化を説明する。遠心力Xの作用により、図6に示す検体導入口301に収容されたキャピラリ401から、検体61が下方に流出する。前面25から後面26に向かう方向に傾斜して、前面25側と後面26側とを連通する傾斜面312が設けられる。検体61は、傾斜面312に沿って案内穴311を移動することにより、検体導入口301から検体定量流路110に流入する。検体61は、傾斜面312の端部312Aから下方に移動して、検体保持部111に保持される。よって、より確実に検体61は検体保持部111に保持されるので、キャピラリ401が検体導入口301に挿入された時に、検体61は流路入口120に移動しにくい。従って、意図しないタイミングにおいて、検体61が検体保持部111に流出し、さらに流路入口120を介して検体供給部112に流入する可能性が抑制される。 With reference to FIG. 7, the change in the liquid position in the liquid channel 100 will be described. Due to the action of the centrifugal force X, the sample 61 flows downward from the capillary 401 accommodated in the sample introduction port 301 shown in FIG. An inclined surface 312 is provided that is inclined in a direction from the front surface 25 toward the rear surface 26 and communicates the front surface 25 side and the rear surface 26 side. The specimen 61 flows from the specimen introduction port 301 into the specimen quantitative channel 110 by moving through the guide hole 311 along the inclined surface 312. The sample 61 moves downward from the end 312 </ b> A of the inclined surface 312 and is held by the sample holding unit 111. Therefore, since the sample 61 is more reliably held in the sample holding unit 111, the sample 61 is less likely to move to the flow channel inlet 120 when the capillary 401 is inserted into the sample introduction port 301. Therefore, the possibility that the sample 61 flows out to the sample holding unit 111 and further flows into the sample supply unit 112 via the flow path inlet 120 at an unintended timing is suppressed.
 流路入口120は、検体導入口301から検体保持部111に向かう第一注入方向において検体保持部111よりも検体導入口301側に設けられている。これにより、検体導入口301に収容されたキャピラリ401から流出する検体61は、流路入口120に流入する前に検体保持部111に保持される。よって、検体61は、キャピラリ401が検体導入口301に挿入された時に、流路入口120に移動しにくい。これにより、キャピラリ401から流出する検体61を、適切なタイミングにおいて検体保持部111から流路入口120に移動させて、検体供給部112に流入させることができる。その結果、意図しないタイミングにおいて、検体61が流路入口120を介して検体供給部112に流入する可能性が抑制される。 The flow channel inlet 120 is provided closer to the sample introduction port 301 than the sample holding unit 111 in the first injection direction from the sample introduction port 301 toward the sample holding unit 111. Thus, the sample 61 flowing out from the capillary 401 accommodated in the sample introduction port 301 is held in the sample holding unit 111 before flowing into the flow path inlet 120. Therefore, the specimen 61 is unlikely to move to the flow path inlet 120 when the capillary 401 is inserted into the specimen introduction port 301. As a result, the sample 61 flowing out from the capillary 401 can be moved from the sample holding unit 111 to the flow channel inlet 120 at an appropriate timing and can flow into the sample supply unit 112. As a result, the possibility that the sample 61 flows into the sample supply unit 112 via the channel inlet 120 at an unintended timing is suppressed.
 図2に示すように、流路入口120の前面25及び後面26の対向する方向の幅である流路幅L5は、検体保持部111の前面25及び後面26の対向する方向の幅である流路幅L6よりも小さい。従って、意図しないタイミングにおいて、検体61が検体保持部111から流路入口120側に移動した場合、検体61は流路入口120を通過困難である。その結果、適切なタイミングにおいて検体保持部111から流路入口120に移動させて、検体供給部112に流入させることができる。 As shown in FIG. 2, the flow path width L5, which is the width in the direction in which the front surface 25 and the rear surface 26 of the flow path inlet 120 face each other, is a flow that is the width in the direction in which the front surface 25 and the rear surface 26 of the specimen holder 111 face each other. It is smaller than the road width L6. Accordingly, when the sample 61 moves from the sample holding unit 111 to the flow channel inlet 120 side at an unintended timing, it is difficult for the sample 61 to pass through the flow channel inlet 120. As a result, the sample can be moved from the sample holding unit 111 to the flow path inlet 120 at an appropriate timing and can flow into the sample supply unit 112.
 遠心力Xの作用により、図6に示す試薬導入口303に収容されたキャピラリ403から、第一試薬62が下方に流出する。前面25から後面26に向かう方向に傾斜して、前面25側と後面26側とを連通する傾斜面314が設けられる。第一試薬62は、傾斜面314に沿って案内穴313を移動することにより、試薬導入口303から試薬定量流路130に流入する。第一試薬62は、傾斜面314の端部314Aから下方に移動して、試薬保持部131に保持される。よって、より確実に第一試薬62は試薬保持部131に保持されるので、キャピラリ403が試薬導入口303に挿入された時に、第一試薬62は流路入口140に移動しにくい。従って、意図しないタイミングにおいて、第一試薬62が試薬保持部131に流出し、さらに流路入口140を介して試薬供給部132に流入する可能性が抑制される。 The first reagent 62 flows downward from the capillary 403 accommodated in the reagent introduction port 303 shown in FIG. An inclined surface 314 that is inclined in a direction from the front surface 25 toward the rear surface 26 and communicates the front surface 25 side and the rear surface 26 side is provided. The first reagent 62 flows through the guide hole 313 along the inclined surface 314 and flows into the reagent fixed amount flow path 130 from the reagent introduction port 303. The first reagent 62 moves downward from the end 314 </ b> A of the inclined surface 314 and is held by the reagent holding unit 131. Therefore, since the first reagent 62 is more reliably held in the reagent holding part 131, the first reagent 62 is less likely to move to the channel inlet 140 when the capillary 403 is inserted into the reagent introduction port 303. Therefore, the possibility that the first reagent 62 flows out to the reagent holding unit 131 and further flows into the reagent supply unit 132 through the flow path inlet 140 at an unintended timing is suppressed.
 流路入口140は、試薬導入口303から試薬保持部131に向かう第三注入方向において試薬保持部131よりも試薬導入口303側に設けられている。これにより、試薬導入口303に収容されたキャピラリ403から流出する第一試薬62は、流路入口140に流入する前に試薬保持部131に保持される。よって、第一試薬62は、キャピラリ403が試薬導入口303に挿入された時に、流路入口140に移動しにくい。これにより、ユーザはキャピラリ403から流出する第一試薬62を、適切なタイミングにおいて試薬保持部131から流路入口140に移動させて、試薬供給部132に流入させることができる。その結果、意図しないタイミングにおいて、第一試薬62が流路入口140を介して試薬供給部132に流入する可能性が抑制される。 The flow path inlet 140 is provided closer to the reagent introduction port 303 than the reagent holding unit 131 in the third injection direction from the reagent introduction port 303 toward the reagent holding unit 131. Thus, the first reagent 62 flowing out from the capillary 403 accommodated in the reagent introduction port 303 is held in the reagent holding unit 131 before flowing into the flow path inlet 140. Therefore, the first reagent 62 is difficult to move to the flow path inlet 140 when the capillary 403 is inserted into the reagent introduction port 303. Thus, the user can move the first reagent 62 flowing out from the capillary 403 from the reagent holding unit 131 to the flow path inlet 140 at an appropriate timing and flow into the reagent supply unit 132. As a result, the possibility that the first reagent 62 flows into the reagent supply unit 132 via the flow path inlet 140 at an unintended timing is suppressed.
 案内穴313は、試薬導入口303の第三注入方向の端部である左下端部に位置する。図7において案内穴313から入口側壁部141に向けて延びる仮想線は、仮想方向Kを示す。仮想方向Kは、試薬導入口303の第三注入方向の端部から前面25及び後面26と平行に延び、且つ、第三注入方向に対して垂直に延びる仮想的な方向である。仮想方向Kと入口側壁部141とのなす角のうち、案内穴313と流路入口140との間に形成される角θは90度以下である。 The guide hole 313 is located at the lower left end which is the end of the reagent introduction port 303 in the third injection direction. In FIG. 7, the imaginary line extending from the guide hole 313 toward the inlet side wall 141 indicates the imaginary direction K. The virtual direction K is a virtual direction extending in parallel with the front surface 25 and the rear surface 26 from the end of the reagent introduction port 303 in the third injection direction and extending perpendicularly to the third injection direction. Of the angles formed by the virtual direction K and the inlet side wall 141, the angle θ formed between the guide hole 313 and the flow path inlet 140 is 90 degrees or less.
 試薬導入口303に収容されたキャピラリ403から流出した第一試薬62は、例えば検査チップ2の振動により、仮想方向Kに移動する可能性がある。角θが90度以下であることにより、仮想方向Kに移動した第一試薬62は入口側壁部141により、流路入口140とは反対側に設けられた試薬保持部131に案内される。従って、キャピラリ403から流出する第一試薬62は、入口側壁部141を超えて流路入口140に移動することが抑制される。その結果、意図しないタイミングにおいて、第一試薬62が流路入口140を介して試薬供給部132に流入する可能性が抑制される。 The first reagent 62 that has flowed out of the capillary 403 accommodated in the reagent introduction port 303 may move in the virtual direction K due to, for example, vibration of the test chip 2. When the angle θ is 90 degrees or less, the first reagent 62 moved in the virtual direction K is guided to the reagent holding unit 131 provided on the side opposite to the flow path inlet 140 by the inlet side wall 141. Therefore, the first reagent 62 flowing out from the capillary 403 is suppressed from moving to the flow path inlet 140 beyond the inlet side wall portion 141. As a result, the possibility that the first reagent 62 flows into the reagent supply unit 132 via the flow path inlet 140 at an unintended timing is suppressed.
 遠心力Xの作用により、図6に示す試薬導入口305に収容されたキャピラリ405から、第二試薬63が下方に流出する。前面25から後面26に向かう方向に傾斜して、前面25側と後面26側とを連通する傾斜面316が設けられる。第二試薬63は、傾斜面316に沿って案内穴315を移動することにより、試薬導入口305から試薬定量流路150に流入する。第二試薬63は、傾斜面316の端部316Aから下方に移動する。第二試薬63は、傾斜面316の端部316Aから下方に移動して、試薬保持部151に保持される。よって、より確実に第二試薬63は試薬保持部151に保持されるので、キャピラリ405が試薬導入口305に挿入された時に、第二試薬63は流路入口160に移動しにくい。従って、意図しないタイミングにおいて、第二試薬63が試薬保持部151に流出し、さらに流路入口160を介して試薬供給部152に流入する可能性が抑制される。 By the action of the centrifugal force X, the second reagent 63 flows downward from the capillary 405 accommodated in the reagent inlet 305 shown in FIG. An inclined surface 316 that is inclined in a direction from the front surface 25 toward the rear surface 26 and that communicates the front surface 25 side and the rear surface 26 side is provided. The second reagent 63 flows through the guide hole 315 along the inclined surface 316 and flows into the reagent fixed amount flow path 150 from the reagent introduction port 305. The second reagent 63 moves downward from the end 316A of the inclined surface 316. The second reagent 63 moves downward from the end portion 316A of the inclined surface 316 and is held by the reagent holding portion 151. Therefore, since the second reagent 63 is more reliably held in the reagent holding part 151, the second reagent 63 is unlikely to move to the flow path inlet 160 when the capillary 405 is inserted into the reagent introduction port 305. Therefore, the possibility that the second reagent 63 flows out to the reagent holding unit 151 and further flows into the reagent supply unit 152 via the flow path inlet 160 at an unintended timing is suppressed.
 傾斜面316の前面25側の端部316Aよりも試薬保持部151側には、後面26において前面25とは反対方向に向かって突出する段差又は後面26において前面25とは反対方向に向かって傾斜するテーパである狭窄部165が設けられる。狭窄部165は前面25と後面26とが対向する前後方向の流路幅が小さいため、毛管力を生じる。端部316Aから下方に移動する第二試薬63は、狭窄部165に生じる毛管力により吸引されて、試薬保持部151に案内される。つまり、傾斜面316により前面25側に案内された第二試薬63は、狭窄部165に生じる毛管力により試薬保持部151に流入される。その結果、後面26側から前面25側に移動した第二試薬63が、意図しないタイミングにおいて、流路入口160を介して試薬供給部152に流入する可能性が抑制される。 A step that protrudes in the direction opposite to the front surface 25 on the rear surface 26 from the end portion 316A on the front surface 25 side of the inclined surface 316 or an inclination in the opposite direction to the front surface 25 on the rear surface 26. A constricted portion 165 is provided. Since the narrow portion 165 has a small flow path width in the front-rear direction in which the front surface 25 and the rear surface 26 face each other, a capillary force is generated. The second reagent 63 moving downward from the end portion 316A is sucked by the capillary force generated in the narrowed portion 165 and guided to the reagent holding portion 151. That is, the second reagent 63 guided to the front surface 25 side by the inclined surface 316 flows into the reagent holding portion 151 by the capillary force generated in the narrowed portion 165. As a result, the possibility that the second reagent 63 moved from the rear surface 26 side to the front surface 25 side flows into the reagent supply unit 152 through the flow path inlet 160 at an unintended timing is suppressed.
 流路入口160は、試薬導入口305から試薬保持部151に向かう第五注入方向において試薬保持部151よりも試薬導入口305側に設けられている。これにより、試薬導入口305に収容されたキャピラリ405から流出する第二試薬63は、流路入口160に流入する前に試薬保持部151に保持される。よって、第二試薬63は、キャピラリ405が試薬導入口305に挿入された時に、流路入口160に移動しにくい。その結果、ユーザはキャピラリ405から流出する第二試薬63を、適切なタイミングにおいて試薬保持部151から流路入口160に移動させて、試薬供給部152に流入させることができる。その結果、意図しないタイミングにおいて、第二試薬63が流路入口160を介して試薬供給部152に流入する可能性が抑制される。 The flow channel inlet 160 is provided closer to the reagent introduction port 305 than the reagent holding unit 151 in the fifth injection direction from the reagent introduction port 305 toward the reagent holding unit 151. Thereby, the second reagent 63 flowing out from the capillary 405 accommodated in the reagent introduction port 305 is held in the reagent holding unit 151 before flowing into the flow path inlet 160. Therefore, the second reagent 63 is difficult to move to the flow path inlet 160 when the capillary 405 is inserted into the reagent inlet 305. As a result, the user can move the second reagent 63 flowing out from the capillary 405 from the reagent holding unit 151 to the flow channel inlet 160 at an appropriate timing and flow into the reagent supply unit 152. As a result, the possibility that the second reagent 63 flows into the reagent supply unit 152 via the flow path inlet 160 at an unintended timing is suppressed.
 狭窄部165の下部は、試薬保持部151に設けられている。試薬保持部151にも、狭窄部165に起因する毛管力を生じる。試薬保持部151は、狭窄部165に起因する毛管力により、キャピラリ405から流出した第二試薬63を保持する。従って、試薬保持部151により保持された第二試薬63が、例えば検査チップ2の振動により試薬保持部151から流出することが抑制される。その結果、意図しないタイミングにおいて、第二試薬63が流路入口160を介して試薬供給部152に流入する可能性が抑制される。 The lower part of the constriction part 165 is provided in the reagent holding part 151. A capillary force resulting from the constriction 165 is also generated in the reagent holding unit 151. The reagent holding unit 151 holds the second reagent 63 that has flowed out of the capillary 405 due to the capillary force resulting from the constriction 165. Accordingly, the second reagent 63 held by the reagent holding unit 151 is prevented from flowing out of the reagent holding unit 151 due to, for example, vibration of the test chip 2. As a result, the possibility that the second reagent 63 flows into the reagent supply unit 152 via the flow path inlet 160 at an unintended timing is suppressed.
 図4及び図7を参照して、液体流路200における液体位置の変化を説明する。遠心力Xの作用により、図6に示す検体導入口302に収容されたキャピラリ402から、検体81が下方に流出する。検体81は検体定量流路210に流入して、傾斜面222に沿って右下方に移動する。傾斜面222は入口側壁部221に向かって傾斜しているため、検体81は傾斜面222により入口側壁部221に向けて案内される。検体81は、入口側壁部221に沿って左下方に移動して、検体保持部211に保持される。つまり傾斜面222は、検体81を検体保持部211に向けて案内する入口側壁部221に向けて、キャピラリ402から流出した検体81を案内する。従って、意図しないタイミングにおいて、検体81が流路入口220を介して検体供給部212に流入する可能性が抑制される。 With reference to FIG. 4 and FIG. 7, the change of the liquid position in the liquid flow path 200 will be described. Due to the action of the centrifugal force X, the sample 81 flows downward from the capillary 402 accommodated in the sample introduction port 302 shown in FIG. The sample 81 flows into the sample determination channel 210 and moves to the lower right along the inclined surface 222. Since the inclined surface 222 is inclined toward the inlet side wall 221, the specimen 81 is guided toward the inlet side wall 221 by the inclined surface 222. The sample 81 moves to the lower left along the inlet side wall portion 221 and is held by the sample holding portion 211. That is, the inclined surface 222 guides the specimen 81 that has flowed out of the capillary 402 toward the inlet side wall portion 221 that guides the specimen 81 toward the specimen holding portion 211. Therefore, the possibility that the sample 81 flows into the sample supply unit 212 via the flow path inlet 220 at an unintended timing is suppressed.
 流路入口220は、検体導入口302から検体保持部211に向かう第二注入方向において検体保持部211よりも検体導入口302側に設けられている。これにより、検体導入口302に収容されたキャピラリ402から流出する検体81は、流路入口220に流入する前に検体保持部211に保持される。よって、検体81は、キャピラリ402が検体導入口302に挿入された時に、流路入口220に移動しにくい。その結果、ユーザはキャピラリ402から流出する検体81を、適切なタイミングにおいて検体保持部211から流路入口220に移動させて、検体供給部212に流入させることができる。その結果、意図しないタイミングにおいて、検体81が流路入口220を介して検体供給部212に流入する可能性が抑制される。 The flow path inlet 220 is provided closer to the sample introduction port 302 than the sample holding unit 211 in the second injection direction from the sample introduction port 302 toward the sample holding unit 211. Thus, the sample 81 flowing out from the capillary 402 accommodated in the sample introduction port 302 is held in the sample holding unit 211 before flowing into the flow path inlet 220. Therefore, the specimen 81 is unlikely to move to the flow path inlet 220 when the capillary 402 is inserted into the specimen introduction port 302. As a result, the user can move the sample 81 flowing out from the capillary 402 from the sample holding unit 211 to the flow channel inlet 220 at an appropriate timing and flow into the sample supply unit 212. As a result, the possibility that the sample 81 flows into the sample supply unit 212 via the flow path inlet 220 at an unintended timing is suppressed.
 遠心力Xの作用により、図6に示す試薬導入口304に収容されたキャピラリ404から、第一試薬82が下方に流出する。これにより、第一試薬82は試薬定量流路230に流入して、入口側壁部241に沿って右下方に移動したのち、試薬保持部231に保持される。流路入口240は、試薬導入口304から試薬保持部231に向かう第四注入方向において試薬保持部231よりも試薬導入口304側に設けられている。これにより、試薬導入口304に収容されたキャピラリ404から流出する第一試薬82は、流路入口240に流入する前に試薬保持部231に保持される。よって、第一試薬82は、キャピラリ404が試薬導入口304に挿入された時に、流路入口240に移動しにくい。その結果、ユーザはキャピラリ404から流出する第一試薬82を、適切なタイミングにおいて試薬保持部231から流路入口240に移動させて、試薬供給部232に流入させることができる。その結果、意図しないタイミングにおいて、第一試薬82が流路入口240を介して試薬供給部232に流入する可能性が抑制される。 The first reagent 82 flows downward from the capillary 404 accommodated in the reagent introduction port 304 shown in FIG. 6 by the action of the centrifugal force X. As a result, the first reagent 82 flows into the reagent fixed amount flow channel 230, moves to the lower right along the inlet side wall portion 241, and is then held in the reagent holding portion 231. The channel inlet 240 is provided closer to the reagent introduction port 304 than the reagent holding unit 231 in the fourth injection direction from the reagent introduction port 304 toward the reagent holding unit 231. Thus, the first reagent 82 flowing out from the capillary 404 accommodated in the reagent introduction port 304 is held in the reagent holding unit 231 before flowing into the flow path inlet 240. Therefore, the first reagent 82 is unlikely to move to the flow path inlet 240 when the capillary 404 is inserted into the reagent inlet 304. As a result, the user can move the first reagent 82 flowing out from the capillary 404 from the reagent holding unit 231 to the flow path inlet 240 at an appropriate timing and flow into the reagent supply unit 232. As a result, the possibility that the first reagent 82 flows into the reagent supply unit 232 via the flow path inlet 240 at an unintended timing is suppressed.
 遠心力Xの作用により、毛管部262に保持されている第二試薬83が下方に流出する。第二試薬83は、接続流路263を介して下方に移動して、試薬保持部251に保持される。接続流路263と流路入口260との間には、流路入口260よりも下方まで突出する突出壁264が設けられている。接続流路263に存在する第二試薬83が、例えば検査チップ2の振動により流路入口260側に移動した場合でも、突出壁264により第二試薬83が流路入口260に流入することが抑制される。 The second reagent 83 held in the capillary part 262 flows downward by the action of the centrifugal force X. The second reagent 83 moves downward via the connection channel 263 and is held by the reagent holding unit 251. A protruding wall 264 is provided between the connection channel 263 and the channel inlet 260 so as to protrude below the channel inlet 260. Even when the second reagent 83 existing in the connection channel 263 moves to the channel inlet 260 side due to vibration of the test chip 2, for example, the protruding wall 264 prevents the second reagent 83 from flowing into the channel inlet 260. Is done.
 流路入口260は、試薬導入口306から試薬保持部251に向かう第六注入方向において試薬保持部251よりも試薬導入口306側に設けられている。これにより、試薬導入口306に収容されたキャピラリ406から流出する第二試薬83は、流路入口260に流入する前に試薬保持部251に保持される。よって、第二試薬83は、キャピラリ406が試薬導入口306に挿入された時に、流路入口260に移動しにくい。その結果、ユーザはキャピラリ406から流出する第二試薬83を、適切なタイミングにおいて試薬保持部251から流路入口260に移動させて、試薬供給部252に流入させることができる。その結果、意図しないタイミングにおいて、第二試薬83が流路入口260を介して試薬供給部252に流入する可能性が抑制される。 The flow path inlet 260 is provided closer to the reagent inlet 306 than the reagent holder 251 in the sixth injection direction from the reagent inlet 306 toward the reagent holder 251. Thus, the second reagent 83 flowing out from the capillary 406 accommodated in the reagent introduction port 306 is held in the reagent holding unit 251 before flowing into the flow path inlet 260. Therefore, the second reagent 83 is unlikely to move to the flow path inlet 260 when the capillary 406 is inserted into the reagent inlet 306. As a result, the user can move the second reagent 83 flowing out of the capillary 406 from the reagent holding unit 251 to the flow path inlet 260 at an appropriate timing and flow into the reagent supply unit 252. As a result, the possibility that the second reagent 83 flows into the reagent supply unit 252 via the flow path inlet 260 at an unintended timing is suppressed.
 次いで、CPU91の指示に基づき、自転コントローラ98がステッピングモータ51を駆動制御することにより、公転中の検査チップ2が前方からみて時計回りに90度自転される。これにより、図8に示すように、自転角度が0度の検査チップ2が公転される。左辺部23から右辺部22に向けて、検査チップ2に遠心力が作用する。遠心力Xの作用により、検査チップ2では次のように液体の位置が変化する。 Next, the rotation controller 98 drives and controls the stepping motor 51 based on an instruction from the CPU 91, so that the inspection chip 2 that is revolving is rotated 90 degrees clockwise as viewed from the front. Thereby, as shown in FIG. 8, the test | inspection chip 2 whose autorotation angle is 0 degree | times is revolved. A centrifugal force acts on the test chip 2 from the left side 23 toward the right side 22. Due to the action of the centrifugal force X, the position of the liquid changes in the inspection chip 2 as follows.
 図4及び図8を参照して、液体流路100及び液体流路200における液体位置の変化を説明する。検体定量流路110では、検体61が遠心力Xの作用により、入口側壁部121に沿って右上方に移動し、流路入口120を介して検体供給部112に流入する。試薬定量流路130では、第一試薬62が遠心力Xの作用により、入口側壁部141に沿って右上方に移動し、流路入口140を介して試薬供給部132に流入する。試薬定量流路150では、第二試薬63が遠心力Xの作用により、入口側壁部161に沿って右上方に移動し、流路入口160を介して試薬供給部152に流入する。検体定量流路210では、検体81が遠心力Xの作用により、入口側壁部221に沿って右上方に移動し、流路入口220を介して検体供給部212に流入する。試薬定量流路230では、第一試薬82が遠心力Xの作用により、入口側壁部241に沿って右上方に移動し、流路入口240を介して試薬供給部232に流入する。試薬定量流路250では、第二試薬83が遠心力Xの作用により、入口側壁部261に沿って右上方に移動し、流路入口260を介して試薬供給部252に流入する。 With reference to FIG. 4 and FIG. 8, the change of the liquid position in the liquid flow path 100 and the liquid flow path 200 is demonstrated. In the sample quantification channel 110, the sample 61 moves to the upper right along the inlet side wall 121 by the action of the centrifugal force X, and flows into the sample supply unit 112 through the channel inlet 120. In the reagent fixed amount flow path 130, the first reagent 62 moves to the upper right along the inlet side wall portion 141 by the action of the centrifugal force X, and flows into the reagent supply portion 132 via the flow path inlet 140. In the reagent fixed amount flow path 150, the second reagent 63 moves to the upper right along the inlet side wall portion 161 by the action of the centrifugal force X, and flows into the reagent supply portion 152 through the flow path inlet 160. In the sample quantification channel 210, the sample 81 moves to the upper right along the inlet side wall 221 by the action of the centrifugal force X, and flows into the sample supply unit 212 through the channel inlet 220. In the reagent fixed amount flow channel 230, the first reagent 82 moves to the upper right along the inlet side wall 241 by the action of the centrifugal force X, and flows into the reagent supply unit 232 through the flow channel inlet 240. In the reagent fixed amount flow channel 250, the second reagent 83 moves to the upper right along the inlet side wall portion 261 by the action of the centrifugal force X, and flows into the reagent supply portion 252 through the flow channel inlet 260.
 次いで、CPU91の指示に基づき、自転コントローラ98がステッピングモータ51を駆動制御することにより、公転中の検査チップ2が前方からみて反時計回りに90度自転される。これにより、図9に示すように、自転角度が90度の検査チップ2が公転される。上辺部21から下辺部24に向けて、検査チップ2に遠心力が作用する。遠心力Xの作用により、検査チップ2では次のように液体の位置が変化する。 Next, the rotation controller 98 drives and controls the stepping motor 51 based on an instruction from the CPU 91, so that the inspection chip 2 that is revolving is rotated 90 degrees counterclockwise when viewed from the front. Thereby, as shown in FIG. 9, the test | inspection chip 2 whose autorotation angle is 90 degree | times is revolved. A centrifugal force acts on the inspection chip 2 from the upper side 21 toward the lower side 24. Due to the action of the centrifugal force X, the position of the liquid changes in the inspection chip 2 as follows.
 図4及び図9を参照して、液体流路100及び液体流路200における液体位置の変化を説明する。検体定量流路110では、検体61が遠心力Xの作用により、検体案内部113を介して検体定量部114に供給される。検体定量部114から溢れ出た余剰の検体61は、通路115を介して検体余剰部116に流入する。これにより、検体定量部114の容量分の検体61が検体定量部114に残る。試薬定量流路130では、第一試薬62が遠心力Xの作用により、試薬案内部133を介して試薬定量部134に供給される。試薬定量部134から溢れ出た余剰の第一試薬62は、通路135を介して試薬余剰部136に流入する。試薬定量部134の容量分の第一試薬62が、試薬定量部134に残る。試薬定量流路150では、第二試薬63が遠心力Xの作用により、試薬案内部153を介して試薬定量部154に供給される。試薬定量部154から溢れ出た余剰の第二試薬63は、通路155を介して試薬余剰部156に流入する。試薬定量部154の容量分の第二試薬63が、試薬定量部154に残る。検体定量流路210では、検体81が遠心力Xの作用により、検体案内部213を介して検体定量部214に供給される。検体定量部214から溢れ出た余剰の検体81は、通路215を介して検体余剰部216に流入する。これにより、検体定量部214の容量分の検体81が検体定量部214に残る。試薬定量流路230では、第一試薬82が遠心力Xの作用により、試薬案内部233を介して試薬定量部234に供給される。試薬定量部234から溢れ出た余剰の第一試薬82は、通路235を介して試薬余剰部236に流入する。試薬定量部234の容量分の第一試薬82が、試薬定量部234に残る。試薬定量流路250では、第二試薬83が遠心力Xの作用により、試薬案内部253を介して試薬定量部254に供給される。試薬定量部254から溢れ出た余剰の第二試薬83は、通路255を介して試薬余剰部256に流入する。試薬定量部254の容量分の第二試薬83が、試薬定量部254に残る。 4 and 9, changes in the liquid position in the liquid channel 100 and the liquid channel 200 will be described. In the sample quantification channel 110, the sample 61 is supplied to the sample quantification unit 114 via the sample guide unit 113 by the action of the centrifugal force X. The surplus specimen 61 overflowing from the specimen quantification part 114 flows into the specimen surplus part 116 via the passage 115. As a result, the sample 61 corresponding to the volume of the sample quantitative unit 114 remains in the sample quantitative unit 114. In the reagent fixed amount flow path 130, the first reagent 62 is supplied to the reagent fixed amount section 134 via the reagent guide section 133 by the action of the centrifugal force X. The surplus first reagent 62 overflowing from the reagent quantitative unit 134 flows into the reagent surplus unit 136 via the passage 135. The first reagent 62 corresponding to the volume of the reagent quantitative unit 134 remains in the reagent quantitative unit 134. In the reagent quantitative flow path 150, the second reagent 63 is supplied to the reagent quantitative unit 154 through the reagent guide unit 153 by the action of the centrifugal force X. The surplus second reagent 63 overflowing from the reagent quantification unit 154 flows into the reagent surplus unit 156 via the passage 155. The second reagent 63 corresponding to the capacity of the reagent quantitative unit 154 remains in the reagent quantitative unit 154. In the sample quantification channel 210, the sample 81 is supplied to the sample quantification unit 214 via the sample guide unit 213 by the action of the centrifugal force X. The surplus sample 81 overflowing from the sample quantification unit 214 flows into the sample surplus unit 216 via the passage 215. As a result, the sample 81 corresponding to the volume of the sample quantitative unit 214 remains in the sample quantitative unit 214. In the reagent quantitative flow channel 230, the first reagent 82 is supplied to the reagent quantitative unit 234 via the reagent guide unit 233 by the action of the centrifugal force X. The surplus first reagent 82 overflowing from the reagent quantitative unit 234 flows into the reagent surplus unit 236 via the passage 235. The first reagent 82 corresponding to the volume of the reagent quantitative unit 234 remains in the reagent quantitative unit 234. In the reagent quantitative flow channel 250, the second reagent 83 is supplied to the reagent quantitative unit 254 via the reagent guide unit 253 by the action of the centrifugal force X. The surplus second reagent 83 overflowing from the reagent quantification unit 254 flows into the reagent surplus unit 256 via the passage 255. The second reagent 83 corresponding to the capacity of the reagent quantitative unit 254 remains in the reagent quantitative unit 254.
 次いで、CPU91の指示に基づき、自転コントローラ98がステッピングモータ51を駆動制御することにより、公転中の検査チップ2が前方からみて時計回りに90度自転される。これにより、図10に示すように、自転角度が0度の検査チップ2が公転される。左辺部23から右辺部22に向けて、検査チップ2に遠心力が作用する。遠心力Xの作用により、検査チップ2では次のように液体の位置が変化する。 Next, the rotation controller 98 drives and controls the stepping motor 51 based on an instruction from the CPU 91, so that the inspection chip 2 that is revolving is rotated 90 degrees clockwise as viewed from the front. Thereby, as shown in FIG. 10, the test | inspection chip 2 whose autorotation angle is 0 degree | times is revolved. A centrifugal force acts on the test chip 2 from the left side 23 toward the right side 22. Due to the action of the centrifugal force X, the position of the liquid changes in the inspection chip 2 as follows.
 図4及び図10を参照して、液体流路100及び液体流路200における液体位置の変化を説明する。検体定量流路110では、検体定量部114に残存した検体61が遠心力Xの作用により、通路117を介して共通流路180に流入する。このとき検体61は、案内壁181に沿って右下方に移動したのち、さらに案内壁183まで右方向に移動する。検体余剰部116に流入した余剰の検体61は、検体余剰部116に保持される。試薬定量流路130では、試薬定量部134に残存した第一試薬62が遠心力Xの作用により、通路137を介して共通流路180に流入する。このとき第一試薬62は、案内壁182に沿って右下方に移動したのち、さらに案内壁183まで右方向に移動する。試薬余剰部136に流入した余剰の第一試薬62は、試薬余剰部136に保持される。試薬定量流路150では、試薬定量部154に残存した第二試薬63が遠心力Xの作用により、通路157を介して共通流路180に流入し、案内壁183まで右方向に移動する。試薬余剰部156に流入した余剰の第二試薬63は、試薬余剰部156に保持される。案内壁183まで移動した検体61、第一試薬62、及び第二試薬63は、遠心力Xの作用により混合されて、混合液64が生成される。検体定量流路210では、検体定量部214に残存した検体81が遠心力Xの作用により、通路217を介して共通流路280に流入する。このとき検体81は、案内壁281に沿って右下方に移動したのち、さらに案内壁283まで右方向に移動する。検体余剰部216に流入した余剰の検体81は、検体余剰部216に保持される。試薬定量流路230では、試薬定量部234に残存した第一試薬82が遠心力Xの作用により、通路237を介して共通流路280に流入する。このとき第一試薬82は、案内壁282に沿って右下方に移動したのち、さらに案内壁283まで右方向に移動する。試薬余剰部236に流入した余剰の第一試薬82は、試薬余剰部236に保持される。試薬定量流路250では、試薬定量部254に残存した第二試薬83が遠心力Xの作用により、通路257を介して共通流路280に流入し、案内壁283まで右方向に移動する。試薬余剰部256に流入した余剰の第二試薬83は、試薬余剰部256に保持される。案内壁283まで移動した検体81、第一試薬82、及び第二試薬83は、遠心力Xの作用により混合されて、混合液84が生成される。 With reference to FIG. 4 and FIG. 10, the change of the liquid position in the liquid flow path 100 and the liquid flow path 200 is demonstrated. In the sample quantification channel 110, the sample 61 remaining in the sample quantification unit 114 flows into the common channel 180 via the passage 117 by the action of the centrifugal force X. At this time, the specimen 61 moves to the lower right along the guide wall 181, and further moves to the right to the guide wall 183. The surplus specimen 61 that has flowed into the specimen surplus section 116 is held in the specimen surplus section 116. In the reagent fixed amount flow channel 130, the first reagent 62 remaining in the reagent fixed amount portion 134 flows into the common flow channel 180 through the passage 137 by the action of the centrifugal force X. At this time, the first reagent 62 moves to the lower right along the guide wall 182, and further moves to the right to the guide wall 183. The surplus first reagent 62 that has flowed into the reagent surplus portion 136 is held in the reagent surplus portion 136. In the reagent fixed amount flow channel 150, the second reagent 63 remaining in the reagent fixed amount portion 154 flows into the common flow channel 180 through the passage 157 by the action of the centrifugal force X, and moves rightward to the guide wall 183. The surplus second reagent 63 that has flowed into the reagent surplus portion 156 is held in the reagent surplus portion 156. The specimen 61, the first reagent 62, and the second reagent 63 that have moved to the guide wall 183 are mixed by the action of the centrifugal force X, and a mixed liquid 64 is generated. In the sample quantification channel 210, the sample 81 remaining in the sample quantification unit 214 flows into the common channel 280 via the passage 217 by the action of the centrifugal force X. At this time, the specimen 81 moves to the lower right along the guide wall 281, and further moves to the right to the guide wall 283. The surplus specimen 81 that has flowed into the specimen surplus part 216 is held in the specimen surplus part 216. In the reagent fixed amount flow channel 230, the first reagent 82 remaining in the reagent fixed amount portion 234 flows into the common flow channel 280 through the passage 237 by the action of the centrifugal force X. At this time, the first reagent 82 moves to the lower right along the guide wall 282, and further moves to the right to the guide wall 283. The surplus first reagent 82 that has flowed into the reagent surplus portion 236 is held in the reagent surplus portion 236. In the reagent fixed amount flow channel 250, the second reagent 83 remaining in the reagent fixed amount portion 254 flows into the common flow channel 280 through the passage 257 by the action of the centrifugal force X and moves to the right to the guide wall 283. The surplus second reagent 83 that has flowed into the reagent surplus portion 256 is held in the reagent surplus portion 256. The specimen 81, the first reagent 82, and the second reagent 83 that have moved to the guide wall 283 are mixed by the action of the centrifugal force X, and a mixed solution 84 is generated.
 次いで、CPU91の指示に基づき、公転コントローラ97が主軸モータ35を減速駆動させる。公転コントローラ97は、検査チップ2を測定位置の角度まで回転移動させたのち、主軸モータ35を停止させる。これにより、図11に示すように、自転角度が0度の検査チップ2の公転が停止される。上辺部21から下辺部24に向けて、検査チップ2に重力Gが作用する。液体流路100では混合液64が重力Gの作用により、測定部190に移動及び貯留される。図4及び図11に示すように、液体流路200では混合液84が重力Gの作用により、測定部290に移動及び貯留される。 Then, based on the instruction from the CPU 91, the revolution controller 97 drives the spindle motor 35 to decelerate. The revolution controller 97 stops the spindle motor 35 after rotating the inspection chip 2 to the angle of the measurement position. Thereby, as shown in FIG. 11, the revolution of the test | inspection chip 2 whose autorotation angle is 0 degree | times is stopped. Gravity G acts on the inspection chip 2 from the upper side 21 toward the lower side 24. In the liquid channel 100, the mixed solution 64 is moved and stored in the measurement unit 190 by the action of gravity G. As shown in FIGS. 4 and 11, in the liquid flow path 200, the mixed solution 84 is moved and stored in the measurement unit 290 by the action of gravity G.
 図1に示すように、検査チップ2が測定位置にある場合、光源71の発光による測定光の進行方向に測定部190,290が並ぶ。CPU91の指示に基づき、測定コントローラ99が光源71を発光すると、測定光が測定部190に貯留された混合液64及び測定部290に貯留された混合液84を透過する。CPU91は光センサ72が受光した測定光の変化量に基づいて、混合液64,84を測定する。本実施形態では、混合液64,84を透過した光の波長に基づいて、混合液64,84から各々異なる成分が測定される。 As shown in FIG. 1, when the inspection chip 2 is at the measurement position, the measurement units 190 and 290 are arranged in the traveling direction of the measurement light emitted by the light source 71. When the measurement controller 99 emits the light source 71 based on an instruction from the CPU 91, the measurement light passes through the mixed solution 64 stored in the measurement unit 190 and the mixed solution 84 stored in the measurement unit 290. The CPU 91 measures the mixed liquids 64 and 84 based on the change amount of the measurement light received by the optical sensor 72. In the present embodiment, different components are measured from the mixed liquids 64 and 84 based on the wavelength of the light transmitted through the mixed liquids 64 and 84.
 具体的には、混合液64はグルコースを測定するための混合液であり、波長340nmの光成分に反応する。混合液84は総コレステロールを測定するための混合液であり、波長650nmの光成分に反応する。光センサ72は波長340nmの光成分を、図示外のバンドバスフィルタを透過して検出する。CPU91は、光センサ72が検出した波長340nmの光成分に基づいて、混合液64からグルコースを測定する。光センサ72は波長650nmの光成分を、図示外のバンドバスフィルタを透過して検出する。CPU91は、光センサ72が検出した波長650nmの光成分に基づいて、混合液84から総コレステロールを測定する。CPU91は、測定結果をディスプレイ96に表示する。尚、混合液64,84の測定方法は、光学測定に限られず、他の方法でもよい。 Specifically, the mixed solution 64 is a mixed solution for measuring glucose and reacts with a light component having a wavelength of 340 nm. The mixed solution 84 is a mixed solution for measuring total cholesterol and reacts with a light component having a wavelength of 650 nm. The optical sensor 72 detects a light component having a wavelength of 340 nm through a bandpass filter (not shown). The CPU 91 measures glucose from the mixed solution 64 based on the light component having a wavelength of 340 nm detected by the optical sensor 72. The optical sensor 72 detects a light component having a wavelength of 650 nm through a bandpass filter (not shown). The CPU 91 measures total cholesterol from the mixed solution 84 based on the light component with a wavelength of 650 nm detected by the optical sensor 72. The CPU 91 displays the measurement result on the display 96. In addition, the measuring method of the liquid mixtures 64 and 84 is not restricted to an optical measurement, Other methods may be used.
<6.その他>
 上記実施形態において、検体導入口301,302、及び試薬導入口303,304,305,306がそれぞれ、本開示の「導入口」に相当する。検体保持部111,211、及び試薬保持部131,151,231,251がそれぞれ、本開示の「保持部」に相当する。検体供給部112,212、及び試薬供給部132,152,232,252がそれぞれ、本開示の「流体回路」に相当する。傾斜面222,312,314,316、入口側壁部241、及びテーパ268がそれぞれ、本開示の「傾斜面」に相当する。後面26が本開示の「第一面」に相当する。前面25が本開示の「第二面」に相当する。
<6. Other>
In the above-described embodiment, the sample introduction ports 301 and 302 and the reagent introduction ports 303, 304, 305, and 306 respectively correspond to “introduction ports” of the present disclosure. The sample holding units 111 and 211 and the reagent holding units 131, 151, 231, and 251 correspond to the “holding unit” of the present disclosure. The sample supply units 112 and 212 and the reagent supply units 132, 152, 232, and 252 each correspond to a “fluid circuit” of the present disclosure. The inclined surfaces 222, 312, 314, 316, the inlet side wall portion 241, and the taper 268 each correspond to an “inclined surface” of the present disclosure. The rear surface 26 corresponds to a “first surface” of the present disclosure. The front surface 25 corresponds to a “second surface” of the present disclosure.
(1)前面25に設ける液体流路は、検体定量流路110及び試薬定量流路130,150の三つの流路に限定されず、一つの流路でも、複数の流路でもよい。後面26に設ける液体流路は、検体定量流路210及び試薬定量流路230,250の三つの流路に限定されず、一つの流路でも、複数の流路でもよい。前面25及び後面26の一方のみに液体流路を設けてもよい。 (1) The liquid channels provided in the front surface 25 are not limited to the three channels of the sample quantification channel 110 and the reagent quantification channels 130 and 150, and may be one channel or a plurality of channels. The liquid channels provided on the rear surface 26 are not limited to the three channels of the sample quantification channel 210 and the reagent quantification channels 230 and 250, and may be one channel or a plurality of channels. A liquid channel may be provided only on one of the front surface 25 and the rear surface 26.
 液体導入部300が有する導入口は、検体導入口301,302及び試薬導入口303,304,305,306の六つの導入口に限定されない。一つの導入口が、二つ以上の液体流路に液体を供給してもよい。液体導入部300が有する導入口は、前面25に設けられてもよいし、前面25及び後面26の両方に設けられてもよい。 The inlets of the liquid inlet 300 are not limited to the six inlets of the specimen inlets 301 and 302 and the reagent inlets 303, 304, 305, and 306. One inlet may supply liquid to two or more liquid flow paths. The introduction port of the liquid introduction unit 300 may be provided on the front surface 25 or may be provided on both the front surface 25 and the rear surface 26.
(2)前面25又は後面26に設けられる液体流路の少なくとも一つが、検体定量流路110,210及び試薬定量流路130,150,230,250のいずれかの構成を備えればよい。例えば、前面25に検体定量流路110、試薬定量流路130、及び検体導入口301が形成され、後面26に試薬導入口303が形成された検査チップ2を想定する。この検査チップ2において、検体定量流路110は傾斜面312を介して検体61が供給され、且つ、検体保持部111に狭窄部165を有してもよい。試薬定量流路130は、入口側壁部141に向かって傾斜する傾斜面222によって、キャピラリ403が位置決めされてもよい。 (2) At least one of the liquid channels provided on the front surface 25 or the rear surface 26 may have any one of the sample quantitative channels 110 and 210 and the reagent quantitative channels 130, 150, 230, and 250. For example, it is assumed that the test chip 2 has the sample quantitative channel 110, the reagent quantitative channel 130, and the sample inlet 301 formed on the front surface 25 and the reagent inlet 303 formed on the rear surface 26. In the test chip 2, the sample determination channel 110 may be supplied with the sample 61 via the inclined surface 312, and the sample holding unit 111 may have a constriction 165. In the reagent fixed amount flow path 130, the capillary 403 may be positioned by an inclined surface 222 inclined toward the inlet side wall portion 141.
(3)検体61,81は、血液に限定されない。検体61,81は、例えば、血漿、血球、骨髄、尿、膣組織、上皮組織、腫瘍、精液、唾液、又は食料品などの成分を含む液体でもよい。第一試薬62,82及び第二試薬63,83も、検体61,81及び検査目的に応じて適宜変更すればよい。検査チップ2は、シート27,28を備えていなくてもよい。例えば、液体流路100,200および液体導入部300が、板材20の内部に直接形成された検査チップ2を用いてもよい。 (3) The specimens 61 and 81 are not limited to blood. The specimens 61 and 81 may be, for example, a liquid containing components such as plasma, blood cells, bone marrow, urine, vaginal tissue, epithelial tissue, tumor, semen, saliva, or foodstuff. The first reagent 62 and 82 and the second reagent 63 and 83 may be appropriately changed according to the specimens 61 and 81 and the inspection purpose. The inspection chip 2 may not include the sheets 27 and 28. For example, the inspection chip 2 in which the liquid flow paths 100 and 200 and the liquid introduction part 300 are directly formed inside the plate member 20 may be used.
2  検査チップ
25  前面
26  後面
61,81  検体
62,82  第一試薬
63,83  第二試薬
111,211  検体保持部
112,212  検体供給部
120,140,160,220,240,260  流路入口
121,141,161,221,241,261  入口側壁部
131,151,231,251  試薬保持部
132,152,232,252  試薬供給部
165  狭窄部
190,290  測定部
222,312,314,316  傾斜面
262  毛管部
263  接続流路
301,302  検体導入口
303,304,305,306  試薬導入口
401,402,403,404,405,406  キャピラリ
2 Test chip 25 Front surface 26 Rear surface 61, 81 Sample 62, 82 First reagent 63, 83 Second reagent 111, 211 Sample holding unit 112, 212 Sample supply unit 120, 140, 160, 220, 240, 260 Channel inlet 121 , 141, 161, 221, 241, 261 Inlet side wall part 131, 151, 231, 251 Reagent holding part 132, 152, 232, 252 Reagent supply part 165 Narrow part 190, 290 Measuring part 222, 312, 314, 316 Inclined surface 262 Capillary portion 263 Connection channel 301, 302 Sample introduction port 303, 304, 305, 306 Reagent introduction port 401, 402, 403, 404, 405, 406 Capillary

Claims (12)

  1.  検体又は試薬を毛管力により内部に保持する液体導入手段を挿入可能な開口を有し、前記開口から挿入された前記液体導入手段が収容される部位である導入口と、
     前記導入口に対して前記開口とは反対側に設けられ、前記導入口に収容された前記液体導入手段から流出する前記検体又は前記試薬が保持される部位である保持部と、
     前記検体又は前記試薬が含まれる液体が測定される部位に向けて、前記検体又は前記試薬が案内される流路である流体回路と、
     前記保持部に保持された前記検体又は前記試薬が、前記流体回路に流入される開口である流路入口とを備え、
     前記流路入口は、前記導入口から前記保持部に向かう方向である注入方向において、前記保持部よりも前記導入口側に設けられることを特徴とする検査チップ。
    An opening through which a liquid introducing means for holding a specimen or a reagent inside by a capillary force can be inserted, and an inlet that is a part in which the liquid introducing means inserted from the opening is accommodated;
    A holding portion which is provided on the opposite side of the opening with respect to the inlet and is a part for holding the specimen or the reagent flowing out from the liquid introducing means accommodated in the inlet;
    A fluid circuit that is a flow path through which the specimen or the reagent is guided toward a site where the liquid containing the specimen or the reagent is measured;
    A flow path inlet that is an opening through which the specimen or the reagent held in the holding unit flows into the fluid circuit;
    The inspection chip, wherein the flow path inlet is provided closer to the introduction port than the holding unit in an injection direction which is a direction from the introduction port toward the holding unit.
  2.  前記導入口と前記保持部との間に設けられ、前記注入方向に対して傾斜する面である傾斜面を備えたことを特徴とする請求項1に記載の検査チップ。 The inspection chip according to claim 1, further comprising an inclined surface that is provided between the introduction port and the holding portion and is an inclined surface with respect to the injection direction.
  3.  前記検査チップは、第一面、及び前記第一面と対向する第二面を有し、
     前記導入口は、前記第一面側に設けられ、
     前記保持部、前記流体回路、及び前記流路入口は、前記第二面側に設けられ、
     前記傾斜面は、前記第一面から前記第二面に向かう方向に傾斜して、前記第一面側と前記第二面側とを連通することを特徴とする請求項2に記載の検査チップ。
    The inspection chip has a first surface and a second surface facing the first surface,
    The introduction port is provided on the first surface side,
    The holding portion, the fluid circuit, and the flow path inlet are provided on the second surface side,
    The inspection chip according to claim 2, wherein the inclined surface is inclined in a direction from the first surface toward the second surface to communicate the first surface side with the second surface side. .
  4.  前記導入口と前記保持部との間に設けられ、前記導入口に収容された前記液体導入手段から流出する前記検体又は前記試薬を、毛管力により保持する部位である毛管部を備えたことを特徴とする請求項1から3のいずれかに記載の検査チップ。 A capillary portion provided between the introduction port and the holding portion and configured to hold the sample or the reagent flowing out from the liquid introduction means accommodated in the introduction port by a capillary force; The test chip according to claim 1, wherein the test chip is a test chip.
  5.  前記毛管部の前記導入口側の端部に設けられ、前記注入方向に対して傾斜するテーパを備えたことを特徴とする請求項4に記載の検査チップ。 The inspection chip according to claim 4, further comprising a taper provided at an end of the capillary portion on the introduction port side and inclined with respect to the injection direction.
  6.  前記導入口と前記毛管部とは、前記注入方向に連通し、
     前記毛管部の前記注入方向と直交する方向の断面は、前記液体導入手段の前記注入方向と直交する方向の断面よりも小さいことを特徴とする請求項4又は5に記載の検査チップ。
    The introduction port and the capillary portion communicate with the injection direction,
    The test chip according to claim 4 or 5, wherein a cross section of the capillary section in a direction orthogonal to the injection direction is smaller than a cross section of the liquid introducing means in a direction orthogonal to the injection direction.
  7.  前記毛管部と前記保持部との間に設けられた、前記検体又は前記試薬の流路である接続流路を備え、
     前記導入口、前記毛管部、及び前記接続流路は、前記注入方向に連通し、
     前記毛管部の前記注入方向と直交する方向の断面は、前記導入口の前記注入方向と直交する方向の断面よりも小さく、
     前記導入口の前記注入方向と直交する方向の断面は、前記接続流路の前記注入方向と直交する方向の断面よりも小さいことを特徴とする請求項4から6のいずれかに記載の検査チップ。
    Provided between the capillary part and the holding part, provided with a connection flow path that is a flow path of the sample or the reagent,
    The introduction port, the capillary part, and the connection channel communicate with the injection direction,
    The cross section of the capillary section in the direction orthogonal to the injection direction is smaller than the cross section of the introduction port in the direction orthogonal to the injection direction,
    The inspection chip according to any one of claims 4 to 6, wherein a cross section of the introduction port in a direction orthogonal to the injection direction is smaller than a cross section of the connection channel in a direction orthogonal to the injection direction. .
  8.  前記保持部から前記流路入口に向けて延びる壁部である入口側壁部を備え、
     前記傾斜面は、前記入口側壁部に向かって傾斜することを特徴とする請求項2に記載の検査チップ。
    An inlet side wall part that is a wall part extending from the holding part toward the flow path inlet;
    The inspection chip according to claim 2, wherein the inclined surface is inclined toward the inlet side wall portion.
  9.  前記保持部は、前記検体又は前記試薬を毛管力により保持することを特徴とする請求項1から8のいずれかに記載の検査チップ。 The test chip according to any one of claims 1 to 8, wherein the holding unit holds the specimen or the reagent by capillary force.
  10.  前記傾斜面の前記第二面側の端部よりも前記保持部側に設けられ、前記第二面において前記第一面とは反対方向に向かって突出する段差又は前記第二面において前記反対方向に向かって傾斜するテーパである狭窄部を備えたことを特徴とする請求項3に記載の検査チップ。 A step that is provided closer to the holding portion than the end of the inclined surface on the second surface side and protrudes in the opposite direction to the first surface on the second surface or the opposite direction on the second surface. The inspection chip according to claim 3, further comprising a constriction portion that is a taper inclined toward the surface.
  11.  前記検査チップは、第一面、及び前記第一面と対向する第二面を有し、
     前記流路入口の前記第一面及び前記第二面の対向する方向の幅は、前記保持部の前記第一面及び第二面の対向する方向の幅よりも小さいことを特徴とする請求項1から10のいずれかに記載の検査チップ。
    The inspection chip has a first surface and a second surface facing the first surface,
    The width of the flow path inlet in the direction in which the first surface and the second surface face each other is smaller than the width in the direction in which the first surface and the second surface of the holding portion face each other. The inspection chip according to any one of 1 to 10.
  12.  前記検査チップは、第一面、及び前記第一面と対向する第二面を有し、
     前記保持部から前記流路入口に向けて延びる壁部である入口側壁部を備え、
     前記導入口の前記注入方向の端部から、前記第一面及び前記第二面と平行に延び、且つ、前記注入方向に対して垂直に延びる仮想的な方向は、仮想方向であり、
     前記仮想方向と前記入口側壁部とのなす角のうち、前記導入口の前記注入方向の端部と前記流路入口との間に形成される角は、90度以下であることを特徴とする請求項1から11のいずれかに記載の検査チップ。
    The inspection chip has a first surface and a second surface facing the first surface,
    An inlet side wall part that is a wall part extending from the holding part toward the flow path inlet;
    A virtual direction that extends in parallel with the first surface and the second surface from the end of the injection port in the injection direction and extends perpendicular to the injection direction is a virtual direction,
    Of the angles formed between the virtual direction and the inlet side wall, the angle formed between the end of the inlet in the injection direction and the flow path inlet is 90 degrees or less. The inspection chip according to claim 1.
PCT/JP2014/055042 2013-02-28 2014-02-28 Test chip WO2014133126A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-040112 2013-02-28
JP2013040112A JP2014167452A (en) 2013-02-28 2013-02-28 Inspection chip

Publications (1)

Publication Number Publication Date
WO2014133126A1 true WO2014133126A1 (en) 2014-09-04

Family

ID=51428384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/055042 WO2014133126A1 (en) 2013-02-28 2014-02-28 Test chip

Country Status (2)

Country Link
JP (1) JP2014167452A (en)
WO (1) WO2014133126A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60238760A (en) * 1984-05-03 1985-11-27 アボツト ラボラトリーズ Processor-card for centrifugal separator
JP2006110491A (en) * 2004-10-15 2006-04-27 Ushio Inc Centrifugal separator for microchip
JP2007333716A (en) * 2006-06-19 2007-12-27 Ogawa Hiroteru Separating/weighing chip, and method for using the same
JP2009014450A (en) * 2007-07-03 2009-01-22 Rohm Co Ltd Micro-fluid chip
JP2010078402A (en) * 2008-09-25 2010-04-08 Rohm Co Ltd Microchip
JP2010210531A (en) * 2009-03-12 2010-09-24 Panasonic Corp Analyzing device
JP2012078094A (en) * 2010-09-30 2012-04-19 Brother Ind Ltd Inspection object acceptor
WO2012081583A1 (en) * 2010-12-14 2012-06-21 ローム株式会社 Microchip

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60238760A (en) * 1984-05-03 1985-11-27 アボツト ラボラトリーズ Processor-card for centrifugal separator
JP2006110491A (en) * 2004-10-15 2006-04-27 Ushio Inc Centrifugal separator for microchip
JP2007333716A (en) * 2006-06-19 2007-12-27 Ogawa Hiroteru Separating/weighing chip, and method for using the same
JP2009014450A (en) * 2007-07-03 2009-01-22 Rohm Co Ltd Micro-fluid chip
JP2010078402A (en) * 2008-09-25 2010-04-08 Rohm Co Ltd Microchip
JP2010210531A (en) * 2009-03-12 2010-09-24 Panasonic Corp Analyzing device
JP2012078094A (en) * 2010-09-30 2012-04-19 Brother Ind Ltd Inspection object acceptor
WO2012081583A1 (en) * 2010-12-14 2012-06-21 ローム株式会社 Microchip

Also Published As

Publication number Publication date
JP2014167452A (en) 2014-09-11

Similar Documents

Publication Publication Date Title
JP6011156B2 (en) Inspection chip
JP5998760B2 (en) Reagent container and test chip
WO2014133125A1 (en) Test chip and test system
WO2015080193A1 (en) Inspection chip
WO2014061635A1 (en) Inspection device, inspection system, inspection method, and computer program
WO2014050946A1 (en) Inspection chip
JP5958330B2 (en) Inspection chip
JP5958452B2 (en) Inspection chip
WO2014133126A1 (en) Test chip
JP6028720B2 (en) Inspection chip
JP5958451B2 (en) Inspection chip, liquid feeding method, and liquid feeding program
JP5958331B2 (en) Inspection chip and inspection system
JP5915686B2 (en) Inspection chip
WO2014061636A1 (en) Inspection chip
JP6146027B2 (en) Inspection kit
JP5958249B2 (en) Inspection chip and inspection device
JP2015197352A (en) inspection chip
JP5939148B2 (en) Inspection chip and inspection system
JP2014048194A (en) Inspection chip, and inspection unit
WO2015152229A1 (en) Detection chip and detection system
JP2016194448A (en) Inspection chip
JP2016033454A (en) Inspection chip
JP2014119319A (en) Inspection chip and inspection system
JP2015031643A (en) Inspection chip
JP2016070808A (en) Inspection apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14757166

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14757166

Country of ref document: EP

Kind code of ref document: A1