WO2016052463A1 - ポリ(エチレングリコール)-b-ポリ(ハロメチルスチレン)並びにその誘導体及び製造方法 - Google Patents

ポリ(エチレングリコール)-b-ポリ(ハロメチルスチレン)並びにその誘導体及び製造方法 Download PDF

Info

Publication number
WO2016052463A1
WO2016052463A1 PCT/JP2015/077432 JP2015077432W WO2016052463A1 WO 2016052463 A1 WO2016052463 A1 WO 2016052463A1 JP 2015077432 W JP2015077432 W JP 2015077432W WO 2016052463 A1 WO2016052463 A1 WO 2016052463A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
substituted
group
integer
phenylene
Prior art date
Application number
PCT/JP2015/077432
Other languages
English (en)
French (fr)
Inventor
長崎 幸夫
Original Assignee
国立大学法人筑波大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人筑波大学 filed Critical 国立大学法人筑波大学
Priority to US15/514,613 priority Critical patent/US10208152B2/en
Priority to EP15848059.0A priority patent/EP3202803B1/en
Priority to JP2016552038A priority patent/JP6593931B2/ja
Publication of WO2016052463A1 publication Critical patent/WO2016052463A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F293/00Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule
    • C08F293/005Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule using free radical "living" or "controlled" polymerisation, e.g. using a complexing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/12Hydrolysis
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/30Introducing nitrogen atoms or nitrogen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/30Introducing nitrogen atoms or nitrogen-containing groups
    • C08F8/32Introducing nitrogen atoms or nitrogen-containing groups by reaction with amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/40Introducing phosphorus atoms or phosphorus-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/334Polymers modified by chemical after-treatment with organic compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/337Polymers modified by chemical after-treatment with organic compounds containing other elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/02Monomers containing only one unsaturated aliphatic radical
    • C08F12/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F12/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by hetero atoms or groups containing heteroatoms
    • C08F12/16Halogens
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/02Monomers containing only one unsaturated aliphatic radical
    • C08F12/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F12/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by hetero atoms or groups containing heteroatoms
    • C08F12/16Halogens
    • C08F12/18Chlorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2438/00Living radical polymerisation
    • C08F2438/03Use of a di- or tri-thiocarbonylthio compound, e.g. di- or tri-thioester, di- or tri-thiocarbamate, or a xanthate as chain transfer agent, e.g . Reversible Addition Fragmentation chain Transfer [RAFT] or Macromolecular Design via Interchange of Xanthates [MADIX]

Definitions

  • PEG-b that can be produced by radical chain transfer polymerization by introducing an SH group at the end of PEG for the purpose of imparting various functions to poly (ethylene glycol) (PEG) widely used in various biological environments -Poly (chloromethylstyrene) (PEG / PCMS) has been proposed (Non-Patent Document 1).
  • This block copolymer can covalently bond a compound having an amino group, a hydroxyl group or the like via a chloromethyl group.
  • a block copolymer containing a hydrophilic / hydrophobic segment in which a cyclic nitroxide radical is covalently supported forms nanoparticles by self-assembly in water and stabilizes the cyclic nitroxide radical, which is a low-molecular compound, in a biological environment. It has been confirmed that it can be used for various purposes including use in the medical field (for example, Patent Document 1).
  • Copolymers containing piperidine-1-oxyl are effective for oxidative stress diseases such as reperfusion injury after brain, heart and kidney ischemia, cerebral hemorrhage, Alzheimer's disease, cancer and ulcerative colitis disorder Has been. Therefore, there is still a need for providing a functional block copolymer that can be provided with such a function and that is easily commercialized and is stable in large quantities. The object of the present invention is to answer such needs.
  • the block copolymer represented by the formula (I) based on the following reaction scheme or the phenyldithiocarbonyl optionally substituted with (R) a in the formula (I) is a hydrogen atom or
  • a method for producing a block copolymer substituted with mercapto comprising: A step of adding a styrene derivative represented by the formula (7) to an inert solvent containing a poly (ethylene glycol) derivative represented by the formula (6) and a radical reaction initiator, and polymerizing, if necessary.
  • a method of manufacture comprising a step of catalytic reduction or hydrolysis.
  • A represents unsubstituted or substituted C 1 -C 12 alkoxy, and when substituted, the substituent represents a formyl group, a formula R 1 R 2 CH— group, wherein R 1 and R 2 are independently to C 1 -C 4 alkoxy or R 1 and R 2 are -OCH 2 CH 2 O together -, - O (CH 2) 3 O- or -O (CH 2) 4 O- and represents, or ,
  • substituted represents a group of formula R 3 R 4 B—Ph—, where R 3 and R 4 are hydroxy or R 3 and R 4 together are —OC (CH 3 ) 2 C (CH 3 ) 2 O—
  • Ph represents o-phenylene, m-phenylene or p-phenylene which may be substituted with methyl or methoxy
  • L is the formula
  • a block copolymer in which phenyl dithiocarbonyl optionally substituted with (R) a in formula (I) is substituted with a hydrogen atom or a mercapto is also provided.
  • A, L, R, a, m and n are as defined above and Z is a covalently bonded formula via —NH— or —O—.
  • A represents substituted C 1 -C 12 alkoxy and the substituent represents a group of formula R 3 R 4 B-Ph-, wherein R 3 and R 4 are hydroxy or R 3 and R 4 together And represents —OC (CH 3 ) 2 C (CH 3 ) 2 O—, and Ph represents o-phenylene, m-phenylene or p-phenylene which may be substituted with methyl or methoxy.
  • the homopolymer represented by the formula is a formula compound not described in the prior art document, and such a novel polymer is also provided.
  • Such a homopolymer can also be used as a synthetic precursor for the copolymer represented by the above formula (I) or (II), and can itself be used for modifying a medical product or the like.
  • a unimodal block copolymer having a narrow molecular weight distribution can be obtained efficiently.
  • the halogen atom of the halogenated methyl group of the block copolymer represented by the formula (I) thus obtained can be efficiently used for amination, hydroxylation, esterification, etherification and the like.
  • the modified block copolymer represented by the formula (II) obtained by such amination or etherification is represented by the general formula (II) described in Patent Document 1 and Production Example 2
  • the biological activity is substantially the same as “Acetal-PEG-b-PCMS-N-TEMPO” described in the above or “Methoxy-PEG-b-PCMS-O-TEMPO” described in Production Example 3.
  • the modified block copolymer in which Z is represented by —P ( ⁇ O) (OCH 2 CH 3 ) 2 or —P ( ⁇ O) (OH) 2 is a metal oxide, stainless steel, polycation, etc. It is useful for surface modification.
  • the radical initiator used in the method for producing the block copolymer represented by the formula (I) can be azobisisobutyronitrile (AIBN), benzoyl peroxide, etc., and the inert solvent is toluene, xylene. , Tetrahydrofuran (THF), benzene and the like, and the reaction can be allowed to proceed under conditions commonly used for styrene polymerization.
  • AIBN azobisisobutyronitrile
  • benzoyl peroxide etc.
  • the inert solvent is toluene, xylene.
  • Tetrahydrofuran (THF) Tetrahydrofuran
  • benzene and the like, and the reaction can be allowed to proceed under conditions commonly used for styrene polymerization.
  • the optimal reaction temperature varies depending on the solvent used, it is a temperature from room temperature to the boiling point, and the reaction time is selected based on the amount of the styrene derivative represented by the formula (7) with respect to the amount of PEG used, Although the molecular weight derived from the styrene derivative can be controlled to some extent by selecting the reaction temperature and reaction time, the reaction time can usually be several hours (2, 3 hours) to 20 hours.
  • the reaction mixture is a good solvent for unreacted raw materials and the like, but for the product (1), an operation for adding a poor solvent to cause precipitation is necessary. Repeat it.
  • Y can be a chlorine, bromine or iodine atom
  • the other A, L, R, a and n are as defined above.
  • the compound represented by the formula (4) and the compound represented by the formula (5) are mixed at a molar ratio of 0.1 to 10 to 10 to 0.1 such as tetrahydrofuran (THF) or dioxane.
  • THF tetrahydrofuran
  • the compound represented by the formula (5) contains carbon disulfide and phenylmagnesium bromide in a similar solvent in a molar ratio of 0.1 to 10 to 10 to 0.1 at room temperature. It can be produced by reacting for ⁇ 5 hours.
  • the compound represented by the formula (4) includes a poly (ethylene glycol) having an A group at one end represented by the formula (1) and a formula (3) YLL—Y (Y is independently As defined above) can be obtained by reacting in the presence of butyllithium.
  • YLL—Y Y is independently As defined above
  • Examples 1 to 3 described later can be referred to.
  • the block copolymer represented by the formula (I) can be most efficiently produced according to the following series of reaction schemes, although not limited thereto.
  • X is preferably a chlorine or bromine atom, more preferably a chlorine atom, and m is preferably 3 to 250, More preferably, it represents an integer of 5 to 150, particularly preferably 8 to 100, and n is generally 2 to 10,000, preferably 12 to 5,000, more preferably 14 to 1,000, particularly preferably.
  • the xylylene moiety in the main chain is m- or p-xylylene, and p-xylylene is preferred.
  • the halomethyl group in the repeating unit derived from the styrene derivative (monomer) has a desired amination reaction, ether as described above.
  • the compound represented by the formula (II) can be illustrated as a specific example of such a utilization mode, as described above.
  • Preferable examples of the block copolymer in which the phenyldithiocarbonyl which is represented by the formula (II) or (R) a in the formula (II) and which may be substituted with a hydrogen atom are substituted with a hydrogen atom include those represented by the formula (II-a )
  • A, R, a, m and n are as defined above including preferred embodiments, and Z is a formula in which a covalent bond is formed through —NH— or —O—.
  • —P ( ⁇ O) (OCH 2 CH 3 ) 2 or —P ( ⁇ O) (OH) 2 is selected from the group represented by:
  • the modified block copolymer represented by these can be mentioned.
  • the copolymers of these embodiments are particularly easy to produce and have certain stable properties.
  • Such a copolymer corresponds to the block copolymer represented by the formula (I) or (Ia) according to the method described in Production Example 2 or 3 described in Patent Document 1, for example. It can be obtained by a reaction with a cyclic nitroxide radical compound having an amino group or a hydroxyl group, or by a reaction with diethyl phosphite (diethyl phosphonate) or a lithiated or sodium chloride.
  • the dithioester moiety found at the ⁇ -terminus of the modified block copolymer represented by formula (II) or formula (II-a) is automatically hydrolyzed to a mercapto group during the reaction process. Although it can be converted, if necessary, it can be converted to a mercapto group or a hydrogen atom by active hydrolysis or catalytic reduction.
  • any of the block copolymers of formula (I), formula (Ia), formula (II) and formula (II-a) can be used in an aqueous medium (solvent system comprising water or optionally a water-soluble organic solvent).
  • solvent system comprising water or optionally a water-soluble organic solvent.
  • the molecules associate to form molecular aggregates or self-assembled polymeric micelles. Therefore, it can be used to construct DDS of various drugs using such characteristics.
  • the homopolymer represented by the formula (Pre) seems to be a novel compound as described above, it can be conveniently produced according to the method described in Example 27, and the homopolymer thus obtained is
  • the reaction scheme starting from the polymer of (1), sequentially through the polymer (4) and the polymer (6), the block copolymer of the formula (I), and further the formula The modified block copolymer (II) can be obtained.
  • Example 1 Synthesis of CH 3 O— (CH 2 CH 2 O) n CH 2 PhCH 2 Cl (1) (wherein Ph represents a benzene ring)
  • Ph represents a benzene ring
  • 10 mL 1.6 M, hexane solution
  • 25 g of a, a′-dichloro-p-xylylene (ClCH 2 PhCH 2 Cl) was added and reacted at 60 ° C. for 24 hours.
  • the reaction mixture was precipitated in 500 mL of cold 2-propanol, centrifuged (4 ° C., 9000 rpm, 2 minutes), and then dried under reduced pressure.
  • the obtained size fraction chromatogram, NMR and MALDI-TOF mass spectrum of (1) are shown in FIGS. Yield 50 g, 97% yield.
  • a gel permeation chromatograph (GPC) is shown in FIG.
  • Example 2 Synthesis of CH 3 O— (CH 2 CH 2 O) n CH 2 PhCH 2 Br (2) a, a′-Dibromo-p-xylylene (instead of a, a′-dichloro-p-xylylene ( The synthesis was performed in the same manner as in Example 1 except that BrCH 2 PhCH 2 Br) was used. The obtained size fraction chromatogram, NMR and MALDI-TOF mass spectrum of (2) are shown in FIGS. Yield 50g, Yield 97%
  • the reaction mixture was precipitated in 500 mL of cold 2-propanol, centrifuged (4 ° C., 9000 rpm, 2 minutes), and then dried under reduced pressure.
  • the NMR of (3) obtained is shown in FIG. Yield 20 g, yield 95%.
  • the reaction mixture was precipitated in 500 mL of cold 2-propanol, centrifuged (4 ° C., 9000 rpm, 2 minutes), and then dried under reduced pressure.
  • the NMR and MALDI-TOF mass spectra of the obtained (4) are shown in FIGS. Yield 50 g, 97% yield.
  • Example 12 Synthesis of CH 3 O— (CH 2 CH 2 O) n CH 2 PhCH 2 (CH 2 CH (PhCH 2 O-TEMPO)) m SC ( ⁇ S) Ph (8) 50 mL of THF in a 200 mL flask Then, 10 g of 4-day droxy TEMPO and 40 mL of butyl lithium were added and stirred to prepare LiO-TEMPO. In a 500 mL flask, 10 g of (6) synthesized in Example 6 and 100 mL of dimethylformamide (DMF) were added, and the LiO-TEMPO solution prepared above was added and reacted at room temperature for 2 days.
  • DMF dimethylformamide
  • Example 14 Synthesis of CH 3 O— (CH 2 CH 2 O) n CH 2 PhCH 2 (CH 2 CH (PhCH 2 O-TEMPO)) m SC ( ⁇ S) Ph (8) (Part 3) Synthesis was performed in the same manner as in Example 11 except that (6) synthesized in Example 11 was used instead of (6) synthesized in Example 6. Yield 10g. TEMPO substitution degree 80%
  • Example 15 Preparation of redox nanoparticles newRNP N that disintegrates with decreasing pH (part 1) 10 g of (7) synthesized in Example 9 was taken in a glass container, dissolved in 400 mL of methanol, and a hollow fiber type dialysis module (mPES Midikros (registered trademark) Modules 3 kD IC 0.5 mm D06-) having a molecular weight cut off of 3,000. E003-05-N) was dialyzed against 10 L of water (25 mg / mL). The light scattering spectrum and electron spin resonance of the obtained particle solution are shown in FIGS.
  • mPES Midikros registered trademark
  • Example 16 Preparation of redox nanoparticles newRNP N that disintegrates when pH is lowered (part 2) Instead of using (7) synthesized in Example 9, it was prepared in the same manner as in Example 15 except that (7) synthesized in Example 10 was used. (25 mg / mL)
  • Example 17 Preparation of redox nanoparticle newRNP N that disintegrates with decreasing pH (part 3) It was prepared in the same manner as in Example 15 except that (7) synthesized in Example 11 was used instead of using (7) synthesized in Example 9. (25 mg / mL)
  • Example 18 Preparation of redox nanoparticle newRNP O that does not disintegrate due to a drop in pH (part 1) Instead of using (7) synthesized in Example 9, it was prepared in the same manner as in Example 15 except that (8) synthesized in Example 12 was used. (25 mg / mL)
  • Example 19 Preparation of Redox nanoparticles NewRNP O not disintegrate at a pH decrease (Part 2) Instead of using (7) synthesized in Example 9, it was prepared in the same manner as in Example 15 except that (8) synthesized in Example 13 was used. (25 mg / mL)
  • Example 20 Preparation of redox nanoparticle newRNP O that does not collapse due to pH decrease (part 3) It was prepared in the same manner as in Example 15 except that (8) synthesized in Example 14 was used instead of using (7) synthesized in Example 9. (25 mg / mL)
  • mPES Midikros registered trademark
  • NewRNP N was administered as described below, with food and water ad libitum.
  • Group 1 Free water administration
  • Group 2 NewRNP N aqueous solution was forcibly administered once a day into the stomach using a sonde (Day 1: 10 mg / mL was administered at 1 mL, Day 2 and thereafter: 20 mg / mL at 1 mL) Administration).
  • Group 3 A 5 mg / mL newRNP N aqueous solution was freely taken in a water bottle instead of water.
  • Group 4 A 10 mg / mL newRNP N aqueous solution was freely taken in a water bottle instead of water.
  • Group 5 A 20 mg / mL newRNP N aqueous solution was freely taken in a water bottle instead of water.
  • Group 6 A 20 mg / mL newRNP O aqueous solution was freely taken in a water bottle instead of water.
  • Group 1 Untreated control (only 4 in this group)
  • Group 2 Oral administration of 3 mg / kg of acetaminophen on the 7th day from the start of the experiment
  • Group 3 Forced administration of 1 mL of blank micelle (6.25 mg / mL, 160 mg / kg) synthesized in Example 21 once a day with a sonde On the 7th day, acetaminophen was orally administered at 3 mg / kg.
  • Group 5 4-amino-TEMPO 170 mg / kg was forcibly administered once a day with a sonde, and acetaminophen was orally administered on the 7th day at 3 mg / kg.
  • Group 6 600 mg / kg acetylcysteine was forcibly administered once a day using a sonde, and acetaminophen was orally administered at 3 mg / kg on the 7th day.
  • Table 2 shows the number of surviving mice before and after acetaminophen administration under these experimental conditions. Acetaminophen 3 mg / kg on IGS mice was too potent for liver damage and 2/3 died within 1 day (group 2). Blank micelles (group 3), 4-amino-TEMPO (group 5) and acetylcysteine (group 6) tend to be similar. On the other hand, all mice were alive with newRNP N (group 4).
  • Prothrombin time indicating an indicator of liver function was prolonged in 4-amino-TEMPO and acetylcysteine, but was the same level as that in the control group in newRNP N (FIG. 17).
  • SOD superoxide dismutase
  • newRNP N of the present invention does not exhibit hepatotoxicity and suppresses acetaminophen-induced liver injury.
  • Example 24 a NewRNP N and NewRNP O produced intravenously administered NewRNP N and NewRNP O of retention in blood Examples 15-20 were subjected to blood retention evaluation.
  • Group 1 4-amino-TEMPO (10 mg / mL was administered intravenously in 200 ⁇ L tail, 50 mg / kg)
  • Blood was collected at 5 minutes, 15 minutes, 30 minutes, 1 hour, 4 hours, 12 hours, 24 hours, 48 hours, 72 hours, 96 hours after administration, and after centrifugation, potassium ferricyanide was added to the supernatant and X band Quantification was performed using an electron spin resonance apparatus.
  • FIG. 23 shows changes in blood concentration of RNP.
  • the data of WO2009 / 133647 Test Example 4 was added to FIG.
  • the newRNP prepared in the present invention does not contain an ABA type block copolymer as compared with the conventional type RNP, it was confirmed that the retention in blood was extremely improved. In particular, it was confirmed that newRNP O stayed for more than 4 days after intravenous administration.
  • 2 g of 20 mL of CHCl 3 (9) and 2 m of trimethylsilyl bromide were added and reacted at 45 ° C. for 2 hours, after which chloroform was distilled off and 80 mL of methanol was added and reacted at room temperature for 15 hours. .
  • the solution was dialyzed against water and dried under reduced pressure.
  • the obtained (10) NMR is shown in FIG. Yield 1.5g. 90% hydrolysis of diethyl phosphate.
  • Example 27 Synthesis of 4,4,5,5-tetramethyl-1,3,2-dioxaboranophenylmethoxy- (CH 2 CH 2 O) n OH (Pre) 50 mL of THF in a 100 mL flask, commercially available 1.67 g (7.1 mmol) of 2- (4-hydroxymethylphenyl) -4,4,5,5-tetramethyl-1,3,2-dioxaborane and potassium naphthalene (8.0 mL, 0.9 M) In addition, potassium alcoholate of 2- (4-hydroxymethylphenyl) -4,4,5,5-tetramethyl-1,3,2-dioxaborane was formed, and then 31 g (0.7 mol) of ethylene oxide was added to room temperature.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

【課題】ポリ(エチレングリコール)-b-ポリ(ハロメチルスチレン)の効果的な製造方法並びにその方法により製造される新規ポリ(エチレングリコール)-b-ポリ(ハロメチルスチレン)およびその誘導体の提供 【解決手段】 ポリ(エチレングリコール)のω末端に可逆的付加連鎖移動(RAFT)重合を可能にする機能性基を導入し、それとハロメチルスチレンとの共重合により、目的の新規共重合体を提供できる。

Description

ポリ(エチレングリコール)-b-ポリ(ハロメチルスチレン)並びにその誘導体及び製造方法
 種々の生体環境下で広く使用されているポリ(エチレングリコール)(PEG)に様々な機能を付与する目的の下、PEGの末端にSH基を導入し、ラジカル連鎖移動重合により製造できるPEG-b-ポリ(クロロメチルスチレン)(PEG/PCMS)が提案されている(非特許文献1)。このブロック共重合体は、クロロメチル基を介して、アミノ基、ヒドロキシル基等を有する化合物を共有結合することができる。例えば、環状ニトロキシドラジカルを共有結合で担持させた親疎水性セグメントを含有するブロック共重合体は、水中での自己組織化によりナノ粒子を形成し、生体環境下で低分子化合物たる環状ニトロキシドラジカルを安定化でき、医療分野での利用をはじめとする多種多様な用途に向けられることが確認されている(例えば、特許文献1)。
 しかしながら、上記の製造方法によると、重合中に再結合が起こり、トリブロック共重合体が混入することが避けられず(例えば、特許文献1の製造例1参照)、これが血中滞留性等の性能を低下させる原因になるだけでなく、反応が煩雑でコスト高につながるという欠点があった。
再公表 JP WO 2009/133647公報
吉富徹,両末端に反応性官能基を有するacetal-PEG/PCMS合成とその応用・展開,平成19年度物質科学セミナー要旨,2007年9月27日
 例えば、上記PEG/PCMS)から誘導された環状ニトロキシドラジカルを共有結合で担持させた親疎水性セグメントを含有するブロック共重合体であって、該ニトロキシドラジカル部分として2,2,6,6-テトラメチルピペリジン-1-オキシルを含む共重合体は、脳、心臓、腎臓虚血後の再灌流障害、脳出血、アルツハイマー病、癌、潰瘍性大腸炎障害などの酸化ストレス性疾患に有効であることが示唆されている。そこで、かような機能を付与し得、かつ、商業的に実用化がより容易であり、大量、安定な機能性ブロック共重合体の提供に対するニーズは依然として存在する。本発明の目的は、かようなニーズに答えようとするものである。
 上記のPEGの末端にSH基を導入し、ラジカル連鎖移動重合によるPEG/PCMSの製造に代え、可逆的付加開裂連鎖移動(RAFT)重合を応用することで、特に医療分野での用途に適する安定、かつ、狭い分子量分布をもつ、PEGにさらなる機能を付与した共重合体を容易に製造できることを確認した。
 したがって、本発明によれば、下記反応スキームに基づく式(I)で表されるブロック共重合体または式(I)中の(R)aで置換されていてもよいフェニルジチオカルボニルが水素原子もしくはメルカプトで置換されたブロック共重合体の製造方法であって、
 式(6)で表されるポリ(エチレングリコール)誘導体及びラジカル反応開始剤を含む不活性溶媒中に式(7)で表されるスチレン誘導体を加えて重合する工程を含んでなり、さらに必要により、接触的還元または加水分解する工程を含む、製造方法が提供される。
Figure JPOXMLDOC01-appb-C000010
 上記各式中、
 Aは、非置換または置換C1-C12アルコキシを表し、置換されている場合の置換基は、ホルミル基、式R12CH-基を表し、ここで、R1およびR2は独立してC1-C4アルコキシまたはR1とR2は一緒になって-OCH2CH2O-、-O(CH23O-もしくは-O(CH24O-を表し、或いは、置換されている場合の置換基は、式RB-Ph-基を表し、ここで、RおよびRはヒドロキシまたはRとRは一緒になって-OC(CHC(CHO-を表し、Phはメチルもしくはメトキシで置換されていてもよいo-フェニレン、m-フェニレンもしくはp-フェニレンを表し、
 Lは、式
Figure JPOXMLDOC01-appb-C000011
で表される基から選ばれ、好ましくは、最後の2つのいずれかの式で表される基が挙げられ、bは2~6の整数であり、
 Xは塩素、臭素又はヨウ素を表し、
 Rは、各、独立してメチルまたはメトキシを表し、aは0~3の整数であり、
 mは3~500の整数を表し、
 nは2~10,000、の整数を表す。
 また、本発明によれば、式(I)
Figure JPOXMLDOC01-appb-C000012
で表され、ここで、A、L、X、R、a、m及びnは上記に定義したとおりである、
のブロック共重合体または式(I)中の(R)aで置換されていてもよいフェニルジチオカルボニルが水素原子もしくはメルカプトで置換されたブロック共重合体も、提供される。
 さらにまた、本発明によれば、式(II)
Figure JPOXMLDOC01-appb-C000013
で表され、ここで、A、L、R、a、mおよびnは上記に定義したとおりであり、Zは-NH-または-O-を介して共有結合した式
Figure JPOXMLDOC01-appb-C000014
で表される基から選ばれるか、または
-P(=O)(OCH2CH32もしくは-P(=O)(OH)2を表し、
これらの基はZの総数の少なくとも60%、好ましくは少なくとも75%,より好ましくは少なくとも85%、最も好ましくは100%含み、存在する場合、残りはハロゲン、例えば、塩素、臭素若しくはヨウ素原子又はヒドロキシルである、
で表されるか、または式(II)における(R)aで置換されていてもよいフェニルジチオカルボニルが水素原子で置換されたブロック共重合体も、提供される。
 また、Aが置換C1-C12アルコキシを表し、置換基が、式RB-Ph-基を表し、ここで、RおよびRはヒドロキシまたはRとRは一緒になって-OC(CHC(CHO-を表し、Phはメチルもしくはメトキシで置換されていてもよいo-フェニレン、m-フェニレンもしくはp-フェニレンを表す場合には、次式
Figure JPOXMLDOC01-appb-C000015
で表されるホモポリマーは、本発明者等の知る限り、従来技術文献未載の式化合物であるのでかような新規ポリマーも提供される。かようなホモポリマーは上記の式(I)または式(II)で表される共重合体の合成前駆体としても使用でき、また、それ自体医療品等の改質に使用できる。
 上記の式(I)で表されるブロック共重合体の製造方法によれば、特許文献1に記載の方法と異なり、単峰性で、分子量分布の狭いブロック共重合体が効率よく得られる。また、こうして得られる式(I)で表される該ブロック共重合体のハロンゲン化メチル基のハロゲン原子は、アミノ化、ヒドロキシル化、エステル化、エーテル化等に効率よく利用できる。
 例えば、かようなアミノ化またはエーテル化により得られる式(II)で表される修飾ブロック共重合体は、特許文献1に記載されている一般式(II)で表され、かつ、製造例2に記載された「アセタール-PEG-b-PCMS-N-TEMPO」又は製造例3に記載された「メトキシ-PEG-b-PCMS-O-TEMPO」と実質的に同様の生物学的活性を示す。また、Zが-P(=O)(OCH2CH32または-P(=O)(OH)2で表される修飾ブロック共重合体は金属酸化物、ステンレス、ポリカチオン等の、例えば、表面改質に有用である。
<本発明の詳細な記述>
 式(I)で表されるブロック共重合体の製造方法において用いる、ラジカル開始剤は、アゾビスイソブチロニトリル(AIBN)、過酸化ベンゾイル等であることができ、不活性溶媒はトルエン、キシレン、テトラヒドロフラン(THF)、ベンゼン等であることができ、スチレンの重合に通常用いられる条件下で反応を進行させることができる。最適な反応温度は用いる溶媒により変動するが、室温から沸点までの温度であり、反応時間はPEGの使用量に対して式(7)で表されるスチレン誘導体の使用量の割合を選択し、反応温度及び反応時間を選択することにより、スチレン誘導体に由来する分子量をある程度制御できる因子であるが、通常、反応時間は数時間(2、3時間)~20時間であることができる。生成物の単離、精製は反応混合液を未反応原料等に対しては良溶媒であるが、生成物(1)に対しては貧溶媒に投入し、沈殿を生じさせる操作を、必要により繰り返せばよい。
 式(6)で表される化合物は、限定されるものでないが、式(4)
Figure JPOXMLDOC01-appb-C000016
で表される化合物と式(5)
Figure JPOXMLDOC01-appb-C000017
で表される化合物の反応により効率よく得ることができる。上式中、Yは塩素、臭素又はヨウ素原子であることができ、他のA、L、R、a及びnは上記に定義したとおりである。この反応は、式(4)で表される化合物と式(5)で表される化合物を、モル比で、0.1~10対10~0.1の割合でテトラヒドロフラン(THF)やジオキサン等のエーテル溶媒中、5℃~50℃にて12~24時間の条件下で完了することができる。式(5)で表される化合物は、二硫化炭素と臭化フェニルマグネシウムを同様な溶媒中、モル比で、0.1~10対10~0.1の割合で、室温下で0.1~5時間反応させることで生成することができる。
 さらに、式(4)で表される化合物は、式(1)で表される片末端にA基を有するポリ(エチレングリコール)と式(3)Y-L-Y(Yは、独立して上記に定義したとおりである。)で表されるジハロゲン化物を、ブチルリチウムの存在下で反応させることにより得ることができる。典型的な反応条件は、後述する実施例1~3を参照することができる。
 したがって、本発明に従えば、式(I)で表されるブロック共重合体は、限定されるものでないが、次の一連の反応スキームに従って、最も効率よく製造できる。
Figure JPOXMLDOC01-appb-C000018
 上記、各工程は、前述した条件下で、また、後述する実施例に記載の方法及びそれらの方法を当該技術分野で周知の方法に準じて改変した方法により実施できる。
 こうして得られる、式(I)で表されるブロック共重合体の中、好ましいものとしては、式(I-a)
Figure JPOXMLDOC01-appb-C000019
式中、A、R、a、mおよびnは上記に定義したとおりであり、Xは好ましくは、塩素または臭素原子であり、より好ましくは塩素原子であり、mは好ましくは、3~250、より好ましく5~150、特に好ましくは8~100の整数を表し、nは、一般的には2~10,000好ましくは、12~5,000、より好ましくは14~1,000、特に好ましくは20~1,000の整数を表し、aは好ましくは0または1であり、存在する場合のRは好ましくはメチル基であり、より好ましくは0である。また、主鎖中のキシリレン部がm-又はp-キシリレンであり、p-キシリレンが好ましい。
 式(I)又は式(I-a)で表されるブロック共重合体は、そのスチレン誘導体(モノマー)に由来する反復単位中の、ハロメチル基が、前述したとおり、所望のアミノ化反応、エーテル化反応又はエステル化反応に利用でき、このような利用の態様の具体例としては、前述したとおり、式(II)で表される化合物を例示することができる。
 式(II)で表されるまたは式(II)における(R)aで置換されていてもよいフェニルジチオカルボニルが水素原子で置換されたブロック共重合体の好ましいものとしては、式(II-a)
Figure JPOXMLDOC01-appb-C000020
式中、A、R、a、mおよびnは、好ましい態様も含めて、上記に定義したとおりであり、Zは-NH-または-O-を介して共有結合した式
Figure JPOXMLDOC01-appb-C000021
で表される基から選ばれるか、または
-P(=O)(OCH2CH32もしくは-P(=O)(OH)2を表す、
で表される修飾ブロック共重合体を挙げることができる。これらの態様の共重合体は、特に製造が容易であり、一定の安定な性質を有する。
 かような共重合体は、例えば特許文献1に記載の製造例2又は3に記載の方法にしたがって、式(I)又は(I-a)で表されるブロック共重合体と、対応する、アミノ基又はヒドロキシル基を有する環状ニトロキシドラジカル化合物との反応によるか、また、亜リン酸ジエチル(ホスホン酸ジエチル)のリチウム化物やナトリウム化物との反応により得ることができる。
 また、式(II)又は式(II-a)で表される修飾ブロック共重合体のω末端に見られるジチオエステル部は、場合により、当該反応行程中自動的に加水分解してメルカプト基に転化され得るが、必要があれば、積極的に加水分解又は接触還元することにより、メルカプト基もしくは水素原子に転化できる。
 式(I)、式(I-a)、式(II)及び式(II-a)のいずれのブロック共重合体も、水性媒体(水又は必要により水溶解性有機溶媒を含む溶媒系)において、分子が会合して分子集合体又は自己組織化した高分子ミセルを形成する。したがって、かような特性を利用して各種薬剤のDDSの構築に利用できる。
 式(Pre)で表されるホモポリマーは、前述したとおり新規化合物であると思われるが、都合よくは、実施例27に記載の方法に準じて製造でき、こうして得られるホモポリマーは、前記(1)のポリマーに該当し、以下、前記反応スキームに従い、(1)のポリマーから出発し、順次、ポリマー(4)、ポリマー(6)を経て式(I)のブロック共重合体、さらには式(II)の修飾ブロック共重合体を得ることができる。Aが置換C1-C12アルコキシを表し、置換基が、式RB-Ph-基を表し、ここで、RおよびRがヒドロキシを表すポリマーまたは共重合体は、RとRは一緒になって-OC(CHC(CHO-を表すポリマーまたは共重合体から、それらのピナコール型エステルを、例えば、J.Sun et al., J.Org.Chem.2011,76(9),3571-3575に記載の方法に従い加水分解することにより提供できる。
CH3O-(CH2CH2O)nCH2PhCH2Cl(1)のサイズ分画クロマトグラム(SEC) CH3O-(CH2CH2O)nCH2PhCH2Cl(1)のプロトン核磁気共鳴スペクトル(1H-NMR) CH3O-(CH2CH2O)nCH2PhCH2Cl(1)のマトリックス支援レーザー脱離イオン化質量分析(MALDI-TOF-MS)スペクトル CH3O-(CH2CH2O)nCH2PhCH2Br(2)のサイズ分画クロマトグラム(SEC) CH3O-(CH2CH2O)nCH2PhCH2Br(2)のプロトン核磁気共鳴スペクトル(1H-NMR) CH3O-(CH2CH2O)nCH2PhCH2Br(2)のマトリックス支援レーザー脱離イオン化質量分析(MALDI-TOF-MS)スペクトル (CH3CH2O)2CHCH2CH2O-(CH2CH2O)nCH2PhCH2Cl(3)のプロトン核磁気共鳴スペクトル(1H-NMR) CH3O-(CH2CH2O)nCH2PhCH2SC(=S)Ph(4)のプロトン核磁気共鳴スペクトル(1H-NMR) CH3O-(CH2CH2O)nCH2PhCH2SC(=S)Ph(4)のマトリックス支援レーザー脱離イオン化質量分析(MALDI-TOF-MS)スペクトル (CH3CH2O)2CHCH2CH2O-(CH2CH2O)nCH2PhCH2SC(=S)Ph(5)のプロトン核磁気共鳴スペクトル(1H-NMR) CH3O-(CH2CH2O)nCH2PhCH2(CH2CH(PhCH2Cl))mSC(=S)Ph(6)のプロトン核磁気共鳴スペクトル(1H-NMR) CH3O-(CH2CH2O)nCH2PhCH2(CH2CH(PhCH2NH-TEMPO))mSC(=S)Ph(7)のプロトン核磁気共鳴スペクトル(1H-NMR)(ヒドラジン添加還元後) CH3O-(CH2CH2O)nCH2PhCH2(CH2CH(PhCH2O-TEMPO))mSC(=S)Ph(8)のプロトン核磁気共鳴スペクトル(1H-NMR)(ヒドラジン添加還元後) newRNPN(m=13)の動的光散乱(DLS)スペクトル newRNPN(m=13)の電子スピン共鳴スペクトル newRNPN(m=30)及びnewRNPO(m=30)の経口投与による血中濃度の時間変化 newRNPN(m=13)経口投与に対するプロトロンビン時間 newRNPN(m=13)経口投与に対するスーパーオキシドディスムターゼ(SOD)産生量 newRNPN(m=13)経口投与に対するアルブミン産生量 newRNPN(m=13)経口投与に対するアスパラギン酸アミノトランスフェラーゼ(AST)産生量 newRNPN(m=13)経口投与に対するアラニントランスアミナーゼ(ALT)産生量 newRNPN(m=13)経口投与に対するアルカリフォスファターゼ(ALP)産生量 newRNPN、newRNPOの静脈注射に対する血中濃度変化 CH3O-(CH2CH2O)nCH2PhCH2(CH2CH(PhCH2P(=O)(OCH2CH32mSC(=S)Ph(9)のプロトン核磁気共鳴スペクトル(1H-NMR) CH3O-(CH2CH2O)nCH2PhCH2(CH2CH(PhCH2P(=O)(OH)2mSC(=S)Ph(10)のプロトン核磁気共鳴スペクトル(1H-NMR) 実施例1で得られたブロック共重合体(1)のGPCチャート 4,4,5,5-テトラメチル-1,3,2-ジオキサボラノフェニルメトキシ-(CHCHO)OH(Pre)のサイズ分画クロマトグラム(SEC) 4,4,5,5-テトラメチル-1,3,2-ジオキサボラノフェニルメトキシ-(CHCHO)OH(Pre)のプロトン核磁気共鳴スペックトラム(H-NMR) 4,4,5,5-テトラメチル-1,3,2-ジオキサボラノフェニルメトキシ-(CHCHO)OH(Pre)のカーボン核磁気共鳴スペックトラム(13C-NMR)
 以下、本発明について、より具体的に説明する。
実施例1:CH3O-(CH2CH2O)nCH2PhCH2Cl(1)の合成
(なお、式中:Phはベンゼン環を表す)
 500mLフラスコ中に市販の片末端メトキシ、他末端水酸基を有するポリエチレングリコール(CH3O-(CH2CH2O)nH、分子量5,000、Fluka)を50g、テトラヒドロフラン200mL、市販のブチルリチウムを10mL(1.6M、ヘキサン溶液)加えた後、a,a’-ジクロロ-p-キシリレン(ClCH2PhCH2Cl)を25g加え、60℃、24時間反応させた。反応混合液を500mLの冷2-プロパノールに沈殿させ、遠心分離(4℃、9000rpm、2分)後、減圧乾燥した。得られた(1)のサイズ分画クロマトグラム、NMRおよびMALDI-TOF型質量スペクトルをそれぞれ図1、2、3に示す。収量50g、収率97%。また、ゲル浸透クロマトグラフ(GPC)を図26に示す。
実施例2:CH3O-(CH2CH2O)nCH2PhCH2Br(2)の合成
 a,a’-ジクロロ-p-キシリレンの代わりにa,a’-ジブロモ-p-キシリレン(BrCH2PhCH2Br)を用いた以外は実施例1と同様に合成した。得られた(2)のサイズ分画クロマトグラム、NMRおよびMALDI-TOF型質量スペクトルをそれぞれ図4、5、6に示す。収量50g、収率97%
実施例3:(CH3CH2O)2CHCH2CH2O-(CH2CH2O)nCH2PhCH2Cl(3)の合成
 500mLフラスコ中にTHF100mL、市販の1,1-ジエトキシプロパノールを(0.9g,6mmol)、カリウムナフタレン(12mL,0.5M)を加え、カリウム3,3-ジエトキシプロパノキシドを生成せしめた後、エチレンオキシド20g(0.45mol)を加えて室温、2日間重合させた。重合後、a,a’-ジクロロ-p-キシリレン(ClCH2PhCH2Cl)を25g加え、60℃、24時間反応させた。反応混合液を500mLの冷2-プロパノールに沈殿させ、遠心分離(4℃、9000rpm、2分)後、減圧乾燥した。得られた(3)のNMRを図7に示す。収量20g、収率95%。
実施例4:CH3O-(CH2CH2O)nCH2PhCH2SC(=S)Ph(4)の合成
 100mLフラスコにTHF50mL、市販の二硫化炭素5mLおよび臭化フェニルマグネシウム10mL(3M THF溶液)を加え、ジチオ安息香酸ブロモマグネシウム(PhC(=S)SMgBr)を作製させる。別途500mLフラスコ中に実施例1で合成した(1)50g、THF200mLを加え、上で作製したジチオ安息香酸ブロモマグネシウムのTHF溶液を加え、40℃、24時間反応させた。反応混合液を500mLの冷2-プロパノールに沈殿させ、遠心分離(4℃、9000rpm、2分)後、減圧乾燥した。得られた(4)のNMRおよびMALDI-TOF型質量スペクトルをそれぞれ図8、9に示す。収量50g、収率97%。
実施例5:(CH3CH2O)2CHCH2CH2O-(CH2CH2O)nCH2PhCH2SC(=S)Ph(5)の合成
 (1)に代えて(3)を20g使った以外実施例4と同様の方法で(5)の合成を行った。得られた(5)のNMRを図10に示す。収量20g、収率97%。
実施例6:CH3O-(CH2CH2O)nCH2PhCH2(CH2CH(PhCH2Cl))mSC(=S)Ph(6)の合成
 500mLフラスコに(4)を20g、アゾビスイソブチロニトリル(AIBN)120mg、m,p-クロロメチルスチレン(CMS)60mL、トルエン200mLを加え、窒素ガスを3分間フローした後、70℃で12時間重合を行った。反応混合液を500mLの冷2-プロパノールに沈殿させ、遠心分離(4℃、9000rpm、2分)後、減圧乾燥した。得られた(6)のNMRを図11に示す。収量40g。PCMSセグメントの重合度m=30
実施例7:CH3O-(CH2CH2O)nCH2PhCH2(CH2CH(PhCH2Cl))mSC(=S)Ph(6)の合成(その2)
 CMSを30mL使用した以外実施例6と同様に方法で合成を行った。収量32g。PCMSセグメントの重合度m=13
実施例8:CH3O-(CH2CH2O)nCH2PhCH2(CH2CH(PhCH2Cl))mSC(=S)Ph(6)の合成(その3)
 CMSを120mL使用した以外実施例6と同様に方法で合成を行った。収量50g。PCMSセグメントの重合度m=42
実施例9:CH3O-(CH2CH2O)nCH2PhCH2(CH2CH(PhCH2NH-TEMPO))mSC(=S)Ph(7)の合成(TEMPOは2,2,6,6-テトラメチルピペリジン-1-オキシルを表す)
 500mLフラスコ中、実施例6で合成した(6)を10g、ジメチルフォルムアミド(DMF)を100mL、4-アミン-TEMPOを20g加え、2日間室温で反応させた。反応混合液を500mLの冷2-プロパノールに沈殿させ、遠心分離(4℃、9000rpm、2分)後、減圧乾燥した。得られた(7)のNMRを図12に示す。収量10g。TEMPO置換度80%
実施例10:CH3O-(CH2CH2O)nCH2PhCH2(CH2CH(PhCH2NH-TEMPO))mSC(=S)Ph(7)の合成(その2)
 実施例6で合成した(6)の代わりに実施例7で合成した(6)を用いた以外、実施例9と同様の方法で合成した。収量10g。TEMPO置換度80%
実施例11:CH3O-(CH2CH2O)nCH2PhCH2(CH2CH(PhCH2NH-TEMPO))mSC(=S)Ph(7)の合成(その3)
 実施例6で合成した(6)の代わりに実施例8で合成した(6)を用いた以外、実施例9と同様の方法で合成した。収量10g。TEMPO置換度80%
実施例12:CH3O-(CH2CH2O)nCH2PhCH2(CH2CH(PhCH2O-TEMPO))mSC(=S)Ph(8)の合成
 200mLフラスコに50mLのTHF、4-日ドロキシTEMPOを10gおよびブチルリチウム40mLを加えて攪拌し、LiO-TEMPOを調製した。500mLフラスコ中、実施例6で合成した(6)を10g、ジメチルフォルムアミド(DMF)を100mL、上で調製したLiO-TEMPO溶液を加え、2日間室温で反応させた。反応混合液を500mLの冷2-プロパノールに沈殿させ、遠心分離(4℃、9000rpm、2分)後、減圧乾燥した。得られた(8)のNMRを図13に示す。収量10g。TEMPO置換度80%
実施例13:CH3O-(CH2CH2O)nCH2PhCH2(CH2CH(PhCH2O-TEMPO))mSC(=S)Ph(8)の合成(その2)
 実施例6で合成した(6)の代わりに実施例7で合成した(6)を用いた以外、実施例11と同様の方法で合成した。収量10g。TEMPO置換度80%
実施例14:CH3O-(CH2CH2O)nCH2PhCH2(CH2CH(PhCH2O-TEMPO))mSC(=S)Ph(8)の合成(その3)
 実施例6で合成した(6)の代わりに実施例11で合成した(6)を用いた以外、実施例11と全く同様の方法で合成した。収量10g。TEMPO置換度80%
実施例15:pH低下にしたがって崩壊するレドックスナノ粒子newRNPNの調製(その1)
 ガラス容器に実施例9で合成した(7)を10g取り、400mLのメタノールに溶解させ、分画分子量3,000のホローファイバー型透析モジュール(mPES Midikros(登録商標)Modules 3kD IC 0.5mm D06-E003-05-N)で10Lの水に対して透析した(25mg/mL)。得られた粒子溶液の光散乱スペクトルおよび電子スピン共鳴をそれぞれ図14、15に示す。
実施例16:pH低下で崩壊するレドックスナノ粒子newRNPNの調製(その2)
 実施例9で合成した(7)を用いる代わりに実施例10で合成した(7)を用いる以外実施例15と同様の方法で調製した。(25mg/mL)
実施例17:pH低下で崩壊するレドックスナノ粒子newRNPNの調製(その3)
 実施例9で合成した(7)を用いる代わりに実施例11で合成した(7)を用いる以外実施例15と同様の方法で調製した。(25mg/mL)
実施例18:pH低下で崩壊しないレドックスナノ粒子newRNPOの調製
(その1)
 実施例9で合成した(7)を用いる代わりに実施例12で合成した(8)を用いる以外実施例15と同様の方法で調製した。(25mg/mL)
実施例19:pH低下で崩壊しないレドックスナノ粒子newRNPOの調製
(その2)
 実施例9で合成した(7)を用いる代わりに実施例13で合成した(8)を用いる以外実施例15と同様の方法で調製した。(25mg/mL)
実施例20:pH低下で崩壊しないレドックスナノ粒子newRNPOの調製(その3)
 実施例9で合成した(7)を用いる代わりに実施例14で合成した(8)を用いる以外実施例15と同様の方法で調製した。(25mg/mL)
実施例21:ブランクミセルの調製
 実施例6(m=30)で合成したPEG-b-PCMS 1gをメタノール160mLに溶解させ、分画分子量3,000のホローファイバー型透析モジュール(mPES Midikros(登録商標)Modules 3kD IC 0.5mm D06-E003-05-N)で10Lの水に対して透析した(6.25mg/mL)。
実施例22:newRNPNの経口投与による血中取り込み評価と安全性
 実施例9(m=30)で作製したnewRNPNの経口投与による評価を行った。
 38g~41gの10週齢IGSマウスを一群5匹(入荷から本実験終了までの期間中、室温23℃C(±1℃)、湿度50%、12時間明暗サイクルの条件下で飼育を行い、餌および水は自由に摂取させた)で下記のようにnewRNPNを投与した。
 群1:自由水投与
 群2:newRNPN水溶液を、ゾンデを用いて胃内に1日1回強制投与した(1日目:10mg/mLを1mL投与、2日目以降:20mg/mLを1mL投与)。
 群3:水の代わりに5mg/mLのnewRNPN水溶液を摂水瓶にて自由摂取した。
 群4:水の代わりに10mg/mLのnewRNPN水溶液を摂水瓶にて自由摂取した。
 群5:水の代わりに20mg/mLのnewRNPN水溶液を摂水瓶にて自由摂取した。
 群6:水の代わりに20mg/mLのnewRNPO水溶液を摂水瓶にて自由摂取した。
 群1と群3~6の摂水量は表1に示すように変わりなかった。
Figure JPOXMLDOC01-appb-T000022
 血中への取り込みを電子スピン共鳴スペクトルによって調べたところ、投与群6のnewRNPOは血中に全く取り込まれないことが確認された。一方、ゾンデで強制投与した群3は4日まで血中濃度が増加し、一定に達した。自由摂水群では濃度依存的に血中濃度が増加する傾向が見られ、10mg/mL以上で6日後に強制投与群と同レベルに達した(図16参照)。
実施例23:アセトアミノフェン誘起肝毒性に対する効果
 実施例16(m=13)で作製したnewRNPNの経口投与による評価を行った。
 38g~41gの10週齢IGSマウスを一群6匹(入荷から本実験終了までの期間中、室温23℃(±1℃)、湿度50%、112時間明暗サイクルの条件下で飼育を行い、餌および水は自由に摂取させた)で下記のようにnewRNPNを投与した。
 群1:無処理コントロール(この群だけ4匹)
 群2:実験開始7日目にアセトアミノフェンを3mg/kg経口投与
 群3:実施例21で合成したブランクミセル(6.25mg/mL、160mg/kg)1mLを1日1回ゾンデによる強制投与を行い、7日目にアセトアミノフェンを3mg/kg経口投与した。
 群4:実施例16(m=13)で合成したnewRNPN(6.25mg/mL、160mg/kg)1mLを1日1回ゾンデによる強制投与を行い、7日目にアセトアミノフェンを3mg/kg経口投与した。
 群5:4-アミノ-TEMPO 170mg/kgを1日1回ゾンデによる強制投与を行い、7日目にアセトアミノフェンを3mg/kg経口投与した。
 群6:アセチルシステイン600mg/kgを1日1回ゾンデによる強制投与を行い、7日目にアセトアミノフェンを3mg/kg経口投与した。
 この実験条件でアセトアミノフェン投与前後のマウス生存数を表2に示す。IGSマウスに対するアセトアミノフェン3mg/kgでは肝障害効果が強すぎるため、2/3が1日以内に死亡した(群2)。ブランクミセル(群3)、4-アミノ-TEMPO(群5)およびアセチルシステイン(群6)でも同様の傾向にある。一方newRNPNではすべてのマウスが生存していた(群4)。
Figure JPOXMLDOC01-appb-T000023
 肝機能の指標を示すプロトロンビン時間は4-アミノ-TEMPOおよびアセチルシステインでは延長が認められるものの、newRNPNでは対照群と同一レベルであった(図17)。スーパーオキシドディスムターゼ(SOD)産生量を定量した結果、アセトアミノフェン投与群および他の押薬物投与群が著しい低下をしているものの、newRNPN投与群では対照群と同一レベルであった(図18)。
 肝機能指標のアルブミン量、AST、ALT、ALP酵素レベルを測定したところ、低分子4-アミノ-TEMPOは極めて高い毒性を示すのに対し、newRNPNでは極めて低肝毒性を示した(図19~22)。
 このように本発明のnewRNPNは肝毒性を示さず、アセトアミノフェン誘起肝障害を抑えることが示された。
実施例24:newRNPNおよびnewRNPOの血中滞留性
 実施例15~20で作製したnewRNPNおよびnewRNPOを静脈投与し、血中滞留性評価を行った。38~41gの10週齢IGSマウスを一群5匹(入荷から本実験終了までの期間中、室温23℃(±1℃)、湿度50%、12示間明暗サイクルの条件下で飼育を行い、餌および水は自由に摂取させた)で下記のようにnewRNPNおよびnewRNPO血中滞留性評価を行った。
 群1:4-アミノ-TEMPO(10mg/mLを200μL尾静注投与、50mg/kg)
 群2:newRNPN(実施例15(m=30)の試料を25mg/mLを200μL尾静注投与、125mg/kg)
 群3:newRNPN(実施例16(m=13)の試料を25mg/mLを200μL尾静注投与、125mg/kg)
 群4:newRNPN(実施例17(m=42)の試料を50mg/mLに濃縮後、200μL尾静注投与、250mg/kg)
 群5:newRNPO(実施例18(m=30)の試料を50mg/mLに濃縮後、250μL尾静注投与、312.5mg/kg)
 群6:newRNPO(実施例19(m=13)の試料を50mg/mLに濃縮後、200μL尾静注投与、250mg/kg)
 群7:newRNPO(実施例20(m=42)の試料を50mg/mLに濃縮後、200μL尾静注投与、250mg/kg)
 投与後5分、15分、30分、1時間、4時間、12時間、24時間、48時間、72時間、96時間に血液を採取し、遠心分離後上清にフェリシアン化カリウムを加えてXバンド電子スピン共鳴装置にて定量した。
 図23にRNPの血中濃度変化を示す。わかりやすくするため、WO2009/133647試験例4のデータを図23に加えて比較データとした。図に示されるように、本発明で調製したnewRNPは旧来型のRNPに比べてABA型のブロック共重合体を含まないため、その血中滞留性が極めて向上していることが確認された。特にnewRNPOでは静脈投与後4日以上も滞留していることが確認された。
実施例25:CH3O-(CH2CH2O)nCH2PhCH2(CH2CH(PhCH2P(=O)(OCH2CH32))mSC(=S)Ph(9)の合成
 200mLフラスコに20mLのTHF、亜リン酸ジエチルを1.3gおよびブチルリチウム6.5mL(10mmol)を加えて攪拌し、LiP(=O)(OCH2CH32を調製する。500mLフラスコ中、実施例6で合成した(6)を3g、ジメチルフォルムアミド(DMF)を50mL、上で調製したLiP(=O)(OCH2CH32溶液を加え、2日間室温で反応させた。反応混合液を500mLの冷2-プロパノールに沈殿させ、遠心分離(4℃C、9000rpm、2分)後、減圧乾燥した。得られた(9)のNMRを図24に示す。収量3g。リン酸ジエチル置換度80%
実施例26:CH3O-(CH2CH2O)nCH2PhCH2(CH2CH(PhCH2P(=O)(OH)2))mSC(=S)Ph(10)の合成
 100mLフラスコに20mLのCHCl3、(9)を2g、臭化トリメチルシリル2mを加え、45℃、2時間反応させた後、クロロホルムを留去し、80mLのメタノールを加えて15時間室温で反応させた。溶液を水に対して透析し、減圧乾燥した。得られた(10)NMRを図25に示す。収量1.5g。リン酸ジエチルの加水分解度90%。
実施例27: 4,4,5,5-テトラメチル-1,3,2-ジオキサボラノフェニルメトキシ-(CH2CH2O)OH(Pre)の合成
 100mLフラスコ中にTHF50mL、市販の2-(4-ヒドロキシメチルフェニル)-4,4,5,5-テトラメチル-1,3,2-ジオキサボランを1.67g(7.1mmol)、カリウムナフタレン(8.0mL,0.9M)を加え、2-(4-ヒドロキシメチルフェニル)-4,4,5,5-テトラメチル-1,3,2-ジオキサボランのカリウムアルコラートを生成せしめた後、エチレンオキシド31g(0.7mol)を加えて室温下、2日間重合させた。重合後、反応混合液を700mLの冷2-プロパノールに沈殿させ、遠心分離(4℃、9000rpm、2分)後、減圧乾燥した。得られた(Pre)のSEC、1H-NMRおよび13C-NMRを、それぞれ図27、図28、図29に示す。収量28g、収率90%。

Claims (11)

  1.  下記反応スキームに基づく式(I)で表されるブロック共重合体または式(I)中の(R)aで置換されていてもよいフェニルジチオカルボニルが水素原子もしくはメルカプトで置換されたブロック共重合体の製造方法であって、
     式(6)で表されるポリ(エチレングリコール)誘導体及びラジカル反応開始剤を含む不活性溶媒中に式(7)で表されるスチレン誘導体を加えて重合する工程を含んでなる、製造方法。
    Figure JPOXMLDOC01-appb-C000001
     上記各式中、
     Aは、非置換または置換C1-C12アルコキシを表し、置換されている場合の置換基は、ホルミル基、式R12CH-基を表し、ここで、R1およびR2は独立してC1-C4アルコキシまたはR1とR2は一緒になって-OCH2CH2O-、-O(CH23O-もしくは-O(CH24O-を表し、或いは、置換されている場合の置換基は、式RB-Ph-基を表し、ここで、RおよびRはヒドロキシまたはRとRは一緒になって-OC(CHC(CHO-を表し、Phはメチルもしくはメトキシで置換されていてもよいo-フェニレン、m-フェニレンもしくはp-フェニレンを表し、
     Lは、式
    Figure JPOXMLDOC01-appb-C000002
    で表される基から選ばれ、bは2~6の整数であり、
     Xは塩素、臭素又はヨウ素を表し、
     Rは、各、独立してメチルまたはメトキシを表し、aは0~3の整数であり、
     mは3~500の整数を表し、
     nは2~10,000の整数を表す。
  2.  Lがm-キシリレンもしくはp-キシリレンである、請求項1に記載の製造方法。
  3.  式(I)
    Figure JPOXMLDOC01-appb-C000003
    式中、
     Aは、非置換または置換C1-C12アルコキシを表し、置換されている場合の置換基は、ホルミル基、式R12CH-基を表し、ここで、R1およびR2は独立してC1-C4アルコキシまたはR1とR2は一緒になって-OCH2CH2O-、-O(CH23O-もしくは-O(CH24O-を表し、或いは、置換されている場合の置換基は、式RB-Ph-基を表し、ここで、RおよびRはヒドロキシまたはRとRは一緒になって-OC(CHC(CHO-を表し、Phはメチルもしくはメトキシで置換されていてもよいo-フェニレン、m-フェニレンもしくはp-フェニレンを表し、
     Lは、式
    Figure JPOXMLDOC01-appb-C000004
    で表される基から選ばれ、bは2~6の整数であり、
     Xは塩素、臭素又はヨウ素を表し、
     Rは、各、独立してメチルまたはメトキシを表し、aは0~3の整数であり、
     mは3~500の整数を表し、
     nは2~10,000の整数を表す、
    で表されるブロック共重合体または式(I)中の(R)aで置換されていてもよいフェニルジチオカルボニルが水素原子もしくはメルカプトで置換されたブロック共重合体。
  4.  Lがm-キシリレンもしくはp-キシリレンである、請求項3に記載のブロック共重合体。
  5.  式(I)の(R)aで置換されていてもよいフェニルジチオカルボニルがそのまま存在する、請求項3に記載のブロック共重合体。
  6.  式(II)
    Figure JPOXMLDOC01-appb-C000005
    式中、
     Aは、非置換または置換C1-C12アルコキシを表し、置換されている場合の置換基は、ホルミル基、式R12CH-基を表し、ここで、R1およびR2は独立してC1-C4アルコキシまたはR1とR2は一緒になって-OCH2CH2O-、-O(CH23O-もしくは-O(CH24O-を表し、或いは、置換されている場合の置換基は、式RB-Ph-基を表し、ここで、RおよびRはヒドロキシまたはRとRは一緒になって-OC(CHC(CHO-を表し、Phはメチルもしくはメトキシで置換されていてもよいo-フェニレン、m-フェニレンもしくはp-フェニレンを表し、
     Lは、式
    Figure JPOXMLDOC01-appb-C000006
    で表される基から選ばれ、bは2~6の整数であり、
     Rは、各、独立してメチルまたはメトキシを表し、aは0~3の整数であり、
     mは3~500の整数を表し、
     nは2~10,000の整数を表す、
     Zは-NH-または-O-を介して共有結合した式
    Figure JPOXMLDOC01-appb-C000007
    で表される基から選ばれるか、または
    -P(=O)(OCH2CH32もしくは-P(=O)(OH)2を表し、
    これらの基はZの総数の少なくとも60%を含み、存在する場合、残りは塩素、臭素若しくはヨウ素原子又はヒドロキシルである、
    で表される共重合体または式(II)における(R)aで置換されていてもよいフェニルジチオカルボニルが水素原子もしくはメルカプトで置換されたブロック共重合体。
  7.  Lがm-キシリレンもしくはp-キシリレンである、請求項6に記載のブロック共重合体。
  8.  式(I)の(R)aで置換されていてもよいフェニルジチオカルボニルがそのまま存在する、請求項6に記載のブロック共重合体。
  9.  Zが-NH-または-O-を介して共有結合した式
    Figure JPOXMLDOC01-appb-C000008
    で表される基から選ばれる、請求項6に記載のブロック共重合体。
  10.  Zが-P(=O)(OCH2CH32もしくは-P(=O)(OH)2を表す、請求項6に記載のブロック共重合体。
  11.  式(Pre)
    Figure JPOXMLDOC01-appb-C000009
    式中、
     Aは置換C1-C12アルコキシを表し、置換基が、式RB-Ph-基を表し、ここで、RおよびRはヒドロキシまたはRとRは一緒になって-OC(CHC(CHO-を表し、Phはメチルもしくはメトキシで置換されていてもよいo-フェニレン、m-フェニレンもしくはp-フェニレンを表し、
    nは2~10,000の整数を表す、
    で表されるホモポリマー。
PCT/JP2015/077432 2014-09-30 2015-09-29 ポリ(エチレングリコール)-b-ポリ(ハロメチルスチレン)並びにその誘導体及び製造方法 WO2016052463A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/514,613 US10208152B2 (en) 2014-09-30 2015-09-29 Poly(ethylene glycol)-b-poly(halomethylstyrene), derivative thereof, and method for producing same
EP15848059.0A EP3202803B1 (en) 2014-09-30 2015-09-29 Poly(ethylene glycol)-b-poly(halomethylstyrene) and derivatives thereof, and production process therefor
JP2016552038A JP6593931B2 (ja) 2014-09-30 2015-09-29 ポリ(エチレングリコール)−b−ポリ(ハロメチルスチレン)並びにその誘導体及び製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-201992 2014-09-30
JP2014201992 2014-09-30

Publications (1)

Publication Number Publication Date
WO2016052463A1 true WO2016052463A1 (ja) 2016-04-07

Family

ID=55630490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/077432 WO2016052463A1 (ja) 2014-09-30 2015-09-29 ポリ(エチレングリコール)-b-ポリ(ハロメチルスチレン)並びにその誘導体及び製造方法

Country Status (4)

Country Link
US (1) US10208152B2 (ja)
EP (1) EP3202803B1 (ja)
JP (1) JP6593931B2 (ja)
WO (1) WO2016052463A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017226735A (ja) * 2016-06-21 2017-12-28 国立大学法人 筑波大学 イミノ二酢酸を側鎖に有する親水性高分子及びその使用
WO2018135592A1 (ja) 2017-01-19 2018-07-26 国立大学法人筑波大学 側鎖に環状ニトロキシドラジカルとトリアルコキシシリルを含む共重合体およびその使用
JPWO2017094691A1 (ja) * 2015-11-30 2018-09-13 国立大学法人 筑波大学 リン酸残基を有するニトロキシラジカル含有共重合体及びその使用
JP2019001786A (ja) * 2017-06-19 2019-01-10 国立大学法人 筑波大学 感染症治療薬
WO2021024906A1 (ja) 2019-08-05 2021-02-11 国立大学法人筑波大学 短鎖脂肪酸エステルを担持する親水-疎水性共重合体
JP2021024921A (ja) * 2019-08-02 2021-02-22 国立大学法人 筑波大学 カテコール型抗酸化ナノ粒子形成性親水−疎水性共重合体及びその使用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998001478A1 (en) * 1996-07-10 1998-01-15 E.I. Du Pont De Nemours And Company Polymerization with living characteristics
JP2003321524A (ja) * 2002-04-30 2003-11-14 Kanegafuchi Chem Ind Co Ltd 制振材用樹脂および制振材
WO2009133647A1 (ja) * 2008-05-02 2009-11-05 国立大学法人筑波大学 高分子化環状二トロキシドラジカル化合物およびその使用
JP2012111700A (ja) * 2010-11-22 2012-06-14 Univ Of Tsukuba 高分子化環状ニトロキシドラジカル化合物の潰瘍性消化管の炎症の処置剤
JP2012530279A (ja) * 2009-06-16 2012-11-29 ボーシュ アンド ローム インコーポレイティド バイオメディカルデバイス
WO2013111801A1 (ja) * 2012-01-24 2013-08-01 国立大学法人筑波大学 トリブロックコポリマー及びその使用
JP2014001159A (ja) * 2012-06-18 2014-01-09 Univ Of Tsukuba 薬物を担持した表面修飾酸化鉄ナノ粒子
CN103819390A (zh) * 2013-11-25 2014-05-28 南京工业大学 一种含末端羟基的raft链转移剂的合成方法
WO2015118993A1 (ja) * 2014-02-05 2015-08-13 国立大学法人筑波大学 ポリカチオン性トリブロックコポリマーとポリアニオン性ポリマーの組成物を含む癒着防止用製剤

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998001478A1 (en) * 1996-07-10 1998-01-15 E.I. Du Pont De Nemours And Company Polymerization with living characteristics
JP2003321524A (ja) * 2002-04-30 2003-11-14 Kanegafuchi Chem Ind Co Ltd 制振材用樹脂および制振材
WO2009133647A1 (ja) * 2008-05-02 2009-11-05 国立大学法人筑波大学 高分子化環状二トロキシドラジカル化合物およびその使用
JP2012530279A (ja) * 2009-06-16 2012-11-29 ボーシュ アンド ローム インコーポレイティド バイオメディカルデバイス
JP2012111700A (ja) * 2010-11-22 2012-06-14 Univ Of Tsukuba 高分子化環状ニトロキシドラジカル化合物の潰瘍性消化管の炎症の処置剤
WO2013111801A1 (ja) * 2012-01-24 2013-08-01 国立大学法人筑波大学 トリブロックコポリマー及びその使用
JP2014001159A (ja) * 2012-06-18 2014-01-09 Univ Of Tsukuba 薬物を担持した表面修飾酸化鉄ナノ粒子
CN103819390A (zh) * 2013-11-25 2014-05-28 南京工业大学 一种含末端羟基的raft链转移剂的合成方法
WO2015118993A1 (ja) * 2014-02-05 2015-08-13 国立大学法人筑波大学 ポリカチオン性トリブロックコポリマーとポリアニオン性ポリマーの組成物を含む癒着防止用製剤

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MACROMOLECULES, vol. 47, no. 1, 14 January 2014 (2014-01-14), pages 130 - 136, XP055424899 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017094691A1 (ja) * 2015-11-30 2018-09-13 国立大学法人 筑波大学 リン酸残基を有するニトロキシラジカル含有共重合体及びその使用
JP2017226735A (ja) * 2016-06-21 2017-12-28 国立大学法人 筑波大学 イミノ二酢酸を側鎖に有する親水性高分子及びその使用
WO2018135592A1 (ja) 2017-01-19 2018-07-26 国立大学法人筑波大学 側鎖に環状ニトロキシドラジカルとトリアルコキシシリルを含む共重合体およびその使用
JPWO2018135592A1 (ja) * 2017-01-19 2019-12-12 国立大学法人 筑波大学 側鎖に環状ニトロキシドラジカルとトリアルコキシシリルを含む共重合体およびその使用
JP7133219B2 (ja) 2017-01-19 2022-09-08 国立大学法人 筑波大学 側鎖に環状ニトロキシドラジカルとトリアルコキシシリルを含む共重合体およびその使用
JP2019001786A (ja) * 2017-06-19 2019-01-10 国立大学法人 筑波大学 感染症治療薬
JP7116428B2 (ja) 2017-06-19 2022-08-10 国立大学法人 筑波大学 感染症治療薬
JP2021024921A (ja) * 2019-08-02 2021-02-22 国立大学法人 筑波大学 カテコール型抗酸化ナノ粒子形成性親水−疎水性共重合体及びその使用
JP7333556B2 (ja) 2019-08-02 2023-08-25 国立大学法人 筑波大学 カテコール型抗酸化ナノ粒子形成性親水-疎水性共重合体及びその使用
WO2021024906A1 (ja) 2019-08-05 2021-02-11 国立大学法人筑波大学 短鎖脂肪酸エステルを担持する親水-疎水性共重合体

Also Published As

Publication number Publication date
EP3202803B1 (en) 2019-09-18
EP3202803A1 (en) 2017-08-09
US10208152B2 (en) 2019-02-19
JP6593931B2 (ja) 2019-10-23
JPWO2016052463A1 (ja) 2017-07-20
US20170247491A1 (en) 2017-08-31
EP3202803A4 (en) 2018-06-13

Similar Documents

Publication Publication Date Title
JP6593931B2 (ja) ポリ(エチレングリコール)−b−ポリ(ハロメチルスチレン)並びにその誘導体及び製造方法
Bernard et al. Synthesis of various glycopolymer architectures via RAFT polymerization: from block copolymers to stars
Lim et al. Development of a vinyl ether-functionalized polyphosphoester as a template for multiple postpolymerization conjugation chemistries and study of core degradable polymeric nanoparticles
Roy et al. Sugar-responsive block copolymers by direct RAFT polymerization of unprotected boronic acid monomers
Dai et al. Synthesis, self‐assembly and recognition properties of biomimetic star‐shaped poly (ε‐caprolactone)‐b‐glycopolymer block copolymers
He et al. Dual-response nanocarrier based on graft copolymers with hydrazone bond linkages for improved drug delivery
CN109364262A (zh) 一种氧化还原双响应型高分子喜树碱前药的制备方法
US20090142268A1 (en) Chain-end functionalized poly(ethykene oxide) and process for the preparation of a nano-sized transition metal or metal salt using the same
Iha et al. Complex, degradable polyester materials via ketoxime ether‐based functionalization: Amphiphilic, multifunctional graft copolymers and their resulting solution‐state aggregates
Hasegawa et al. Hydrolysis‐sensitive dithiolethione prodrug micelles
Li et al. Diblock brush-arm star copolymers via a core-first/graft-from approach using γ-cyclodextrin and ROMP: a modular platform for drug delivery
JP5250641B2 (ja) pH感受性ポリエチレンオキシドコポリマー及びそれらの合成方法
Bandyopadhyay et al. Hyperbranched polymers for biomedical applications
Grancharov et al. Functional block copolymers bearing pendant cinnamyl groups for enhanced solubilization of caffeic acid phenethyl ester
Wei et al. Synthesis of cleavable multi-functional mikto-arm star polymer by RAFT polymerization: example of an anti-cancer drug 7-ethyl-10-hydroxycamptothecin (SN-38) as functional moiety
Li et al. Amphiphilic methoxy poly (ethylene glycol)-b-poly (carbonate-selenide) with enhanced ROS responsiveness: Facile synthesis and oxidation process
JP5522361B2 (ja) ガンの中性子捕捉療法を可能とする架橋型ホウ素内包ミセル
KR20130075092A (ko) 하이드라지드기를 가지는 폴리에틸렌옥사이드계 블록공중합체 및 그에 의해 안정화된 산화철 나노입자
Hu et al. Synthesis of styrene-norbornene diblock copolymers via ring-opening metathesis polymerization and nitroxide-mediated radical polymerization
Chu et al. Novel C60‐Anchored Two‐Armed Poly (tert‐butyl acrylate): Synthesis and Characterization
Chu et al. Synthesis and characterization of C60-anchored multiarmed polymers with well-defined structures
Liu et al. A new multifunctional polymer: Synthesis and characterization of mPEG-b-PAA-grafted chitosan copolymer
WO2018135592A1 (ja) 側鎖に環状ニトロキシドラジカルとトリアルコキシシリルを含む共重合体およびその使用
Duan et al. Polypseudorotaxane-based multiblock copolymers prepared via in situ ATRP of NIPAAm initiated by inclusion complex having a feeding ratio of 4 β-CDs to ferrocene containing initiator
CN107074747B (zh) 偶氮单体和通过偶氮单体聚合制备的偶氮聚合物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15848059

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15514613

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016552038

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015848059

Country of ref document: EP