WO2016051864A1 - 銅合金材、コネクタ端子、及び銅合金材の製造方法 - Google Patents
銅合金材、コネクタ端子、及び銅合金材の製造方法 Download PDFInfo
- Publication number
- WO2016051864A1 WO2016051864A1 PCT/JP2015/065889 JP2015065889W WO2016051864A1 WO 2016051864 A1 WO2016051864 A1 WO 2016051864A1 JP 2015065889 W JP2015065889 W JP 2015065889W WO 2016051864 A1 WO2016051864 A1 WO 2016051864A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- copper alloy
- alloy material
- phase
- processing
- heat treatment
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/08—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/02—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
Definitions
- the present invention relates to a copper alloy material and a method for producing the copper alloy material.
- the present invention relates to a copper alloy material that has high strength and high conductivity and is excellent in bending workability.
- Copper alloy materials are used for connector terminals of automotive wire harnesses, printed circuit boards (PCBs), and other electrical and electronic equipment.
- PCBs printed circuit boards
- copper alloys such as Corson alloy (Cu—Ni—Si alloy), phosphor bronze (Cu—Sn—P alloy), and brass (Cu—Zn alloy) are used for such applications.
- the copper alloy material for connector terminals is required not only to achieve both high strength and high electrical conductivity required for terminals, but also bendability (drawing) necessary for processing into terminals. Therefore, it is desired to develop a copper alloy material having high strength and high conductivity and excellent bending workability. There are also demands for reducing the size of electric and electronic devices and for further cost reduction.
- the Corson alloy and phosphor bronze have a content of main subcomponents such as Ni, Si, Sn, and P of about 10% by mass or less, contain 90% by mass or more of Cu, and occupy Cu in the copper alloy. A large percentage. For this reason, Corson alloy and phosphor bronze are expensive because they use a large amount of expensive Cu, and are easily affected by the copper market.
- brass generally has a Zn content of about 30 to 40% by mass and can reduce the amount of Cu used. Therefore, it can be said that it is easy to reduce costs and avoid the risk of fluctuations in the copper market.
- the Cu-Fe alloy has a higher strength than brass and can be significantly improved in strength. Further, the Cu—Fe alloy is advantageous in that the amount of Cu used can be reduced and the cost can be reduced. However, it is difficult for conventional Cu—Fe alloys to ensure sufficient electrical conductivity, and there is a problem in bending workability. Therefore, even if a Cu-Fe alloy is used as the copper alloy material in order to meet the demands for miniaturization and cost reduction of electric / electronic equipment, it is possible to achieve bending workability while achieving both high strength and high conductivity. It is necessary to establish technology to improve.
- the copper alloy material according to one aspect of the present invention is a copper alloy material made of a Cu—Fe alloy containing Cu and Fe, and the Fe content is 20 mass% or more and 50 mass% or less, and the Cu phase In the X-ray diffraction, the half-value width of the diffraction peak of the (222) plane of the Cu phase and the half-value width of the diffraction peak of the (220) plane of the Fe phase are 0. .5 or less.
- the connector terminal according to one aspect of the present invention is obtained by processing the copper alloy material according to one aspect of the present invention.
- the method for producing a copper alloy material according to an aspect of the present invention includes a preparation step of preparing a Cu—Fe alloy material containing Fe in an amount of 20% by mass to 50% by mass, and plastically processing the material to obtain a final shape. And a final heat treatment step for subjecting the processed material to a final heat treatment at 500 ° C. or higher and 600 ° C. or lower after the processing step.
- the copper alloy material is excellent in bending workability while having high strength and high conductivity.
- the connector terminal has both high strength and high conductivity.
- the manufacturing method of the said copper alloy material can manufacture the copper alloy material which is excellent in bending workability, having high intensity
- FIG. 3 is a diagram in which a sample of a copper alloy material according to Example 1 is plotted with “drawing (%)” on the horizontal axis and “tensile strength (MPa)” on the vertical axis.
- 1 is a cross-sectional micrograph of a copper alloy material according to Example 1.
- the inventors of the present invention have studied a technique for improving bending workability (drawing) while achieving both high strength and high conductivity in a copper alloy material of a Cu—Fe alloy.
- the present inventors made a bending process while simultaneously achieving both high strength and high conductivity by performing a final heat treatment in a specific temperature range after plastic processing such as wire drawing and rolling of the Cu-Fe alloy material. It has been found that a copper alloy material excellent in workability can be obtained. And the present inventors acquired knowledge that the obtained copper alloy material had a specific X-ray diffraction pattern.
- a copper alloy material according to one embodiment of the present invention is a copper alloy material made of a Cu—Fe alloy containing Cu and Fe, and the Fe content is 20% by mass or more and 50% by mass or less.
- the half width of the diffraction peak of the (222) plane of the Cu phase and the half width of the diffraction peak of the (220) plane of the Fe phase are 0.5 or less.
- the Fe content is 20% by mass or more and 50% by mass or less, and has a structure including a Cu phase and an Fe phase, so that the Fe phase precipitated in the Cu phase is high.
- Tensile strength is obtained.
- the half value width of the diffraction peak of both the (222) plane of Cu phase and the (220) plane of Fe phase is 0.5 or less, processing distortion decreases.
- the aperture is improved.
- the copper alloy material it is possible to have high electrical conductivity, ensuring sufficient tensile strength. Therefore, the copper alloy material is excellent in bending workability while having high strength and high conductivity.
- One form of the copper alloy material is that the tensile strength is 700 MPa or more, the drawing is 60% or more, and the conductivity is 25% IACS or more.
- the required characteristics as connector terminals can be sufficiently satisfied by having the above mechanical characteristics and electrical characteristics. For example, since the strength is high and the conductivity is high, the connector terminal can be thinned. Further, since the drawing is high and the bending workability is excellent, defects such as cracks are not easily generated during the bending process, and the connector terminal can be easily processed.
- the connector terminal according to one aspect of the present invention is obtained by processing the copper alloy material according to one aspect of the present invention described in (1) or (2) above.
- the connector terminal since the copper alloy material is processed, it has both high strength and high conductivity. Therefore, according to the connector terminal, it is possible to reduce the thickness as compared with the conventional connector terminal. Moreover, since the copper alloy material excellent in bending workability is processed, defects such as cracks hardly occur and productivity is high.
- a method for producing a copper alloy material according to an aspect of the present invention includes a preparation step of preparing a Cu—Fe alloy material containing Fe in an amount of 20% by mass to 50% by mass, and plastically processing the material, And a final heat treatment step of subjecting the processed material to a final heat treatment at a temperature of 500 ° C. or higher and 600 ° C. or lower after the processing step.
- a Cu—Fe alloy material containing 20% by mass or more and 50% by mass or less of Fe is plastically processed and then subjected to a final heat treatment, thereby providing high strength and high electrical conductivity.
- a copper alloy material having excellent bending workability can be produced. This is considered as follows. By plastic working a material of Cu—Fe alloy containing Fe of 20% by mass or more and 50% by mass or less, the Fe phase precipitated in the Cu phase is stretched into a fiber shape by the processing, and the fibrous Fe phase High tensile strength can be obtained.
- the processing strain caused by the processing can be reduced (relieved), and the bending workability (drawing) is improved.
- Fe dissolved in the Cu phase is finely precipitated, and the electrical conductivity can be improved.
- the copper alloy material is made of a Cu—Fe alloy containing Cu and Fe, and has a structure including a Cu phase and an Fe phase. Specifically, it has a two-phase alloy structure in which two elements of Cu and Fe are the main components and the Fe phase forming the second phase is dispersed in the Cu phase serving as a matrix.
- the copper alloy material (Cu—Fe alloy) is contained in an amount of 20% by mass to 50% by mass.
- the strength increases as the Fe content increases, and the conductivity tends to improve as the Cu content increases.
- the content of Fe is 20% by mass or more, high strength can be obtained while reducing the amount of Cu used.
- the electrical conductivity required for the connector terminal eg, 25% IACS or more, preferably 30% IACS or more
- the Fe content is 30% by mass or more, and further 40% by mass or more, the effect of reducing the amount of Cu used is large.
- the copper alloy material may contain at least one element selected from, for example, Mg, Sn, P, Si, Al, and Mn as an additive element.
- Mg and Sn can be expected to dissolve in the Cu phase and improve the strength. If the content of Mg and Sn is too small, it is difficult to obtain an effect of improving the strength. If the content is too large, the conductivity, bending workability and the like are lowered. It is mentioned that it shall be below mass%. More preferable contents of Mg and Sn are 0.4% by mass or more and 1.2% by mass or less in total.
- P, Si, Al, and Mn are effective in refining the Fe phase by finely crystallizing the Fe phase in the Cu phase during the casting of the Cu—Fe alloy.
- the shape of the copper alloy material can be selected from various shapes such as, for example, a wire, a plate, a rod, and a tube depending on the application.
- Typical examples of the wire include a square wire having a square cross section, a rectangular wire having a rectangular cross section, and a round wire having a circular cross section.
- the thickness is about 0.5 mm to 1 mm and the width is about 0.5 mm to 1.5 mm
- the diameter is about 0.5 mm to 1 mm.
- each of the Cu phase and the Fe phase has a specific X-ray diffraction pattern.
- the half width of the diffraction peak of the (222) plane of the Cu phase and the half width of the diffraction peak of the (220) plane of the Fe phase are 0.5 or less.
- the processing strain is reduced and the aperture is high.
- the diaphragm tends to be higher as the half width of these diffraction peaks is smaller.
- the half-value width of the diffraction peak of the (222) plane of the Cu phase is, for example, preferably 0.45 or less, and 0.4 or less.
- the half-value width of the diffraction peak of the (220) plane of the Fe phase is, for example, 0.46 or less. 0.44 or less is preferable.
- the half width of these diffraction peaks mainly depends on the processing strain introduced into the copper alloy material. Therefore, the half widths of these diffraction peaks are greatly influenced by the temperature condition of the final heat treatment performed after plastic working in the manufacturing process described later, and vary depending on the temperature of the final heat treatment. Specifically, the half width of the diffraction peak tends to increase as the temperature of the final heat treatment decreases, and tends to decrease as the temperature of the final heat treatment increases.
- the diffraction peak is examined by performing X-ray diffraction on the cross section of the copper alloy material.
- the cross section is a transverse cross section orthogonal to the drawing direction (drawing direction, rolling direction, etc., typically the longitudinal direction of the copper alloy material).
- the copper alloy material is excellent in bending workability while having high strength and high conductivity.
- the tensile strength is 700 MPa or more
- the drawing is 60% or more
- the conductivity is 25% IACS or more.
- the tensile strength is preferably 800 MPa or more, more preferably 850 MPa or more
- the conductivity is preferably 30% IACS or more, and more preferably 32% IACS or more.
- the higher the drawing the better the bending workability, for example, it can be easily processed into a connector terminal. Since the diaphragm has sufficient bending workability if it is 60% or more, for example, there is no particular problem in processing into a connector terminal, but it is preferably 65% or more, more preferably 70% or more. .
- the copper alloy material may have Sn plating made of Sn or Sn alloy on the surface. By having Sn plating, it is possible to improve corrosion resistance, solderability, electrical connectivity, and the like. In the case of a Sn alloy, it is preferable to contain 80% by mass or more of Sn.
- the thickness of the Sn plating is, for example, 0.5 ⁇ m or more and 2.5 ⁇ m or less.
- the method for producing a copper alloy material includes a preparation step, a processing step, and a final heat treatment step. Hereinafter, each step will be described in detail.
- a Cu—Fe alloy material containing 20 mass% or more and 50 mass% or less of Fe is prepared.
- a cast material obtained by casting a molten Cu—Fe alloy can be used. Further, the cast material may be hot-rolled, hot-forged, or extruded and used as a raw material, or a solution treatment may be performed on the raw material.
- the temperature is set to 800 ° C. or more and 950 ° C. or less, and the temperature holding time is set to 0.5 minutes or more and 60 minutes or less.
- Casting is preferably performed by rapid cooling, and the faster the cooling rate, the finer the Fe phase is crystallized in the Cu phase and the Fe phase can be uniformly dispersed, thereby improving the strength of the copper alloy material. Can do.
- the cooling rate during casting is preferably 2 ° C./second or more, and more preferably 5 ° C./second or more.
- various cooling methods such as air cooling and water cooling can be used. Examples of the cooling method include direct cooling using a fluid refrigerant such as water, oil, and sand, and water cooling using a water jacket. Indirect cooling can be mentioned. Continuous casting may be used for producing the cast material. *
- the material is plastically processed to produce a final shape processed material.
- a Cu—Fe alloy material is plastically processed such as wire drawing or rolling, and processed into a processing material such as a wire or plate.
- the Fe phase particles dispersed and present in the Cu phase can be stretched into a needle shape or a belt shape, and the thickness of the Fe phase and the interval between the Fe phases can be reduced.
- the strength of the material can be improved.
- the thickness of the Fe phase and the interval between the Fe phases are values measured along the thickness direction in a longitudinal section parallel to the stretching direction by processing.
- the Fe phase is preferably fine from the viewpoint of improving the strength, and the average thickness of the Fe phase is preferably 0.3 ⁇ m or more and 5 ⁇ m or less, more preferably 3 ⁇ m or less, and particularly preferably 1 ⁇ m or less.
- the plastic working includes, for example, wire drawing (drawing), rolling, extrusion, etc., and may be performed cold.
- plastic processing eg, wire drawing, rolling, etc.
- at least one intermediate heat treatment at 800 ° C. to 1100 ° C. may be performed during the processing.
- the temperature of the intermediate heat treatment By setting the temperature of the intermediate heat treatment to 800 ° C. or higher, work hardening can be sufficiently eliminated, and by setting the temperature to 1100 ° C. or lower, excessive softening or melting of the workpiece during processing can be prevented.
- a more preferable temperature for the intermediate heat treatment is 850 ° C. or higher and 1000 ° C. or lower.
- the time of intermediate heat processing is not specifically limited, For example, it is 30 minutes or more and 120 minutes or less.
- the processing rate per one time of plastic working is, for example, 80% or more and 99% or less and 85% or more and 95% or less.
- the processing rate here means a reduction in area in the case of wire drawing or extrusion, and a reduction ratio in the case of rolling.
- the area reduction rate (%) can be obtained by the equation [ ⁇ (A 0 ⁇ A) / A 0 ⁇ ⁇ 100] where A 0 is the cross-sectional area before processing and A is the cross-sectional area after processing.
- the rolling reduction (%) can be obtained by the equation [ ⁇ (h 0 ⁇ h) / h 0 ⁇ ⁇ 100], where h 0 is the thickness before processing and h is the thickness after processing.
- the processing rate per plastic processing is the total processing rate of plastic processing from the start of plastic processing until the first intermediate heat treatment is performed.
- the processing rate of the last plastic processing is preferably 80% or more, more preferably 85% or more, and particularly preferably 90% or more.
- the strength of the copper alloy material can be improved.
- the processed material is subjected to a final heat treatment at 500 ° C. or higher and 600 ° C. or lower after the processing step.
- a final heat treatment at 500 ° C. or higher and 600 ° C. or lower after the processing step.
- work strain caused by the work can be reduced, and the bending workability (drawing) of the copper alloy material is improved.
- Fe dissolved in the Cu phase is finely precipitated, and the electrical conductivity can be improved.
- the strength reduction by softening can also be suppressed by making the temperature of final heat processing 600 degrees C or less.
- a more preferable final heat treatment temperature is 550 ° C. or higher.
- the time of final heat processing is not specifically limited, For example, setting it as 0.5 hours or more and 2 hours or less is mentioned.
- the manufactured copper alloy material can achieve, for example, a tensile strength of 700 MPa or more, a drawing of 60% or more, and a conductivity of 25% IACS or more.
- an Sn plating step for forming Sn plating on the surface of the obtained copper alloy material may be added.
- a method for forming the Sn plating for example, electrolytic plating or electroless plating can be used.
- reflow treatment may be performed, whereby whisker generation / growth can be suppressed.
- the temperature is set to be equal to or higher than the melting point of Sn plating, for example, 230 ° C. to 300 ° C., and the temperature holding time is set to 0.2 minutes or more and 10 minutes or less.
- the connector terminal is obtained by processing the copper alloy material according to the above-described embodiment of the present invention. Therefore, since the connector terminal has both high strength and high conductivity, it can be thinned. In addition, since a copper alloy material excellent in bending workability is processed and manufactured, defects such as cracks hardly occur during bending work, and productivity is high.
- the connector terminal may have Sn plating on the surface. If a copper alloy material having Sn plating is processed, a connector terminal with Sn plating can be obtained. It is also possible to form Sn plating after processing a copper alloy material into a connector terminal.
- Example 1 A Cu—Fe alloy material was prepared, the material was plastic processed to produce a workpiece, and the resulting workpiece was subjected to a final heat treatment to produce a copper alloy material. And the produced copper alloy material was evaluated.
- a Cu—Fe alloy having the composition shown in Table 1 was cast and hot forged to produce a rod-like rod material having a diameter of 20 mm.
- “Cu-50% Fe” means a Cu—Fe alloy containing 50% by mass of Fe, with the balance being a composition of Cu and inevitable impurities, and “Cu-30% Fe”. Is a Cu—Fe alloy containing 30% by mass of Fe, with the balance being composed of Cu and inevitable impurities.
- the rod material thus produced was used as a raw material, and the rod material was drawn a plurality of times, and processed into a square wire having a square cross section with a final shape of 0.64 mm thickness ⁇ 0.64 mm width (0.64 mm square).
- the tensile strength and 0.2% proof stress were measured according to JIS Z 2241: 2011 “Metal Material Tensile Test Method” by collecting test pieces from each sample.
- the results are shown in Table 1.
- FIG. 1 is a plot of each sample with the horizontal axis indicating “drawing (%)” and the vertical axis indicating “tensile strength (MPa)” based on the results in Table 1.
- FIG. 1-3 to 1-5, 1-8, and ⁇ are sample numbers. 1-1, 1-2, 1-6 and 1-7, x indicates the sample No. 1-10 is shown.
- the sample No. in which the final heat treatment was not applied or the final heat treatment temperature was 450 ° C.
- 1-1, 1-2, and 1-7 have high tensile strength, it can be seen that the drawing is low and the bending workability is poor. Among them, the sample that has not been subjected to the final heat treatment has low conductivity.
- the sample No. with a final heat treatment temperature of 850 ° C. No. 1-6 has improved drawing (bending workability) but reduced tensile strength and electrical conductivity.
- X-ray used Cu-K ⁇ Excitation conditions: 45 kV, 200 mA Used collimator: ⁇ 0.3mm Measurement method: ⁇ -2 ⁇ method
- X-ray diffraction was performed using a central portion in the vicinity of the center of the cross section as a measurement surface. Then, in the measured X-ray diffraction pattern, the half width (deg) of the diffraction line of the main peak of the Cu phase and the Fe phase is calculated, and the diffraction peak of the (222) plane of the Cu phase and the (220) plane of the Fe phase. The full width at half maximum was calculated. The results are shown in Table 2.
- the sample No. In 1-5 the half-value widths of the diffraction peaks of both the (222) plane of the Cu phase and the (220) plane of the Fe phase are 0.5 or less.
- sample no. 1-1 the half-value widths of the diffraction peaks of both the (222) plane of the Cu phase and the (220) plane of the Fe phase do not satisfy 0.5 or less.
- 1-2 indicates that the half width of the diffraction peak of the (220) plane of the Fe phase does not satisfy 0.5 or less.
- FIG. 2 is two cross-sectional photomicrographs (1000 times magnification) of the same sample taken in different fields of view.
- the dark gray portion is the Fe phase. From this cross-sectional micrograph, it can be seen that the fibrous Fe phase is dispersed. Moreover, the average thickness of the Fe phase was determined from a micrograph of the cross section.
- a straight line is drawn in the thickness direction (direction orthogonal to the wire drawing direction), the individual thicknesses of the Fe phases existing on the straight line are measured, and the average value is obtained as the Fe phase.
- the average thickness In this example, three different fields of view were measured at three locations, and the average value of a total of 15 locations was obtained. As a result, sample no.
- the average thickness of the Fe phase in 1-5 was 1 ⁇ m.
- the copper alloy material of the present invention can be suitably used, for example, as a material for board connector terminals.
- the connector terminal of this invention can be utilized suitably for the connector terminal of a wire harness for motor vehicles, a printed circuit board (PCB), and other various electric / electronic devices.
- the method for producing a copper alloy material of the present invention can be suitably used for producing a copper alloy material for connector terminals, for example.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Conductive Materials (AREA)
Abstract
銅合金材は、CuとFeとを含有し、Cu-Fe合金からなる。この銅合金材において、Feの含有量は20質量%以上50質量%以下である。銅合金材は、Cu相とFe相とを含む組織を有し、X線回折において、Cu相の(222)面の回折ピークの半価幅、及びFe相の(220)面の回折ピークの半価幅が0.5以下である。上記銅合金材は、Feを20質量%以上50質量%以下含有するCu-Fe合金の素材を準備する準備工程と、この素材を塑性加工して、最終形状の加工材を作製する加工工程と、加工工程の後、加工材を500℃以上600℃以下で最終熱処理する最終熱処理工程とを通じて製造することができる。
Description
本発明は、銅合金材、及び銅合金材の製造方法に関する。特に、高強度と高導電率とを有しつつ、曲げ加工性に優れる銅合金材に関する。
自動車用ワイヤーハーネスや印刷回路基板(PCB)、その他の電気・電子機器のコネクタ端子に銅合金材が使用されている。従来、このような用途には、コルソン合金(Cu-Ni-Si合金)、リン青銅(Cu-Sn-P合金)、黄銅(Cu-Zn合金)などの銅合金が使用されている。
また、CuとFeとの2相合金であるCu-Fe合金をコネクタ端子に使用することも検討されている。(例えば、特許文献1~3を参照。)
コネクタ端子用銅合金材には、端子として必要とされる高強度と高導電率とを両立するだけでなく、端子に加工するのに必要な曲げ加工性(絞り)も要求される。したがって、高強度と高導電率とを有しつつ、曲げ加工性に優れる銅合金材の開発が望まれている。また、電気・電子機器の小型化への対応や、更なる低コスト化の要求もある。
一般に、コルソン合金やリン青銅は、Ni,SiやSn,Pなどの主な副成分の含有量が10質量%程度以下であり、Cuを90質量%以上含有し、銅合金中に占めるCuの割合が多い。そのため、コルソン合金やリン青銅は、高価なCuの使用量が多いことから、高コストになる上、銅相場の影響を受け易い。一方、黄銅は、Znの含有量が一般に30~40質量%程度であり、Cuの使用量を削減できるため、コストを低減したり、銅相場の変動リスクを回避し易いといえる。
電気・電子機器の小型化に対応するためには、端子を構成する銅合金材の薄肉化が有効である。また、低コスト化の要求に対しても、材料自体の使用量を削減するため、銅合金材の薄肉化が有効である。銅合金材の薄肉化を実現するためには、その分、断面積が小さくなるので、銅合金材の強度及び導電率の向上が必要である。しかし、黄銅では、ある程度の導電率や曲げ加工性を確保しつつ、強度を向上することには限界がある。例えば、黄銅のZnの含有量を増やして強度の向上を図ることが考えられるが、その場合、導電率や加工性を維持することが難しい。
Cu-Fe合金は、黄銅に比較して、高い強度を有しており、強度の大幅な向上が可能である。また、Cu-Fe合金は、Cuの使用量を削減でき、コスト低減できる点でメリットがある。しかし、従来のCu-Fe合金は、十分な導電率を確保することが難しく、曲げ加工性の点でも難点がある。したがって、電気・電子機器の小型化や低コスト化の要求に対応するため、銅合金材にCu-Fe合金を用いるにしても、高強度と高導電率とを両立しつつ、曲げ加工性を向上する技術の確立が必要である。
そこで、本発明の目的の一つは、高強度と高導電率とを有しつつ、曲げ加工性に優れる銅合金材を提供することにある。本発明の別の目的は、上記銅合金材が加工されたコネクタ端子を提供することにある。本発明の他の目的は、高強度と高導電率とを有しつつ、曲げ加工性に優れる銅合金材を製造できる銅合金材の製造方法を提供することにある。
本発明の一態様に係る銅合金材は、CuとFeとを含有するCu-Fe合金からなる銅合金材であって、Feの含有量が20質量%以上50質量%以下であり、Cu相とFe相とを含む組織を有し、X線回折において、前記Cu相の(222)面の回折ピークの半価幅、及び前記Fe相の(220)面の回折ピークの半価幅が0.5以下である。
本発明の一態様に係るコネクタ端子は、上記本発明の一態様に係る銅合金材が加工されたものである。
本発明の一態様に係る銅合金材の製造方法は、Feを20質量%以上50質量%以下含有するCu-Fe合金の素材を準備する準備工程と、前記素材を塑性加工して、最終形状の加工材を作製する加工工程と、前記加工工程の後、前記加工材を500℃以上600℃以下で最終熱処理する最終熱処理工程と、を備える。
上記銅合金材は、高強度と高導電率とを有しつつ、曲げ加工性に優れる。上記コネクタ端子は、高強度と高導電率とを兼ね備える。上記銅合金材の製造方法は、高強度と高導電率とを有しつつ、曲げ加工性に優れる銅合金材を製造できる。
[本発明の実施形態の説明]
本発明者らは、Cu-Fe合金の銅合金材において、高強度と高導電率とを両立しつつ、曲げ加工性(絞り)を向上する技術について検討した。その結果、本発明者らは、Cu-Fe合金の素材を伸線や圧延といった塑性加工した後、特定の温度範囲で最終熱処理することで、高強度と高導電率とを両立しながら、曲げ加工性に優れる銅合金材が得られることを見出した。そして、本発明者らは、得られた銅合金材が特定のX線回折パターンを有するとの知見を得た。最初に本発明の実施態様を列記して説明する。
本発明者らは、Cu-Fe合金の銅合金材において、高強度と高導電率とを両立しつつ、曲げ加工性(絞り)を向上する技術について検討した。その結果、本発明者らは、Cu-Fe合金の素材を伸線や圧延といった塑性加工した後、特定の温度範囲で最終熱処理することで、高強度と高導電率とを両立しながら、曲げ加工性に優れる銅合金材が得られることを見出した。そして、本発明者らは、得られた銅合金材が特定のX線回折パターンを有するとの知見を得た。最初に本発明の実施態様を列記して説明する。
(1)本発明の一態様に係る銅合金材は、CuとFeとを含有するCu-Fe合金からなる銅合金材であって、Feの含有量が20質量%以上50質量%以下であり、Cu相とFe相とを含む組織を有し、X線回折において、Cu相の(222)面の回折ピークの半価幅、及びFe相の(220)面の回折ピークの半価幅が0.5以下である。
上記銅合金材によれば、Feの含有量が20質量%以上50質量%以下であり、Cu相とFe相とを含む組織を有することで、Cu相中に析出しているFe相によって高い引張強度が得られる。また、上記銅合金材によれば、Cu相の(222)面及びFe相の(220)面の両方の回折ピークの半価幅が0.5以下であることで、加工歪が少なくなっており、絞りが向上する。更に、上記銅合金材によれば、十分な引張強度を確保しつつ、高い導電率を有することが可能である。したがって、上記銅合金材は、高強度と高導電率とを有しつつ、曲げ加工性に優れる。
(2)上記銅合金材の一形態としては、引張強度が700MPa以上、絞りが60%以上、導電率が25%IACS以上であることが挙げられる。
上記機械的特性及び電気的特性を有することで、コネクタ端子としての要求特性を十分に満足することができる。例えば、強度が高く、高い導電率を有しているので、コネクタ端子の薄肉化が可能である。また、絞りが高く、曲げ加工性に優れるので、曲げ加工時に割れなどの欠陥が生じ難く、コネクタ端子に容易に加工できる。
(3)本発明の一態様に係るコネクタ端子は、上記(1)又は(2)に記載の本発明の一態様に係る銅合金材が加工されたものである。
上記コネクタ端子によれば、上記銅合金材が加工されたものであるので、高強度と高導電率とを兼ね備える。したがって、上記コネクタ端子によれば、従来のコネクタ端子に比較して薄肉化が可能である。また、曲げ加工性に優れる銅合金材を加工したものであるから、割れなどの欠陥が生じ難く、生産性が高い。
(4)本発明の一態様に係る銅合金材の製造方法は、Feを20質量%以上50質量%以下含有するCu-Fe合金の素材を準備する準備工程と、素材を塑性加工して、最終形状の加工材を作製する加工工程と、加工工程の後、加工材を500℃以上600℃以下で最終熱処理する最終熱処理工程と、を備える。
上記銅合金材の製造方法によれば、Feを20質量%以上50質量%以下含有するCu-Fe合金の素材を塑性加工した後、最終熱処理することで、高強度と高導電率とを有しつつ、曲げ加工性に優れる銅合金材を製造できる。これは、次のように考えられる。Feを20質量%以上50質量%以下含有するCu-Fe合金の素材を塑性加工することで、加工によってCu相中に析出しているFe相が繊維状に引き伸ばされ、繊維状のFe相によって、高い引張強度が得られる。また、加工後に最終熱処理することで、加工によって生じた加工歪を低減(緩和)することができ、曲げ加工性(絞り)が向上する。加えて、最終熱処理によって、Cu相中に固溶しているFeが微細に析出して、導電率の向上を図ることができる。
最終熱処理の温度を500℃以上とすることで、高い絞りが得られ、曲げ加工性を大幅に改善できる。最終熱処理の温度を600℃以下とすることで、析出しているFe相の再固溶を抑制することができ、導電率の低下を抑制できる。また、最終熱処理の温度を600℃以下とすることで、軟化による強度低下も抑制できる。
(5)上記銅合金材の製造方法の一形態としては、上記加工工程において、塑性加工を繰り返すと共に、加工途中に800℃以上1100℃以下の少なくとも1回の中間熱処理することが挙げられる。
1回の塑性加工で最終形状まで加工することができない場合は、塑性加工を複数回に分けて繰り返し行う必要があるが、加工に伴う加工硬化によって加工材に破断や割れが発生するなど、次第に加工が困難になることがある。塑性加工を複数回繰り返して最終形状まで加工する場合、最終形状に至るまでの加工途中(即ち、加工と加工との間)に中間熱処理を挟むことで、中間熱処理前の加工による加工硬化を解消でき、中間熱処理後の次の加工が行い易くなる。中間熱処理の温度を800℃以上とすることで、加工硬化を十分に解消でき、1100℃以下とすることで、加工途中における加工材の過度な軟化や溶融を防止できる。
[本発明の実施形態の詳細]
本発明の実施形態に係る銅合金材及びその製造方法、並びにコネクタ端子の具体例を、以下に説明する。なお、本発明はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
本発明の実施形態に係る銅合金材及びその製造方法、並びにコネクタ端子の具体例を、以下に説明する。なお、本発明はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
<銅合金材>
銅合金材は、CuとFeとを含有するCu-Fe合金からなり、Cu相とFe相とを含む組織を有する。具体的には、CuとFeとの2種の元素を主成分とし、マトリクスとなるCu相中に第2相を形成するFe相が分散した2相合金組織を有する。
銅合金材は、CuとFeとを含有するCu-Fe合金からなり、Cu相とFe相とを含む組織を有する。具体的には、CuとFeとの2種の元素を主成分とし、マトリクスとなるCu相中に第2相を形成するFe相が分散した2相合金組織を有する。
(Feの含有量)
銅合金材(Cu-Fe合金)は、20質量%以上50質量%以下含有する。一般に、Feの含有量が多いほど強度が向上し、Cuの含有量が多いほど導電率が向上する傾向がある。Feの含有量が20質量%以上であることで、Cuの使用量を削減できつつ、高い強度が得られる。一方、Feの含有量が50質量%以下であることで、コネクタ端子に必要な導電率(例、25%IACS以上、好ましくは30%IACS以上)を確保できる。Feの含有量が30質量%以上、更に40質量%以上であれば、Cuの使用量の削減効果が大きい。
銅合金材(Cu-Fe合金)は、20質量%以上50質量%以下含有する。一般に、Feの含有量が多いほど強度が向上し、Cuの含有量が多いほど導電率が向上する傾向がある。Feの含有量が20質量%以上であることで、Cuの使用量を削減できつつ、高い強度が得られる。一方、Feの含有量が50質量%以下であることで、コネクタ端子に必要な導電率(例、25%IACS以上、好ましくは30%IACS以上)を確保できる。Feの含有量が30質量%以上、更に40質量%以上であれば、Cuの使用量の削減効果が大きい。
(Fe以外の他の添加元素)
銅合金材は、Fe以外に、添加元素として、例えばMg,Sn,P,Si,Al及びMnから選択される少なくとも1種の元素を含有してもよい。
銅合金材は、Fe以外に、添加元素として、例えばMg,Sn,P,Si,Al及びMnから選択される少なくとも1種の元素を含有してもよい。
上記添加元素のうち、Mg及びSnは、Cu相中に固溶し、強度を向上させる効果が期待できる。Mg及びSnの含有量は、少な過ぎると、強度の向上効果が得られ難く、多過ぎると、導電率や曲げ加工性などが低下することから、例えば合計で0.2質量%以上2.0質量%以下とすることが挙げられる。より好ましいMg及びSnの含有量は、合計で0.4質量%以上1.2質量%以下である。また、上記添加元素のうち、P,Si,Al及びMnは、Cu-Fe合金の鋳造時にCu相中にFe相を微細に晶出させ、Fe相の微細化に効果がある。また、これら元素は、鋳造時に脱酸剤として機能することから、Cu相中に不純物として含有する酸素を低減して導電率の低下を抑制したり、合金中に巣などの欠陥が発生することによる機械的特性の低下を抑止して製造性を向上させる効果が期待できる。P,Si,Al及びMnの含有量は、少な過ぎると、製造性の向上効果が得られ難く、多過ぎると、導電率が低下することから、例えば合計で0.01質量%以上0.5質量%以下とすることが挙げられる。より好ましいP,Si,Al及びMnの含有量は、合計で0.03質量%以上0.2質量%以下である。
(形状)
銅合金材の形状は、用途に応じて、例えば線材、板材、棒材、管材など種々の形状を選択できる。線材としては、代表的には、断面正方形状の角線や断面矩形状の平角線、断面円形状の丸線が挙げられる。例えば角線や平角線の場合、厚さが0.5mm以上1mm以下程度、幅が0.5mm以上1.5mm以下程度、丸線の場合、直径が0.5mm以上1mm以下程度が挙げられる。
銅合金材の形状は、用途に応じて、例えば線材、板材、棒材、管材など種々の形状を選択できる。線材としては、代表的には、断面正方形状の角線や断面矩形状の平角線、断面円形状の丸線が挙げられる。例えば角線や平角線の場合、厚さが0.5mm以上1mm以下程度、幅が0.5mm以上1.5mm以下程度、丸線の場合、直径が0.5mm以上1mm以下程度が挙げられる。
(X線回折パターン)
銅合金材は、Cu相及びFe相のそれぞれが特定のX線回折パターンを有する。具体的には、X線回折において、Cu相の(222)面の回折ピークの半価幅、及びFe相の(220)面の回折ピークの半価幅が0.5以下である。Cu相の(222)面及びFe相の(220)面の両方の回折ピークの半価幅が0.5以下であることで、加工歪が少なくなっており、絞りが高い。これらの回折ピークの半価幅が小さいほど、絞りが高くなる傾向がある。Cu相の(222)面の回折ピークの半価幅は、例えば0.45以下、0.4以下が好ましく、Fe相の(220)面の回折ピークの半価幅は、例えば0.46以下、0.44以下が好ましい。これらの回折ピークの半価幅は、主として、銅合金材に導入された加工歪に依存する。そのため、これらの回折ピークの半価幅は、後述する製造工程における塑性加工後に施す最終熱処理の温度条件の影響を大きく受け、最終熱処理の温度によって変わる。具体的には、回折ピークの半価幅は、最終熱処理の温度が低いほど大きくなる傾向があり、最終熱処理の温度が高いほど小さくなる傾向がある。
銅合金材は、Cu相及びFe相のそれぞれが特定のX線回折パターンを有する。具体的には、X線回折において、Cu相の(222)面の回折ピークの半価幅、及びFe相の(220)面の回折ピークの半価幅が0.5以下である。Cu相の(222)面及びFe相の(220)面の両方の回折ピークの半価幅が0.5以下であることで、加工歪が少なくなっており、絞りが高い。これらの回折ピークの半価幅が小さいほど、絞りが高くなる傾向がある。Cu相の(222)面の回折ピークの半価幅は、例えば0.45以下、0.4以下が好ましく、Fe相の(220)面の回折ピークの半価幅は、例えば0.46以下、0.44以下が好ましい。これらの回折ピークの半価幅は、主として、銅合金材に導入された加工歪に依存する。そのため、これらの回折ピークの半価幅は、後述する製造工程における塑性加工後に施す最終熱処理の温度条件の影響を大きく受け、最終熱処理の温度によって変わる。具体的には、回折ピークの半価幅は、最終熱処理の温度が低いほど大きくなる傾向があり、最終熱処理の温度が高いほど小さくなる傾向がある。
回折ピークは、銅合金材の断面に対してX線回折を行って調べる。断面は、銅合金材が線材や板材などの場合は、加工による延伸方向(伸線方向や圧延方向など。代表的には銅合金材の長手方向)に直交する横断面とする。
(機械的・電気的特性)
銅合金材は、高強度と高導電率とを有しつつ、曲げ加工性に優れる。例えば、引張強度が700MPa以上、絞りが60%以上、導電率が25%IACS以上である。引張強度及び導電率が高いほど、例えばコネクタ端子の薄肉化が可能である。引張強度は、800MPa以上、更に850MPa以上が好ましく、導電率は、30%IACS以上、更に32%IACS以上が好ましい。更に、絞りが高いほど、曲げ加工性に優れることから、例えばコネクタ端子に容易に加工できる。絞りは、60%以上あれば十分な曲げ加工性を有しているので、例えばコネクタ端子に加工するのに特段の問題は生じないが、好ましくは65%以上、より好ましくは70%以上である。
銅合金材は、高強度と高導電率とを有しつつ、曲げ加工性に優れる。例えば、引張強度が700MPa以上、絞りが60%以上、導電率が25%IACS以上である。引張強度及び導電率が高いほど、例えばコネクタ端子の薄肉化が可能である。引張強度は、800MPa以上、更に850MPa以上が好ましく、導電率は、30%IACS以上、更に32%IACS以上が好ましい。更に、絞りが高いほど、曲げ加工性に優れることから、例えばコネクタ端子に容易に加工できる。絞りは、60%以上あれば十分な曲げ加工性を有しているので、例えばコネクタ端子に加工するのに特段の問題は生じないが、好ましくは65%以上、より好ましくは70%以上である。
(Snメッキ)
銅合金材は、表面にSn又はSn合金からなるSnメッキを有していてもよい。Snメッキを有することで、耐食性、半田付け性、電気接続性などの向上を図ることができる。Sn合金の場合、Snを80質量%以上含有することが好ましい。Snメッキの厚さは、例えば0.5μm以上2.5μm以下とすることが挙げられる。
銅合金材は、表面にSn又はSn合金からなるSnメッキを有していてもよい。Snメッキを有することで、耐食性、半田付け性、電気接続性などの向上を図ることができる。Sn合金の場合、Snを80質量%以上含有することが好ましい。Snメッキの厚さは、例えば0.5μm以上2.5μm以下とすることが挙げられる。
<銅合金材の製造方法>
銅合金材の製造方法は、準備工程と、加工工程と、最終熱処理工程とを備える。以下、各工程について詳しく説明する。
銅合金材の製造方法は、準備工程と、加工工程と、最終熱処理工程とを備える。以下、各工程について詳しく説明する。
(準備工程)
準備工程では、Feを20質量%以上50質量%以下含有するCu-Fe合金の素材を準備する。Cu-Fe合金の素材には、Cu-Fe合金の溶湯を鋳造した鋳造材を用いることができる。更に、鋳造材に熱間圧延や熱間鍛造、押出を行って、これを素材に用いてもよいし、素材に溶体化処理を行ってもよい。溶体化処理は、例えば、温度を800℃以上950℃以下とし、その温度の保持時間を0.5分以上60分以下とすることが挙げられる。
準備工程では、Feを20質量%以上50質量%以下含有するCu-Fe合金の素材を準備する。Cu-Fe合金の素材には、Cu-Fe合金の溶湯を鋳造した鋳造材を用いることができる。更に、鋳造材に熱間圧延や熱間鍛造、押出を行って、これを素材に用いてもよいし、素材に溶体化処理を行ってもよい。溶体化処理は、例えば、温度を800℃以上950℃以下とし、その温度の保持時間を0.5分以上60分以下とすることが挙げられる。
鋳造は急冷で行うことが好ましく、冷却速度が速いほど、Cu相中にFe相を微細に晶出させると共に、Fe相を均一に分散させることができ、銅合金材の強度の向上を図ることができる。鋳造時の冷却速度は、例えば2℃/秒以上、更に5℃/秒以上が好ましい。急冷は、空冷、水冷など種々の冷却方法を用いることができ、冷却方法としては、例えば、水や油、砂などの流動性のある冷媒を利用した直接冷却や、ウォータージャケットなどを利用した水冷間接冷却が挙げられる。鋳造材の作製には、連続鋳造を利用してもよい。
(加工工程)
加工工程では、上記素材を塑性加工して、最終形状の加工材を作製する。具体的には、Cu-Fe合金の素材を伸線や圧延といった塑性加工して、線材や板材などの加工材に加工する。これにより、Cu相中に分散して存在するFe相の粒子を針状又は帯状に延伸させると共に、Fe相の厚さやFe相同士の間隔を小さくすることができ、繊維分散強化によって、銅合金材の強度の向上を図ることができる。ここで、Fe相の厚さやFe相同士の間隔は、加工による延伸方向に平行な縦断面において、厚さ方向に沿って測定した値である。Fe相は、強度向上の観点から微細であることが好ましく、Fe相の平均厚さは、例えば0.3μm以上5μm以下、更に3μm以下、特に1μm以下が好ましい。塑性加工は、例えば伸線(引抜)、圧延、押出などが挙げられ、冷間で行うことが挙げられる。
加工工程では、上記素材を塑性加工して、最終形状の加工材を作製する。具体的には、Cu-Fe合金の素材を伸線や圧延といった塑性加工して、線材や板材などの加工材に加工する。これにより、Cu相中に分散して存在するFe相の粒子を針状又は帯状に延伸させると共に、Fe相の厚さやFe相同士の間隔を小さくすることができ、繊維分散強化によって、銅合金材の強度の向上を図ることができる。ここで、Fe相の厚さやFe相同士の間隔は、加工による延伸方向に平行な縦断面において、厚さ方向に沿って測定した値である。Fe相は、強度向上の観点から微細であることが好ましく、Fe相の平均厚さは、例えば0.3μm以上5μm以下、更に3μm以下、特に1μm以下が好ましい。塑性加工は、例えば伸線(引抜)、圧延、押出などが挙げられ、冷間で行うことが挙げられる。
上記加工工程において、塑性加工(例、伸線や圧延など)を繰り返すと共に、加工途中に800℃以上1100℃以下の少なくとも1回の中間熱処理してもよい。塑性加工を複数回に分けて繰り返し行うことで、1回の塑性加工で加工する場合に比較して、最終形状まで加工が行い易くなる。更に、最終形状に至るまでの加工途中(即ち、加工と加工との間)に中間熱処理することで、中間熱処理前の加工による加工硬化を解消でき、中間熱処理後の次の加工が行い易くなる。したがって、加工に伴う加工硬化によって加工材に破断や割れなどが発生することを防止できる。中間熱処理の温度を800℃以上とすることで、加工硬化を十分に解消でき、1100℃以下とすることで、加工途中における加工材の過度な軟化や溶融を防止できる。より好ましい中間熱処理の温度は、850℃以上1000℃以下である。中間熱処理の時間は、特に限定されないが、例えば30分以上120分以下とすることが挙げられる。
塑性加工(例、伸線や圧延など)の1回当たりの加工率は、例えば80%以上99%以下、85%以上95%以下とすることが挙げられる。塑性加工1回当たりの加工率を80%以上とすることで、加工回数を減らして、生産効率を上げることができ、99%以下とすることで、加工硬化による破断や割れなどの発生を抑えることができる。ここでいう加工率とは、伸線や押出の場合は減面率のことであり、圧延の場合は圧下率のことである。減面率(%)は、加工前の断面積をA0、加工後の断面積をAとするとき、式[{(A0-A)/A0}×100]で求めることができ、圧下率(%)は、加工前の厚さをh0、加工後の厚さをhとするとき、式[{(h0-h)/h0}×100]で求めることができる。また、塑性加工を繰り返すと共に加工途中に中間熱処理を施す場合は、塑性加工1回当たりの加工率とは、塑性加工を開始してから最初の中間熱処理を実施するまでの塑性加工の総加工率、中間熱処理してから次の中間熱処理を実施するまでの塑性加工の総加工率、又は、最後の中間熱処理を実施してから最終形状までの塑性加工の総加工率のことである。特に最後の塑性加工(最後の中間熱処理を実施後、最終形状までの塑性加工)の加工率は、80%以上、更に85%以上、特に90%以上とすることが好ましく、これにより、加工硬化による銅合金材の強度の向上を図ることができる。
(最終熱処理工程)
最終熱処理工程では、上記加工工程の後、加工材を500℃以上600℃以下で最終熱処理する。加工材を最終熱処理することで、加工によって生じた加工歪を低減することができ、銅合金材の曲げ加工性(絞り)が向上する。加えて、最終熱処理によって、Cu相中に固溶しているFeが微細に析出して、導電率の向上を図ることができる。最終熱処理の温度を500℃以上とすることで、高い絞りが得られ、曲げ加工性を大幅に改善できる。最終熱処理の温度を600℃以下とすることで、析出しているFe相の再固溶を抑制することができ、導電率の低下を抑制できる。また、最終熱処理の温度を600℃以下とすることで、軟化による強度低下も抑制できる。より好ましい最終熱処理の温度は、550℃以上である。最終熱処理の時間は、特に限定されないが、例えば0.5時間以上2時間以下とすることが挙げられる。
最終熱処理工程では、上記加工工程の後、加工材を500℃以上600℃以下で最終熱処理する。加工材を最終熱処理することで、加工によって生じた加工歪を低減することができ、銅合金材の曲げ加工性(絞り)が向上する。加えて、最終熱処理によって、Cu相中に固溶しているFeが微細に析出して、導電率の向上を図ることができる。最終熱処理の温度を500℃以上とすることで、高い絞りが得られ、曲げ加工性を大幅に改善できる。最終熱処理の温度を600℃以下とすることで、析出しているFe相の再固溶を抑制することができ、導電率の低下を抑制できる。また、最終熱処理の温度を600℃以下とすることで、軟化による強度低下も抑制できる。より好ましい最終熱処理の温度は、550℃以上である。最終熱処理の時間は、特に限定されないが、例えば0.5時間以上2時間以下とすることが挙げられる。
以上の製造工程によって、高強度と高導電率とを有しつつ、曲げ加工性に優れる銅合金材を製造できる。製造された銅合金材は、例えば、引張強度が700MPa以上、絞りが60%以上、導電率が25%IACS以上を達成できる。
(Snメッキ工程)
最終熱処理工程後、得られた銅合金材の表面にSnメッキを形成するSnメッキ工程を加えてもよい。Snメッキの形成方法としては、例えば電解メッキや無電解メッキを利用できる。更に、Snメッキを形成した後、リフロー処理してもよく、これにより、ウィスカの発生・成長を抑制できる。リフロー処理は、温度をSnメッキの融点以上、例えば230℃以上300℃以下とし、その温度の保持時間を0.2分以上10分以下とすることが挙げられる。
最終熱処理工程後、得られた銅合金材の表面にSnメッキを形成するSnメッキ工程を加えてもよい。Snメッキの形成方法としては、例えば電解メッキや無電解メッキを利用できる。更に、Snメッキを形成した後、リフロー処理してもよく、これにより、ウィスカの発生・成長を抑制できる。リフロー処理は、温度をSnメッキの融点以上、例えば230℃以上300℃以下とし、その温度の保持時間を0.2分以上10分以下とすることが挙げられる。
<コネクタ端子>
コネクタ端子は、上述した本発明の実施形態に係る銅合金材が加工されたものである。したがって、コネクタ端子は、高強度と高導電率とを兼ね備えることから、薄肉化が可能である。また、曲げ加工性に優れる銅合金材を加工して製造するので、曲げ加工時に割れなどの欠陥が生じ難く、生産性が高い。コネクタ端子は、表面にSnメッキを有していてもよい。Snメッキを有する銅合金材を加工すれば、Snメッキ付きコネクタ端子が得られる。また、銅合金材をコネクタ端子に加工した後、Snメッキを形成することも可能である。
コネクタ端子は、上述した本発明の実施形態に係る銅合金材が加工されたものである。したがって、コネクタ端子は、高強度と高導電率とを兼ね備えることから、薄肉化が可能である。また、曲げ加工性に優れる銅合金材を加工して製造するので、曲げ加工時に割れなどの欠陥が生じ難く、生産性が高い。コネクタ端子は、表面にSnメッキを有していてもよい。Snメッキを有する銅合金材を加工すれば、Snメッキ付きコネクタ端子が得られる。また、銅合金材をコネクタ端子に加工した後、Snメッキを形成することも可能である。
[実施例1]
Cu-Fe合金の素材を準備し、この素材を塑性加工して加工材を作製し、得られた加工材に最終熱処理を施して、銅合金材を作製した。そして、作製した銅合金材について評価を行った。
Cu-Fe合金の素材を準備し、この素材を塑性加工して加工材を作製し、得られた加工材に最終熱処理を施して、銅合金材を作製した。そして、作製した銅合金材について評価を行った。
表1に示す組成のCu-Fe合金を鋳造し熱間鍛造して、直径φ20mmの丸棒状のロッド材を作製した。表1中、「Cu-50%Fe」とは、Feを50質量%含有し、残部がCu及び不可避的不純物の組成を有するCu-Fe合金のことであり、「Cu-30%Fe」とは、Feを30質量%含有し、残部がCu及び不可避的不純物の組成を有するCu-Fe合金のことである。作製したロッド材を素材とし、ロッド材に伸線を複数回繰り返して、最終形状が厚さ0.64mm×幅0.64mm(0.64mm角)の断面正方形状の角線に加工した。また、伸線の加工率が略90%になった時点で850℃×60分の中間熱処理を実施し、最後の中間熱処理を実施してから最終形状までの伸線の加工率(減面率)は90%とした。その後、得られた角線に表1に示す条件[温度(℃)×時間(hr)]で最終熱処理を実施して、表1に示す試料No.1-2~1-6及び1-8の銅合金材を作製した。表1に示す試料No.1-1及び1-7の銅合金材は、加工後に最終熱処理を施しておらず、加工したままの状態である。
比較として、市販の黄銅(C2600)からなる0.64mm角の角線を用意し、この銅合金材を試料No.1-10とした。
作製した試料No.1-1~1-8及び1-10の銅合金材について、引張強度、0.2%耐力、絞り、及び導電率を調べた。
引張強度及び0.2%耐力の測定は、各試料から試験片を採取し、JIS Z 2241:2011「金属材料引張試験方法」に準じて行った。また、絞り(%)は、引張試験前の試験片の断面積をS0、引張試験後の試験片の破断部(最もくびれている部分)の断面積をS1とするとき、式[{(S0-S1)/S0}×100]から求めた。その結果を表1に示す。
導電率の測定は、各試料から試験片を採取し、JIS H 0505:1975「非鉄金属材料の体積抵抗率及び導電率測定方法」に準じて行った。その結果を表1に示す。
また、試料No.1-1~1-8について、90°曲げ試験を行い、曲げ加工性を調べた。曲げ加工性の評価は、次のようにして行った。各試料から採取した試験片を90°に曲げ、曲げ部の縦断面(試験片の中心を通り、曲げ部を平面で切断した断面)を光学顕微鏡で観察し、曲げ部での割れの有無を調べた。曲げ試験の条件は、曲げ部の内側の半径をR、試験片(銅合金材)の厚さをt(t=0.64mm)とするとき、[R/t=0.3]となる条件(即ち、R=0.2)とした。そして、割れが認められなかった場合を「A」、割れが認められた場合を「B」として、その結果を表1に示す。
図1は、表1の結果に基づいて、横軸に「絞り(%)」、縦軸に「引張強度(MPa)」をとり、各試料をプロットしたものである。図1中、○印は試料No.1-3~1-5及び1-8、◆印は試料No.1-1、1-2、1-6及び1-7、×印は試料No.1-10を示す。
表1及び図1の結果から、最終熱処理の温度を500℃~600℃とした試料No.1-3~1-5、及び1-8は、引張強度が700MPa以上、絞りが60%以上、導電率が25%以上を満しており、高強度と高導電率とを有しつつ、曲げ加工性に優れることが分かる。そして、これら試料は、従来からコネクタ端子に多用されている黄銅(試料No.1-10)に比較して、同等程度又はそれ以上の絞り(曲げ加工性)及び導電率を維持しつつ、高い強度を有している。例えば、試料No.1-3,1-4は、試料No.1-10に対して、同等程度の曲げ加工性を有しながら、強度が大幅に向上している。一方、試料No.1-5,1-8は、試料No.1-10に対して、同等以上の強度を維持しつつ、曲げ加工性が大幅に向上している。
これに対し、最終熱処理を施していない、又は最終熱処理の温度を450℃とした試料No.1-1,1-2,1-7は、引張強度が高いというものの、絞りが低く、曲げ加工性に劣ることが分かる。中でも、最終熱処理を施していない試料は、導電率が低い。一方、最終熱処理の温度を850℃とした試料No.1-6は、絞り(曲げ加工性)が向上しているが、引張強度及び導電率が低下している。
次に、試料No.1-1,1-2,1-5について、伸線方向(銅合金材の長手方向)に直交する横断面をとり、この断面に対してX線回折を行って、Cu相の(222)面及びFe相の(220)面の回折ピークの半価幅をそれぞれ調べた。測定条件を以下に示す。
使用装置:SmartLab-2D-PILATUS(株式会社リガク製)
使用X線:Cu-Kα
励起条件:45kV,200mA
使用コリメータ:φ0.3mm
測定法:θ-2θ法
この例では、断面における中心近傍の中央部分を測定面としてX線回折を行った。そして、測定したX線回折パターンにおいて、Cu相及びFe相の主要ピークの回折線の半価幅(deg)を算出し、Cu相の(222)面及びFe相の(220)面の回折ピークの半価幅をそれぞれ求めた。その結果を表2に示す。
使用X線:Cu-Kα
励起条件:45kV,200mA
使用コリメータ:φ0.3mm
測定法:θ-2θ法
この例では、断面における中心近傍の中央部分を測定面としてX線回折を行った。そして、測定したX線回折パターンにおいて、Cu相及びFe相の主要ピークの回折線の半価幅(deg)を算出し、Cu相の(222)面及びFe相の(220)面の回折ピークの半価幅をそれぞれ求めた。その結果を表2に示す。
表2のX線回折結果から、試料No.1-5は、Cu相の(222)面及びFe相の(220)面の両方の回折ピークの半価幅が0.5以下である。これに対し、試料No.1-1は、Cu相の(222)面及びFe相の(220)面の両方の回折ピークの半価幅が0.5以下を満たしておらず、試料No.1-2は、Fe相の(220)面の回折ピークの半価幅が0.5以下を満たしていないことが分かる。
更に、試料No.1-5について、伸線方向(銅合金材の長手方向)に平行な縦断面をとり、この断面の金属組織を金属顕微鏡で観察した。断面の顕微鏡写真を図2に示す。図2は、同一試料について、異なる視野で撮影した2枚の断面顕微鏡写真(倍率1000倍)である。図2中、濃いグレーの部分がFe相である。この断面顕微鏡写真から、繊維状のFe相が分散していることが分かる。また、断面の顕微鏡写真から、Fe相の平均厚さを求めた。具体的には、顕微鏡写真において、厚さ方向(伸線方向に直交する方向)に直線を引いて、その直線上に存在するFe相の個々の厚さを測定し、その平均値をFe相の平均厚さとした。この例では、異なる5視野について、それぞれ3箇所測定し、合計15箇所の平均値とした。その結果、試料No.1-5におけるFe相の平均厚さは1μmであった。
本発明の銅合金材は、例えば、基板用コネクタ端子の材料に好適に利用できる。本発明のコネクタ端子は、自動車用ワイヤーハーネスや印刷回路基板(PCB)、その他の各種電気・電子機器のコネクタ端子に好適に利用できる。本発明の銅合金材の製造方法は、例えばコネクタ端子用銅合金材の製造に好適に利用できる。
Claims (5)
- CuとFeとを含有するCu-Fe合金からなる銅合金材であって、
Feの含有量が20質量%以上50質量%以下であり、
Cu相とFe相とを含む組織を有し、
X線回折において、前記Cu相の(222)面の回折ピークの半価幅、及び前記Fe相の(220)面の回折ピークの半価幅が0.5以下である銅合金材。 - 引張強度が700MPa以上、絞りが60%以上、導電率が25%IACS以上である請求項1に記載の銅合金材。
- 請求項1又は請求項2に記載の銅合金材が加工されたコネクタ端子。
- Feを20質量%以上50質量%以下含有するCu-Fe合金の素材を準備する準備工程と、
前記素材を塑性加工して、最終形状の加工材を作製する加工工程と、
前記加工工程の後、前記加工材を500℃以上600℃以下で最終熱処理する最終熱処理工程と、
を備える銅合金材の製造方法。 - 前記加工工程において、前記塑性加工を繰り返すと共に、加工途中に800℃以上1100℃以下の少なくとも1回の中間熱処理する請求項4に記載の銅合金材の製造方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-203052 | 2014-10-01 | ||
JP2014203052A JP2016069713A (ja) | 2014-10-01 | 2014-10-01 | 銅合金材、コネクタ端子、及び銅合金材の製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016051864A1 true WO2016051864A1 (ja) | 2016-04-07 |
Family
ID=55629920
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/065889 WO2016051864A1 (ja) | 2014-10-01 | 2015-06-02 | 銅合金材、コネクタ端子、及び銅合金材の製造方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2016069713A (ja) |
WO (1) | WO2016051864A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113430415A (zh) * | 2021-06-22 | 2021-09-24 | 江西省科学院应用物理研究所 | 一种无气孔铜铁合金及其制备方法 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10472709B2 (en) * | 2015-12-11 | 2019-11-12 | Apple Inc. | High strength, high conductivity electroformed copper alloys and methods of making |
WO2018083887A1 (ja) * | 2016-11-07 | 2018-05-11 | 住友電気工業株式会社 | コネクタ端子用線材 |
KR102271296B1 (ko) * | 2018-11-30 | 2021-06-29 | 주식회사 포스코 | 철동 합금 분말, 이의 제조방법, 및 이를 이용한 소결체 |
KR102449499B1 (ko) * | 2019-12-30 | 2022-09-30 | 주식회사 포스코 | 고인장 고연성 동철합금 및 이의 제조방법 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63137148A (ja) * | 1986-11-28 | 1988-06-09 | Nippon Steel Corp | 高強度リ−ドフレ−ム用鉄銅合金薄帯の製造方法 |
JPS63162829A (ja) * | 1986-12-26 | 1988-07-06 | Hisao Wakaumi | 半硬質磁性銅鉄合金 |
JPH05214489A (ja) * | 1992-02-04 | 1993-08-24 | Nippon Steel Corp | バネ限界値と形状凍結性に優れたバネ用薄板およびその製造方法 |
JP2006219705A (ja) * | 2005-02-09 | 2006-08-24 | Nikko Kinzoku Kk | 高強度高導電性銅合金の製造方法及び高強度高導電性銅合金 |
JP2013142178A (ja) * | 2012-01-11 | 2013-07-22 | Sumitomo Electric Ind Ltd | 銅合金 |
WO2015111455A1 (ja) * | 2014-01-21 | 2015-07-30 | 株式会社オートネットワーク技術研究所 | コネクタピン用Cu-Fe系合金線材及びコネクタ |
-
2014
- 2014-10-01 JP JP2014203052A patent/JP2016069713A/ja active Pending
-
2015
- 2015-06-02 WO PCT/JP2015/065889 patent/WO2016051864A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63137148A (ja) * | 1986-11-28 | 1988-06-09 | Nippon Steel Corp | 高強度リ−ドフレ−ム用鉄銅合金薄帯の製造方法 |
JPS63162829A (ja) * | 1986-12-26 | 1988-07-06 | Hisao Wakaumi | 半硬質磁性銅鉄合金 |
JPH05214489A (ja) * | 1992-02-04 | 1993-08-24 | Nippon Steel Corp | バネ限界値と形状凍結性に優れたバネ用薄板およびその製造方法 |
JP2006219705A (ja) * | 2005-02-09 | 2006-08-24 | Nikko Kinzoku Kk | 高強度高導電性銅合金の製造方法及び高強度高導電性銅合金 |
JP2013142178A (ja) * | 2012-01-11 | 2013-07-22 | Sumitomo Electric Ind Ltd | 銅合金 |
WO2015111455A1 (ja) * | 2014-01-21 | 2015-07-30 | 株式会社オートネットワーク技術研究所 | コネクタピン用Cu-Fe系合金線材及びコネクタ |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113430415A (zh) * | 2021-06-22 | 2021-09-24 | 江西省科学院应用物理研究所 | 一种无气孔铜铁合金及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2016069713A (ja) | 2016-05-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI425101B (zh) | Cu-Ni-Si alloy excellent in bending workability | |
WO2016051864A1 (ja) | 銅合金材、コネクタ端子、及び銅合金材の製造方法 | |
JP5153949B1 (ja) | Cu−Zn−Sn−Ni−P系合金 | |
JP2013047360A (ja) | Cu−Ni−Si系合金及びその製造方法 | |
KR20140025607A (ko) | 구리 합금 | |
JP2009242895A (ja) | 曲げ加工性に優れた高強度銅合金 | |
JP5417366B2 (ja) | 曲げ加工性に優れたCu−Ni−Si系合金 | |
KR101612185B1 (ko) | Cu-Co-Si 계 구리 합금조 및 그 제조 방법 | |
TWI541367B (zh) | Cu-Ni-Si type copper alloy sheet having good mold resistance and shearing workability and manufacturing method thereof | |
WO2016171055A1 (ja) | 銅合金材料およびその製造方法 | |
KR20120130342A (ko) | 전자 재료용 Cu-Ni-Si 계 합금 | |
KR20160102989A (ko) | 구리합금판재, 커넥터, 및 구리합금판재의 제조방법 | |
TW201736615A (zh) | 電子材料用銅合金 | |
JP2018159104A (ja) | 強度及び導電性に優れる銅合金板 | |
WO2015111455A1 (ja) | コネクタピン用Cu-Fe系合金線材及びコネクタ | |
JP2018154910A (ja) | 強度及び導電性に優れる銅合金板 | |
JP4556841B2 (ja) | 曲げ加工性に優れる高強度銅合金材およびその製造方法 | |
WO2019171951A1 (ja) | 銅合金板材およびその製造方法 | |
WO2015125350A1 (ja) | コネクタ端子用銅合金材料、及びコネクタ端子用銅合金材料の製造方法 | |
JP4254815B2 (ja) | 端子・コネクタ用銅合金材 | |
JP2011021225A (ja) | 端子・コネクタ用銅合金材及びその製造方法 | |
JP2004285408A (ja) | 導電性に優れるチタン銅及びその製造方法 | |
JP2017150065A (ja) | コネクタ端子用線材 | |
JP2012162782A (ja) | 高強度銅合金材及びその製造方法 | |
JP7129911B2 (ja) | コネクタ端子用線材 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15847035 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15847035 Country of ref document: EP Kind code of ref document: A1 |