WO2016049938A1 - Source de lumière à led omnidirectionnelle et son procédé de fabrication - Google Patents

Source de lumière à led omnidirectionnelle et son procédé de fabrication Download PDF

Info

Publication number
WO2016049938A1
WO2016049938A1 PCT/CN2014/088071 CN2014088071W WO2016049938A1 WO 2016049938 A1 WO2016049938 A1 WO 2016049938A1 CN 2014088071 W CN2014088071 W CN 2014088071W WO 2016049938 A1 WO2016049938 A1 WO 2016049938A1
Authority
WO
WIPO (PCT)
Prior art keywords
liner
led
lead
light
chip
Prior art date
Application number
PCT/CN2014/088071
Other languages
English (en)
Chinese (zh)
Inventor
叶逸仁
郑香奕
Original Assignee
东莞保明亮环保科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东莞保明亮环保科技有限公司 filed Critical 东莞保明亮环保科技有限公司
Priority to PCT/CN2014/088071 priority Critical patent/WO2016049938A1/fr
Publication of WO2016049938A1 publication Critical patent/WO2016049938A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements

Definitions

  • the invention relates to the field of LED light sources, in particular to an LED full-circumference light source and a manufacturing method thereof.
  • LEDs light-emitting diodes
  • the LED light source is to place the LED chip on a predetermined placement position of the substrate.
  • the solid crystal glue is placed on the placed position, and baked at a high temperature of 150 ° C - 180 ° C for at least 60 minutes to make the LED chip.
  • Fixed on the substrate then soldering the wire process, soldering one end of the gold wire to the P and N poles of the chip, and soldering the other end to the substrate; then encapsulating with epoxy or silicone and baking at 150 ° C At least 4 hours; then the metal substrate on which the LED chip is cured is connected to the heat sink by epoxy resin, and the entire circuit board is screwed to a larger heat sink.
  • the LED light source has the following disadvantages: 1.
  • the production assembly process is cumbersome, the time is long, and the structure of the light source is complicated, which is not conducive to mass production; 2.
  • the substrate is limited by the planar design of the circuit board, and the LED is limited.
  • the shape specification of the luminaire makes the shape and specification of the LED luminaire single, and the space of the illuminating surface is small; 3.
  • the package of the LED chip needs to provide the substrate corresponding to the LED chip, which increases the cost and blocks part of the light source.
  • the present invention provides an LED full-circumference light source with simple structure, simple production and assembly, low cost, wide luminous surface, and arbitrarily set different shapes, and a manufacturing method thereof, which can effectively solve the existing LED light source.
  • the structure is complicated, the production and assembly process is cumbersome, and the production cost is high.
  • an LED full-circumference light source comprising:
  • the lining layer is provided with at least two LED chips, the P and N poles of the LED chip are exposed outside the lining layer, and the LED chips are electrically connected;
  • Two leads, one end of the lead is disposed in the lining layer, electrically connected to the LED chip, and the other end of the lead extends outside the lining layer;
  • An encapsulation layer is over the liner layer, and the LED chip and the lead are disposed between the liner layer and the encapsulation layer; wherein the liner layer and the encapsulation layer are mixed light-conducting and thermally conductive fillers; UV curable glue for phosphors.
  • the LED chip and the lead are electrically connected by vacuum coating or a conductive adhesive layer or a bonding wire.
  • a method for manufacturing an LED full-circumference light source comprising the following steps:
  • a UV-curable adhesive liner of a mixed light-conducting thermally conductive filler and a phosphor providing a liner mold, the liner mold being made of a light transmissive material, including PP, PE, ⁇ a glue or glass, the liner mold is provided with a liner groove and a lead groove, the liner mold is fixed and closely attached to the chip adhesive board, and then the lead is placed on the lead groove, wherein the liner The groove corresponds to the LED chip adhered to the chip adhesive board, and the UV-curable rubber mixed with the light-conducting heat-conductive filler and the phosphor is poured into the liner groove by a robot, and the mixed light is guided by the UV curing machine. Light-curing curing of the thermally conductive filler and the phosphor, so that the LED chip is embedded in the UV-curable adhesive of the mixed light-conducting heat-conductive filler and the phosphor;
  • step C Connect the chip, use a vacuum coating machine to plate the conductive material on the P and N poles of each adjacent LED chip in step B and the lead, and then solidify the conductive material to electrically connect the LED chip and the lead wire. ;
  • the package mold is made of a light transmissive material, the light transmissive material comprises PP, PE, silicone or glass, and the package mold is provided with a package groove, and the package mold is Fixed and stuck in step B
  • the package groove corresponds to the liner hole, and a robot is used to inject the light-guided heat-conductive filler and the phosphor-curable UV-curable glue into the package tank, and then the UV curing machine is used.
  • the mixed light-guided thermally conductive filler and the UV-cured adhesive of the phosphor are photocured to form a semi-finished product, and the liner mold and the package mold are further separated.
  • step E Fix the semi-finished product in step D on the mold base, and use the laser cutting machine to cut and separate according to the actual set shape.
  • step C the LED chip and the lead wire can also be electrically connected by means of a conductive adhesive or a bonding wire.
  • step B the lining mold has at least one lining groove.
  • step D the package mold has at least one package slot.
  • the curing time of the UV curing machine is 1-100 seconds.
  • the light-conducting and thermally conductive filler of the UV-curable adhesive of the light-conducting thermally conductive filler and the phosphor comprises nanometer or micron-sized alumina, magnesia, zinc oxide, cerium oxide, silicon oxide, glass powder. One or more.
  • the light source structure is very simple, which is conducive to mass production
  • the LED chip encapsulated in the UV-curable adhesive of the mixed light-conducting heat-conductive filler and the phosphor can achieve the full-circumference illumination effect without the barrier of the substrate.
  • Figure 1 is a schematic view of the structure of the present invention
  • Figure 2 is a schematic view of the package of the present invention.
  • Figure 3 is a schematic view of the finished product of the present invention.
  • FIG. 4 is a schematic view of a finished product according to another embodiment of the present invention.
  • an LED full-circumference light source comprising: a lining layer 1, the lining layer 1 is provided with at least two LED chips 3, the P and N poles of the LED chip 3 are exposed outside the lining layer 1, the LED chips 3 are electrically connected; two leads 5, one end of the lead 5 is disposed at the In the lining layer 1, electrically connected to the LED chip 3, the other end of the lead extends to the outside of the lining layer 1; an encapsulation layer 2, the encapsulation layer 2 covers the lining layer 1
  • the LED chip 3 and the lead 5 are disposed between the lining layer 1 and the encapsulating layer 2; wherein the lining layer 1 and the encapsulating layer 2 are UV curable adhesives for mixing the light-conducting thermally conductive filler and the phosphor.
  • the LED chip 3 and the lead 5 are electrically connected by vacuum coating or a conductive adhesive layer or a bonding wire.
  • the lining layer 1 and the encapsulating layer 2 can be formed into various shapes as shown in FIG. 3, and the shape of the finished product is square. As shown in FIG. 4, the shape of the finished product is elliptical.
  • a UV-curable adhesive liner of a mixed light-conducting thermally conductive filler and a phosphor providing a liner mold, the liner mold being made of a light transmissive material, including PP, PE, ⁇ a glue or glass, the liner mold is provided with a liner groove and a lead groove, the liner mold is fixed and closely attached to the chip adhesive board, and then the lead is placed on the lead groove, wherein the liner The groove corresponds to the LED chip adhered to the chip adhesive board, and the UV-curable rubber mixed with the light-conducting heat-conductive filler and the phosphor is poured into the liner groove by a robot, and the mixed light is guided by the UV curing machine. Light-curing curing of the thermally conductive filler and the phosphor, so that the LED chip is embedded in the UV-curable adhesive of the mixed light-conducting heat-conductive filler and the phosphor;
  • step C Connect the chip, use a vacuum coating machine to plate the conductive material on the P and N poles of each adjacent LED chip in step B and the lead, and then solidify the conductive material to electrically connect the LED chip and the lead wire. ;
  • the package mold is made of a light transmissive material, the light transmissive material comprises PP, PE, silicone or glass, and the package mold is provided with a package groove, and the package mold is Fixed and stuck in step B
  • the package groove corresponds to the liner hole, and a robot is used to inject the light-guided heat-conductive filler and the phosphor-curable UV-curable glue into the package tank, and then the UV curing machine is used.
  • the mixed light-guided thermally conductive filler and the UV-cured adhesive of the phosphor are photocured to form a semi-finished product, and the liner mold and the package mold are further separated.
  • step E Fix the semi-finished product in step D on the mold base, and use the laser cutting machine to cut and separate according to the actual set shape, which is a finished product, and the shape thereof may be a circle, a star shape, an elliptical shape or a heart shape and various other shapes. .
  • step C the LED chip and the lead wire can also be electrically connected by means of a conductive adhesive or a bonding wire.
  • the lining die has at least one lining groove, and the lining groove can be formed into various shapes such as a circle, a star shape, an elliptical shape or a heart shape and various other shapes.
  • the package mold has at least one package groove, and the package hole can be formed into various shapes such as a circle, a star shape, an elliptical shape or a heart shape, and other various shapes.
  • the curing time of the UV curing machine is 1-100 seconds.
  • the conductive material comprises aluminum, copper, gold, silver, tin, AZO, ATO or ITO.
  • the light-conducting and thermally conductive filler of the UV-curable adhesive of the light-conducting thermally conductive filler and the phosphor comprises nanometer or micron-sized alumina, magnesia, zinc oxide, cerium oxide, silicon oxide, glass powder. One or more.
  • the light-guided thermally conductive filler UV-curing adhesive of the mixed light-conducting thermally conductive filler and the phosphor comprises a component per unit mass: 5-60% of the modified acrylic oligomer; 10-70% of the acrylic monomer; photoinitiator 2-5%; auxiliaries 0-1%; light-guided thermally conductive filler 5-30%.
  • the mixed light-guided thermally conductive filler UV-curable adhesive specifically uses a unit mass percentage of the following components: modified acrylic oligomer 10%; acrylic monomer 60%; photoinitiator 3%; 1% of the agent; light-guided thermal conductive filler 26%.
  • the modified acrylic oligomer includes: an epoxy acrylate oligomer, a tertiary amine co-initiator oligomer, a pure acrylate oligomer, a silicone acrylate oligomer, and a fat.
  • an epoxy acrylate oligomer e.g., an epoxy acrylate oligomer, a tertiary amine co-initiator oligomer, a pure acrylate oligomer, a silicone acrylate oligomer, and a fat.
  • One or more of a group of urethane acrylate oligomers, aromatic urethane acrylate oligomers, polyester acrylate oligomers, and amine modified polyester acrylate oligomers e.g., an epoxy acrylate oligomer, a tertiary amine co-initiator oligomer, a pure acrylate oligomer, a silicone acrylate oligomer,
  • the acrylic monomer includes one or more of a monofunctional monomer, a difunctional monomer, a trifunctional monomer, and a polyfunctional monomer.
  • the photoinitiator includes: 2-isopropylthioxanthone, 2-methyl-1-(4-methylthiophenyl)-2-morpholinyl-1-propanone, 2-benzyl -2-dimethylamino-1-(4-morpholinylphenyl)butanone, 2-trimethylbenzoyl-diphenylphosphine oxide, 4- Trimethylbenzoyl-diphenylphosphine oxide, 6-trimethylbenzoyl-diphenylphosphine oxide, 2-hydroxy-2-methyl-1- One or more of phenylacetone, 4-benzoyl-4'-methyldiphenyl sulfide, and 1-hydroxycyclohexyl phenyl ketone.
  • the auxiliary agent includes one or more of a silane coupling agent, a titanate coupling agent, a wetting agent, an antifoaming agent, a thickener, an antioxidant, an anti-yellowing agent, and an anti-settling agent. .
  • the light-conducting thermally conductive filler comprises one or more of aluminum oxide, magnesium oxide, zinc oxide, cerium oxide, silicon oxide, and glass powder of nanometer or micrometer order.
  • the mixed light-guided thermally conductive filler and the UV-curable adhesive of the phosphor have better thermal conductivity and can effectively replace the fixing and heat dissipation of the substrate.
  • the lead wire When the invention is used, only the lead wire needs to be inserted into the power source to emit light. Since the UV-curable adhesive of the mixed light-conducting heat-conductive filler and the phosphor is used instead of the lining plate, the LED chip emits light without being hindered by the substrate, so Achieve full-circumference effect.
  • the light source structure is very simple, which is conducive to mass production
  • the LED chip encapsulated in the UV-curable adhesive of the mixed light-conducting heat-conductive filler and the phosphor can achieve the full-circumference illumination effect without the barrier of the conventional substrate.

Abstract

L'invention concerne une source de lumière à LED omnidirectionnelle et son procédé de préparation. Le procédé de fabrication d'une source de lumière à LED omnidirectionnelle comprend les étapes suivantes : mise en place de puces (3), connexion des puces (3), fabrication d'un panneau de revêtement (1) adhésif durcissant aux UV mélangé avec des matériaux de remplissage guides de lumière et conducteurs de chaleur et une poudre fluorescente, mise en communication des puces (3) et encapsulation. La source de lumière à LED omnidirectionnelle comprend une couche formant panneau de revêtement (1), deux fils (5) et une couche d'encapsulation (2). Au moins deux puces de LED (3) sont disposées sur la couche formant panneau de revêtement (1), l'électrode P et l'électrode N de chaque puce de LED (3) sont exposées hors de la couche formant panneau de revêtement (1) et les puces de LED (3) sont reliées électriquement l'une à l'autre. Une extrémité de chaque fil est disposée à l'intérieur de la couche formant panneau de revêtement (1) et elle est reliée électriquement à la puce de LED (3), et l'autre extrémité du fil s'étend hors de la couche formant panneau de revêtement (1). La couche d'encapsulation (2) est recouverte au-dessus de la couche formant panneau de revêtement (1). Les puces de LED (3) et les fils (5) sont disposés entre la couche formant panneau de revêtement (1) et la couche d'encapsulation (2). La couche formant panneau de revêtement (1) et la couche d'encapsulation (2) sont constituées d'un adhésif durcissant aux UV mélangé avec les matériaux de remplissage guides de lumière et conducteurs de chaleur et la poudre fluorescente. La source de lumière à LED omnidirectionnelle présente une structure simple, est facile à produire et à assembler tout en étant économique, possède une grande surface d'émission de lumière, et peut être façonnée en différentes formes.
PCT/CN2014/088071 2014-09-30 2014-09-30 Source de lumière à led omnidirectionnelle et son procédé de fabrication WO2016049938A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/088071 WO2016049938A1 (fr) 2014-09-30 2014-09-30 Source de lumière à led omnidirectionnelle et son procédé de fabrication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/088071 WO2016049938A1 (fr) 2014-09-30 2014-09-30 Source de lumière à led omnidirectionnelle et son procédé de fabrication

Publications (1)

Publication Number Publication Date
WO2016049938A1 true WO2016049938A1 (fr) 2016-04-07

Family

ID=55629361

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/088071 WO2016049938A1 (fr) 2014-09-30 2014-09-30 Source de lumière à led omnidirectionnelle et son procédé de fabrication

Country Status (1)

Country Link
WO (1) WO2016049938A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107230740A (zh) * 2017-04-26 2017-10-03 安徽欧瑞特照明有限公司 一种led固晶工艺
CN107706280A (zh) * 2016-08-08 2018-02-16 深圳市斯迈得半导体有限公司 一种通过真空溅射技术制造的led光源的制造方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1909254A (zh) * 2005-08-03 2007-02-07 刘士龙 一种基板型白光二极管的制造方法及构造
US20080173890A1 (en) * 2007-01-19 2008-07-24 Wen-Kung Sung Multidirectional light-emitting diode
TW201216443A (en) * 2010-09-06 2012-04-16 Heraeus Nobleight Gmbh Coating method for an optoelectronic chip-on-board module
CN102922661A (zh) * 2012-11-05 2013-02-13 苏州东山精密制造股份有限公司 一种led模压封装工艺及一种led组件
CN103647014A (zh) * 2013-12-11 2014-03-19 东莞美盛电器制品有限公司 一种透明封装的led光源及其制作工艺
CN203503705U (zh) * 2013-07-30 2014-03-26 中山市万普电子科技有限公司 白光led封装结构及其白光照明装置
CN203746850U (zh) * 2014-01-26 2014-07-30 哈尔滨鎏霞光电技术有限公司 一种全方位出光的高效led模组器件
CN103972369A (zh) * 2014-05-26 2014-08-06 苏州东山精密制造股份有限公司 一种led灯条及其制造方法
CN104157748A (zh) * 2014-08-18 2014-11-19 东莞保明亮环保科技有限公司 一种led全周光光源及其制作方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1909254A (zh) * 2005-08-03 2007-02-07 刘士龙 一种基板型白光二极管的制造方法及构造
US20080173890A1 (en) * 2007-01-19 2008-07-24 Wen-Kung Sung Multidirectional light-emitting diode
TW201216443A (en) * 2010-09-06 2012-04-16 Heraeus Nobleight Gmbh Coating method for an optoelectronic chip-on-board module
CN102922661A (zh) * 2012-11-05 2013-02-13 苏州东山精密制造股份有限公司 一种led模压封装工艺及一种led组件
CN203503705U (zh) * 2013-07-30 2014-03-26 中山市万普电子科技有限公司 白光led封装结构及其白光照明装置
CN103647014A (zh) * 2013-12-11 2014-03-19 东莞美盛电器制品有限公司 一种透明封装的led光源及其制作工艺
CN203746850U (zh) * 2014-01-26 2014-07-30 哈尔滨鎏霞光电技术有限公司 一种全方位出光的高效led模组器件
CN103972369A (zh) * 2014-05-26 2014-08-06 苏州东山精密制造股份有限公司 一种led灯条及其制造方法
CN104157748A (zh) * 2014-08-18 2014-11-19 东莞保明亮环保科技有限公司 一种led全周光光源及其制作方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107706280A (zh) * 2016-08-08 2018-02-16 深圳市斯迈得半导体有限公司 一种通过真空溅射技术制造的led光源的制造方法
CN107230740A (zh) * 2017-04-26 2017-10-03 安徽欧瑞特照明有限公司 一种led固晶工艺
CN107230740B (zh) * 2017-04-26 2019-09-03 安徽欧瑞特照明有限公司 一种led固晶工艺

Similar Documents

Publication Publication Date Title
US9872377B2 (en) LED lighting assemblies with thermal overmolding
WO2010062079A2 (fr) Emballage de dispositif électroluminescent
CN102214774B (zh) 发光器件封装和具有发光器件封装的照明单元
WO2010058960A2 (fr) Module électroluminescent et dispositif d'affichage le comportant
WO2011037436A2 (fr) Film composite pour utilisation dans un dispositif d'émission de lumière, dispositif d'émission de lumière et procédé de fabrication du film composite
WO2011049374A2 (fr) Dispositif émetteur de lumière et luminaire l'utilisant
CN201741721U (zh) 板上芯片发光二极管结构
WO2012002629A1 (fr) Module de diode électroluminescente
KR20130096094A (ko) 발광소자 패키지, 발광 소자 패키지 제조방법 및 이를 구비한 조명 시스템
WO2010074371A1 (fr) Ensemble de del à montage direct des puces et son procédé de fabrication
WO2009096742A2 (fr) Structure thermique rayonnante pour del électrique de type broche
US20130001613A1 (en) Light emitting diode package and method for making the same
WO2011078506A2 (fr) Ensemble de diodes électroluminescentes et procédé pour sa fabrication
WO2016049938A1 (fr) Source de lumière à led omnidirectionnelle et son procédé de fabrication
CN203870923U (zh) 一种无机磊晶led显示模组
WO2015184618A1 (fr) Structure de boîtier de led à lumière blanche intégrée fondée sur un matériau fluorescent semi-conducteur et procédé de fabrication associé
CN203760010U (zh) 一种基于积层基板的显示、控制分离的半导体显示单元
CN203433750U (zh) 一种led显示单元模组
WO2012133990A1 (fr) Procédé de fabrication de carte à circuits à dissipation thermique élevée convenant au montage de diode électroluminescente
CN112397487A (zh) 发光器件及制作方法和含该发光器件的显示屏和照明器材
WO2017014574A1 (fr) Boîtier d'émission de lumière intégré
CN105609496A (zh) 高功率密度cob封装白光led模块及其封装方法
WO2019135421A1 (fr) Lampe de véhicule utilisant un dispositif électroluminescent à semi-conducteur
CN102147061A (zh) 一种模组式整体发光led平面光源日光灯及其制作方法
US9246066B1 (en) Fluorescent composite resin substrate white light light emitting diode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14903058

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22/08/2017)

122 Ep: pct application non-entry in european phase

Ref document number: 14903058

Country of ref document: EP

Kind code of ref document: A1