WO2016052299A1 - 熱交換器および空気調和装置 - Google Patents

熱交換器および空気調和装置 Download PDF

Info

Publication number
WO2016052299A1
WO2016052299A1 PCT/JP2015/076926 JP2015076926W WO2016052299A1 WO 2016052299 A1 WO2016052299 A1 WO 2016052299A1 JP 2015076926 W JP2015076926 W JP 2015076926W WO 2016052299 A1 WO2016052299 A1 WO 2016052299A1
Authority
WO
WIPO (PCT)
Prior art keywords
space
refrigerant
heat exchanger
communication port
header
Prior art date
Application number
PCT/JP2015/076926
Other languages
English (en)
French (fr)
Inventor
智嗣 井上
正憲 神藤
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to US15/513,866 priority Critical patent/US10465955B2/en
Priority to CN201580052073.8A priority patent/CN106716045B/zh
Priority to ES15847695T priority patent/ES2737228T3/es
Priority to EP15847695.2A priority patent/EP3203175B1/en
Priority to AU2015325721A priority patent/AU2015325721B2/en
Publication of WO2016052299A1 publication Critical patent/WO2016052299A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/14Heat exchangers specially adapted for separate outdoor units
    • F24F1/18Heat exchangers specially adapted for separate outdoor units characterised by their shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05391Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits combined with a particular flow pattern, e.g. multi-row multi-stage radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • F28F1/325Fins with openings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0202Header boxes having their inner space divided by partitions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0202Header boxes having their inner space divided by partitions
    • F28F9/0204Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions
    • F28F9/0207Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions the longitudinal or transversal partitions being separate elements attached to header boxes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0202Header boxes having their inner space divided by partitions
    • F28F9/0204Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions
    • F28F9/0209Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions having only transversal partitions
    • F28F9/0212Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions having only transversal partitions the partitions being separate elements attached to header boxes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0219Arrangements for sealing end plates into casing or header box; Header box sub-elements
    • F28F9/0224Header boxes formed by sealing end plates into covers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0243Header boxes having a circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/027Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of distribution pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/027Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of distribution pipes
    • F28F9/0275Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of distribution pipes with multiple branch pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/028Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by using inserts for modifying the pattern of flow inside the header box, e.g. by using flow restrictors or permeable bodies or blocks with channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/12Fins with U-shaped slots for laterally inserting conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2225/00Reinforcing means
    • F28F2225/08Reinforcing means for header boxes

Definitions

  • the present invention relates to a heat exchanger and an air conditioner.
  • a refrigerant that includes a plurality of flat tubes, fins joined to the plurality of flat tubes, and header collecting tubes respectively connected to one end side and the other end side of the plurality of flat tubes, and flows inside the flat tubes
  • a heat exchanger for exchanging heat with air passing outside the flat tube.
  • the refrigerant reaching the upper part is moved upward from the rising space to another space when the circulation amount is high, and then rises again.
  • the upper communication port for moving the refrigerant that has risen in the ascending space to the descending space, and the refrigerant that has descended in the descending space is returned to the ascending space side again.
  • a lower communication port (return hole) can be provided.
  • An object of the present invention is to provide a heat exchanger and an air conditioner capable of suppressing the back flow of the refrigerant from the ascending space side toward the descending space side.
  • the heat exchanger includes a plurality of flat tubes, a header portion, and an introduction portion.
  • the plurality of flat tubes are arranged side by side.
  • the header portion extends upward along the direction in which the plurality of flat tubes are arranged, and the interior is partitioned into a first space and a second space.
  • One end of each of the plurality of flat tubes is connected to the first space.
  • a plurality of flat tubes are not connected to the second space.
  • the introduction part has an introduction space located below the first space.
  • the introduction space communicates with the first space through the ascending opening.
  • the first space and the second space communicate with each other via the upper communication port and the lower communication port.
  • the upper communication port is provided above the header portion.
  • the lower communication port is provided below the header portion.
  • the plurality of flat tubes and the opening for raising have overlapping portions.
  • the space where the lower communication port extends in the direction in which the flat tube extends does not overlap the lifting opening, or the lower communication port extends in the direction in which the flat tube extends.
  • the space and the lifting opening have an overlapping portion, and the overlapping portion is 50% or less of the lifting opening in a top view in the installed state.
  • the upper communication port and / or the lower communication port may be configured to have a plurality of openings.
  • the flat tube may be connected to the introduction space.
  • the introduction space may be configured to extend not only below the first space, but also below the first space and below the second space.
  • the plurality of flat tubes connected to the first space may be arranged with the end positions aligned such that the ends inside the first space are aligned in the vertical direction, or the end positions are not aligned. It may be arranged as follows. In the case where the ends inside the first space are arranged so as to be aligned, all the flat tubes and the ascending openings are arranged so that at least a part thereof is overlapped in a top view in the installed state. . In addition, in the case where the inner ends of the first space are arranged so as not to be aligned, at least a part of the plurality of flat tubes overlaps with a specific flat tube and the lifting opening in a top view in the installed state. Will be arranged to do.
  • the flat tube that has an overlapping portion with the opening for lifting in the top view in the installed state is lower than half of the first space. It is preferable that it is located in, and it is more preferable that it is located below 1/3 of 1st space.
  • the internal space of the header part is partitioned into a first space and a second space. For this reason, compared with the case where it is not partitioned, the area through which the refrigerant that is going to rise through the ascending opening passes can be narrowed only to the first space. For this reason, the fall of the flow velocity of the refrigerant
  • this heat exchanger is used in a refrigeration apparatus having a refrigerant circuit, the flow rate of the refrigerant passing through the ascending opening is low, as in the case where the refrigerant circulation amount in the refrigerant circuit is low. Even when the refrigerant that has passed through the opening has hit the flat tube and the rising speed is reduced, the refrigerant can easily reach the upper part of the header collecting pipe.
  • the plurality of flat tubes and the ascending openings have overlapping portions in the top view in the installed state. For this reason, when the flow rate of the refrigerant that has passed through the ascending opening is high as in the case where the refrigerant circulation amount in the refrigerant circuit is high, the refrigerant can be applied to the flat tube vigorously. The liquid phase refrigerant can be agitated. For this reason, it becomes possible to supply a refrigerant
  • the flow rate of the refrigerant that has passed through the ascending opening as in the case of a high circulation rate can be increased upward by simply applying the refrigerant to the flat tube. Even when the refrigerant is prematurely biased, this bias can be reduced by further providing the upper communication port and the lower communication port. That is, in this heat exchanger, the liquid-phase refrigerant that has reached the upper part of the first space after striking the flat tube with vigorous force is guided to the second space via the upper communication port, and the second space is lowered. Thereafter, it is possible to return to the first space through the lower communication port.
  • the flow rate of the refrigerant that has passed through the rising opening is fast, and even if the refrigerant that has passed through the rising opening hits the flat tube, the liquid refrigerant is likely to be biased upward. However, it is possible to suppress the drift of the refrigerant flowing through the plurality of flat tubes.
  • the space where the lower communication port is extended in the direction in which the flat tube extends does not overlap the rising opening, or the lower communication port is the flat tube.
  • the space extended in the extending direction and the opening for raising have an overlapping part, and the overlapping part is 50% or less of the opening for raising in the top view in the installed state.
  • a heat exchanger is the heat exchanger according to the first aspect, wherein at least one of the ascending opening and the lower communication port has a plurality of ports positioned apart from each other. ing.
  • only the ascending opening may be configured with a plurality of ports, or only the lower communication port may be used. Further, both the ascending opening and the lower communication port may be configured to have a plurality of ports.
  • At least one of the ascending opening or the lower communication port is composed of a plurality of ports. For this reason, compared with the case where there is one opening, it becomes possible to suppress the deviation of the distribution of the refrigerant.
  • a heat exchanger is a heat exchanger according to the second aspect, and each of the plurality of flat tubes has a plurality of inlets arranged in the horizontal direction at the end in the first space.
  • the ascending opening includes a first ascending opening provided on one side and a first opening provided on the other side in a top view of the installed state with respect to a space in which the lower communication port extends in the direction in which the flat tube extends 2 Has an opening for ascending.
  • the heat exchanger according to the fourth aspect is a heat exchanger according to any one of the first to third aspects, wherein the lower end of the lower communication port is located further below the lower end of the lowermost flat tube.
  • the lowermost flat tube is a flat tube that is disposed at the lowest position above the ascending opening among the plurality of flat tubes connected to the first space.
  • the upper end of the lower communication port is located further below the lower end of the lowermost flat tube.
  • the refrigerant flowing upward through the ascending opening is already located above the lower end of the lower communication port in a state where it has risen to the extent that it collides with the lowermost flat tube. Will be. For this reason, even if the refrigerant that has passed through the ascending opening collides with the lowermost flat tube, a refrigerant flow toward the lower communication port is unlikely to occur, and the reverse flow of the refrigerant through the lower communication port can be more effectively suppressed.
  • the back flow of the refrigerant through the lower communication port can be more effectively suppressed.
  • the heat exchanger according to the fifth aspect is a heat exchanger according to any one of the first to fourth aspects, and further includes an introduction partition member.
  • the header part has a header partition member that partitions the first space and the second space.
  • the introduction partition member partitions the first space and the introduction space of the header portion.
  • the upper surface of the introduction partition member has a portion in contact with the header partition member.
  • the ascending opening is provided so as to penetrate the introduction partition member in the plate thickness direction at a position away from the contact position between the introduction partition member and the header partition member.
  • the air conditioning apparatus includes a refrigerant circuit.
  • the refrigerant circuit is configured by connecting a heat exchanger according to any one of the first to fifth aspects and a variable capacity compressor.
  • the heat exchanger it is possible to suppress the refrigerant drift even when it is used under conditions where the amount of circulation changes, and the first space side via the lower communication port It becomes possible to suppress the back flow of the refrigerant toward the second space side.
  • the air conditioner according to the sixth aspect even when the heat exchanger functions as an evaporator, the amount of refrigerant passing therethrough increases and the mixing ratio of the liquid-phase refrigerant increases or the flow velocity increases. In addition, it is possible to reduce the drift of the refrigerant in the heat exchanger.
  • the perspective view which shows the external appearance of an air-conditioning outdoor unit.
  • the schematic perspective view which shows the attachment state with respect to the flat multi-hole pipe of the heat-transfer fin in an outdoor heat exchanger.
  • the top view which combined the baffle plate, the multi-hole side member, the piping side member, and the partition member The schematic sectional drawing which shows the loop structure and rectification
  • FIG. 1 is a circuit diagram showing an outline of a configuration of an air conditioner 1 according to an embodiment of the present invention.
  • the air conditioner 1 is an apparatus used for air conditioning in a building in which the air conditioning indoor unit 3 is installed by performing a vapor compression refrigeration cycle operation, and uses the air conditioning outdoor unit 2 as a heat source side unit,
  • the air conditioning indoor unit 3 as a side unit is connected by refrigerant communication pipes 6 and 7.
  • the refrigerant circuit configured by connecting the air-conditioning outdoor unit 2, the air-conditioning indoor unit 3, and the refrigerant communication pipes 6 and 7 includes a compressor 91, a four-way switching valve 92, an outdoor heat exchanger 20, an expansion valve 33, and indoor heat.
  • the exchanger 4 and the accumulator 93 are connected by a refrigerant pipe.
  • a refrigerant is sealed in the refrigerant circuit, and a refrigeration cycle operation is performed in which the refrigerant is compressed, cooled, decompressed, heated and evaporated, and then compressed again.
  • the refrigerant for example, one selected from R410A, R32, R407C, R22, R134a, carbon dioxide, and the like is used.
  • Air conditioning indoor unit 3 The air conditioning indoor unit 3 is installed on the wall surface of the room by wall hanging or the like, or embedded or suspended in the ceiling of a room such as a building.
  • the air conditioning indoor unit 3 has an indoor heat exchanger 4 and an indoor fan 5.
  • the indoor heat exchanger 4 is, for example, a cross fin type fin-and-tube heat exchanger composed of heat transfer tubes and a large number of fins, and functions as a refrigerant evaporator during cooling operation to cool indoor air. In the heating operation, the heat exchanger functions as a refrigerant condenser and heats indoor air.
  • Air conditioning outdoor unit 2 The air conditioning outdoor unit 2 is installed outside a building or the like, and is connected to the air conditioning indoor unit 3 via the refrigerant communication pipes 6 and 7. As shown in FIGS. 2 and 3, the air-conditioning outdoor unit 2 has a substantially rectangular parallelepiped unit casing 10.
  • the air conditioner outdoor unit 2 has a structure in which the blower chamber S ⁇ b> 1 and the machine chamber S ⁇ b> 2 are formed by dividing the internal space of the unit casing 10 into two by a partition plate 18 extending in the vertical direction. (So-called trunk type structure).
  • the air conditioner outdoor unit 2 includes an outdoor heat exchanger 20 and an outdoor fan 95 disposed in the blower chamber S1 of the unit casing 10, and includes a compressor 91 and four compressors disposed in the machine chamber S2 of the unit casing 10.
  • a path switching valve 92, an accumulator 93, an expansion valve 33, a gas refrigerant pipe 31, and a liquid refrigerant pipe 32 are provided.
  • the unit casing 10 includes a bottom plate 12, a top plate 11, a side plate 13 on the blower chamber side, a side plate 14 on the machine chamber side, a front plate 15 on the blower chamber side, and a front plate 16 on the machine chamber side. Make up body.
  • the air conditioner outdoor unit 2 is configured to suck outdoor air into the blower chamber S ⁇ b> 1 in the unit casing 10 from a part of the back surface and side surface of the unit casing 10, and blow out the sucked outdoor air from the front surface of the unit casing 10.
  • the suction port 10a and the suction port 10b with respect to the blower chamber S1 in the unit casing 10 include an end portion on the back side of the side plate 13 on the blower chamber side and an end portion on the blower chamber S1 side of the side plate 14 on the machine chamber side. And is formed over.
  • the blower outlet 10c is provided in the fan chamber side front board 15, The front side is covered with the fan grill 15a.
  • the compressor 91 is a hermetic compressor driven by a compressor motor, for example, and is configured to be able to change the operating capacity by inverter control.
  • the four-way switching valve 92 is a mechanism for switching the direction of refrigerant flow. During the cooling operation, the four-way switching valve 92 connects the refrigerant pipe on the discharge side of the compressor 91 and the gas refrigerant pipe 31 extending from one end (gas side end) of the outdoor heat exchanger 20, and via the accumulator 93. Then, the refrigerant communication pipe 7 for the gas refrigerant and the refrigerant pipe on the suction side of the compressor 91 are connected (see the solid line of the four-way switching valve 92 in FIG. 1).
  • the four-way switching valve 92 connects the refrigerant pipe on the discharge side of the compressor 91 and the refrigerant communication pipe 7 for the gas refrigerant, and also connects the suction side and the outdoor heat of the compressor 91 via the accumulator 93.
  • a gas refrigerant pipe 31 extending from one end (gas side end) of the exchanger 20 is connected (see the broken line of the four-way switching valve 92 in FIG. 1).
  • the outdoor heat exchanger 20 is arranged upright in the blower chamber S1 in the vertical direction (vertical direction) and faces the suction ports 10a and 10b.
  • the outdoor heat exchanger 20 is an aluminum heat exchanger, and in this embodiment, the one having a design pressure of about 3 MPa to 4 MPa is used.
  • the gas refrigerant pipe 31 extends from one end (gas side end) so as to be connected to the four-way switching valve 92.
  • the liquid refrigerant pipe 32 extends from the other end (liquid side end) of the outdoor heat exchanger 20 so as to be connected to the expansion valve 33.
  • the accumulator 93 is connected between the four-way switching valve 92 and the compressor 91.
  • the accumulator 93 has a gas-liquid separation function that divides the refrigerant into a gas phase and a liquid phase.
  • the refrigerant flowing into the accumulator 93 is divided into a liquid phase and a gas phase, and the gas phase refrigerant that collects in the upper space is supplied to the compressor 91.
  • the outdoor fan 95 supplies outdoor air to the outdoor heat exchanger 20 for heat exchange with the refrigerant flowing through the outdoor heat exchanger 20.
  • the expansion valve 33 is a mechanism for decompressing the refrigerant in the refrigerant circuit, and is an electric valve capable of adjusting the opening.
  • the expansion valve 33 is provided between the outdoor heat exchanger 20 and the refrigerant communication pipe 6 for liquid refrigerant in order to adjust the refrigerant pressure and the refrigerant flow rate, and allows the refrigerant to be used in both the cooling operation and the heating operation. Has the function of expanding.
  • the outdoor fan 95 is disposed in the blower chamber S1 so as to face the outdoor heat exchanger 20.
  • the outdoor fan 95 sucks outdoor air into the unit, causes the outdoor heat exchanger 20 to perform heat exchange between the refrigerant and the outdoor air, and then discharges the air after heat exchange to the outside.
  • the outdoor fan 95 is a fan capable of changing the air volume of air supplied to the outdoor heat exchanger 20, and is, for example, a propeller fan driven by a motor such as a DC fan motor.
  • the low-pressure gas refrigerant is compressed by the compressor 91 to become a high-pressure gas refrigerant.
  • This high-pressure gas refrigerant is sent to the outdoor heat exchanger 20 via the four-way switching valve 92. Thereafter, the high-pressure gas refrigerant is condensed in the outdoor heat exchanger 20 by exchanging heat with the outdoor air supplied by the outdoor fan 95 to become a high-pressure liquid refrigerant. Then, the high-pressure liquid refrigerant in a supercooled state is sent from the outdoor heat exchanger 20 to the expansion valve 33.
  • the refrigerant that has been decompressed to near the suction pressure of the compressor 91 by the expansion valve 33 and is in a low-pressure gas-liquid two-phase state is sent to the indoor heat exchanger 4 and performs heat exchange with indoor air in the indoor heat exchanger 4. Evaporates into a low-pressure gas refrigerant.
  • the low-pressure gas refrigerant is sent to the air-conditioning outdoor unit 2 via the refrigerant communication pipe 7 and again sucked into the compressor 91.
  • the air conditioner 1 uses the outdoor heat exchanger 20 as the refrigerant condenser compressed in the compressor 91 and the indoor heat exchanger 4 as the refrigerant condensed in the outdoor heat exchanger 20. To function as an evaporator.
  • the compressor 91 In the refrigerant circuit during the cooling operation, the compressor 91 is inverter-controlled so as to reach the set temperature (so that the cooling load can be processed) while the superheat degree control of the expansion valve 33 is performed. There are cases where the circulation rate is high and the circulation rate is low.
  • the four-way switching valve 92 is in the state indicated by the broken line in FIG. 1, that is, the discharge side of the compressor 91 is connected to the gas side of the indoor heat exchanger 4 via the refrigerant communication pipe 7. And the suction side of the compressor 91 is connected to the gas side of the outdoor heat exchanger 20 via the gas refrigerant pipe 31.
  • the opening of the expansion valve 33 is adjusted so that the degree of supercooling of the refrigerant at the outlet of the indoor heat exchanger 4 becomes constant at the target value of the degree of supercooling (supercooling degree control).
  • the compressor 91, the outdoor fan 95, and the indoor fan 5 are operated in the state of this refrigerant circuit, the low-pressure gas refrigerant is sucked into the compressor 91 and compressed to become a high-pressure gas refrigerant, and the four-way switching valve 92, And it is sent to the air conditioning indoor unit 3 via the refrigerant communication pipe 7.
  • the high-pressure gas refrigerant sent to the air conditioning indoor unit 3 undergoes heat exchange with the indoor air in the indoor heat exchanger 4 to condense into a high-pressure liquid refrigerant, and then passes through the expansion valve 33. Furthermore, the pressure is reduced according to the opening degree of the expansion valve 33.
  • the refrigerant that has passed through the expansion valve 33 flows into the outdoor heat exchanger 20.
  • the low-pressure gas-liquid two-phase refrigerant flowing into the outdoor heat exchanger 20 exchanges heat with the outdoor air supplied by the outdoor fan 95 to evaporate into a low-pressure gas refrigerant. Then, the air is sucked into the compressor 91 again.
  • the air conditioner 1 uses the indoor heat exchanger 4 as a refrigerant condenser compressed in the compressor 91 and the outdoor heat exchanger 20 as a refrigerant condensed in the indoor heat exchanger 4. To function as an evaporator.
  • the compressor 91 In the refrigerant circuit during the heating operation, the compressor 91 is inverter-controlled so that the set temperature is reached (so that the heating load can be processed) while the degree of supercooling of the expansion valve 33 is being controlled. There are cases where the circulation amount of the refrigerant becomes high and the circulation amount becomes low.
  • FIG. 4 shows a schematic external perspective view of the outdoor heat exchanger 20. Moreover, the attachment state with respect to the flat multi-hole tube 21b of the heat-transfer fin 21a is shown in FIG.
  • the outdoor heat exchanger 20 includes a heat exchanging portion 21 that exchanges heat between outdoor air and refrigerant, an inlet / outlet header collecting pipe 26 and a folded header 24 provided on one end of the heat exchanging portion 21, and the heat exchange.
  • a connecting header 23 provided on the other end of the section 21, a connecting section 25 for connecting the lower part of the folded header 24 and the upper part of the folded header 24, and a flow divider for guiding the refrigerant diverted below the inlet / outlet header collecting pipe 26 22.
  • the heat exchanging portion 21 includes a large number of heat transfer fins 21a and a large number of flat multi-hole tubes 21b.
  • the heat transfer fins 21a and the flat multi-hole tube 21b are both made of aluminum or an aluminum alloy.
  • the heat transfer fins 21a are flat plate members, and each heat transfer fin 21a has a plurality of notches 21aa for inserting a flat tube extending in the horizontal direction.
  • the heat transfer fins 21a are attached so as to have countless portions protruding toward the upstream side of the air flow.
  • the flat multi-hole tube 21b functions as a heat transfer tube, and transfers heat moving between the heat transfer fins 21a and outdoor air to the refrigerant flowing inside.
  • the flat multi-hole tube 21b has upper and lower flat portions serving as heat transfer surfaces and a plurality of inlets 21ba arranged in the horizontal direction in which the refrigerant flows.
  • a plurality of flat multi-hole tubes 21b having such a shape are provided, and the plurality are arranged at predetermined intervals in the vertical direction.
  • the flat multi-hole tubes 21b configured to be slightly thicker than the upper and lower widths of the cutouts 21aa are arranged in a plurality of stages at intervals with the plane portion facing up and down, and are fitted into the cutouts 21aa. Temporarily fixed.
  • the heat transfer fin 21a and the flat multi-hole tube 21b are brazed in a temporarily fixed state in which the flat multi-hole tube 21b is fitted in the notch 21aa of the heat transfer fin 21a. Further, both ends of each flat multi-hole tube 21 b are brazed in a state of being fitted into the inlet / outlet header collecting pipe 26, the folded header 24, and the connection header 23.
  • the heat exchanging portion 21 is provided so as to border the windward side in the direction of air flow generated by the outdoor fan 95 (flow from the rear and left side of the casing toward the fan grill 15a on the front of the casing).
  • the leeward side heat exchanging portion 211 and the leeward side heat exchanging portion 212 provided so as to border the leeward side.
  • the windward side heat exchanging part 211 has a plurality of flat multi-hole tubes 21b that extend so as to border the wind side and are arranged in the vertical direction, and heat transfer fins 21a fixed to the flat multi-hole tubes 21b. ing.
  • the leeward side heat exchanging section 212 extends so as to border the leeward side, and is arranged in a plurality of flat multi-hole tubes 21b arranged in the vertical direction, and heat transfer fins fixed to the flat multi-hole tubes 21b. 21a.
  • the flow divider 22 is connected to connect the liquid refrigerant pipe 32 and the lower part of the inlet / outlet header collecting pipe 26, and flows from the liquid refrigerant pipe 32 when the outdoor heat exchanger 20 functions as a refrigerant evaporator.
  • the incoming refrigerant is diverted in the height direction and guided to the lower part of the inlet / outlet header collecting pipe 26.
  • the inlet / outlet header collecting pipe 26 is a cylindrical member made of aluminum or aluminum alloy extending in the vertical direction, and has an inlet side portion and an outlet side portion of the refrigerant to the outdoor heat exchanger 20 which are divided into upper and lower portions.
  • the lower part of the inlet / outlet header collecting pipe 26 is connected to the liquid refrigerant pipe 32 via the flow divider 22 as described above.
  • the upper part of the inlet / outlet header collecting pipe 26 is connected to the gas refrigerant pipe 31.
  • the entrance / exit header collecting pipe 26 is formed in a substantially cylindrical shape, and an internal space in an upper part and an internal space in a lower part are partitioned vertically by a baffle provided inside.
  • each refrigerant flow divided up and down by the flow divider 22 is configured to be allowed to flow to the heat exchange unit 21 while being divided.
  • the outdoor heat exchanger 20 when the outdoor heat exchanger 20 functions as a refrigerant evaporator, the outdoor heat exchanger 20 flows into the heat exchange section 21 via the liquid refrigerant pipe 32, the flow divider 22, and the lower part of the inlet / outlet header collecting pipe 26.
  • the evaporated refrigerant flows out through the upper portion of the inlet / outlet header collecting pipe 26 and the gas refrigerant pipe 31.
  • the outdoor heat exchanger 20 functions as a refrigerant radiator, the flow is the reverse of the above.
  • connection header 23 is provided on the side opposite to the end of the heat exchange section 21 on the side where the inlet / outlet header collecting pipe 26 and the folded header 24 are provided, and the flat multi-hole pipe 21b of the windward heat exchange section 211 is provided.
  • the heat exchanger 211 is configured to be led to the flat multi-hole tube 21b.
  • the vertical movement of the refrigerant does not occur, and the refrigerant flow path in the outdoor heat exchanger 20 is simply connected at the same height position.
  • the folded header 24 is an end opposite to the end of the heat exchanging portion 21 on the side where the connection header 23 is provided, and is provided so as to extend in the vertical direction on the leeward side of the inlet / outlet header collecting pipe 26. It has been.
  • the folded header 24 is connected to the end of the heat exchange unit 21 opposite to the connection header 23 side of the leeward heat exchange unit 212.
  • the folded header 24 is also a member made of aluminum or aluminum alloy.
  • the folded header 24 includes a plurality of flat multi-hole tubes 21b as shown in an exploded schematic perspective view of the folded header 24 and the connecting portion 25 in FIG. 6 and an enlarged exploded schematic perspective view of the folded header 24 and the connecting portion 25 in FIG.
  • a plurality of baffles 80 partitioning the space inside the folded header 24 up and down.
  • the multi-hole side member 61 constitutes a wall surface of the folded header 24 on the heat exchange part 21 side, and is formed in a substantially semicircular arc shape when viewed from above.
  • the multi-hole side member 61 has a shape in which the semicircular arc shape extends in the vertical direction, and an opening penetrating in the plate thickness direction for inserting the flat multi-hole tube 21b is provided for each height position. ing.
  • the pipe-side member 62 constitutes a wall surface on the opposite side of the folded header 24 from the heat exchanging portion 21 side, and is formed in a substantially semicircular arc shape when viewed from above.
  • the pipe-side member 62 has a shape in which the semicircular arc shape extends in the vertical direction, and an opening penetrating in the plate thickness direction for inserting a connecting pipe of the connecting portion 25 described later is provided for each height position. Is provided. Further, the pipe side member 62 is provided with an opening for fixing one end side of the baffle 80 for each height position.
  • the partition member 70 extends vertically so as to partition the space inside the folded header 24 horizontally into a space on the multi-hole side member 61 side and a space on the piping side member 62 side.
  • the partition member 70 is provided with an opening for inserting and fixing the baffle 80 for each height position.
  • FIG. 8 the schematic perspective view of the state in which the partition member 70 and the baffle 80 cut in the horizontal direction in the vicinity of the lower communication port 72 are combined is shown.
  • FIG. 9 the top view of the state which the baffle 80 of the baffle 80, the multi-hole side member 61, the piping side member 62, and the partition member 70 was combined is shown. As shown in FIGS.
  • the partition member 70 has a multi-hole side surface 70 a that is a surface on the multi-hole side member 61 side and a pipe side surface 70 b that is a surface on the pipe side member 62 side. .
  • a multi-hole-side convex portion 70x bulging toward the multi-hole side member 61 is formed. Is growing.
  • a pipe-side convex portion 70y that bulges toward the pipe-side member 62 side is formed in the vicinity of the center of the pipe side surface 70b, and the pipe-side convex portion 70y extends in the vertical direction except for the opening portion. Yes.
  • the partition member 70 does not mistake the arrangement direction of the members during manufacturing.
  • the folded header 24 has a lower folded portion 24a and an upper folded portion 24b, and the internal space is divided in the vertical direction.
  • the internal space of the lower folded portion 24a is further divided in the vertical direction into a lower first lower folded portion 24aa and an upper second lower folded portion 24ab.
  • the internal space of the upper folded portion 24b is also further divided in the vertical direction into a lower first upper folded portion 24ba and an upper second upper folded portion 24bb.
  • the refrigerant sent to the portion 24bb and flowing into the second lower folded portion 24ab from the heat exchanging portion 21 is sent to the first upper folded portion 24ba via the space in the folded header 24 without passing through the connecting portion 25, and the second The refrigerant sent to the upper folded portion 24bb and the first upper folded portion 24ba is sent to the heat exchange unit 21 again.
  • the number of flat multi-hole tubes 21b connected to the second upper folded portion 24bb of the upper folded portion 24b is larger than the number of flat multi-hole tubes 21b connected to the first lower folded portion 24aa of the lower folded portion 24a. It is comprised so that there may be more. Further, the number of flat multi-hole tubes 21b connected to the first upper folded portion 24ba of the upper folded portion 24b is larger than the number of flat multi-hole tubes 21b connected to the second lower folded portion 24ab of the lower folded portion 24a. It is configured so that there are more. Thereby, it respond
  • a plurality of flow paths are arranged in the upper and lower parts inside the first lower folded portion 24aa of the lower folded portion 24a. Inside the first lower folded portion 24aa, in order to maintain the vertical refrigerant distribution flowing through the heat exchanging portion 21, each of the plurality of flow paths is vertically moved by the plurality of baffles 80 in which openings are not formed. They are lined up and down while being partitioned.
  • the first lower folded portion 24aa and the second lower folded portion 24ab of the lower folded portion 24a are vertically partitioned by a baffle 80 in which no opening is formed.
  • the lower folded portion 24a and the upper folded portion 24b are ascending openings 82a penetrating in the plate thickness direction, It is partitioned vertically by a baffle 80 (rectifying plate 82) in which 82b is formed.
  • the internal space of the second lower folded portion 24ab of the lower folded portion 24a is opposite to the first introduction space 61a on the flat multi-hole tube 21b side and the flat multi-hole tube 21b side partitioned by the partition member 70.
  • Side second introduction space 62a is opposite to the first introduction space 61a on the flat multi-hole tube 21b side and the flat multi-hole tube 21b side partitioned by the partition member 70.
  • the first upper folded portion 24ba and the second upper folded portion 24bb are vertically partitioned by a baffle 80 in which no opening is formed.
  • the internal space of the first upper folded portion 24ba of the upper folded portion 24b is divided into the space 61b for raising on the flat multi-hole tube 21b side and the side opposite to the flat multi-hole tube 21b side.
  • each of the flow paths has a plurality of baffles 80 in which openings are not formed. While being partitioned in the vertical direction by the lower partition plate 81 and the upper partition plate 83 in FIG.
  • one of the plurality of channels provided in the second upper folded portion 24bb includes a first introduction space 61a and a second introduction space 62a described later.
  • the rectifying plate 82 includes a plurality of lifting openings 82a and 82b. (First lifting opening 82a and second lifting opening 82b) are provided, and the centers of these openings are arranged in a direction perpendicular to the longitudinal direction of the flat multi-hole tube 21b in a top view.
  • the first ascending opening 82a and the second ascending opening 82b are flat multi-hole pipes, with the central portion of the width of the flat multi-hole pipe 21b in a direction perpendicular to the longitudinal direction of the flat multi-hole pipe 21b as viewed from above. It arrange
  • the distance between the centers of the plurality of rising openings 82a and 82b is longer than the opening of the lower communication port 72 formed in the partition member 70 (width in the direction perpendicular to the longitudinal direction of the flat multi-hole tube 21b in the top view), It arrange
  • the horizontal opening width of the lower communication port 72 is 30% or more of the horizontal width of the flat multi-hole tube 21b.
  • the rising openings 82a and 82b of the rectifying plate 82 are both positioned so as to overlap with the flat multi-hole tube 21b in a top view.
  • the rising openings 82a and 82b when viewed from the top, have portions of 70% or more and 90% or less overlapping with the flat multi-hole tube 21b.
  • region obtained by extending the inner edge of the lower communicating port 72 formed in the partition member 70 so that it may follow the longitudinal direction of the flat multi-hole pipe 21b is either of the opening 82a, 82b for raising of the baffle plate 82 in top view.
  • the upward openings 82 a and 82 b provided in the rectifying plate 82 are provided apart from the joint portion between the partition member 70 and the rectifying plate 82.
  • the ascending space 61b is covered with the flat multi-hole tube 21b at least half of the area in a top view.
  • FIG. 10 is a front view when the second upper folded portion 24bb of the upper folded portion 24b of the folded header 24 is cut along the XX section shown in FIG. 9, the position and size of the lower communication port 72 are determined.
  • the arrangement relationship between the lower communication port 72 and the nearest flat multi-hole tube 21b will be described.
  • the lower communication port 72 is disposed away from the upper surface of the current plate 82 by a predetermined distance.
  • the inflow port 21ba of the nearest flat multi-hole tube 21b (lowermost flat tube) disposed above the rectifying plate 82 is disposed further above the upper end of the lower communication port 72.
  • the lower communication port 72 and the inlet 21ba of the flat multi-hole tube 21b (lowermost flat tube) closest to the rectifying plate 82 do not exist at the same height.
  • both the lower partition plate 81 and the upper partition plate 83 are one of the baffles 80, and both are baffles 80 having the same shape and dimensions in which no opening is formed.
  • the baffle 80 that constitutes the lower end of the set of spaces is referred to as the lower partition plate 81
  • the baffle 80 that constitutes the upper end is referred to as the upper partition plate 83.
  • the upper partition plate 83 of a set of spaces also functions as the lower partition plate 81 of a set of spaces above it.
  • the second upper folded portion 24bb of the upper folded portion 24b of the folded header 24 is a space that is vertically surrounded by the rectifying plate 82 and the lower partition plate 81 in which the openings 82a and 82b are formed.
  • a first introduction space 61a and a second introduction space 62a are provided as the (introducing portion 60a).
  • the first introduction space 61a and the second introduction space 62a are partitioned by a partition member 70.
  • the first introduction space 61a is located on the flat multi-hole tube 21b side with respect to the partition member 70, and the second introduction space 62a. Is located on the flat multi-hole tube 21b side with respect to the partition member 70.
  • a portion of the partition member 70 located between the first introduction space 61a and the second introduction space 62a has a refrigerant between the first introduction space 61a and the second introduction space 62a.
  • An introductory communication port 71 is formed for enabling the traffic.
  • the second upper folded portion 24bb of the upper folded portion 24b is connected to the first lower folded portion 24aa of the lower folded portion 24a, and a plurality of flow paths one-to-one via the connecting pipe of the connecting portion 25 and the like.
  • the connecting pipe of the connecting portion 25 is connected to the second introduction space 62a.
  • the second upper folded portion 24bb of the folded header 24 has a rising space as a space (header portion 60b) surrounded by the rectifying plate 82 and the upper partition plate 83 in which the rising openings 82a and 82b are formed.
  • a space 61b and a descending space 62b are provided.
  • the ascending space 61b and the descending space 62b are partitioned by a partition member 70 in which an upper communication port 73 and a lower communication port 72 are formed.
  • the upper communication port 73 connects the ascending space 61b and the descending space 62b upward.
  • the lower communication port 72 communicates the ascending space 61b and the descending space 62b downward.
  • the second lower folded portion 24ab of the lower folded portion 24a of the folded header 24 and the first upper folded portion 24ba of the upper folded portion 24b communicate with each other inside the folded header 24 without passing through the connecting pipe of the connecting portion 25 or the like. Therefore, the connecting pipe of the connecting portion 25 is not connected to the second introduction space 62a.
  • the structures of the first introduction space 61a, the second introduction space 62a, the ascending space 61b, the descending space 62b, and the like are the same as those of the second upper folded portion 24bb of the upper folded portion 24b, and thus the description thereof is omitted.
  • the communication unit 25 has a plurality of communication pipes. Each connecting pipe is divided into a plurality of spaces divided in the vertical direction at the first lower folded portion 24aa of the lower folded portion 24a of the folded header 24 and the second upper folded portion 24bb of the upper folded portion 24b of the folded header 24. Each of the first introduction space 61a, the second introduction space 62a, the ascending space 61b, and the descending space 62b (a set of spaces) arranged in a plurality in the direction is set to be one-to-one. Connected.
  • connection pipe is connected to a set of spaces located above the second upper turn-back portion 24bb of the upper turn-up portion 24b as the space located lower in the first lower turn-up portion 24aa of the lower turn-up portion 24a. Is provided.
  • Each refrigerant flowing into each space of the first lower folded portion 24aa of the lower folded portion 24a passes through the connecting pipe of the connecting portion 25 provided one-on-one, and the second upper portion of the corresponding upper folded portion 24b. It is sent to a set of spaces in the folded portion 24bb.
  • the outdoor heat exchanger 20 functions as a refrigerant radiator, the refrigerant flow is opposite to that described above except for the ascending space 61b and the descending space 62b.
  • the second lower folded portion 24ab which is the uppermost space among the plurality of spaces in the lower folded portion 24a, and the lowermost space among the plurality of spaces in the upper folded portion 24b. 1
  • the upper folded portion 24ba is not connected by the connecting pipe of the connecting portion 25.
  • these spaces are partitioned by a rectifying plate 82 as a baffle 80 provided with a rising opening penetrating in the vertical direction.
  • the rectifying plate 82 is formed with rising openings 82a and 82b penetrating in the thickness direction.
  • the refrigerant in the second lower folded portion 24ab does not go out of the folded header 24, and the first upper folded portion 24ba passes from the second lower folded portion 24ab through the upward openings 82a and 82b of the rectifying plate 82. (The reverse flow is the same).
  • the turn-up header 24 constitutes a turn-up portion in the refrigerant flow path in the outdoor heat exchanger 20.
  • the refrigerant that has flowed out of the folded header 24 to the upper part of the leeward heat exchanging section 212 is shown in FIG.
  • the upper part of the exchange unit 212 flows while maintaining a diverted state to the connection header 23 at the other end, moves to the windward heat exchange unit 211 side in the connection header 23, and moves the upper part of the windward heat exchange unit 211 to the entrance / exit header. It flows while maintaining a diversion state toward the upper part of the collecting pipe 26. Then, the respective refrigerants flowing into the upper part of the inlet / outlet header collecting pipe 26 merge and then flow toward the suction side of the compressor 91 via the gas refrigerant pipe 31.
  • the first introduction space 61a, the second introduction space 62a, the rising space 61b, and the descending space 62b in the second upper folded portion 24bb of the folded header 24 are set as one set.
  • the loop structure will be described with reference to FIG. 10, focusing on the space (a set of spaces).
  • the said one set of space is arranged in multiple numbers in the up-down direction in 2nd upper folding
  • the rectifying plate 82 divides the above-described pair of spaces inside the folded header 24 into a lower first introduction space 61a and a second introduction space 62a, and an upper ascending space 61b and a descending space 62b. It is the plate-shaped member which has partitioned off.
  • the partition member 70 divides the first introduction space 61a and the second introduction space 62a into a first introduction space 61a on the multi-hole side member 61 side and a second introduction space 62a on the pipe side member 62 side.
  • the partition member 70 partitions the ascending space 61b and the descending space 62b into an ascending space 61b on the multi-hole side member 61 side and a descending space 62b on the piping side member 62 side.
  • introduction communication port 71, the upper communication port 73, and the lower communication port 72 provided in the partition member 70 all extend in the horizontal direction.
  • the communication pipe of the communication unit 25 is connected to the second introduction space 62a.
  • the rectifying plate 82 is arranged such that a plurality of vertical distances between the flat multi-hole tube 21b (lowermost flat tube) located closest to the upper side of the rectifying plate 82 and the rectifying plate 82 are arranged in the vertical direction.
  • the flat multi-hole tube 21b is arranged so as to be shorter than a predetermined interval.
  • the outlet of the lower communication port 72 on the ascending space 61b side is further below the lowermost flat multi-hole tube 21b connected to the ascending space 61b (lowermost flat tube). positioned.
  • the rectifying plate 82 is provided with ascending openings 82a and 82b that are openings extending in the vertical direction so as to allow the first introduction space 61a and the ascending space 61b to communicate with each other. Since the refrigerant heading from the first introduction space 61a toward the upper rising space 61b passes through the rising openings 82a and 82b provided like nozzles for narrowing the flow path in the rectifying plate 82, the refrigerant flow is reduced. The refrigerant is sufficiently narrowed down and the refrigerant flow rate directed vertically upward can be increased.
  • the ascending space 61b is partitioned from the descending space 62b by the partition member 70, so that the passage area when the refrigerant rises on the ascending space 61b side is the total horizontal area of the ascending space 61b and the descending space 62b. Can be made narrower. For this reason, it is easy to maintain the rising speed of the refrigerant flowing into the rising space 61b via the rising openings 82a and 82b, and it is easy to make the refrigerant reach the upper portion of the rising space 61b even under a low circulation amount.
  • the horizontal area of the portion of the flat multi-hole tube 21b extending into the ascending space 61b from “the horizontal area at the height where the flat multi-hole tube 21b does not exist” of the ascending space 61b
  • the remaining area after subtraction is arranged to be larger than the refrigerant passage area of the lower communication port 72.
  • the ascending openings 82a and 82b of the rectifying plate 82 do not overlap with the lower communication port 72 (the lower communication port 72 does not overlap with the region obtained by extending in the longitudinal direction of the flat multi-hole tube 21b. ), The backflow toward the descending space 62b via the lower communication port 72 can be effectively suppressed.
  • ascending openings 82a and 82b provided in the rectifying plate 82, and the flat multi-hole tube 21b (lowermost level) located immediately above the ascending openings 82a and 82b and located immediately above the ascending openings 82a and 82b.
  • the flat tube is disposed so as to have an overlapping portion in a top view.
  • the area of the overlapping portion in the top view is arranged to be larger than the area of the non-overlapping portion in the top view of the ascending openings 82a and 82b and the flat multi-hole tube 21b immediately above.
  • 70% or more of the ascending openings 82a and 82b are provided so as to overlap with the flat multi-hole tube 21b (lowermost flat tube) when viewed from above. Yes.
  • the partition member 70 has a loop structure by forming an upper communication port 73 and a lower communication port 72. Therefore, the refrigerant that has reached the upper side without flowing into the flat multi-hole tube 21b in the ascending space 61b is guided to the descending space 62b via the upper communication port 73 as shown by the arrow in FIG. It descends according to gravity in the work space 62b, and returns to the lower part of the ascending space 61b via the lower communication port 72. In this way, the refrigerant that has reached the upper side of the ascending space 61b can be returned to the lower side of the ascending space 61b and looped.
  • the refrigerant flowing into the ascending space 61b from the first introduction space 61a through the communication portion 25, the second introduction space 62a, and the introduction communication port 71 is in a state where gas phase components and liquid phase components having different specific gravity are mixed. Yes.
  • the refrigerant amount per unit time flowing into the ascending space 61b is small, and the refrigerant flow rate is relatively slow. For this reason, if it remains at this flow rate, it is difficult to raise the liquid phase component having a large specific gravity among the refrigerants, so that among the plurality of flat multi-hole tubes 21b in the ascending space 61b, In the plurality of flat multi-hole pipes 21b in the ascending space 61b, the amount of passage becomes non-uniform depending on the height position, and there is a possibility that drift occurs.
  • the outdoor heat exchanger 20 of the present embodiment when used in a state of low circulation, the refrigerant flow is narrowed in the ascending openings 82a and 82b of the rectifying plate 82, and the partition member 70 Since the passage area of the ascending space 61b is kept small by being partitioned by the liquid, the liquid phase component having a larger specific gravity among the refrigerant supplied to the ascending space 61b is guided upward than the conventional one, and the low circulation Even when the amount is large, the drift can be improved.
  • the refrigerant flowing into the ascending space 61b from the first introduction space 61a through the communication portion 25, the second introduction space 62a, and the introduction communication port 71 is a state in which gas phase components and liquid phase components having different specific gravity are mixed. This is the same as in the case of the low circulation rate.
  • the amount of refrigerant per unit time flowing into the ascending space 61b is large, and the flow rate of the refrigerant is relatively fast.
  • the flow rate can be further increased by adopting the restricting function of the rising openings 82a and 82b as a countermeasure against the low circulation amount described above.
  • the refrigerant passage cross-sectional area of the ascending space 61b is narrowed by the partition member 70 as a countermeasure against the low circulation amount described above, the rising speed of the refrigerant is less likely to decline.
  • the liquid phase component having a large specific gravity among the refrigerant that has passed through the ascending openings 82a and 82b passes through the ascending space 61b without flowing into the flat multi-hole tube 21b. Then, it tends to gather up.
  • a liquid phase component having a large specific gravity tends to gather upward
  • a gas phase component having a small specific gravity tends to gather downward, and the distribution is different from that in the case of a low circulation rate, but drift also occurs.
  • the outdoor heat exchanger 20 of this embodiment since the upper communication port 73 is provided above the partition member 70 and the lower communication port 72 is provided below, a loop structure is employed. Even if a large amount of the liquid phase component of the refrigerant reaches the upper end of 61b, the refrigerant is guided to the descending space 62b through the upper communication port 73 and lowered by gravity in the descending space 62b, and then the lower communication port Through 72, it can be returned to the lower part of the ascending space 61b again.
  • the refrigerant returned to the ascending space 61b through the lower communication port 72 rises again in the ascending space 61b so as to be dragged by the ascending flow of the refrigerant that has passed through the ascending openings 82a and 82b. , Can flow into the flat multi-hole tube 21b (the refrigerant may loop multiple times).
  • the outdoor heat exchanger 20 of the present embodiment is configured so that the refrigerant flow rate is increased when passing through the ascending openings 82a and 82b formed in the rectifying plate 82, even when the circulation amount is low. Since the ascending space 61b is narrowed by being partitioned by 70, it is possible to suppress the decay of the ascending speed of the refrigerant and make it easier for the refrigerant to reach above the ascending space 61b.
  • the outdoor heat exchanger 20 of the present embodiment is arranged in a plurality in the vertical direction regardless of whether it is a low circulation amount or a high circulation amount.
  • the drift of the refrigerant with respect to the flat multi-hole tube 21b can be kept small.
  • the lower communication port 72 used when the refrigerant is looped as described above and the rising openings 82a and 82b formed in the rectifying plate 82 are arranged so that the lower communication port 72 is located on the upper surface.
  • the region obtained by extending in the longitudinal direction of the flat multi-hole tube 21b in view and the ascending openings 82a and 82b are arranged so as not to overlap in the top view.
  • the loop is formed via the lower communication port 72. It is possible to suppress the refrigerant that has flowed intensively into the specific flat multi-hole tube 21b.
  • the lower end of the lower communication port 72 is located further below the lower end of the flat multi-hole tube 21b (lowermost flat tube) closest to the rectifying plate 82.
  • the lower surface of the flat multi-hole tube 21 b (lowermost flat tube) closest to the rectifying plate 82 is disposed at a position higher than the upper end of the lower communication port 72.
  • the plurality of ascending openings 82a and 82b of the rectifying plate 82 are arranged so as to be aligned in the width direction with respect to the flat multi-hole tube 21b.
  • the refrigerant from the rising openings 82a and 82b toward the flat multi-hole tube 21b can be equalized in the width direction of the flat multi-hole tube 21b without being concentrated in the central portion.
  • the plurality of ascending openings 82a and 82b of the rectifying plate 82 and the lower communication port 72 of the partition member 70 are arranged so as to be aligned in the width direction of the flat multi-hole tube 21b. . For this reason, the drift in the width direction of the flat multi-hole tube 21b can be suppressed.
  • the partition member 70 has an opening corresponding to the lower communication port 72 of the first embodiment as a first lower communication port 72 a, A plurality of lower communication ports may be provided such as the second lower communication port 72b and the third lower communication port 72c. Also in this case, a region obtained by extending the lower communication ports of the first lower communication port 72a, the second lower communication port 72b, and the third lower communication port 72c in the longitudinal direction of the flat multi-hole tube 21b in a top view. And the opening 82a, 82b for raising provided in the baffle plate 82 does not overlap in top view. Even in this case, the same effects as in the above embodiment can be obtained.
  • the present invention is not limited to this.
  • the upward openings 82a and 82b provided in the rectifying plate 82, the lower communication opening 72, and the like are arranged in the longitudinal direction of the flat multi-hole tube 21b.
  • the area of the overlapping portion with the region obtained by extending may be 50% or less of the area in the top view of the ascending openings 82a and 82b. Even in this case, although the effect is inferior compared with the case where there is no overlap at all, the effect can be sufficiently obtained as compared with the case where there is complete overlap.
  • Air conditioning apparatus Air-conditioning outdoor unit 3 Air-conditioning indoor unit 10 Unit casing 20 Outdoor heat exchanger (heat exchanger) 21 heat exchange part 21a heat transfer fin 21b flat multi-hole tube (flat tube) 21ba Multiple inlets 22 Dividers 23 Connection header 24 Folding header 25 Connection part 26 Entrance / exit header collecting pipe 31 Gas refrigerant pipe 32 Liquid refrigerant pipe 33 Expansion valve 60a Introduction part 60b Header part 61 Multi-hole side member 61a First introduction space ( Introduction space) 61b Ascending space (first space) 62 Piping side member 62a Second introduction space 62b Lowering space (second space) 70 partition member (header partition member) 71 Inlet communication port 73 Upper communication port 72 Lower communication port 72a First lower communication port 72b Second lower communication port 72c Third lower communication port 80 Baffle 81 Lower partition plate 82 Rectifier plate (introduction partition member) 82a Lifting opening (first lifting opening) 82b Lifting opening (second lifting).

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Geometry (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

 循環量が変化する条件下で用いられた場合であっても、冷媒の偏流を抑制させることが可能であって、上昇用空間側から下降用空間側に向かう冷媒の逆流を抑制することが可能な熱交換器および空気調和装置を提供する。室外熱交換器20は、下降用空間62bと複数の扁平多穴管21bが接続された上昇用空間61bとが、上連通口73と下連通口72を介して連通しつつ仕切られている折返しヘッダ24を有している。折返しヘッダ24内では、上昇用空間61bと第1導入空間61aとが、上昇用開口82a、82bを介して上下に連通しつつ仕切られている。設置状態の上面視において、複数の扁平多穴管21bと上昇用開口82a、82bとは重複部分を有しているが、下連通口72を扁平多穴管21bが延びている方向に延長させた空間と上昇用開口82a、82bとは実質的に重なっていない。

Description

熱交換器および空気調和装置
 本発明は、熱交換器および空気調和装置に関する。
 従来より、複数の扁平管と、複数の扁平管に接合されたフィンと、複数の扁平管の一端側と他端側にそれぞれ連結されたヘッダ集合管とを備え、扁平管の内部を流れる冷媒を扁平管の外部を通過する空気と熱交換させる熱交換器が知られている。
 例えば、特許文献1(特開平2-219966号公報)に記載の熱交換器では、水平方向に延びた複数の流出管の両端が、それぞれ鉛直方向に延びたヘッダ集合管に接続されて構成されている。
 この特許文献1に記載の熱交換器では、鉛直方向に延びたヘッダ集合管の内部において、比重の大きい液相冷媒が下方に集まり比重の小さな気相冷媒が上方に集まることで偏流が生じることを課題としてとらえ、これを解決するために、ヘッダ集合管の内部において絞りを形成することを提案している。
 このように形成した絞りを通過させることで、気相冷媒と液相冷媒とを混合させやすくしつつ、冷媒の流速を向上させてヘッダ集合管内の上方にまで到達させやすくすることで、冷媒の偏流を抑制させようとしている。
 しかし、上述のような特許文献1に示された熱交換器は、冷媒の循環量が変化するような状況下で用いられた場合における偏流の抑制については全く想定されておらず、低循環量の場合であっても高循環量の場合であってもいずれの場合であっても偏流の抑制効果が得られるような構造については、なんら検討されていない。
 すなわち、低循環量の場合には、絞りを形成したことで流速を上げて、ヘッダ集合管内の上方まで到達させることにより偏流の抑制が可能になるが、高循環量になった場合には、当該絞りによって流速が高まり過ぎてしまうため比重の大きな液相冷媒が上方に集まり過ぎてしまい、かえって偏流が生じてしまうことになる。
 他方、高循環量の場合に流速が高まり過ぎないように絞りの程度を調節することで高循環量の時の偏流を抑制できたとしても、低循環量になった場合には、冷媒を上方に到達させることが困難になり、やはり偏流が生じてしまうことがある。
 これに対して、低循環量の時には冷媒を上方に到達させやすくしつつ、高循環量の時には上方に達した冷媒を当該上昇用の空間から別の空間に移動させて降下させた後に再度上昇させるという、ヘッダにおける冷媒のループ構造を採用することが考えられる。このようなループ構造では、上昇用の空間を上昇した冷媒を下降用の空間に移動させるための上方の連通口と、下降用の空間で降下した冷媒を再度上昇用の空間側に戻すための下方の連通口(戻し穴)を設けることができる。
 ところが、下方の連通口(戻し穴)において、下降用の空間側から上昇用の空間側に向かう順流が生じるのではなく、上昇用の空間側から下降用の空間側に向かう逆流が生じるおそれがあることを発明者等は見出した。
 本発明は上述した点に鑑みてなされたものであり、本発明の課題は、循環量が変化する条件下で用いられた場合であっても、冷媒の偏流を抑制させることが可能であって、上昇用空間側から下降用空間側に向かう冷媒の逆流を抑制することが可能な熱交換器および空気調和装置を提供することにある。
 第1観点に係る熱交換器は、複数の扁平管と、ヘッダ部と、導入部と、を備えている。複数の扁平管は、互いに並んで配置されている。ヘッダ部は、複数の扁平管が並んでいる方向に沿うように上方に向けて延びており、第1空間と第2空間とに内部が仕切られている。第1空間には、複数の扁平管の一端それぞれが接続されている。第2空間には、複数の扁平管が接続されていない。導入部は、第1空間の下方に位置した導入空間を有している。導入空間は、上昇用開口を介して第1空間と連通している。第1空間と第2空間とは、上連通口および下連通口を介して連通している。上連通口は、ヘッダ部内の上方に設けられている。下連通口は、ヘッダ部内の下方に設けられている。設置状態の上面視において、複数の扁平管と上昇用開口とは重複部分を有している。設置状態の上面視において、下連通口を扁平管が延びている方向に延長させた空間と上昇用開口とが重なっていないか、または、下連通口を扁平管が延びている方向に延長させた空間と上昇用開口とが重複部分を有しており当該重複部分が設置状態の上面視において上昇用開口の50%以下である。
 なお、上連通口および/または下連通口は、複数の開口を有して構成されていてもよい。また、扁平管は、導入空間に対して接続されていてもよい。また、導入空間は第1空間の下方だけでなく、第1空間の下方と第2空間の下方とに跨がるように広がって構成されていてもよい。
 また、第1空間に接続されている複数の扁平管は、第1空間内側の端部が鉛直方向に並ぶように端部位置が揃って配置されていてもよいし、端部位置が揃わないように配置されていてもよい。第1空間内側の端部が揃うように配置されている場合には、全ての扁平管と上昇用開口とが設置状態の上面視において少なくとも一部が重複するように配置されていることになる。また、第1空間内側の端部が揃わないように配置されている場合には、複数の扁平管のうちの特定の扁平管と上昇用開口とが設置状態の上面視において少なくとも一部が重複するように配置されていることになる。第1空間内側の端部が揃わないように配置されている場合において、設置状態の上面視において上昇用開口との重複部分を有することとなる扁平管は、第1空間のうち半分よりも下方に位置していることが好ましく、第1空間のうちの1/3よりも下方に位置していることがより好ましい。
 この熱交換器では、ヘッダ部の内部空間が、第1空間と第2空間とに仕切られている。このため、仕切られていない場合と比較して、上昇用開口を通過して上昇しようとする冷媒が通過する面積を、第1空間だけにして狭めることができている。このため、第1空間を上昇する冷媒の流速の低下を抑制させることができる。そして、この熱交換器が冷媒回路を備えた冷凍装置に用いられた場合において、冷媒回路の冷媒循環量が低循環量の場合のように、上昇用開口を通過する冷媒の流速が遅く、上昇用開口を通過した冷媒が扁平管に当たって上昇速度が弱められる場合であっても、冷媒をヘッダ集合管内の上方まで到達させやすくなる。
 また、この熱交換器では、設置状態の上面視において、複数の扁平管と上昇用開口とは重複部分を有している。このため、冷媒回路の冷媒循環量が高循環量である場合のように上昇用開口を通過した冷媒の流速が早い場合には、冷媒を勢いよく扁平管に当てることができ、気相冷媒と液相冷媒とを攪拌させることができる。このため、高循環量時において、第1空間内の上方に位置する扁平管に対しても下方に位置する扁平管に対しても、より均等に冷媒を供給することが可能になる。
 また、冷媒回路の冷媒循環量が低循環量である場合のように上昇用開口を通過した冷媒の流速が遅い場合には、冷媒はより穏やかに扁平管に当てられるため、上昇する勢いを大きく失うこと無く第1空間内の上方にまで冷媒を到達させやすくなる。このため、低循環量時であっても、第1空間内の上方に位置する扁平管に対しても下方に位置する扁平管に対しても、より均等に冷媒を供給することが可能になる。
 この熱交換器では、冷媒の蒸発器として機能する場合において、高循環量である場合のように上昇用開口を通過した冷媒の流速が、冷媒を勢いよく扁平管に当てるだけでは上方に液相冷媒が偏ってしまうほど早い場合においても、上連通口と下連通口をさらに備えていることで、この偏りを低減させることが可能になっている。すなわち、この熱交換器では、冷媒を勢いよく扁平管に当たった後に第1空間の上方に到達した液相冷媒を、上連通口を介して第2空間に導き、第2空間を降下させた後、下連通口を介して第1空間に戻すことが可能になる。したがって、高循環量の場合等のように上昇用開口を通過した冷媒の流速が早く、上昇用開口を通過した冷媒が扁平管に当たってもなお上方に液相冷媒が偏りそうになる場合であっても、複数の扁平管に流れる冷媒の偏流を小さく抑えることが可能になる。
 そして、この熱交換器では、設置状態の上面視において、下連通口を扁平管が延びている方向に延長させた空間と上昇用開口とが重なっていないか、または、下連通口を扁平管が延びている方向に延長させた空間と上昇用開口とが重複部分を有しており当該重複部分が設置状態の上面視において上昇用開口の50%以下である。この配置により、導入空間から上昇用開口を通じて第1空間に向けて上昇してきた冷媒は、下連通口を第1空間側から第2空間側に向けて逆流しにくい。
 これにより、循環量が変化する条件下で用いられた場合であっても冷媒の偏流を抑制させることが可能であり、かつ、下連通口を介して第1空間側から第2空間側に向かう冷媒の逆流を抑制することが可能になる。
 第2観点に係る熱交換器は、第1観点に係る熱交換器であって、上昇用開口と下連通口の少なくともいずれか一方は、互いに離れて位置する複数の口を有して構成されている。ここで、複数の口を有して構成されているのが上昇用開口だけであってもよいし、下連通口だけであってもよい。また、上昇用開口も下連通口もいずれも複数の口を有して構成されていてもよい。
 この熱交換器では、上昇用開口または下連通口の少なくともいずれかが複数の口で構成されている。このため、口が1つである場合と比較して、冷媒の分布の偏りを小さく抑えることが可能になる。
 第3観点に係る熱交換器は、第2観点に係る熱交換器であって、複数の扁平管は、それぞれ、第1空間内の端部において水平方向に並んだ複数の流入口を有している。上昇用開口は、下連通口を扁平管が延びている方向に延長させた空間に対して、設置状態の上面視において一方側に設けられた第1上昇用開口と他方側に設けられた第2上昇用開口を有している。
 この熱交換器では、導入空間から第1空間に流入する冷媒は、一部が第1上昇用開口を通過し、他の一部が第2上昇用開口を通過している。このため、下連通口を扁平管が延びている方向に延長させた空間に対する一方側と他方側の両方に冷媒を送ることが可能になっている。したがって、扁平管の端部に並んだ複数の流入口に対して送られる冷媒量の隔たりを抑制させることが可能になる。
 第4観点に係る熱交換器は、第1観点から第3観点のいずれかに係る熱交換器であって、下連通口の下端は、最下段扁平管の下端よりもさらに下方に位置している。最下段扁平管は、第1空間に接続された複数の扁平管のうち上昇用開口よりも上方において最も下方に配置されている扁平管である。
 ここで、下連通口の上端が最下段扁平管の下端よりもさらに下方に位置していることがより好ましい。
 この熱交換器では、上昇用開口を通過して上方に向けて流れた冷媒は、最下段扁平管に衝突する程度まで上昇した状態では、既に下連通口の下端を超えてより上方に位置していることになる。このため、上昇用開口を通過した冷媒が最下段扁平管に衝突したとしても、下連通口に向かう冷媒流れが生じにくく、下連通口を介した冷媒の逆流をより効果的に抑制できる。
 なお、下連通口の上端が最下段扁平管の下端よりもさらに下方に位置している構成では、下連通口を介した冷媒の逆流をさらに効果的に抑制できる。
 第5観点に係る熱交換器は、第1観点から第4観点のいずれかに係る熱交換器であって、導入仕切部材をさらに備えている。ヘッダ部は、第1空間と第2空間とを仕切るヘッダ仕切部材を有している。導入仕切部材は、ヘッダ部の第1空間と導入空間とを仕切っている。導入仕切部材の上面は、ヘッダ仕切部材と当接した部分を有している。上昇用開口は、導入仕切部材とヘッダ仕切部材との当接位置から離れた位置で導入仕切部材を板厚方向に貫通するように設けられている。
 この熱交換器では、上昇用開口が、導入仕切部材とヘッダ仕切部材との当接位置から離れた位置に設けられているため、ロウ付けによって熱交換器が製造される場合であっても、ロウ材が上昇用開口の位置にまで到達しにくく、上昇用開口の閉塞を抑制することが可能になる。
 第6観点に係る空気調和装置は、冷媒回路を備えている。冷媒回路は、第1観点から第5観点のいずれかに係る熱交換器と、容量可変の圧縮機と、が接続されて構成されている。
 この空気調和装置では、容量可変の圧縮機が駆動することで、冷媒回路を流れる冷媒の循環量が変動し、熱交換器を通過する冷媒の量が変動する。ここで、熱交換器が蒸発器として機能する場合に、通過する冷媒の量が増大して液相冷媒の混合比率が増大したり、流速が高まることがあっても、熱交換器内における冷媒の偏流を小さく抑えることが可能になる。
 第1観点に係る熱交換器では、循環量が変化する条件下で用いられた場合であっても冷媒の偏流を抑制させることが可能であり、かつ、下連通口を介して第1空間側から第2空間側に向かう冷媒の逆流を抑制することが可能になる。
 第2観点に係る熱交換器では、口が1つである場合と比較して、冷媒の分布の偏りを小さく抑えることが可能になる。
 第3観点に係る熱交換器では、扁平管の端部に並んだ複数の流入口に対して送られる冷媒量の隔たりを抑制させることが可能になる。
 第4観点に係る熱交換器では、下連通口を介した冷媒の逆流をより効果的に抑制させることが可能になる。
 第5観点に係る熱交換器では、上昇用開口の閉塞を抑制することが可能になる。
 第6観点に係る空気調和装置では、熱交換器が蒸発器として機能する場合に、通過する冷媒の量が増大して液相冷媒の混合比率が増大したり、流速が高まることがあっても、熱交換器内における冷媒の偏流を小さく抑えることが可能になる。
一実施形態に係る空気調和装置の構成の概要を説明するための回路図。 空調室外機の外観を示す斜視図。 空調室外機の各機器の配置を説明する概略上面断面図。 室外熱交換器の示す概略外観斜視図。 室外熱交換器における伝熱フィンの扁平多穴管に対する取付状態を示す概略斜視図。 折返しヘッダおよび連絡部の分解概略斜視図。 折返しヘッダおよび連絡部の拡大分解概略斜視図。 仕切部材を下連通口で切断した状態の仕切部材とバッフルの組合せ概略斜視図。 整流板と多穴側部材と配管側部材と仕切部材を組合せた上面図。 折返しヘッダにおけるループ構造および整流構造を示す概略断面図。 他の実施形態Aに係る整流板と多穴側部材と配管側部材と仕切部材を組合せた上面図。
 (1)空気調和装置1の全体構成
 図1は、本発明の一実施形態に係る空気調和装置1の構成の概要を示す回路図である。
 空気調和装置1は、蒸気圧縮式の冷凍サイクル運転を行うことによって空調室内機3が設置されている建物内の冷暖房に使用される装置であり、熱源側ユニットとしての空調室外機2と、利用側ユニットとしての空調室内機3とが冷媒連絡配管6,7で接続されて構成されている。
 空調室外機2と空調室内機3と冷媒連絡配管6,7とが接続されて構成される冷媒回路は、圧縮機91、四路切換弁92、室外熱交換器20、膨張弁33、室内熱交換器4およびアキュムレータ93などが冷媒配管で接続されることで構成されている。この冷媒回路内には冷媒が封入されており、冷媒が圧縮され、冷却され、減圧され、加熱・蒸発された後に、再び圧縮されるという冷凍サイクル運転が行われるようになっている。冷媒としては、例えば、R410A、R32、R407C、R22、R134a、二酸化炭素、などから選択されたものが用いられる。
 (2)空気調和装置1の詳細構成
 (2-1)空調室内機3
 空調室内機3は、室内の壁面に壁掛け等により、又は、ビル等の室内の天井に埋め込みや吊り下げ等により設置される。空調室内機3は、室内熱交換器4と、室内ファン5とを有している。室内熱交換器4は、例えば伝熱管と多数のフィンとにより構成されたクロスフィン式のフィン・アンド・チューブ型熱交換器であり、冷房運転時には冷媒の蒸発器として機能して室内空気を冷却し、暖房運転時には冷媒の凝縮器として機能して室内空気を加熱する熱交換器である。
 (2-2)空調室外機2
 空調室外機2は、ビル等の室外に設置されており、冷媒連絡配管6,7を介して空調室内機3に接続される。空調室外機2は、図2および図3に示されているように、略直方体状のユニットケーシング10を有している。
 図3に示されているように、空調室外機2は、ユニットケーシング10の内部空間を鉛直方向に延びる仕切板18で二つに分割することによって送風機室S1と機械室S2とを形成した構造(いわゆる、トランク型構造)を有するものである。空調室外機2は、ユニットケーシング10の送風機室S1内に配置された室外熱交換器20および室外ファン95を有しており、ユニットケーシング10の機械室S2内に配置された圧縮機91、四路切換弁92、アキュムレータ93、膨張弁33、ガス冷媒配管31、および、液冷媒配管32を有している。
 ユニットケーシング10は、底板12と、天板11と、送風機室側の側板13と、機械室側の側板14と、送風機室側前板15と、機械室側前板16とを備えて、筐体を構成している。
 空調室外機2は、ユニットケーシング10の背面および側面の一部からユニットケーシング10内の送風機室S1に室外空気を吸い込んで、吸い込んだ室外空気をユニットケーシング10の前面から吹き出すように構成されている。具体的には、ユニットケーシング10内の送風機室S1に対する吸入口10aおよび吸込口10bが、送風機室側の側板13の背面側の端部と機械室側の側板14の送風機室S1側の端部とにわたって形成されている。また、吹出口10cは、送風機室側前板15に設けられており、その前側がファングリル15aによって覆われている。
 圧縮機91は、例えば圧縮機用モータによって駆動される密閉式圧縮機であり、インバータ制御によって運転容量を変化させることができるよう構成されている。
 四路切換弁92は、冷媒の流れの方向を切り換えるための機構である。冷房運転時には、四路切換弁92は、圧縮機91の吐出側の冷媒配管と室外熱交換器20の一端(ガス側端部)から延びるガス冷媒配管31とを接続するとともに、アキュムレータ93を介してガス冷媒の冷媒連絡配管7と圧縮機91の吸入側の冷媒配管とを接続する(図1の四路切換弁92の実線を参照)。また、暖房運転時には、四路切換弁92は、圧縮機91の吐出側の冷媒配管とガス冷媒の冷媒連絡配管7とを接続するとともに、アキュムレータ93を介して圧縮機91の吸入側と室外熱交換器20の一端(ガス側端部)から延びるガス冷媒配管31とを接続する(図1の四路切換弁92の破線を参照)。
 室外熱交換器20は、送風機室S1に上下方向(鉛直方向)に立てて配置され、吸入口10a,10bに対向している。室外熱交換器20は、アルミニウム製の熱交換器であり、本実施形態では設計圧力が3MPa~4MPa程度のものを用いている。室外熱交換器20は、一端(ガス側端部)から、四路切換弁92と接続されるように、ガス冷媒配管31が延びている。また、室外熱交換器20の他端(液側端部)から、膨張弁33に接続されるように、液冷媒配管32が延びている。
 アキュムレータ93は、四路切換弁92と圧縮機91との間に接続されている。アキュムレータ93は、冷媒を気相と液相とに分ける気液分離機能を具備している。アキュムレータ93に流入する冷媒は、液相と気相とに分かれ、上部空間に集まる気相の冷媒が圧縮機91へと供給される。
 室外ファン95は、室外熱交換器20を流れる冷媒との間で熱交換をさせるための室外空気を、室外熱交換器20に対して供給する。
 膨張弁33は、冷媒回路において冷媒を減圧するための機構であり、開度調整が可能な電動弁である。膨張弁33は、冷媒圧力や冷媒流量の調節を行うために、室外熱交換器20と液冷媒の冷媒連絡配管6の間に設けられ、冷房運転時および暖房運転時のいずれにおいても、冷媒を膨張させる機能を有している。
 室外ファン95は、送風機室S1に室外熱交換器20に対向して配置されている。室外ファン95は、ユニット内に室外空気を吸入して、室外熱交換器20において冷媒と室外空気との間で熱交換を行わせた後に、熱交換後の空気を室外に排出する。この室外ファン95は、室外熱交換器20に供給する空気の風量を可変することが可能なファンであり、例えば、DCファンモータ等からなるモータによって駆動されるプロペラファン等である。
 (3)空気調和装置1の動作
 (3-1)冷房運転
 冷房運転時は、四路切換弁92が図1の実線で示される状態、すなわち、圧縮機91の吐出側がガス冷媒配管31を介して室外熱交換器20のガス側に接続され、かつ、圧縮機91の吸入側がアキュムレータ93、冷媒連絡配管7を介して室内熱交換器4のガス側に対して接続された状態となっている。膨張弁33は、室内熱交換器4の出口(すなわち、室内熱交換器4のガス側)における冷媒の過熱度が一定になるように開度調節されるようになっている(過熱度制御)。この冷媒回路の状態で、圧縮機91、室外ファン95および室内ファン5を運転すると、低圧のガス冷媒は、圧縮機91で圧縮されることで高圧のガス冷媒となる。この高圧のガス冷媒は、四路切換弁92を経由して室外熱交換器20に送られる。その後、高圧のガス冷媒は、室外熱交換器20において、室外ファン95によって供給される室外空気と熱交換を行って凝縮して高圧の液冷媒となる。そして、過冷却状態になった高圧の液冷媒は、室外熱交換器20から膨張弁33に送られる。膨張弁33によって圧縮機91の吸入圧力近くまで減圧されて低圧の気液二相状態となった冷媒は、室内熱交換器4に送られ、室内熱交換器4において室内空気と熱交換を行って蒸発して低圧のガス冷媒となる。
 この低圧のガス冷媒は、冷媒連絡配管7を経由して空調室外機2に送られ、再び、圧縮機91に吸入される。このように冷房運転では、空気調和装置1は、室外熱交換器20を圧縮機91において圧縮される冷媒の凝縮器として、かつ、室内熱交換器4を室外熱交換器20において凝縮された冷媒の蒸発器として機能させる。
 なお、冷房運転時の冷媒回路では、膨張弁33の過熱度制御が行われつつ、設定温度となるように(冷房負荷を処理できるように)圧縮機91がインバータ制御されているため、冷媒の循環量が高循環量となる場合と、低循環量になる場合がある。
 (3-2)暖房運転
 暖房運転時は、四路切換弁92が図1の破線で示される状態、すなわち、圧縮機91の吐出側が冷媒連絡配管7を介して室内熱交換器4のガス側に接続され、かつ、圧縮機91の吸入側がガス冷媒配管31を介して室外熱交換器20のガス側に接続された状態となっている。膨張弁33は、室内熱交換器4の出口における冷媒の過冷却度が過冷却度目標値で一定になるように開度調節されるようになっている(過冷却度制御)。この冷媒回路の状態で、圧縮機91、室外ファン95および室内ファン5を運転すると、低圧のガス冷媒は、圧縮機91に吸入されて圧縮されて高圧のガス冷媒となり、四路切換弁92、および、冷媒連絡配管7を経由して、空調室内機3に送られる。
 そして、空調室内機3に送られた高圧のガス冷媒は、室内熱交換器4において、室内空気と熱交換を行って凝縮して高圧の液冷媒となった後、膨張弁33を通過する際に、膨張弁33の弁開度に応じて減圧される。この膨張弁33を通過した冷媒は、室外熱交換器20に流入する。そして、室外熱交換器20に流入した低圧の気液二相状態の冷媒は、室外ファン95によって供給される室外空気と熱交換を行って蒸発して低圧のガス冷媒となり、四路切換弁92を経由して、再び、圧縮機91に吸入される。このように暖房運転では、空気調和装置1は、室内熱交換器4を圧縮機91において圧縮される冷媒の凝縮器として、かつ、室外熱交換器20を室内熱交換器4において凝縮された冷媒の蒸発器として機能させる。
 なお、暖房運転時の冷媒回路では、膨張弁33の過冷却度制御が行われつつ、設定温度となるように(暖房負荷を処理できるように)圧縮機91がインバータ制御されているため、冷媒の循環量が高循環量となる場合と、低循環量になる場合がある。
 (4)室外熱交換器20の詳細構成
 (4-1)室外熱交換器20の全体構成
 図4に、室外熱交換器20の概略外観斜視図を示す。また、図5に、伝熱フィン21aの扁平多穴管21bに対する取付状態を示す。
 室外熱交換器20は、室外空気と冷媒との熱交換を行わせる熱交換部21と、この熱交換部21の一端側に設けられた出入口ヘッダ集合管26および折返しヘッダ24と、この熱交換部21の他端側に設けられた連結ヘッダ23と、折返しヘッダ24の下部と折返しヘッダ24の上部を連結させる連絡部25と、出入口ヘッダ集合管26の下方に分流された冷媒を導く分流器22と、を備えている。
 (4-2)熱交換部21
 熱交換部21は、多数の伝熱フィン21aと多数の扁平多穴管21bとで構成されている。伝熱フィン21aおよび扁平多穴管21bは、いずれもアルミニウム製もしくはアルミニウム合金製である。
 伝熱フィン21aは、平板部材であり、各伝熱フィン21aには水平方向に延びる扁平管挿入用の切り欠き21aaが上下方向に並べて複数形成されている。なお、伝熱フィン21aは、空気流れの上流側に向けて突出した部分を無数に有するように取り付けられている。
 扁平多穴管21bは、伝熱管として機能し、伝熱フィン21aと室外空気との間を移動する熱を、内部を流れる冷媒に伝達する。この扁平多穴管21bは、伝熱面となる上下の平面部と、冷媒が流れる水平方向に並んだ複数の流入口21baを有している。このような形状を有する扁平多穴管21bは、複数設けられており、これら複数が鉛直方向に所定の間隔をあけて配置されている。切り欠き21aaの上下の幅よりもわずかに厚くなるように構成された扁平多穴管21bは、平面部を上下に向けた状態で、間隔をあけて複数段配列され、切り欠き21aaに嵌め込まれた状態で仮固定される。このように、伝熱フィン21aの切り欠き21aaに扁平多穴管21bが嵌め込まれた仮固定の状態で、伝熱フィン21aと扁平多穴管21bとがロウ付けされる。また、各扁平多穴管21bの両端は、出入口ヘッダ集合管26と折返しヘッダ24と連結ヘッダ23に嵌め込まれた状態でロウ付けされる。
 図5に示されているように、伝熱フィン21aは、上下に繋がっているため、伝熱フィン21aや扁平多穴管21bで生じた結露は、伝熱フィン21aに沿って下方に滴り落ち、底板12に形成されている経路を通って外部に排出される。
 なお、この熱交換部21は、室外ファン95によって生じる空気流れ方向(筐体の背面および左側面側から筐体の正面のファングリル15aに向かう流れ)において、風上側を縁取るように設けられた風上側熱交換部211と、風下側を縁取るように設けられた風下側熱交換部212と、を有して構成されている。風上側熱交換部211は、風上側を縁取るように伸びており上下方向に並んだ複数の扁平多穴管21bと、この扁平多穴管21bに固定された伝熱フィン21aとを有している。また、風下側熱交換部212は、同様に、風下側を縁取るように伸びており上下方向に並んだ複数の扁平多穴管21bと、この扁平多穴管21bに固定された伝熱フィン21aとを有している。
 (4-3)分流器22
 分流器22は、液冷媒配管32と出入口ヘッダ集合管26の下方部分とを連結させるように接続されており、室外熱交換器20が冷媒の蒸発器として機能する際に液冷媒配管32から流れてきた冷媒を高さ方向に分流させて出入口ヘッダ集合管26の下方部分に導く。
 (4-4)出入口ヘッダ集合管26
 出入口ヘッダ集合管26は、鉛直方向に延びるアルミニウム製もしくはアルミニウム合金製の筒状部材であり、室外熱交換器20への冷媒の入口側部分と出口側部分を上下に分けて有している。出入口ヘッダ集合管26の下方部分は、上述のように液冷媒配管32に対して分流器22を介して接続されている。出入口ヘッダ集合管26の上方部分は、ガス冷媒配管31に対して接続されている。出入口ヘッダ集合管26は、略円筒形状に形成されており、上方部分の内部空間と下方部分の内部空間とが内部に設けられたバッフルによって上下に仕切られている。また、出入口ヘッダ集合管26の下方部分は、分流器22によって分流された冷媒の分布が維持されるように、複数のバッフルによって上下に仕切られている。すなわち、分流器22によって上下に分けられた各冷媒流れそれぞれを分けたままで熱交換部21に流せるように構成されている。
 以上の構成により、室外熱交換器20が冷媒の蒸発器として機能する場合には、液冷媒配管32と分流器22と出入口ヘッダ集合管26の下方部分を介して熱交換部21に流入して蒸発した冷媒は、出入口ヘッダ集合管26の上方部分とガス冷媒配管31を介して外部に流出していくことになる。なお、室外熱交換器20が冷媒の放熱器として機能している場合には、上記とは逆の流れになる。
 (4-5)連結ヘッダ23
 連結ヘッダ23は、熱交換部21の出入口ヘッダ集合管26や折返しヘッダ24が設けられている側の端部とは反対側に設けられており、風上側熱交換部211の扁平多穴管21bを流れた冷媒を同じ高さ位置の風下側熱交換部212の扁平多穴管21bに導くか、風下側熱交換部212の扁平多穴管21bを流れた冷媒を同じ高さ位置の風上側熱交換部211の扁平多穴管21bに導くように構成されている。この連結ヘッダ23では、冷媒の上下方向の移動は生じず、室外熱交換器20内における冷媒の流路を同じ高さ位置で単に繋ぐ役割を果たしている。
 (4-6)折返しヘッダ24
 折返しヘッダ24は、熱交換部21の連結ヘッダ23が設けられている側の端部とは反対側の端部であって、出入口ヘッダ集合管26よりも風下側において上下方向に伸びるように設けられている。この折返しヘッダ24は、熱交換部21のうちの風下側熱交換部212の連結ヘッダ23側とは反対側の端部に接続されている。折返しヘッダ24もアルミニウム製もしくはアルミニウム合金製の部材である。
 折返しヘッダ24は、図6の折返しヘッダ24および連絡部25の分解概略斜視図や、図7の折返しヘッダ24および連絡部25の拡大分解概略斜視図に示すように、複数の扁平多穴管21bの一端が接続されている多穴側部材61と、扁平多穴管21bが接続されている側とは反対側を構成する配管側部材62と、多穴側部材61と配管側部材との間に位置する仕切部材70と、折返しヘッダ24内部の空間を上下に仕切っている複数のバッフル80と、を有している。
 多穴側部材61は、折返しヘッダ24の熱交換部21側の壁面を構成しており、上面視において略半円弧形状に形成されている。この多穴側部材61は、この半円弧形状が上下方向に伸びた形状を有しており、扁平多穴管21bを挿入するための板厚方向に貫通した開口が高さ位置毎に設けられている。
 配管側部材62は、折返しヘッダ24の熱交換部21側とは反対側の壁面を構成しており、上面視において略半円弧形状に形成されている。この配管側部材62は、この半円弧形状が上下方向に伸びた形状を有しており、後述する連絡部25の連絡配管を挿入するための板厚方向に貫通した開口が高さ位置毎に設けられている。また、この配管側部材62には、バッフル80の一端側を固定するための開口が高さ位置毎にそれぞれ設けられている。
 仕切部材70は、折返しヘッダ24の内部の空間を、多穴側部材61側の空間と配管側部材62側の空間とに水平方向に仕切るように上下に伸びている。仕切部材70には、バッフル80を挿入固定するための開口が高さ位置毎に設けられている。図8において、下連通口72付近で水平方向に切断された仕切部材70とバッフル80とが組合わされた状態の概略斜視図を示す。図9において、バッフル80のうちの整流板82と多穴側部材61と配管側部材62と仕切部材70が組合わされた状態の上面図を示す。図8、図9に示すように、仕切部材70は、多穴側部材61側の面である多穴側面70aと、配管側部材62側の面である配管側面70bと、を有している。この多穴側面70aの中央近傍には、多穴側部材61側に向けて膨出した多穴側凸部70xが形成されており、開口部分を除いて当該多穴側凸部70xは上下方向に伸びている。また、配管側面70bの中央近傍には、配管側部材62側に向けて膨出した配管側凸部70yが形成されており、開口部分を除いて当該配管側凸部70yは上下方向に伸びている。このように仕切部材70は上面視において多穴側部材61側と配管側部材62側とが対象的な形状を構成しているため、製造時に部材の配置向きを間違えることが無い。
 折返しヘッダ24は、図6や図7に示すように、下方折返し部分24aと上方折返し部分24bとを有しており、内部空間が上下方向に分割されている。下方折返し部分24aの内部空間は、下方の第1下方折返し部分24aaと上方の第2下方折返し部分24abとに、さらに上下方向に分割されている。上方折返し部分24bの内部空間も、下方の第1上方折返し部分24baと上方の第2上方折返し部分24bbとに、さらに上下方向に分割されている。そして、室外熱交換器20が冷媒の蒸発器として機能する場合には、熱交換部21から第1下方折返し部分24aaに流入した冷媒は後述する連絡部25の連絡配管を介して第2上方折返し部分24bbに送られ、熱交換部21から第2下方折返し部分24abに流入した冷媒は連絡部25を介することなく折返しヘッダ24内の空間を介して第1上方折返し部分24baに送られ、第2上方折返し部分24bbや第1上方折返し部分24baに送られた冷媒は再び熱交換部21に送られる。
 ここで、下方折返し部分24aの第1下方折返し部分24aaに接続された扁平多穴管21bの本数よりも、上方折返し部分24bの第2上方折返し部分24bbに接続された扁平多穴管21bの本数の方が多くなるように構成されている。また、下方折返し部分24aの第2下方折返し部分24abに接続された扁平多穴管21bの本数よりも、上方折返し部分24bの第1上方折返し部分24baに接続された扁平多穴管21bの本数の方が多くなるように構成されている。これにより、室外熱交換器20内を流れる冷媒の気体成分の比率の増大や減少に対応している。
 下方折返し部分24aの第1下方折返し部分24aaの内部には、複数の流路が上下に分かれて配置されている。第1下方折返し部分24aaの内部では、熱交換部21を流れる上下方向の冷媒分布を維持させるために、複数の流路の1つ1つが、開口が形成されていない複数のバッフル80によって上下方向に仕切られつつ、上下方向に並んでいる。
 下方折返し部分24aの第1下方折返し部分24aaと第2下方折返し部分24abとは、開口が形成されていないバッフル80によって上下に仕切られている。
 下方折返し部分24aと上方折返し部分24bとは(下方折返し部分24aの第2下方折返し部分24abと上方折返し部分24bの第1上方折返し部分24baとは)、板厚方向に貫通した上昇用開口82a、82bが形成されているバッフル80(整流板82)によって上下に仕切られている。
 ここで、下方折返し部分24aの第2下方折返し部分24abの内部空間は、仕切部材70によって仕切られた、扁平多穴管21b側の第1導入空間61aと、扁平多穴管21b側とは反対側の第2導入空間62aと、を有している。
 上方折返し部分24bのうち、第1上方折返し部分24baと第2上方折返し部分24bbとは、開口が形成されていないバッフル80によって上下に仕切られている。
 ここで、上方折返し部分24bの第1上方折返し部分24baの内部空間は、仕切部材70によって仕切られた、扁平多穴管21b側の上昇用空間61bと、扁平多穴管21b側とは反対側の下降用空間62bと、を有している。
 上方折返し部分24bの第2上方折返し部分24bbの内部には、複数の流路が上下に別れて配置されている。第2上方折返し部分24bbの内部では、熱交換部21を流れる上下方向の冷媒分布を各流路において維持させるために、各流路の1つ1つが、開口が形成されていない複数のバッフル80(図7の下方仕切板81、上方仕切板83)によって上下方向に仕切られつつ、上下方向に並んでいる。なお、後述の図10に示すように、第2上方折返し部分24bbの内部に設けられた複数の流路のうちの1つの流路は、後述する第1導入空間61aと第2導入空間62aと上昇用空間61bと下降用空間62bを一組とする空間(一組の空間)を有するようにして構成されている。このため、この上方折返し部分24bの第2上方折返し部分24bbの内部では、この1つの流路を構成する一組の空間が上下方向に複数並ぶようにして構成されている。なお、1つの流路を構成する一組の空間は、それぞれ下方仕切板81と上方仕切板83とによって上下方向から挟まれている。この下方仕切板81と上方仕切板83とは、説明の都合上区別して説明することがあるが、いずれも開口が形成されていないバッフル80で同じ形状のものであり、一組の空間の上方仕切板83は1つ上の一組の空間の下方仕切板81となる関係にあるものである。そして、図7に示すように、第2上方折返し部分24bb内における一組の空間それぞれは、上昇用開口82a、82bが形成されている整流板82によって内部が上下方向に仕切られている。
 なお、整流板82には、整流板82と多穴側部材61と配管側部材62と仕切部材70を組合せた状態の上面図である図9に示すように、複数の上昇用開口82a、82b(第1上昇用開口82a、第2上昇用開口82b)が設けられており、これらの開口の中心が上面視において扁平多穴管21bの長手方向に垂直な方向に並んで配置されている。第1上昇用開口82aと第2上昇用開口82bとは、上面視において、扁平多穴管21bの長手方向に対して垂直な方向の扁平多穴管21bの幅の中心部分を扁平多穴管21bの長手方向に伸ばして得られる線に対して、線対称となるように配置されている。複数の上昇用開口82a、82bの中心間距離は、仕切部材70に形成された下連通口72の開口(上面視において扁平多穴管21bの長手方向に垂直な方向の幅)よりも長く、扁平多穴管21bの水平方向の幅よりも短くなるように、下連通口72とはずれるように配置されている。下連通口72の水平方向の開口幅は、扁平多穴管21bの水平方向の幅の30%以上である。この整流板82の上昇用開口82a、82bは、いずれも、上面視において扁平多穴管21bと重複部分を有するように位置している。本実施形態では、上面視において、上昇用開口82a、82bは、その70%以上90%以下の部分が扁平多穴管21bと重複している。そして、仕切部材70に形成された下連通口72の内縁を扁平多穴管21bの長手方向に沿うように伸ばして得られる領域は、上面視において整流板82の上昇用開口82a、82bのいずれにも重複しないように配置されている。また、上面視において、整流板82に設けられた上昇用開口82a、82bは、仕切部材70と整流板82との接合部分から離れて設けられている。このため、製造時にロウ付け作業が行われる場合であっても、ロウ材が上昇用開口82a、82bの位置にまで到達しにくく、上昇用開口82a、82bの閉塞を抑制できる。上昇用空間61bは、上面視における面積の半分以上が扁平多穴管21bによって覆われている。
 また、折返しヘッダ24の上方折返し部分24bの第2上方折返し部分24bbを図9に示すX-X断面で切断した場合の正面図である図10を参照しつつ、下連通口72の位置や大きさと、下連通口72と最寄りの扁平多穴管21bとの配置関係等を説明する。下連通口72は、整流板82の上面から上方に所定距離だけ離れて配置されている。ここで、整流板82よりも上に配置されており最も近い扁平多穴管21b(最下段扁平管)の流入口21baは、下連通口72の上端よりもさらに上方に配置されている。このため、下連通口72と、整流板82から最も近い扁平多穴管21b(最下段扁平管)の流入口21baと、は同一高さには存在していない。
 なお、下方仕切板81と上方仕切板83とは、いずれもバッフル80の1つであり、いずれも開口が形成されていない同じ形状・寸法のバッフル80であるが、説明の都合上、説明対象となる一組の空間において下端を構成するバッフル80を下方仕切板81として、上端を構成するバッフル80を上方仕切板83として説明する。なお、ある一組の空間の上方仕切板83は、その一つ上の一組の空間の下方仕切板81としても機能することになる。
 図10に示すように、折返しヘッダ24の上方折返し部分24bの第2上方折返し部分24bbは、上昇用開口82a、82bが形成された整流板82と下方仕切板81とによって上下に囲まれた空間(導入部60a)として、第1導入空間61aおよび第2導入空間62aが設けられている。第1導入空間61aと第2導入空間62aとは、仕切部材70によって仕切られており、第1導入空間61aが仕切部材70に対して扁平多穴管21b側に位置し、第2導入空間62aが仕切部材70に対して扁平多穴管21b側に位置している。ここで、仕切部材70のうち、この第1導入空間61aと第2導入空間62aとの間に位置している部分には、第1導入空間61aと第2導入空間62aとの間で冷媒の行き来を可能にするための導入連通口71が形成されている。上述のように、上方折返し部分24bの第2上方折返し部分24bbは、下方折返し部分24aの第1下方折返し部分24aaと、連絡部25の連絡配管等を介して複数の流路が一対一に接続されており、この第2導入空間62aには連絡部25の連絡配管が接続されている。
 また、折返しヘッダ24の第2上方折返し部分24bbには、上昇用開口82a、82bが形成された整流板82と上方仕切板83とによって上下に囲まれた空間(ヘッダ部60b)として、上昇用空間61bおよび下降用空間62bが設けられている。上昇用空間61bと下降用空間62bとは、上連通口73および下連通口72が形成された仕切部材70によって仕切られている。上連通口73は、この上昇用空間61bと下降用空間62bとを、上方において連通させる。下連通口72は、この上昇用空間61bと下降用空間62bとを、下方において連通させる。
 なお、折返しヘッダ24の下方折返し部分24aの第2下方折返し部分24abおよび上方折返し部分24bの第1上方折返し部分24baでは、連絡部25の連絡配管等を介することなく、折返しヘッダ24の内部で連絡しているため、この第2導入空間62aには連絡部25の連絡配管は接続されていない。なお、第1導入空間61aと第2導入空間62aと上昇用空間61bと下降用空間62b等の構造は、上方折返し部分24bの第2上方折返し部分24bbと同様であるため、説明を省略する。
 (4-7)連絡部25
 連絡部25は、複数の連絡配管を有している。各連絡配管は、折返しヘッダ24の下方折返し部分24aの第1下方折返し部分24aaにおいて上下方向に複数に分割された各空間と、折返しヘッダ24の上方折返し部分24bの第2上方折返し部分24bbにおいて上下方向に複数に並んで配置されている第1導入空間61aと第2導入空間62aと上昇用空間61bと下降用空間62bを一組とする空間(一組の空間)それぞれと、を一対一に接続している。
 この連絡配管は、下方折返し部分24aの第1下方折返し部分24aaにおいて下方に位置する空間ほど、上方折返し部分24bの第2上方折返し部分24bbにおいて上方に位置する一組の空間に接続されるように設けられている。
 ここで、室外熱交換器20が冷媒の蒸発器として機能する場合には、図6に矢印で示すように、熱交換部21のうちの風下側熱交換部212の下方部分を流れる各冷媒流れは、分流状態を維持したままで、まず下方折返し部分24aの各空間に流入する。下方折返し部分24aの第1下方折返し部分24aaの各空間に流入した各冷媒は、それぞれ一対一に設けられた連絡部25の連絡配管を介して、それぞれが対応する上方折返し部分24bの第2上方折返し部分24bbにおける一組の空間に送られる。上方折返し部分24bの第2上方折返し部分24bbにおける一組の空間に送られたそれぞれの冷媒流れは、その分流状態を維持したままで、再び熱交換部21のうちの風下側熱交換部212の上方部分へと流れていく。なお、室外熱交換器20が冷媒の放熱器として機能する場合には、上昇用空間61bと下降用空間62bを除いて、上記とは反対の冷媒流れとなる。
 ただ、ここで、下方折返し部分24a内の複数の空間のうちの最も上方の空間である第2下方折返し部分24abと、上方折返し部分24b内の複数の空間のうちの最も下方の空間である第1上方折返し部分24baとは、連絡部25の連絡配管によっては接続されていない。これらの空間は、図6に示すように、上下方向に貫通した上昇用開口が設けられたバッフル80としての整流板82によって仕切られている。この整流板82には、板厚方向に貫通した上昇用開口82a、82bが形成されている。このため、第2下方折返し部分24abの冷媒は、折返しヘッダ24内から外に出ること無く、第2下方折返し部分24abから整流板82の上昇用開口82a、82bを介して第1上方折返し部分24baに送られる(逆の流れも同様)。
 このように、折返しヘッダ24は、室外熱交換器20における冷媒流れ経路におけるちょうど折返し部分を構成していることになる。
 なお、室外熱交換器20が冷媒の蒸発器として機能する場合において、折返しヘッダ24から風下側熱交換部212の上方部分へと流出した冷媒は、図6に矢印で示すように、風下側熱交換部212の上方部分を他端の連結ヘッダ23まで分流状態を維持したままで流れ、連結ヘッダ23において風上側熱交換部211側に移動して風上側熱交換部211の上方部分を出入口ヘッダ集合管26の上方部分に向けて分流状態を維持したままで流れる。そして、出入口ヘッダ集合管26の上方部分に流入したそれぞれの冷媒は、合流した後、ガス冷媒配管31を介して圧縮機91の吸入側に向けて流れていくことになる。
 (5)折返しヘッダ24のループ構造等
 以下、折返しヘッダ24の第2上方折返し部分24bb内の第1導入空間61aと第2導入空間62aと上昇用空間61bと下降用空間62bを一組とする空間(一組の空間)に着目してループ構造を、図10を参照しつつ説明する。なお、当該一組の空間は、折返しヘッダ24の第2上方折返し部分24bb内において上下方向に複数並んでいるが、他の部分についても構造が同様であるため、説明を省略する。
 整流板82は、折返しヘッダ24の内部の上述の一組の空間を、下方の第1導入空間61aおよび第2導入空間62aと、上方の上昇用空間61bおよび下降用空間62bと、に上下に仕切っている板状部材である。
 仕切部材70は、第1導入空間61aと第2導入空間62aとを、多穴側部材61側の第1導入空間61aと、配管側部材62側の第2導入空間62aとに仕切っている。また、仕切部材70は、上昇用空間61bと下降用空間62bとを、多穴側部材61側の上昇用空間61bと、配管側部材62側の下降用空間62bとに仕切っている。
 また、仕切部材70に設けられた導入連通口71と上連通口73と下連通口72とは、いずれも水平方向に伸びている。
 第2導入空間62aには、連絡部25の連絡配管が接続されている。
 ここで、整流板82は、整流板82の上方の最も近くに位置する扁平多穴管21b(最下段扁平管)と整流板82との上下方向の距離が、鉛直方向に複数並んで配置されている扁平多穴管21bの所定の間隔よりも短くなるように配置されている。
 また、この下連通口72の上昇用空間61b側の出口は、上昇用空間61bに接続されている扁平多穴管21bのうち最も下に位置するもの(最下段扁平管)よりもさらに下方に位置している。
 整流板82には、第1導入空間61aと上昇用空間61bとを連通させるように鉛直方向に伸びた開口である上昇用開口82a,82bが設けられている。第1導入空間61aからより上方の上昇用空間61bに向かう冷媒は、この整流板82において流路を絞るノズルのようにして設けられた上昇用開口82a,82bを通過するために、冷媒流れが十分に絞り込まれ、鉛直上方に向かう冷媒流速を増大させることができている。
 また、上昇用空間61bは、仕切部材70によって下降用空間62bと仕切られることで、上昇用空間61b側における冷媒上昇時の通過面積を、上昇用空間61bと下降用空間62bの合計の水平面積よりも狭くすることができている。このため、上昇用開口82a,82bを介して上昇用空間61bに流入した冷媒の上昇速度を維持させやすく、低循環量下においても冷媒を上昇用空間61bの上方部分にまで到達させやすい。
 ここで、「上昇用空間61bの扁平多穴管21bが存在しない高さ位置での水平面積」から「扁平多穴管21bのうち上昇用空間61b内に延び出している部分の水平面積」を差し引いた残りの面積(上昇用空間61bにおいて冷媒が扁平多穴管21bを避けて上昇する部分の面積)が、下連通口72の冷媒通過面積よりも大きくなるように配置されている。これにより、整流板82の上昇用開口82a,82bを介して上昇用空間61bに流入した冷媒は、より狭く通過しづらい下連通口72を介して下降用空間62b側に向かって逆流してしまうのではなく、より広く通過しやすい上昇用空間61bにおける扁平多穴管21bを除いた部分を流れることになる。しかも、上述したように、整流板82の上昇用開口82a,82bは、下連通口72と重複しない(下連通口72を扁平多穴管21bの長手方向に延長して得られる領域と重複しない)ように配置されているため、下連通口72を介して下降用空間62b側に向かう逆流を効果的に抑制できる。
 また、整流板82に設けられた上昇用開口82a,82bと、上昇用開口82a,82bよりも上方に位置しており上昇用開口82a,82bから最も近い直上の扁平多穴管21b(最下段扁平管)は、上面視において重複部分を有するように配置されている。なお、この重複部分の上面視における面積は、上昇用開口82a,82bと直上の扁平多穴管21bとの上面視における非重複部分の面積よりも大きくなるように配置されている。なお、特に限定されるものではないが、本実施形態では、上面視において、上昇用開口82a,82bの7割以上が扁平多穴管21b(最下段扁平管)と重複するように設けられている。
 また、仕切部材70には上連通口73と下連通口72が形成されることでループ構造が採用されている。このため、上昇用空間61bにおいて扁平多穴管21bに流入することなく上方まで到達した冷媒は、図10の矢印に示すように、上連通口73を介して下降用空間62bに導かれ、下降用空間62bにおいて重力に従って降下し、下連通口72を介して上昇用空間61bの下方に戻される。このようにして、上昇用空間61bの上方に到達した冷媒を再び上昇用空間61bの下方に戻してループさせることが可能になっている。
 (6)暖房運転時の低循環量の場合の室外熱交換器20における冷媒の流れ方
 暖房運転時の低循環量の場合の室外熱交換器20における冷媒の流れ方を説明する。
 連絡部25と第2導入空間62aと導入連通口71を介して第1導入空間61aから上昇用空間61bに流入する冷媒は、比重の異なる気相成分と液相成分が混在した状態になっている。
 低循環量の場合には、上昇用空間61b内に流入する単位時間当たりの冷媒量が少なく、冷媒の流速は相対的に遅めになる。このため、この流速のままであれば、冷媒のうち比重の大きな液相成分については上昇させにくいため、上昇用空間61bにおける複数の扁平多穴管21bのうち上方に位置しているものに対して到達させにくく、上昇用空間61bにおける複数の扁平多穴管21bにおいて高さ位置に応じて通過量が不均一になり、偏流が生じてしまうおそれがある。このように比較的上方に配置された扁平多穴管21bの一端側に対して、冷媒のうち比重の小さい気相成分が主に流入すると、扁平多穴管21bの他端側から流出する冷媒は過熱度が大きくなりすぎて、扁平多穴管21bを通過している途中で相変化を生じなくなり、熱交換の能力を十分に発揮させることができない部分が生じることになる。他方で、比較的下方に配置された扁平多穴管21bの一端側に対して、冷媒のうち比重の大きな液相成分が主に流入すると、扁平多穴管21bの他端側から流出する冷媒は過熱度が付きにくく、蒸発することなく扁平多穴管21bの他端側に到達してしまうことがあり、やはり、熱交換の能力を十分に発揮させることができない部分が生じることになる。
 これに対して、本実施形態の室外熱交換器20を低循環量の状態で用いた場合には、整流板82の上昇用開口82a、82bにおいて冷媒流れが絞り込まれること、および、仕切部材70により仕切られることで上昇用空間61bの通過面積が小さく抑えられていることにより、上昇用空間61bに供給された冷媒のうち比重の大きな液相成分を従来のものよりも上方に導き、低循環量の時であっても偏流を改善できる。
 これにより、本実施形態の室外熱交換器20では、低循環量時であっても、上昇用空間61bにおいて高さ位置の異なる部分に配置された複数の扁平多穴管21bに流入する冷媒の状態をできるだけ均一化させることが可能になる。
 (7)暖房運転時の高循環量の場合の室外熱交換器20における冷媒の流れ方
 暖房運転時の高循環量の場合の室外熱交換器20における冷媒の流れ方を説明する。
 ここで、連絡部25と第2導入空間62aと導入連通口71を介して第1導入空間61aから上昇用空間61bに流入する冷媒は、比重の異なる気相成分と液相成分が混在した状態になっていることは、低循環量の場合と同様である。
 高循環量の場合には、上昇用空間61b内に流入する単位時間当たりの冷媒量が多く、冷媒の流速は相対的に早めになる。しかも、上述した低循環量対策として上昇用開口82a,82bの絞り機能を採用していることにより、さらに流速が高められる。さらに、上述した低循環量対策として仕切部材70によって上昇用空間61bの冷媒通過断面積が狭められているため、冷媒の上昇速度は衰えにくくなっている。これにより、高循環量の場合には、上昇用開口82a,82bを勢いよく通過した冷媒のうち比重の大きな液相成分は、上昇用空間61b内において扁平多穴管21bに流入することなく通過して、上方に集まりがちになってしまう。この場合には、比重の大きな液相成分が上方に集まりやすく、比重の小さな気相成分が下方に集まりやすくなり、低循環量の場合とは分布が異なるが、やはり偏流が生じてしまう。
 これに対して、本実施形態の室外熱交換器20では、仕切部材70の上方に上連通口73を設け下方に下連通口72を設けることでループ構造を採用しているため、上昇用空間61bの上端にまで冷媒の液相成分が多く到達したとしても、その冷媒を、上連通口73を介して下降用空間62bに導き、下降用空間62bにおいて重力によって降下させた後、下連通口72を介して、再び、上昇用空間61bの下方に戻すことができる。
 下連通口72を介して上昇用空間61bに戻された冷媒は、上昇用開口82a,82bを通過した冷媒の上昇流れに引きずられるようにして、再度、上昇用空間61b内を上昇していき、扁平多穴管21bに流入させることができる(冷媒は複数回ループしてもよい)。
 これにより、本実施形態の室外熱交換器20では、高循環量時であっても、上昇用空間61bにおいて高さ位置の異なる部分に配置された複数の扁平多穴管21bに流入する冷媒の状態をできるだけ均一化させることが可能になる。
 (8)空気調和装置1の室外熱交換器20の特徴
 (8-1)
 本実施形態の室外熱交換器20は、高循環量の場合には、冷媒の液相成分が上昇用空間61b内の上方に到達してしまったとしても、上連通口73と下降用空間62bと下連通口72とを介してループした冷媒を再び上昇用空間61bに戻して、扁平多穴管21bにまで導くことが可能になる。
 また、本実施形態の室外熱交換器20は、低循環量の場合であっても、整流板82に形成された上昇用開口82a,82bを通過する際に冷媒流速が上げられること、仕切部材70によって仕切られることで上昇用空間61bが狭められていることから、冷媒の上昇速度の減衰を抑えて、上昇用空間61bの上方にまで冷媒を到達させやすくすることができる。
 以上により、本実施形態の室外熱交換器20は、低循環量の場合であっても高循環量の場合であっても、いずれの場合であっても、鉛直方向に複数並んで配置された扁平多穴管21bに対する冷媒の偏流を小さく抑えることができる。
 (8-2)
 本実施形態の室外熱交換器20は、以上のように冷媒をループさせる際に用いる下連通口72と、整流板82に形成された上昇用開口82a、82bとは、下連通口72を上面視における扁平多穴管21bの長手方向に伸ばして得られる領域と上昇用開口82a、82bとが上面視において重ならないように配置されている。このため、整流板82の上昇用開口82a、82bを通過して上昇用空間61bに流入した冷媒は、最も近い扁平多穴管21b(最下段扁平管)の下面に衝突したとしても、下連通口72側に導かれにくい。このため、下連通口72を介して上昇用空間61bから下降用空間62b側に冷媒が逆流してしまうことを抑制できている。
 また、整流板82から最も近い扁平多穴管21b(最下段扁平管)の流入口21baと下連通口72とは、同一高さには存在していないため、下連通口72を介してループしてきた冷媒が特定の扁平多穴管21bに集中的に流れてしまうことを抑制できている。
 そして、下連通口72の下端は、整流板82から最も近い扁平多穴管21b(最下段扁平管)の下端よりもさらに下方に位置している。特に、上記実施形態では、整流板82から最も近い扁平多穴管21b(最下段扁平管)の下面は、下連通口72の上端よりも高い位置に配置されている。このため、上昇用空間61bにおいて上昇する冷媒が整流板82から最も近い扁平多穴管21b(最下段扁平管)の下面に衝突した時には、すでに高さ方向において下連通口72を上方に超えている。したがって、衝突後に冷媒流れが乱れたとしても、下連通口72を介して下降用空間62b側に冷媒が逆流しにくくなっている。
 (8-3)
 本実施形態の室外熱交換器20では、整流板82の複数の上昇用開口82a、82bとは、扁平多穴管21bに対して幅方向に並ぶように対象的に配置されているため、複数の上昇用開口82a、82bから扁平多穴管21bに向かう冷媒について中央部分に集中してしまうことなく扁平多穴管21bの幅方向において均等化させることができている。また、図9に示すように、整流板82の複数の上昇用開口82a、82bと、仕切部材70の下連通口72とは、扁平多穴管21bの幅方向に並ぶように配置されている。このため、扁平多穴管21bの幅方向における偏流を抑制することができている。
 (9)他の実施形態
 上記実施形態では、本発明の実施形態の一例を説明したが、上記実施形態はなんら本願発明を限定する趣旨ではなく、上記実施形態には限られない。本願発明は、その趣旨を逸脱しない範囲で適宜変更した態様についても当然に含まれる。
 (9-1)他の実施形態A
 上記実施形態では、1つの下降用空間62bから1つの上昇用空間61bに戻すための下連通口72が1つだけ形成されている場合を例に挙げて説明した。
 しかし、本発明は、これに限られるものではなく、例えば、図11に示すように、仕切部材70には、上記実施形態の下連通口72に対応する開口として、第1下連通口72a、第2下連通口72b、第3下連通口72cのように複数の下連通口が設けられていてもよい。この場合においても、第1下連通口72a、第2下連通口72b、第3下連通口72cの各下連通口を、上面視において扁平多穴管21bの長手方向に延長して得られる領域と、整流板82に設けられた上昇用開口82a、82bとは、上面視において重複していない。この場合であっても、上記実施形態と同様の効果を奏することができる。
 (9-2)他の実施形態B
 上記実施形態および上記他の実施形態Aでは、下連通口72等を上面視における扁平多穴管21bの長手方向に延長して得られる領域と、整流板82に設けられた上昇用開口82a、82bとが、上面視において全く重複しない配置構成を例に挙げて説明した。
 しかし、本発明は、これに限られるものではなく、例えば、上面視において、整流板82に設けられた上昇用開口82a、82bと、下連通口72等を扁平多穴管21bの長手方向に延長して得られる領域と、の重複部分の面積が、上昇用開口82a、82bの上面視の面積の50%以下であればよい。この場合であっても、全く重複しない場合と比べると効果は劣るものの、完全に重複している場合と比べると十分に効果を得ることができる。
 1   空気調和装置
 2   空調室外機
 3   空調室内機
 10  ユニットケーシング
 20  室外熱交換器(熱交換器)
 21  熱交換部
 21a 伝熱フィン
 21b 扁平多穴管(扁平管)
 21ba 複数の流入口
 22 分流器
 23 連結ヘッダ
 24 折返しヘッダ
 25 連絡部
 26 出入口ヘッダ集合管
 31 ガス冷媒配管
 32 液冷媒配管
 33 膨張弁
 60a 導入部
 60b ヘッダ部
 61 多穴側部材
 61a 第1導入空間(導入空間)
 61b 上昇用空間(第1空間)
 62 配管側部材
 62a 第2導入空間
 62b 下降用空間(第2空間)
 70 仕切部材(ヘッダ仕切部材)
 71 導入連通口
 73 上連通口
 72 下連通口
 72a 第1下連通口
 72b 第2下連通口
 72c 第3下連通口
 80 バッフル
 81 下方仕切板
 82 整流板(導入仕切部材)
 82a 上昇用開口(第1上昇用開口)
 82b 上昇用開口(第2上昇用開口)
 83 上方仕切板
 91 圧縮機
特開平2-219966号公報

Claims (6)

  1.  互いに並んで配置された複数の扁平管(21b)と、
     複数の前記扁平管が並んでいる方向に沿うように上方に向けて延びており、複数の前記扁平管の一端それぞれが接続されている第1空間(61b)と複数の前記扁平管が接続されていない第2空間(62b)とに内部が仕切られているヘッダ部(60b)と、
     前記第1空間(61b)と上昇用開口(82a、82b)を介して連通しており前記第1空間(61b)の下方に位置した導入空間(61a)を有する導入部(60a)と、
    を備え、
     前記第1空間(61b)と前記第2空間(62b)とは、前記ヘッダ部(60b)内の上方に設けられた上連通口(73)および前記ヘッダ部(60b)内の下方に設けられた下連通口(72)を介して連通しており、
     設置状態の上面視において、複数の前記扁平管(21b)と前記上昇用開口(82a、82b)とは重複部分を有しており、
     設置状態の上面視において、
      前記下連通口(72)を前記扁平管(21b)が延びている方向に延長させた空間と前記上昇用開口(82a、82b)とが重なっていないか、または、
      前記下連通口(72)を前記扁平管(21b)が延びている方向に延長させた空間と前記上昇用開口(82a、82b)との重複部分が前記上昇用開口(82a、82b)の50%以下である、
    熱交換器(20)。
  2.  前記上昇用開口(82a、82b)と前記下連通口(72、72a、72b、72c)の少なくともいずれか一方は、互いに離れて位置する複数の口(82a、82b、72a、72b、72c)を有して構成されている、
    請求項1に記載の熱交換器。
  3.  複数の前記扁平管(21b)は、それぞれ、前記第1空間(61b)内の端部において水平方向に並んだ複数の流入口(21ba)を有しており、
     前記上昇用開口(82a、82b)は、前記下連通口(72)を前記扁平管(21b)が延びている方向に延長させた空間に対して、設置状態の上面視において一方側に設けられた第1上昇用開口(82a)と他方側に設けられた第2上昇用開口(82b)を有している、
    請求項2に記載の熱交換器。
  4.  前記下連通口(72)の下端は、前記第1空間(61b)に接続された複数の前記扁平管(21b)のうち前記上昇用開口(82a、82b)よりも上方において最も下方に配置されている最下段扁平管の下端よりもさらに下方に位置している、
    請求項1から3のいずれか1項に記載の熱交換器。
  5.  前記ヘッダ部(60b)は、前記第1空間(61b)と前記第2空間(62b)とを仕切るヘッダ仕切部材(70)を有しており、
     前記ヘッダ部(60b)の前記第1空間(61b)と前記導入空間(61a)とを仕切る導入仕切部材(82)を備えており、
     前記導入仕切部材(82)の上面は、前記ヘッダ仕切部材(70)と当接した部分を有しており、
     前記上昇用開口(82a、82b)は、前記導入仕切部材(82)と前記ヘッダ仕切部材(70)との当接位置から離れた位置で前記導入仕切部材(82)を板厚方向に貫通するように設けられている、
    請求項1から4のいずれか1項に記載の熱交換器。
  6.  請求項1から5のいずれか1項に記載の熱交換器(20)と、容量可変の圧縮機(91)と、が接続されて構成される冷媒回路を備えた空気調和装置(1)。
PCT/JP2015/076926 2014-09-30 2015-09-24 熱交換器および空気調和装置 WO2016052299A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/513,866 US10465955B2 (en) 2014-09-30 2015-09-24 Heat exchanger and air conditioning apparatus
CN201580052073.8A CN106716045B (zh) 2014-09-30 2015-09-24 热交换器和空调装置
ES15847695T ES2737228T3 (es) 2014-09-30 2015-09-24 Intercambiador de calor y aparato de acondicionamiento de aire
EP15847695.2A EP3203175B1 (en) 2014-09-30 2015-09-24 Heat exchanger and air conditioning apparatus
AU2015325721A AU2015325721B2 (en) 2014-09-30 2015-09-24 Heat exchanger and air conditioning apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014202334A JP5850118B1 (ja) 2014-09-30 2014-09-30 熱交換器および空気調和装置
JP2014-202334 2014-09-30

Publications (1)

Publication Number Publication Date
WO2016052299A1 true WO2016052299A1 (ja) 2016-04-07

Family

ID=55237934

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/076926 WO2016052299A1 (ja) 2014-09-30 2015-09-24 熱交換器および空気調和装置

Country Status (8)

Country Link
US (1) US10465955B2 (ja)
EP (1) EP3203175B1 (ja)
JP (1) JP5850118B1 (ja)
CN (1) CN106716045B (ja)
AU (1) AU2015325721B2 (ja)
ES (1) ES2737228T3 (ja)
TR (1) TR201910369T4 (ja)
WO (1) WO2016052299A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180073819A1 (en) * 2016-09-13 2018-03-15 Samsung Electronics Co., Ltd. Heat exchanger, header for the same and manufacturing method thereof
JP2019132519A (ja) * 2018-01-31 2019-08-08 ダイキン工業株式会社 熱交換器及び空気調和装置
EP3605001A4 (en) * 2017-03-29 2020-11-18 Daikin Industries, Ltd. HEAT EXCHANGER

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3594576A4 (en) * 2017-03-10 2020-12-30 Daikin Industries, Ltd. REFRIGERATION SYSTEM
WO2018181338A1 (ja) * 2017-03-27 2018-10-04 ダイキン工業株式会社 熱交換器および空気調和装置
WO2019003428A1 (ja) * 2017-06-30 2019-01-03 三菱電機株式会社 熱交換器、及び冷凍サイクル装置
WO2019078066A1 (ja) 2017-10-18 2019-04-25 ダイキン工業株式会社 熱交換器及びそれを備えた空気調和装置
JP6985603B2 (ja) * 2018-01-31 2021-12-22 ダイキン工業株式会社 熱交換器又は熱交換器を有する冷凍装置
JP7108177B2 (ja) * 2018-03-30 2022-07-28 ダイキン工業株式会社 熱交換器および空気調和装置
KR20200078936A (ko) * 2018-12-24 2020-07-02 삼성전자주식회사 열 교환기
US11898781B2 (en) * 2019-03-05 2024-02-13 Mitsubishi Electric Corporation Gas header, heat exchanger, and refrigeration cycle apparatus
US11402161B2 (en) * 2019-04-22 2022-08-02 Hitachi-Johnson Controls Air Conditioning, Inc. Distributor, heat exchanger, indoor unit, outdoor unit, and air-conditioning device
CN112824769A (zh) * 2019-11-20 2021-05-21 青岛海信日立空调系统有限公司 一种空调器
JP6915714B1 (ja) * 2020-03-10 2021-08-04 株式会社富士通ゼネラル 熱交換器
USD1006966S1 (en) 2021-05-05 2023-12-05 Stego-Holding Gmbh Convector heater
USD1010782S1 (en) * 2021-08-16 2024-01-09 Webasto SE Mobile electric heater

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11337293A (ja) * 1998-05-26 1999-12-10 Showa Alum Corp 蒸発器
US6688137B1 (en) * 2002-10-23 2004-02-10 Carrier Corporation Plate heat exchanger with a two-phase flow distributor
WO2007094422A1 (ja) * 2006-02-15 2007-08-23 Gac Corporation 熱交換器
JP2013137193A (ja) * 2011-11-22 2013-07-11 Daikin Industries Ltd 熱交換器
US20140123696A1 (en) * 2012-11-02 2014-05-08 Hongseong KIM Air conditioner and evaporator inlet header distributor therefor

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2099186A (en) * 1935-12-24 1937-11-16 Reuben H Anderegg Evaporator coil
JPH02219966A (ja) 1989-02-21 1990-09-03 Matsushita Refrig Co Ltd 冷媒分流器
JP3017272B2 (ja) * 1990-11-07 2000-03-06 株式会社ゼクセル 熱交換器
DE4442040A1 (de) * 1994-11-25 1996-05-30 Behr Gmbh & Co Wärmetauscher mit einem Sammelrohr
JP4153178B2 (ja) * 2001-06-26 2008-09-17 カルソニックカンセイ株式会社 熱交換器用タンクおよびその製造方法
JP4248931B2 (ja) * 2003-05-20 2009-04-02 カルソニックカンセイ株式会社 熱交換器
US20080023185A1 (en) * 2006-07-25 2008-01-31 Henry Earl Beamer Heat exchanger assembly
US7942020B2 (en) * 2007-07-27 2011-05-17 Johnson Controls Technology Company Multi-slab multichannel heat exchanger
JP5097472B2 (ja) 2007-08-10 2012-12-12 Gac株式会社 熱交換器
US8434324B2 (en) * 2010-04-05 2013-05-07 Denso Corporation Evaporator unit
AU2012208123B2 (en) * 2011-01-21 2015-05-07 Daikin Industries, Ltd. Heat exchanger and air conditioner
JP5376010B2 (ja) * 2011-11-22 2013-12-25 ダイキン工業株式会社 熱交換器
FR2988825B1 (fr) * 2012-03-30 2015-05-01 Valeo Systemes Thermiques Echangeur thermique, notamment pour vehicule
KR101826365B1 (ko) * 2012-05-04 2018-03-22 엘지전자 주식회사 열교환기
JP6140514B2 (ja) * 2013-04-23 2017-05-31 株式会社ケーヒン・サーマル・テクノロジー エバポレータおよびこれを用いた車両用空調装置
WO2014184917A1 (ja) * 2013-05-15 2014-11-20 三菱電機株式会社 積層型ヘッダー、熱交換器、及び、空気調和装置
JP5761252B2 (ja) * 2013-05-22 2015-08-12 ダイキン工業株式会社 熱交換器
KR101462176B1 (ko) * 2013-07-16 2014-11-21 삼성전자주식회사 열교환기

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11337293A (ja) * 1998-05-26 1999-12-10 Showa Alum Corp 蒸発器
US6688137B1 (en) * 2002-10-23 2004-02-10 Carrier Corporation Plate heat exchanger with a two-phase flow distributor
WO2007094422A1 (ja) * 2006-02-15 2007-08-23 Gac Corporation 熱交換器
JP2013137193A (ja) * 2011-11-22 2013-07-11 Daikin Industries Ltd 熱交換器
US20140123696A1 (en) * 2012-11-02 2014-05-08 Hongseong KIM Air conditioner and evaporator inlet header distributor therefor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3203175A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180073819A1 (en) * 2016-09-13 2018-03-15 Samsung Electronics Co., Ltd. Heat exchanger, header for the same and manufacturing method thereof
KR20180029729A (ko) * 2016-09-13 2018-03-21 삼성전자주식회사 열교환기, 열교환기용 헤더 및 그 제조 방법
US10527366B2 (en) * 2016-09-13 2020-01-07 Samsung Electronics Co., Ltd. Heat exchanger, header for the same and manufacturing method thereof
KR102622732B1 (ko) * 2016-09-13 2024-01-10 삼성전자주식회사 열교환기, 열교환기용 헤더 및 그 제조 방법
EP3605001A4 (en) * 2017-03-29 2020-11-18 Daikin Industries, Ltd. HEAT EXCHANGER
US11747059B2 (en) 2017-03-29 2023-09-05 Daikin Industries, Ltd. Heat exchanger
JP2019132519A (ja) * 2018-01-31 2019-08-08 ダイキン工業株式会社 熱交換器及び空気調和装置
WO2019150865A1 (ja) * 2018-01-31 2019-08-08 ダイキン工業株式会社 熱交換器及び空気調和装置
US11002489B2 (en) 2018-01-31 2021-05-11 Daikin Industries, Ltd. Heat exchanger and air conditioning apparatus

Also Published As

Publication number Publication date
EP3203175A1 (en) 2017-08-09
CN106716045A (zh) 2017-05-24
AU2015325721B2 (en) 2017-05-11
ES2737228T3 (es) 2020-01-10
JP2016070623A (ja) 2016-05-09
EP3203175A4 (en) 2018-06-13
US10465955B2 (en) 2019-11-05
CN106716045B (zh) 2018-01-19
US20170292741A1 (en) 2017-10-12
JP5850118B1 (ja) 2016-02-03
EP3203175B1 (en) 2019-05-01
TR201910369T4 (tr) 2019-08-21

Similar Documents

Publication Publication Date Title
JP5850118B1 (ja) 熱交換器および空気調和装置
JP6070685B2 (ja) 熱交換器および空気調和装置
JP5741680B1 (ja) 熱交換器および空気調和装置
JP5754490B2 (ja) 熱交換器および空気調和装置
JP6237068B2 (ja) 熱交換器および空気調和装置
JP5794293B2 (ja) 熱交換器および空気調和装置
JP3985831B2 (ja) 室外ユニット用熱交換器
JP6388067B2 (ja) 熱交換器および空気調和装置
WO2013094386A1 (ja) 空気調和装置
CN111919079A (zh) 热交换器和空调装置
JP2018091503A (ja) 熱交換器
JP6179399B2 (ja) 熱交換器および空気調和装置
JP6458432B2 (ja) 熱交換器
JP2019207033A (ja) 熱交換器および冷凍サイクル装置
JP2016133260A (ja) 空気調和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15847695

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15513866

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2015325721

Country of ref document: AU

REEP Request for entry into the european phase

Ref document number: 2015847695

Country of ref document: EP