WO2019150865A1 - 熱交換器及び空気調和装置 - Google Patents

熱交換器及び空気調和装置 Download PDF

Info

Publication number
WO2019150865A1
WO2019150865A1 PCT/JP2018/047902 JP2018047902W WO2019150865A1 WO 2019150865 A1 WO2019150865 A1 WO 2019150865A1 JP 2018047902 W JP2018047902 W JP 2018047902W WO 2019150865 A1 WO2019150865 A1 WO 2019150865A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
aluminum alloy
heat
refrigerant
sacrificial anode
Prior art date
Application number
PCT/JP2018/047902
Other languages
English (en)
French (fr)
Inventor
甲樹 山田
正憲 神藤
佐藤 健
浩彰 松田
好男 織谷
智彦 坂巻
智也 山口
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to EP18903462.2A priority Critical patent/EP3748276A4/en
Priority to CN201880088059.7A priority patent/CN111684233B/zh
Priority to US16/966,533 priority patent/US11002489B2/en
Publication of WO2019150865A1 publication Critical patent/WO2019150865A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/163Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with conduit assemblies having a particular shape, e.g. square or annular; with assemblies of conduits having different geometrical features; with multiple groups of conduits connected in series or parallel and arranged inside common casing
    • F28D7/1669Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with conduit assemblies having a particular shape, e.g. square or annular; with assemblies of conduits having different geometrical features; with multiple groups of conduits connected in series or parallel and arranged inside common casing the conduit assemblies having an annular shape; the conduits being assembled around a central distribution tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0471Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits having a non-circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05391Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits combined with a particular flow pattern, e.g. multi-row multi-stage radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0219Arrangements for sealing end plates into casing or header box; Header box sub-elements
    • F28F9/0221Header boxes or end plates formed by stacked elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/084Heat exchange elements made from metals or metal alloys from aluminium or aluminium alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/12Fins with U-shaped slots for laterally inserting conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/04Fastening; Joining by brazing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0202Header boxes having their inner space divided by partitions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0219Arrangements for sealing end plates into casing or header box; Header box sub-elements
    • F28F9/0224Header boxes formed by sealing end plates into covers

Definitions

  • Aluminum or aluminum alloy heat exchanger and an air conditioner equipped with the heat exchanger are provided.
  • Patent Document 1 Japanese Patent Laid-Open No. 2016-95087
  • Patent Document 1 Japanese Patent Laid-Open No. 2016-95087
  • the corrosion resistance of the portion made of aluminum affects the service life of the heat exchanger.
  • the heat exchanger may be damaged due to corrosion of the aluminum or the aluminum alloy.
  • the problem of the present disclosure is to improve the corrosion resistance of an aluminum or aluminum alloy heat exchanger at low cost.
  • the heat exchanger of the first aspect includes a plurality of aluminum or aluminum alloy heat transfer tubes arranged in a plurality of stages in a direction intersecting the flow direction of the heat medium, and a connection header that connects the plurality of heat transfer tubes.
  • the connection header has a first inner surface through which a heat medium flows and a first outer surface opposite to the first inner surface, and the first core material made of aluminum or aluminum alloy and the first outer surface with respect to the first core material
  • the corrosion resistance of the second member which is easy to process by not having the sacrificial anode layer, is improved by the third member, thereby reducing the corrosion resistance of the heat exchanger as a whole. Can be improved.
  • the heat exchanger according to the second aspect is the heat exchanger according to the first aspect, in which the third member has a brazing material joint in a partial region or the entire region.
  • the brazing material joint in a partial region or all regions connecting the surface of the second member and the surface of the third member.
  • the increase in the surface area of the second member and the third member due to the gap between the unbonded portions and the increase in the anticorrosion area can be suppressed, and the anticorrosion effect by the second sacrificial anode layer can be improved. ing.
  • the heat exchanger according to the third aspect is a heat exchanger according to the second aspect, wherein the brazing material joint includes a brazing material for brazing in the furnace.
  • the flux can be suppressed by including the brazing brazing material in the furnace in the brazing joint portion, and the deterioration of the corrosion resistance around the brazing portion can be suppressed.
  • the heat exchanger according to the fourth aspect is the heat exchanger according to any one of the first to third aspects, and the second member is an extruded member.
  • the second member is an extruded member, a complicated shape surrounding the communication space can be imparted to the second member at a low cost.
  • a heat exchanger is the heat exchanger according to any one of the first to fourth aspects, and includes a plurality of divided bodies in which the second member is arranged in the step direction of the plurality of heat transfer tubes. , That is.
  • the second member is divided into a plurality of divided bodies, so that the second inner surface for enclosing the communication space can be formed as compared with the case where the second member is formed integrally without being divided. It becomes easy to form the 2nd member to have, and can reduce the cost of a heat exchanger.
  • a heat exchanger according to a sixth aspect is a heat exchanger according to any one of the first to fifth aspects, and is a plate-like member having an end portion where the third member is bent along the second member. , That is.
  • the third member having the second sacrificial anode layer can be obtained at low cost by using the third member as a plate-like member on which the second sacrificial anode layer can be easily formed. The cost of the heat exchanger can be reduced.
  • a heat exchanger according to a seventh aspect is the heat exchanger according to any one of the first to sixth aspects, wherein the first sacrificial anode layer is a brazing material that joins a plurality of heat transfer tubes to the first member. It is.
  • the first sacrificial anode layer also functions as a brazing material, it is easy to join a plurality of heat transfer tubes to the first member, and the cost of the heat exchanger can be reduced. .
  • An air conditioner includes the heat exchanger according to any one of the first to seventh aspects, and performs heat exchange between a heat medium circulating through the heat exchanger and air in a predetermined space, Performs air conditioning in a predetermined space.
  • the corrosion resistance of the heat exchanger as a whole can be improved at low cost, and as a result, the corrosion resistance of the air conditioner can be improved at low cost.
  • the disassembled perspective view which shows a 1st header collecting pipe and a gas collecting pipe.
  • the disassembled perspective view which shows the 2nd header collecting pipe.
  • the disassembled perspective view which expands and shows a part of 2nd header collecting pipe.
  • the expansion perspective view which shows a partition member, a baffle plate, and a partition plate.
  • the partial expanded sectional view which expands and shows a part of 2nd header collecting pipe.
  • the perspective view which shows a connection header.
  • the expansion perspective view which expands and shows the upper part of a connection header.
  • the disassembled perspective view which shows a connection header.
  • the partial expanded sectional view which shows the junction part of a flat tube and a 1st member.
  • FIG. 1 shows an example of an air conditioner to which a heat exchanger according to an embodiment of the present disclosure is applied.
  • a heat medium that is heated or cooled by heat exchange flows through the heat exchanger.
  • This heat medium is a fluid used to transfer heat between the heat exchanger and the equipment outside the heat exchanger.
  • the heat medium include CFC refrigerant such as HFC (hydrofluorocarbon) refrigerant, carbon dioxide, water, and brine.
  • HFC hydrofluorocarbon
  • the air conditioner 1 includes a heat source unit 2, two usage units 3a and 3b, a liquid refrigerant communication tube 4 and a gas refrigerant communication tube connecting the heat source unit 2 and the usage units 3a and 3b. 5.
  • the air conditioner 1 has a function of cooling and heating a room such as a building where the use units 3a and 3b are installed.
  • the refrigerant circuit 6 of the air conditioner 1 is configured by connecting the heat source unit 2 and the utilization units 3a and 3b via the liquid refrigerant communication tube 4 and the gas refrigerant communication tube 5. As the refrigerant circulates in the refrigerant circuit 6, the refrigerant is compressed and heated up, radiated, radiated, decompressed and expanded, absorbed heat, and returned to the state before being compressed. . When the refrigeration cycle is repeated, the refrigerant alternately repeats a low pressure state and a high pressure state.
  • the heat source unit 2 is installed outside the building, for example, on the roof of the building or near the wall of the building.
  • the heat source unit 2 includes an accumulator 7, a compressor 8, a four-way switching valve 11, a heat source side heat exchanger 10, a heat source side expansion valve 12, a liquid side closing valve 13, a gas side closing valve 14, and a heat source side fan 15. ing.
  • the third port 11 c of the four-way switching valve 11 and the inlet pipe of the accumulator 7 are connected by a refrigerant pipe 16.
  • the outlet pipe of the accumulator 7 and the suction port of the compressor 8 are connected by a refrigerant pipe 17.
  • a discharge port of the compressor 8 and the first port 11 a of the four-way switching valve 11 are connected by a refrigerant pipe 18.
  • the second port 11 b of the four-way switching valve 11 and the gas side inlet / outlet port of the heat source side heat exchanger 10 are connected by a refrigerant pipe 19.
  • a liquid side inlet / outlet of the heat source side heat exchanger 10 and one inlet / outlet of the expansion valve 12 are connected by a refrigerant pipe 20.
  • the other inlet / outlet of the expansion valve 12 and the liquid side closing valve 13 are connected by a refrigerant pipe 21.
  • the gas side closing valve 14 and the fourth port 11 d of the four-way switching valve 11 are connected by a refrigerant pipe 22.
  • the usage units 3a and 3b are installed in a room such as a living room or a ceiling space.
  • the usage unit 3a includes a usage-side expansion valve 31a, a usage-side heat exchanger 32a, and a usage-side fan 33a.
  • the usage unit 3b includes a usage-side expansion valve 31b, a usage-side heat exchanger 32b, and a usage-side fan. 33b.
  • the liquid refrigerant communication tube 4 is connected to one inlet / outlet of the two expansion valves 31a and 31b.
  • the other entrance / exit of the expansion valve 31a is connected to one entrance / exit of the use side heat exchanger 32a, and the other entrance / exit of the expansion valve 31b is connected to the one entrance / exit of the use side heat exchanger 32b.
  • the gas refrigerant communication pipe 5 and the other entrance / exit of two utilization side heat exchangers 32a and 32b are connected.
  • the refrigerant is a gas refrigerant made of a substantially gaseous refrigerant, a liquid refrigerant made of a substantially liquid refrigerant, and a gas state and a liquid state refrigerant.
  • the refrigerant changes to a mixed gas-liquid two-phase state will be described as an example.
  • low-pressure gas refrigerant is sucked from the suction port of the compressor 8, and after being compressed by the compressor 8, high-pressure gas refrigerant is discharged from the discharge port of the compressor 8.
  • the high-pressure gas refrigerant is sent from the compressor 8 to the heat source side heat exchanger 10 through the refrigerant pipe 18, the four-way switching valve 11, and the refrigerant pipe 19.
  • the high-temperature and high-pressure gas refrigerant radiates heat by exchanging heat with the air that is passed through the heat source side heat exchanger 10 by the heat source side fan 15 in the heat source side heat exchanger 10 that functions as a refrigerant radiator. Becomes a high-pressure liquid refrigerant.
  • the high-pressure liquid refrigerant is sent from the heat source side heat exchanger 10 to the expansion valves 31 a and 31 b through the refrigerant pipe 20, the expansion valve 12, the refrigerant pipe 21, the liquid side closing valve 13, and the liquid refrigerant communication pipe 4.
  • the expansion valve 12 of the heat source unit 2 is in a fully open state, for example, and allows the refrigerant to pass therethrough without reducing the pressure.
  • the refrigerant sent to the use side expansion valves 31a and 31b is decompressed by the expansion valves 31a and 31b to become a low-pressure gas-liquid two-phase refrigerant.
  • the low-pressure gas-liquid two-phase refrigerant is sent from the expansion valves 31a and 31b to the use side heat exchangers 32a and 32b.
  • the refrigerant in the low-pressure gas-liquid two-phase state is between the indoor air that is passed through the use side heat exchangers 32a and 32b by the use side fans 33a and 33b in the use side heat exchangers 32a and 32b functioning as an evaporator.
  • the heat exchange is performed to absorb the heat and become a low-pressure gas refrigerant.
  • the room air is cooled by supplying the room air cooled in the use side heat exchangers 32a and 32b into the room.
  • the low-pressure gas refrigerant passes from the use side heat exchangers 32a and 32b through the gas refrigerant communication pipe 5, the gas side closing valve 14, the refrigerant pipe 22, the four-way switching valve 11, the refrigerant pipe 16, the accumulator 7, and the refrigerant pipe 17. Then, it is sucked into the compressor 8 again.
  • the compressor 8 passes through the use side heat exchanger 32a, the expansion valve 31a, the expansion valve 12, and the heat source side heat exchanger 10 from the compressor 8 again.
  • a path is formed.
  • one of the expansion valves 31a and 31b can be closed and one of the two paths can be closed.
  • a path from the first port 11a to the fourth port 11d is formed inside the four-way switching valve 11, and a path from the second port 11b to the third port 11c.
  • the four-way switching valve 11 is switched so as to be in a state (state shown by a broken line in FIG. 1).
  • low-pressure gas refrigerant is sucked from the suction port of the compressor 8, and after being compressed by the compressor 8, high-pressure gas refrigerant is discharged from the discharge port of the compressor 8.
  • the high-pressure gas refrigerant is sent from the compressor 8 to the use side heat exchangers 32a and 32b through the refrigerant pipe 18, the four-way switching valve 11, the refrigerant pipe 22, the gas side closing valve 14, and the gas refrigerant communication pipe 5. .
  • the high-temperature and high-pressure gas refrigerant is heated between the use-side heat exchangers 32a and 32b functioning as a refrigerant radiator and the room air passed through the use-side heat exchangers 32a and 32b by the use-side fans 33a and 33b. It exchanges and dissipates heat to become a high-pressure liquid refrigerant.
  • Indoor air is heated by supplying indoor air heated in the use side heat exchangers 32a and 32b into the room.
  • the high-pressure liquid refrigerant is sent from the use side heat exchangers 32a and 32b to the expansion valve 12 through the expansion valves 31a and 31b, the liquid refrigerant communication pipe 4, the liquid side closing valve 13 and the refrigerant pipe 21.
  • the expansion valves 31a and 31b of the utilization units 3a and 3b are in a fully open state, for example, and allow the refrigerant to pass through without being decompressed.
  • the refrigerant sent to the expansion valve 12 of the heat source unit 2 is decompressed by the expansion valve 12 and becomes a low-pressure gas-liquid two-phase refrigerant.
  • the low-pressure gas-liquid two-phase refrigerant is sent from the expansion valve 12 to the heat source side heat exchanger 10.
  • the low-pressure gas-liquid two-phase refrigerant exchanges heat with air that is passed through the heat source side heat exchanger 10 by the heat source side fan 15 to absorb heat.
  • the low-pressure gas refrigerant passes through the refrigerant pipe 19, the four-way switching valve 11, the refrigerant pipe 16, the accumulator 7 and the refrigerant pipe 17 from the heat source side heat exchanger 10 and is again sucked into the compressor 8.
  • FIG. 2 shows a state in which the heat source unit 2 is viewed obliquely from above.
  • the heat source unit 2 further includes a casing 40, and the accumulator 7, the compressor 8, the four-way switching valve 11, the heat source side heat exchanger 10, the expansion valve 12, and the heat source side fan 15 are accommodated in the casing 40.
  • “upper”, “lower”, “left”, “right”, “front”, and “rear” of the heat source unit 2 are the coordinates described in FIG. 2 unless otherwise specified. Means the direction shown.
  • the heat source unit 2 is a heat exchange unit that draws air into the inside from the side surface of the casing 40 and blows out the air heat-exchanged in the casing 40 upward from the top surface of the casing 40.
  • the casing 40 includes a bottom frame 42 that spans a pair of installation legs 41 that extend in the left-right direction, a column 43 that extends in a vertical direction from a corner of the bottom frame 42, and a blowout grill that is attached near the upper end of the column 43. 44 and a front panel 45.
  • Air inlets 40a, 40b, 40c, and 40d are provided on the side surface of the casing 40, and an air outlet 40e is provided on the top surface.
  • the air outlet 40 e is covered with an air outlet grill 44, and the heat source side fan 15 is disposed facing the air outlet grill 44.
  • the bottom frame 42 forms the bottom surface of the casing 40, and the heat source side heat exchanger 10, the accumulator 7 and the compressor 8 are attached on the bottom frame 42.
  • the heat source side heat exchanger 10 the four-way switching valve 11, the refrigerant pipe 16, the accumulator 7, the refrigerant pipe 17, the compressor 8, the refrigerant pipe 18, and the like disposed in the space below the heat source side fan 15. It is shown.
  • the heat source side heat exchanger 10 is arranged along the four side surfaces except for a part of the entire circumference surrounding the four side surfaces, and has a C-shape when viewed from above.
  • the airflow sucked from the suction ports 40a to 40d on the side surface of the casing 40 by the heat source side fan 15 and flowing toward the top surface outlet 40e passes through the heat source side heat exchanger 10.
  • the bottom frame 42 is in contact with the lower end portion of the heat source side heat exchanger 10 and functions as a drain pan that receives drain water generated in the heat source side heat exchanger 10 during cooling operation.
  • FIG. 4 shows a state in which the heat source side heat exchanger 10 is viewed obliquely from above.
  • the heat source side heat exchanger 10 includes a first header collecting pipe 110, a second header collecting pipe 120, a leeward row heat exchanging unit 130, an upwind row heat exchanging unit 140, a connection header 200, and a gas assembly. It has a tube 160 and a refrigerant flow divider 170.
  • the first header collecting pipe 110, the second header collecting pipe 120, the heat exchange units 130 and 140, the connection header 200, the gas collecting pipe 160, and the refrigerant flow divider 170 are all made of an aluminum alloy. It is formed with.
  • the first header collecting pipe 110, the second header collecting pipe 120, the heat exchanging units 130 and 140, the connection header 200, the gas collecting pipe 160, and the refrigerant distributor 170 are assembled in the heat source side heat exchanger 10, an aluminum alloy is used. It is brazed in a furnace with a brazing material made of steel and joined.
  • a thick arrow Ar1 directed from the outside to the inside indicates the flow of air.
  • the arrow Ar2 of a two-dot chain line has shown the flow of the refrigerant
  • the refrigerant returns from the first header collecting pipe 110 through the heat exchange unit 130 in the leeward row at the connection header 200 and passes from the connection header 200 through the heat exchange unit 140 in the upwind row to the second header collection tube. Reach 120.
  • the refrigerant turns back from the second header collecting pipe 120 through the heat exchange unit 140 in the upwind row at the connection header 200, and passes from the connection header 200 through the heat exchange unit 130 in the downwind row to the first header collection tube. 110 is reached.
  • the leeward row heat exchanging section 130 includes a plurality of leeward row flat tubes 63 shown in FIG. 5 and a plurality of leeward row heat transfer fins 65. Also in FIG. 5, the arrow Ar ⁇ b> 1 indicates the air flow.
  • the upwind row heat exchanging section 140 includes a plurality of upwind flat tubes 64 shown in FIG. 5 and a plurality of upwind row heat transfer fins 66.
  • the flat tubes 63 and 64 are flat multi-hole tubes having upper surface portions 63a and 64a and lower surface portions 63b and 64b facing in the vertical direction, and a large number of small passages 63c and 64c through which a refrigerant formed inside flows.
  • the flat tubes 63 are arranged in a plurality of stages in the up-down direction in the leeward row, and the flat tubes 64 are arranged in a plurality of steps in the up-down direction in the upwind row.
  • One end of the flat tube 63 in the leeward row is connected to the first header collecting pipe 110, and the other end is connected to the connection header 200.
  • One end of the flat tube 64 in the windward row is connected to the second header collecting tube 120, and the other end is connected to the connection header 200.
  • Each heat transfer fin 65, 66 extends in the direction along the air flowing between the flat tubes 63, 64 in the adjacent stage and in the vertical direction in order to increase the heat transfer area in the heat exchange of the refrigerant.
  • a plurality of notches 65a and 66a are formed corresponding to the respective stages of the flat tubes 63 and 64.
  • Each notch 65a, 66a is elongated in a direction perpendicular to the up-down direction.
  • the circumferences of the notches 65a and 66a are in close contact with and joined to the upper surface portions 63a and 64a and the lower surface portions 63b and 64b that serve as heat transfer surfaces.
  • FIG. 6 shows a state where the first header collecting pipe 110 and the gas collecting pipe 160 are disassembled.
  • the first header collecting pipe 110 is an elongated hollow cylindrical part whose upper end and lower end are closed.
  • the first header collecting pipe 110 is erected on one end side of the heat exchange section 130 in the leeward row.
  • the first header collecting pipe 110 includes a multi-hole pipe side member 111, a partition member 112, a pipe side member 113, and a partition plate 114.
  • the elongated multi-hole pipe side member 111, the partition member 112, and the pipe side member 113 sandwich the partition member 112 between the multi-hole pipe side member 111 and the pipe side member 113 so that the respective longitudinal directions coincide with the vertical direction.
  • the first header collecting pipe 110 extending in the vertical direction in the heat source side heat exchanger 10 is formed.
  • Two partition plates 114 close the top and bottom of the first header collecting pipe 110.
  • the multi-hole pipe side member 111, the partition member 112, the pipe side member 113, and the partition plate 114 are joined together and integrated in the furnace by, for example, a brazing material.
  • the cross-section of the multi-hole tube side member 111 cut along a plane perpendicular to the vertical direction is arcuate, and the multi-hole tube side member 111 has flat openings in which a plurality of flat tubes 63 arranged in a step direction are inserted.
  • the number of stages of the pipes 63 is formed.
  • a bar-shaped stopper for positioning one end of the plurality of flat tubes 63 extends vertically.
  • openings for allowing the coolant to flow from the multi-hole tube side member 111 toward the pipe side member 113 are formed.
  • a cross section obtained by cutting the pipe side member 113 along a plane perpendicular to the vertical direction is an arc shape, and a plurality of openings 115 into which a plurality of connection pipes 161 arranged in the vertical direction are inserted are formed in the pipe side member 113. Yes.
  • the gas collecting pipe 160 is a bottomed cylindrical straight pipe, and a plurality of openings to which a plurality of connecting pipes 161 are connected are formed on a side surface.
  • the gas collecting pipe 160 and the first header collecting pipe 110 are bound by a binding band 162 made of an aluminum alloy.
  • An inverted U-shaped pipe 180 made of an aluminum alloy is connected to the upper part of the gas collecting pipe 160.
  • the inverted U-shaped pipe 180 is a part of the refrigerant pipe 19.
  • the heat source side heat exchanger 10 communicates from the plurality of flat tubes 63 in the leeward row to the inverted U-shaped pipe 180 through the first header collecting pipe 110, the plurality of connecting pipes 161, and the gas collecting pipe 160.
  • FIG. 7 shows a state in which the second header collecting pipe 120 is disassembled.
  • FIG. 8 is an enlarged view of a part of the second header collecting pipe 120 shown in FIG.
  • FIG. 9 is an enlarged view of a part of the partition member 122 to which the partition plate 124 and the rectifying plate 125 are attached.
  • FIG. 10 shows a state where the assembled second header collecting pipe 120 is viewed from above.
  • FIG. 11 shows a cross section relating to a part of the structure of the second header collecting pipe 120.
  • the second header collecting pipe 120 is an elongated hollow cylindrical part whose upper end and lower end are closed.
  • the second header collecting pipe 120 is erected on one end side of the heat exchange unit 140 in the windward row.
  • the second header collecting pipe 120 includes a multi-hole pipe side member 121, a partition member 122, a pipe side member 123, a partition plate 124 and a rectifying plate 125.
  • the elongated multi-hole pipe side member 121, the partition member 122, and the pipe side member 123 are such that the partition member 122 is sandwiched between the multi-hole pipe side member 121 and the pipe side member 123, and the respective longitudinal directions coincide with the vertical direction.
  • the multi-hole pipe side member 121, the partition member 122, and the pipe side member 123 form a second header collecting pipe 120 that extends in the vertical direction in the heat source side heat exchanger 10.
  • Two partition plates 124 close the upper and lower sides of the second header collecting pipe 120.
  • the multi-hole pipe side member 121, the partition member 122, the pipe side member 123, the partition plate 124, and the rectifying plate 125 are joined together and integrated in the furnace by, for example, a brazing material.
  • the interior of the second header collecting pipe 120 is partitioned by a plurality of partition plates 124 and divided into a plurality of spaces.
  • the space SP ⁇ b> 1 formed between the two partition plates 124 communicates with a plurality of flat tubes 64 and at least one capillary tube 190.
  • the rectifying plate 125 is disposed near the upper portion of the capillary tube 190.
  • the partition member 122 is formed with an opening 122 a near the lower partition plate 124, an opening 122 b near the upper partition plate 124, and an opening 122 c near the rectifying plate 125.
  • the rectifying plate 125 is formed with a rising opening 125a.
  • the refrigerant that reaches between the partition member 122 and the multi-hole tube side member 121 through the opening 122a from the capillary tube 190 is blown upward by the small ascending opening 125a. Thereafter, the refrigerant forms a loop-like flow (flow indicated by a thick arrow Ar4 in FIG. 11) that passes through the opening 122c next to the opening 122b.
  • the refrigerant flows separately from the loop-shaped flow into the plurality of flat tubes 64 between the rectifying plate 125 and the upper partition plate 124.
  • FIG. 12 shows a state in which the connection header 200 is viewed obliquely from above.
  • the upper part of the connection header 200 is shown enlarged.
  • FIG. 14 shows a state where the connection header 200 is disassembled.
  • 15 shows a cross-sectional shape cut along line II in FIG. 13
  • FIG. 16 shows a cross-sectional shape cut along line II-II in FIG.
  • the connection header 200 is an elongated hollow cylindrical part whose upper end and lower end are closed.
  • the connection header 200 is erected on the other end side of the heat exchange unit 130 in the leeward row and the heat exchange unit 140 in the windward row.
  • the connection header 200 is configured by joining the first member 210, the second member 220, and the third member 230 together.
  • the first member 210 has a multi-hole pipe side wall 213 that is long in the vertical direction, and a direction that intersects the multi-hole pipe side wall 213 from the long side of the multi-hole pipe side wall 213. It has two extending side walls 214 and 215.
  • a plurality of claws 216 are formed on the long side opposite to the multi-hole tube side wall 213 among the two long sides of the side walls 214 and 215. The plurality of claws 216 are bent so as to contact the exposed surface 237 of the third member 230 in the assembled state shown in FIGS. 12 and 13.
  • two openings 211 and 212 are formed side by side in a direction orthogonal to the vertical direction.
  • the openings 211 and 212 are provided to correspond to the other end of the flat tubes 63 in the plural lee rows and the other end of the flat tubes 64 in the plural lee rows, respectively.
  • the second member 220 is divided into a plurality of divided bodies 221 to 227.
  • Each of the divided bodies 221 to 227 of the second member 220 has a flat plate-shaped sealing wall 241 extending in the vertical direction and a partition wall 242 extending in a direction intersecting the sealing wall 241.
  • the sealing wall 241 is a wall facing the multi-hole tube side wall 213. Openings 211 and 212 are arranged between the partition walls 242 adjacent in the vertical direction. That is, in the communication space SP2 surrounded by the partition wall 242, the multi-hole tube side wall 213, the side walls 214 and 215, and the sealing wall 241 that are adjacent in the vertical direction, the flat tube 63 of one leeward row is arranged.
  • the passage 63c and the passage 64c of one flat tube 64 in the windward row communicate with each other. Accordingly, during the cooling operation, the refrigerant that has entered the communication space SP2 through the passage 63c of the flat tube 63 in one leeward row is folded back in the communication space SP2 and is supplied to the one wind arranged in the adjacent row. It flows into the passage 64c of the upper row of flat tubes 64. In the heating operation, contrary to the cooling operation, the refrigerant that has entered the communication space SP2 through the passage 64c of the flat tube 64 in one upwind row is folded back in the communication space SP2 and arranged in the adjacent row. It flows into the passage 63c of the flat tube 63 in one leeward row.
  • the third member 230 is divided into an upper member 231 and a lower member 232.
  • the upper member 231 includes an upper end portion 233 and an upper flat portion 234.
  • the upper end portion 233 and the flat plate-like upper flat portion 234 extending long downward from the upper end portion 233 can be formed by bending the end portion of the flat plate-like member.
  • the lower member 232 includes a lower end portion 235 and a lower flat portion 236.
  • the lower end portion 235 and the flat plate-like lower flat portion 236 extending long downward from the lower end portion 235 can be formed by bending the end portion of the flat plate-like member.
  • the upper flat part 234 and the lower flat part 236 are not straight, and the upper flat part 234 and the lower flat part 236 are rectangular by fitting the other concave part corresponding to one convex part. Have a shape.
  • the lengths of the upper flat portion 234 and the lower flat portion 236 in the vertical direction correspond to the vertical lengths of the seven sealing walls 241 when the divided bodies 221 to 227 are arranged vertically. That is, the upper flat part 234 and the lower flat part 236 are joined to the seven sealing walls 241.
  • the upper end 233 is bonded to the upper surface of the divided body 221, and the lower end 235 is bonded to the lower surface of the divided body 227.
  • the first member 210 includes a first core material 311, a first sacrificial anode layer 312, and a first cladding layer 313.
  • the first core material 311, the first sacrificial anode layer 312 and the first cladding layer 313 are made of an aluminum alloy.
  • an aluminum alloy used for the first core material 311 for example, there is an aluminum alloy (Al—Mn-based aluminum alloy) to which manganese (Mn) is added.
  • Al—Mn-based aluminum alloy aluminum alloys having an alloy number of 3000 series defined by Japanese Industrial Standards (for example, JISH4000).
  • an aluminum alloy used for the first cladding layer 313 functioning as a brazing material for example, an aluminum alloy to which silicon (Si), magnesium (Mg), and nickel (Ni) are added (Al-Si-Mg-Ni series aluminum alloy).
  • the material of the first sacrificial anode layer 312 is an electrochemically base metal with respect to the material of the first core material 311.
  • the first sacrificial anode layer 312 also functions as a brazing material for the first core material 311.
  • the aluminum alloy used for the first sacrificial anode layer 312 include an aluminum alloy in which 0.5 to 3.0% Zn is added to an Al—Si—Mg—Ni-based aluminum alloy.
  • the first sacrificial anode layer 312 may be formed by adding 0.5 to 3.0% Zn to the aluminum alloy forming the first cladding layer 313.
  • Al—Mn-based aluminum alloy which is the material of the first core material 311
  • an aluminum alloy in which Zn is added to the Al—Si—Mg—Ni-based aluminum alloy which is the material of the first sacrificial anode layer 312
  • the aluminum alloy in which Zn is added to the Al—Si—Mg—Ni based aluminum alloy is set to be a base metal rather than the Al—Mn based aluminum alloy.
  • the first member 210 can be obtained by processing an aluminum alloy plate member in which the first sacrificial anode layer 312 is formed on one main surface and the first cladding layer 313 is formed on the other main surface.
  • the plate member on which the first sacrificial anode layer 312 and the first cladding layer 313 are formed can be obtained at a low cost by, for example, rolling joining. Such rolling joining can be performed by, for example, hot extrusion.
  • the first member 210 is obtained by forming the openings 211 and 212, forming the claws 216, or bending the aluminum alloy plate member.
  • the second member 220 is made of an aluminum alloy.
  • an aluminum alloy used for the second member 220 there is an Al—Mn-based aluminum alloy.
  • the material of the second member 220 is preferably the same as the material of the first core material 311.
  • the second member 220 is preferably integrally formed by, for example, extrusion molding, and for this purpose, is preferably composed of a single aluminum alloy.
  • the second member 220 is an extruded member.
  • the third member 230 includes a second core material 331, a second sacrificial anode layer 332, and a second cladding layer 333.
  • the second core material 331, the second sacrificial anode layer 332, and the second cladding layer 333 are an aluminum alloy.
  • the material of the second core material 331 is preferably the same as the material of the first core material 311.
  • the second cladding layer 333 functioning as a brazing material
  • the material of the second cladding layer 333 is preferably the same material as that of the first cladding layer 313 for simultaneous brazing in the furnace.
  • the material of the second sacrificial anode layer 332 is an electrochemically base metal with respect to the material of the second core material 331.
  • the second sacrificial anode layer 332 also functions as a brazing material for the second core material 331.
  • the aluminum alloy used for the second sacrificial anode layer 332 include an aluminum alloy in which 0.5 to 3.0% Zn is further added to an Al—Si—Mg—Ni-based aluminum alloy.
  • the second sacrificial anode layer 332 may be formed by adding 0.5 to 3.0% Zn to the aluminum alloy forming the second cladding layer 333.
  • the aluminum alloy in which Zn is added to the Al—Si—Mg—Ni based aluminum alloy is set to be a base metal rather than the Al—Mn based aluminum alloy.
  • the third member 230 can be obtained by processing an aluminum alloy plate member in which the second sacrificial anode layer 332 is formed on one main surface and the second cladding layer 333 is formed on the other main surface.
  • the plate member on which the second sacrificial anode layer 332 and the second cladding layer 333 are formed can be obtained at a low cost by, for example, rolling joining. Such rolling joining can be performed by, for example, hot extrusion.
  • the third member 230 is obtained by forming a joint portion shape of the upper flat part 234 and the lower flat part 236 on the plate member of such an aluminum alloy or bending the upper end part 233 and the lower end part 235.
  • the first member 210 has a first inner surface 218 through which a heat medium flows and a first outer surface 217 opposite to the first inner surface 218.
  • the first member 210 has a first outer surface 217 that faces the outer side of the connection header 200 and a first inner surface 218 that faces the inner side of the connection header 200.
  • a plurality of ends of the plurality of flat tubes 63 and 64 penetrating the first core material 311 of the first member 210 are disposed on the first inner surface 218 side.
  • the second member 220 has a second inner surface 228 through which the heat medium flows and a second outer surface 229 that is a surface opposite to the second inner surface 228.
  • the second member 220 has a second inner surface 228 facing the inner side of the connection header 200.
  • the first inner surface 218 and the second inner surface 228 surround a plurality of communication spaces SP2 that allow the ends of the flat tubes 63 and 64 to communicate with each other. That is, the first inner surface 218 and the second inner surface 228 face the communication space SP2.
  • the third member 230 has a bonding surface 238 that faces a partial region of the second outer surface 229 and an exposed surface 237 that is a surface opposite to the bonding surface 238. In other words, the third member 230 has an exposed surface 237 that faces the outside of the connection header 200.
  • the joint surface 238 opposite to the exposed surface 237 of the third member 230 is joined to the second outer surface 229.
  • a joint portion between the joint surface 238 of the third member 230 and the second outer surface 229 of the second member 220 is a brazing material joint portion.
  • the brazing material joint between the joining surface 238 of the third member 230 and the second outer surface 229 of the second member 220 includes a second cladding layer 333 as a brazing material for brazing in the furnace.
  • first inner surface 218 of the first member 210 that contacts the second member 220 and the third member 230 is brazed to the second member 220 and the third member 230 by the first cladding layer 313.
  • first cladding layer 313 brazes the front end surface and the side surface of the partition wall 242 of the second member 220 to the first inner surface 218 of the first member 210, and the side surface of the sealing wall 241 to the first inner surface 218. It is attached.
  • the first sacrificial anode layer 312 formed on the first outer surface 217 of the first member 210 also functions as a brazing material, and a fillet 341 is provided on the flat tubes 63 and 64 as shown in FIG. Form.
  • the first cladding layer 313 also forms fillets 342 on the flat tubes 63 and 64.
  • the entire first outer surface 217 of the first member 210 is covered with the first sacrificial anode layer 312. Note that there is a portion not covered with the first sacrificial anode layer 312 at the end of the claw 216, but this portion is in the vicinity of the first sacrificial anode layer 312, and thus is protected by the first sacrificial anode layer 312. .
  • the tips of the upper end 233 and the lower end 235 of the second member 220 are bent into an L shape to increase the bonding area with the first member 210.
  • the tips of the upper end portion 233 and the lower end portion 235 are not covered with the second sacrificial anode layer 332, but since the second sacrificial anode layer 332 is present in the vicinity, corrosion is suppressed. Further, since the distance from the tip of the upper end 233 and the lower end 235 to the communication space SP2 is larger than the thickness of the upper end 233 and the lower end 235, the exposure of the tips of the upper end 233 and the lower end 235 causes leakage of the refrigerant due to corrosion. Almost no effect.
  • the second member 220 made of aluminum alloy has a complicated shape in which a plurality of partition walls 242 protrude from the sealing wall 241. If the sacrificial anode layer is formed on the sealing wall 241 having such a complicated shape, the cost is increased and the price of the second member 220 increases. By not providing the sacrificial anode layer on the second member 220, the second member 220 can be obtained at a low cost by, for example, extrusion molding as in the above embodiment.
  • the third member 230 is joined to a partial region 51 of the second member 220 other than the second inner surface 228 of the second member 220.
  • the partial region 51 is the joint surface 238 on the opposite side of the exposed surface 237 of the third member 230.
  • a part of the second member 220 that is not covered by the first member 210 and is insufficiently protected against corrosion is covered with the second sacrificial anode layer 332 of the third member 230, and the second member 220.
  • the third member 230 improves the corrosion resistance.
  • the corrosion resistance of the connection header 200 of the heat source side heat exchanger 10 can be improved at low cost, and as a result, the overall corrosion resistance of the heat source side heat exchanger 10 can be improved at low cost.
  • the brazing material joint between the joining surface 238 of the third member 230 and the second outer surface 229 of the second member 220 includes the second cladding layer 333 as a brazing material for brazing in the furnace.
  • the brazing brazing material in the furnace is included in the brazing material joint between the second member 220 and the third member 230, the flux can be suppressed, and the deterioration of the corrosion resistance around the brazed portion can be suppressed.
  • the first clad layer 313 is also a brazing material for brazing in the furnace, the flux can be suppressed even at the joint portion joined by the first clad layer 313, and the deterioration of the corrosion resistance around the brazed portion can be suppressed. .
  • the second member 220 is an extrusion-molded member as in the above embodiment, a complicated shape surrounding the communication space SP2 can be imparted to the second member 220 at a low cost.
  • the partition wall 242 of the second member 220 is formed by cutting or welding, the partition wall 242 can be formed at a lower cost by extrusion molding.
  • the second member 220 is divided into the plurality of divided bodies 221 to 227, so that the second member 220 for surrounding the communication space SP can be formed as compared with the case where the second member 220 is formed integrally without being divided.
  • the second member 220 having the inner surface 228 is easily formed. As a result, the cost of the connection header 200 can be reduced, and consequently the cost of the heat source side heat exchanger 10 can be reduced.
  • the third member 230 of the above embodiment is a plate-like member on which the second sacrificial anode layer 332 can be easily formed, and the third member 230 having the second sacrificial anode layer 332 is inexpensive.
  • the cost of the connection header 200 can be reduced, and consequently the cost of the heat source side heat exchanger 10 can be reduced.
  • the upper end 233 and the lower end 235 that are the ends of the third member 230 are bent along the second member 220, and the upper end 233 and the lower end 235 can be hooked on the second member 220, The third member 230 is easily assembled.
  • the first sacrificial anode layer 312 of the above embodiment also functions as a brazing material, it is easy to join the flat tubes 63 and 64 that are a plurality of heat transfer tubes to the first member 210. As a result, the cost of the connection header 200 can be reduced, and consequently the cost of the heat source side heat exchanger 10 can be reduced.
  • a layer made of an Al—Zn—Mg based aluminum alloy can be used as the first sacrificial anode layer 312 and the second sacrificial anode layer 332 even for such an aluminum body.
  • the heat exchanging units 130 and 140, the first header collecting pipe 110, the second header collecting pipe 120, the binding band 162, and the inverted U-shaped pipe 180 may be made of aluminum.
  • first sacrificial anode layer 312 and the second sacrificial anode layer 332 are formed of the same material. However, they may be formed of different materials. For example, when the first sacrificial anode layer 312 and the second sacrificial anode layer 332 are formed of an aluminum alloy, the kind of metal other than aluminum contained in the alloy and The materials of the first sacrificial anode layer 312 and the second sacrificial anode layer 332 may be made different from each other by making the compounding ratios of the metals different from each other.
  • the first sacrificial anode layer 312 may be formed of a metal that is electrochemically lower than the first core material 311, and the second sacrificial anode layer 332 is a metal that is electrochemically lower than the second core material 331. It may be formed.
  • (6-3) Modification 1C In the above embodiment, the case where the first core material 311, the second core material 331, and the second member 220 are made of the same material has been described. However, the first core material 311, the second core material 331, and the second member 220 may be made of different materials. For example, when the first core material 311, the second core material 331, and the second member 220 are formed of an aluminum alloy, the types of metals other than aluminum and / or the compounding ratio of the metals included in the alloy are made different. The materials of the first core material 311, the second core material 331, and the second member 220 may be different from each other.
  • connection header 200 of the heat source side heat exchanger 10 has been described as an example, but the configuration of the present disclosure may be applied to the connection headers of the use side heat exchangers 32a and 32b.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

アルミニウム製またはアルミニウム合金製の熱交換器の耐食性を安価に向上させる。連結ヘッダ(200)の第1部材(210)は、第1外面(217)及び熱媒体が流れる第1内面(218)を持ち、アルミニウム合金製の第1心材(311)及び第1外面(217)に第1犠牲陽極層(312)を有する。犠牲陽極層を有さないアルミニウム合金製の第2部材(220)は、第2外面(229)及び熱媒体が流れる第2内面(228)を持つ。第3部材(230)は、露出面(237)を持ち、アルミニウム合金製の第2心材(331)及び露出面(237)に第2犠牲陽極層(332)を有する。第3部材(230)は、第2部材(220)の第2外面(229)の一部領域に接合面(238)を接合して一部領域を覆う。

Description

熱交換器及び空気調和装置
 アルミニウム製またはアルミニウム合金製の熱交換器及び、当該熱交換器を備える空気調和装置。
 従来の熱交換器の中には、例えば特許文献1(特開2016-95087号公報)に記載されているように、アルミニウム製の熱交換器がある。
 特許文献1に記載されているアルミニウム製の熱交換器においては、アルミニウムからなる箇所の耐食性が熱交換器の耐用年数に影響を与える。例えば、連結ヘッダにアルミニウムまたはアルミニウム合金が用いられているときには、アルミニウムまたはアルミニウム合金の腐食によって熱交換器が損傷する場合がある。
 本開示の課題は、アルミニウム製またはアルミニウム合金製の熱交換器の耐食性を安価に向上させることである。
 第1観点の熱交換器は、熱媒体の流れ方向に対して交差する方向に複数段配置されているアルミニウム製またはアルミニウム合金製の複数の伝熱管と、複数の伝熱管を連結する連結ヘッダとを備え、連結ヘッダは、熱媒体が流れる第1内面及び第1内面の反対側の面である第1外面を持ち、アルミニウム製またはアルミニウム合金製の第1心材及び第1外面に第1心材に対する第1犠牲陽極層を有し、複数の伝熱管の複数の一端を第1内面に配置する第1部材と、熱媒体が流れる第2内面及び第2内面の反対側の面である第2外面を持ち、犠牲陽極層を有さないアルミニウム製またはアルミニウム合金製の第2部材と、前記第2外面及び/または前記第1外面に対向する接合面及び前記接合面とは反対側の面である露出面を持ち、アルミニウム製またはアルミニウム合金製の第2心材及び露出面に第2心材に対する第2犠牲陽極層を有し、第2外面の一部領域または全領域に接合面を接合して一部領域または全領域を覆う第3部材とを有する。
 このような構成の熱交換器では、犠牲陽極層を有さないことによって加工が容易である第2部材の耐食性を、第3部材で向上させることで、熱交換器の全体としての耐食性を安価に向上させることができる。
 第2観点の熱交換器は、第1観点の熱交換器であって、第3部材が一部領域または全領域にろう材接合部を有する、ものである。このような構成の熱交換器では、第2部材の面と第3部材の面とを接続する一部領域または全領域のろう材接合部によって、ろう材接合部の全面の良好な接合を確保でき、例えば接合されない部分の隙間により第2部材及び第3部材の表面積が増加して防食面積が増加するのを抑制することができ、第2犠牲陽極層による防食効果を効率化することができている。
 第3観点の熱交換器は、第2観点の熱交換器であって、ろう材接合部が炉中ろう付け用ろう材を含む、ものである。このような構成の熱交換器では、ろう材接合部に炉中ろう付け用ろう材を含むことによってフラックスを抑制でき、ろう付け部分の周囲の耐食性の低下を抑制することができる。
 第4観点の熱交換器は、第1観点から第3観点のいずれかの熱交換器であって、第2部材が押出成形部材である、ものである。このような構成の熱交換器では、第2部材が押出成形部材であることから、連通空間を囲う複雑な形状を第2部材に対して安価に付与することができる。
 第5観点の熱交換器は、第1観点から第4観点のいずれかの熱交換器であって、第2部材が複数の伝熱管の段方向に並べて配置されている複数の分割体を含む、ものである。このような構成の熱交換器では、第2部材を複数の分割体に分割することで、分割せずに第2部材を一体で作成する場合に比べて連通空間を囲むための第2内面を持つ第2部材を形成し易くなり、熱交換器のコストを引き下げることができる。
 第6観点の熱交換器は、第1観点から第5観点のいずれかの熱交換器であって、第3部材が第2部材に沿って折り曲げられている端部を有する板状部材である、ものである。このような構成の熱交換器では、第3部材を第2犠牲陽極層の形成が容易である板状部材とすることで、第2犠牲陽極層を有する第3部材を安価に得ることができ、熱交換器のコストを引き下げることができる。
 第7観点の熱交換器は、第1観点から第6観点のいずれかの熱交換器であって、第1犠牲陽極層が第1部材に複数の伝熱管を接合するろう材である、ものである。このような構成の熱交換器では、第1犠牲陽極層がろう材としても機能するので、第1部材への複数の伝熱管の接合が容易になり、熱交換器のコストを引き下げることができる。
 第8観点の空気調和装置は、第1観点から第7観点のいずれかの熱交換器を備え、熱交換器を通って循環する熱媒体と所定空間の空気との熱交換を行わせて、所定空間の空気調和を行う。
 このような構成の空気調和装置では、熱交換器の全体としての耐食性を安価に向上させることができ、ひいては空気調和装置の耐食性を安価に向上させることができる。
本開示の空気調和装置の冷媒回路の一例を示す図。 熱源ユニットを示す斜視図。 熱源ユニットの底フレーム上の熱源側熱交換器及び圧縮機などを示す平面図。 熱源側熱交換器を示す斜視図。 熱交換部を示す斜視図。 第1ヘッダ集合管及びガス集合管を示す分解斜視図。 第2ヘッダ集合管を示す分解斜視図。 第2ヘッダ集合管の一部を拡大して示す分解斜視図。 仕切部材、整流板及び仕切板を示す拡大斜視図。 第2ヘッダ集合管の平面図。 第2ヘッダ集合管の一部を拡大して示す部分拡大断面図。 連結ヘッダを示す斜視図。 連結ヘッダの上部を拡大して示す拡大斜視図。 連結ヘッダを示す分解斜視図。 図13のI‐I線に沿った連結ヘッダの断面構造を模式的に示す図。 図13のII‐II線に沿った連結ヘッダの断面構図を模式的に示す図。 扁平管と第1部材の接合部を示す部分拡大断面図。
 (1)全体構成
 本開示の実施形態に係る熱交換器が適用される空気調和装置の一例が図1に示されている。熱交換器には、熱交換によって加熱されまたは冷却される熱媒体が流れる。この熱媒体は、熱交換器と熱交換器の外部にある機器との間で熱を移動させるために用いられる流体である。熱媒体としては、例えば、HFC(hydrofluorocarbon)冷媒などのフロン冷媒、二酸化炭素、水、ブラインがある。熱媒体には冷媒が含まれ、以下においては熱媒体が冷媒である場合について説明する。図1に示されている空気調和装置1は、熱源ユニット2と、2つの利用ユニット3a、3bと、熱源ユニット2と利用ユニット3a、3bとを接続する液冷媒連絡管4及びガス冷媒連絡管5とを有している。空気調和装置1には、利用ユニット3a、3bが設置されている建物等の室内を冷房及び暖房する機能がある。空気調和装置1の冷媒回路6は、液冷媒連絡管4及びガス冷媒連絡管5を介して熱源ユニット2と利用ユニット3a、3bとが接続されることによって構成されている。この冷媒回路6の中を冷媒が循環することによって、冷媒が、圧縮されて昇温され、放熱し、減圧膨張され、吸熱し、そして圧縮される前の状態に戻るような冷凍サイクルが繰り返される。冷凍サイクルが繰り返される際に、冷媒は、低圧の状態と高圧の状態とを交互に繰り返すことになる。
 熱源ユニット2は、例えば建物の屋上や建物の壁面近傍等の室外に設置される。熱源ユニット2は、アキュムレータ7、圧縮機8、四路切換弁11、熱源側熱交換器10、熱源側の膨張弁12、液側閉鎖弁13、ガス側閉鎖弁14及び熱源側ファン15を備えている。熱源ユニット2の中で、四路切換弁11の第3ポート11cとアキュムレータ7の入口管とが冷媒管16によって接続されている。アキュムレータ7の出口管と圧縮機8の吸入口とが冷媒管17によって接続されている。圧縮機8の吐出口と四路切換弁11の第1ポート11aが冷媒管18によって接続されている。四路切換弁11の第2ポート11bと熱源側熱交換器10のガス側出入口とが冷媒管19によって接続されている。熱源側熱交換器10の液側出入口と膨張弁12の一方出入口とが冷媒管20によって接続されている。膨張弁12の他方出入口と液側閉鎖弁13とが冷媒管21によって接続されている。そして、ガス側閉鎖弁14と四路切換弁11の第4ポート11dとが冷媒管22によって接続されている。
 利用ユニット3a、3bは、例えば居室や天井裏空間等の室内に設置される。利用ユニット3aは、利用側の膨張弁31aと利用側熱交換器32aと利用側ファン33aとを有し、利用ユニット3bは、利用側の膨張弁31bと利用側熱交換器32bと利用側ファン33bとを有している。液冷媒連絡管4と2つの膨張弁31a,31bの一方出入口とが接続されている。膨張弁31aの他方出入口と利用側熱交換器32aの一方出入口とが接続され、膨張弁31bの他方出入口と利用側熱交換器32bの一方出入口とが接続されている。そして、ガス冷媒連絡管5と2つの利用側熱交換器32a,32bの他方出入口とが接続されている。
 (2)空気調和装置1の動作
 (2-1)冷房運転
 冷房運転時に空気調和装置1では、圧縮機8から、熱源側熱交換器10、膨張弁12、膨張弁31a及び利用側熱交換器32aを通過して再び圧縮機8に戻る循環経路と、圧縮機8から、熱源側熱交換器10、膨張弁12、膨張弁31b及び利用側熱交換器32bを通過して再び圧縮機8に戻る循環経路のうちの少なくとも一方の経路が形成される。例えば、膨張弁31a,31bのうちの一方を閉じて、2つのうちの一方の経路を閉鎖することもできる。これらの経路を形成するために、冷房運転時には、四路切換弁11の内部で第1ポート11aから第2ポート11bへの通路が形成されるとともに第3ポート11cから第4ポート11dへの通路が形成される状態(図1の実線で示されている状態)になるように、四路切換弁11が切り換えられる。なお、ここでは、冷媒が、蒸気圧縮式冷凍サイクルにおいて、実質的に気体状態の冷媒からなるガス冷媒、実質的に液体状態の冷媒からなる液冷媒、及び気体の状態と液体の状態の冷媒が入り混じっている気液二相状態の冷媒に変化する場合を例に挙げて説明する。
 冷房運転時の冷媒回路6において、低圧のガス冷媒が圧縮機8の吸入口から吸入され、圧縮機8で圧縮された後に圧縮機8の吐出口から高圧のガス冷媒が吐出される。高圧のガス冷媒は、圧縮機8から冷媒管18と四路切換弁11と冷媒管19を通って熱源側熱交換器10に送られる。高温高圧のガス冷媒は、冷媒の放熱器として機能する熱源側熱交換器10において、熱源側ファン15によって熱源側熱交換器10を通過させられる空気との間で熱交換を行って放熱し、高圧の液冷媒になる。高圧の液冷媒は、熱源側熱交換器10から冷媒管20、膨張弁12、冷媒管21、液側閉鎖弁13及び液冷媒連絡管4を通って膨張弁31a,31bに送られる。このとき、熱源ユニット2の膨張弁12は、例えば全開の状態になっていて減圧せずに、冷媒を通過させる。利用側膨張弁31a,31bに送られた冷媒は、膨張弁31a,31bによって減圧されて、低圧の気液二相状態の冷媒になる。低圧の気液二相状態の冷媒は、膨張弁31a,31bから利用側熱交換器32a,32bに送られる。低圧の気液二相状態の冷媒は、蒸発器として機能する利用側熱交換器32a,32bにおいて、利用側ファン33a、33bによって利用側熱交換器32a,32bを通過させられる室内空気との間で熱交換を行って吸熱し、低圧のガス冷媒になる。利用側熱交換器32a,32bにおいて冷却された室内空気が室内に供給されることで室内の冷房が行われる。低圧のガス冷媒は、利用側熱交換器32a,32bからガス冷媒連絡管5、ガス側閉鎖弁14、冷媒管22、四路切換弁11、冷媒管16、アキュムレータ7及び冷媒管17を通って、再び、圧縮機8に吸入される。
 (2-2)暖房運転
 暖房運転時に空気調和装置1では、圧縮機8から、利用側熱交換器32a、膨張弁31a、膨張弁12及び熱源側熱交換器10を通過して再び圧縮機8に戻る循環経路と、圧縮機8から、利用側熱交換器32b、膨張弁31b、膨張弁12及び熱源側熱交換器10を通過して再び圧縮機8に戻る循環経路のうちの少なくとも一方の経路が形成される。例えば、膨張弁31a,31bのうちの一方を閉じて、2つのうちの一方の経路を閉鎖することもできる。これらの経路を形成するために、暖房運転時には、四路切換弁11の内部で第1ポート11aから第4ポート11dへの通路が形成されるとともに第2ポート11bから第3ポート11cへの通路が形成される状態(図1の破線で示されている状態)になるように、四路切換弁11が切り換えられる。
 暖房運転時の冷媒回路6において、低圧のガス冷媒が圧縮機8の吸入口から吸入され、圧縮機8で圧縮された後に圧縮機8の吐出口から高圧のガス冷媒が吐出される。高圧のガス冷媒は、圧縮機8から冷媒管18と四路切換弁11と冷媒管22とガス側閉鎖弁14とガス冷媒連絡管5とを通って利用側熱交換器32a,32bに送られる。高温高圧のガス冷媒は、冷媒の放熱器として機能する利用側熱交換器32a,32bにおいて、利用側ファン33a,33bによって利用側熱交換器32a,32bを通過させられる室内空気との間で熱交換を行って放熱し、高圧の液冷媒になる。利用側熱交換器32a,32bにおいて加熱された室内空気が室内に供給されることで室内の暖房が行われる。高圧の液冷媒は、利用側熱交換器32a,32bから膨張弁31a,31b、液冷媒連絡管4、液側閉鎖弁13及び冷媒管21を通って膨張弁12に送られる。このとき、利用ユニット3a,3bの膨張弁31a,31bは、例えば全開の状態になっていて減圧せずに、冷媒を通過させる。熱源ユニット2の膨張弁12に送られた冷媒は、膨張弁12によって減圧されて、低圧の気液二相状態の冷媒になる。低圧の気液二相状態の冷媒は、膨張弁12から熱源側熱交換器10に送られる。低圧の気液二相状態の冷媒は、蒸発器として機能する熱源側熱交換器10において、熱源側ファン15によって熱源側熱交換器10を通過させられる空気との間で熱交換を行って吸熱し、低圧のガス冷媒になる。低圧のガス冷媒は、熱源側熱交換器10から冷媒管19、四路切換弁11、冷媒管16、アキュムレータ7及び冷媒管17を通って、再び、圧縮機8に吸入される。
 (3)熱源ユニット2の構成
 図2には、熱源ユニット2を斜め上方から見た状態が示されている。熱源ユニット2は、ケーシング40をさらに備え、ケーシング40の中にアキュムレータ7、圧縮機8、四路切換弁11、熱源側熱交換器10、膨張弁12及び熱源側ファン15を収納している。なお、以下の説明において、熱源ユニット2の「上」、「下」、「左」、「右」、「前」、「後」は、特にことわりのない限り、図2に記載された座標に示されている方向を意味している。熱源ユニット2は、ケーシング40の側面から内部に空気を吸い込んで、ケーシング40の中で熱交換された空気をケーシング40の天面から上方に吹き出す熱交換ユニットである。
 ケーシング40は、左右方向に延びる一対の据付脚41上に架け渡される底フレーム42と、底フレーム42の角部から鉛直方向に延びる支柱43と、支柱43の上端近傍に取り付けられている吹出グリル44と、前面パネル45とを有している。ケーシング40の側面に空気の吸込口40a、40b、40c、40dが設けられ、天面に空気の吹出口40eが設けられている。吹出口40eは、吹出グリル44で覆われており、熱源側ファン15が吹出グリル44に面して配置されている。
 底フレーム42がケーシング40の底面を形成しており、底フレーム42上に、熱源側熱交換器10、アキュムレータ7及び圧縮機8が取り付けられている。図3には、熱源側ファン15の下の空間に配置されている熱源側熱交換器10、四路切換弁11、冷媒管16、アキュムレータ7、冷媒管17、圧縮機8及び冷媒管18などが示されている。熱源側熱交換器10は、4つの側面を囲む全周囲のうちの一部分を除いて4つの側面に沿うように配置され、上から見るとC字形の形状を呈する。熱源側ファン15によってケーシング40の側面の吸込口40a~40dから吸い込まれて天面の吹出口40eに向って流れる気流は、熱源側熱交換器10を通過する。底フレーム42は、熱源側熱交換器10の下端部分に接しており、冷房運転時に熱源側熱交換器10において発生するドレン水を受けるドレンパンとして機能する。
 (4)熱源側熱交換器10の構成
 図4には、熱源側熱交換器10を斜め上方から見た状態が示されている。熱源側熱交換器10は、第1ヘッダ集合管110と、第2ヘッダ集合管120と、風下列の熱交換部130と、風上列の熱交換部140と、連結ヘッダ200と、ガス集合管160と、冷媒分流器170とを有している。この熱源側熱交換器10においては、第1ヘッダ集合管110、第2ヘッダ集合管120、熱交換部130,140、連結ヘッダ200、ガス集合管160及び冷媒分流器170のすべてが、アルミニウム合金で形成されている。第1ヘッダ集合管110、第2ヘッダ集合管120、熱交換部130,140、連結ヘッダ200、ガス集合管160及び冷媒分流器170が熱源側熱交換器10に組み立てられる際には、アルミニウム合金製のろう材によって炉中ろう付けされて接合される。
 図4に示されている熱源側熱交換器10においては、外側から内側に向う太い矢印Ar1が空気の流れを示している。また、図4において、二点差線の矢印Ar2は冷媒の流れを示している。矢印Ar2が双方向に向いているのは、暖房運転と冷房運転で冷媒の流れが反対になるからである。冷房運転において、冷媒は、第1ヘッダ集合管110から風下列の熱交換部130を通って連結ヘッダ200で折返し、連結ヘッダ200から風上列の熱交換部140を通って第2ヘッダ集合管120に達する。暖房運転において、冷媒は、第2ヘッダ集合管120から風上列の熱交換部140を通って連結ヘッダ200で折返し、連結ヘッダ200から風下列の熱交換部130を通って第1ヘッダ集合管110に達する。
 (4-1)熱交換部130,140
 風下列の熱交換部130は、図5に示されている複数の風下列の扁平管63と、複数の風下列の伝熱フィン65とを含んで構成されている。図5においても、矢印Ar1が空気の流れを示している。風上列の熱交換部140は、図5に示されている複数の風上列の扁平管64と、複数の風上列の伝熱フィン66とを含んで構成されている。
 扁平管63,64は、鉛直方向を向く上面部63a,64a及び下面部63b,64bと、内部に形成された冷媒が流れる多数の小さな通路63c,64cを有する扁平多穴管である。扁平管63は、風下列において上下方向に並べて複数段に配置され、扁平管64は、風上列において上下方向に並べて複数段に配置されている。風下列の扁平管63の一端が第1ヘッダ集合管110に接続され、他端が連結ヘッダ200に接続されている。風上列の扁平管64の一端が第2ヘッダ集合管120に接続され、他端が連結ヘッダ200に接続されている。各伝熱フィン65,66は、冷媒の熱交換における伝熱面積を広げるために、隣り合う段の扁平管63,64の間を流れる空気に沿う方向及び上下方向に広がっている。伝熱フィン65,66には、扁平管63,64の各段に対応して複数の切欠き65a,66aが形成されている。各切欠き65a,66aは、上下方向に対して直交する方向に細長く延びている。各切欠き65a,66aの周囲は、伝熱面となる各上面部63a,64a及び各下面部63b,64bに密着して接合されている。
 (4-2)第1ヘッダ集合管110及びガス集合管160
 図6には、第1ヘッダ集合管110及びガス集合管160を分解した状態が示されている。第1ヘッダ集合管110は、上端及び下端が閉じた細長い中空筒形の部品である。第1ヘッダ集合管110は、風下列の熱交換部130の一端側に立設されている。第1ヘッダ集合管110は、多穴管側部材111、仕切部材112、配管側部材113及び仕切板114を有している。細長い多穴管側部材111、仕切部材112及び配管側部材113は、多穴管側部材111と配管側部材113の間に仕切部材112を挟み、それぞれの長手方向が上下方向に一致するように組み合わされて一体化されることによって、熱源側熱交換器10において上下方向に延びる第1ヘッダ集合管110を形成している。そして、2枚の仕切板114が第1ヘッダ集合管110の上方と下方を閉じている。多穴管側部材111、仕切部材112、配管側部材113及び仕切板114は、例えばろう材によって炉中において互いに接合されて一体化される。
 多穴管側部材111を上下方向に垂直な平面で切断した断面が弧状であり、多穴管側部材111には段方向に並べて配置されている複数の扁平管63が挿入される開口が扁平管63の段数だけ形成されている。仕切部材112の中央には、複数の扁平管63の一端の位置決めをするための棒状のストッパが上下に延びている。仕切部材112のストッパの両側には、多穴管側部材111の方から配管側部材113の方に冷媒を流すための開口が形成されている。配管側部材113を上下方向に垂直な平面で切断した断面が弧状であり、上下方向に並べて配置されている複数の接続管161が挿入される複数の開口115が配管側部材113に形成されている。
 ガス集合管160は、有底の円筒直管であり、複数の接続管161が接続される複数の開口が側面に形成されている。ガス集合管160と第1ヘッダ集合管110は、アルミニウム合金製の結束バンド162で結束されている。ガス集合管160の上部には、アルミニウム合金製の逆U字形パイプ180が接続される。この逆U字形パイプ180は、冷媒管19の一部である。
 熱源側熱交換器10は、第1ヘッダ集合管110、複数の接続管161及びガス集合管160を通して、風下列の複数の扁平管63から逆U字形パイプ180まで連通している。
 (4-3)第2ヘッダ集合管120
 図7には、第2ヘッダ集合管120を分解した状態が示されている。また、図8には、図7に示されている第2ヘッダ集合管120の一部が拡大して示されている。また、図9には、仕切板124と整流板125が取り付けられた仕切部材122の一部が拡大して示されている。また、図10には、組み立てられた第2ヘッダ集合管120を上方から見た状態が示されている。さらに、図11には、第2ヘッダ集合管120の一部の構造に係る断面が示されている。第2ヘッダ集合管120は、上端及び下端が閉じた細長い中空筒形の部品である。第2ヘッダ集合管120は、風上列の熱交換部140の一端側に立設されている。第2ヘッダ集合管120は、多穴管側部材121、仕切部材122、配管側部材123、仕切板124及び整流板125を有している。細長い多穴管側部材121、仕切部材122及び配管側部材123は、多穴管側部材121と配管側部材123の間に仕切部材122が挟まれ、それぞれの長手方向が上下方向に一致するように組み合わされて一体化される。このように一体化されることによって、多穴管側部材121、仕切部材122及び配管側部材123は、熱源側熱交換器10において上下方向に延びる第2ヘッダ集合管120を形成する。そして、2枚の仕切板124が第2ヘッダ集合管120の上方と下方を閉じている。多穴管側部材121、仕切部材122、配管側部材123、仕切板124及び整流板125は、例えばろう材によって炉中において互いに接合されて一体化される。
 第2ヘッダ集合管120の内部は、複数の仕切板124によって仕切られて、複数の空間に分割されている。図11に示されているように、2枚の仕切板124の間に形成される空間SP1には、複数段の扁平管64が連通し、少なくとも1つのキャピラリチューブ190が連通している。整流板125は、キャピラリチューブ190の上方近傍に配置されている。仕切部材122には、下方の仕切板124の上近傍の開口部122aと、上方の仕切板124の下近傍に開口部122bと、整流板125の上近傍の開口部122cとが形成されている。整流板125には、上昇用開口125aが形成されている。キャピラリチューブ190から開口部122aを通って仕切部材122と多穴管側部材121の間に達した冷媒は、小さな上昇用開口125aによって上方に吹き上げられる。その後、冷媒は、開口部122bの次に開口部122cを通過するループ状の流れ(図11に太い矢印Ar4で示されている流れ)を形成する。整流板125と上方の仕切板124との間にある複数段の扁平管64には、冷媒がループ状の流れから分かれて流れ込む。
 (4-4)連結ヘッダ200
 図12には、連結ヘッダ200を斜め上方から見た状態が示されている。図13には、連結ヘッダ200の上方部分が拡大して示されている。図14には、連結ヘッダ200を分解した状態が示されている。図15には、図13のI‐I線に沿って切断した断面形状が示され、図16には、図13のII‐II線に沿って切断した断面形状が示されている。連結ヘッダ200は、上端及び下端が閉じた細長い中空筒形の部品である。連結ヘッダ200は風下列の熱交換部130及び風上列の熱交換部140の他端側に立設されている。
 連結ヘッダ200は、第1部材210と第2部材220と第3部材230とが接合されることによって構成されている。第1部材210は、図14に示されている組み立て前の状態において、上下に長い多穴管側壁213と、多穴管側壁213の長辺から多穴管側壁213に対して交差する方向に延びる2つの側壁214,215とを有している。側壁214,215のそれぞれの2つの長辺のうち多穴管側壁213とは反対側の長辺に、複数の爪216が形成されている。複数の爪216は、図12及び図13に示されている組み立て後の状態においては、第3部材230の露出面237に当接するように折り曲げられている。多穴管側壁213には、上下方向に対して直交する方向に2つの開口部211,212が並べて形成されている。開口部211,212は、それぞれ、複数段の風下列の扁平管63の他端及び複数段の風上列の扁平管64の他端に対応して設けられている。
 第2部材220は、複数の分割体221~227に分割されている。第2部材220のいずれの分割体221~227も、上下方向に延びる平板状の封止壁241と、封止壁241と交差する方向に延びる仕切壁242とを持っている。封止壁241は、多穴管側壁213に対向する壁である。上下方向において隣接する仕切壁242の間には、開口部211,212が配置されている。つまり、上下方向において隣接する仕切壁242と、多穴管側壁213と、側壁214,215と、封止壁241とで囲まれた連通空間SP2には、1本の風下列の扁平管63の通路63cと1本の風上列の扁平管64の通路64cが連通している。従って、冷房運転時には、1本の風下列の扁平管63の通路63cを通って連通空間SP2に入った冷媒は、連通空間SP2で折り返されて、隣の列に配置されている1本の風上列の扁平管64の通路64cに流れ込む。暖房運転時には、冷房運転時とは逆に、1本の風上列の扁平管64の通路64cを通って連通空間SP2に入った冷媒は、連通空間SP2で折り返されて、隣の列に配置されている1本の風下列の扁平管63の通路63cに流れ込む。
 第3部材230は、上方部材231と下方部材232とに分割されている。上方部材231は、上端部233と上方平坦部234とからなる。例えば、平坦な板状部材の端部を折り曲げることによって、上端部233と、上端部233から下方に長く延びる平坦な板状の上方平坦部234とを形成することができる。下方部材232は、下端部235と下方平坦部236とからなる。例えば、平坦な板状部材の端部を折り曲げることによって、下端部235と、下端部235から下方に長く延びる平坦な板状の下方平坦部236とを形成することができる。上方平坦部234と下方平坦部236とは、互いの継ぎ目が直線ではなく、一方の凸部に他方の凹部を対応して嵌め合わせることで上方平坦部234と下方平坦部236とで長方形になる形状を持っている。これら上方平坦部234と下方平坦部236の上下方向の長さは、分割体221~227を上下に並べたときの7つの封止壁241の上下方向の長さに相当する。つまり、上方平坦部234と下方平坦部236は7つの封止壁241に接合される。そして、上端部233は、分割体221の上面に接合され、下端部235は、分割体227の下面に接合される。
 (4-5)連結ヘッダ200の各部材の断面構造
 図15に示されているように、第1部材210は、第1心材311、第1犠牲陽極層312及び第1クラッド層313からなる。第1心材311、第1犠牲陽極層312及び第1クラッド層313は、アルミニウム合金である。第1心材311に用いられるアルミニウム合金としては、例えば、マンガン(Mn)が添加されたアルミニウム合金(Al‐Mn系アルミニウム合金)がある。Al‐Mn系アルミニウム合金としては、例えば、日本工業規格(例えばJISH4000)で規定されている合金番号3000番台のアルミニウム合金がある。
 ろう材として機能する第1クラッド層313に用いられるアルミニウム合金としては、例えばシリコン(Si)とマグネシウム(Mg)とニッケル(Ni)が添加されたアルミニウム合金(Al‐Si‐Mg‐Ni系アルミニウム合金)がある。
 第1犠牲陽極層312の材質は、第1心材311の材質に対して電気化学的に卑な金属である。また、第1犠牲陽極層312は、第1心材311のろう材としても機能する。第1犠牲陽極層312に用いられるアルミニウム合金としては、例えばAl‐Si‐Mg‐Ni系アルミニウム合金にさらに、0.5~3.0%のZnが添加されたアルミニウム合金がある。例えば、第1クラッド層313を形成しているアルミニウム合金に0.5~3.0%のZnを添加することによって第1犠牲陽極層312を形成してもよい。第1心材311の材質であるAl‐Mn系アルミニウム合金と、第1犠牲陽極層312の材質であるAl‐Si‐Mg‐Ni系アルミニウム合金にさらにZnが添加されたアルミニウム合金とを比較すると、Al‐Mn系アルミニウム合金よりもAl‐Si‐Mg‐Ni系アルミニウム合金にZnが添加されたアルミニウム合金の方が卑な金属になるように設定されている。
 第1部材210は、一方の主面に第1犠牲陽極層312が形成され、他方の主面に第1クラッド層313が形成されているアルミニウム合金の板部材を加工して得ることができる。このような第1犠牲陽極層312と第1クラッド層313が形成されている板部材は、例えば、圧延接合により安価に得ることができる。このような圧延接合は、例えば熱間押出加工よって行うことができる。アルミニウム合金の板部材に、開口部211,212を形成したり爪216を形成したり折り曲げたりすることによって第1部材210が得られる。
 第2部材220は、アルミニウム合金からなる。第2部材220に用いられるアルミニウム合金としては、Al‐Mn系アルミニウム合金がある。第2部材220と第1心材311のうちの一方が他方よりも速く腐食されるのを抑制するために、第2部材220の材質が第1心材311の材質と同じであることが好ましい。第2部材220は、例えば押出成形によって一体に成形され、そのためには単一のアルミニウム合金で構成されていることが好ましい。ここで、第2部材220は、押出成形部材である。
 図15に示されているように、第3部材230は、第2心材331、第2犠牲陽極層332及び第2クラッド層333からなる。第2心材331、第2犠牲陽極層332及び第2クラッド層333は、アルミニウム合金である。第2心材331に用いられるアルミニウム合金としては、例えば、Al‐Mn系アルミニウム合金がある。第1心材311と第2心材331のうちの一方が他方よりも速く腐食されるのを抑制するために、第2心材331の材質が第1心材311の材質と同じであることが好ましい。
 ろう材として機能する第2クラッド層333に用いられるアルミニウム合金としては、例えばAl‐Si‐Mg‐Ni系アルミニウム合金がある。第2クラッド層333の材質は、同時に炉中ろう付けをするために、第1クラッド層313と同じ材質であることが好ましい。
 第2犠牲陽極層332の材質は、第2心材331の材質に対して電気化学的に卑な金属である。また、第2犠牲陽極層332は、第2心材331のろう材としても機能する。第2犠牲陽極層332に用いられるアルミニウム合金としては、例えばAl‐Si‐Mg‐Ni系アルミニウム合金にさらに、0.5~3.0%のZnが添加されたアルミニウム合金がある。例えば、第2クラッド層333を形成しているアルミニウム合金に0.5~3.0%のZnを添加することによって第2犠牲陽極層332を形成してもよい。第2心材331の材質であるAl‐Mn系アルミニウム合金と、第2犠牲陽極層332の材質であるAl‐Si‐Mg‐Ni系アルミニウム合金にさらにZnが添加されたアルミニウム合金とを比較すると、Al‐Mn系アルミニウム合金よりもAl‐Si‐Mg‐Ni系アルミニウム合金にZnが添加されたアルミニウム合金の方が卑な金属になるように設定されている。
 第3部材230は、一方の主面に第2犠牲陽極層332が形成され、他方の主面に第2クラッド層333が形成されているアルミニウム合金の板部材を加工して得ることができる。このような第2犠牲陽極層332と第2クラッド層333が形成されている板部材は、例えば、圧延接合により安価に得ることができる。このような圧延接合は、例えば熱間押出加工によって行うことができる。このようなアルミニウム合金の板部材に、上方平坦部234と下方平坦部236の継ぎ目部分形状を形成したり上端部233及び下端部235を折り曲げたりすることによって第3部材230が得られる。
 図15及び図16に示されているように、第1部材210は、熱媒体が流れる第1内面218及び第1内面218の反対側である第1外面217を持っている。言い換えると、第1部材210は、連結ヘッダ200の外側に向く第1外面217、及び連結ヘッダ200の内側に向く第1内面218を持っている。この第1部材210の第1心材311を貫通している複数の扁平管63,64の複数の一端が第1内面218の側に配置されている。第2部材220は、熱媒体が流れる第2内面228及び第2内面228の反対側の面である第2外面229を持っている。言い換えると、第2部材220は、連結ヘッダ200の内側に向く第2内面228を持っている。これら第1内面218及び第2内面228が、扁平管63,64の一端同士を連通させる複数の連通空間SP2を囲んでいる。つまり、第1内面218及び第2内面228は、連通空間SP2に面している。第3部材230は、第2外面229の一部領域に対向する接合面238及び接合面238とは反対側の面である露出面237を持っている。言い換えると、第3部材230は、連結ヘッダ200の外側に向く露出面237を持っている。
 第3部材230の露出面237とは反対側の接合面238は、第2外面229に接合されている。この第3部材230の接合面238と第2部材220の第2外面229の接合部分がろう材接合部である。第3部材230の接合面238と第2部材220の第2外面229のろう材接合部は、炉中ろう付け用ろう材として第2クラッド層333を含んでいる。
 また、第1部材210の第1内面218のうち第2部材220及び第3部材230に接触する部分は、第1クラッド層313によって第2部材220及び第3部材230にろう付けされている。例えば、第1クラッド層313によって、第2部材220の仕切壁242の先端面及び側面が第1部材210の第1内面218にろう付けされ、封止壁241の側面が第1内面218にろう付けされている。第1部材210の第1外面217に形成されている第1犠牲陽極層312は、ろう材としても機能し、図17に示されているように、扁平管63,64の上にフィレット341を形成する。同様に、第1クラッド層313も、扁平管63,64の上にフィレット342を形成する。
 第1部材210は、第1外面217の全体が第1犠牲陽極層312で覆われている。なお、爪216の端部に第1犠牲陽極層312で覆われていない部分があるが、この部分は、第1犠牲陽極層312の近傍にあるので、第1犠牲陽極層312によって防食される。また、第2部材220の上端部233及び下端部235の先端は、L字形に折り曲げられ、第1部材210との接合面積を広げている。このような構造のため、上端部233及び下端部235の先端は第2犠牲陽極層332によっては覆われていないが、近傍に第2犠牲陽極層332があるので、腐食の抑制がなされる。また、上端部233及び下端部235の先端から連通空間SP2までの距離が上端部233及び下端部235の厚みよりも大きいので、上端部233及び下端部235の先端の露出は腐食による冷媒漏洩にほとんど影響しない。
 (5)特徴
 (5-1)
 アルミニウム合金製の第2部材220は、封止壁241から複数の仕切壁242が突出する複雑な形状を持つ。このような複雑な形状の封止壁241に犠牲陽極層を形成するとコストが掛かって第2部材220の価格が上昇する。第2部材220に犠牲陽極層を持たせないことで、上記実施形態のように、例えば押出成形によって第2部材220を安価に得ることができる。そして、第2部材220の第2内面228以外の第2部材220の一部領域51に第3部材230が接合されている。上記実施形態では、その一部領域51は、第3部材230の露出面237の反対側の接合面238である。つまり、第2部材220のうち第1部材210に覆われておらず防食が不十分な箇所である一部領域51が第3部材230の第2犠牲陽極層332で覆われ、第2部材220の耐食性が第3部材230で向上している。このように、熱源側熱交換器10の連結ヘッダ200の耐食性を安価に向上させ、ひいては熱源側熱交換器10の全体としての耐食性を安価に向上させることができる。
 (5-2)
 上記実施形態では、第2部材220の第2外面229と第3部材230の接合面238との間にろう材接合部の第2クラッド層333によってろう材接合部の全面の良好な接合を確保でき、例えば接合されない部分の隙間により第2部材220及び第3部材230の表面積が増加することによって防食面積が増加するのを抑制することができ、第2犠牲陽極層332による防食効果を効率化することができている。
 (5-3)
 上記実施形態では、第3部材230の接合面238と第2部材220の第2外面229のろう材接合部は、炉中ろう付け用ろう材として第2クラッド層333を含んでいる。このように第2部材220と第3部材230のろう材接合部に炉中ろう付け用ろう材を含むので、フラックスを抑制でき、ろう付け部分の周囲の耐食性の低下を抑制できる。同様に、第1クラッド層313も炉中ろう付け用ろう材であるので、第1クラッド層313によって接合される接合部でも、フラックスを抑制でき、ろう付け部分の周囲の耐食性の低下を抑制できる。
 (5-4)
 上記実施形態のように第2部材220が押出成形部材であると、連通空間SP2を囲う複雑な形状を第2部材220に対して安価に付与することができる。例えば、第2部材220の仕切壁242を切削加工または溶接によって形成する場合と比べると、押出成形によって仕切壁242を形成する方が安価に形成できる。
 (5-5)
 上記実施形態では、第2部材220を複数の分割体221~227に分割することで、分割せずに第2部材220を一体で作成する場合に比べて、連通空間SPを囲むための第2内面228を持つ第2部材220を形成し易くなっている。その結果、連結ヘッダ200のコストを下げて、ひいては熱源側熱交換器10のコストを引き下げることができる。
 (5-6)
 上記実施形態の第3部材230は、第2犠牲陽極層332の形成が容易である板状部材であり、第2犠牲陽極層332を有する第3部材230が安価なものとなっている。その結果、連結ヘッダ200のコストを下げて、ひいては熱源側熱交換器10のコストを引き下げることができる。また、第3部材230の端部である上端部233及び下端部235は、第2部材220に沿って折り曲げられており、上端部233及び下端部235を第2部材220に引っ掛けることができ、第3部材230を組み立て易くなっている。
 (5-7)
 上記実施形態の第1犠牲陽極層312がろう材としても機能するので、第1部材210への複数の伝熱管である扁平管63,64の接合が容易になっている。その結果、連結ヘッダ200のコストを下げて、ひいては熱源側熱交換器10のコストを引き下げることができる。
 (6)変形例
 (6-1)変形例1A
 上記実施形態では、第1心材311及び第2心材331並びに第2部材220がアルミニウム合金である場合について説明したが、第1心材311及び第2心材331並びに第2部材220はアルミニウムで形成されてもよい。アルミニウム製の第1心材311及び第2心材331並びに第2部材220に対する第1犠牲陽極層312及び第2犠牲陽極層332は、アルミニウムよりも卑な金属からなる。アルミニウムとしては、例えば、JISH4000で規定されている合金番号1000番台のアルミニウムがある。このようなアルミニウム製の本体に対しても、Al‐Zn‐Mg系アルミニウム合金からなる層を第1犠牲陽極層312及び第2犠牲陽極層332として用いることができる。同様に、熱交換部130,140、第1ヘッダ集合管110、第2ヘッダ集合管120、結束バンド162及び逆U字形パイプ180は、アルミニウムからなるものであってもよい。
 (6-2)変形例1B
 また、上記実施形態では、第1犠牲陽極層312及び第2犠牲陽極層332が同じ材質で形成されている場合について説明した。しかし、これらが互いに異なる材質で形成されてもよく、例えば、アルミニウム合金で第1犠牲陽極層312及び第2犠牲陽極層332が形成される場合に、合金に含まれるアルミニウム以外の金属の種類及び/または金属の配合比率を互いに異ならせることで、第1犠牲陽極層312及び第2犠牲陽極層332の材質を互いに異ならせてもよい。第1犠牲陽極層312は、第1心材311よりも電気化学的に卑な金属で形成されればよく、第2犠牲陽極層332は、第2心材331よりも電気化学的に卑な金属で形成されればよい。
 (6-3)変形例1C
 上記実施形態では、第1心材311及び第2心材331並びに第2部材220が互いに同じ材質で構成されている場合について説明した。しかし、第1心材311及び第2心材331並びに第2部材220は、異なる材質で構成されていてもよい。例えば、アルミニウム合金で第1心材311及び第2心材331並びに第2部材220が形成される場合に、合金に含まれるアルミニウム以外の金属の種類及び/または金属の配合比率をそれぞれに異ならせることで、第1心材311及び第2心材331並びに第2部材220の材質を互いに異ならせてもよい。
 (6-4)変形例1D
 上記実施形態では、第3部材230が第2部材220の第2外面229の一部領域51に露出面237の反対側の接合面238を接合して一部領域51を覆う場合について説明した。しかし、第3部材230が第2外面229の全領域を覆うように構成してもよい。
 (6-5)変形例1E
 上記実施形態では、伝熱管である扁平管63,64を2列に配置する場合について説明したが、2列に限られるものではなく、3列以上であってもよい。また、扁平管が1列のみに配置されていてもよく、その場合には、異なる段の扁平管の間で冷媒が折り返される。異なる段の扁平管の間で冷媒を折り返すには、複数段の扁平管の上下に仕切壁を設けて複数段の扁平管を連通させるように連通空間を形成すればよい。
 (6-6)変形例1F
 上記実施形態では、熱源側熱交換器10の連結ヘッダ200を例に挙げて説明したが、利用側熱交換器32a,32bの連結ヘッダに本開示の構成を適用してもよい。
 以上、本開示の実施形態を説明したが、特許請求の範囲に記載された本開示の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。
 10 熱源側熱交換器
 32a,32b 利用側熱交換器
 63,64 扁平管(伝熱管の例)
 200 連結ヘッダ
 210 第1部材
 220 第2部材
 221~227 分割体
 230 第3部材
 231 上方部材(板状部材の例)
 232 下方部材(板状部材の例)
 233 上端部(第3部材の端部の例)
 235 下端部(第3部材の端部の例)
 311 第1心材
 312 第1犠牲陽極層
 331 第2心材
 332 第2犠牲陽極層
特開2016-95087号公報

Claims (8)

  1.  熱媒体の流れ方向に対して交差する方向に複数段配置されているアルミニウム製またはアルミニウム合金製の複数の伝熱管(63,64)と、
     前記複数の伝熱管を連結する連結ヘッダ(200)と
    を備え、
     前記連結ヘッダは、
     前記熱媒体が流れる第1内面及び前記第1内面の反対側の面である第1外面を持ち、アルミニウム製またはアルミニウム合金製の第1心材(311)及び前記第1外面に前記第1心材に対する第1犠牲陽極層(312)を有し、前記複数の伝熱管の複数の一端を前記第1内面に配置する第1部材(210)と、
     前記連結ヘッダの内側に向く第2内面及び前記第2内面の反対側の面である第2外面を持ち、犠牲陽極層を有さないアルミニウム製またはアルミニウム合金製の第2部材(220)と、
     前記第2外面及び/または前記第1外面に対向する接合面及び前記接合面とは反対側の面である露出面を持ち、アルミニウム製またはアルミニウム合金製の第2心材(331)及び前記露出面に前記第2心材に対する第2犠牲陽極層(332)を有し、前記第2外面の一部領域または全領域に前記接合面を接合して前記一部領域または前記全領域を覆う第3部材(230)と
    を有する、熱交換器。
  2.  前記第3部材は、前記一部領域または前記全領域にろう材接合部を有する、
    請求項1に記載の熱交換器。
  3.  前記ろう材接合部は、炉中ろう付け用ろう材を含む、
    請求項2に記載の熱交換器。
  4.  前記第2部材は、押出成形部材である、
    請求項1から3のいずれか一項に記載の熱交換器。
  5.  前記第2部材は、前記複数の伝熱管の段方向に並べて配置されている複数の分割体(221~227)を含む、
    請求項1から4のいずれか一項に記載の熱交換器。
  6.  前記第3部材は、前記第2部材に沿って折り曲げられている端部(233,235)を有する板状部材(231,232)である、
    請求項1から5のいずれか一項に記載の熱交換器。
  7.  前記第1犠牲陽極層は、前記第1部材に前記複数の伝熱管を接合するろう材である、
    請求項1から6のいずれか一項に記載の熱交換器。
  8.  請求項1から7のいずれか一項に記載の熱交換器(10)を備え、
     前記熱交換器を通って循環する前記熱媒体と所定空間の空気との熱交換を行わせて、前記所定空間の空気調和を行う、空気調和装置。
     
PCT/JP2018/047902 2018-01-31 2018-12-26 熱交換器及び空気調和装置 WO2019150865A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18903462.2A EP3748276A4 (en) 2018-01-31 2018-12-26 HEAT EXCHANGER AND AIR CONDITIONER
CN201880088059.7A CN111684233B (zh) 2018-01-31 2018-12-26 热交换器和空调装置
US16/966,533 US11002489B2 (en) 2018-01-31 2018-12-26 Heat exchanger and air conditioning apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018014964A JP6562096B2 (ja) 2018-01-31 2018-01-31 熱交換器及び空気調和装置
JP2018-014964 2018-01-31

Publications (1)

Publication Number Publication Date
WO2019150865A1 true WO2019150865A1 (ja) 2019-08-08

Family

ID=67478024

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/047902 WO2019150865A1 (ja) 2018-01-31 2018-12-26 熱交換器及び空気調和装置

Country Status (5)

Country Link
US (1) US11002489B2 (ja)
EP (1) EP3748276A4 (ja)
JP (1) JP6562096B2 (ja)
CN (1) CN111684233B (ja)
WO (1) WO2019150865A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021081158A (ja) * 2019-11-22 2021-05-27 株式会社富士通ゼネラル 熱交換器
US11359293B2 (en) * 2020-03-02 2022-06-14 Rheem Manufacturing Company Systems and methods for monitoring cathodic protection degradation
US12044431B2 (en) 2020-11-16 2024-07-23 Cody Martin Enclosures for air systems, air systems having enclosures, and methods of using enclosures
KR20240044900A (ko) * 2022-09-29 2024-04-05 엘지전자 주식회사 열교환기

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5732767A (en) * 1996-01-24 1998-03-31 Modine Manufacturing Co. Corrosion resistant heat exchanger and method of making the same
JP2007144470A (ja) * 2005-11-29 2007-06-14 Showa Denko Kk 熱交換器の製造方法
JP2009275246A (ja) * 2008-05-13 2009-11-26 Furukawa-Sky Aluminum Corp アルミニウム合金製熱交換器用ブレージングシート、アルミニウム合金製熱交換器及びアルミニウム合金製熱交換器の製造方法
JP2015113983A (ja) * 2013-12-09 2015-06-22 三星電子株式会社Samsung Electronics Co.,Ltd. 熱交換器
WO2015162911A1 (ja) * 2014-04-22 2015-10-29 株式会社Uacj アルミニウム製クラッド材及びその製造方法、熱交換器用アルミニウム製クラッド材及びその製造方法、ならびに、当該熱交換器用アルミニウム製クラッド材を用いたアルミニウム製熱交換器及びその製造方法
WO2016052299A1 (ja) * 2014-09-30 2016-04-07 ダイキン工業株式会社 熱交換器および空気調和装置
WO2016076259A1 (ja) * 2014-11-14 2016-05-19 ダイキン工業株式会社 熱交換器
WO2016076260A1 (ja) * 2014-11-14 2016-05-19 ダイキン工業株式会社 熱交換器
JP2016200312A (ja) * 2015-04-08 2016-12-01 株式会社デンソー 熱交換器、および熱交換器の製造方法
KR20170116726A (ko) * 2016-04-12 2017-10-20 손희식 합금 조성과 합금 전위의 조절을 이용한 고내식 열교환기 시스템

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5971998A (ja) * 1982-10-19 1984-04-23 Nippon Denso Co Ltd アルミニウム熱交換器
US5366007A (en) * 1993-08-05 1994-11-22 Wynn's Climate Systems, Inc. Two-piece header
JP4560902B2 (ja) * 2000-06-27 2010-10-13 株式会社デンソー 熱交換器およびその製造方法
JP3968023B2 (ja) * 2003-01-14 2007-08-29 住友軽金属工業株式会社 熱交換器用アルミニウム合金クラッド材
CN1226458C (zh) * 2003-07-21 2005-11-09 东方汽轮机厂 汽轮机凝汽器水室防腐蚀设施及其制作方法
JP4774238B2 (ja) * 2004-05-20 2011-09-14 昭和電工株式会社 冷凍サイクルの冷媒流通部接続構造
JP4266919B2 (ja) * 2004-11-30 2009-05-27 株式会社デンソー 耐エロージョン・コロージョン性と一般耐食性に優れた熱交換器用アルミニウム合金クラッド材
JP4856942B2 (ja) * 2005-12-14 2012-01-18 昭和電工株式会社 熱交換器用ヘッダタンクおよびこれに用いる外側プレートの製造方法
JP5796563B2 (ja) * 2011-11-29 2015-10-21 株式会社デンソー 熱交換器
JP5893450B2 (ja) * 2012-03-12 2016-03-23 株式会社Uacj 熱交換器のヘッダ用アルミニウム合金製ブレージングシート、その製造方法及び熱交換器の製造方法
JP6186239B2 (ja) * 2013-10-15 2017-08-23 株式会社Uacj アルミニウム合金製熱交換器

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5732767A (en) * 1996-01-24 1998-03-31 Modine Manufacturing Co. Corrosion resistant heat exchanger and method of making the same
JP2007144470A (ja) * 2005-11-29 2007-06-14 Showa Denko Kk 熱交換器の製造方法
JP2009275246A (ja) * 2008-05-13 2009-11-26 Furukawa-Sky Aluminum Corp アルミニウム合金製熱交換器用ブレージングシート、アルミニウム合金製熱交換器及びアルミニウム合金製熱交換器の製造方法
JP2015113983A (ja) * 2013-12-09 2015-06-22 三星電子株式会社Samsung Electronics Co.,Ltd. 熱交換器
WO2015162911A1 (ja) * 2014-04-22 2015-10-29 株式会社Uacj アルミニウム製クラッド材及びその製造方法、熱交換器用アルミニウム製クラッド材及びその製造方法、ならびに、当該熱交換器用アルミニウム製クラッド材を用いたアルミニウム製熱交換器及びその製造方法
WO2016052299A1 (ja) * 2014-09-30 2016-04-07 ダイキン工業株式会社 熱交換器および空気調和装置
WO2016076259A1 (ja) * 2014-11-14 2016-05-19 ダイキン工業株式会社 熱交換器
WO2016076260A1 (ja) * 2014-11-14 2016-05-19 ダイキン工業株式会社 熱交換器
JP2016095087A (ja) 2014-11-14 2016-05-26 ダイキン工業株式会社 熱交換器
JP2016200312A (ja) * 2015-04-08 2016-12-01 株式会社デンソー 熱交換器、および熱交換器の製造方法
KR20170116726A (ko) * 2016-04-12 2017-10-20 손희식 합금 조성과 합금 전위의 조절을 이용한 고내식 열교환기 시스템

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3748276A4 *

Also Published As

Publication number Publication date
US11002489B2 (en) 2021-05-11
CN111684233B (zh) 2021-07-30
EP3748276A1 (en) 2020-12-09
US20210033346A1 (en) 2021-02-04
JP6562096B2 (ja) 2019-08-21
CN111684233A (zh) 2020-09-18
EP3748276A4 (en) 2021-03-10
JP2019132519A (ja) 2019-08-08

Similar Documents

Publication Publication Date Title
WO2019150865A1 (ja) 熱交換器及び空気調和装置
JP4827882B2 (ja) 熱交換器モジュール、熱交換器、室内ユニット及び空調冷凍装置、並びに熱交換器の製造方法
US7578340B2 (en) Heat exchanger
JPWO2003040640A1 (ja) 熱交換器及び熱交換器用チューブ
KR101462173B1 (ko) 열교환기
KR101786965B1 (ko) 헤더유닛 및 이를 가지는 열교환기
JP2002340485A (ja) 車両用熱交換器
JP6923051B2 (ja) 熱交換器およびヒートポンプ装置
JP4122670B2 (ja) 熱交換器
JP6826133B2 (ja) 熱交換器及び冷凍サイクル装置
JP2001027484A (ja) サーペンタイン型熱交換器
WO2020022443A1 (ja) 継手
WO2019150864A1 (ja) 冷凍装置
WO2021234961A1 (ja) 熱交換器、空気調和装置の室外機及び空気調和装置
JP2004183960A (ja) 熱交換器
JP5664272B2 (ja) 熱交換器及び空気調和機
JP7174291B1 (ja) 熱交換器および空気調和装置
JP4048629B2 (ja) 熱交換器
JP2006090636A (ja) 細径多管式熱交換器の細径伝熱管ユニット
JP6888686B2 (ja) 熱交換器及びそれを備えた空気調和装置
JP7023126B2 (ja) 熱交換器
JP2000105091A (ja) 積層型蒸発器
JP2003269883A (ja) 積層型熱交換器及びこれによって構成される積層型蒸発器並びにこれを備えた冷凍サイクルシステム
JP2023003759A (ja) 熱交換器
JP2015021664A (ja) 熱交換器および空気調和機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18903462

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018903462

Country of ref document: EP

Effective date: 20200831