WO2016051898A1 - ハサミ - Google Patents

ハサミ Download PDF

Info

Publication number
WO2016051898A1
WO2016051898A1 PCT/JP2015/069456 JP2015069456W WO2016051898A1 WO 2016051898 A1 WO2016051898 A1 WO 2016051898A1 JP 2015069456 W JP2015069456 W JP 2015069456W WO 2016051898 A1 WO2016051898 A1 WO 2016051898A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
scissors
alloy
blades
scissors according
Prior art date
Application number
PCT/JP2015/069456
Other languages
English (en)
French (fr)
Inventor
松尾 誠
喜直 岩本
氏家 弘
Original Assignee
株式会社iMott
独立行政法人労働者健康福祉機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社iMott, 独立行政法人労働者健康福祉機構 filed Critical 株式会社iMott
Priority to EP15846780.3A priority Critical patent/EP3202341B1/en
Priority to CN201580035803.3A priority patent/CN107072686B/zh
Priority to JP2016551593A priority patent/JP6573176B2/ja
Priority to US15/322,429 priority patent/US10327799B2/en
Publication of WO2016051898A1 publication Critical patent/WO2016051898A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/3201Scissors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26BHAND-HELD CUTTING TOOLS NOT OTHERWISE PROVIDED FOR
    • B26B13/00Hand shears; Scissors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26BHAND-HELD CUTTING TOOLS NOT OTHERWISE PROVIDED FOR
    • B26B13/00Hand shears; Scissors
    • B26B13/06Hand shears; Scissors characterised by the shape of the blades
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00477Coupling
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00831Material properties
    • A61B2017/00862Material properties elastic or resilient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00831Material properties
    • A61B2017/00867Material properties shape memory effect

Definitions

  • the present invention relates to scissors, particularly scissors for medical use, particularly scissors suitable for neurosurgery and the like.
  • Scissors usually cut two objects by passing two blades through a rotatable shaft, rubbing the blades, placing the object between the blades, and closing the blade.
  • a structure has been created in which one point reliably rubs from the blade edge to the blade edge, so that the object sandwiched between the rubbed parts can be cut.
  • This mechanism is the same for both big and small ones.
  • “Rubbing” means grinding with a grindstone so that it has the desired curvature when sharpening the blade, and the dimension is determined so that the point of “smoothly” rubbing with the other blade is advanced to the tip. To do the work to go. Since it is difficult to make exactly the same parts from the method of making two blade parts, this rubbing work has been considered essential.
  • Hairdressing scissors have a disc shape with a blade length of about 50 mm to 150 mm, and a grindstone of about 300 mm.
  • the rubbing work can be said to be a relatively easy work because both hands can be used and it is easy to apply force.
  • some of the scissors for medical use have a blade length of only 10 to 30 mm, and a smaller one has a special blade length of 2 mm. Therefore, the production is currently dependent on the skill of the craftsman.
  • scissors are often made of the same material for the two blades on the left and right, and are adjusted by rubbing when bending or twisting, and are usually made to give the best performance when new. As it is used, abnormalities such as bending and twisting of the two blades are distorted, and the blades are worn away, so that the shape is maintained by heat treatment or plastic deformation so as to suppress them as much as possible.
  • the fulcrum, the force point, and the action point correspond to the screw, the touch point, and the blade part, and the blade part having a slight warp is rotatably held by the screw.
  • the resistance that the part receives at the time of cutting (the resistance to open the blade when it starts to cut) is received at the contact point that is the part where the two plates rub against each other on the inner surface side opposite to the screw of the blade part.
  • the movement is limited and cutting is possible.
  • the touch point starts to receive surface pressure from the time of cutting the object, and the pressure increases as the cutting proceeds to the tip of the blade, but the area hit by the touch point also increases.
  • FIG. 8 shows an example of a conventional medical scissor with a cutting edge warped upward (curved).
  • 11 is an upper blade
  • 12 is a lower blade
  • 3 is a fulcrum (shaft, also called essential)
  • 41 and 42 are handle portions
  • 51 and 52 are grip portions
  • a pair of handle portions 41 and 42 are fulcrums.
  • FIG. 9 shows the names of each part of general scissors.
  • the upper blade is 11, the lower blade is 12, the fulcrum is 3, the handle portions are 41 and 42, and the finger holes 43.
  • the cutting blade 14, the cutting edge 15, the cutting edge 16, the peak 17 and the touch point 18 are main elements constituting the scissors.
  • (B) is a partial view around the fulcrum, and 19 is a fulcrum hole.
  • FIG. 10 is a schematic view of a general scissor when the blade is closed, and shows a lateral view. When the general scissors are closed, there is generally a strict gap between the two cutting blades of the upper blade and the lower blade.
  • FIG. 11 is a schematic view of the same scissors with the blade open, showing a side view. In the open state, strictly speaking, the cutting edges generally cross as shown in the side view.
  • FIG. 12 schematically shows the outer surface side (a) and the inner surface side (b) of one blade (11 or 12).
  • a peak is formed on the outer surface side of the blade.
  • a touch point 18 is formed in the vicinity of the handle side of the fulcrum hole 19.
  • the cutting blade is formed at a location where the outer surface of the blade portion and the inner surface intersect with each other, and has a sharpness capable of cutting the object at a location where it contacts the cutting blade of the counterpart blade portion.
  • the blades 11 and 12 are rotatably fixed at the fulcrum 3 by screwing or caulking. Therefore, fulcrum holes 19 are provided in the blades 11 and 12.
  • FIG. 13 is a schematic diagram of scissors used for medical purposes whose blade edge is warped upward.
  • A is a perspective view
  • (b) is a lateral view
  • (c) is a plan view.
  • the structure is basically the same as that having a normal flat blade portion.
  • the present invention solves the above problems, selects a material to be rubbed, and uses its superelasticity to deform and follow the shape of the blade so that the blade rubs against the mating blade.
  • the object is to provide scissors that can be cut along.
  • the present invention has an object of reducing the handmade by the craftsman, and greatly changes the blade material from the conventional one, and tries to use the performance of the material.
  • the material retains the hardness and sharpness necessary for cutting, and in use, select a material that can be elastically deformed along the curved surface of the cutting blade of the mating member, and finish it as a minimum scissors.
  • the object is to provide a scissors that can be cut even when warped upward.
  • Each tip of the pair of handle portions forms an upper blade and a lower blade, each other end of the pair of handle portions forms a grip portion, and the grip portion is centered on a fulcrum where the handle portions intersect.
  • the alloy is an alloy having an elastic deformability of 1 to 7%.
  • the tip of the lower blade has an upward warp, and the upper blade portion is subjected to grooving, plate thickness change, and processing to control the tensile strength, hardness and Young's modulus of the material, thereby providing an elastic deformation performance ( A scissor that has an upper blade with improved bending ease and advances cutting while being deformed so that the blade portion of the upper blade follows the upward warping of the lower blade.
  • the scissors according to (15), wherein the curvature radius of warpage is in the range of 10 to 150 mm.
  • the material of the blade part to be rubbed is selected, and the shape of the blade can be deformed and followed so that the cutting blade part rubs against the curved surface of the other cutting blade part by utilizing its superelasticity. It is possible to provide a scissor having a blade portion that can be moved to the blade edge while making a single cut portion with certainty along the blade portion. According to the present invention, the rubbing operation is greatly reduced.
  • the figure of scissors which is the combination which uses blade steel for the lower blade part which is one Example of this invention, and has a flat blade part of a superelastic alloy in an upper blade.
  • the figure which shows roughly the characteristic of the deformability (strain) / stress of the superelastic alloy which shows superelasticity performance to 7% including the typical deformability (strain) / stress and pseudoelastic deformability of the superelastic alloy.
  • each tip of a pair of handle portions forms an upper blade and a lower blade
  • each other end of the pair of handle portions forms a gripping portion
  • a fulcrum where the handle portions intersect is the center.
  • Scissors that open and close the upper and lower blades by opening and closing the gripping portion, and at least one of the upper and lower blades is made of an alloy having an elastic deformability of 0.2% or more.
  • the scissors of the present invention are suitably used for cosmetic and medical applications, especially for medical applications such as tissue cutting in surgery, especially neurosurgery, cardiovascular surgery, plastic surgery, otolaryngology surgery, etc. Preferably used.
  • At least one of the upper blade and the lower blade is formed of an alloy having an elastic deformation capacity of 0.2% or more, and preferably, at least the upper blade is formed of an alloy having an elastic deformation capacity of 0.2% or more.
  • a conventional steel material for blades can be used as one blade of the cutting scissors.
  • the steel for blades has a feature that it is made of stainless steel blade steel, nickel (Ni), chromium (Cr), iron (Fe) as a main component, contains carbon (C), and is hardened by heat treatment. In order to make a knife, both hardness and toughness are achieved.
  • the cutting edge can be sharpened to R1 ⁇ m or less by polishing, and it matches the purpose of cutting and has both the hardness and sharpness of the blade, and the toughness that is difficult to break.
  • some scissors there is an example of using a material containing a large amount of nickel (Ni) belonging to heat resistant steel when classified by JIS.
  • the purpose is to place more emphasis on the resistance to breakage (toughness) than on the hardness, and to determine the resistance to breakage of the blade. It is especially found in those used in neurosurgery.
  • the upper blade is made of an alloy having an elastic deformation capacity of 0.2% or more
  • the lower blade is a high strength titanium alloy having a tensile strength of 500 N / mm 2 or more and a hardness of Hv 240 or more
  • ⁇ -type titanium alloys such as Ti-4Al-23V (JIS 80 class), Ti-6Al-4V (JIS 60 class), Ti-3Al-2.5V (JIS 61 class), etc. are preferable.
  • ⁇ -type titanium alloys such as Ti-5Al-2.5Sn.
  • the scissors of the present invention are formed of a shape memory alloy at least one of the upper blade and the lower blade.
  • Ti-Ni-based shape memory alloys and titanium alloys represented by Ti-36Nb-2Ta-3Zr-O (mol%) are preferred, and in this case, materials that are both hard and difficult to break (hard to break) Is good.
  • the alloy used in the present invention is preferably an alloy having an elastic deformability of 1 to 7%, and more preferably the alloy has an elastic deformability of 2 to 7%.
  • Such an alloy is a titanium alloy having superelasticity, and is a beta-type titanium alloy that exhibits superelasticity, such as a Ti—Nb, Ti—Mo, Ti—Ta, and Ti—Cr alloy.
  • an alloy expressed as Ti 3+ (Nb, Ta, V) + (Zr, Hf) + O (mol%)] a beta-type titanium alloy having a body-centered cubic structure is also used, and [Ti-23Nb- 2Zr-0.7Ta-O (mol%)], [Ti-12Ta-9Nb-3V-6Zr-O (mol%)], [Ti-36Nb-2Ta-3Zr-O (mol%) )] And the like.
  • the deformation strain disappears and returns to its original shape when external stress is removed.
  • Ti-Nb and Ti-Mo systems In beta-type titanium alloys that exhibit superelasticity, such as Ti-Ta and Ti-Cr alloys, even if a deformation strain of several percent to 7%, which exceeds the elastic limit, is applied, the deformation is caused by pseudoelastic deformation due to the change in crystal structure. There is something to go back to.
  • shape memory alloys are deformed when deformation strain is applied beyond the elastic temperature below the transformation temperature, but when the strain is heated above the transformation temperature, the deformation strain disappears and returns to its original shape. Some shape memory alloys do not exhibit superelasticity at room temperature.
  • a Ti—Ni alloy system can also be suitably used.
  • Shape memory alloys have the property of recovering their original shape as soon as they are deformed at temperatures above the transformation point, and this deformation range is much wider than that of ordinary springs using steel and the like.
  • This alloy is generally an alloy of titanium and nickel, but Ti-36Nb-2Ta-3Zr-O (mol%) beta-type titanium alloy also has shape memory ability. When the composition is changed so that the temperature is higher than an arbitrary temperature, a property (martensitic transformation) that deforms into a preset shape is exhibited.
  • a non-magnetic material is required by producing a screw part, a handle part and / or a grip part used for a fulcrum using a superelastic alloy, a shape memory alloy or the like similar to the blade part.
  • Scissors suitable for use in a certain location are required.
  • the scissors of the present invention can be configured such that the tips of the upper blade and the lower blade have an upward warp. Particularly, when cutting a fine part, it is suitable for use when it is necessary to make the tip easy to see, and is used when the user performs cutting while looking at the state around the blade edge. Especially in neurosurgery and cardiovascular surgery, the microscope expands the surgical site from above, and the surgeon performs the operation while viewing the information and cuts with scissors.
  • the scissors used in this case are “the length of the blade is about 10-30 mm” “the blade is warped (curved) so that the surgical site can be seen (so as not to obstruct the field of view of the microscope)” “the tip There is a need for elements such as “rounded to prevent stabs, or sharpened to stab to stab and begin cutting” and “sharpness is sharp”.
  • the degree of curvature is indicated by a radius R
  • the curve is R10 mm to 150 mm, and preferably R20 mm to 100 mm.
  • scissors with a length of 15 to 30 mm are observed under a microscope, scissors may appear to be about 1/3 to half of the image (monitor image). Therefore, narrow scissors are preferred.
  • the tip of the lower blade has an upward warp
  • the tip of the upper blade made of a superelastic alloy may be rounded or sharpened to pierce.
  • the cutting of the upper blade can proceed with cutting while being deformed so as to follow and follow the upward warping of the lower blade.
  • the screw part that fastens the fulcrum is formed with a wide surface that rubs against the outer edge of the scissors, and the blade moves along the surface, so that the blades can always rub against each other.
  • the counterpart blade portion may not be flat.
  • the shape memory alloy can be used so as to be deformed at a transformation temperature or lower if necessary, and the shape is memorized and rubbed.
  • a shape memory alloy is used for the upper blade, the shape of curvature R1 is memorized, and a scissor using a super elastic alloy with a lower curvature than the upper blade is used for the lower blade. And the lower blade will cut it. It is possible to cut the very vicinity where the user observes the cutting site.
  • the scissors of the present invention center on the screw even if the conventional scissors do not require "make the rubbing of the two blades strictly and make a structure where the two blades rub against each other".
  • the blade part is deformed so that the blade part naturally follows the other part of the blade, so that the precision parts integrated with the blade part, such as the conventional scissors, are rubbed together, including the touch point. There is no need to make.
  • the touch point is simply a contact surface.
  • a supple blade made of a superelastic alloy advances cutting while being deformed so as to follow a blade line having R made of cutlery steel.
  • the superelastic alloy is thin, it is easily deformed, and even if the curvature is R20 mm, a necessary portion can be deformed and bent within the blade length of 30 mm.
  • it since it has high tensile strength, it does not break easily (does not break).
  • superelastic alloys those represented by Ti 3 (Nb, Zr, V) + (Ta, Hf) + O have both particularly excellent toughness and hardness and do not break even when bent by 180 degrees.
  • Ti-Nb, Ti-Mo, Ti-Ta, and Ti-Cr alloys are available as Ti-based alloys with elastic deformation ability of several percent to 7%. Use it. In neurosurgery, it is extremely dangerous that scissors are left behind in the surgical site, and it is necessary to ensure that no scissors are damaged in the surgical site.
  • the Ti alloy When applying a high hardness coating to the scissors blade part, especially during CVD film formation, the Ti alloy can be coated without an intermediate layer of Ti, Si, Cr, etc., and has good adhesion.
  • Hairdressing scissors are provided with a diamond-like carbon film coated on the inner surface of the blade, and the effect of this hard film with a low coefficient of friction reduces the wear of the cutting blade and prolongs the sharpness.
  • a report there is a report. Also in the present invention, by coating the upper and lower blades with a finely divided diamond-like carbon film, friction between both blades can be reduced, and resistance during cutting can be reduced. Further, the wear resistance of the blade can be improved and the life can be extended.
  • the resistance at the time of cutting starts to apply pressure to the contact point part through the screw, but even if the contact point is worn, it is elastically deformed so that it approaches the other blade part rather than the blade part. It is possible to cut along the mating blade portion beyond the wear deformation of the contact point portion, and it can be used by adjusting the screw.
  • the scissors have a warp in which the tip of the lower blade has an upward warp, grooving the blade portion of the upper blade, changing the plate thickness, and controlling the tensile strength, hardness, and Young's modulus of the material. It has an upper blade with improved elastic deformation performance (ease of bending), and is configured to advance cutting while being deformed so that the blade portion of the upper blade follows the upward warping of the lower blade.
  • the purpose of placing grooves in the blades other than the upper blades is that the groove is relatively thin with respect to the surrounding material thickness, and that it is easy to deform at the groove. There is an advantage that “the position to bend can be limited”.
  • the groove may be single or plural, and the direction, groove width, depth and length can be arbitrarily determined.
  • the shape of the groove can also be selected and combined from a U-shape, V-shape, square-shape, R-shape, octopus cage shape, a composite type of these, and the like. As a result, it is possible to accurately make the strength of the blade portion optimal for cutting and the ability to elastically deform along the counterpart of the blade portion.
  • This groove may be provided on either the outer surface of the blade portion or the surface that rubs. Further, the processing can be performed partially or entirely.
  • the method of inserting grooves can employ laser processing, cutting, grinding, plastic processing, etching, methods using electrons such as EB (electron beam) processing, photolithography + etching processing, and the like.
  • EB electron beam
  • the plate thickness change is different from the plate thickness change used in conventional scissors (a change that decreases uniformly from the cutting edge to the cutting edge), where the designer specifies bending and warping.
  • This is a change in the plate thickness that facilitates elastic deformation.
  • it is possible to employ a cold drawing process or a cutting / grinding process.
  • As a method of changing the hardness and Young's modulus one of the methods of performing cold extension processing, performing cold forging, heating and quenching, heating and cooling, or annealing is performed.
  • the tensile strength, hardness, and Young's modulus of the material can be changed according to the purpose by performing various types or multiple combinations.
  • FIG. 1 is a diagram schematically showing the main part for easy understanding of the structure and features of the scissors of the present invention.
  • the upper blade 11 is formed of a superelastic alloy, for example, an example of being formed of an alloy represented by Ti 3 (Nb, Ta, V) + (Zr, Hf) + O.
  • the lower blade 12 is formed of a stainless steel knife. In yet another embodiment, the lower blade 12 is also formed of a superelastic alloy or shape memory alloy.
  • a shape memory alloy represented by Ti—Ni-based shape memory alloy or Ti-36Nb-2Ta-3Zr—O (mol%) is used for the lower blade.
  • the lower blade Ti—Ni-based shape memory alloy or Ti-36Nb-2Ta-3Zr—O (mol%) shape memory alloy has a relatively high hardness with respect to the upper blade, and has a small elastic deformability. deep. Since these shape memory alloys are materials that are hard to break against cutlery steel, they are suitable for use in places where cracking is a problem.
  • the tip (blade edge) 16 of the lower blade 12 has an upward warp, so that when the user cuts a particularly fine portion, the user cuts while looking at the state around the blade edge.
  • a microscope is magnified from above, and it is suitable for the surgeon to perform the operation while viewing the information.
  • the tip is preferably rounded so as not to pierce the operative site, and is preferably sharpened when piercing the operative site.
  • radius R it is preferable that the curve is in the range of R20 mm to 100 mm.
  • (a) is a perspective view.
  • (B) is a figure which shows the horizontal surface of the state which the blade opened.
  • (C) is a figure which shows the horizontal surface of the state which the blade closed.
  • the tip of the lower blade 12 is warped upward.
  • the upper blade 11 is a flat blade, and as the blade is closed, due to its large elastic deformability, the upper blade 11 contacts with each other at a certain point of the cutting blade 14 along the lower blade 12. Move and cut the object at the point of contact.
  • the fulcrum 3 has a structure in which the blades always rub against each other by forming a wide surface to be rubbed with the outer side of the blade portion of the scissors of the screw to be tightened and moving the blade portion along the surface. .
  • FIG. 2 is a diagram schematically showing the deformability (strain) / stress characteristics of a superelastic alloy and a general steel material.
  • the general characteristics of the deformability response force of a superelastic alloy are shown in FIG. This is shown in comparison with the general characteristics of the ability response capability.
  • (A) is an elastic deformability ( ⁇ 0.2) and (b) of a steel-based scissors steel is a superelastic alloy represented by Ti 3 (Nb, Ta, V) + (Zr, Hf) + O. Nonlinear elastic deformability up to 5%. It is shown that the elastic deformability of the superelastic alloy is extremely large compared to general steel.
  • FIG. 3 shows typical deformability (strain) / stress (b) of a superelastic alloy represented by Ti 3 (Nb, Ta, V) + (Zr, Hf) + O (mol%) and the Ti—Nb system.
  • FIG. 5 shows a comparison of elastic deformability / stress diagrams of a material having an elastic deformability of 7% showing pseudoelastic deformation in a Cr-based alloy. In any case, the elastic region has a characteristic of nonlinear elasticity.
  • FIG. 1 shows one embodiment of the scissors of the present invention, in which the lower blade is made of a general blade steel and the other upper blade is made of a superelastic alloy.
  • the tip of the lower blade is curved upward (the blade portion is processed into a concave shape), and exhibits the maximum characteristics when the upper blade is configured as a flat plate.
  • the upper blade with a large deformability moves while deforming so as to follow the upward warping of the rigid lower blade, and the object can be cut. it can.
  • FIG. 4 shows a perspective view (a), lateral views (b) and (d), and plan views (c) and (e) simulating such an operation.
  • (b) is a lateral view of a state where both blades are opened
  • (c) is a plan view of a state where both blades are opened.
  • (D) is a side view of a state in which both blades are closed
  • (e) is a plan view in a state in which both blades are closed.
  • FIG. 1 in FIG. 3, the operation of the blade will be described. As the upper blade (11) and the lower blade 12 are closed, the upper blade 11 is cut along the lower blade 12 while being deformed. Go.
  • the present invention it is possible to increase the “ease of deformation” of the blade by subjecting the blade to additional processing.
  • the above-described material having an elastic deformability of 0.2% may be applied to the blade, and the “ease of deformation” may be significantly increased by additional processing.
  • FIG. 5A shows an example in which the groove 20 is inserted in a portion other than the cutting blade 14 of the upper blade 11.
  • the grooving method can be selected from a method using electrons such as laser processing, cutting, grinding, plastic processing, etching, and EB processing, photolithography + etching processing, or a combination thereof.
  • B schematically shows a state where the blade is bent, and the bending may be performed on either the inner surface side or the outer surface side.
  • C shows an example of the cross-sectional shape of the groove.
  • As the groove shape a U shape, a V shape, an R shape, an octopus saddle shape, a square shape, or a combination thereof can be adopted.
  • Conditions such as groove width, depth, position, direction, number, length, and whether the grooves are carved in parallel or non-parallel or intersecting can be selected or combined based on the ease of bending and the effect of the grooves.
  • the groove of (c) can be provided on either the outer side surface of the blade portion or the inner side surface to be rubbed or on both sides. These processes (a) to (c) are not shown in the figure, but can be provided on the blades other than the upper blade and the lower blade.
  • FIG. 6 shows an example of gradually changing the thickness of the upper blade.
  • (a) shows an example in which the plate thickness is linearly changed
  • (b) shows an example in which the plate thickness is changed to a concave shape with an arbitrary shape.
  • the bending method changes in proportion to the plate thickness. This change in bending can be obtained by changing the plate thickness. It is not necessary to change the plate thickness uniformly, and a plate thickness change suitable for the purpose can be used. By this processing, a blade portion having a cutting blade having a desired strength can be made, and accurate cutting can be performed.
  • FIG. 7 is a view of a combination of blades using super elastic alloys for the upper blade and the lower blade and having different curvatures in both, (a) is a plan view when the scissors are opened, (b) Is a side view (lateral view) when opened, (c) is a plan view when the scissors are closed, and (d) is a side view (lateral view) when closed.
  • the upper blade is bent upward and the lower blade is deformed to be extended. That is, the lower blade is bent strongly and the upper blade is bent with a larger radius of curvature than the lower blade. When this is used for cutting, the lower blade is elastically deformed in the extending direction.
  • the upper blade elastically deforms in a direction to be bent following the elastic deformation of the lower blade, and makes a contact while being pressed against the lower blade.
  • This contact point is a place to cut the object, and the contact point moves from the cutting edge to the cutting edge as a whole. Cutting is completed in the completely closed state.
  • the upper and lower blades can be deformed in combination from the thickness, hardness, and bending deformation performance (additional machining such as grooving).
  • a material to be rubbed is selected, and the shape of the blade can be deformed and followed so that the blade portion rubs against the mating blade portion by utilizing the superelasticity, and can be cut along the mating blade portion. It is possible to provide scissors, in particular, small-sized medical scissors, particularly scissors suitable for use in neurosurgery.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • Forests & Forestry (AREA)
  • Mechanical Engineering (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Surgical Instruments (AREA)
  • Scissors And Nippers (AREA)

Abstract

 本発明は、擦り合う材料を選定し、そのバネ性を利用して、刃部が相手刃部に擦り合うように刃の形状が追随でき、相手刃部に沿って切断し得るハサミを提供する。 本発明は、一対の柄部の一方の各先端が上刃および下刃を形成し、一対の柄部の各他端が把持部を形成し、かつ柄部が交差する支点を中心に把持部の開閉により上刃および下刃が開閉する医療用ハサミであり、上刃および下刃の少なくとも一方は弾性変形能0.2%以上の合金で形成されるハサミに関する。

Description

ハサミ
 本発明は、ハサミ、特に医療用ハサミ、とりわけ脳神経外科手術等に好適なハサミに関する。
 ハサミは、通常2枚の刃物を回転可能な軸を通し、刃部を擦り合わせ、対象物を刃の間に置き、刃を閉じることにより対象物を切断するものである。刃元から刃先まで1点が確実に擦り合う構造をつくりあげ、擦り合う部分で間に挟んだものを切断可能としている。大きなものも小さなものも、この仕組みは変わらない。「擦り合わせ」とは、刃を研ぐ時に目的の曲率を持つように砥石で研削して、相手側の刃部と一定の力で、「滑らかに」擦り合う点が先端に進むよう寸法を決めて行く作業を行うことである。2枚の刃部の作り方から、まったく同じ部品を作る事が困難なため、この擦り合わせ作業は必須のものとされてきた。この擦り合わせ作業がハサミの切味に直接影響を与える。紙切りハサミなど一般用途のハサミは機械加工により製作されるが、高品質のハサミ、例えば医療用のハサミは手作業により製作されることが多い。このようなハサミは製造者の腕前により切味や耐久性が創出されている。このため「擦り合わせ」には経験と勘が必要とされてきた。
 理美容ハサミは刃部長さが50mm~150mm程であって、砥石も300mmほどの円盤状のものが使用される。擦り合わせ作業は、両手が使えるために力も入れやすく、比較的容易な作業といえる。一方、医療用のハサミは刃部長さが10~30mmほどしかないものもあり、更に小さなものでは刃部長さ2mmという特殊なものもある。したがって、製作は職人の腕前頼りとなっているのが現状である。
 従来、ハサミは左右2枚の刃を同じ材質で作製することが多く、曲がり、捻じりを作ったときに擦り合わせで調整し、通常は新品時に最高の性能が出るように作られている。使用するにしたがって、両刃合わせの曲がり、捻じりに狂いが生じたり、刃が擦り減るなどの異常が生じるので、それを極力抑えるように、熱処理や塑性変形で形を維持させようとしていた。
 また、医療用ハサミを含む、従来のハサミにおいては、支点、力点および作用点は、ネジ、触点および刃部に相当し、わずかな反りを持つ刃部をネジで回転可能に保持し、刃部が切断時に受ける抵抗(切断しはじめると刃を開こうとする抵抗)を、刃部のネジの反対側の内面側で2枚の板の擦りあう部分である触点で受け止め、刃部の動きを制限し、切断を可能としている。触点は、物体の切断時から面圧を受け始め、切断が刃の先端に進むに従い、圧力は大きくなるが、触点のあたる面積も増加する。
 図8~図13は従来のハサミの構造を示す。一対の柄部の一方の各先端が上刃および下刃を形成し、一対の柄部の各他端が把持部を形成し、かつ柄部が交差する支点を中心に把持部の開閉により上刃および下刃が開閉する構造である。上刃、下刃とも同じ材質の鋼で作られるのが一般的である。図8は刃先が上に反っている(湾曲)従来の医療用ハサミの1例である。図中、11は上刃、12は下刃、3は支点(軸、要とも言う)、41および42は柄部、51および52は把持部であり、一対の柄部41および42は、支点3で交差している。
 図9は、一般的なハサミの各部の名称を示す。斜視図(a)において、上刃は11、下刃は12、支点は3、柄部は41,42、指穴43である。さらに、切り刃14、刃元15、刃先16、峰17、触点18がハサミを構成する主要な要素である。(b)は支点周りの部分図であり、19は支点穴である。
 図10は、刃が閉じたときの一般のハサミの模式図であって、横面図を示す。一般のハサミは閉じた状態では上刃、下刃の2枚の切り刃の間には厳密には空隙があるのが一般的である。
 図11は、同じハサミにおいて、刃が開いた状態の模式図であり、横面図を示す。開いた状態では、厳密には刃先は横面図に示すように交差するのが一般的である。
 図12は、一方の刃(11または12)の外面側(a)と内面側(b)を模式的に示している。刃の外面側には峰が形成されている。内面側は、支点穴19の柄側近傍には触点18が形成されている。切り刃は刃部の外側の面と、内側の面が交差する場所に形成され、相手側刃部の切り刃と接する箇所で、対象物を切断可能な鋭さを持つ。
支点3でネジ止めまたはかしめにより刃11,12が回転自在に固定される。そのため刃11,12には支点穴19が設けられる。
 図13は、刃先が上向きに反った医療用などに用いられているハサミの模式図である。(a)は斜視図、(b)は横面図、(c)は平面図を示す。両方の刃の刃先が上向きに反っているが、構造は基本的には通常の平たい刃部を有するものと同じである。
 本発明は、上記の課題を解決し、擦り合う材料を選定し、その超弾性を利用して、刃部が相手刃部に擦り合うように刃の形状が変形し追随でき、相手刃部に沿って切断し得るハサミを提供することを目的とする。さらに本発明は、もう1つの好適な態様において、職人の手作りを低減する目的を持ち、刃部材料を旧来のものと大きく変更し、素材の持つ性能を利用しようとしている。すなわち素材が切断に必要な硬度・鋭さを保持し、使用に際しては相手部材の切り刃がもつ曲面に沿って弾性変形可能な素材を選択し、最低限のハサミとしての仕上げを行い、刃部が上方に反りを持つ場合でも切断可能なハサミを提供することを目的としている。
 本発明は上記の問題を解決するために、以下の発明を提供するものである。
(1)一対の柄部の一方の各先端が上刃および下刃を形成し、一対の柄部の各他端が把持部を形成し、かつ柄部が交差する支点を中心に把持部の開閉により上刃および下刃が開閉するハサミであり、上刃および下刃の少なくとも一方は弾性変形能0.2%以上の合金で形成されるハサミ。
(2)上刃が弾性変形能0.2%以上の合金で形成される上記(1)に記載のハサミ。
(3)合金が弾性変形能1~7%の合金である上記(1)または(2)に記載のハサミ。
(4)合金が超弾性合金または形状記憶合金である上記(1)~(3)のいずれかに記載のハサミ。
(5)合金がチタン系合金である上記(1)~(4)のいずれかに記載のハサミ。
(6)チタン系合金がベータ型チタン合金である上記(5)に記載のハサミ。
(7)上刃および下刃の先端が上向きの反りを有する上記(1)~(6)のいずれかに記載のハサミ。
(8)下刃の先端が上向きの反りを有し、かつ超弾性合金からなる上刃の先端は丸められているか、または刺さるように尖らせてある上記(1)~(6)のいずれかに記載のハサミ。
(9)上刃の刃部は下刃の上向きの反りに追随して沿うように変形しながら切断を進める上記(8)に記載のハサミ。
(10)反りの曲率半径が10~150mmの範囲である上記(7)~(9)のいずれかに記載のハサミ。
(11)反りの曲率半径が20~100mmの範囲である上記(10)に記載のハサミ。
(12)支点を締め付けるネジ部の頭を大きくして、ハサミの刃部外側と擦り合う面を広く形成し、その面に沿って刃部が動くようにすることにより、常に刃どうしが擦り合う構造を有する、上記(1)~(11)のいずれかに記載のハサミ。
(13)上刃と下刃の曲率を変えた場合に、刃の超弾性を利用して刃を擦り合わせ、対象物の切断をするときに、前記ネジが刃の擦り合わせの邪魔にならないよう自由度を持つ緩い締め付けにした構造を有する、上記(1)~(11)のいずれかに記載のハサミ。
(14)脳神経外科手術用、心臓血管外科手術用、形成外科手術用、または耳鼻咽喉科手術用の上記(1)~(13)のいずれかに記載のハサミ。
(15)下刃の先端が上向きの反りを有し、上刃の刃部に溝入れ、板厚変化、ならびに素材の引張強度、硬度およびヤング率を制御する加工を施すことによって弾性変形性能(曲がり易さ)を高めた上刃を有し、上刃の刃部が下刃の上向きの反りに追随して沿うように変形しながら切断を進めるハサミ。
(16)反りの曲率半径が10~150mmの範囲である上記(15)に記載のハサミ。
(17)反りの曲率半径が20~100mmの範囲である上記(16)に記載のハサミ。
(18)支点を締め付けるネジ部の頭を大きくして、ハサミの刃部外側と擦り合う面を広く形成し、その面に沿って刃部が動くようにすることにより、常に刃どうしが擦り合う構造を有する、上記(15)~(17)のいずれかに記載のハサミ。
(19)上刃と下刃の曲率を変えた場合に、刃の超弾性を利用して刃を擦り合わせ、対象物の切断をするときに、ネジが刃の擦り合わせの邪魔にならないよう自由度を持つ緩い締め付けにした構造を有する、上記(15)~(18)のいずれかに記載のハサミ。
(20)脳神経外科手術用、心臓血管外科手術用、形成外科手術用、または耳鼻咽喉科手術用の上記(15)~(19)のいずれかに記載のハサミ。
 本発明によれば、擦り合う刃部の材料を選定し、その超弾性を利用して、切り刃部が他方の切り刃部の曲面に擦り合うように刃の形状が変形し追随でき、相手刃部に沿って「1点の切断部を確実に作りながら刃先に移動可能」な刃部をもつハサミを提供し得る。本発明によれば、擦り合わせ作業を大幅に軽減する。
本発明の1実施例である下刃部に刃物鋼を使い、上刃に超弾性合金の平板の刃部を持つ組合せであるハサミの図。 超弾性合金と一般的な鋼材の弾性変形能(歪)/応力の特性を概略的に示す図。 超弾性合金の代表的な変形能(歪)/応力と擬弾性変形能を含め7%まで超弾性能を示す超弾性合金の変形能(歪)/応力 の特性を概略的に示す図。 本発明の1実施態様を示す図。 刃部の弾性変形性能を高めるために刃部に溝を付加する加工形態の本発明の1実施態様を示す図。 刃部の弾性変形性能を向上させるために刃部の長手方向厚みを段階的に変える加工形態の1実施態様を示す図。 下刃と上刃の双方を超弾性合金で作成し、組み合わせたハサミの開閉の状態を示す摸式図。 従来の医療用ハサミの1例を示す図。 ハサミの各部の名称を示す図。 従来のハサミの閉じた状態を示す横面図。 従来のハサミの開いた状態を示す横面図。 従来のハサミの刃部の拡大図。 従来の医療用ハサミの1例を示す図。
 本発明のハサミは、一対の柄部の一方の各先端が上刃および下刃を形成し、一対の柄部の各他端が把持部を形成し、かつ柄部が交差する支点を中心に把持部の開閉により上刃および下刃が開閉するハサミであり、上刃および下刃の少なくとも一方は弾性変形能0.2%以上の合金で形成される。
 本発明のハサミは、理美容用、医療用に好適に使用され、とりわけ外科手術、特に脳神経外科手術、心臓血管外科手術、形成外科手術、耳鼻咽喉科手術等における組織の切断等の医療用途に好適に使用される。
 本発明のハサミは、上刃および下刃の少なくとも一方は弾性変形能0.2%以上の合金で形成されるが、好適には少なくとも上刃が弾性変形能0.2%以上の合金で形成される。切断用ハサミの一方の刃は、従来の刃物用鋼材を使用することができる。刃物用鋼材は、ステンレス系刃物鋼やニッケル(Ni)・クロム(Cr)・鉄(Fe)を主成分とし、炭素(C)を含み、熱処理を行うことで硬さを出す特徴を持つ。刃物を作るため、硬度と靭性の両立を図っている。刃先を研磨によりR1μm以下まで尖らせることができ、切断目的に合致し、刃の硬度と鋭さ、折れにくい靭性を併せ持っている。一部のハサミではJISで分類すると耐熱鋼に属するニッケル(Ni)多量含有の材料を使用する例が有る。目的は硬度より折れにくさ(靱性)を重視し、刃部の破損しにくさを求めている。特に脳神経外科手術で使用するものにみられる。
 本発明の1態様において、上刃は弾性変形能0.2%以上の合金で形成し、一方において下刃は引張強さ500N/mm以上、硬度Hv240以上の高強度チタン合金のような、変形しにくい材料で形成することにより、下刃の変形が少なく、下刃に上刃が押し付けられる力を受けて強い圧力で刃の接点が作られる。下刃と上刃が同じような強度や弾性を持つ場合に比較すれば、下刃側に被切断部を合わせておけば、その場所が切断されるため、使用者が切断場所を確認し、その狙った場所を切断することが容易になる。
 このような高強度チタン合金としては、好適にはTi-4Al-23V(JIS80種)等のβ型チタン合金、Ti-6Al-4V(JIS60種)、Ti-3Al-2.5V(JIS61種)等のα+β型チタン合金、およびTi-5Al-2.5Sn等のα型チタン合金が挙げられる。
 また、本発明の1態様において、本発明のハサミは、上刃及び下刃の少なくとも一方は形状記憶合金で形成されるのが好適である。Ti-Ni系形状記憶合金やTi-36Nb-2Ta-3Zr-O(mol%)に代表されるチタン合金が好適であり、この場合には硬さ・折れにくさ(割れにくい)の両立した材料がよい。
 本発明で使用する合金は弾性変形能1~7%の合金であるのが好適であり、さらに好適には合金は弾性変形能2~7%である。このような合金は、超弾性をもつチタン系合金であり、Ti-Nb系、Ti-Mo系、Ti-Ta系、Ti-Cr系合金等超弾性を発現するベータ型チタン合金である。さらには Ti3+(Nb,Ta,V)+(Zr,Hf)+O(mol%)]と表示される合金であり、体心立方構造をもつベータ型チタン合金も使用され、[Ti-23Nb-2Zr-0.7Ta-O(mol%)]の組成をもつものや、[Ti-12Ta-9Nb-3V-6Zr-O(mol%)]、[Ti-36Nb-2Ta-3Zr-O(mol%)]の組成を持つものなどが挙げられる。超弾性合金においては、弾性域を超えない範囲で変形ひずみを加えて大きく変形しても、外部応力を除くと変形ひずみが消えて元の形状に戻るが、Ti-Nb系、Ti-Mo系、Ti-Ta系、Ti-Cr系合金等超弾性を発現するベータ型チタン合金では弾性限を大きく超える数%~7%程度の変形ひずみを加えても結晶構造の変化による擬弾性変形により元に戻るものがある。一方、形状記憶合金においては、変態温度以下で弾性域を超えて変形ひずみを加えると変形するが、変態温度以上に加熱すると変形ひずみが消えて元の形状にもどる。形状記憶合金には常温では超弾性を示さないものがある。
 さらに、Ti-Ni合金系も好適に使用され得る。形状記憶合金は、変態点以上の温度では、変形を受けてもすぐさま元の形状を回復する性質を持ち、この変形範囲は、鋼などを使う通常のばね等に比べてはるかに広い。この合金は、チタンとニッケルの合金が一般的であるが、Ti-36Nb-2Ta-3Zr-O(mol%)のベータ型チタン合金も形状記憶能を持つ。組成を変更することで任意の温度以上になった場合に、あらかじめ設定した形状に変形する性質(マルテンサイト変態)を発現する。
 本発明のハサミにおいては、支点に用いられるネジ部、柄部および/または把持部を、刃部と同様な超弾性合金、形状記憶合金等を用いて作製することにより、非磁性材料が要請される場所での使用に適したハサミを提供し得る。
 本発明のハサミは、上刃および下刃の先端が上向きの反りを有するように構成し得る。特に細かな部分を切断するとき、先端を見やすくする必要があるときにおいて使用されるのに好適であり、使用者が刃先の周囲の状態を見ながら切断を行う場合に使用される。特に脳神経外科手術や心臓血管外科手術においては、上方より顕微鏡が術部を拡大し、執刀医はその情報を見ながら手術を行い、ハサミで切断をしている。この場合に使用するハサミは「刃部長さは10~30mm程度」「術部が見えるように(顕微鏡の視野の邪魔にならないように)刃部が反っている(湾曲している)」「先端は刺さらないよう丸めてある、または刺し込んで切断を始めるために刺さるように尖らせている」「切れ味は鋭い」などの要素が求められている。湾曲の程度を半径R表示で示すと、R10mm~150mmであって、望ましくはR20mm~100mmの範囲で湾曲している。顕微鏡下で15~30mmの長さの刃部を観察するとハサミが画像(モニター画像)内の1/3~半分程度に見えることがあるために幅が狭いハサミが好まれる。執刀医及び手術者が同じ画像を見ているため、ハサミの先端・切断部位だけが視野に入る構造が望まれている。下刃の先端が上向きの反りを有し、かつ超弾性合金からなる上刃の先端は丸められているか、または刺さるように尖らせてある構成とすることができる。この場合、上刃の刃部は下刃の上向きの反りに追随して沿うように変形しながら切断を進めることができる。
 支点を締め付けるネジ部をハサミの刃部外側と擦り合う面を広く形成し、その面に沿って刃部が動くようにすることにより、常に刃どうしが擦り合う構造とし得る。
 また、上刃と下刃の曲率を変えた場合に、刃の超弾性を利用して切り刃を擦り合わせ、対象物の切断をするときに、ネジが刃の擦り合わせの邪魔にならないよう自由度を持つ緩い締め付けにした構造として、常に刃どうしが擦り合う構造とし得る。
 一方の刃部に必要な形状を記憶させておくか、曲げ形状を与えておけば、相手刃部は平らでなくてもよい。たとえば、形状記憶合金を必要に応じて変態温度以下で変形させ、その形を記憶させて擦り合うように使用することができる。この場合は、上刃に形状記憶合金を採用し、曲率R1形状を記憶させておき、下刃には上刃より小さな曲率に曲げをつけた超弾性合金を使ったハサミでは上刃で切断部分を特定し、下刃がそこを切断するようになる。使用者が切断部位を観察している極近傍を切断することができる。
 従来のハサミに求められていた「2枚の刃の擦り合わせを厳密に作っておき、必ず2枚の刃が擦り合う構造を作っておく」でなくても、本発明のハサミはネジを中心に回転することで刃部が相手側の刃部におのずと寄り沿う様に変形をするため、従来のハサミのように刃部と一体になった精度の高い部品を、触点を含め擦り合わせて作る必要がない。本発明のハサミにおいて触点は単にあたり面となる。
 本発明の1態様によれば、超弾性合金製のしなやかな刃が刃物鋼製のRを持った刃線に、沿うように変形しながら切断を進めていく。超弾性合金は薄い場合には、変形をしやすく、曲率R20mmであっても長さ30mmの刃部長さの中で、必要な部分が変形し、曲がることが可能である。また、高い引張強度を持つため、簡単に折れない(割れない)。超弾性合金の中で、 Ti-23Nb-2Zr-0.7Ta-O(mol%)や、Ti-12Ta-9Nb-3V-6Zr-O(mol%)、Ti-36Nb-2Ta-3Zr-O(mol%)の内、前者の硬度はビッカース硬度Hv240以上であり、鉄-クロム系刃物鋼硬度がHv550~630程度に比較すれば低い。しかし、SUS301-CSP-Hの硬度Hv300~450などと比較して少し硬度が低い程度である。鉄系バネ鋼 SK5調質後硬度HRC59(Hv換算675)や実際に刃物鋼として販売されている硬度HRC58~62(Hv650~750)のものがあるが、このような材料で所要のR(R20~100mm)を作るには、熱処理前に研削や切削で粗寸法をつくって、その後に調質(焼き入れ・焼き戻し)を行い、研磨により目的の曲率R(mm)を仕上げて作りだす必要がある。調質後にR20~100mmで曲げることは不可能である。その理由は変形応力に対し靱性が小さいため折れてしまうことであり、刃物先端の鋭い切れ刃部分が破損してしまう(横変形応力(曲げ)に対して材料の伸び能力(変形能)が小さい場合に破断する。一般に刃物鋼など高硬度の材料は変形能が小さい)。
超弾性合金のうち、Ti(Nb,Zr,V)+(Ta,Hf)+Oで示されるものは特に優れた靱性と硬度を併せ持ち、180度曲げても折れることもない。更に数%~7%の弾性変形能を示すTi系合金としてTi-Nb系、Ti-Mo系、Ti-Ta系、Ti-Cr系合金があり、ハサミの目的に合った折れない材料を選択使用すればよい。脳神経外科手術においてハサミの破損残骸が手術部に残ることは極めて危険なことであって、決して手術部でハサミの損傷が起きないようにする必要がある。
 ハサミ刃部に硬度の高いコーティングを施す場合、特にCVDでの成膜時において、Ti合金はTi、Si、Crなどの中間層を入れずにコーティングが可能であり、密着性が良い。
 理美容ハサミでは刃部内面側に細分化したダイヤモンド状炭素膜をコーティングしたものが提供されており、この低摩擦係数を持つ硬質膜の効果で切り刃の摩耗を少なくして切味が長持ちするという報告が有る。本発明においても、上刃、下刃に細分化したダイヤモンド状炭素膜をコーティングすることにより、両刃間の摩擦を低減し、切断時の抵抗を低減することができる。また、刃の耐摩耗性を向上し、長寿命とすることができる。
 本発明のハサミでも切断時の抵抗はネジを介し、触点部分に圧力をかけ始めるが、触点が摩耗しても、刃部の方より相手刃部に寄っていくように弾性変形するため、触点部分の摩耗変形を超えて、相手刃部に沿って切断を可能とすることができ、ネジの調整で使えるようになる。
 本発明の1態様において、ハサミは、下刃の先端が上向きの反りを有し、上刃の刃部に溝入れ、板厚変化、ならびに素材の引張強度・硬度・ヤング率を制御する加工を施すことによって弾性変形性能(曲がり易さ)を高めた上刃を有し、上刃の刃部が下刃の上向き反りに追随して沿うように変形しながら切断を進めるように構成される。上刃の切り刃以外の刃部に溝を入れる目的は、溝部が周囲の材料厚さに対し相対的に薄くなり、その溝部分で変形しやすくなることを利用し、「曲がりのコントロール」と「曲がる位置を限定出来る」という利点がある。その溝は単独または複数で良く、方向や溝幅、深さ、長さは任意に決定できる。溝の形もU字型、V型、角型、R型、タコ壺型、これらの複合型等から選択・組合せが出来る。これによって、切断に最適な刃部の強度と、刃部の相手に沿って弾性変形していく能力を精度よく作ることが可能となる。この溝は刃部の外面でも擦り合う面のどちらに設けても良い。また、加工は部分的でも全面的にでも行うことができる。
 溝の入れ方はレーザー加工、切削、研削、塑性加工、エッチング、EB(電子線)加工などの電子を使用する方法、フォトリソグラフィ+エッチング加工、等を採用できる。
 また、板厚の変化は、従来のハサミに使用されている板厚の変化(刃元から刃先に向かって一様に薄くなる変化)とは異なり、設計者が曲がりや反りを指定する場所で弾性変形をしやすくする板厚の変化であり、板厚の変化をするためには冷間加工で展伸加工を行うことや、切削・研削加工で削り取る加工が採用できる。硬度、ヤング率を変化させる方法としては、冷間展伸加工をするか、冷間鍛造を行うか、加熱急冷を行うか、加熱放冷を行うか、焼鈍加工を行うか、の方法の1種類または複数の組合せ加工を行うなどで目的に合った素材の引張強度・硬度・ヤング率の変更が行える。
 以下、本発明のハサミの構造について、図面とともに本発明の実施態様についてさらに詳細に説明する。図1は、本発明のハサミの構造、特徴を分かり易く説明するために主要部を模式的に示した図である。図1において、上刃11は、超弾性合金で形成され、たとえば、Ti(Nb,Ta,V)+(Zr,Hf)+O と表示される合金で形成された例を示す。下刃12は、ステンレス系刃物鋼で形成されている。さらにもう1つの態様においては、下刃12も超弾性合金または形状記憶合金で形成される。
 下刃にTi-Ni系形状記憶合金または Ti-36Nb-2Ta-3Zr-O(mol%)で示される形状記憶合金を使った場合も同様の状態である。この場合の下刃のTi-Ni系形状記憶合金またはTi-36Nb-2Ta-3Zr-O(mol%)形状記憶合金は上刃に対し相対的に高硬度を持ち、弾性変形能も小さくしておく。これらの形状記憶合金は刃物鋼に対し割れにくい材料であるため、割れては困る場所での使用に適する。
 本発明の図1に示す態様において、下刃12の先端(刃先)16は、上向きの反りを有することにより、特に細かな部分を切断するとき、使用者が刃先の周囲の状態を見ながら切断を行う場合に使用される。特に脳神経外科手術においては、上方より顕微鏡が術部を拡大し、執刀医はその情報をみながら手術を行うのに好適である。先端は術部に刺さってはいけない場合には刺さらないように丸めてあるのが好適であり、逆に術部に刺す場合には尖らせておくのが好適であり、反りの曲りの程度を半径R表示で示すと、R20mm~100mmの範囲で湾曲しているのが好適である。図1において、(a)は、斜視図である。(b)は刃が開いた状態の横面を示す図である。(c)は、刃が閉じた状態の横面を示す図である。下刃12は先端が上向きに反っている。上刃11は平刃で、刃を閉じるに従いその大きな弾性変形能により下刃12に沿って、切り刃14のある一点で互いに接し、その接する点が刃の閉じる作動に従い、刃先16に向かって移動し、その接する点で対象物を切断する。
 支点3は、締め付けるネジのハサミの刃部外側と擦り合う面を広く形成し、その面に沿って刃部が動くようにすることにより、常に刃どうしが擦り合う構造とするのが好適である。
 図2は、超弾性合金と一般的な鋼材の変形能(歪)/応力の特性を概略的に示す図であり、超弾性合金の変形能対応力の概略的な特性を一般の鋼の変形能対応力の概略的な特性と対比して示している。(a)は、鉄鋼系ハサミ鋼の弾性変形能(<0.2)(b)は、Ti(Nb,Ta,V)+(Zr,Hf)+Oを代表とする超弾性合金の2.5%まで非線形弾性変形能を示す。超弾性合金の弾性変形能は一般の鋼と比べて極めて大きいことが示される。
 図3は、Ti(Nb,Ta,V)+(Zr,Hf)+O(mol%)で表される超弾性合金の代表的な変形能(歪)/応力(b)とTi-Nb系、Ti-Mo系、Ti-Ta系、Ti-Cr系合金のうち、擬弾性変形を含め7%まで超弾性能を示す超弾性合金の変形能(歪)/応力(c)の特性を概略的に示す図である。弾性変形能2.5%の合金のTi(Nb,Ta,V)+(Zr,Hf)+Oを例とした材料と、Ti-Nb系、Ti-Mo系、Ti-Ta系、Ti-Cr系合金の中で擬弾性変形を示す弾性変形能7%の材料の弾性変形能/応力の図を比較して示している。いずれも弾性域は非線形弾性を示す特徴を持つ。
 前記の図1は、本発明のハサミの1態様を示し、下刃は一般的な刃物鋼を使用し、他方の上刃を超弾性合金で作成したケースである。特に下刃の先端が上向きに湾曲しており(刃部が凹状に加工されている)、上刃を平板の構成とする時に最大の特徴を発揮する。つまり対象物を切断するためにハサミの両刃を閉じると、変形能の大きな上刃が剛な下刃の上向きの反りに追随して沿うように変形しながら移動して対象物を切断することができる。
 図4はこのような作動を模した斜視図(a)、横面図(b)および(d)、平面図(c)および(e)を示す。(b)は両刃が開いた状態の横面図、(c)は両刃が開いた状態の平面図を示す。(d)は両刃が閉じた状態の横面図であり、(e)は両刃が閉じた状態の平面図を示す。図1におけると同様に、図3においても、刃の作動を述べると、上刃(11)、下刃12が閉まっていくに従い上刃11が下刃12に沿って変形をしながら切断を進めて行く。
 本発明の他の実施態様として、刃に付加的な加工を施して刃の「変形のしやすさ」を高めることができる。例えば、前述した弾性変形能0.2%の素材を刃に適用した上で、付加加工により「変形のしやすさ」をより大幅に高めるなどの例が考えられる。
 図5において、(a)は、上刃11の切り刃14以外の部分に溝20を入れる例を示す。溝入れの方法は、レーザー加工・切削・研削・塑性加工・エッチング・EB加工などの電子を使用する方法、フォトリソグラフィ+エッチング加工から選択又はこれらの組み合わせから採用できる。(b)は刃を曲げた状態を模式的に示し、曲げは内面側、外面側のどちらに曲げてもよい。 (c)は溝の断面形状の例を示す。溝形状はU型、V型、R型、タコ壺型、角型及びこれらの組合せ等を採用できる。溝幅、深さ、位置、方向、本数、長さ、溝が平行か非平行に彫られるか、または交差するかなどの条件は曲がり易さや溝の効果から選択又は組合せから採用できる。(c)の溝は刃部の外側面または擦り合う内側面のいずれかまたは両側に設けることができる。これら(a)~(c)の加工は図には示していないが、上刃、下刃のどちらの切り刃以外の刃部に設けることができる。
 図6は、上刃の板厚を徐々に変える例を示す。(a)は、は直線的に板厚を変えた例、(b)は任意の形状で凹状に変えた例を示す。材料の物性値が同じなら板厚に比例して曲がり方が変わる。この曲がり方の変化を板厚を変化させることにより得ることができる。一様に板厚を変化させる必要はなく、目的にあった板厚変化を利用することができる。この加工により目的の強度を持つ切り刃を持つ刃部を作ることができ、的確な切断が可能となる。
 図7は、上刃と下刃に超弾性合金を使い、双方に異なる曲率を持たせた刃の組合せの図であり、(a)はハサミを開いた時の平面図であり、(b)は開いた時の側面図(横面図)、(c)はハサミを閉じた時の平面図、(d)は閉じた時の側面図(横面図)である。ここでは、上刃は上方に曲げられ、下刃は延ばされる形に変形する。すなわち、下刃は強く曲がっていて、上刃が下刃より大きな曲率半径で曲げられたものであり、これを切断に使用した場合、下刃は延ばされていく方向の弾性変形をする。上刃は下刃の弾性変形に追随する形で曲げられる方向に弾性変形をして、下刃に押し付けられながら接点を作る。この接点は対象物を切る場所であり、全体的に刃元から刃先に接点は移動する。完全に閉状態で切断は終了する。上下の刃をどの様に変形させるかは、板厚・硬度・曲げ変形性能(溝入れなどの追加工)から組合せ採用し得る。
 本発明によれば、擦り合う材料を選定し、その超弾性を利用して、刃部が相手刃部に擦り合うように刃の形状が変形し追随でき、相手刃部に沿って切断し得るハサミ、特に小型の要求される医療用ハサミ、とりわけ脳神経外科手術に好適に利用可能なハサミを提供し得る。

Claims (20)

  1.  一対の柄部の一方の各先端が上刃および下刃を形成し、一対の柄部の各他端が把持部を形成し、かつ柄部が交差する支点を中心に把持部の開閉により上刃および下刃が開閉するハサミであり、
    上刃および下刃の少なくとも一方は弾性変形能0.2%以上の合金で形成されるハサミ。
  2.  上刃が弾性変形能0.2%以上の合金で形成される請求項1に記載のハサミ。
  3.  合金が弾性変形能1~7%の合金である請求項1または2に記載のハサミ。
  4.  合金が超弾性合金または形状記憶合金である請求項1~3のいずれか1項に記載のハサミ。
  5.  合金がチタン系合金である請求項1~4のいずれか1項に記載のハサミ。
  6.  チタン系合金がベータ型チタン合金である請求項5に記載のハサミ。
  7.  上刃および下刃の先端が上向きの反りを有する請求項1~6のいずれか1項に記載のハサミ。
  8.  下刃の先端が上向きの反りを有し、かつ超弾性合金からなる上刃の先端は丸められているか、または刺さるように尖らせてある請求項1~6のいずれか1項に記載のハサミ。
  9.  上刃の先端は下刃の上向きの反りに追随して沿うように変形しながら切断を進める請求項8に記載のハサミ。
  10.  反りが曲率半径が10~150mmの範囲である請求項7~9のいずれか1項に記載のハサミ。
  11.  曲率半径が20~100mmの範囲である請求項10に記載のハサミ。
  12.  支点を締め付けるネジ部の頭を大きくして、ハサミの刃部外側と擦り合う面を広く形成し、その面にそって刃部が動くようにすることにより、常に刃どうしが擦り合う構造を有する、請求項1~11のいずれか1項に記載のハサミ。
  13.  上刃と下刃の曲率を変えた場合に、刃の超弾性を利用して刃を擦り合わせ、対象物の切断をするときに、ネジが刃の擦り合わせの邪魔にならないよう自由度を持つ緩い締め付けにした構造を有する、請求項1~11のいずれか1項に記載のハサミ。
  14.  脳神経外科手術用、心臓血管外科手術用、形成外科手術用、または耳鼻咽喉科手術用のハサミである請求項1~13のいずれか1項に記載のハサミ。
  15.  下刃の先端が上向きの反りを有し、上刃の刃部に溝入れ、板厚変化、ならびに素材の引張強度、硬度およびヤング率を変更可能とする加工を施すことによって弾性変形性能を制御した上刃を有し、上刃の刃部が下刃の上向き反りに追随して沿うように変形しながら切断を進めるハサミ。
  16.  反りが曲率半径が10~150mmの範囲である請求項15に記載のハサミ。
  17.  曲率半径が20~100mmの範囲である請求項16に記載のハサミ。
  18.  支点を締め付けるネジ部の頭を大きくして、ハサミの刃部外側と擦り合う面を広く形成し、その面にそって刃部が動くようにすることにより、常に刃どうしが擦り合う構造を有する、請求項15~17のいずれか1項に記載のハサミ。
  19.  上刃と下刃の曲率を変えた場合に、刃の超弾性を利用して刃を擦り合わせ、対象物の切断をするときに、ネジが刃の擦り合わせの邪魔にならないよう自由度を持つ緩い締め付けにした構造を有する、請求項15~18のいずれか1項に記載のハサミ。
  20.  脳神経外科手術用、心臓血管外科手術用、形成外科手術用、または耳鼻咽喉科手術用のハサミである請求項15~19のいずれか1項に記載のハサミ。
PCT/JP2015/069456 2014-09-30 2015-07-06 ハサミ WO2016051898A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15846780.3A EP3202341B1 (en) 2014-09-30 2015-07-06 Scissors
CN201580035803.3A CN107072686B (zh) 2014-09-30 2015-07-06 剪刀
JP2016551593A JP6573176B2 (ja) 2014-09-30 2015-07-06 ハサミ
US15/322,429 US10327799B2 (en) 2014-09-30 2015-07-06 Scissors

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014202496 2014-09-30
JP2014-202496 2014-09-30

Publications (1)

Publication Number Publication Date
WO2016051898A1 true WO2016051898A1 (ja) 2016-04-07

Family

ID=55629951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/069456 WO2016051898A1 (ja) 2014-09-30 2015-07-06 ハサミ

Country Status (5)

Country Link
US (1) US10327799B2 (ja)
EP (1) EP3202341B1 (ja)
JP (1) JP6573176B2 (ja)
CN (1) CN107072686B (ja)
WO (1) WO2016051898A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107007329A (zh) * 2017-03-03 2017-08-04 重庆长麟梅捷医疗科技有限公司 一种医用手术器械剪刀

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201803527A (zh) * 2016-06-17 2018-02-01 諾華公司 膜分層裝置
IT201600111926A1 (it) * 2016-11-07 2018-05-07 Bortolussi Claudio Forbici per degemmazione
US10499943B2 (en) * 2017-01-11 2019-12-10 Michael E Lasner Ring handled surgical instrument
US20180290316A1 (en) * 2017-04-06 2018-10-11 Slice, Inc. Cutting device
USD863906S1 (en) * 2017-10-10 2019-10-22 Jerad Bludorn Scissors blades
JP1618780S (ja) * 2018-04-28 2018-11-26
JP1650795S (ja) * 2019-01-25 2020-01-20
KR102347411B1 (ko) * 2021-03-26 2022-01-05 박준하 포장 개봉 가위

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53116087U (ja) * 1977-02-23 1978-09-14
JPS62192725U (ja) * 1986-05-27 1987-12-08
JPH04114689A (ja) * 1990-09-05 1992-04-15 Mitsubishi Materials Corp
JPH04507363A (ja) * 1989-08-16 1992-12-24 メッドトロニック・インコーポレイテッド 対象物体を握持または切断するためのデバイス
JPH05146558A (ja) * 1991-11-29 1993-06-15 Nippon Steel Weld Prod & Eng Co Ltd チタン刃物の刃先部材
JP2007143956A (ja) * 2005-11-29 2007-06-14 Kyocera Corp 刃物
JP2012090919A (ja) * 2010-10-29 2012-05-17 Shoichi Nakamura 外科手術用器具
JP2012512005A (ja) * 2008-12-16 2012-05-31 アール.スレーター チャールズ 内視鏡用鋏装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53116087A (en) 1977-03-22 1978-10-11 Hitachi Ltd Manufacture for multilayer wiring
JPH0510783Y2 (ja) 1987-12-01 1993-03-16
US5509923A (en) 1989-08-16 1996-04-23 Raychem Corporation Device for dissecting, grasping, or cutting an object
WO1992005828A1 (en) * 1990-10-09 1992-04-16 Raychem Corporation Device or apparatus for manipulating matter
US5437282A (en) * 1993-10-29 1995-08-01 Boston Scientific Corporation Drive shaft for acoustic imaging catheters and flexible catheters
US6264669B1 (en) * 1997-03-11 2001-07-24 Claude Le Louarn Rhinoplasty instruments
US6592603B2 (en) * 2000-12-15 2003-07-15 Michael Lasner Manually adjustable scissors or forceps
US6908476B2 (en) 2001-12-21 2005-06-21 Alcon Grieshaber Ag Micro surgical cutting instrument configured as scissors
DE10221321A1 (de) * 2002-05-07 2003-11-27 Aesculap Ag & Co Kg Schere für medizinische Zwecke
ATE439543T1 (de) * 2007-06-04 2009-08-15 Fiat Ricerche Dichtring
JP2012092373A (ja) * 2010-10-25 2012-05-17 Hitachi Displays Ltd 真空蒸着装置
WO2014091523A1 (ja) * 2012-12-13 2014-06-19 株式会社シャルマン 医療用器具

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53116087U (ja) * 1977-02-23 1978-09-14
JPS62192725U (ja) * 1986-05-27 1987-12-08
JPH04507363A (ja) * 1989-08-16 1992-12-24 メッドトロニック・インコーポレイテッド 対象物体を握持または切断するためのデバイス
JPH04114689A (ja) * 1990-09-05 1992-04-15 Mitsubishi Materials Corp
JPH05146558A (ja) * 1991-11-29 1993-06-15 Nippon Steel Weld Prod & Eng Co Ltd チタン刃物の刃先部材
JP2007143956A (ja) * 2005-11-29 2007-06-14 Kyocera Corp 刃物
JP2012512005A (ja) * 2008-12-16 2012-05-31 アール.スレーター チャールズ 内視鏡用鋏装置
JP2012090919A (ja) * 2010-10-29 2012-05-17 Shoichi Nakamura 外科手術用器具

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3202341A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107007329A (zh) * 2017-03-03 2017-08-04 重庆长麟梅捷医疗科技有限公司 一种医用手术器械剪刀

Also Published As

Publication number Publication date
CN107072686B (zh) 2020-06-02
US10327799B2 (en) 2019-06-25
JPWO2016051898A1 (ja) 2017-07-27
CN107072686A (zh) 2017-08-18
JP6573176B2 (ja) 2019-09-11
EP3202341B1 (en) 2021-03-31
US20180206872A1 (en) 2018-07-26
EP3202341A1 (en) 2017-08-09
EP3202341A4 (en) 2018-03-21

Similar Documents

Publication Publication Date Title
JP6573176B2 (ja) ハサミ
EP3374139B1 (en) Razor blade
US20100005929A1 (en) Multiple-angle scissor blade
WO2012029688A1 (ja) 医療用ナイフ
JP4604140B2 (ja) 医療用針又は刃物
AU2016274589A1 (en) Razor blade steel
JP4494209B2 (ja) 理髪用はさみの製造方法及び理髪用はさみ
US20060201001A1 (en) Coated cutting member having a nitride hardened substrate
EP2932923B1 (en) Medical instrument
JP7461366B2 (ja) かみそり刃及びかみそり刃のための組成物
JP2020192618A (ja) 刃物の製造方法
JP6193749B2 (ja) 医療用剪刀
US20220347876A1 (en) Metals for razor blade applications
JP2017121310A (ja) 医療用剪刀
JP2014226214A (ja) ケリソンパンチ
WO2012115944A1 (en) Blade fabrication process and bulk metallic glass surgical grade blade
JP6181135B2 (ja) ストレートナイフの製造方法
JP2008237521A (ja) 切断刃
WO1999006189A1 (fr) Ciseaux

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15846780

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016551593

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15322429

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015846780

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE