WO2016049860A1 - 传输定时调整的方法及设备 - Google Patents

传输定时调整的方法及设备 Download PDF

Info

Publication number
WO2016049860A1
WO2016049860A1 PCT/CN2014/087962 CN2014087962W WO2016049860A1 WO 2016049860 A1 WO2016049860 A1 WO 2016049860A1 CN 2014087962 W CN2014087962 W CN 2014087962W WO 2016049860 A1 WO2016049860 A1 WO 2016049860A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
base
quantization
base station
offset
Prior art date
Application number
PCT/CN2014/087962
Other languages
English (en)
French (fr)
Inventor
贺恩华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2014/087962 priority Critical patent/WO2016049860A1/zh
Priority to CN201910414290.7A priority patent/CN110087303B/zh
Priority to EP18202186.5A priority patent/EP3499984B1/en
Priority to CN201480035193.2A priority patent/CN105493584B/zh
Priority to EP20189956.4A priority patent/EP3813446A1/en
Priority to CN201910407085.8A priority patent/CN110087302B/zh
Priority to EP14902934.0A priority patent/EP3188558B1/en
Publication of WO2016049860A1 publication Critical patent/WO2016049860A1/zh
Priority to US15/471,417 priority patent/US10194413B2/en
Priority to US16/225,770 priority patent/US10484956B2/en
Priority to US16/660,353 priority patent/US10856247B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0005Synchronisation arrangements synchronizing of arrival of multiple uplinks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access

Definitions

  • Embodiments of the present invention relate to communication technologies, and in particular, to a method and an apparatus for adjusting transmission timing.
  • the uplink user equipment (User Equipment, UE for short) adopts single carrier frequency division multiple access transmission technology.
  • the time when the uplink signals of the UEs arrive at the receiving end of the base station must be the same, that is, uplink synchronization.
  • the UE can guarantee uplink synchronization through a random access procedure.
  • the UE sends a random access preamble to the base station, and after receiving and detecting the random access preamble, the base station sends a random access response to the UE, where the random access response includes a timing advance command.
  • the UE adjusts a physical uplink control channel (Physical Uplink Control Channel, PUCCH) and a Physical Uplink Shared Channel (PUSCH) and a Sounding Reference Signal (SRS) according to the timing advance command.
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • SRS Sounding Reference Signal
  • transmission timing adjustment can be further applied to network planning and optimization.
  • the base station can analyze the signal quality and the UE distribution in different areas according to the information reported by the UE in the measurement report, and according to the timing advance (TA) of the UE, so as to understand the coverage and traffic of the station. It is determined whether to increase the macro base station or the micro base station for the area with poor coverage or high traffic, or to adjust the antenna angle of the station.
  • TA timing advance
  • Embodiments of the present invention provide a method and device for adjusting transmission timing to adjust transmission timing The whole is more conducive to network planning and optimization.
  • the present invention provides a method for adjusting transmission timing, including:
  • the base station generates a timing advance TA quantization value according to the transmission delay, where the TA quantization value includes a base value and an offset value, wherein the quantization precision of the base value is a first quantization precision MTs, and the offset
  • the quantization precision of the value is the second quantization precision NTs
  • M is a positive integer less than or equal to 16
  • N is a non-negative integer less than M
  • Ts is a minimum time unit in the Long Term Evolution (LTE) system, and the value is 1/30.72 ⁇ s;
  • the base station sends the TA quantization value to the UE, where the TA quantization value is used for uplink transmission timing adjustment of the UE.
  • the M is equal to 16, and the N is less than 16.
  • the N is 1, 2, 4, or 8.
  • the base station in conjunction with the first or second possible implementation of the first aspect, generates a TA quantization value, including:
  • the base station when the N is 1, the base station generates according to the transmission delay TA quantized value, including:
  • the intermediate quantized value is subjected to modulo 16 operation, rounded to obtain the base value, and the remainder is used as the offset value.
  • the basic value occupies 11 bits
  • the offset value occupies 4 bits
  • the base value occupies 6 bits and the offset value occupies 4 bits.
  • the M is less than 16, and the N is 0, and the base station generates a TA quantization value according to the transmission delay, including:
  • the transmission delay is quantized by the first quantization precision MTs to obtain a quantized value of the transmission delay, wherein the quantized value of the transmission delay is the TA quantized value.
  • the M is 1, 2, 4, or 8.
  • the transmission delay is a timing advance amount T ADV , among them,
  • T ADV (eNB Rx - Tx time difference); or,
  • T ADV (eNB Rx - Tx time difference) + (UE Rx - Tx time difference),
  • the eNB Rx ⁇ Tx time difference represents the receiving and transmitting time difference of the base station
  • the UE Rx ⁇ Tx time difference represents the receiving and transmitting time difference of the UE.
  • the base station sends the TA quantization value by using a TA command .
  • the method further includes:
  • Network planning or optimization is performed according to the network coverage information and the traffic information.
  • an embodiment of the present invention provides a method for adjusting a transmission timing, including:
  • the user equipment UE receives the timing advance TA quantization value sent by the base station, where the TA quantization value includes a base value and an offset value, where the quantization precision of the base value is the first quantization precision MTs, and the quantization precision of the offset value Is a second quantization precision NTs, where M is a positive integer less than or equal to 16, N is a non-negative integer less than M, and Ts is a minimum time unit in the Long Term Evolution (LTE) system, and the value is 1/30.72 ⁇ s;
  • LTE Long Term Evolution
  • the UE performs uplink transmission timing adjustment according to the amount of the transmission timing adjustment.
  • the M is equal to 16, and the N is less than 16.
  • the N is 1, 2, 4, or 8.
  • the basic value occupies 11 bits, and the offset value is Occupies 4 bits; or,
  • the base value occupies 6 bits and the offset value occupies 4 bits.
  • the unit of N TA,new is Ts
  • N TA,old is the amount of previous transmission timing adjustment
  • T A_BASE is the base value
  • T A_OFFSET is the offset value
  • m is [the maximum value of T A_BASE / 2]
  • [] indicates rounding up or down.
  • the M is less than 16, the N is 0, and the TA quantization value is the basic value.
  • the M is 1, 2, 4, or 8.
  • the UE receives the TA quantization value by using a TA command.
  • the method further includes:
  • the present invention provides a base station, including:
  • a delay determining module configured to determine a transmission delay between the user equipment UE and the base station
  • the TA quantized value includes a base value and an offset value, wherein the quantization precision of the base value is a first quantization precision MTs, and the quantization precision of the offset value is a second quantization precision NTs, and M is less than or equal to 16 a positive integer, N is a non-negative integer less than M, and Ts is the minimum time unit in the Long Term Evolution (LTE) system, with a value of 1/30.72 ⁇ s;
  • LTE Long Term Evolution
  • a sending module configured to send the TA quantization value to the UE, where the TA quantization value is used for uplink transmission timing adjustment of the UE.
  • the M is equal to 16, and the N is less than 16.
  • the N is 1, 2, 4, or 8.
  • the quantized value generating module is specifically configured to:
  • the quantized value generating module is specifically configured to:
  • the intermediate quantized value is subjected to modulo 16 operation, rounded to obtain the base value, and the remainder is used as the offset value.
  • the basic value occupies 11 bits
  • the offset value occupies 4 bits
  • the base value occupies 6 bits and the offset value occupies 4 bits.
  • the M is less than 16, and the N is 0, and the quantized value generating module is specifically configured to:
  • the transmission delay is quantized by the first quantization precision MTs to obtain a quantized value of the transmission delay, wherein the quantized value of the transmission delay is the TA quantized value.
  • the M is 1, 2, 4 or 8.
  • the transmission delay is a timing advance amount T ADV , among them,
  • T ADV (eNB Rx - Tx time difference); or,
  • T ADV (eNB Rx - Tx time difference) + (UE Rx - Tx time difference),
  • the eNB Rx ⁇ Tx time difference represents the receiving and transmitting time difference of the base station
  • the UE Rx ⁇ Tx time difference represents the receiving and transmitting time difference of the UE.
  • the base station sends the TA quantization value by using a TA command .
  • the method further includes:
  • a receiving module configured to receive a measurement report and call information sent by the UE
  • an optimization module configured to determine network coverage information and traffic information according to the TA quantization value, the measurement report, and call information, and perform network planning or optimization according to the network coverage information and the traffic information.
  • an embodiment of the present invention provides a user equipment, including:
  • a receiving module configured to receive a timing advance TA quantized value sent by the base station, where the TA quantized value includes a base value and an offset value, where a quantization precision of the base value is a first quantization precision MTs, and the offset value is
  • the quantization precision is the second quantization precision NTs, where M is a positive integer less than or equal to 16, N is a non-negative integer less than M, and Ts is a minimum time unit in the Long Term Evolution (LTE) system, and the value is 1/30.72 ⁇ s;
  • a transmission timing determining module configured to determine an amount of transmission timing adjustment according to the TA quantization value
  • an adjustment module configured to perform uplink transmission timing adjustment according to the amount of the transmission timing adjustment.
  • the M is equal to 16, and the N is less than 16.
  • the N is 1, 2, 4, or 8.
  • the basic value occupies 11 bits, and the offset value is Occupies 4 bits; or,
  • the base value occupies 6 bits and the offset value occupies 4 bits.
  • the unit of N TA,new is Ts
  • N TA,old is the amount of previous transmission timing adjustment
  • T A_BASE is the base value
  • T A_OFFSET is the offset value
  • m is [the maximum value of T A_BASE / 2]
  • [] indicates rounding up or down.
  • the M is less than 16, the N is 0, and the TA quantization value is the basic value.
  • the M is 1, 2, 4, or 8.
  • the UE receives the TA quantization value by using a TA command.
  • a sending module configured to send the measurement report and the call information to the base station, so that the base station determines the network coverage information and the traffic information according to the TA quantization value, the measurement report, and the call information.
  • the method and device for adjusting transmission timing provided by the embodiment of the present invention, the method generates a TA quantization value according to a transmission delay by determining a transmission delay between the UE and the base station.
  • the TA quantized value is improved.
  • the TA quantized value includes the base value and the offset value, and the quantization precision is designed.
  • the quantization precision of the base value is the first quantization precision MTs, and the quantization precision of the offset value is the first Second, the quantization precision NTs, M is a positive integer less than or equal to 16, N is a non-negative integer less than M, and Ts is the minimum time unit in the Long Term Evolution LTE system, the value is 1/30.72 ⁇ s; by designing the quantization precision, The step size of the amount of transmission timing adjustment is made finer, so that the distance corresponding to the minimum step is also more Adding fine, closer to the actual network application, showing great advantages in network planning and optimization.
  • Embodiment 1 is a schematic flowchart of Embodiment 1 of a method for adjusting transmission timing according to the present invention
  • Embodiment 1 of a quantization process according to an embodiment of the present invention
  • Embodiment 3 is a schematic flowchart of Embodiment 2 of a quantization process according to an embodiment of the present invention
  • Embodiment 4 is a schematic flowchart of Embodiment 2 of a method for adjusting transmission timing according to the present invention
  • Embodiment 3 is a signaling flow diagram of Embodiment 3 of a method for adjusting transmission timing according to the present invention
  • Embodiment 6 is a signaling flow diagram of Embodiment 4 of a method for adjusting transmission timing according to the present invention.
  • Embodiment 7 is a schematic structural diagram of Embodiment 1 of a base station according to the present invention.
  • Embodiment 8 is a schematic structural diagram of Embodiment 2 of a base station according to the present invention.
  • FIG. 9 is a schematic structural diagram of Embodiment 1 of a user equipment according to the present invention.
  • Embodiment 2 of a user equipment according to the present invention.
  • Embodiment 3 of a base station according to the present invention is a schematic structural diagram of Embodiment 3 of a base station according to the present invention.
  • FIG. 12 is a schematic structural diagram of Embodiment 3 of a user equipment according to the present invention.
  • the transmission timing adjustment is an integer multiple of 16 Ts, where Ts is the minimum time unit in the LTE system, and the value is 1/30.72 ⁇ s.
  • the amount of the transmission timing adjustment is an integer multiple of 16 Ts.
  • the integer is determined by the base station and sent to the UE, and is specifically sent to the UE by a timing advance (TA) command T A .
  • TA timing advance
  • the base station determines the transmission delay between the base station and the UE by detecting the random access preamble, and determines the value of the TA command T A according to the transmission delay, and passes the random access response.
  • the UE sends the timing adjustment to the UE according to the TA command T A.
  • the TA command T A occupies 11 bits, and the value ranges from 0, 1, 2, ..., 1282.
  • the amount of transmission timing adjustment is N TA
  • the base station may re-determine the value of the TA command T A , which is a relative value, and the UE may determine the amount according to the value and the previous transmission timing adjustment.
  • the TA command T A occupies 6 bits, and the value ranges from 0, 1, 2, ..., 63.
  • the previous transmission timing adjustment amount N TA,old may be the amount of transmission timing adjustment initially determined by the random access, or may be the amount of transmission timing adjustment determined in other non-random access procedures.
  • the coverage of hotspots, remote suburbs, and micro-areas is completely different.
  • Urban coverage sites are densely distributed, and most of the cells (according to actual data analysis account for more than 90%) UEs are distributed within 2km, so the coverage maps made according to the existing transmission timing adjustment mechanism are poorly identifiable, and are not suitable for hotspot coverage areas.
  • the cell radius of the micro cell is set to be much smaller than that of the macro cell, and most of the UEs are distributed within a range of less than 1 km.
  • the coverage map made according to the existing transmission timing adjustment mechanism is too coarse, and the distinguishability is low. The use of network optimization is limited.
  • the embodiment of the present invention designs the quantization precision of the TA, so that the step size of the transmission timing adjustment is finer, and the distance corresponding to the minimum step is also finer and closer to the actual network application, especially in network planning and optimization. Shows its great advantages.
  • the detailed description is given below in conjunction with the embodiments.
  • FIG. 1 is a schematic flowchart diagram of Embodiment 1 of a method for adjusting transmission timing according to the present invention.
  • the execution subject of this embodiment is a base station, and the base station can be implemented by software and/or hardware.
  • the method in this embodiment may include:
  • Step 101 Determine a transmission delay between the UE and the base station.
  • Step 102 Generate, according to a transmission delay, a TA quantized value, where the TA quantized value includes a base value and an offset value;
  • the quantization precision of the base value is the first quantization precision MTs
  • the quantization precision of the offset value is the second quantization precision NTs
  • M is a positive integer less than or equal to 16
  • N is a non-negative integer smaller than M
  • Ts is an LTE system.
  • the minimum time unit in the value which is 1/30.72 ⁇ s;
  • Step 103 Send a TA quantization value to the UE, where the TA quantization value is used for uplink transmission timing adjustment of the UE.
  • An important feature of the uplink transmission in a specific application scenario is that different UEs have orthogonal multiple access in time-frequency, so that uplink transmissions of different UEs from the same cell do not interfere with each other.
  • the base station requires that the signals of different UEs from the same subframe but different frequency domain resources arrive at the base station substantially aligned. As long as the base station receives the uplink data sent by the UE within the cyclic prefix range, the base station can correctly decode the uplink data. Therefore, the uplink synchronization requires that the signals of different UEs from the same subframe arrive at the base station for a time falling within the cyclic prefix.
  • LTE proposes an uplink TA mechanism.
  • the base station sends a TA quantization value through the TA command T A , so that the UE determines the amount of transmission timing adjustment according to the TA quantization value, and adjusts the uplink according to the adjustment amount of the transmission timing. Send time.
  • the transmission delay in step 101 may be a two-way transmission delay or a one-way transmission delay.
  • the value of the TA command T A is determined by using the bidirectional transmission delay. Therefore, the bidirectional transmission delay is also taken as an example for detailed description. And the bidirectional transmission delay can be used as the timing advance T ADV .
  • T ADV the timing advance
  • the first case is applicable to the scenario of non-random access, and the second case is the scenario of random access.
  • the scenario for determining the transmission delay in step 101 may include two types: one is that during initial synchronization, in a random access procedure of the UE, the base station determines a transmission delay between the UE and the base station, that is, the UE The timing advance is T ADV ; the other is when updating the synchronization, that is, after the UE completes the random access procedure, when the UE establishes a Radio Resource Control (RRC) connection or the UE is in the RRC connected state, The base station acquires a transmission delay between the UE and the base station, that is, a timing advance amount T ADV of the UE.
  • RRC Radio Resource Control
  • step 102 after determining the timing advance amount T ADV , the base station converts the timing advance amount T ADV into a TA command T A delivered to the UE.
  • the TA command T A is the above TA quantized value, which is different from the existing TA command T A , including the base value and the offset value, the base value is set to T A_BASE , and the offset value is set to T A_OFFSET .
  • the quantization precision of the base value is the first quantization precision MTs
  • the quantization precision of the offset value is the second quantization precision NTs.
  • the offset precision of the quantization precision less than 16Ts may be used to improve the quantization precision, thereby reducing the step size of the transmission timing adjustment; and when the first quantization precision is less than 16Ts
  • the second quantization precision can be finer or the second quantization precision is not used, so that the quantization precision can be improved and the step size of the transmission timing adjustment can be reduced.
  • the step size of the transmission timing adjustment in the embodiment is finer, so that the distance corresponding to the minimum step is also finer and closer to the actual network application, especially in the network planning and optimization, the pole is displayed. Great advantage. And this change will not affect the application of the above transmission timing adjustment, and will make the transmission timing adjustment more accurate.
  • the base value T A_BASE is the same as the existing TA command T A .
  • the base value T A_BASE occupies 11 bits, and the value ranges from 0, 1, 2, ..., 1282.
  • the base value T A_BASE occupies 6 bits, and the value ranges from 0, 1, 2, ..., 63.
  • the second quantization precision is less than 16Ts, and may be, for example, 1Ts, 2Ts, 4Ts, or 8Ts.
  • the offset value T A_OFFSET can occupy 4 bits, and all values or partial values in the range of 0 to 15 are different depending on the value of N.
  • the first quantization precision is less than 16 Ts, it may be, for example, 1 Ts, 2 Ts, 4 Ts, or 8 Ts.
  • the second quantization precision is finer than the first quantization precision, that is, N is smaller than M.
  • N is smaller than M.
  • the bit occupied by the base value T A_BASE will be increased relative to the prior art, and the bit occupied by the offset value T A_OFFSET is set according to its own quantization precision and the quantization precision of the base value.
  • N can be 0, that is, directly select a finer quantization precision to achieve quantization, which achieves the second quantization precision relative to the above manner. If the offset value T A_OFFSET is 0, the offset value has no actual meaning, so the offset value T A_OFFSET no longer occupies any bits, and the implementation is simple.
  • the existing protocol can be kept unchanged, and only the field reflecting the offset value needs to be added in the original protocol, and the compatibility is good.
  • the first quantization precision is less than 16Ts, the implementation is simple, but the number of bits occupied by the TA command T A needs to be increased, and the higher the quantization precision, the larger the number of occupied bits.
  • the TA quantized value can be generated by quantizing the above transmission delay by using the first quantization precision MTs, and the quantized value of the transmission delay is the TA quantized value.
  • the base station when the first quantization precision MTs is 4Ts, the base station obtains the transmission delay of 89Ts, divides the transmission delay by 89Ts by 4Ts, and rounds down to obtain the quantized value 22 of the transmission delay, and quantizes the transmission delay.
  • the value 22 is the TA quantized value.
  • the TA quantization value may be generated by first quantizing the above transmission delay with the first quantization precision MTs, and the quantization value of the transmission delay is the base value; and then quantizing the second quantization precision NTs
  • the remainder generated during the quantization process obtains the quantized value of the remainder, and the quantized value of the remainder is the offset value.
  • FIG. 2 is a schematic flowchart of Embodiment 1 of the quantization process according to an embodiment of the present invention. As shown in FIG. 2, the foregoing step 102 includes:
  • Step 1021 Quantify the transmission delay by using the first quantization precision MTs to obtain a quantized value and a remainder of the transmission delay, where the quantized value of the transmission delay is a base value;
  • Step 1022 Quantize the remainder by the second quantization precision NTs to obtain a quantized value of the remainder, wherein the quantized value of the remainder is an offset value.
  • the base station divides 89Ts by the first quantization precision by 16Ts, and obtains the transmission.
  • the quantized value 5 and the remainder of the delay are 9Ts, and the remainder 9Ts is divided by 1Ts to obtain a quantized value 9 of the remainder, wherein the quantized value 5 of the transmission delay is the base value, and the quantized value 9 of the remainder is the offset value.
  • the base station divides 89Ts by the first quantization precision by 16Ts, and obtains the quantized value 5 and the remainder 9Ts of the transmission delay.
  • the remainder 9Ts is divided by 2Ts to obtain 4.5, and then rounded down to obtain the quantized value 4 of the remainder, wherein the quantized value 5 of the transmission delay is the base value, and the quantized value 4 of the remainder is the offset value.
  • FIG. 2 is a schematic flowchart of Embodiment 2 of the quantization process according to the embodiment of the present invention, as shown in FIG.
  • the above step 102 includes:
  • Step 1021' quantize the transmission delay with the second quantization precision NTs to obtain an intermediate quantization value
  • Step 1022' Perform the modulo 16 operation on the intermediate quantized value, round up to obtain the base value, and use the remainder as the offset value.
  • the base station obtains the transmission delay of 89Ts, divides the 89Ts by the second quantization precision by 1Ts, and obtains the intermediate quantized value 89, and then the intermediate quantized value.
  • 89 performs the modulo 16 operation, and rounds to obtain 5, which is the base value, and the remainder 9 is the offset value.
  • the base station when the base station performs specific network planning or optimization, the base station further receives the measurement report and the call information sent by the UE, and the measurement report may include the transmit power of the user equipment, and the signal to interference and noise ratio (Signal to Interference Plus Noise). Ratio, referred to as SINR, Reference Signal Received Power (RSRP), Reference Signal Received Quality (RSRQ), etc.
  • SINR Signal to Interference Plus Noise
  • RSRP Reference Signal Received Power
  • RSRQ Reference Signal Received Quality
  • the call information includes the number of times the user establishes an RRC connection, and the user equipment establishes radio access. Number of times (Radio Access Bearer, RAB for short).
  • the base station determines network coverage information based on the TA quantized value, the measurement report, and the call information. Specifically, the base station may determine the distance between the base station and the user equipment according to the TA quantization value, and draw an overlay map of the user equipment. The base station can also learn the wireless coverage of the cell according to the measurement report. At the same time, the base station may further determine, according to the call information and the TA quantization value, the traffic information of the network that is busy in the preset geographic location. Further, the base station may further comprehensively consider the TA quantization value, the measurement report, and the call information, and calculate the signal quality distribution of the user equipment corresponding to the different TA quantization values, and analyze The coverage of the network and the traffic information of the busy network.
  • the base station can optimize or plan the wireless network according to the network coverage information and the traffic information. For example, when the user equipment is loosely distributed and the network is relatively idle, the base station can re-divide the served cell to ensure that the UE is moderately distributed. When the UEs in the cells served by the base station are densely distributed and the network is busy, the network coverage is relatively small. When the difference is small, the macro cell or the micro cell can be added to form a macro-micro collaborative network.
  • the base station in the method for adjusting the transmission timing provided by this embodiment, the base station generates a TA quantization value according to the transmission delay by determining the transmission delay between the UE and the base station.
  • the TA quantized value is improved.
  • the TA quantized value includes the base value and the offset value, and the quantization precision is designed.
  • the quantization precision of the base value is the first quantization precision MTs, and the quantization precision of the offset value is the first Second, the quantization precision NTs, M is a positive integer less than or equal to 16, N is a non-negative integer less than M, and Ts is the minimum time unit in the Long Term Evolution LTE system, the value is 1/30.72 ⁇ s; by designing the quantization precision, The step size of the transmission timing adjustment is finer, so that the distance corresponding to the minimum step is also finer, closer to the actual network application, and shows great advantages in network planning and optimization.
  • FIG. 4 is a schematic flowchart diagram of Embodiment 2 of a method for adjusting transmission timing according to the present invention.
  • the execution body of this embodiment is a user equipment, and the user equipment can be implemented by software and/or hardware.
  • the method for adjusting the transmission timing of the embodiment is based on the first embodiment of the method for adjusting the transmission timing, and the method for adjusting the transmission timing of the user equipment side is described in detail. As shown in FIG. 4, the method in this embodiment may include:
  • Step 401 Receive a TA quantized value sent by the base station, where the TA quantized value includes a base value and an offset value;
  • the quantization precision of the base value is the first quantization precision MTs
  • the quantization precision of the offset value is the second quantization precision NTs
  • M is a positive integer less than or equal to 16
  • N is a non-negative integer less than M
  • Ts is The minimum time unit in the long-term evolution LTE system, the value is 1/30.72 ⁇ s;
  • Step 402 Determine an amount of transmission timing adjustment according to the TA quantization value.
  • Step 403 Perform uplink transmission timing adjustment according to the amount of transmission timing adjustment.
  • the application scenario in this embodiment is similar to the method in the first embodiment of the method for adjusting the transmission timing, and details are not described herein again.
  • the scenario in which the UE receives the TA quantized value sent by the base station may include two types. One is that after the UE sends a random access preamble to the base station in the random access procedure of the UE, the UE receives the base station and sends the initial Synchronized TA quantized value; the other is after the UE completes the random access procedure, When the UE establishes an RRC connection or the UE is in an RRC connected state, the UE receives a TA quantized value sent by the base station for updating the synchronization.
  • the UE may receive the TA quantized value by using the TA command T A , that is, the TA quantized value is implemented in the manner of the TA command T A .
  • the TA quantized value includes the base value and the offset value, the base value is set to T A_BASE , and the offset value is set to T A_OFFSET .
  • the quantization precision of the base value is the first quantization precision MTs, and the quantization precision of the offset value is the second quantization precision NTs.
  • M is a positive integer less than or equal to 16
  • N is a non-negative integer less than M
  • Ts is the smallest time unit in the Long Term Evolution LTE system, and the value is 1/30.72 ⁇ s.
  • the offset precision of the quantization precision less than 16Ts may be used to improve the quantization precision, thereby reducing the step size of the transmission timing adjustment; and when the first quantization precision is less than 16Ts
  • the second quantization precision can be finer or the second quantization precision is not used, so that the quantization precision can be improved and the step size of the transmission timing adjustment can be reduced.
  • the base value T A_BASE is the same as the existing TA command T A .
  • the base value T A_BASE occupies 11 bits, and the value ranges from 0, 1, 2, ..., 1282.
  • the base value T A_BASE occupies 6 bits, and the value ranges from 0, 1, 2, ..., 63.
  • the second quantization precision is less than 16Ts, and may be, for example, 1Ts, 2Ts, 4Ts, or 8Ts.
  • the offset value T A_OFFSET can occupy 4 bits, and the value ranges from 0 to 15 for all values or partial values, depending on the value of N.
  • the offset value T A_OFFSET The value range is 0, 1, 2, 3, ..., 15.
  • the value of the offset value T A_OFFSET is 0, 1, 2, 3, ..., 7,
  • the value of the offset value T A_OFFSET is 0, 1, 2, 3.
  • the first quantization precision When the first quantization precision is less than 16 Ts, it may be, for example, 1 Ts, 2 Ts, 4 Ts, or 8 Ts.
  • the second quantization precision is finer than the first quantization precision, that is, N is smaller than M.
  • the bit occupied by the base value T A_BASE will be increased relative to the prior art. For example, when the first quantization precision is 8Ts, the value range of T A_BASE is 0, 1, 2, ..., 2564. Occupied bits increase significantly.
  • the bit occupied by the offset value T A_OFFSET is set according to its own quantization precision and the quantization precision of the base value.
  • N can be 0, that is, directly select a finer quantization precision to achieve quantization, which achieves the second quantization precision relative to the above manner. If the offset value T A_OFFSET is 0, the offset value has no actual meaning, so the offset value T A_OFFSET no longer occupies any bits, and the implementation is simple.
  • the existing protocol can be kept unchanged, and only the field reflecting the offset value needs to be added in the original protocol, and the compatibility is good.
  • the first quantization precision is less than 16Ts, the implementation is simple, but the number of bits occupied by the TA command T A needs to be increased, and the higher the quantization precision, the larger the number of occupied bits.
  • step 402 the UE determines the amount of transmission timing adjustment based on the TA quantized value.
  • N TA 8*T A_BASE during random access
  • N TA,new N TA,old +8*(T A_BASE -63).
  • the UE performs a physical uplink control channel (Physical Uplink Control Channel, PUCCH) and a physical uplink shared channel (PUSCH) and a sounding reference signal according to the amount of the transmission timing adjustment.
  • PUCCH Physical Uplink Control Channel
  • PUSCH physical uplink shared channel
  • SRS Sounding Reference Signal
  • the UE also sends the measurement report and the call information to the base station.
  • the measurement report is sent to the base station, and the measurement report is sent.
  • the UE may include the transmit power of the UE, the SINR, the RSRP, the RSRQ, and the like.
  • the call information includes the number of times the user establishes an RRC connection, and the time at which the user equipment establishes the RAB. The number is such that the base station determines the network coverage information and the traffic information based on the TA quantized value, the measurement report, and the call information.
  • the TA quantized value is improved.
  • the TA quantized value includes a base value and an offset value.
  • the quantization precision of the base value is the first quantization precision MTs
  • the quantization precision of the offset value is the second quantization precision NTs
  • M is smaller than Or a positive integer equal to 16
  • N is a non-negative integer less than M
  • Ts is the minimum time unit in the Long Term Evolution (LTE) system, and the value is 1/30.72 ⁇ s.
  • LTE Long Term Evolution
  • FIG. 5 is a signaling flow diagram of Embodiment 3 of a method for adjusting transmission timing according to the present invention. As shown in FIG. 5, the method for adjusting transmission timing provided by this embodiment includes:
  • Step 501 The UE sends a random access preamble to the base station.
  • the UE sends a random access preamble to the base station in a Physical Random Access Channel (PRACH).
  • PRACH Physical Random Access Channel
  • Step 502 The base station determines, according to the random access preamble, a transmission delay between the UE and the base station.
  • the transmission delay is the timing advance amount T ADV ; and the method for determining the timing advance amount T ADV may be, for example, the base station searching for the random access preamble sent by the UE by using the search window. Specifically, the search window is continuously After the external transmission, until the random access preamble sent by the UE is received, the transmission delay between the UE and the base station is calculated according to the search window position and the window size of the random access preamble.
  • Step 503 The base station generates a TA quantized value according to the transmission delay.
  • the TA quantized value includes a base value and an offset value, and the description of the TA quantized value is the same as the above embodiment, and details are not described herein again.
  • Step 504 The base station sends a random access response to the UE, where the random access response includes the above TA quantization value.
  • the base station sends a random access response to the UE on a Physical Downlink Shared Channel (PDSCH).
  • PDSCH Physical Downlink Shared Channel
  • the quantization precision of the base value of the TA quantized value is 16Ts, it is the same as the existing TA command T A , and the offset value is added to the field of the offset value based on the original protocol.
  • the quantization precision of the base value is less than 16Ts, the field size of the original TA command T A , that is, the number of bits occupied by it needs to be increased.
  • Step 505 The UE determines an amount of transmission timing adjustment according to the TA quantization value, and performs uplink transmission timing adjustment according to the amount of transmission timing adjustment.
  • the user equipment establishes an uplink synchronization relationship with the base station through a random access procedure.
  • the random access procedure includes a contention based random access procedure and a non-contention based random access procedure.
  • the contention-based random access process is used as an example.
  • the non-contention-based random access process is similar, and is not described herein again in this embodiment.
  • the user equipment adjusts the uplink transmission time of the PUCCH, the PUSCH, and the SRS according to the timing advance.
  • the time when the uplink signal arrives at the base station may change with time.
  • a UE in high-speed mobility, a UE on a high-speed rail in operation, and a transmission delay of the UE and the base station are constantly changing; for example, the current transmission path disappears, switching to a new transmission path, specifically, in a building densely This situation is likely to occur when the city is walking to the corner of the building.
  • this embodiment is not particularly limited herein. Therefore, the UE needs to update its uplink timing advance in time to maintain uplink synchronization.
  • the base station uses a closed loop mechanism to adjust the uplink timing advance. Specifically, please refer to the following examples.
  • FIG. 6 is a signaling flow diagram of Embodiment 4 of a method for adjusting transmission timing according to the present invention. As shown in FIG. 6, the method for adjusting transmission timing provided by this embodiment includes:
  • Step 601 The UE sends an uplink transmission signal to the base station.
  • the UE After completing the random access procedure, the UE sends an uplink transmission signal to the base station;
  • Step 602 The base station determines, according to the uplink transmission signal, a transmission delay between the UE and the base station.
  • the transmission delay is a timing advance T ADV ;
  • Step 603 The base station generates a TA quantization value according to the transmission delay.
  • Step 604 The base station sends a Medium Access Control Control Element (MAC CE) to the UE, where the MAC CE includes a TA quantization value.
  • MAC CE Medium Access Control Control Element
  • Step 605 The UE determines the amount of transmission timing adjustment according to the TA quantization value, and according to the transmission timing Adjust the amount and adjust the uplink transmission timing.
  • the TA quantized value in this embodiment includes a base value and an offset value, and the description of the TA quantized value is the same as the above embodiment, and details are not described herein again.
  • the quantization precision of the base value of the TA quantized value is 16Ts, it is the same as the existing TA command T A , and the offset value is added to the field of the offset value based on the original protocol.
  • the quantization precision of the base value is less than 16Ts, the field size of the original TA command T A , that is, the number of bits occupied by it needs to be increased.
  • the UE sends an uplink transmission signal to the base station when establishing an RRC connection or in an RRC state.
  • any uplink transmission signal transmitted by the UE can be used to measure the timing advance T ADV .
  • the base station may select a De-Modulation Reference Signal (DMRS), a Sounding Reference Signal (SRS), or a Physical Uplink Control Channel (PUCCH) measurement.
  • DMRS De-Modulation Reference Signal
  • SRS Sounding Reference Signal
  • PUCCH Physical Uplink Control Channel
  • FIG. 7 is a schematic structural diagram of Embodiment 1 of a base station according to the present invention.
  • the base station 70 provided in this embodiment includes: a delay determining module 701, a quantized value generating module 702, and a sending module 703.
  • a delay determining module 701 configured to determine a transmission delay between the UE and the base station
  • the quantized value generating module 702 is configured to generate a timing advance TA quantized value according to the transmission delay, where the TA quantized value includes a base value and an offset value, wherein the quantization precision of the base value is the first quantization precision MTs, and the offset value
  • the quantization precision is the second quantization precision NTs
  • M is a positive integer less than or equal to 16
  • N is a non-negative integer less than M
  • Ts is the minimum time unit in the Long Term Evolution (LTE) system, and the value is 1/30.72 ⁇ s;
  • the sending module 703 is configured to send a TA quantization value to the UE, where the TA quantization value is used for uplink transmission timing adjustment of the UE.
  • the determination of the TA quantized value and the bits occupied by the TA quantized value are equivalent to the above embodiments, and will not be described in detail herein, but simply stated as follows:
  • M is equal to 16, and N is less than 16.
  • N is 1, 2, 4 or 8.
  • the quantized value generating module 702 is specifically configured to:
  • the transmission delay is quantized by the first quantization precision MTs, and the quantized value and the remainder of the transmission delay are obtained.
  • the quantized value of the transmission delay is a base value
  • the remainder is quantized by the second quantization precision NTs to obtain a quantized value of the remainder, wherein the quantized value of the remainder is an offset value.
  • the quantized value generating module 702 is specifically configured to:
  • the transmission delay is quantized by the second quantization precision NTs to obtain an intermediate quantized value
  • the intermediate quantized value is subjected to modulo 16 operation, rounded to obtain a base value, and the remainder is used as an offset value.
  • the base value occupies 11 bits, and the offset value occupies 4 bits; or, in non-random access, the base value occupies 6 bits, and the offset value occupies 4 bits.
  • the quantization value generating module is specifically configured to:
  • the transmission delay is quantized by the first quantization precision MTs to obtain a quantized value of the transmission delay, wherein the quantization value of the transmission delay is a TA quantized value.
  • M can be 1, 2, 4 or 8.
  • the transmission delay is a timing advance T ADV , where
  • T ADV (eNB Rx - Tx time difference); or,
  • T ADV (eNB Rx - Tx time difference) + (UE Rx - Tx time difference),
  • the eNB Rx ⁇ Tx time difference represents the receiving and transmitting time difference of the base station
  • the UE Rx ⁇ Tx time difference represents the receiving and transmitting time difference of the UE.
  • the base station transmits the TA quantized value by using a TA command.
  • the quantization precision of the base value of the TA quantized value is 16Ts, it is the same as the existing TA command, and the offset value is added to the field of the offset value based on the original protocol.
  • the quantization precision of the base value is less than 16Ts, the field size of the original TA command T A , that is, the number of bits occupied by it needs to be increased.
  • FIG. 8 is a schematic structural diagram of Embodiment 2 of a base station according to the present invention.
  • the base station 70 provided in this embodiment is implemented on the basis of the embodiment of FIG. 7.
  • the base station further includes:
  • the receiving module 704 is configured to receive the measurement report and the call information sent by the UE.
  • the optimization module 705 is configured to determine network coverage information and traffic information according to the TA quantization value, the measurement report, and the call information, and perform network planning or optimization according to the network coverage information and the traffic information.
  • the base station provided in this embodiment can perform the technical solution of the foregoing method embodiment, and the implementation principle and the technical effect are similar, and the details are not described herein again.
  • the receiving module 704 in this embodiment may be a receiver of the base station, and the sending module 703 may be a transmitter of the base station; in addition, the receiving module 704 and the sending module 703 may also be used.
  • the delay determination module 701 may be a separately set processor, or may be integrated in a processor of the base station, or may be stored in the memory of the base station in the form of program code, and is called by a processor of the base station. And the function of the above delay determination module 701 is executed.
  • the implementation of the quantized value generation module 702 and the optimization module 705 extends the determination module 701 at the same time, and may be integrated with the delay determination module 701, or may be implemented independently.
  • the processor described herein may be a Central Processing Unit (CPU), or an Application Specific Integrated Circuit (ASIC), or one or more integrated systems configured to implement embodiments of the present invention. Circuit.
  • FIG. 9 is a schematic structural diagram of Embodiment 1 of a user equipment according to the present invention.
  • the UE 90 provided in this embodiment includes: a receiving module 901, a transmission timing determining module 902, and an adjusting module 903.
  • the receiving module 901 is configured to receive a timing advance TA quantized value sent by the base station, where the TA quantized value includes a base value and an offset value, where the quantization precision of the base value is the first quantization precision MTs, and the quantization precision of the offset value is a second quantization precision NTs, wherein M is a positive integer less than or equal to 16, N is a non-negative integer less than M, and Ts is a minimum time unit in a Long Term Evolution (LTE) system, and the value is 1/30.72 ⁇ s;
  • LTE Long Term Evolution
  • the transmission timing determining module 902 is configured to determine an amount of transmission timing adjustment according to the TA quantization value
  • the adjusting module 903 is configured to perform uplink transmission timing adjustment according to the amount of transmission timing adjustment.
  • M is equal to 16, and N is less than 16.
  • the N can be 1, 2, 4 or 8.
  • the base value occupies 11 bits, and the offset value occupies 4 bits; or, in non-random access, the base value occupies 6 bits, and the offset value occupies 4 bits.
  • the unit of TA,new is Ts
  • N TA,old is the amount of previous transmission timing adjustment
  • T A_BASE is the base value
  • T A_OFFSET is the offset value
  • m is [T A_BASE maximum value / 2]
  • [] represents Round up or down.
  • M is less than 16, N is 0, and the TA quantized value is a base value.
  • the M can be 1, 2, 4 or 8.
  • the UE receives the TA quantized value by a TA command.
  • FIG. 10 is a schematic structural diagram of Embodiment 2 of a user equipment according to the present invention.
  • the UE 90 provided in this embodiment is implemented on the basis of the embodiment of FIG. 9, and specifically includes:
  • the sending module 904 is configured to send the measurement report and the call information to the base station, so that the base station determines the network coverage information and the traffic information according to the TA quantization value, the measurement report, and the call information.
  • the UE provided in this embodiment may be used to perform the technical solution of the foregoing method embodiment, and the implementation principle and the technical effect are similar.
  • the receiving module 901 in this embodiment may be a receiver of the UE, and the sending module 904 may be a transmitter of the UE.
  • the receiving module 901 and the sending module 904 may also be integrated to form a transceiver of the UE.
  • the transmission timing determining module 902 may be a separately set processor, or may be implemented in one processor of the UE. In addition, it may also be stored in the memory of the UE in the form of program code, and is called by one processor of the UE. And the function of the above transmission timing determination module 902 is executed.
  • the implementation of the adjustment module 903 is the same as the transmission timing determination module 902, and may be integrated with the transmission timing determination module 902, or may be implemented independently.
  • the processor described herein may be a Central Processing Unit (CPU), or an Application Specific Integrated Circuit (ASIC), or one or more integrated systems configured to implement embodiments of the present invention. Circuit.
  • FIG. 11 is a schematic structural diagram of Embodiment 3 of a base station according to the present invention.
  • the base station 110 provided in this embodiment includes: a processor 111, a receiver 114, and a transmitter 113.
  • the memory 112 and the bus are also shown.
  • the processor 111, the receiver 114, the transmitter 113, and the memory 112 are connected by a bus 115 and complete communication with each other.
  • the processor 111 is configured to:
  • a timing advance TA quantization value where the TA quantization value includes a base value and an offset value, wherein the quantization precision of the base value is a first quantization precision MTs, and the quantization precision of the offset value is
  • the second quantization precision NTs M is a positive integer less than or equal to 16
  • N is a non-negative integer less than M
  • Ts is a minimum time unit in the Long Term Evolution (LTE) system, and the value is 1/30.72 ⁇ s;
  • the TA quantized value is transmitted to the UE by the transmitter 113, and the TA quantized value is used for uplink transmission timing adjustment of the UE.
  • the determination of the TA quantized value is The bits occupied by the TA quantized value are equivalent to the above embodiments, and will not be described in detail herein, but simply stated as follows:
  • M is equal to 16, and N is less than 16.
  • the N can be 1, 2, 4 or 8.
  • the processor 111 is specifically configured to:
  • the remainder is quantized by the second quantization precision NTs to obtain a quantized value of the remainder, wherein the quantized value of the remainder is an offset value.
  • the processor 111 is specifically configured to: quantize the transmission delay by using the second quantization precision NTs to obtain an intermediate quantization value;
  • the intermediate quantized value is subjected to modulo 16 operation, rounded to obtain a base value, and the remainder is used as an offset value.
  • the base value occupies 11 bits, and the offset value occupies 4 bits; or, in non-random access, the base value occupies 6 bits, and the offset value occupies 4 bits.
  • the M is smaller than 16, and N is 0.
  • the processor 111 is specifically configured to: quantize the transmission delay by using the first quantization precision MTs to obtain a quantized value of the transmission delay, where the quantization value of the transmission delay is TA. Quantitative value.
  • M can be 1, 2, 4 or 8.
  • the base station transmits the TA quantized value by using a TA command.
  • the processor 111 is further configured to: receive the measurement report and the call information sent by the UE by using the receiver 114; determine network coverage information and traffic information according to the TA quantization value, the measurement report, and the call information; Information and the traffic information for network planning or optimization.
  • the processor 111 herein may be a processor or a collective name of multiple processing elements.
  • the processor may be a Central Processing Unit (CPU), an Application Specific Integrated Circuit (ASIC), or one or more integrated circuits configured to implement the embodiments of the present invention. , for example: one or more microprocessors (digital singnal processors, DSP), or one or more field programmable Field Programmable Gate Array (FPGA).
  • CPU Central Processing Unit
  • ASIC Application Specific Integrated Circuit
  • FPGA field programmable Field Programmable Gate Array
  • the memory 112 may be a storage device or a collective name of a plurality of storage elements, and is used to store executable program code or parameters, data, and the like required for the base station to operate. And the memory 112 may include random access memory (RAM), and may also include non-volatile memory such as a magnetic disk memory, a flash memory, or the like.
  • RAM random access memory
  • non-volatile memory such as a magnetic disk memory, a flash memory, or the like.
  • the bus 115 may be an Industry Standard Architecture (ISA) bus, a Peripheral Component (PCI) bus, or an Extended Industry Standard Architecture (EISA) bus.
  • ISA Industry Standard Architecture
  • PCI Peripheral Component
  • EISA Extended Industry Standard Architecture
  • the bus 115 can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 11, but it does not mean that there is only one bus or one type of bus.
  • the base station provided in this embodiment may be used to perform the technical solution of the foregoing method embodiment, and the implementation principle and the technical effect are similar, and details are not described herein again in this embodiment.
  • FIG. 12 is a schematic structural diagram of Embodiment 3 of a user equipment according to the present invention.
  • the UE 120 provided in this embodiment includes a processor 121, a receiver 124, and a transmitter 123.
  • the memory 122 and the bus 125 are also shown.
  • the processor 121, the receiver 124, and the transmitter are shown.
  • 123 and memory 122 are connected by bus 125 and complete communication with each other.
  • the processor 121 is specifically configured to:
  • a timing advance TA quantized value sent by the base station where the TA quantized value includes a base value and an offset value, wherein the quantization precision of the base value is the first quantization precision MTs, and the quantization precision of the offset value is the second Quantization accuracy NTs, where M is a positive integer less than or equal to 16, N is a non-negative integer less than M, and Ts is a minimum time unit in a Long Term Evolution (LTE) system, with a value of 1/30.72 ⁇ s;
  • LTE Long Term Evolution
  • the uplink transmission timing adjustment is performed according to the amount of transmission timing adjustment.
  • M is equal to 16, and N is less than 16.
  • the N can be 1, 2, 4 or 8.
  • the base value occupies 11 bits, and the offset value occupies 4 bits; or, in non-random access, the base value occupies 6 bits, and the offset value occupies 4 bits.
  • the unit of TA,new is Ts
  • N TA,old is the amount of previous transmission timing adjustment
  • T A_BASE is the base value
  • T A_OFFSET is the offset value
  • m is [T A_BASE maximum value / 2]
  • [] represents Round up or down.
  • M is less than 16, N is 0, and the TA quantized value is a base value.
  • the M can be 1, 2, 4 or 8.
  • the UE receives the TA quantized value by a TA command.
  • the processor 121 is further configured to: send, by using the transmitter 123, the measurement report and the call information to the base station, so that the base station determines the network coverage information and the traffic information according to the TA quantization value, the measurement report, and the call information.
  • the processor 121 herein may be a processor or a collective name of multiple processing elements.
  • the processor may be a Central Processing Unit (CPU), an Application Specific Integrated Circuit (ASIC), or one or more integrated circuits configured to implement the embodiments of the present invention.
  • CPU Central Processing Unit
  • ASIC Application Specific Integrated Circuit
  • DSPs digital singal processors
  • FPGAs Field Programmable Gate Arrays
  • the memory 122 may be a storage device or a collective name of a plurality of storage elements, and is used to store executable program code or parameters, data, and the like required for the operation of the user equipment.
  • the memory 122 may include random access memory (RAM), and may also include non-volatile memory such as a magnetic disk memory, a flash memory, or the like.
  • the bus 125 may be an Industry Standard Architecture (ISA) bus, a Peripheral Component (PCI) bus, or an Extended Industry Standard Architecture (EISA) bus.
  • ISA Industry Standard Architecture
  • PCI Peripheral Component
  • EISA Extended Industry Standard Architecture
  • the bus 125 can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 12, but it does not mean that there is only one bus or one type of bus.
  • the UE provided in this embodiment may be used to perform the technical solution of the foregoing method embodiment, and the implementation principle and the technical effect are similar.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative,
  • the division of the unit or module is only a logical function division, and the actual implementation may have another division manner, for example, multiple units or modules may be combined or may be integrated into another system, or some features may be ignored. Or not.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or module, and may be electrical, mechanical or otherwise.
  • the modules described as separate components may or may not be physically separated.
  • the components displayed as modules may or may not be physical modules, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • the aforementioned program can be stored in a computer readable storage medium.
  • the program when executed, performs the steps including the foregoing method embodiments; and the foregoing storage medium includes various media that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供一种传输定时调整的方法及设备,该方法包括:基站确定用户设备UE与基站之间的传输时延,根据传输时延,产生定时提前TA量化值,TA量化值包括基础值和偏移值,其中,基础值的量化精度为第一量化精度MTs,偏移值的量化精度为第二量化精度NTs,M为小于或等于16的正整数,N为小于M的非负整数,Ts为长期演进LTE系统中的最小时间单位,值为1/30.72μs;基站向UE发送TA量化值,TA量化值用于UE的上行传输定时调整。本实施例有利于网络规划和优化。

Description

传输定时调整的方法及设备 技术领域
本发明实施例涉及通信技术,尤其涉及一种传输定时调整的方法及设备。
背景技术
在第三代合作伙伴项目(3rd Generation Partnership Project,简称3GPP)的长期演进(Long Term Evolution,简称LTE)系统中,上行各用户设备(User Equipment,简称UE)采用单载波频分多址传输技术,为保证各UE上行信号之间的正交性,各UE上行信号到达基站接收端的时间需一致,即上行同步。
UE可通过随机接入过程保证上行同步。在随机接入过程中,UE向基站发送随机接入前导,基站接收并检测到随机接入前导后,向UE发送随机接入响应,随机接入响应中包含定时提前命令(timing advance command),以便UE根据定时提前命令进行传输定时调整(Transmission timing adjustments)。UE根据该定时提前命令,调整物理上行链路控制信道(Physical Uplink Control Channel,简称PUCCH)以及物理上行链路共享信道(Physical Uplink Shared Channel,简称PUSCH)以及探测参考信号(Sounding Reference Signal,简称SRS)的上行传输定时(uplink transmission timing)。
随着自组织网络(Self Organizing Network,简称SON)的发展,传输定时调整可以进一步应用于网络规划和优化。例如,基站可以根据UE在测量报告中上报的信息,并根据UE的定时提前(timing advance,简称TA)情况,分析不同区域内的信号质量及UE分布,从而了解站点的覆盖及话务情况,对覆盖差或者话务高的区域确定是否要增加宏基站或微基站,或者对站点的天线角度做一定的调整,然而目前的传输定时调整的机制对网络规划和优化的准确性具有负面影响。
发明内容
本发明实施例提供一种传输定时调整的方法及设备,以使得传输定时调 整更有利于网络规划和优化。
第一方面,本发明提供一种传输定时调整的方法,包括:
基站确定用户设备UE与所述基站之间的传输时延;
所述基站根据所述传输时延,产生定时提前TA量化值,所述TA量化值包括基础值和偏移值,其中,所述基础值的量化精度为第一量化精度MTs,所述偏移值的量化精度为第二量化精度NTs,M为小于或等于16的正整数,N为小于M的非负整数,Ts为长期演进LTE系统中的最小时间单位,值为1/30.72μs;
所述基站向所述UE发送所述TA量化值,所述TA量化值用于所述UE的上行传输定时调整。
结合第一方面,在第一方面的第一种可能的实现方式中,所述M等于16,所述N小于16。
结合第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,所述N为1、2、4或8。
结合第一方面的第一种或第二种可能的实现方式,在第一方面的第三种可能的实现方式中,所述基站根据所述传输时延,产生TA量化值,包括:
以所述第一量化精度MTs量化所述传输时延,得到所述传输时延的量化值及余数,其中,所述传输时延的量化值为所述基础值;
以所述第二量化精度NTs量化所述余数,得到所述余数的量化值,其中,所述余数的量化值为所述偏移值。
结合第一方面的第一种或第二种可能的实现方式,在第一方面的第四种可能的实现方式中,当所述N为1时,所述基站根据所述传输时延,产生TA量化值,包括:
以所述第二量化精度NTs量化所述传输时延,得到中间量化值;
将所述中间量化值进行模16运算,取整得到所述基础值,余数作为所述偏移值。
结合第一方面的第一种至第四种任一种可能的实现方式,在第一方面的第五种可能的实现方式中,在随机接入时,所述基础值占用11比特,所述偏移值占用4比特;或者,
在非随机接入时,所述基础值占用6比特,所述偏移值占用4比特。
结合第一方面,在第一方面的第六种可能的实现方式中,所述M小于16,所述N为0,所述基站根据所述传输时延,产生TA量化值,包括:
以所述第一量化精度MTs量化所述传输时延,得到所述传输时延的量化值,其中,所述传输时延的量化值为所述TA量化值。
结合第一方面的第六种可能的实现方式,在第一方面的第七种可能的实现方式中,所述M为1、2、4或8。
结合第一方面、第一方面的第一种至第七种任一种可能的实现方式,在第一方面的第八种可能的实现方式中,所述传输时延为定时提前量TADV,其中,
在随机接入时,TADV=(eNB Rx–Tx time difference);或,
在非随机接入时,TADV=(eNB Rx–Tx time difference)+(UE Rx–Tx time difference),
其中,eNB Rx–Tx time difference表示所述基站的接收与发送时间差,UE Rx–Tx time difference表示所述UE的接收与发送时间差。
结合第一方面、第一方面的第一种至第八种任一种可能的实现方式,在第一方面的第九种可能的实现方式中,所述基站通过TA命令发送所述TA量化值。
结合第一方面、第一方面的第一种至第九种任一种可能的实现方式,在第一方面的第十种可能的实现方式中,所述方法还包括:
接收所述UE发送的测量报告和呼叫信息;
根据所述TA量化值、所述测量报告和呼叫信息,确定网络覆盖信息和话务信息;
根据所述网络覆盖信息和所述话务信息,进行网络规划或优化。
第二方面,本发明实施例提供一种传输定时调整的方法,包括:
用户设备UE接收基站发送的定时提前TA量化值,所述TA量化值包括基础值和偏移值,其中,所述基础值的量化精度为第一量化精度MTs,所述偏移值的量化精度为第二量化精度NTs,其中,M为小于或等于16的正整数,N为小于M的非负整数,Ts为长期演进LTE系统中的最小时间单位,值为1/30.72μs;
所述UE根据所述TA量化值确定传输定时调整的量;
所述UE根据所述传输定时调整的量,进行上行传输定时调整。
结合第二方面,在第二方面的第一种可能的实现方式中,所述M等于16,所述N小于16。
结合第二方面的第一种可能的实现方式,在第二方面的第二种可能的实现方式中,所述N为1、2、4或8。
结合第二方面的第一种或第二种可能的实现方式,在第二方面的第三种可能的实现方式中,在随机接入时,所述基础值占用11比特,所述偏移值占用4比特;或者,
在非随机接入时,所述基础值占用6比特,所述偏移值占用4比特。
结合第二方面的第一种至第三种任一种可能的实现方式,在第二方面的第四种可能的实现方式中,在随机接入时,所述传输定时调整的量为NTA,所述NTA=TA_BASE*M+TA_OFFSET*N,其中NTA的单位为Ts,TA_BASE为所述基础值,TA_OFFSET为所述偏移值;或者,
在非随机接入时,所述传输定时调整的量为NTA,new,所述NTA,new=NTA,old+(TA_BASE-m)*M+TA_OFFSET*N,其中,所述NTA,new的单位为Ts,NTA,old为之前的传输定时调整的量,TA_BASE为所述基础值,TA_OFFSET为所述偏移值,m为[TA_BASE的最大值/2],且[]表示向上或向下取整。
结合第二方面,在第二方面的第五种可能的实现方式中,所述M小于16,所述N为0,所述TA量化值为所述基础值。
结合第二方面的第五种可能的实现方式,在第二方面的第六种可能的实现方式中,所述M为1、2、4或8。
结合第二方面、第二方面的第一种至第六种可能的实现方式,在第二方面的第七种可能的实现方式中,所述UE通过TA命令接收所述TA量化值。
结合第二方面、第二方面的第一种至第七种可能的实现方式,在第二方面的第八种可能的实现方式中,所述方法还包括:
向所述基站发送测量报告及呼叫信息,以使所述基站根据所述TA量化值、所述测量报告及呼叫信息,确定网络覆盖信息和话务信息。
第三方面,本发明提供一种基站,包括:
时延确定模块,用于确定用户设备UE与所述基站之间的传输时延;
量化值产生模块,用于根据所述传输时延,产生定时提前TA量化值, 所述TA量化值包括基础值和偏移值,其中,所述基础值的量化精度为第一量化精度MTs,所述偏移值的量化精度为第二量化精度NTs,M为小于或等于16的正整数,N为小于M的非负整数,Ts为长期演进LTE系统中的最小时间单位,值为1/30.72μs;
发送模块,用于向所述UE发送所述TA量化值,所述TA量化值用于所述UE的上行传输定时调整。
结合第三方面,在第三方面的第一种可能的实现方式中,所述M等于16,所述N小于16。
结合第三方面的第一种可能的实现方式,在第三方面的第二种可能的实现方式中,所述N为1、2、4或8。
结合第三方面的第一种或第二种可能的实现方式,在第三方面的第三种可能的实现方式中,所述量化值产生模块具体用于:
以所述第一量化精度MTs量化所述传输时延,得到所述传输时延的量化值及余数,其中,所述传输时延的量化值为所述基础值;
以所述第二量化精度NTs量化所述余数,得到所述余数的量化值,其中,所述余数的量化值为所述偏移值。
结合第三方面的第一种或第二种可能的实现方式,在第三方面的第四种可能的实现方式中,当所述N为1时,所述量化值产生模块具体用于:
以所述第二量化精度NTs量化所述传输时延,得到中间量化值;
将所述中间量化值进行模16运算,取整得到所述基础值,余数作为所述偏移值。
结合第三方面的第一种至第四种任一种可能的实现方式,在第三方面的第五种可能的实现方式中,在随机接入时,所述基础值占用11比特,所述偏移值占用4比特;或者,
在非随机接入时,所述基础值占用6比特,所述偏移值占用4比特。
结合第三方面,在第三方面的第六种可能的实现方式中,所述M小于16,所述N为0,所述量化值产生模块具体用于:
以所述第一量化精度MTs量化所述传输时延,得到所述传输时延的量化值,其中,所述传输时延的量化值为所述TA量化值。
结合第三方面的第六种可能的实现方式,在第三方面的第七种可能的实 现方式中,所述M为1、2、4或8。
结合第三方面、第三方面的第一种至第七种任一种可能的实现方式,在第三方面的第八种可能的实现方式中,所述传输时延为定时提前量TADV,其中,
在随机接入时,TADV=(eNB Rx–Tx time difference);或,
在非随机接入时,TADV=(eNB Rx–Tx time difference)+(UE Rx–Tx time difference),
其中,eNB Rx–Tx time difference表示所述基站的接收与发送时间差,UE Rx–Tx time difference表示所述UE的接收与发送时间差。
结合第三方面、第三方面的第一种至第八种任一种可能的实现方式,在第三方面的第九种可能的实现方式中,所述基站通过TA命令发送所述TA量化值。
结合第三方面、第三方面的第一种至第九种任一种可能的实现方式,在第三方面的第十种可能的实现方式中,还包括:
接收模块,用于接收所述UE发送的测量报告和呼叫信息;
优化模块,用于根据所述TA量化值、所述测量报告和呼叫信息,确定网络覆盖信息和话务信息,根据所述网络覆盖信息和所述话务信息,进行网络规划或优化。
第四方面,本发明实施例提供一种用户设备,包括:
接收模块,用于接收基站发送的定时提前TA量化值,所述TA量化值包括基础值和偏移值,其中,所述基础值的量化精度为第一量化精度MTs,所述偏移值的量化精度为第二量化精度NTs,其中,M为小于或等于16的正整数,N为小于M的非负整数,Ts为长期演进LTE系统中的最小时间单位,值为1/30.72μs;
传输定时确定模块,用于根据所述TA量化值确定传输定时调整的量;
调整模块,用于根据所述传输定时调整的量,进行上行传输定时调整。
结合第四方面,在第四方面的第一种可能的实现方式中,所述M等于16,所述N小于16。
结合第四方面的第一种可能的实现方式,在第四方面的第二种可能的实现方式中,所述N为1、2、4或8。
结合第四方面的第一种或第二种可能的实现方式,在第四方面的第三种可能的实现方式中,在随机接入时,所述基础值占用11比特,所述偏移值占用4比特;或者,
在非随机接入时,所述基础值占用6比特,所述偏移值占用4比特。
结合第四方面的第一种至第三种任一种可能的实现方式,在第四方面的第四种可能的实现方式中,在随机接入时,所述传输定时调整的量为NTA,所述NTA=TA_BASE*M+TA_OFFSET*N,其中NTA的单位为Ts,TA_BASE为所述基础值,TA_OFFSET为所述偏移值;或者,
在非随机接入时,所述传输定时调整的量为NTA,new,所述NTA,new=NTA,old+(TA_BASE-m)*M+TA_OFFSET*N,其中,所述NTA,new的单位为Ts,NTA,old为之前的传输定时调整的量,TA_BASE为所述基础值,TA_OFFSET为所述偏移值,m为[TA_BASE的最大值/2],且[]表示向上或向下取整。
结合第四方面,在第四方面的第五种可能的实现方式中,所述M小于16,所述N为0,所述TA量化值为所述基础值。
结合第四方面的第五种可能的实现方式,在第四方面的第六种可能的实现方式中,所述M为1、2、4或8。
结合第四方面、第四方面的第一种至第六种可能的实现方式,在第四方面的第七种可能的实现方式中,所述UE通过TA命令接收所述TA量化值。
结合第四方面、第四方面的第一种至第七种可能的实现方式,在第四方面的第八种可能的实现方式中,还包括:
发送模块,用于向所述基站发送测量报告及呼叫信息,以使所述基站根据所述TA量化值、所述测量报告及呼叫信息,确定网络覆盖信息和话务信息。
本发明实施例提供的传输定时调整的方法及设备,该方法通过确定UE与该基站之间的传输时延,根据传输时延,产生TA量化值。本实施例对TA量化值进行了改进,TA量化值包括基础值和偏移值,并对量化精度进行了设计,基础值的量化精度为第一量化精度MTs,偏移值的量化精度为第二量化精度NTs,M为小于或等于16的正整数,N为小于M的非负整数,Ts为长期演进LTE系统中的最小时间单位,值为1/30.72μs;通过对量化精度进行设计,使得传输定时调整的量的步距更加精细,从而最小步距对应的距离也更 加精细,更贴近实际网络应用,在网络规划与优化中,显示了极大的优势。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明传输定时调整的方法实施例一的流程示意图;
图2为本发明实施例量化过程实施例一的流程示意图;
图3为本发明实施例量化过程实施例二的流程示意图;
图4为本发明传输定时调整的方法实施例二的流程示意图;
图5为本发明传输定时调整的方法实施例三的信令流图;
图6为本发明传输定时调整的方法实施例四的信令流图;
图7为本发明基站实施例一的结构示意图;
图8为本发明基站实施例二的结构示意图;
图9为本发明用户设备实施例一的结构示意图;
图10为本发明用户设备实施例二的结构示意图;
图11为本发明基站实施例三的结构示意图;
图12为本发明用户设备实施例三的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
目前的传输定时调整的机制中,传输定时调整是以16Ts的整数倍变化,其中,Ts为LTE系统中的最小时间单位,值为1/30.72μs。传输定时调整的量为16Ts的整数倍,该整数由基站确定并发送给UE,具体通过定时提前(timing advance,简称TA)命令TA发送给UE。
在UE的随机接入过程中,基站通过检测随机接入前导确定基站与UE 之间的传输时延,从而根据该传输时延确定TA命令TA的取值,并将其通过随机接入响应发送给UE,以便UE根据该TA命令TA进行传输定时调整,其中,TA命令TA占用11比特(bit),取值范围为0,1,2,...,1282。此时,传输定时调整的量为NTA,单位为Ts,其中NTA=TA×16。在其它情况下,例如UE随机接入成功后,基站可以重新确定TA命令TA的取值,该取值是一个相对的取值,UE可以根据该取值和之前的传输定时调整的量确定当前传输定时调整的量。此时,TA命令TA占用6bit,取值范围为0,1,2,...,63,传输定时调整的量为NTA,new,单位为Ts,其中,NTA,new=NTA,old+(TA-31)×16。之前的传输定时调整的量NTA,old可以为随机接入初始确定的传输定时调整的量,也可以是其它非随机接入过程中确定的传输定时调整的量。
可见,现有传输定时调整的步距为16Ts,其对应UE到基站的距离为1/30.72×16×光速/2=78m。因此,对于距离基站78m和156m范围内的UE,TA命令TA是相同的,传输定时调整的量也是相同的。
而在实际网络布局中,热点城区、边远郊区、微小区的覆盖完全不同。城区覆盖站点分布密集,小区内大部分(根据实际数据分析占90%以上)UE分布在2km范围以内,这样根据现有传输定时调整机制作出的覆盖地图可识别性差,不太适用于热点覆盖区域。此外,微小区的小区半径设置得比宏小区要小的多,大部分UE分布在比1km范围以内,同样根据现有传输定时调整机制作出的覆盖地图精度太粗,可区分度很低,使得网络优化的使用受到限制。
基于以上考虑,本发明实施例设计了TA的量化精度,使得传输定时调整的步距更加精细,从而最小步距对应的距离也更加精细,更贴近实际网络应用,尤其在网络规划与优化中,显示了其极大的优势。下面结合实施例进行详细的描述。
图1为本发明传输定时调整的方法实施例一的流程示意图。本实施例的执行主体为基站,该基站可以通过软件和/或硬件实现。如图1所示,本实施例的方法可以包括:
步骤101、确定UE与基站之间的传输时延;
步骤102、根据传输时延,产生TA量化值,TA量化值包括基础值和偏移值;
其中,基础值的量化精度为第一量化精度MTs,偏移值的量化精度为第二量化精度NTs,M为小于或等于16的正整数,N为小于M的非负整数,Ts为LTE系统中的最小时间单位,值为1/30.72μs;
步骤103、向UE发送TA量化值,TA量化值用于UE的上行传输定时调整。
在具体应用场景中,上行传输的一个重要特征是不同UE在时频上正交多址接入,使得来自同一个小区的不同的UE的上行传输之间互不干扰。为了保证上行传输的正交性,避免小区内干扰,基站要求来自同一子帧但不同频域资源的不同UE的信号到达基站的时间基本上是对齐的。基站只要在循环前缀范围内接收到UE发送的上行数据,就能够正确地解码上行数据,因此上行同步要求来自同一子帧的不同UE的信号到达基站的时间都落在循环前缀之内。为了保证基站侧的时间同步,LTE提出了上行TA的机制,基站会通过TA命令TA发送TA量化值,以使UE根据TA量化值确定传输定时调整的量,根据传输定时调整的量调整上行发送时间。
在步骤101中的传输时延可以为双向传输时延,也可以为单向传输时延。目前,均使用双向传输时延确定TA命令TA的取值,因此,本实施例也以双向传输时延为例进行详细说明。且双向传输时延可以作为定时提前量(timing advance)TADV。本领域技术人员可以理解,定时提前以及定时提前量的英文翻译均为timing advance,为了区分二者,定时提前量以TADV进行标识。关于TADV包括两种情况:第一、TADV=(eNB Rx–Tx time difference)+(UE Rx–Tx time difference);第二、TADV=(eNB Rx–Tx time difference),其中,eNB Rx–Tx time difference表示基站的接收与发送时间差,UE Rx–Tx time difference表示UE的接收与发送时间差。且第一种情况适用于非随机接入的场景,第二种情况为随机接入的场景。
因此,步骤101中的确定传输时延的场景可以包括两种:一种是在初始同步时,在UE的随机接入过程中,基站确定UE与该基站之间的传输时延,即该UE的定时提前量TADV;另一种是在更新同步时,即UE在随机接入过程完成之后,在UE建立无线资源控制(Radio Resource Control,简称:RRC)连接或UE处于RRC连接态时,基站获取UE与该基站之间的传输时延,即该UE的定时提前量TADV。具体过程将在后面的实施例中详细描述,在此不 再赘述。
在步骤102中,基站在确定定时提前量TADV之后,将定时提前量TADV转化为向UE下发的TA命令TA。该TA命令TA即为以上的TA量化值,其不同于现有的TA命令TA,包括基础值和偏移值,基础值设为TA_BASE,偏移值设为TA_OFFSET
在本实施例中,基础值的量化精度为第一量化精度MTs,偏移值的量化精度为第二量化精度NTs。当第一量化精度等于16Ts时,第二量化精度小于16Ts时,可以利用量化精度小于16Ts的偏移值来提高量化精度,进而减少传输定时调整的步距;且当第一量化精度小于16Ts时,第二量化精度可以更精细或者不使用第二量化精度,便可以提高量化精度,减少传输定时调整的步距。因此相对于现有技术,本实施例中的传输定时调整的步距更加精细,从而最小步距对应的距离也更加精细,更贴近实际网络应用,尤其在网络规划与优化中,显示了其极大的优势。且这种改变不会影响以上传输定时调整的应用,且会使传输定时调整更加准确。
那么,在初始同步时,传输定时调整的量为NTA=M*TA_BASE+N*TA_OFFSET,NTA的单位为Ts。在更新同步时,传输定时调整的量为NTA,new=NTA,old+(TA_BASE-m)*M+TA_OFFSET*N,NTA,new的单位为Ts,其中,M为第一量化精度的取值,N为第二量化精度的取值,NTA,old为之前的传输定时调整的量,m为[TA_BASE的最大值/2],且[]表示向上或向下取整。可见,此时的量化精度可以达到NTs,提高了网络规划和优化的应用价值。
下面对量化精度以及TA量化值的实现形式进行详细说明。
当第一量化精度为16Ts时,该基础值TA_BASE同现有的TA命令TA。在初始同步时,基础值TA_BASE占用11bit,取值范围为0,1,2,...,1282。在更新同步时,基础值TA_BASE占用6bit,取值范围为0,1,2,...,63。此时,第二量化精度小于16Ts,例如可以为1Ts、2Ts、4Ts或8Ts。偏移值TA_OFFSET可以占用4bit,取值范围为0到15内的所有值或部分值,具体根据N的取值不同而不同,以1Ts为例,取值范围为0至15内的所有值。那么在初始同步时,传输定时调整的量为NTA=16*TA_BASE+TA_OFFSET,单位为Ts;在更新同步时,传输定时调整的量为NTA,new=NTA,old+(TA_BASE-31)*16+TA_OFFSET。可见,此时的量化精度可以达到1Ts,极大的提高了区分度,提高了网络规划和优 化的应用价值。
当第一量化精度小于16Ts时,例如可以为1Ts、2Ts、4Ts或8Ts。第二量化精度相对于第一量化精度更为精细,即N小于M。此时,基础值TA_BASE占用的比特相对于现有技术将会增加,偏移值TA_OFFSET占用的比特根据其自身的量化精度和基础值的量化精度而设定。为了降低两个相对于现有技术都做调整的复杂度,较佳的,N可以为0,即直接选择更为精细的量化精度实现量化,这种方式实现相对于以上方式,第二量化精度不存在,偏移值TA_OFFSET为0,即偏移值没有实际含义,所以偏移值TA_OFFSET不再占用任何比特,实现简单。
可见,当第一量化精度为16Ts时,可以保持现有协议不变,只需要在原协议中增加反映偏移值的字段即可,这种方式兼容性较好。当第一量化精度小于16Ts时,实现简单,但需要增加TA命令TA占用的比特数,且量化精度越高,占用的比特数越大。
在上述实施例中,在N为0的情况下,TA量化值的产生方式,可以通过利用第一量化精度MTs量化以上传输时延,得到传输时延的量化值即为TA量化值。
例如,当第一量化精度MTs为4Ts,基站获取到传输时延89Ts后,将传输时延89Ts除以4Ts,并向下取整,得到传输时延的量化值22,该传输时延的量化值22即为TA量化值。
在N不为0的情况下,TA量化值的产生方式,可以先以第一量化精度MTs量化以上传输时延,传输时延的量化值即为基础值;再以第二量化精度NTs量化以上量化过程中产生的余数,得到余数的量化值,余数的量化值即为偏移值。此时,请参考图2,图2为本发明实施例量化过程实施例一的流程示意图,如图2所示,以上步骤102包括:
步骤1021:以第一量化精度MTs量化传输时延,得到传输时延的量化值及余数,其中,传输时延的量化值为基础值;
步骤1022:以第二量化精度NTs量化上述余数,得到余数的量化值,其中,余数的量化值为偏移值。
例如,当第一量化精度MTs为16Ts,第二量化精度NTs为1Ts时,基站获取到传输时延89Ts后,基站将89Ts除以第一量化精度16Ts,得到传输 时延的量化值5及余数9Ts,将余数9Ts除以1Ts,得到余数的量化值9,其中,传输时延的量化值5即为基础值,余数的量化值9即为偏移值。
当第一量化精度MTs为16Ts,第二量化精度NTs为2Ts时,基站获取到传输时延89Ts后,基站将89Ts除以第一量化精度16Ts,得到传输时延的量化值5及余数9Ts,将余数9Ts除以2Ts,得到4.5,再向下取整得到余数的量化值4,其中,传输时延的量化值5即为基础值,余数的量化值4即为偏移值。
进一步,当第二量化精度为1Ts时,图2所示方法还可以通过以下方法替换,即请参考图3,图3为本发明实施例量化过程实施例二的流程示意图,如图3所示,以上步骤102包括:
步骤1021’:以第二量化精度NTs量化传输时延,得到中间量化值;
步骤1022’:将中间量化值进行模16运算,取整得到基础值,余数作为偏移值。
例如,当第一量化精度MTs为16Ts,第二量化精度NTs为1Ts时,基站获取到传输时延89Ts后,将89Ts除以第二量化精度1Ts,得到中间量化值89,再对中间量化值89进行模16运算,取整得到5,即为基础值,余数9为偏移值。
在本实施例中,在基站进行具体的网络规划或优化时,基站还接收UE发送的测量报告和呼叫信息,该测量报告可以包括用户设备的发射功率,信号干扰噪声比(Signal to Interference Plus Noise Ratio,简称SINR),参考信号接收功率(Reference Signal Received Power,简称RSRP),参考信号接收质量(Reference Signal Received Quality,简称RSRQ)等,呼叫信息包括用户建立RRC连接次数、用户设备建立无线接入承载(Radio Access Bearer,简称RAB)的次数等。
基站根据TA量化值、测量报告以及呼叫信息,确定网络覆盖信息。具体地,基站可以根据TA量化值确定基站和用户设备的距离,绘制用户设备的覆盖地图。基站还可以根据测量报告获知小区的无线覆盖情况。同时,基站还可以根据呼叫信息以及TA量化值确定在预设地理位置范围内网络忙闲的话务信息。进一步地,基站还可以从TA量化值、测量报告以及呼叫信息综合考虑,统计出不同TA量化值对应的用户设备的信号质量分布等,分析 网络的覆盖以及网络忙闲的话务信息情况。
进而,基站可以根据网络覆盖信息和话务信息,对无线网络进行优化或规划。例如,用户设备分布较疏松,网络比较闲时,基站可对所服务的小区进行重新划分,以保证UE分布适中;当基站所服务的各小区中UE分布较密集、网络比较忙,网络覆盖较差时,可增加宏小区或微小区,形成宏微协同组网。
综上,本实施例提供的传输定时调整的方法,基站通过确定UE与该基站之间的传输时延,根据传输时延,产生TA量化值。本实施例对TA量化值进行了改进,TA量化值包括基础值和偏移值,并对量化精度进行了设计,基础值的量化精度为第一量化精度MTs,偏移值的量化精度为第二量化精度NTs,M为小于或等于16的正整数,N为小于M的非负整数,Ts为长期演进LTE系统中的最小时间单位,值为1/30.72μs;通过对量化精度进行设计,使得传输定时调整的量的步距更加精细,从而最小步距对应的距离也更加精细,更贴近实际网络应用,在网络规划与优化中,显示了极大的优势。
图4为本发明传输定时调整的方法实施例二的流程示意图。本实施例的执行主体为用户设备,该用户设备可以通过软件和/或硬件实现。本实施例的传输定时调整的方法在传输定时调整的方法实施例一的基础上,对用户设备侧的传输定时调整的方法进行详细说明。如图4所示,本实施例的方法可以包括:
步骤401、接收基站发送的TA量化值,TA量化值包括基础值和偏移值;
其中,基础值的量化精度为第一量化精度MTs,偏移值的量化精度为第二量化精度NTs,其中,M为小于或等于16的正整数,N为小于M的非负整数,Ts为长期演进LTE系统中的最小时间单位,值为1/30.72μs;
步骤402、根据TA量化值确定传输定时调整的量;
步骤403、根据传输定时调整的量,进行上行传输定时调整。
本实施例的应用场景与传输定时调整的方法实施例一的类似,本实施例在此不再赘述。
在步骤401中,UE接收基站发送的TA量化值的场景可以包括两种,一种为在UE的随机接入过程中,UE向基站发送随机接入前导后,UE接收基站发送的用于初始同步的TA量化值;另一种为UE在完成随机接入过程之后, 在UE建立RRC连接或该UE位于RRC连接态时,UE接收基站发送的用于更新同步的TA量化值。
在本实施例中,UE可以通过TA命令TA接收该TA量化值,即TA量化值以TA命令TA的方式实现。TA量化值包括基础值和偏移值,基础值设为TA_BASE,偏移值设为TA_OFFSET。基础值的量化精度为第一量化精度MTs,偏移值的量化精度为第二量化精度NTs。
M为小于或等于16的正整数,N为小于M的非负整数,Ts为长期演进LTE系统中的最小时间单位,值为1/30.72μs。
当第一量化精度等于16Ts时,第二量化精度小于16Ts时,可以利用量化精度小于16Ts的偏移值来提高量化精度,进而减少传输定时调整的步距;且当第一量化精度小于16Ts时,第二量化精度可以更精细或者不使用第二量化精度,便可以提高量化精度,减少传输定时调整的步距。
进一步地,当第一量化精度为16Ts时,该基础值TA_BASE同现有的TA命令TA。在初始同步(随机接入)时,基础值TA_BASE占用11bit,取值范围为0,1,2,...,1282。在更新同步(非随机接入)时,基础值TA_BASE占用6bit,取值范围为0,1,2,...,63。此时,第二量化精度小于16Ts,例如可以为1Ts、2Ts、4Ts或8Ts。偏移值TA_OFFSET可以占用4bit,取值范围为0到15内的所有值或部分值,具体根据N的取值不同而不同,例如,第二量化精度为1Ts时,偏移值TA_OFFSET的取值范围是0,1,2,3,...,15,第二量化精度为2Ts时,偏移值TA_OFFSET的取值范围是0,1,2,3,...,7,第二量化精度为4Ts时,偏移值TA_OFFSET的取值范围是0,1,2,3。
当第一量化精度小于16Ts时,例如可以为1Ts、2Ts、4Ts或8Ts。第二量化精度相对于第一量化精度更为精细,即N小于M。此时,基础值TA_BASE占用的比特相对于现有技术将会增加,例如,当第一量化精度为8Ts时,TA_BASE的取值范围为0,1,2,...,2564,其占用比特明显增加。偏移值TA_OFFSET占用的比特根据其自身的量化精度和基础值的量化精度而设定。为了降低两个相对于现有技术都做调整的复杂度,较佳的,N可以为0,即直接选择更为精细的量化精度实现量化,这种方式实现相对于以上方式,第二量化精度不存在,偏移值TA_OFFSET为0,即偏移值没有实际含义,所以偏移值TA_OFFSET不再占用任何比特,实现简单。
可见,当第一量化精度为16Ts时,可以保持现有协议不变,只需要在原协议中增加反映偏移值的字段即可,这种方式兼容性较好。当第一量化精度小于16Ts时,实现简单,但需要增加TA命令TA占用的比特数,且量化精度越高,占用的比特数越大。
在步骤402中,UE根据TA量化值确定传输定时调整的量。
在M等于16,N小于16,在随机接入时,传输定时调整的量为NTA=M*TA_BASE+N*TA_OFFSET,NTA的单位为Ts;在非随机接入时,传输定时调整的量为NTA,new=NTA,old+(TA_BASE-m)*M+TA_OFFSET*N,NTA,new的单位为Ts,NTA,old为之前的传输定时调整的量,m为[TA_BASE的最大值/2],且[]表示向上或向下取整。
例如,当M=16,N=1时,在随机接入时,NTA=16*TA_BASE+TA_OFFSET;在非随机接入时,NTA,new=NTA,old+(TA_BASE-31)*16+TA_OFFSET;当M=16,N=2时,在随机接入时,NTA=16*TA_BASE+2*TA_OFFSET;在非随机接入时,NTA,new=NTA,old+(TA_BASE-31)*16+2*TA_OFFSET
在M小于16,N为0,TA量化值为基础值时,在随机接入时,传输定时调整的量为NTA=M*TA_BASE,NTA的单位为Ts;在非随机接入时,传输定时调整的量为NTA,new=NTA,old+(TA_BASE-m)*M,NTA,new的单位为Ts,NTA,old为之前的传输定时调整的量,m为[TA_BASE的最大值/2],且[]表示向上或向下取整。
例如,当M=8时,N为0时,在随机接入时,传输定时调整的量为NTA=8*TA_BASE;在非随机接入时,传输定时调整的量为NTA,new=NTA,old+8*(TA_BASE-63)。
在步骤403中,UE根据该传输定时调整的量,进行物理上行链路控制信道(Physical Uplink Control Channel,简称PUCCH)以及物理上行链路共享信道(Physical Uplink Shared Channel,简称PUSCH)以及探测参考信号(Sounding Reference Signal,简称SRS)的上行传输定时调整。
进一步地,在上述实施例的基础上,UE还向基站发送测量报告和呼叫信息,在具体实现过程中,当UE对无线网络进行测量得到测量报告后,将测量报告发送给基站,该测量报告可以包括UE的发射功率,SINR,RSRP,RSRQ等,呼叫信息包括用户建立RRC连接次数、用户设备建立RAB的次 数等,以使基站根据TA量化值、测量报告及呼叫信息,确定网络覆盖信息和话务信息。
本实施例对TA量化值进行了改进,TA量化值包括基础值和偏移值,基础值的量化精度为第一量化精度MTs,偏移值的量化精度为第二量化精度NTs,M为小于或等于16的正整数,N为小于M的非负整数,Ts为长期演进LTE系统中的最小时间单位,值为1/30.72μs,通过对量化精度进行设计,使得传输定时调整的量的步距更加精细,从而最小步距对应的距离也更加精细,更贴近实际网络应用。且UE根据TA量化值确定传输定时调整的量;根据传输定时调整的量,进行上行传输定时调整,UE在进行上行传输定时调整时,也更加精确。
下面分别以随机接入过程和完成随机接入之后的传输定时调整为例,详细描述以上方法。
请参考图5,图5为本发明传输定时调整的方法实施例三的信令流图。如图5所示,本实施例提供的传输定时调整的方法,包括:
步骤501、UE向基站发送随机接入前导;
例如,UE在物理随机接入信道(Physical Random Access Channel,简称PRACH)中发送随机接入前导(random access preamble)给基站。
步骤502、基站根据随机接入前导,确定UE与基站之间的传输时延;
本实施例中,该传输时延为定时提前量TADV;且,定时提前量TADV的确定方法例如可以为:基站利用搜索窗搜索UE发送的随机接入前导,具体的,搜索窗不断向外移动,直到收到UE发送的随机接入前导,根据搜索到随机接入前导的搜索窗位置及窗口大小计算得到UE与基站之间的传输时延。
步骤503、基站根据传输时延,产生TA量化值;
其中,该TA量化值包括基础值和偏移值,该TA量化值的描述同以上实施例,在此不再赘述。
步骤504、基站向UE发送随机接入响应,该随机接入响应中包括以上TA量化值;
例如,基站在物理下行共享信道(Physical Downlink Shared Channel,简称PDSCH)上向UE发送随机接入响应。且该TA量化值的基础值的量化精度为16Ts时,其同现有的TA命令TA,偏移值则在原有协议的基础上,增加 偏移值的字段。当基础值的量化精度小于16Ts时,原有TA命令TA的字段大小,即其占用的比特数需要增加。
步骤505、UE根据TA量化值确定传输定时调整的量,并根据传输定时调整的量,进行上行传输定时调整。
在3GPP的LTE系统中,用户设备通过随机接入过程与基站建立上行同步关系。其中,随机接入过程包括基于竞争的随机接入过程和基于非竞争的随机接入过程。本实施例此处以基于竞争的随机接入过程为例进行说明,基于非竞争的随机接入过程类似,本实施例此处不再赘述。
在步骤505之后,用户设备根据该定时提前量,调整PUCCH以及PUSCH以及SRS的上行发送时间。
本领域技术人员可以理解,在步骤503之后,还包括基站的冲突检测,UE的RRC连接等,本实施例在此不再赘述。
虽然在随机接入过程中,UE与基站取得了上行同步,但上行信号到达基站的时间可能会随着时间发生变化。例如,高速移动中的UE,运行中的高铁上的UE,该UE与基站的传输时延会不断变化;又例如,当前传输路径消失,切换到新的传输路径,具体地,在建筑物密集的城市,走到建筑的转角时,这种情况就很可能发生,对于其它可能的情况,本实施例此处不做特别限制。因此,UE需要及时更新其上行定时提前量,以保持上行同步。LTE中,在UE建立RRC连接或用户设备处于RRC态时,基站使用一种闭环机制来调整上行定时提前量。具体,请参考以下实施例。
请参考图6,图6为本发明传输定时调整的方法实施例四的信令流图。如图6所示,本实施例提供的传输定时调整的方法,包括:
步骤601、UE向基站发送上行传输信号;
具体地,UE在完成随机接入过程之后,向基站发送上行传输信号;
步骤602、基站根据上行传输信号,确定UE与基站之间的传输时延;
本实施例中,该传输时延为定时提前量TADV
步骤603、基站根据传输时延,产生TA量化值;
步骤604、基站向UE发送媒体接入控制控制单元(Medium Access Control control element,简称MAC CE),该MAC CE中包括TA量化值;
步骤605、UE根据TA量化值确定传输定时调整的量,并根据传输定时 调整的量,进行上行传输定时调整。
本实施例中的TA量化值包括基础值和偏移值,且该TA量化值的描述同以上实施例,在此不再赘述。且该TA量化值的基础值的量化精度为16Ts时,其同现有的TA命令TA,偏移值则在原有协议的基础上,增加偏移值的字段。当基础值的量化精度小于16Ts时,原有TA命令TA的字段大小,即其占用的比特数需要增加。
在步骤601中,UE在建立RRC连接或处于RRC态时向基站发送上行传输信号。在步骤602中,理论上,UE发送的任何上行传输信号都可以用于测量定时提前量TADV。可选地,基站可选择解调参考信号(De-Modulation Reference Signal,简称DMRS)、探测参考信号(Sounding Reference Signal,简称SRS)、或者物理上行控制信道(Physical Uplink Control Channel,简称:PUCCH)测量定时提前量TADV,在具体实现过程中,优先选择DMRS测量定时提前量TADV,其次选择SRS测量定时提前量TADV,最后选择PUCCH测量定时提前量TADV
图7为本发明基站实施例一的结构示意图,如图7所示,本实施例提供的基站70包括:时延确定模块701,量化值产生模块702以及发送模块703。
时延确定模块701,用于确定UE与基站之间的传输时延;
量化值产生模块702,用于根据传输时延,产生定时提前TA量化值,所述TA量化值包括基础值和偏移值,其中,基础值的量化精度为第一量化精度MTs,偏移值的量化精度为第二量化精度NTs,M为小于或等于16的正整数,N为小于M的非负整数,Ts为长期演进LTE系统中的最小时间单位,值为1/30.72μs;
发送模块703,用于向UE发送TA量化值,所述TA量化值用于UE的上行传输定时调整。
关于传输时延的确定,以及在不同量化精度情况下,TA量化值的确定以及TA量化值占用的比特等同以上实施例,在此不再进行详细描述,仅简单陈述如下:
可选地,M等于16,N小于16。例如,所述N为1、2、4或8。
可选地,量化值产生模块702具体用于:
以第一量化精度MTs量化传输时延,得到传输时延的量化值及余数,其 中,所述传输时延的量化值为基础值;
以第二量化精度NTs量化余数,得到余数的量化值,其中,所述余数的量化值为偏移值。
可选地,当N为1时,量化值产生模块702具体用于:
以第二量化精度NTs量化传输时延,得到中间量化值;
将中间量化值进行模16运算,取整得到基础值,余数作为偏移值。
可选地,在随机接入时,基础值占用11比特,偏移值占用4比特;或者,在非随机接入时,基础值占用6比特,偏移值占用4比特。
可选地,M小于16,N为0,且此时,量化值产生模块具体用于:
以第一量化精度MTs量化传输时延,得到传输时延的量化值,其中,所述传输时延的量化值为TA量化值。例如,M可以为1、2、4或8。
可选地,传输时延为定时提前量TADV,其中,
在随机接入时,TADV=(eNB Rx–Tx time difference);或,
在非随机接入时,TADV=(eNB Rx–Tx time difference)+(UE Rx–Tx time difference),
其中,eNB Rx–Tx time difference表示所述基站的接收与发送时间差,UE Rx–Tx time difference表示所述UE的接收与发送时间差。
可选地,基站通过TA命令发送TA量化值。且该TA量化值的基础值的量化精度为16Ts时,其同现有的TA命令,偏移值则在原有协议的基础上,增加偏移值的字段。当基础值的量化精度小于16Ts时,原有TA命令TA的字段大小,即其占用的比特数需要增加。
图8为本发明基站实施例二的结构示意图,如图8所示,本实施例提供的基站70在图7实施例的基础上实现,此时,该基站还包括:
接收模块704,用于接收UE发送的测量报告和呼叫信息;
优化模块705,用于根据TA量化值、测量报告和呼叫信息,确定网络覆盖信息和话务信息,根据网络覆盖信息和话务信息,进行网络规划或优化。
本实施例提供的基站,可执行上述方法实施例的技术方案,其实现原理和技术效果类似,本实施例此处不再赘述。
需要说明的是,本实施例中的接收模块704可以为基站的接收机,发送模块703可以为基站的发射机;另外,也可以将接收模块704和发送模块703 集成在一起构成基站的收发机。时延确定模块701可以为单独设立的处理器,也可以集成在基站的某一个处理器中实现,此外,也可以以程序代码的形式存储于基站的存储器中,由基站的某一个处理器调用并执行以上时延确定模块701的功能。量化值产生模块702以及优化模块705的实现同时延确定模块701,且可以与时延确定模块701集成在一起,也可以独立实现。这里所述的处理器可以是一个中央处理器(Central Processing Unit,CPU),或者是特定集成电路(Application Specific Integrated Circuit,ASIC),或者是被配置成实施本发明实施例的一个或多个集成电路。
图9为本发明用户设备实施例一的结构示意图,如图9所示,本实施例提供的UE90包括:接收模块901,传输定时确定模块902以及调整模块903。
接收模块901,用于接收基站发送的定时提前TA量化值,所述TA量化值包括基础值和偏移值,其中,基础值的量化精度为第一量化精度MTs,偏移值的量化精度为第二量化精度NTs,其中,M为小于或等于16的正整数,N为小于M的非负整数,Ts为长期演进LTE系统中的最小时间单位,值为1/30.72μs;
传输定时确定模块902,用于根据TA量化值确定传输定时调整的量;
调整模块903,用于根据传输定时调整的量,进行上行传输定时调整。
关于在不同量化精度情况下,TA量化值的确定以及TA量化值占用的比特等同以上实施例,在此不再进行详细描述,仅简单陈述如下:
可选地,M等于16,N小于16。例如,所述N可以为1、2、4或8。
可选地,在随机接入时,基础值占用11比特,偏移值占用4比特;或者,在非随机接入时,基础值占用6比特,偏移值占用4比特。
可选地,在随机接入时,传输定时调整的量为NTA,NTA=TA_BASE*M+TA_OFFSET*N,其中NTA的单位为Ts,TA_BASE为基础值,TA_OFFSET为偏移值;或者,在非随机接入时,传输定时调整的量为NTA,new,NTA,new=NTA,old+(TA_BASE-m)*M+TA_OFFSET*N,其中,NTA,new的单位为Ts,NTA,old为之前的传输定时调整的量,TA_BASE为基础值,TA_OFFSET为偏移值,m为[TA_BASE的最大值/2],且[]表示向上或向下取整。
可选地,M小于16,N为0,所述TA量化值为基础值。例如,所述M可以为1、2、4或8。
可选地,UE通过TA命令接收TA量化值。
图10为本发明用户设备实施例二的结构示意图,如图10所示,本实施例提供的UE90在图9实施例的基础上实现,具体还包括:
发送模块904,用于向基站发送测量报告及呼叫信息,以使基站根据TA量化值、测量报告及呼叫信息,确定网络覆盖信息和话务信息。
本实施例提供的UE,可用于执行上述方法实施例的技术方案,其实现原理和技术效果类似,本实施例此处不再赘述。
需要说明的是,本实施例中的接收模块901可以为UE的接收机,发送模块904可以为UE的发射机;另外,也可以将接收模块901和发送模块904集成在一起构成UE的收发机。传输定时确定模块902可以为单独设立的处理器,也可以集成在UE的某一个处理器中实现,此外,也可以以程序代码的形式存储于UE的存储器中,由UE的某一个处理器调用并执行以上传输定时确定模块902的功能。调整模块903的实现同传输定时确定模块902,且可以与传输定时确定模块902集成在一起,也可以独立实现。这里所述的处理器可以是一个中央处理器(Central Processing Unit,CPU),或者是特定集成电路(Application Specific Integrated Circuit,ASIC),或者是被配置成实施本发明实施例的一个或多个集成电路。
图11为本发明基站实施例三的结构示意图,如图11所示,本实施例提供的基站110包括:处理器111、接收机114以及发射机113,图中还示出了存储器112和总线115,该处理器111、接收机114、发射机113和存储器112通过总线115连接并完成相互间的通信。
其中,处理器111用于:
确定UE与基站之间的传输时延;
根据传输时延,产生定时提前TA量化值,所述TA量化值包括基础值和偏移值,其中,所述基础值的量化精度为第一量化精度MTs,所述偏移值的量化精度为第二量化精度NTs,M为小于或等于16的正整数,N为小于M的非负整数,Ts为长期演进LTE系统中的最小时间单位,值为1/30.72μs;
通过发射机113向UE发送所述TA量化值,所述TA量化值用于UE的上行传输定时调整。
关于传输时延的确定,以及在不同量化精度情况下,TA量化值的确定以 及TA量化值占用的比特等同以上实施例,在此不再进行详细描述,仅简单陈述如下:
可选地,M等于16,N小于16。例如,所述N可以为1、2、4或8。
可选地,处理器111具体用于:
以第一量化精度MTs量化传输时延,得到传输时延的量化值及余数,其中,所述传输时延的量化值为基础值;
以第二量化精度NTs量化余数,得到余数的量化值,其中,所述余数的量化值为偏移值。
可选地,当N为1时,处理器111具体用于:以第二量化精度NTs量化传输时延,得到中间量化值;
将中间量化值进行模16运算,取整得到基础值,余数作为偏移值。
可选地,在随机接入时,基础值占用11比特,偏移值占用4比特;或者,在非随机接入时,基础值占用6比特,偏移值占用4比特。
可选地,M小于16,N为0,处理器111具体用于:以第一量化精度MTs量化传输时延,得到传输时延的量化值,其中,所述传输时延的量化值为TA量化值。例如,M可以为1、2、4或8。
可选地,传输时延为定时提前量TADV,其中,在随机接入时,TADV=(eNB Rx–Tx time difference);或,在非随机接入时,TADV=(eNB Rx–Tx time difference)+(UE Rx–Tx time difference),其中,eNB Rx–Tx time difference表示所述基站的接收与发送时间差,UE Rx–Tx time difference表示所述UE的接收与发送时间差。
可选地,基站通过TA命令发送TA量化值。
可选地,处理器111还用于:通过接收机114接收UE发送的测量报告和呼叫信息;根据TA量化值、测量报告和呼叫信息,确定网络覆盖信息和话务信息;根据所述网络覆盖信息和所述话务信息,进行网络规划或优化。
需要说明的是,这里的处理器111可以是一个处理器,也可以是多个处理元件的统称。例如,该处理器可以是中央处理器(Central Processing Unit,CPU),也可以是特定集成电路(Application Specific Integrated Circuit,ASIC),或者是被配置成实施本发明实施例的一个或多个集成电路,例如:一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程 门阵列(Field Programmable Gate Array,FPGA)。
存储器112可以是一个存储装置,也可以是多个存储元件的统称,且用于存储可执行程序代码或基站运行所需要参数、数据等。且存储器112可以包括随机存储器(RAM),也可以包括非易失性存储器(non-volatile memory),例如磁盘存储器,闪存(Flash)等。
总线115可以是工业标准体系结构(Industry Standard Architecture,ISA)总线、外部设备互连(Peripheral Component,PCI)总线或扩展工业标准体系结构(Extended Industry Standard Architecture,EISA)总线等。该总线115可以分为地址总线、数据总线、控制总线等。为便于表示,图11中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
本实施例提供的基站,可用于执行上述方法实施例的技术方案,其实现原理和技术效果类似,本实施例此处不再赘述。
图12为本发明用户设备实施例三的结构示意图。如图12所示,本实施例提供的UE 120包括:处理器121、接收机124以及发射机123,图中还示出了存储器122和总线125,该处理器121、接收机124、发射机123和存储器122通过总线125连接并完成相互间的通信。
处理器121具体用于:
通过接收机124接收基站发送的定时提前TA量化值,所述TA量化值包括基础值和偏移值,其中,基础值的量化精度为第一量化精度MTs,偏移值的量化精度为第二量化精度NTs,其中,M为小于或等于16的正整数,N为小于M的非负整数,Ts为长期演进LTE系统中的最小时间单位,值为1/30.72μs;
根据TA量化值确定传输定时调整的量;
根据传输定时调整的量,进行上行传输定时调整。
关于在不同量化精度情况下,TA量化值的确定以及TA量化值占用的比特等同以上实施例,在此不再进行详细描述,仅简单陈述如下:
可选地,M等于16,N小于16。例如,所述N可以为1、2、4或8。
可选地,在随机接入时,基础值占用11比特,偏移值占用4比特;或者,在非随机接入时,基础值占用6比特,偏移值占用4比特。
可选地,在随机接入时,传输定时调整的量为NTA,NTA=TA_BASE*M +TA_OFFSET*N,其中NTA的单位为Ts,TA_BASE为基础值,TA_OFFSET为偏移值;或者,在非随机接入时,传输定时调整的量为NTA,new,NTA,new=NTA,old+(TA_BASE-m)*M+TA_OFFSET*N,其中,NTA,new的单位为Ts,NTA,old为之前的传输定时调整的量,TA_BASE为基础值,TA_OFFSET为偏移值,m为[TA_BASE的最大值/2],且[]表示向上或向下取整。
可选地,M小于16,N为0,TA量化值为基础值。例如,所述M可以为1、2、4或8。
可选地,UE通过TA命令接收TA量化值。
可选地,处理器121还用于:通过发射机123向基站发送测量报告及呼叫信息,以使基站根据TA量化值、测量报告及呼叫信息,确定网络覆盖信息和话务信息。
需要说明的是,这里的处理器121可以是一个处理器,也可以是多个处理元件的统称。例如,该处理器可以是中央处理器(Central Processing Unit,CPU),也可以是特定集成电路(Application Specific Integrated Circuit,ASIC),或者是被配置成实施本发明实施例的一个或多个集成电路,例如:一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)。
存储器122可以是一个存储装置,也可以是多个存储元件的统称,且用于存储可执行程序代码或用户设备运行所需要参数、数据等。且存储器122可以包括随机存储器(RAM),也可以包括非易失性存储器(non-volatile memory),例如磁盘存储器,闪存(Flash)等。
总线125可以是工业标准体系结构(Industry Standard Architecture,ISA)总线、外部设备互连(Peripheral Component,PCI)总线或扩展工业标准体系结构(Extended Industry Standard Architecture,EISA)总线等。该总线125可以分为地址总线、数据总线、控制总线等。为便于表示,图12中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
本实施例提供的UE,可用于执行上述方法实施例的技术方案,其实现原理和技术效果类似,本实施例此处不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的设备和方法,可以通过其它的方式实现。例如,以上所描述的设备实施例仅仅是示意性的, 例如,所述单元或模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或模块可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,设备或模块的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
本领域普通技术人员可以理解:实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一计算机可读取存储介质中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (40)

  1. 一种传输定时调整的方法,其特征在于,包括:
    基站确定用户设备UE与所述基站之间的传输时延;
    所述基站根据所述传输时延,产生定时提前TA量化值,所述TA量化值包括基础值和偏移值,其中,所述基础值的量化精度为第一量化精度MTs,所述偏移值的量化精度为第二量化精度NTs,M为小于或等于16的正整数,N为小于M的非负整数,Ts为长期演进LTE系统中的最小时间单位,值为1/30.72μs;
    所述基站向所述UE发送所述TA量化值,所述TA量化值用于所述UE的上行传输定时调整。
  2. 根据权利要求1所述的方法,其特征在于,所述M等于16,所述N小于16。
  3. 根据权利要求2所述的方法,其特征在于,所述N为1、2、4或8。
  4. 根据权利要求2或3所述的方法,其特征在于,所述基站根据所述传输时延,产生TA量化值,包括:
    以所述第一量化精度MTs量化所述传输时延,得到所述传输时延的量化值及余数,其中,所述传输时延的量化值为所述基础值;
    以所述第二量化精度NTs量化所述余数,得到所述余数的量化值,其中,所述余数的量化值为所述偏移值。
  5. 根据权利要求2或3所述的方法,其特征在于,当所述N为1时,所述基站根据所述传输时延,产生TA量化值,包括:
    以所述第二量化精度NTs量化所述传输时延,得到中间量化值;
    将所述中间量化值进行模16运算,取整得到所述基础值,余数作为所述偏移值。
  6. 根据权利要求2至5任一项所述的方法,其特征在于,在随机接入时,所述基础值占用11比特,所述偏移值占用4比特;或者,
    在非随机接入时,所述基础值占用6比特,所述偏移值占用4比特。
  7. 根据权利要求1所述的方法,其特征在于,所述M小于16,所述N为0,所述基站根据所述传输时延,产生TA量化值,包括:
    以所述第一量化精度MTs量化所述传输时延,得到所述传输时延的量化 值,其中,所述传输时延的量化值为所述TA量化值。
  8. 根据权利要求7所述的方法,其特征在于,所述M为1、2、4或8。
  9. 根据权利要求1至8任一项所述的方法,其特征在于,所述传输时延为定时提前量TADV,其中,
    在随机接入时,TADV=(eNB Rx–Tx time difference);或,
    在非随机接入时,TADV=(eNB Rx–Tx time difference)+(UE Rx–Tx time difference),
    其中,eNB Rx–Tx time difference表示所述基站的接收与发送时间差,UE Rx–Tx time difference表示所述UE的接收与发送时间差。
  10. 根据权利要求1至9任一项所述的方法,其特征在于,所述基站通过TA命令发送所述TA量化值。
  11. 根据权利要求1至10任一项所述的方法,其特征在于,所述方法还包括:
    接收所述UE发送的测量报告和呼叫信息;
    根据所述TA量化值、所述测量报告和呼叫信息,确定网络覆盖信息和话务信息;
    根据所述网络覆盖信息和所述话务信息,进行网络规划或优化。
  12. 一种传输定时调整的方法,其特征在于,包括:
    用户设备UE接收基站发送的定时提前TA量化值,所述TA量化值包括基础值和偏移值,其中,所述基础值的量化精度为第一量化精度MTs,所述偏移值的量化精度为第二量化精度NTs,其中,M为小于或等于16的正整数,N为小于M的非负整数,Ts为长期演进LTE系统中的最小时间单位,值为1/30.72μs;
    所述UE根据所述TA量化值确定传输定时调整的量;
    所述UE根据所述传输定时调整的量,进行上行传输定时调整。
  13. 根据权利要求12所述的方法,其特征在于,所述M等于16,所述N小于16。
  14. 根据权利要求13所述的方法,其特征在于,所述N为1、2、4或8。
  15. 根据权利要求13或14所述的方法,其特征在于,在随机接入时,所述基础值占用11比特,所述偏移值占用4比特;或者,
    在非随机接入时,所述基础值占用6比特,所述偏移值占用4比特。
  16. 根据权利要求13至15任一项所述的方法,其特征在于,在随机接入时,所述传输定时调整的量为NTA,所述NTA=TA_BASE*M+TA_OFFSET*N,其中NTA的单位为Ts,TA_BASE为所述基础值,TA_OFFSET为所述偏移值;或者,
    在非随机接入时,所述传输定时调整的量为NTA,new,所述NTA,new=NTA,old+(TA_BASE-m)*M+TA_OFFSET*N,其中,所述NTA,new的单位为Ts,NTA,old为之前的传输定时调整的量,TA_BASE为所述基础值,TA_OFFSET为所述偏移值,m为[TA_BASE的最大值/2],且[]表示向上或向下取整。
  17. 根据权利要求12所述的方法,其特征在于,所述M小于16,所述N为0,所述TA量化值为所述基础值。
  18. 根据权利要求17所述的方法,其特征在于,所述M为1、2、4或8。
  19. 根据权利要求12至18任一项所述的方法,其特征在于,所述UE通过TA命令接收所述TA量化值。
  20. 根据权利要求12至19任一项所述的方法,其特征在于,所述方法还包括:
    向所述基站发送测量报告及呼叫信息,以使所述基站根据所述TA量化值、所述测量报告及呼叫信息,确定网络覆盖信息和话务信息。
  21. 一种基站,其特征在于,包括:
    时延确定模块,用于确定用户设备UE与所述基站之间的传输时延;
    量化值产生模块,用于根据所述传输时延,产生定时提前TA量化值,所述TA量化值包括基础值和偏移值,其中,所述基础值的量化精度为第一量化精度MTs,所述偏移值的量化精度为第二量化精度NTs,M为小于或等于16的正整数,N为小于M的非负整数,Ts为长期演进LTE系统中的最小时间单位,值为1/30.72μs;
    发送模块,用于向所述UE发送所述TA量化值,所述TA量化值用于所述UE的上行传输定时调整。
  22. 根据权利要求21所述的基站,其特征在于,所述M等于16,所述N小于16。
  23. 根据权利要求22所述的基站,其特征在于,所述N为1、2、4或8。
  24. 根据权利要求22或23所述的基站,其特征在于,所述量化值产生 模块具体用于:
    以所述第一量化精度MTs量化所述传输时延,得到所述传输时延的量化值及余数,其中,所述传输时延的量化值为所述基础值;
    以所述第二量化精度NTs量化所述余数,得到所述余数的量化值,其中,所述余数的量化值为所述偏移值。
  25. 根据权利要求22或23所述的基站,其特征在于,当所述N为1时,所述量化值产生模块具体用于:
    以所述第二量化精度NTs量化所述传输时延,得到中间量化值;
    将所述中间量化值进行模16运算,取整得到所述基础值,余数作为所述偏移值。
  26. 根据权利要求22至25任一项所述的基站,其特征在于,在随机接入时,所述基础值占用11比特,所述偏移值占用4比特;或者,
    在非随机接入时,所述基础值占用6比特,所述偏移值占用4比特。
  27. 根据权利要求21所述的基站,其特征在于,所述M小于16,所述N为0,所述量化值产生模块具体用于:
    以所述第一量化精度MTs量化所述传输时延,得到所述传输时延的量化值,其中,所述传输时延的量化值为所述TA量化值。
  28. 根据权利要求27所述的基站,其特征在于,所述M为1、2、4或8。
  29. 根据权利要求21至28任一项所述的基站,其特征在于,所述传输时延为定时提前量TADV,其中,
    在随机接入时,TADV=(eNB Rx–Tx time difference);或,
    在非随机接入时,TADV=(eNB Rx–Tx time difference)+(UE Rx–Tx time difference),
    其中,eNB Rx–Tx time difference表示所述基站的接收与发送时间差,UE Rx–Tx time difference表示所述UE的接收与发送时间差。
  30. 根据权利要求21至29任一项所述的基站,其特征在于,所述基站通过TA命令发送所述TA量化值。
  31. 根据权利要求21至30任一项所述的基站,其特征在于,还包括:
    接收模块,用于接收所述UE发送的测量报告和呼叫信息;
    优化模块,用于根据所述TA量化值、所述测量报告和呼叫信息,确定 网络覆盖信息和话务信息,根据所述网络覆盖信息和所述话务信息,进行网络规划或优化。
  32. 一种用户设备,其特征在于,包括:
    接收模块,用于接收基站发送的定时提前TA量化值,所述TA量化值包括基础值和偏移值,其中,所述基础值的量化精度为第一量化精度MTs,所述偏移值的量化精度为第二量化精度NTs,其中,M为小于或等于16的正整数,N为小于M的非负整数,Ts为长期演进LTE系统中的最小时间单位,值为1/30.72μs;
    传输定时确定模块,用于根据所述TA量化值确定传输定时调整的量;
    调整模块,用于根据所述传输定时调整的量,进行上行传输定时调整。
  33. 根据权利要求32所述的用户设备,其特征在于,所述M等于16,所述N小于16。
  34. 根据权利要求33所述的用户设备,其特征在于,所述N为1、2、4或8。
  35. 根据权利要求33或34所述的用户设备,其特征在于,在随机接入时,所述基础值占用11比特,所述偏移值占用4比特;或者,
    在非随机接入时,所述基础值占用6比特,所述偏移值占用4比特。
  36. 根据权利要求33至35任一项所述的用户设备,其特征在于,在随机接入时,所述传输定时调整的量为NTA,所述NTA=TA_BASE*M+TA_OFFSET*N,其中NTA的单位为Ts,TA_BASE为所述基础值,TA_OFFSET为所述偏移值;或者,
    在非随机接入时,所述传输定时调整的量为NTA,new,所述NTA,new=NTA,old+(TA_BASE-m)*M+TA_OFFSET*N,其中,所述NTA,new的单位为Ts,NTA,old为之前的传输定时调整的量,TA_BASE为所述基础值,TA_OFFSET为所述偏移值,m为[TA_BASE的最大值/2],且[]表示向上或向下取整。
  37. 根据权利要求32所述的用户设备,其特征在于,所述M小于16,所述N为0,所述TA量化值为所述基础值。
  38. 根据权利要求37所述的用户设备,其特征在于,所述M为1、2、4或8。
  39. 根据权利要求32至38任一项所述的用户设备,其特征在于,所述UE通过TA命令接收所述TA量化值。
  40. 根据权利要求32至39任一项所述的用户设备,其特征在于,还包括:
    发送模块,用于向所述基站发送测量报告及呼叫信息,以使所述基站根据所述TA量化值、所述测量报告及呼叫信息,确定网络覆盖信息和话务信息。
PCT/CN2014/087962 2014-09-30 2014-09-30 传输定时调整的方法及设备 WO2016049860A1 (zh)

Priority Applications (10)

Application Number Priority Date Filing Date Title
PCT/CN2014/087962 WO2016049860A1 (zh) 2014-09-30 2014-09-30 传输定时调整的方法及设备
CN201910414290.7A CN110087303B (zh) 2014-09-30 2014-09-30 传输定时调整的方法及设备
EP18202186.5A EP3499984B1 (en) 2014-09-30 2014-09-30 Transmission timing adjustment method and device
CN201480035193.2A CN105493584B (zh) 2014-09-30 2014-09-30 传输定时调整的方法及设备
EP20189956.4A EP3813446A1 (en) 2014-09-30 2014-09-30 Transmission timing adjustment method and device
CN201910407085.8A CN110087302B (zh) 2014-09-30 2014-09-30 传输定时调整的方法及设备
EP14902934.0A EP3188558B1 (en) 2014-09-30 2014-09-30 Transmission timing adjustment method and device
US15/471,417 US10194413B2 (en) 2014-09-30 2017-03-28 Transmission timing adjustment method and device
US16/225,770 US10484956B2 (en) 2014-09-30 2018-12-19 Transmission timing adjustment method and device
US16/660,353 US10856247B2 (en) 2014-09-30 2019-10-22 Transmission timing adjustment method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/087962 WO2016049860A1 (zh) 2014-09-30 2014-09-30 传输定时调整的方法及设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/471,417 Continuation US10194413B2 (en) 2014-09-30 2017-03-28 Transmission timing adjustment method and device

Publications (1)

Publication Number Publication Date
WO2016049860A1 true WO2016049860A1 (zh) 2016-04-07

Family

ID=55629287

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/087962 WO2016049860A1 (zh) 2014-09-30 2014-09-30 传输定时调整的方法及设备

Country Status (4)

Country Link
US (3) US10194413B2 (zh)
EP (3) EP3813446A1 (zh)
CN (3) CN110087302B (zh)
WO (1) WO2016049860A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190090262A1 (en) * 2017-06-06 2019-03-21 Huawei Technologies Co.,Ltd. Uplink information sending method and apparatus
JP2020171201A (ja) * 2019-04-08 2020-10-22 日本製粉株式会社 低糖質パスタ
CN112887004A (zh) * 2019-11-29 2021-06-01 华为技术有限公司 一种通信方法及装置

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3813446A1 (en) * 2014-09-30 2021-04-28 Huawei Technologies Co., Ltd. Transmission timing adjustment method and device
US11197310B2 (en) * 2016-04-12 2021-12-07 Lg Electronics Inc. Cell cycling uplink transmission method and apparatus therefor in wireless communication system
CN108282213B (zh) * 2017-01-06 2021-09-21 华硕电脑股份有限公司 执行用于多个收发点的上行链路传送的方法和设备
US11265896B2 (en) * 2017-01-18 2022-03-01 Huawei Technologies Co., Ltd. Systems and methods for asynchronous grant-free access
CN108462989A (zh) * 2017-02-21 2018-08-28 中兴通讯股份有限公司 时间提前量的处理方法和装置
CN108811075B (zh) * 2017-05-05 2020-09-18 华为技术有限公司 通信方法、网络设备和终端设备
JP6901107B2 (ja) * 2017-08-10 2021-07-14 オフィノ, エルエルシー 無線リソース構成同期
CN109429354B (zh) * 2017-08-31 2021-05-18 华为技术有限公司 一种随机接入方法及终端
KR102394622B1 (ko) 2017-09-06 2022-05-09 삼성전자주식회사 사물 인터넷 환경에서 상향링크 전송 타이밍을 제어하기 위한 장치 및 방법
CN109495961B (zh) * 2017-09-11 2020-11-10 电信科学技术研究院 一种时间提前量指示方法、基站、终端及装置
US10863547B2 (en) * 2017-11-09 2020-12-08 Qualcomm Incorporated Adapting timing advance for multiple RACH transmission in backhaul networks
CN109788543B (zh) * 2017-11-13 2020-10-09 展讯通信(上海)有限公司 上行ta的确定方法及装置、存储介质、终端
CN108156595B (zh) * 2017-12-05 2020-07-03 南京邮电大学 一种机器通信中基于定时提前命令的前导资源分配方法
CN108135029A (zh) * 2017-12-21 2018-06-08 深圳地空互联技术有限公司 一种应用于高速移动通信的方法、装置及系统
CN110167130A (zh) * 2018-02-13 2019-08-23 华为技术有限公司 一种时间信息的传输方法及装置
CN110167133B (zh) * 2018-02-13 2021-08-13 华为技术有限公司 一种上行同步方法及装置
US11019583B2 (en) * 2018-05-04 2021-05-25 Nokia Technologies Oy Method for network-assisted uplink time advance for extreme range support
US11082941B2 (en) * 2018-08-09 2021-08-03 Qualcomm Incorporated Timing offset techniques in wireless communications
CN111277351B (zh) * 2019-01-28 2022-12-06 维沃移动通信有限公司 一种信息处理方法、终端设备和网络侧设备
CN111278101A (zh) * 2019-01-28 2020-06-12 维沃移动通信有限公司 一种时间信息处理方法、终端设备和网络侧设备
CN109788548B (zh) * 2019-02-19 2020-06-12 上海交通大学 时间提前补偿的卫星移动通信随机接入方法、系统及介质
US11552700B2 (en) * 2019-03-11 2023-01-10 Mediatek Inc. Uplink transmission timing for non-terrestrial networks
CN111757457B (zh) * 2019-03-29 2022-03-29 华为技术有限公司 用于上行定时同步的方法和装置
CN111867041B (zh) * 2019-04-30 2022-01-25 中国移动通信有限公司研究院 一种定时提前确定方法及设备
WO2021048462A1 (en) * 2019-09-10 2021-03-18 Nokia Technologies Oy Time of arrival based method for extended connection range
CN111182566B (zh) * 2019-12-31 2021-12-17 京信网络系统股份有限公司 上行时延的调整方法、装置、基站和存储介质
CN113115428B (zh) * 2020-01-10 2022-04-12 大唐移动通信设备有限公司 一种上行同步调整方法及装置
US20230276421A1 (en) * 2020-09-18 2023-08-31 Qualcomm Incorporated Rx-tx time difference reporting
CN114828197B (zh) * 2021-01-19 2023-10-13 维沃移动通信有限公司 时间信息发送方法、终端及网络侧设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102752846A (zh) * 2012-08-03 2012-10-24 李文龙 定时提前量的调整方法及装置
CN102833844A (zh) * 2008-04-30 2012-12-19 电信科学技术研究院 一种实现上行发送定时提前的方法和装置
WO2013050083A1 (en) * 2011-10-07 2013-04-11 Nokia Siemens Networks Oy Determination of transmission timing information after activation of a cell
CN103733699A (zh) * 2011-07-29 2014-04-16 日本电气株式会社 无线电通信系统中的无线电站、无线电终端和控制传输定时的方法
WO2014113995A1 (en) * 2013-01-28 2014-07-31 Empire Technology Development Llc Maintaining uplink synchronization

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007056891A1 (fr) 2005-11-16 2007-05-24 Zte Corporation Procédé de synchronisation de liaison montante dans un système de communication mobile
JP4915171B2 (ja) * 2006-08-11 2012-04-11 富士通株式会社 通信端末装置および通信方法
JP2008283242A (ja) * 2007-05-08 2008-11-20 Nec Tokin Corp 無線通信システムの計測時刻同期方法
CN101499846B (zh) * 2008-01-29 2012-10-17 电信科学技术研究院 一种高速上行分组接入技术中的同步控制方法及装置
JP5147476B2 (ja) * 2008-03-17 2013-02-20 株式会社日立製作所 無線通信システム、基地局およびデータ送信タイミング制御方法
CN101841778A (zh) 2009-03-17 2010-09-22 松下电器产业株式会社 上行链路多点接收中的时间提前量的调整方法和装置
CN102065535B (zh) * 2009-11-11 2014-07-23 电信科学技术研究院 一种随机接入过程中定时提前量的确定方法及装置
US9042925B2 (en) * 2009-12-03 2015-05-26 Lg Electronics Inc. Method and apparatus for reducing inter-cell interference in a wireless communication system
CN102958075B (zh) * 2011-08-29 2016-12-07 华为技术有限公司 定时提前量ta的确定方法和设备
CN102511189B (zh) * 2011-11-10 2015-09-09 华为技术有限公司 通信方法、用户设备、基站和通信设备
US8971280B2 (en) * 2012-04-20 2015-03-03 Ofinno Technologies, Llc Uplink transmissions in a wireless device
CN104272821A (zh) * 2012-05-10 2015-01-07 瑞典爱立信有限公司 上行链路定时误差减小方法和装置
US8976780B2 (en) * 2012-09-27 2015-03-10 Blackberry Limited Uplink timing maintenance upon time alignment timer expiry
EP3813446A1 (en) * 2014-09-30 2021-04-28 Huawei Technologies Co., Ltd. Transmission timing adjustment method and device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102833844A (zh) * 2008-04-30 2012-12-19 电信科学技术研究院 一种实现上行发送定时提前的方法和装置
CN103733699A (zh) * 2011-07-29 2014-04-16 日本电气株式会社 无线电通信系统中的无线电站、无线电终端和控制传输定时的方法
WO2013050083A1 (en) * 2011-10-07 2013-04-11 Nokia Siemens Networks Oy Determination of transmission timing information after activation of a cell
CN102752846A (zh) * 2012-08-03 2012-10-24 李文龙 定时提前量的调整方法及装置
WO2014113995A1 (en) * 2013-01-28 2014-07-31 Empire Technology Development Llc Maintaining uplink synchronization

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3188558A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190090262A1 (en) * 2017-06-06 2019-03-21 Huawei Technologies Co.,Ltd. Uplink information sending method and apparatus
US10602534B2 (en) * 2017-06-06 2020-03-24 Huawei Technologies Co., Ltd. Uplink information sending method and apparatus
JP2020171201A (ja) * 2019-04-08 2020-10-22 日本製粉株式会社 低糖質パスタ
CN112887004A (zh) * 2019-11-29 2021-06-01 华为技术有限公司 一种通信方法及装置
CN112887004B (zh) * 2019-11-29 2023-04-07 华为技术有限公司 一种通信方法及装置

Also Published As

Publication number Publication date
US10194413B2 (en) 2019-01-29
US10484956B2 (en) 2019-11-19
EP3188558A1 (en) 2017-07-05
US20170201958A1 (en) 2017-07-13
EP3188558B1 (en) 2019-01-09
CN110087302B (zh) 2021-07-09
US20190124615A1 (en) 2019-04-25
CN105493584B (zh) 2019-05-24
EP3813446A1 (en) 2021-04-28
EP3499984A1 (en) 2019-06-19
CN110087302A (zh) 2019-08-02
EP3188558A4 (en) 2017-09-20
EP3499984B1 (en) 2020-09-09
CN105493584A (zh) 2016-04-13
US10856247B2 (en) 2020-12-01
CN110087303A (zh) 2019-08-02
CN110087303B (zh) 2022-07-12
US20200053684A1 (en) 2020-02-13

Similar Documents

Publication Publication Date Title
US10484956B2 (en) Transmission timing adjustment method and device
ES2827698T3 (es) Transmisión de señales de referencia de descubrimiento en una portadora sin licencia en una red inalámbrica
CN108293195B (zh) 用于管理无线通信网络中的信令的无线设备、无线网络节点及在其中执行的方法
WO2020200134A1 (zh) 一种随机接入方法及通信装置
JP2022520627A (ja) タイミングアドバンスを決定するための方法および装置
US11445331B2 (en) Position measurement system for mobile terminal
JP2019534632A (ja) Rachレスハンドオーバ中のターゲットセルにおけるアップリンクグラントの有効時間の制御
KR101770906B1 (ko) 셀룰러 및 d2d 혼합 네트워크의 통신 방법 및 사용자 장비
CN109287000B (zh) 在双连接中设定次要节点及回报的装置及方法
WO2018033004A1 (en) System and method for beacon interval adaptation
US10433320B2 (en) Switching and synchronization device
WO2017076195A1 (zh) 时钟同步方法、同步信息传输方法及装置
US11985570B2 (en) Position measurement system for mobile terminal
CN114145047A (zh) 用于通信的方法、终端设备和计算机可读介质
WO2019029586A1 (zh) 通信方法和通信设备
US20220124658A1 (en) Timing advance validation
US10667299B2 (en) Control plane latency reduction in a wireless communications network
JP2023508160A (ja) 通信のための方法、ユーザ装置及び基地局
KR20230169198A (ko) 방법, 장치 및 컴퓨터 프로그램
WO2023077332A1 (en) System and method for establishing group of communication nodes and obtaining transmission time difference
WO2024031590A1 (zh) 用于定位的无线通信方法、装置、设备、系统及存储介质
EP4277383A1 (en) Power control method and apparatus
CN116250187A (zh) 用于定位参考信号的基于移动性的波束配置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480035193.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14902934

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014902934

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014902934

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE