WO2016050101A1 - 一种3d激光打标机的可控距离指示方法及可控距离指示装置 - Google Patents

一种3d激光打标机的可控距离指示方法及可控距离指示装置 Download PDF

Info

Publication number
WO2016050101A1
WO2016050101A1 PCT/CN2015/082723 CN2015082723W WO2016050101A1 WO 2016050101 A1 WO2016050101 A1 WO 2016050101A1 CN 2015082723 W CN2015082723 W CN 2015082723W WO 2016050101 A1 WO2016050101 A1 WO 2016050101A1
Authority
WO
WIPO (PCT)
Prior art keywords
visible light
light beam
reflecting
marking
controllable distance
Prior art date
Application number
PCT/CN2015/082723
Other languages
English (en)
French (fr)
Inventor
徐强
Original Assignee
广州创乐激光设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州创乐激光设备有限公司 filed Critical 广州创乐激光设备有限公司
Publication of WO2016050101A1 publication Critical patent/WO2016050101A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/435Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material
    • B41J2/447Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using arrays of radiation sources
    • B41J2/45Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using arrays of radiation sources using light-emitting diode [LED] or laser arrays
    • B41J2/451Special optical means therefor, e.g. lenses, mirrors, focusing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/361Removing material for deburring or mechanical trimming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/435Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J3/00Typewriters or selective printing or marking mechanisms characterised by the purpose for which they are constructed
    • B41J3/407Typewriters or selective printing or marking mechanisms characterised by the purpose for which they are constructed for marking on special material

Definitions

  • the invention relates to the field of laser marking, in particular to a controllable distance indication method for laser marking a three-dimensional surface of an object and a controllable distance indication device applying the same.
  • the laser marking machine is a technique that uses a laser beam to permanently mark a surface of a material.
  • the technology produces a laser beam through a laser, undergoes a series of optical conduction and processing, and finally focuses the beam through the optical lens, and then deflects the focused high-energy beam to a specified position on the surface of the object to be processed.
  • the laser marking machine can mark various characters, symbols and patterns, and the market has broad application prospects.
  • a cross red light emitter is disposed on each side of the scanning device, and the intersection of the cross red light emitted by the cross red light emitters on both sides coincides with the focus of the laser.
  • the adjustment causes a red light intersection to appear on the object to be marked, so that the marking object is located at the focus of the laser. Since the focal length of the two-dimensional laser marking machine is constant, this method can greatly improve the working efficiency for the conventional two-dimensional plane laser marking machine.
  • 3D laser marking that can mark on three-dimensional surface has become a hot research and development point in the industry.
  • the 3D laser marking machine adopts a dynamic focusing seat.
  • the laser beam is variablely expanded before the laser is focused, thereby changing the focal length of the laser beam to achieve the height.
  • the positioning and fixed focus of the 3D laser marking machine has become a new problem. Since the focal length of the 3D laser marking machine is varied, the focusing system of the existing two-dimensional laser marking machine cannot meet the requirements.
  • the marking area of the marking object is spatially modeled and stored in a software system, and the reference point coordinates of any marking object can be set in the space modeling, the reference point coordinates It is also the focus point of the laser, which corresponds to a point on the marking object in the actual space as the reference point, that is, as long as the laser head can be accurately positioned and focused on the reference point of the object when marking, the subsequent computer can adjust the focal length.
  • Laser marking of other parts of the three-dimensional surface The problem is that before the marking starts, the marking object needs to be placed on the marking platform so that the object corresponds to the reference point.
  • the lack of positioning structure it is difficult for the technician to accurately position and adjust the position and height of the marking object, and the 3D surface marking requires very high precision. As long as the position or height of the marking object is deviated, it is likely to cause the whole The distortion of the marking pattern.
  • the setting requirements of the reference point are flexible, so the conventional fixed focusing system has been unable to achieve the requirements of 3D laser marking.
  • the object of the present invention is to provide a controllable distance indication method for a 3D laser marking machine, by which the height position of the initial focus relative to the reference point in the modeling can be automatically indicated on the marking space, thereby facilitating processing. Position the marking object.
  • the controllable distance indication method of the 3D laser marking machine disclosed by the present invention relates to a first visible light indicator, a second visible light indicator and a control unit;
  • the first visible light indicator can issue a marking to the marking area a visible light beam;
  • the second visible light indicator is provided with a reflecting device on the optical path, the reflecting device is configured to reflect a second visible light beam emitted by the second visible light indicator;
  • the control unit is configured according to the 3D laser marking machine
  • the initial focal length of the reference point is focused, and the deflection angle of the reflecting device is calculated, the deflection angle is such that the second visible light beam meets the first visible light beam in the marking area after being reflected by the reflecting device, and the intersection point corresponds to the 3D laser marking machine Initial focus.
  • the obtained deflection angle values of the reflecting devices corresponding to different initial focal lengths are stored in the database so as to obtain corresponding deflection angle values according to different initial focal lengths in use.
  • the marking height can be indicated, but in actual operation, installation errors, operational errors, and circuits are inevitably affected.
  • the present invention compensates for errors by interpolation. Correcting the deflection angle of the reflecting device so that the two beams can accurately meet and improve the marking efficiency.
  • Another object of the present invention is to provide a controllable distance indicating device to which the above indication method is applied, the pointing device comprising a first visible light indicator, a second visible light indicator and a control unit; the first visible light indicator can be marked The area emits a first visible light beam; the optical path of the second visible light indicator is provided with a reflecting device for reflecting a second visible light beam emitted by the second visible light indicator, the second visible light beam being After the reflection, the first visible light beam meets in the marking area, and the control unit controls the deflection angle of the reflecting device such that the intersection of the first visible light beam and the second visible light beam corresponds to the initial focus of the 3D laser marking machine.
  • the reflecting device in the above indicating device comprises at least one reflecting lens driven by a motor, the motor being controlled by the control unit to change the deflection angle of the reflecting lens; preferably, the reflecting device comprises a first motor driven first a reflective lens and a second reflective lens driven by the second motor, wherein the first reflective lens and the second reflective lens have an angle in space, so that the second visible light beam is reflected by the first reflective lens and the second reflective lens Movement at any position on a plane; when the reflection device chooses to use two reflective lenses, the reflection means (ie, the first reflective lens and the second reflective lens) may be an X galvanometer and a Y galvanometer inside the marking head, The second visible light indicator is disposed inside the 3D laser marking machine.
  • the reflection means ie, the first reflective lens and the second reflective lens
  • the second visible light indicator is disposed inside the 3D laser marking machine.
  • the second visible light beam emitted by the second visible light indicator coincides with the laser light path for marking, and is realized by a combining unit disposed in the laser light path. a second visible light beam and a laser light path overlap, the second visible light indicator is located on one side of the combining unit, and the second visible visible light is emitted to the combining unit Beam, the second visible light beam after the laser beam combining means
  • the optical paths coincide and are emitted to the X galvanometer and the Y galvanometer. Directly using the X galvanometer and the Y galvanometer to control the deflection of the second visible beam can reduce the cost of the device, and the combination of red light and laser can improve the control. Accuracy.
  • the controllable distance indicating device disclosed in the present invention may be a separate module externally placed on the 3D laser marking machine, or the second visible light indicator and the reflecting device of the 3D laser marking machine are built-in components of the 3D laser marking machine.
  • the first visible light beam of the controllable distance indicating device disclosed in the present invention can be in two ways:
  • the first mode the first visible light indicator is fixedly disposed on the marking head of the laser marking machine. At this time, the direction of the first visible light beam is fixed, and the angle of the deflection is also determined;
  • the beam of the first visible light indicator is variable, so that the junction can be re-adjusted back to the center of the marking area, thereby increasing the convenience and accuracy of the marking.
  • the invention realizes the height of the laser marking by the intersection of a fixed visible light beam and an adjustable visible light beam, and the marking object can be marked at the intersection of the corresponding visible light when marking, and the marking can be performed by the invention.
  • the controllable distance indicating device and method can improve the focusing efficiency of the 3D marking, and is more accurate than the manual adjustment;
  • the invention is also provided with an adjusting device for adjusting the deflection angle of the fixed visible beam, which can solve the installation error, the operation is not in place, and the circuit
  • the beam caused by the intersection does not meet the problem, ensuring the intersection of the two visible beams; when the reflecting device selects two reflecting lenses, the X galvanometer and the Y galvanometer in the laser marking head can be directly used, and the corresponding motor can be omitted.
  • This structure is simple in structure and low in cost.
  • Figure 1 is an example 1 of the working principle of the controllable distance indicating device of the present invention
  • Figure 2 is an example 2 of the working principle of the controllable distance indicating device of the present invention
  • Figure 3 is an example 3 of the working principle of the controllable distance indicating device of the present invention.
  • Figure 4 is an example 4 of the working principle of the controllable distance indicating device of the present invention.
  • FIG. 5 is a schematic overall view of a laser marking machine to which the controllable distance indicating device of the present invention is applied;
  • Figure 6 is a partial structural view of the laser marking machine according to the first embodiment of the present invention as seen from the side;
  • Figure 7 is a partial structural view of the laser marking machine according to the first embodiment of the present invention as seen from another side;
  • FIG. 8 is a schematic structural view of a portion of a laser marking machine according to Embodiment 1 of the present invention.
  • Embodiment 9 is a schematic analysis diagram of Embodiment 1 of the controllable distance indicating device of the present invention.
  • FIG. 10 is a schematic structural view showing a deviation value of a laser marking machine according to Embodiment 1 of the present invention.
  • Figure 11 is a schematic diagram of the principle of the second embodiment of the controllable distance indicating device of the present invention.
  • Embodiment 3 of the controllable distance indicating device according to the present invention.
  • FIG. 13 is a schematic diagram of the first embodiment of the fourth embodiment of the controllable distance indicating device according to the present invention.
  • Figure 14 is a schematic diagram of the principle of the second embodiment of the controllable distance indicating device of the present invention.
  • Figure 15 is a schematic diagram of the analysis of Figure 14.
  • the invention provides a controllable distance indication method applied in the field of 3D laser marking machine.
  • the method is applied to a 3D laser marking machine (the focal length of the laser marking machine is variable), and before marking, It is very convenient to determine the space height of the initial focal length of the laser marking machine, which is convenient for the operator to manually focus.
  • the method relates to a first visible light indicator, a second visible light indicator, and a control unit; the first visible light indicator can emit a first visible light beam to the marking area; and the second visible light indicator is provided with a reflecting device on the optical path
  • the reflecting device is configured to reflect a second visible light beam emitted by the second visible light indicator;
  • the control unit calculates a deflection angle of the reflecting device according to an initial focal length of the 3D laser marking machine focusing on the reference point, the deflection angle is such that The second visible light beam, after being reflected by the reflecting means, intersects the first visible light beam in the marking area, the intersection point corresponding to the initial focus of the 3D laser marking machine.
  • the deflection angle of the second visible light beam can be realized by the built-in database of the control unit:
  • the trigonometric method Prior to use, the trigonometric method is used (the spatial coordinates of the initial focal length, the direction of the first visible beam, the direction of the second visible beam, and the position of the reflecting device are known in the three-dimensional model, and the first can be calculated by the triangular geometry method)
  • the deflection angle of the reflecting device when the visible beam and the second visible beam meet at the initial focal length are measured and calculated, and the deflection angle corresponding to each marking height segment is measured, and the deflection angle of the marking height segment and the second visible beam are built into a database.
  • the control unit And then importing the database into the control unit, and calling the database according to the required marking height and matching when using, the deflection angle of the second visible beam corresponding to the marking height is obtained, and the first visible beam is passed through the first visible beam. And the second visible light beam indicates the marking height.
  • preliminary marking height data can be obtained, but in practice, due to processing error, installation level, circuit influence and other factors, the commissioning personnel are required to divide the lifting stroke into multiple sections, and measure the actual value ⁇ and theory in multiple sections.
  • the deviation of the value ⁇ ' then the value is input into the software system to establish a database, and the software algorithm is used to control the motor to correct the offset angle to ensure that the last two visible lights merge into one point.
  • the above is to compensate for the deviation by interpolation, and the marking height is corrected to make the marking point more accurate.
  • the specific adjustment method is: when the reflection device adopts two galvanometers, one reflection galvanometer is fixed first, and another galvanometer is adjusted by interpolation. If an accurate value has not been obtained, the galvanometer of the original movement is fixed. , adjust the original fixed galvanometer, and cycle until the height of the initial focal length of the 3D marking is compensated.
  • the machine Before using the marking instruction device and the marking machine realized by the method, the machine is generally first corrected.
  • the debugging personnel first divides the lifting stroke into multiple segments, and measures the actual deviation value ⁇ and the theoretical deviation value for each segment separately. '(See Figure 10 for the ⁇ displayed when using two reflecting devices), then input the value into the software system to form a database, calculate the compensation angle of the second visible beam corresponding to each ⁇ according to the interpolation algorithm, so that the second visible beam Deflection to the corresponding position, data
  • the library is shown in the table below.
  • the above indication method is a part of a complete 3D laser marking step. Therefore, the present invention also discloses a marking method of a 3D laser marking machine based on the above distance indication method, and the specific steps of the method are as follows:
  • the reference point is an initial focus of laser marking, and an initial focal length is obtained according to the reference point coordinates
  • the deflection angle is such that the second visible light beam intersects with the first visible light beam in the marking area after being reflected by the reflecting device, the intersection point corresponding to the initial focus of the 3D laser marking machine;
  • the reflective device of this principle employs a reflective lens, the entire indicating device including a first visible light indicator 110 that can emit a first visible light beam 111 downwardly, and a second visible light that laterally emits a second visible light beam 121.
  • the indicator 120 after the second visible light indicator 120 is controlled by the reflecting device, reflects the light downward, and the reflected second visible light beam 111 can meet the first visible light beam 111 emitted by the first visible light indicator 110 (shown in FIG. 1).
  • the heights of h11 and h12 are obtained.
  • the position of the junction can be adjusted by the reflection device.
  • the adjustment method refer to the introduction of the second principle described below.
  • the indicating device uses only one reflecting device, the cost is low, but the mounting requirements are high, and it is necessary to ensure that the second visible light beam 121 reflected from the reflecting device is always on the same plane as the first visible light beam 111, otherwise The beams cannot meet.
  • the present invention provides a second principle indicating device which has a controllable and spatially angular first reflecting mirror 231 and a second Reflective lens 241 is formed, as shown in FIG. 2,
  • the controllable distance indicating device of this principle includes a first visible light indicator 210 and a second visible light indicator that respectively emit a downward first visible light beam 211 and a second visible light beam 221 220, the second visible light beam
  • the second visible light beam 221 is reflected by the first reflective lens 231 and reflected by the second reflective lens 241, and the reflected second visible light beam 221 can intersect with the first visible light beam 211.
  • the first reflecting mirror 231 and the second reflecting mirror 241 respectively control the deflection by the first motor 231 and the second motor 242, and the deflection of the two motors is adjusted by the control unit, thereby controlling the deflection of the second visible beam 221 so that the two beams meet
  • Set the position of the height two points of height h21 and height h22 are indicated in Fig. 2
  • the controllable distance indicating device of this principle makes the second visible beam It can be adjusted in both planes of X and Y to ensure that the first visible beam and the second visible beam intersect.
  • the 3D laser marking machine firstly spatially models the marking object through software.
  • marking first select an approved initial marking point on the marking object as the benchmark for marking.
  • Point the focal length of the laser marking corresponding to the reference point is the initial focal length, and according to the space modeling operator, the coordinates of any point of the marking object can be obtained, so the coordinates of the selected reference point are known, and the reference can be known.
  • the initial focal length of the point in addition, the angle of the first visible light 211 is known to be fixed, and the first visible light 211 has an intersection point at the height of the reference point. At this time, the light emitted by the second visible light indicator 220 is required to pass through the intersection point.
  • the deflection angle of the light emitted by the second reflecting mirror 242 can be obtained according to the triangular geometric calculation method, and the control unit controls the deflection device to deflect to the corresponding position according to the deflection angle of the light, and the two beams after the deflection are It will meet at the height of the reference point, which is the object marking point.
  • Figure 3 also uses two motors to control the beam deflection, which is the same as the second principle described above, but the angles of the first visible light and the second visible light are different, so that it can more closely match the optical path of the existing laser marking machine, which is convenient in the existing
  • the laser marking machine is based on the realization.
  • the approximate positional relationship of the various components is shown in FIG. 3.
  • the reflection device including the first reflecting lens controlled by the first motor 231' and the second reflecting lens controlled by the second motor 241' performs the reflection work.
  • the structure is simple and the cost can be saved, and the embodiment is improved by using the mechanical mechanism of the existing laser marking machine. Therefore, the first visible light indicator is obliquely mounted on the marking head, and the second visible light beam is flushed with the laser.
  • Figure 4 is a further schematic diagram of the optimization of the indicating device of Figure 2 and Figure 3.
  • an additional adjusting device is added to the first visible light beam 311 emitted by the first visible light indicator 310.
  • the adjustment of the first visible light beam 311 can control the intersection of the two beams at a certain vertical position or its periphery to facilitate the positioning and alignment of the marking object, wherein the adjusting device can be manually adjusted or passed through the adjustment device.
  • the control unit automatically controls the two heights h31 and h32.
  • the laser marking machine of the present invention comprises a cabinet 9, a reference board 7 disposed on the cabinet 9, a control unit 8 disposed on the cabinet 9, a lifting frame 6 vertically disposed on the reference board 7, and marking In the head 5, the top of the lifting frame 6 is provided with a rotating handle 61.
  • the marking head 5 is arranged on the lifting frame 6.
  • the rotation of the rotating handle 61 can adjust the height of the marking head 5. This is a method of manual adjustment, and the invention can also be used in the present invention.
  • the lifting frame 6 is automatically adjusted by the control unit 8.
  • the position of the marking head 5 can be adjusted manually or automatically to make the marking head 5 relative to the reference.
  • the board 7 is in the proper position; how to quickly and accurately make the initial marking point (reference point) and the focus of the laser marking coincide with the design of the 3D laser marking, which is a difficult point in the current design, especially for the irregular 3D products.
  • the accuracy of the focus is critical to the overall speed of the laser marking.
  • the focus of the laser is visualized by focusing the two visible lights.
  • the visible light in this embodiment is specifically red light, and other visible light may be used.
  • the specific embodiment of the embodiment is as follows.
  • the marking head of the present invention comprises a front housing 511 and a rear housing 512.
  • the front housing 511 and the rear housing 512 are connected back and forth by a connecting plate 513.
  • the front housing 511 is provided with a reflecting device for changing the direction of transmission of the laser and the visible light beam.
  • the reflecting device includes a first reflecting mirror 232 driven by the first motor 231 and a second reflecting mirror 242 driven by the second motor 241.
  • the first reflecting mirror 232 and the second reflecting mirror 242 pass through the first motor 231 and the second motor 241, respectively. Drive to control the light emitted to the two reflecting mirrors for deflection.
  • a first visible light indicator 210 is connected to the front housing 511.
  • the first visible light beam 211 emitted by the first visible light indicator 210 may be in the X direction (the first visible light indicator 210 is disposed on the front housing 511).
  • the two ends of the X direction that is, the front housing 511 is located near the front or rear end position, or may be in the Y direction (the first visible light indicator 210 is disposed on the front housing 511 along the Y direction).
  • the first visible light beam 211 emitted by the first visible light indicator 210 is a fixed oblique direction. Light.
  • the first reflecting mirror 232 and the second reflecting mirror 242 of this embodiment adopt the X galvanometer and the Y galvanometer of the laser marking machine itself, so that the first reflecting mirror 232 and the second reflecting mirror 242 are not separately provided and correspondingly
  • the driving motor when reflected by the X galvanometer and the Y galvanometer, the optical path of the second visible beam coincides with the optical path of the marking laser. Therefore, the second visible beam can be realized by two methods, one is to directly use the laser The laser itself is emitted. At this time, the laser itself is equivalent to the second visible light indicator, but a laser that is a visible laser (such as a green laser) is required, and the power of the laser is adjusted to a non-marking state when indicated.
  • a visible laser such as a green laser
  • the other is to add a second visible light indicator, but it is necessary to converge the second visible light beam emitted by the second visible light indicator with the laser light path through a combining unit, so that the marking can be realized by using the X galvanometer and the Y galvanometer.
  • the laser emitted by the laser is horizontally emitted through the pipe 520, and a combining unit is disposed in the middle of the laser transmission line.
  • the combining unit is specifically a combining lens 531 and a bracket 530.
  • the combining lens 531 is obliquely disposed with respect to the laser transmission direction, and is combined.
  • the lens 531 is supported by the bracket 530.
  • the second visible light indicator 220 is connected to the bracket 530.
  • the second visible light beam 221 emitted by the second visible light indicator 220 passes through the combining lens 531. According to the characteristics of the combining lens 531, the laser can be worn.
  • the over-combined lens 531 continues to transmit in a linear direction, and the second visible beam 221 cannot pass through the combining lens 531, and only the reflective motion can be performed, according to the angle at which the combining lens 531 and the second visible light indicator 220 emit light. It is arranged that the reflected second visible light beam 221 and the laser light passing through the combining lens 531 overlap and are linearly transmitted until being emitted to the first reflective lens 232, and the second visible light beam 221 is reflected and directed to the second reflective lens 242. Second reflective lens 242 The post-reflection direction is downward, along with a first visible beam 211 that is emitted toward the marking area.
  • the control unit controls the deflection of the first motor 231 and the second motor 241 to control the first reflective lens 232 and the second reflective lens 242 to reach a specified deflection position to change the transmission direction of the second visible light beam 221 (laser) to make The first visible light beam 211 intersects, and the deflection angle of the reflecting lens given by the control unit is such that the height of the intersection point is the marking height optimal for laser marking.
  • the second visible light indicator 220 and the combined lens 531 are disposed inside the laser, that is, the laser is provided with a visible light indicator.
  • the color of visible light is determined by the wavelength of light.
  • the wavelength of light that can be perceived by the human eye is 400 to 800 nanometers, and the laser beam of most parts is outside the visible range of the human eye. Therefore, the case of using the unit is suitable for large Part of the laser.
  • a second visible light beam for generating a visible light beam must be provided, but considering the reflection unit when the X-ray mirror and the Y galvanometer effect indication inherent in the laser are utilized, the second visible light beam is to be passed through the combining unit.
  • the direction of change is the same as the laser path, but it does not block the laser path.
  • Another possible solution is to directly use the laser itself as a second visible light indicator, provided that the laser is visible light and the laser power is adjustable to indicate only the marking state.
  • the laser generated by the green laser has a wavelength of 400 to 800 nm, which is visible to the human eye. Therefore, a green laser can be used as the second visible light indicator.
  • the power of the laser is set.
  • the power state at the time of non-marking at which time the laser is equivalent to the second visible light beam emitted by the second visible light indicator, and the indication work of the laser marking focus is completed, which can be omitted.
  • the second visible light indicator and the unit of the combining unit, the mechanism using the green laser is simple, and the installation is convenient and fast, but the cost of the green laser is high.
  • the laser in this embodiment, the second visible light beam 321 emitted by the second visible light indicator 320, and the reflecting device (including the first mirror 332 and the second motor 341 driven by the first motor 331) are driven.
  • the second mirror 342) is the same as the first embodiment except that the front housing of the embodiment is further provided with an adjusting device (the third reflecting mirror 352 driven by the third motor 351), the first visible light.
  • the indicator 310 emits a first visible light beam 311.
  • the first visible light beam 311 encounters the third reflective lens 352 during transmission.
  • the first visible light beam 311 is reflected by the third reflective lens 352 and intersects with the second visible light beam 321 to intersect.
  • the intersection point is the optimal working point of laser marking, and the added adjustment device plays the same role as the second embodiment of the fourth embodiment.
  • the control adjustment device deflects the first visible beam.
  • the position of the 311 is moved so that the intersection of the two heights is in the vicinity of the center position of the marking area, which is convenient for positioning and marking, and saves space.
  • the reflection adjusting device in this embodiment can also be manually adjusted. Section.
  • the first principle is applied to the second visible light beam 121.
  • the reflection device in this embodiment is different from the first embodiment.
  • a motor 131 drives the deflected first reflecting optic 132.
  • the first visible light indicator 110 is disposed when the front casing is near the two ends of the X direction (ie, disposed at a position near the front or rear end of the front casing), and the first visible light indicator 110 emits the first direction along the X direction.
  • the light beam 111 is visible.
  • the reflecting device adjusts the second visible light beam 121 to always deflect in the X direction.
  • the height (focus) of the intersection of the first visible light beam 111 and the first visible light beam 111 is changed. The purpose of adjusting the height corresponding to different focus points can be achieved.
  • the first visible light indicator 110 is disposed when the front casing is near the ends of the Y direction (ie, disposed at a position near the left or right end of the front casing), and the first visible light indicator 110 emits the first visible along the Y direction.
  • the light beam 111 at which time the reflecting means adjusts the second visible light beam 121 to always deflect in the Y direction.
  • the second visible light beam 121 changes, the height (focus) of the intersection of the first visible light beam 111 and the first visible light beam 111 is changed, that is, The purpose of adjusting the height corresponding to different focus points can be achieved.
  • the first visible light beam 111 and the second visible light beam 121 must be intersected.
  • an adjustment device is disposed on the optical path of the first visible light indicator 110a.
  • the adjustment device is a third reflective lens 142a controlled by the third motor 141a, and the first visible light beam 111a emitted by the first visible light indicator 110a is along the way.
  • the direction of the first visible light beam 111a can be adjusted by controlling the third reflective lens 142a through the third reflective lens 142a, and the third motor 141a and the third reflective lens 142a control the first visible light beam 111a along the reference plate.
  • the X (or Y) direction is deflected, when it is found that the first visible light beam 111a and the second visible light beam 121a are not on the same plane, the two cannot meet, and the third motor 141a can be adjusted.
  • the first visible light beam 111a emitted by the first visible light indicator 110a is directed in the X direction, and the first motor 131a controls the second visible light beam 121a to move in the X direction, at which time the third reflective lens 142a controls the first visible light beam.
  • the 111a is deflected in the Y direction, and the third reflecting mirror 142a adjusts the first visible light beam 111a such that the first visible light beam 111a and the second visible light beam 121a are on the same plane.
  • the first visible light beam 111a emitted by the first visible light indicator 110a is directed in the Y direction, and the first motor 131a controls the second visible light beam 121a to move in the Y direction, at which time the third reflective lens 142a controls the first visible light beam.
  • 111a is deflected in the X direction, and the third reflecting mirror 142a adjusts the first visible light beam 111a such that the first visible light beam 111a and the second visible light beam 121a are on the same plane.
  • the solution is different from the first one.
  • the fourth reflective lens 152b driven by the fourth motor 151b is added to the solution, and the adjusting device includes a third reflective lens driven by the third motor 141b.
  • the fourth reflective lens 152b driven by the 142b and the fourth motor 151b, the first visible light beam 111b is reflected by the adjusting device and then directed to hit
  • the second visible light beam 121b is reflected by the first reflective lens 132b driven by the first motor 131b and then directed to the marking area and intersects the first visible light beam 111b.
  • This embodiment can be used for both X and Y directions.
  • Adjustments are made for lower installation requirements, and the position of the visible beam intersection can be controlled so that the junction is at the center of the reference plate for easy marking, see Figure 15, when marking at h11b height is required , the junction point is A, when it is necessary to mark at the height of h21b, the junction point is B, A and B are separated by a distance L, if points A and B are two extreme or close to the limit position, both The horizontal distance L is also large, and the marking is far apart. If the first visible light beam 111b can be adjusted such that the intersection plane of the second height h21b is A', then the second visible light beam 121b is moved to and A. 'Intersect can be, at this time, the marking can be in the center position (or nearby) of the marking area, which is more convenient to operate and makes the marking more precise.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)

Abstract

一种3D激光打标机的可控距离指示方法及可控距离指示装置,所述可控距离指示装置包括第一可见光指示器(110、110a、110b、210、210'、310)、第二可见光指示器(120、220、220'、320)以及控制单元(8);第一可见光指示器可向打标区域发出第一可见光束(111、111a、111b、211、211'、311);第二可见光指示器的光路上设置有反射装置,该反射装置用于反射第二可见光束(121、121a、121b、221、221'、321),第二可见光束被反射后与第一可见光束在打标区域内交汇,所述控制单元控制反射装置的偏转角度,使第一可见光束和第二可见光束的交汇点对应3D激光打标机的初始焦点。由此,将激光打标机的初始焦距通过控制可见光束的交汇显示出来,所述可控距离指示装置可自动进行对焦,并能准确快速地完成初始焦距的指示。

Description

一种3D激光打标机的可控距离指示方法及可控距离指示装置 技术领域
本发明涉及激光打标领域,具体涉及一种对物体三维表面进行激光打标的可控距离指示方法以及应用该方法的可控距离指示装置。
背景技术
激光打标机(laser marking machine)是利用激光束在物质表面打上永久标记的技术。该技术通过激光器产生激光束,经过一系列光学传导与处理,最终通过光学镜片进行光束聚焦,然后将聚焦后的高能量光束偏转到待加工物体表面的指定位置。激光打标机可以标记出各种文字、符号和图案,市场应用前景广阔。
传统的激光打标机仅在二维平面上进行打标。在打标时,由于激光束非可见,为了判断打标对象是否位于激光打标区域(定位)及焦点上(定焦),一般是用尺子测量打标平面与场镜之间的距离,或者在检测板上预先打标以判断是否在焦点上,这些传统操作方法需要多次测量,效率非常低。作为一种改进,现有的二维激光打标机增加了红光指示器进行定位和定焦。利用红光代替不可见的激光,起到打标位置的预览和定焦作用。具体可参见专利文献CN201446774U公开的一种打标机的自动对焦装置。该方案是在扫描装置的两侧分别设置有十字红光发射器,两边的十字红光发射器所发出的十字红光的交叉点与激光的焦点重合。在使用时,调整使得待打标物体上出现一个红光交叉点,即可保证打标物体位于激光的焦点上。由于二维激光打标机的焦距是不变的,因此这种方法用于常规的二维平面激光打标机上可极大提高工作效率。
随着技术的发展,能在三维表面上打标的3D激光打标成为行业内热门的研发点。与传统2D激光打标相比,3D激光打标机采用动态聚焦座,通过软件控制和移动动态聚焦镜,在激光被聚焦前进行可变扩束,以此改变激光束的焦距来实现对高低不同物体的准确表面聚焦加工。因此3D打标对加工对象的表面平整度要求大幅度降低,可以在非平面上进行激光打标。但是,3D激光打标机的定位和定焦成为新的问题,由于3D激光打标机的焦距是变化的,因此现有的二维激光打标机的对焦系统已经无法满足要求。
在3D激光打标过程中,先对打标物体的打标区域进行空间建模并存储在软件系统中,该空间建模上可设定任意一个打标物体的基准点坐标,该基准点坐标也为激光的对焦点,在实际空间上对应打标物体上的某点作为基准点,也即,只要打标时激光头可准确定位并对焦在物体的基准点上,后续电脑可调焦距完成三维表面其他部位的激光打标。其中的问题是,在打标开始前,需要将打标物件放入打标平台上,使得物体对应基准点。然而缺少定位的结构,技术人员很难精确放置和调整打标物件的位置、高度,而且3D曲面打标要求非常高的精度,只要打标物件的位置或高度出现偏差,很有可能就造成整个打标图案的失真。另外,由于三维打标物体表面的复杂性,对基准点的设定要求灵活可变,因此传统的固定式对焦系统已经无法实现3D激光打标的要求。
发明内容
本发明的目的在于提供一种3D激光打标机的可控距离指示方法,通过该方法可在打标空间上自动指示出建模中与基准点相对的初始焦点的高度位置,从而便于加工时安放打标物体的定位。
为了实现上述目的,本发明公开的3D激光打标机的可控距离指示方法涉及第一可见光指示器、第二可见光指示器以及控制单元;所述第一可见光指示器可向打标区域发出第一可见光束;所述第二可见光指示器的光路上设置有反射装置,该反射装置用于反射第二可见光指示器向其发出的第二可见光束;所述控制单元根据3D激光打标机对基准点对焦的初始焦距,计算反射装置的偏转角度,该偏转角度使得第二可见光束在被反射装置反射后与第一可见光束在打标区域内交汇,该交汇点对应3D激光打标机的初始焦点。
优选的,所述控制单元根据三角几何计算方法,通过3D激光打标机的初始焦距的坐标,获得反射装置的偏转角度。在寻找初始打标高度时,第一可见光束的方向确定,打标的高度已知,第二可见光束的发射点确定,即可根据三角几何计算方法,计算出反射装置的偏转角度。
优选的,所获得的对应不同初始焦距的反射装置偏转角度值被存储在数据库内,以便使用时根据不同的初始焦距匹配得到对应的偏转角度值。
根据上述方法可以指示出打标高度,但是在实际操作中难免会有安装误差、操作误差以及电路等的影响,为了克服这些误差导致的可见光不能精确交汇的问题,本发明还通过插值法补偿误差,对所述反射装置的偏转角度进行修正,使得两光束能精确的交汇,提高打标的效率。
本发明的另一目的在于提供应用了上述指示方法的可控距离指示装置,该指示装置包括第一可见光指示器、第二可见光指示器以及控制单元;所述第一可见光指示器可向打标区域发出第一可见光束;所述第二可见光指示器的光路上设置有反射装置,该反射装置用于反射第二可见光指示器向其发出的第二可见光束,所述第二可见光束在被反射后与第一可见光束在打标区域内交汇,所述控制单元控制反射装置的偏转角度,使第一可见光束和第二可见光束的交汇点对应3D激光打标机的初始焦点。
上述的指示装置中的反射装置包括至少一个由电机驱动偏转的反射镜片,所述电机由控制单元控制以改变反射镜片的偏转角度;作为优选方案,所述反射装置包括第一电机驱动的第一反射镜片和第二电机驱动的第二反射镜片,所述第一反射镜片和第二反射镜片在空间上具有夹角,使第二可见光束经过第一反射镜片和第二反射镜片反射后可实现在一个平面上的任意位置的移动;当反射装置选择使用两个反射镜片时,反射装置(即第一反射镜片和第二反射镜片)可以为打标头内部的X振镜和Y振镜,第二可见光指示器设于3D激光打标机内部,此时,第二可见光指示器发出的第二可见光束与用于打标的激光光路重合,通过一设置于激光光路中的合束单元实现第二可见光束和激光光路的重合,第二可见光指示器位于合束单元的一侧,可向该合束单元发出第二可见光束,所述第二可见光束经过合束单元后与激光 的光路重合,并向X振镜和Y振镜发射,直接使用X振镜和Y振镜控制第二可见光束的偏转,可以降低装置的成本,并且红光和激光合束,可以提高控制的精确度。
当上述的反射装置选择由第一电机驱动的第一反射镜片和由第二电机驱动的第二反射镜片组成时,两光束的优选方向为:第一可见光指示器向打标区域发出倾斜的第一可见光束,所述反射装置位于打标区域的上方,所述第二可见光指示器水平方向向反射装置发出第二可见光束,所述第二可见光束经过反射装置反射后向下方的打标区域反射。
本发明公开的可控距离指示装置可以为外置于3D激光打标机的独立模块,或者3D激光打标机的第二可见光指示器和反射装置为3D激光打标机的内置部件。
本发明公开的可控距离指示装置的第一可见光束可以有以下两种方式:
第一种方式:所述第一可见光指示器固定设于激光打标机的打标头上,此时,第一可见光束发射的方向固定,偏转的角度也是确定的;
第二种方式:所述第一可见光指示器的光路上设有用于反射第一可见光束的调节装置,所述调节装置至少包括一个由电机控制的反射镜片,该反射镜片的角度可调整,用于使第一可见光束角度可调,以保持第一可见光束和第二可见光束的交汇点在打标区域内,优选的,所述的调节装置由两个反射镜片组成,所述反射镜片用于反射第一可见光束使得第一可见光束角度可调,通过调节装置调节第一可见光束的角度,可以解决安装时产生的误差导致的光束交汇不精确的问题。
由于在使用时,光线交汇点的左右位置会随着第二可见光角度变化而变化,存在一种情况,交汇点会逐渐移出打标区域中心位置,使得打标不再方便。而第一可见光指示器的光束可变,可以使得交汇点重新调回打标区域中心位置,从而增加打标的方便和准确度。
本发明通过一固定可见光束和一可调可见光束的交汇实现指示激光打标的高度,打标时再将打标物件需打标处对应可见光的交汇处,即可进行打标,通过本发明的可控距离指示装置和方法可以提高3D打标的对焦效率,并且相对于手动调节更精确;本发明还设置有调节固定可见光束偏转角度的调节装置,可以解决安装误差、操作不到位以及电路等引起的光束不交汇问题,确保两可见光束的交汇;当反射装置选择两个反射镜片时,可以直接使用激光打标头内的X振镜和Y振镜,并且可以省去相应的电机,此结构结构简单、成本低。
附图说明
图1为本发明的可控距离指示装置的工作原理示例1;
图2为本发明的可控距离指示装置的工作原理示例2;
图3为本发明的可控距离指示装置的工作原理示例3;
图4为本发明的可控距离指示装置的工作原理示例4;
图5为应用本发明可控距离指示装置的激光打标机的整体示意图;
图6为应用本发明实施例一的激光打标机从侧面看的部分结构示意图;
图7为应用本发明实施例一的激光打标机从另一侧面看的部分结构示意图;
图8为本发明实施例一的激光打标机部分结构示意图;
图9为本发明可控距离指示装置实施例一的原理解析图;
图10为本发明实施例一的激光打标机显示偏差值的结构示意图;
图11为本发明可控距离指示装置实施例二的原理解析图;
图12为本发明可控距离指示装置实施例三的原理解析图;
图13为本发明可控距离指示装置实施例四方案一的原理解析图;
图14为本发明可控距离指示装置实施例四方案二的原理解析图;
图15为图14的分析示意图。
具体实施方式
本发明提供了一种应用于3D激光打标机领域的可控距离指示方法,这种方法应用在3D激光打标机(激光打标机的焦距可变的)上,在打标前,可以非常方便地确定激光打标机初始焦距的空间高度,便于操作人员进行人工定焦。
该方法涉及第一可见光指示器、第二可见光指示器以及控制单元;所述第一可见光指示器可向打标区域发出第一可见光束;所述第二可见光指示器的光路上设置有反射装置,该反射装置用于反射第二可见光指示器向其发出的第二可见光束;所述控制单元根据3D激光打标机对基准点对焦的初始焦距,计算反射装置的偏转角度,该偏转角度使得第二可见光束在被反射装置反射后与第一可见光束在打标区域内交汇,该交汇点对应3D激光打标机的初始焦点。
上述第二可见光束的偏转角度可通过控制单元的内建数据库实现:
在使用之前,通过三角几何计算法(在三维模型中已知初始焦距的空间坐标、第一可见光束的方向、第二可见光束的方向以及反射装置的位置,通过三角几何方法可以计算出第一可见光束和第二可见光束交汇在初始焦距时的反射装置的偏转角度)对各个打标高度段对应的偏转角度进行测量计算,并将打标高度段和第二可见光束的偏转角度建成一个数据库,再将此数据库导入到控制单元内,在使用的时候根据所需打标高度调用数据库并进行匹配,即可得出需打标高度对应的第二可见光束的偏转角度,通过第一可见光束和第二可见光束指示出打标高度。
通过上述方法可得到初步的打标高度数据,但实际中受到加工误差,安装水平高低,电路影响等等因素影响,需要调试人员把升降的行程分成多段,在多段中分别测量实际值△与理论值△'的偏差,然后把数值输入软件系统建立一个数据库,通过软件算法控制电机修正偏移角度,保证最后两束可见光汇成一点。以上即是通过插值法来补偿偏差,对打标高度进行修正,使得打标点更精确。
具体调整方法是:当反射装置采用为两个振镜的情况时,一个反射振镜先固定,通过插值法调整另外一个振镜,如果还没有得到精确的值,则使原先运动的振镜固定,调整原先固定的振镜,如此循环,直至补偿到3D打标的初始焦距的高度。
在使用本方法实现的打标指示装置和打标机之前,一般都要先对机器进行校正,调试人员先对升降行程分为多段,并对每段分别测量实际偏差值△与理论偏差值△'(参见图10为采用两个反射装置时显示的△),然后把数值输入软件系统形成一个数据库,根据插值算法计算出每个△对应的第二可见光束的补偿角度,使第二可见光束偏转到对应的位置,数据 库参见下表所示。
区段 测量值 理论值 软件算法得出偏转角
0-1区段 (X,Y) (X',Y') θ
1-2区段 (X1,Y1) (X1',Y1') θ1
2-3区段 (X2,Y2) (X2',Y2') θ2
以此类推... 以此类推... 以此类推... 以此类推...
以上指示方法是一个完整的3D激光打标步骤中的一部分,因此本发明也公开了基于上述距离指示方法的3D激光打标机的打标方法,该方法具体步骤如下所述:
(1)对拟打标物体表面建模,形成三维模型;
(2)选取三维模型上的任一点作为基准点,获得该基准点坐标;
(3)所述基准点为激光打标的初始焦点,根据该基准点坐标获得初始焦距;
(4)根据该初始焦距,通过三角几何计算方法获得反射装置的偏转角度;
(5)该偏转角度使得第二可见光束在被反射装置反射后与第一可见光束在打标区域内交汇,该交汇点对应3D激光打标机的初始焦点;
(6)使打标物体上对应基准点的位置位于所述交汇点的高度上;
(7)开始打标。
上述步骤4中控制单元根据三角几何计算方法,获得对应不同初始焦距的反射装置偏转角度值,所述偏转角度值被存储在数据库内,以便使用时根据不同的初始焦距匹配得到对应的偏转角度值;并且还通过插值法补偿误差,对所述偏转角度进行修正,使得两可见光更加精准的交汇,提高打标的效率。所述第一可见光束发射角度是固定的或可调的;当所述第一可见光束发射角度为可调时,其可调的目的是使得交汇点的位置始终位于打标区域内。
为了解释上述方法的工作原理,以下通过附图1、附图2、附图3和附图4进行介绍。
首先参见附图1,此原理的反射装置采用的是一个反射镜片,整个指示装置包括可向下发射第一可见光束111的第一可见光指示器110,横向发射第二可见光束121的第二可见光指示器120,第二可见光指示器120经过反射装置控制后,向下反射光线,经过反射的第二可见光束111可与第一可见光指示器110发射的第一可见光束111交汇(图1中示出了h11和h12两个高度),该交汇点的位置可以通过反射装置调整,调整的方式具体参见下述第二种原理的介绍。由于指示装置只采用一个反射装置,所以成本较低,但是对于安装的要求较高,安装时必须保证从反射装置反射出的第二可见光束121始终和第一可见光束111处于同一平面上,否则光束无法交汇。
为了确保光束可相交,并使得装置更加科学合理,本发明又提供第二种原理的指示装置,此原理的反射装置由可控的且在空间上具有夹角的第一反射镜片231和第二反射镜片241组成,参见附图2所示,此原理的可控距离指示装置包括分别发射向下的第一可见光束211和第二可见光束221的第一可见光指示器210和第二可见光指示器220,所述第二可见光束 221经第一反射镜片231反射后又经过第二反射镜片241反射,反射后的第二可见光束221可与第一可见光束211交汇。其中第一反射镜片231和第二反射镜片241通过第一电机231和第二电机242分别控制偏转,两电机的偏转由控制单元调节,从而控制第二可见光束221的偏转,使得两光束交汇于设定高度的位置(图2中指示出了高度h21和高度h22两个点),根据实际需求,可以获得不同交汇位置以及不同的高度点,此原理的可控距离指示装置使得第二可见光束在X和Y两个方向的平面内均可以调节,保证第一可见光束和第二可见光束相交。
不同的交汇位置对应不同的高度,因为3D激光打标机先通过软件对打标物体进行空间建模,打标时,首先在打标物体上选择一个认可的初始打标点作为打标的基准点,此基准点对应的激光打标的焦距为初始焦距,根据空间建模操作者可以获得打标物体的任一点的坐标,因此选定的基准点的坐标是已知的,即可知道基准点的初始焦距,另外第一可见光211的角度为已知固定的,第一可见光211在基准点高度上会有一个交点,此时,需要第二可见光指示器220发射的光线经过上述交点,在已知交点的情况下,根据三角几何计算法可以得出经第二反射镜片242发射过后的光线的偏转角度,控制单元根据光线的偏转角度控制反射装置偏转到相应的位置,偏转后两光束即会在基准点高度位置交汇,交汇点即为物体打标点。
附图3也是采用两个电机控制光束偏转,和上述第二个原理相同,但第一可见光和第二可见光的角度不同,使之可更加匹配现有激光打标机的光路,便于在现有激光打标机的基础上实现。图3中显示出了各个部件大概的位置关系,图3中的第一可见光指示器210'为斜向安装,其发射出来的第一可见光束211'斜向下射向打标区域内,反射装置位于打标区域的上方,第二可见光指示器220'从水平位置发射第二可见光束221',第二可见光束221'经过反射装置反射后向下并与第一可见光束211'交汇,图中显示了两个高度h21'和h22'的交汇情况,此时,反射装置(包括第一电机231'控制的第一反射镜片和第二电机241'控制的第二反射镜片)完成的反射工作可以通过激光打标机中的X振镜和Y振镜直接实现,不需要另设反射装置,结构简单并且可以节省成本,该实施例是利用现有的激光打标机的机械机构进行改进,因此第一可见光指示器倾斜安装在打标头上,第二可见光束与激光同束,具体实施方式以下图5-图10的说明中会做详细介绍。
附图4是对附图2和附图3指示装置优化的又一原理图,在原有的基础上,本原理另外增设了调节装置,第一可见光指示器310发射出的第一可见光束311会经过调节装置反射,第一可见光束311的可调性可以控制两光束交汇点处于某一竖直位置或其周边,便于打标物件的定位、对齐,其中调节装置可以通过手动调节,也可以通过控制单元自动控制,图中示出了h31和h32两个高度。
根据上述原理,本发明设计了几种对应的可控距离指示装置,所述的可控距离指示装置可以为外置于3D激光打标机的独立模块,也可以是采用3D激光打标机原有结构或在原有机构基础上改进形成的内置部件。以下结合附图对本发明指示装置以及应用此指示装置的激光打标机做详细的介绍。
实施例一
本实施例对应上述第二个和第三个原理,即采用两个反射镜片偏转光线的情形,参见图 5至图10,本发明的激光打标机包括机柜9、设于机柜9上的基准板7、设于机柜9上的控制单元8、垂直设于基准板7上的升降架6、打标头5,升降架6顶端设有旋转把手61,打标头5设于升降架6上,旋转旋转把手61可调节打标头5的高度,此为通过手动调节的方法,本发明中也可以通过控制单元8自动调节升降架6,对于打标物件高度差较大(超出激光打标焦距范围)时,可以先通过手动或自动调节打标头5的位置,使打标头5相对于基准板7处于合适的位置;进行3D激光打标时,如何快速准确的使初始打标点(基准点)和激光打标的焦点重合是现在设计的一个难点,尤其对于不规则的3D产品的打标,准确对焦的速度对激光打标的整体速度起到至关重要的影响因素。
本实施例中将激光的打标焦点通过将两束可见光的对焦进行可视化,本实施例中的可见光具体使用的是红光,也可以采用其他的可见光,本实施例具体实施方案如下所述。
本发明的打标头包括前壳体511和后壳体512,前壳体511和后壳体512通过连接板513前后相连,前壳体511内设有改变激光和可见光束传输方向的反射装置,反射装置包括第一电机231驱动的第一反射镜片232和第二电机241驱动的第二反射镜片242,第一反射镜片232和第二反射镜片242分别通过第一电机231和第二电机241驱动,从而控制发射到两反射镜片的光线进行偏转。前壳体511上连接有第一可见光指示器210,第一可见光指示器210发射出来的第一可见光束211可以是向X方向的(此时第一可见光指示器210设于前壳体511沿着X方向两端处,即设于前壳体511靠近前或后端位置处),也可以是向Y方向的(此时第一可见光指示器210设于前壳体511沿着Y方向两端处,即设于靠近前壳体511左或右侧边位置处),或者是带有一定角度的其他方式,第一可见光指示器210发射出来的第一可见光束211为一固定斜向的光线。
此实施例的第一反射镜片232和第二反射镜片242采用的就是激光打标机本身的X振镜和Y振镜,因此不需另外设置第一反射镜片232和第二反射镜片242以及相应的驱动电机,当通过X振镜和Y振镜实现反射时,第二可见光束的光路与打标激光的光路重合,因此,可以采用两种方法实现第二可见光束,一种就是直接采用激光器发出的激光本身,此时激光器本身就相当于第二可见光指示器,但需要为可见激光的激光器(如绿光激光器),且在指示时要将激光的功率调小到非打标状态。另一种是增加第二可见光指示器,但需要通过一个合束单元将第二可见光指示器发出的第二可见光束与激光光路趋同,以可以利用X振镜和Y振镜实现打标指示。
至于采用合束单元进行合束的方式具体如下:
激光器发射出的激光经过管道520进行水平发射,在激光传输线路途中设置有合束单元,合束单元具体为合束镜片531以及支架530,合束镜片531相对激光传输方向斜向设置,合束镜片531通过支架530进行支撑,支架530上连接有第二可见光指示器220,第二可见光指示器220发出的第二可见光束221会经过合束镜片531,根据合束镜片531特性,激光可以穿过合束镜片531沿着直线方向继续传输,而第二可见光束221不能穿过合束镜片531,只能进行反射运动,根据合束镜片531和第二可见光指示器220发射出光线的角度的设置,反射后的第二可见光束221和穿过合束镜片531的激光重叠,并进行直线传输,直到发射到第一反射镜片232,第二可见光束221反射后指向第二反射镜片242,经过第二反射镜片242 后反射方向向下,同时还有向打标区域发射的第一可见光束211。控制单元控制第一电机231和第二电机241的偏转,从而控制第一反射镜片232和第二反射镜片242到达指定的偏转位置,达到改变第二可见光束221(激光)传输方向,使之与第一可见光束211相交,控制单元给出的反射镜片偏转角度,使得相交点的高度即是激光打标最优的打标高度。第二可见光指示器220和合束镜片531是设于激光器内部的,即激光器自带可见光指示器。
可见光的颜色决定于光的波长,一般人的眼睛可以感知的光的波长在400至800纳米,而极大部分的激光波段都处于人眼可见范围之外,因此采用合束单元的情形适用于大部分的激光器。此时,必须设置一个产生可见光束的第二可见光指示器,但考虑到要利用激光器内部固有的X振镜和Y振镜作用指示时的反射单元,因此要通过合束单元将第二可见光束改变方向与激光光路相同,但又不会挡住激光光路。
另一种可行的方案是直接将激光器本身作为第二可见光指示器,前提是激光为可见光并且激光功率可调节到仅指示而非打标状态。绿光激光器的激光器产生的激光的波长一般为400至800纳米,处于人眼可见的范围,所以可以采用绿光激光器作为第二可见光指示器,在指示可控距离时,该激光器的功率被设定在非打标时的功率状态(相对于打标时的功率较小),此时激光相当于第二可见光指示器发出的第二可见光束,完成激光打标焦点的指示工作,可以省去第二可见光指示器和合束单元这一部分,采用绿光激光器的机构简单,安装方便快捷,但是绿光激光器的成本较高。
实施例二
参见附图11,本实施例中的激光、由第二可见光指示器320发射出的第二可见光束321、反射装置(包括第一电机331驱动控制的第一反射镜332和第二电机341驱动控制的第二反射镜342)和实施例一都相同,不同点在于本实施例的前壳体上还设有调节装置(由第三电机351驱动控制的第三反射镜片352),第一可见光指示器310发射出第一可见光束311,第一可见光束311在传输过程中遇到第三反射镜片352,第一可见光束311经过第三反射镜片352反射后与第二可见光束321相交,相交的交点即为激光打标最优的工作点,增加的调节装置起到的作用和下述实施例四的方案二相同,在高度相差较大的情况下,控制调节装置偏转使第一可见光束311位置移动,使得两高度的交汇点处于打标区域中心位置的附近,方便定位和打标,并可节省空间,本实施例中的反射调节装置也可以通过手动调节。
实施例三
参见附图12,本实施例应用的是第一种原理,即对第二可见光束121只进行一次反射,本实施例中的反射装置不同于实施例一,本实施例的反射装置为由第一电机131驱动偏转的第一反射镜片132。
本实施例中的第一可见光指示器110和实施例一中的第一可见光指示器210可以以相同的方式安装于前壳体上,本实施例第一可见光指示器110发射出的第一可见光束111为向下的固定光线,第一反射镜片132通过第一电机131控制第二可见光束121的偏转,达到改变交汇点高度的作用;本实施例的结构简单,成本较低,只需采用一个反射镜片,但是对于安装的要求较高,由于本实施例的第二可见光束121只能沿着一个方向运动,第一可见光束111和第二可见光束121的交汇点即为激光打标的工作点,安装时,为了使两可见光束有交 汇点,必须将第一反射镜片132反射出的第二可见光束121和固定的第一可见光束111始终处于同一平面上。以下为本实施例的两种安装方案:
方案一:
第一可见光指示器110设于前壳体靠近X方向两端处时(即设于前壳体的靠近前或后端位置处),此时第一可见光指示器110沿着X方向发射第一可见光束111,此时反射装置调整第二可见光束121始终沿着X方向偏转,随着第二可见光束121的变动,其和第一可见光束111的交汇点的高度(焦点)有所改动,即可达到调节不同焦点对应高度的目的。
方案二:
第一可见光指示器110设于前壳体靠近Y方向两端处时(即设于前壳体的靠近左或右端位置处),此时第一可见光指示器110沿着Y方向发射第一可见光束111,此时反射装置调整第二可见光束121始终沿着Y方向偏转,随着第二可见光束121的变动,其和第一可见光束111的交汇点的高度(焦点)有所改动,即可达到调节不同焦点对应高度的目的。
不管采用上述方案一还是方案二,都必须使得第一可见光束111与第二可见光束121可交汇。
实施例四
本实施例提供两种解决方案:
方案一:
参见图13,在第一可见光指示器110a的光路上设有调节装置,调节装置为由第三电机141a控制的第三反射镜片142a,第一可见光指示器110a发射出的第一可见光束111a沿途中会经过第三反射镜片142a,通过控制第三反射镜片142a,即可对第一可见光束111a的方向进行调整,第三电机141a和第三反射镜片142a控制第一可见光束111a沿着基准板X(或者Y)方向偏转,当发现第一可见光束111a和第二可见光束121a不处于同一平面上,两者无法交汇,调整第三电机141a即可。
根据第一可见光指示器110a和第一电机131a的具体的安装情况,可有以下两种对应的调整方式:
第一种:第一可见光指示器110a发射出的第一可见光束111a指向X方向,第一电机131a控制第二可见光束121a沿着X方向运动,此时第三反射镜片142a控制第一可见光束111a沿着Y方向偏转,第三反射镜片142a调整第一可见光束111a,使得第一可见光束111a和第二可见光束121a处于同一平面上。
第二种:第一可见光指示器110a发射出的第一可见光束111a指向Y方向,第一电机131a控制第二可见光束121a沿着Y方向运动,此时第三反射镜片142a控制第一可见光束111a沿着X方向偏转,第三反射镜片142a调整第一可见光束111a,使得第一可见光束111a和第二可见光束121a处于同一平面上。
方案二:
参见附图14,本方案不同于方案一,在方案一的基础上,本方案增设了由第四电机151b驱动控制的第四反射镜片152b,调节装置包括第三电机141b驱动的第三反射镜片142b和第四电机151b驱动的第四反射镜片152b,第一可见光束111b经过调节装置反射后射向打 标区域,第二可见光束121b经过由第一电机131b驱动的第一反射镜片132b反射后射向打标区域,并和第一可见光束111b相交,本实施例可以对X和Y两个方向都进行调整,对于安装要求更低,并且,可以对可见光束交汇点的位置进行控制,使交汇点处于基准板的中心位置,方便打标,参见图15,当需要在h11b的高度进行打标时,交汇点为A,当需要在h21b的高度进行打标时,交汇点为B,A和B之间相隔距离L,如果A点和B点是两个极限或者接近极限的位置时,两者的水平距离L也较大,此时打标相隔较远,如果第一可见光束111b可以调整,使得在第二高度h21b的交汇平面为A',则只要将第二可见光束121b移动到和A'相交即可,此时可以使打标处于打标区域的中心位置(或附近),更方便操作并使得打标更精确。
根据上述说明书的揭示和教导,本发明所属领域的技术人员还可以对上述实施方式进行变更和修改。因此,本发明并不局限于上面揭示和描述的具体实施方式,对本发明的一些修改和变更也应当落入本发明的权利要求的保护范围内。此外,尽管本说明书中使用了一些特定的术语,但这些术语只是为了方便说明,并不对本发明构成任何限制。

Claims (16)

  1. 一种3D激光打标机的可控距离指示方法,其特征在于,该方法涉及第一可见光指示器、第二可见光指示器以及控制单元;所述第一可见光指示器可向打标区域发出第一可见光束;所述第二可见光指示器的光路上设置有反射装置,该反射装置用于反射第二可见光指示器向其发出的第二可见光束;所述控制单元根据3D激光打标机对基准点对焦的初始焦距,计算反射装置的偏转角度,该偏转角度使得第二可见光束在被反射装置反射后与第一可见光束在打标区域内交汇,该交汇点对应3D激光打标机的初始焦点。
  2. 根据权利要求1所述的可控距离指示方法,其特征在于,所述控制单元根据三角几何计算方法,通过3D激光打标机的初始焦距的坐标,获得反射装置的偏转角度。
  3. 根据权利要求2所述的可控距离指示方法,其特征在于,所获得的对应不同初始焦距的反射装置偏转角度值被存储在数据库内,以便使用时根据不同的初始焦距匹配得到对应的偏转角度值。
  4. 根据权利要求3所述的可控距离指示方法,其特征在于,通过插值法补偿误差,对所述偏转角度进行修正。
  5. 一种应用了权利要求1至权利要求4任一项指示方法的可控距离指示装置,其特征在于,包括第一可见光指示器、第二可见光指示器以及控制单元;所述第一可见光指示器可向打标区域发出第一可见光束;所述第二可见光指示器的光路上设置有反射装置,该反射装置用于反射第二可见光指示器向其发出的第二可见光束,所述第二可见光束在被反射后与第一可见光束在打标区域内交汇,所述控制单元控制反射装置的偏转角度,使第一可见光束和第二可见光束的交汇点对应3D激光打标机的初始焦点。
  6. 根据权利要求5所述的可控距离指示装置,其特征在于,所述反射装置包括至少一个由电机驱动偏转的反射镜片,所述电机由控制单元控制以改变反射镜片的偏转角度。
  7. 根据权利要求6所述的可控距离指示装置,其特征在于,所述反射装置包括第一电机驱动的第一反射镜片和第二电机驱动的第二反射镜片,所述第一反射镜片和第二反射镜片在空间上具有夹角,第二可见光束经过第一反射镜片和第二反射镜片反射后可实现在一个平面上的任意位置的移动。
  8. 根据权利要求7所述的可控距离指示装置,其特征在于,所述第一可见光指示器向打标区域发出倾斜的第一可见光束,所述反射装置位于打标区域的上方,所述第二可见光指示器水平方向向反射装置发出第二可见光束,所述第二可见光束经过反射装置反射后向下方的打标区域反射。
  9. 根据权利要求5所述的可控距离指示装置,其特征在于,所述可控距离指示装置为外置于3D激光打标机的独立模块。
  10. 根据权利要求5所述的可控距离指示装置,其特征在于,所述可控距离指示装置采用3D激光打标机的第二可见光指示器和反射装置为3D激光打标机的内置部件。
  11. 根据权利要求7所述的可控距离指示装置,其特征在于,所述反射装置为打标头内部的X振镜和Y振镜,所述第二可见光指示器设于3D激光打标机内部。
  12. 根据权利要求11所述的可控距离指示装置,其特征在于,所述第二可见光指示器发出的第二可见光束与用于打标的激光光路重合。
  13. 根据权利要求12所述的可控距离指示装置,其特征在于,还包括一设置于激光光路中的合束单元,所述第二可见光指示器位于合束单元的一侧,可向该合束单元发出第二可见光束,所述第二可见光束经过合束单元后与激光的光路重合,并向X振镜和Y振镜发射。
  14. 根据权利要求5所述的可控距离指示装置,其特征在于,所述第一可见光指示器固定设于激光打标机的打标头上。
  15. 根据权利要求5所述的可控距离指示装置,其特征在于,所述第一可见光指示器的光路上设有用于反射第一可见光束的调节装置,所述调节装置至少包括一个由电机控制的反射镜片,该反射镜片的角度可调整,用于使第一可见光束角度可调,以保持第一可见光束和第二可见光束的交汇点在打标区域内。
  16. 根据权利要求15所述的可控距离指示装置,其特征在于,所述调节装置由两个反射镜片组成,所述反射镜片用于反射第一可见光束使得第一可见光束角度可调。
PCT/CN2015/082723 2014-09-30 2015-06-30 一种3d激光打标机的可控距离指示方法及可控距离指示装置 WO2016050101A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201410522094 2014-09-30
CN201410522094.9 2014-09-30
CN201410757120.6 2014-12-10
CN201410757120.6A CN104527232B (zh) 2014-09-30 2014-12-10 一种3d激光打标机的可控距离指示方法及可控距离指示装置

Publications (1)

Publication Number Publication Date
WO2016050101A1 true WO2016050101A1 (zh) 2016-04-07

Family

ID=52842952

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/082723 WO2016050101A1 (zh) 2014-09-30 2015-06-30 一种3d激光打标机的可控距离指示方法及可控距离指示装置

Country Status (2)

Country Link
CN (4) CN204322752U (zh)
WO (1) WO2016050101A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107790877A (zh) * 2017-11-24 2018-03-13 广州新可激光设备有限公司 一种节约型激光打标结构
CN109014610A (zh) * 2018-08-31 2018-12-18 苏州艾可镭光电技术有限公司 一种被动变焦激光加工透明材料的系统及方法
CN109079336A (zh) * 2018-10-25 2018-12-25 威准(厦门)自动化科技有限公司 一种视觉激光打标机
CN109434295A (zh) * 2018-12-25 2019-03-08 东莞市智汇五金有限公司 一种微型电池五金壳自动化镭雕装置
CN111196092A (zh) * 2020-02-24 2020-05-26 沈阳凯歌科技有限公司 一种封闭式整包图书激光打标机

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204322752U (zh) * 2014-09-30 2015-05-13 广州创乐激光设备有限公司 一种3d激光打标机的可控距离指示装置
CN105880828B (zh) * 2015-06-09 2018-09-18 广州创乐激光设备有限公司 一种延迟振镜动作的激光打标系统及激光打标方法
CN105082776A (zh) * 2015-07-23 2015-11-25 深圳市铭镭激光设备有限公司 一种多工位分割旋转激光打标机
CN106964904B (zh) * 2016-01-14 2020-04-28 大族激光科技产业集团股份有限公司 一种多角度视觉定位的激光打标机及其激光打标的方法
CN105728953A (zh) * 2016-03-30 2016-07-06 苏州恩欧西智能科技有限公司 一种激光雕刻机
CN106218226A (zh) * 2016-07-15 2016-12-14 东莞市环亚激光科技有限公司 激光打标机
CN106041297B (zh) * 2016-07-21 2017-10-27 武汉锐科光纤激光技术股份有限公司 一种激光打标焦点校准装置及校准方法
CN106626848B (zh) * 2016-08-31 2018-12-07 广州创乐激光设备有限公司 一种对打标物上深孔结构打标的3d激光打标方法
CN107876988B (zh) * 2016-09-29 2019-02-12 广州创乐激光设备有限公司 一种利用激光检测快速生成球形或圆柱形打标物模型的方法
CN107053928A (zh) * 2017-05-15 2017-08-18 华南师范大学 一种木材表面激光雕刻浮雕的方法
CN107457487B (zh) * 2017-08-11 2019-08-20 巢湖学院 一种激光打标机辅助装置
CN107552966A (zh) * 2017-09-28 2018-01-09 惠州市洛玛科技有限公司 激光打标装置及产品打标方法
CN108161240A (zh) * 2018-02-11 2018-06-15 成都迈锐捷激光技术有限公司 一种新型动态聚焦激光打标机
CN108500474A (zh) * 2018-06-27 2018-09-07 安德激光智能装备(广东)有限公司 一种激光双面打标装置
CN109079319A (zh) * 2018-08-29 2018-12-25 东莞市雷宇激光设备有限公司 一种用于激光切割机的调光装置及光路调节方法
CN109454342B (zh) * 2018-11-19 2021-06-25 江苏金海创科技有限公司 平移式红光预览装置
CN109514091B (zh) * 2018-12-29 2020-07-31 广州新可激光设备有限公司 一种激光打标机的3d扫描建模方法、系统及其打标机
CN111843220B (zh) * 2019-04-19 2022-08-02 大族激光科技产业集团股份有限公司 一种激光打标装置及其控制方法
CN110125550A (zh) * 2019-05-16 2019-08-16 沈阳飞机工业(集团)有限公司 一种用激光打标机补刻小样板漏线的方法
CN110537771A (zh) * 2019-09-25 2019-12-06 中山诺山电子科技有限公司 激光选择性固化装置及美甲打印机
CN112692428A (zh) * 2019-10-23 2021-04-23 Nps株式会社 激光装置
CN112247363A (zh) * 2020-10-13 2021-01-22 深圳市嗨兴科技有限公司 一种多光合束雕刻的控制方法及装置
CN112676707B (zh) * 2020-12-31 2024-06-25 深圳盛方科技有限公司 一种激光打标机及激光器的光路调整方法
CN113210843B (zh) * 2021-07-06 2021-09-17 广东工业大学 一种零件加工控制方法、控制器、系统和设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000015464A (ja) * 1998-07-02 2000-01-18 Keyence Corp 位置指示装置及びレーザマーキング装置
JP2004114085A (ja) * 2002-09-25 2004-04-15 Sunx Ltd レーザマーキング装置及びそのレンズユニット
JP2005131668A (ja) * 2003-10-30 2005-05-26 Sunx Ltd レーザ加工装置及びそのワーク距離調整方法
CN101351294A (zh) * 2006-07-19 2009-01-21 丰田自动车株式会社 激光加工系统及激光加工方法
CN104527232A (zh) * 2014-09-30 2015-04-22 广州创乐激光设备有限公司 一种3d激光打标机的可控距离指示方法及可控距离指示装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100587608C (zh) * 2007-07-24 2010-02-03 上海微电子装备有限公司 一种用于光刻设备的对准系统
JP2009142865A (ja) * 2007-12-14 2009-07-02 Keyence Corp レーザ加工装置、レーザ加工方法及びレーザ加工装置の設定方法
CN103350281B (zh) * 2013-06-20 2015-07-29 大族激光科技产业集团股份有限公司 激光打标机自动调焦装置及自动调焦方法
CN103963480B (zh) * 2014-05-22 2016-01-20 广州创乐激光设备有限公司 一种激光打标机的扫描头
CN104006762B (zh) * 2014-06-03 2017-01-04 大族激光科技产业集团股份有限公司 获取物体三维信息的方法、装置和系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000015464A (ja) * 1998-07-02 2000-01-18 Keyence Corp 位置指示装置及びレーザマーキング装置
JP2004114085A (ja) * 2002-09-25 2004-04-15 Sunx Ltd レーザマーキング装置及びそのレンズユニット
JP2005131668A (ja) * 2003-10-30 2005-05-26 Sunx Ltd レーザ加工装置及びそのワーク距離調整方法
CN101351294A (zh) * 2006-07-19 2009-01-21 丰田自动车株式会社 激光加工系统及激光加工方法
CN104527232A (zh) * 2014-09-30 2015-04-22 广州创乐激光设备有限公司 一种3d激光打标机的可控距离指示方法及可控距离指示装置
CN104551409A (zh) * 2014-09-30 2015-04-29 广州创乐激光设备有限公司 一种基于可控距离指示的打标方法及3d激光打标机
CN204322753U (zh) * 2014-09-30 2015-05-13 广州创乐激光设备有限公司 一种3d激光打标机
CN204322752U (zh) * 2014-09-30 2015-05-13 广州创乐激光设备有限公司 一种3d激光打标机的可控距离指示装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107790877A (zh) * 2017-11-24 2018-03-13 广州新可激光设备有限公司 一种节约型激光打标结构
CN107790877B (zh) * 2017-11-24 2023-09-08 广州新可激光设备有限公司 一种激光打标结构
CN109014610A (zh) * 2018-08-31 2018-12-18 苏州艾可镭光电技术有限公司 一种被动变焦激光加工透明材料的系统及方法
CN109079336A (zh) * 2018-10-25 2018-12-25 威准(厦门)自动化科技有限公司 一种视觉激光打标机
CN109434295A (zh) * 2018-12-25 2019-03-08 东莞市智汇五金有限公司 一种微型电池五金壳自动化镭雕装置
CN111196092A (zh) * 2020-02-24 2020-05-26 沈阳凯歌科技有限公司 一种封闭式整包图书激光打标机

Also Published As

Publication number Publication date
CN104551409B (zh) 2017-08-25
CN104527232B (zh) 2017-08-25
CN204322753U (zh) 2015-05-13
CN204322752U (zh) 2015-05-13
CN104551409A (zh) 2015-04-29
CN104527232A (zh) 2015-04-22

Similar Documents

Publication Publication Date Title
WO2016050101A1 (zh) 一种3d激光打标机的可控距离指示方法及可控距离指示装置
WO2016095485A1 (zh) 一种3d激光打标机的可控距离指示方法、打标方法、可控距离指示装置及3d激光打标机
CN208358035U (zh) 一种自动对焦的激光打标机
CN207858053U (zh) 自动对焦打标一体机
CN106182779A (zh) 一种3d打印机的焦平面校正装置及其校正方法
US9354041B2 (en) Coordinate measuring apparatus
IT9022084A1 (it) Apparecchiatura di allineamento del percorso di un raggio laser in una macchina operatrice a laser.
US11338504B2 (en) Online laser leveling detection method of 3D printer
JP6242542B2 (ja) ガントリ装置、及び、制御方法
CN111037106B (zh) 一种激光加工设备的z轴运动控制系统及方法
US20180021886A1 (en) Laser machining apparatus with workpiece position adjusting capability relative to focal point of laser beam
JP6845606B2 (ja) 穴明け装置
CN204479038U (zh) 新型高分辨率立式三维扫描仪
CN111880321B (zh) 一种自适应平行度调整系统
JP6603289B2 (ja) ロボット、ロボットシステム、およびロボットの座標系設定方法
JP2001153632A (ja) 医科的対象物、特に歯牙標本の模型を検出する方法と装置
TW201944047A (zh) 旋轉軸多自由度誤差量測系統及其方法
US10919111B2 (en) Laser engraver mirror adjustment system
JP2000131032A (ja) 三次元形状計測方法およびその装置
CN109465553A (zh) 一种具有3d自建模的激光打标机
CN114089369A (zh) 三维激光定位投影装置
KR20180040316A (ko) 광학 3d 스캐너
CN106323446B (zh) 激光测振设备及其调节方法
CN211840595U (zh) 一种针对激光脱铝技术的超精细激光3d复刻平台
CN109465539A (zh) 一种具有3d自建模的自动对焦激光打标机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15846437

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18/08/2017)

122 Ep: pct application non-entry in european phase

Ref document number: 15846437

Country of ref document: EP

Kind code of ref document: A1