WO2016047555A1 - ガイドワイヤおよびガイドワイヤの製造方法 - Google Patents

ガイドワイヤおよびガイドワイヤの製造方法 Download PDF

Info

Publication number
WO2016047555A1
WO2016047555A1 PCT/JP2015/076513 JP2015076513W WO2016047555A1 WO 2016047555 A1 WO2016047555 A1 WO 2016047555A1 JP 2015076513 W JP2015076513 W JP 2015076513W WO 2016047555 A1 WO2016047555 A1 WO 2016047555A1
Authority
WO
WIPO (PCT)
Prior art keywords
guide wire
reshapable
reshape
material part
cross
Prior art date
Application number
PCT/JP2015/076513
Other languages
English (en)
French (fr)
Inventor
大 秋友
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Priority to JP2016550153A priority Critical patent/JP6701082B2/ja
Publication of WO2016047555A1 publication Critical patent/WO2016047555A1/ja
Priority to US15/363,363 priority patent/US10130796B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/09Guide wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/02Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to soldering or welding
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/007Alloys based on nickel or cobalt with a light metal (alkali metal Li, Na, K, Rb, Cs; earth alkali metal Be, Mg, Ca, Sr, Ba, Al Ga, Ge, Ti) or B, Si, Zr, Hf, Sc, Y, lanthanides, actinides, as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/09Guide wires
    • A61M2025/09058Basic structures of guide wires
    • A61M2025/09075Basic structures of guide wires having a core without a coil possibly combined with a sheath
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/09Guide wires
    • A61M2025/09058Basic structures of guide wires
    • A61M2025/09083Basic structures of guide wires having a coil around a core
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/09Guide wires
    • A61M2025/09108Methods for making a guide wire
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/09Guide wires
    • A61M2025/09133Guide wires having specific material compositions or coatings; Materials with specific mechanical behaviours, e.g. stiffness, strength to transmit torque
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/09Guide wires
    • A61M2025/09133Guide wires having specific material compositions or coatings; Materials with specific mechanical behaviours, e.g. stiffness, strength to transmit torque
    • A61M2025/09141Guide wires having specific material compositions or coatings; Materials with specific mechanical behaviours, e.g. stiffness, strength to transmit torque made of shape memory alloys which take a particular shape at a certain temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/09Guide wires
    • A61M2025/0915Guide wires having features for changing the stiffness
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/09Guide wires
    • A61M2025/09166Guide wires having radio-opaque features
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/09Guide wires
    • A61M2025/09175Guide wires having specific characteristics at the distal tip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/32Wires

Definitions

  • the present invention relates to a guide wire and a guide wire manufacturing method.
  • Guidewires can be used to treat difficult-to-surgical sites, such as PTCA (Percutaneous Transluminal Coronary Angioplasty), or for treatment that is minimally invasive to the human body, Used to guide catheters used for examinations such as angiography.
  • PTCA Percutaneous Transluminal Coronary Angioplasty
  • a guide wire used for PTCA surgery is inserted to the vicinity of the target vascular stenosis portion together with the balloon catheter with the tip of the guide wire protruding from the tip of the balloon catheter. Guide to near.
  • the blood vessel is intricately curved, and the guide wire used to insert the balloon catheter into the blood vessel has moderate flexibility and resilience to bending, and pushability to transmit the proximal end operation to the distal end.
  • torque transmission properties collectively referred to as “operability”
  • tensile strength tensile strength
  • kink resistance bending resistance
  • the like are required as a structure for obtaining moderate flexibility and resilience.
  • Some use super-elastic wires such as Ni-Ti (for example, see Patent Document 1). It is also known that a reinforcing material is separately provided at the tip of the core material in order to improve torque transmission.
  • the guide wire when used in PTCA surgery, the guide wire has been made to reduce the pushability by thinning the tip of the core material so as to avoid the penetration of the blood vessel wall and be used as safely as possible. In order to maintain sufficient tensile strength to avoid breakage, the cross-sectional area should not be reduced excessively.
  • the tip of the core material may be shaped. In order to facilitate this shaping, it is known to press the tip of the core material into a flat plate shape. This reduces the pushability of the tip and improves safety.
  • torque transmission performance is remarkably lowered, and when the reinforcing material is provided separately, torque transmission is improved, but it is difficult to perform such shaping.
  • An object of the present invention is to provide a guide wire that can be easily shaped at the distal end portion of the guide wire and excellent in torque transmission to the distal end portion, and a method for manufacturing the guide wire.
  • a guide wire comprising a single core wire having a long shape and having a reshape portion that can be shaped at a tip portion,
  • the reshapable part includes at least a first material part made of a first material and a second material part made of a second material different from the first material and joined to the first material part.
  • the reshapable portion has two one material portions and one other material portion of the first material portion and the second material portion, and is between the two one material portions.
  • the said core wire is located in the base end side of the said reshape part, is thicker than this reshape part, and has the main-body part comprised with the said 1st material or the said 2nd material (1) thru
  • the one made of the same constituent material as the main body part is formed integrally with the main body part (6) Guide wire as described.
  • the one made of the same constituent material as the main body portion has a larger sectional area ratio in the cross section of the reshapable portion (7 ) Guide wire.
  • the reshapable part is made of a third material different from the first material and the second material, and the first material part is between the first material part and the second material part.
  • the guide wire according to any one of (1) to (9), wherein the guide wire has a third material portion joined to the second material portion.
  • One of the first material and the second material is stainless steel, the other is a Ni—Ti alloy, and the third material is ⁇ -Ti.
  • a method of manufacturing a guide wire comprising a single core wire having a long shape and having a reshape portion that can be shaped at a tip portion,
  • the reshapable part includes at least a first material part made of a first material and a second material part made of a second material different from the first material and joined to the first material part.
  • the joint surface passes through the center of the circle or the ellipse.
  • the cross-sectional shapes of the first material part and the second material part are respectively fan-shaped,
  • the central angle of the first material part and the central angle of the second material part are preferably the same.
  • the reshapable part is composed of different types of materials, has a first material part and a second material part joined together, and the joining surface is along the longitudinal direction of the core wire. Yes.
  • FIG. 1 is a longitudinal sectional view showing a first embodiment of the guide wire of the present invention.
  • FIG. 2 is a perspective view showing a process of manufacturing a core wire (reshaping part) included in the guide wire shown in FIG.
  • FIG. 3 is a perspective view showing a process of manufacturing a core wire (reshaping part) included in the guide wire shown in FIG.
  • FIG. 4 is a perspective view showing a process of manufacturing a core wire (reshape part) provided in the guide wire (second embodiment) of the present invention.
  • FIG. 5 is a cross-sectional view showing a reshapable portion in the guide wire (third embodiment) of the present invention.
  • FIG. 6 is a cross-sectional view showing a reshapable portion in the guide wire (fourth embodiment) of the present invention.
  • FIG. 7 is a cross-sectional view showing a reshapable portion in the guide wire (fifth embodiment) of the present invention.
  • FIG. 8 is a cross-sectional view showing a reshapable portion in the guide wire (sixth embodiment) of the present invention.
  • FIG. 9 is a cross-sectional view showing a reshapable portion in the guide wire (seventh embodiment) of the present invention.
  • FIG. 10 is a cross-sectional view showing a reshapable portion in the guide wire (eighth embodiment) of the present invention.
  • FIG. 11 is a cross-sectional view showing a reshapable part in the guide wire (9th embodiment) of the present invention.
  • FIG. 12 is a cross-sectional view showing a reshapable portion of the guide wire (tenth embodiment) of the present invention.
  • FIG. 1 is a longitudinal sectional view showing a first embodiment of the guide wire of the present invention.
  • FIG. 2 is a perspective view showing a process of manufacturing a core wire (reshaping part) included in the guide wire shown in FIG.
  • FIG. 3 is a perspective view showing a process of manufacturing a core wire (reshaping part) included in the guide wire shown in FIG.
  • the right side in FIGS. 1 and 2 (the same applies to FIG. 4) is referred to as “base end”, and the left side is referred to as “tip”.
  • the length direction of the guide wire is shortened and the thickness direction of the guide wire is exaggerated and schematically illustrated. The ratio between the vertical direction and the thickness direction is very different from the actual ratio.
  • a guide wire 1 shown in FIG. 1 is a guide wire for a catheter that is used by being inserted into the lumen of a catheter (including an endoscope) by PTCA, for example.
  • the total length of the guide wire 1 is not particularly limited, but is preferably about 200 to 5000 mm.
  • the guide wire 1 includes a core wire (wire body) 2 composed of a single long wire, and a spiral coil 5 installed at the tip end portion (tip end portion) of the core wire 2. ing.
  • the core wire 2 includes a reshape portion 3 located on the distal end side and a main body portion 4 located on the proximal end side of the reshape portion 3.
  • the reshape portion 3 is a portion that can be reshaped (shaped), and can be used, for example, bent or curved in the direction of the arrow in FIG. 1 so as to be deformed into a desired shape.
  • a doctor or the like previously sets the distal end of the guide wire to a desired shape. In this way, bending the tip of the guide wire into a desired shape is called reshaping.
  • reshape can be performed easily and reliably, and the operativity at the time of inserting the guide wire 1 in a biological body improves markedly.
  • tip part may be attached
  • the main body 4 is a thicker and longer part than the reshape part 3.
  • the main body portion 4 has a tapered portion 41 having a tapered shape in which the outer diameter gradually increases in the proximal direction, and a constant outer diameter portion 42 having a constant outer diameter.
  • the rigidity (bending rigidity, torsional rigidity) of the core wire 2 can be gradually reduced toward the distal end.
  • the guide wire 1 can obtain a good stenosis portion passing through and flexibility at the distal end portion, improve followability to a blood vessel and the like, and can be prevented from being bent.
  • the taper angle (decrease rate of the outer diameter) of the taper portion 41 may be constant along the longitudinal direction of the core wire 2 or may have a portion that varies along the longitudinal direction. For example, a portion where a relatively large taper angle and a relatively small portion are alternately formed a plurality of times may be used.
  • the outer diameter constant portion 42 has the same outer diameter as the maximum outer diameter of the tapered portion 41, and is a portion having relatively high rigidity. Thereby, the pushing property to the front-end
  • the base end surface 421 of the constant outer diameter portion 42 is preferably rounded.
  • a coil 5 is disposed on the outer periphery of the reshape portion 3 of the core wire 2 so as to cover the reshape portion 3.
  • the coil 5 reduces the contact area of the surface of the core wire 2 with the inner wall of the catheter or the surface of the living body, thereby reducing the frictional resistance. As a result, the operability of the guide wire 1 is further improved.
  • the reshape portion 3 is inserted through the central portion inside the coil 5, and the reshape portion 3 is not in contact with the inner surface of the coil 5. As a result, a gap 11 is formed between the coil 5 and the reshapable portion 3, and the pushability for the blood vessel can be lowered.
  • the coil 5 is formed by winding a wire 51 in a spiral shape along the circumferential direction of the reshapable portion 3.
  • one strand 51 may be spirally wound, or a plurality of strands 51 may be spirally wound.
  • the adjacent strands 51 of the coil 5 are in contact with each other and are in a so-called densely wound state. These strands 51 generate a force (compression force) that pushes them in the axial direction of the core wire 2 in a natural state where no external force is applied.
  • the guide wire 1 is not limited to this, and there may be a so-called sparsely wound portion where the adjacent strands 51 of the coil 5 are separated from each other.
  • the constituent material of the strand 51 is not particularly limited, and may be either a metal material or a resin material.
  • the metal material include X-ray opaque materials such as stainless steel, noble metals such as Au and Pt, and alloys containing the noble metals (for example, Pt—Ni alloys).
  • X-ray opaque materials such as stainless steel, noble metals such as Au and Pt, and alloys containing the noble metals (for example, Pt—Ni alloys).
  • X-ray opaque material When an X-ray opaque material is used, X-ray contrast properties are obtained at the distal end portion of the guide wire 1, and it can be inserted into the living body while confirming the position of the distal end portion under X-ray fluoroscopy.
  • the coil 5 may be a combination of two or more materials.
  • the strand 51 on the distal end side of the coil 5 can be made of an X-ray opaque material such as the Pt—Ni alloy, and the strand 51 on the proximal end side of the coil 5 can be made of stainless steel.
  • the part located on the distal end side of the coil 5 particularly, the part including the reshapable portion 3 can be emphasized more than the part located closer to the proximal end ( Therefore, the position of the most distal portion (the portion where the reshape portion 3 exists) of the guide wire 1 can be visually recognized more clearly.
  • the wire diameter of the strand 51 of the coil 5 may be the same over the entire length of the coil 5, but the wire diameter of the strand 51 may be different between the distal end side and the proximal end side of the coil 5.
  • the wire diameter of the strand 51 may be smaller (or larger) on the distal end side of the coil 5 than on the proximal end side. Thereby, the penetration of the lesioned part of the guide wire 1 at the distal end of the coil 5 can be further improved.
  • the outer diameter of the coil 5 may be the same over the entire length of the coil 5, but the outer diameter of the coil 5 may be different between the distal end side and the proximal end side of the coil 5.
  • the outer diameter of the coil 5 may be smaller on the distal end side of the coil 5 than on the proximal end side.
  • the coil 5 is fixed to the core wire 2 at two locations. That is, the distal end portion of the coil 5 is fixed to the distal end of the reshapable portion 3 via a fixing material (fixing portion) 52, and the proximal end portion of the coil 5 is located in the middle of the tapered portion 41 via the fixing material (fixing portion) 53. It is fixed.
  • the coil 5 can be securely fixed to the core wire 2 while preventing the tip portion of the guide wire 1 (the portion where the coil 5 is present) from being impaired. it can.
  • the reshape portion 3 can be securely fixed to the coil 5, and the shape of the shaped reshape portion 3 can be secured. Can be held properly.
  • Each of the fixing materials 52 and 53 is preferably made of solder (brazing material).
  • the fixing materials 52 and 53 may be adhesives.
  • the method for fixing the coil 5 to the core wire 2 is not limited to the above-described fixing material, and for example, welding may be used.
  • the distal end surface 521 of the fixing material 52 is preferably rounded.
  • a resin coating layer 6 that covers the whole (or a part) of the core wire 2 is provided on the proximal end side of the fixing material 53 of the core wire 2.
  • the resin coating layer 6 can be formed for various purposes. As an example, the operability of the guide wire 1 is reduced by reducing the friction (sliding resistance) of the guide wire 1 and improving the slidability. May be improved.
  • the resin coating layer 6 is preferably made of a material that can reduce friction as described below.
  • the frictional resistance (sliding resistance) with the inner wall of the catheter used together with the guide wire 1 is reduced, the slidability is improved, and the operability of the guide wire 1 in the catheter becomes better.
  • the guide wire 1 can be reliably prevented from being kinked (bent) or twisted when the guide wire 1 is moved and / or rotated in the catheter.
  • materials that can reduce such friction include polyolefins such as polyethylene and polypropylene, polyvinyl chloride, polyesters (PET, PBT, etc.), polyamides, polyimides, polyurethanes, polystyrenes, polycarbonates, silicone resins, fluorine resins ( PTFE, ETFE, etc.) or a composite material thereof.
  • polyolefins such as polyethylene and polypropylene, polyvinyl chloride, polyesters (PET, PBT, etc.), polyamides, polyimides, polyurethanes, polystyrenes, polycarbonates, silicone resins, fluorine resins ( PTFE, ETFE, etc.) or a composite material thereof.
  • the resin coating layer 6 may be a single layer or a laminate of two or more layers (for example, an inner layer made of a material that is more flexible than an outer layer).
  • the reshape part 3 is comprised by the 1st material part 31 and the 2nd material part 32 which were each comprised with two different types of materials.
  • the reshape part 3 is a long and narrow part in which the first material part 31 and the second material part 32 are joined, and the joining surface (boundary surface) 33 is along the longitudinal direction of the core wire 2 (left-right direction in FIG. 1). is there.
  • the outer diameter of the reshapable part 3 is the same as the minimum outer diameter of the tapered part 41, and is preferably 0.05 mm or more and 0.2 mm or less, for example, 0.08 mm or more and 0.15 mm or less. It is more preferable that The total length of the reshape part 3 is not particularly limited, and is preferably 2 mm or more and 100 mm or less, for example, and more preferably 5 mm or more and 20 mm or less.
  • the first material part 31 is composed of a first material, and the material is not particularly limited.
  • the material is not particularly limited.
  • stainless steel for example, SUS304, SUS303, SUS316, SUS316L, SUS316J1, SUS316J1L, SUS405, SUS430, SUS434, SUS444, SUS429, SUS430F, all types of SUS such as SUS302), and various metal materials such as piano wire.
  • stainless steel is preferable.
  • the second material portion 32 is made of a second material different from the first material, and the material is not particularly limited, and examples thereof include a superelastic alloy exhibiting superelasticity in a living body.
  • This superelastic alloy includes any shape of a stress-strain curve by tension, including those that can measure the transformation point of As, Af, Ms, Mf, etc., and those that cannot be measured. And everything that returns to its original shape by removing stress is included.
  • the preferred composition of the superelastic alloy is a Ni—Ti alloy such as a Ni—Ti alloy of 49 to 52 atomic% Ni, a Cu—Zn alloy of 38.5 to 41.5 wt% Zn, 1 to 10 wt% X Cu—Zn—X alloy (X is at least one of Be, Si, Sn, Al, and Ga), Ni-Al alloy of 36 to 38 atomic% Al, and the like. Of these, the Ni—Ti alloy is particularly preferable.
  • a superelastic alloy typified by a Ni—Ti alloy is excellent in adhesion to the resin coating layer 6.
  • the main body 4 is also composed of the same first material as the constituent material of the first material portion 31.
  • the main body portion 4 and the first material portion 31 are integrally formed (see FIG. 2). Thereby, manufacture of the core wire 2 (guide wire 1) becomes easy.
  • the stainless steel constituting the first material part 31 has higher strength and rigidity than the superelastic alloy. Accordingly, the first material portion 31 has a function of transmitting the pushing force to the tip of the guide wire 1 in addition to the torque from the body portion 4 of the core wire 2 and the like in the reshape portion 3.
  • the Ni—Ti-based alloy constituting the second material part 32 is rich in flexibility, has restorability, and is difficult to bend.
  • the second material part 32 and the first material part 31 are combined, so that the shaping can be easily performed, and the shape can be reliably maintained.
  • the guide wire 1 can be easily shaped at the tip, and has excellent torque transmission to the tip.
  • the guide wire 1 can obtain sufficient flexibility and resilience to bending in the reshapable portion 3, and improve followability to a blood vessel that is curved or bent in a complicated manner. Excellent operability can be obtained.
  • the reshape part 3 repeats bending and bending deformation, the bending due to the resilience provided in the second material part 32 does not cause a bending wrinkle. The fall of property can be prevented.
  • the cross-sectional shape of the reshapable portion 3 is circular, and the joint surface 33 passes through (includes) the center O 3 thereof. Therefore, the cross-sectional shape of the first material portion 31 is a semicircular shape, that is, a fan having a central angle ⁇ 1 of 180 °.
  • Cross-sectional shape of the second material portion 32 similar to the cross-sectional shape of the first material portion 31, forms a semi-circular, i.e., the center angle theta 2 forms a sector of 180 °.
  • the occupation ratios of the first material part 31 and the second material part 32 in the reshapable part 3 are the same.
  • the joining interface of the base material of the 1st material part 31 and the 2nd material part 32 appears in the target position in the circumferential direction, and there exists an advantage that shaping during a procedure is easy.
  • the first mold 91 and the second mold 92 that can be closed (see FIG. 3B) and opened (see FIGS. 3A and 3C).
  • a mold 9 provided with is used.
  • the first mold 91 and the second mold 92 have a cavity 93 for molding the reshapable portion 3 in a closed state. That is, the first die 91 has a space 911 having a semi-cylindrical shape, and the second die 92 also has a space 921 having a semi-cylindrical shape, and these spaces 911 and 921 communicate with each other in a closed state.
  • a cavity 93 for molding the reshape part 3 can be formed.
  • a base material 2 ′ having a main body portion 4 is prepared.
  • the first material portion 31 is formed after molding, that is, a first formation planned portion (first material portion formation planned portion) for forming the first material portion 31.
  • 31 ' is integrally formed to project.
  • the first formation scheduled portion 31 ′ has a circular cross-sectional shape and is a portion thinner than the first material portion 31.
  • the second material portion 32 is formed after molding, that is, as a base material for forming the second material portion 32, a second formation planned portion (second material portion formation planned portion). 32 'is also prepared.
  • the second formation scheduled portion 32 ′ has a circular cross-sectional shape and is a member thinner than the second material portion 32.
  • the first formation planned portion 31 ′ and the second formation planned portion 32 ′ are provided. Deploy.
  • the first formation planned portion 31 ′ is located in the space 911 of the first mold 91
  • the second formation planned portion 32 ′ is located in the space 921 of the second mold 92.
  • At least one of pressurization and heating is performed while closing the mold. Specifically, the first formation planned portion 31 ′ and the second formation planned portion 32 ′ are melted by using a welding method such as friction welding, upset welding, or a combination thereof, and the side surfaces 311 and 321 are bonded to each other. Securely join.
  • a welding method such as friction welding, upset welding, or a combination thereof
  • the mold is opened again as shown in FIG.
  • the first material portion 31 and the second material portion 32 are joined, and the joining surface 33 is a reshapable portion along the longitudinal direction of the core wire 2.
  • a core wire 2 having 3 is obtained.
  • the reshape portion 3 is easy to shape and has excellent torque transmission.
  • FIG. 4 is a perspective view showing a process of manufacturing a core wire (reshape part) provided in the guide wire (second embodiment) of the present invention.
  • This embodiment is the same as the first embodiment except that the manufacturing process of the core wire is different. As shown in FIG. 4, in this embodiment, until the core wire 2 is obtained, the first formation planned portion 31 ′ is a separate base material from the base material 2 ′.
  • FIG. 5 is a cross-sectional view showing a reshapable portion in the guide wire (third embodiment) of the present invention.
  • This embodiment is the same as the first embodiment except that the occupation ratios of the first material part and the second material part constituting the reshape part are different.
  • the cross-sectional shape of the first material part 31 and the cross-sectional shape of the second material part 32 form a sector shape with different central angles.
  • the central angle ⁇ 1 of the first material part 31 is smaller than the central angle ⁇ 2 of the second material part 32.
  • the occupation ratio of the first material part 31 is smaller than the occupation ratio of the second material part 32.
  • the bonding surface 33 at two locations will be present, the bonding surface 33a, both of 33b passes through the center O 3, and, along the longitudinal direction of the core wire 2 ing.
  • the magnitude relationship between the central angle ⁇ 1 and the central angle ⁇ 2 is ⁇ 1 ⁇ 2 in the present embodiment, but is not limited thereto, and may be ⁇ 1 > ⁇ 2 .
  • the occupation ratio of the first material part 31 is larger than the occupation ratio of the second material part 32.
  • this configuration is effective when it is desired to preferentially enhance the shape retention in the reshape portion 3.
  • FIG. 6 is a cross-sectional view showing a reshapable portion in the guide wire (fourth embodiment) of the present invention.
  • This embodiment is the same as the first embodiment except that the occupation ratios of the first material part and the second material part constituting the reshape part are different.
  • the joint surface 33 is displaced from the center O 3 of the reshapable portion 3, that is, is closer to the right side in the drawing.
  • the occupation rate of the 1st material part 31 becomes smaller than the occupation rate of the 2nd material part 32, Therefore
  • the torque performance in the reshape part 3 increases preferentially.
  • FIG. 7 is a cross-sectional view showing a reshapable portion in the guide wire (fifth embodiment) of the present invention.
  • This embodiment is the same as the first embodiment except that the occupation ratios of the first material part and the second material part constituting the reshape part are different.
  • the joint surface 33 includes joint surfaces 33c and 33d that are parallel to each other, and a curved joint surface 33e that contacts the center O 3 between the joint surface 33c and the joint surface 33d. It has become. All of the joint surfaces 33c to 33e are along the longitudinal direction of the core wire 2. Thereby, the occupation rate of the 1st material part 31 becomes smaller than the occupation rate of the 2nd material part 32, Therefore For example, the flexibility in the reshape part 3 increases preferentially. Further, it is effective when it is desired to provide the first material portion 31 as small as possible.
  • FIG. 8 is a cross-sectional view showing a reshapable portion in the guide wire (sixth embodiment) of the present invention.
  • This embodiment is the same as the first embodiment except that the arrangement of the first material portion and the second material portion constituting the reshapable portion is different.
  • the reshapable part 3 includes two first material parts 31 (first material parts 31a and 31b), and between the first material part 31a and the first material part 31b.
  • the second material portion 32 is arranged.
  • the bonding surface 33 includes a bonding surface 33 f between the first material portion 31 a and the second material portion 32 and a bonding surface 33 g between the first material portion 31 b and the second material portion 32.
  • the bonding surface 33f, 33 g are both offset from the center O 3, the distance L from the center O 3 is the same.
  • the ease of bending is the same when the reshapable portion is bent to the right in FIG. 8 and when the reshapable portion is bent to the left, so that the operability during reshaping is improved.
  • the reshapable part 3 includes two first material parts 31 and a second material part 32 between them.
  • the present invention is not limited to this, and the two second material parts 32 and You may be comprised with the 1st material part 31 between these.
  • FIG. 9 is a cross-sectional view showing a reshapable portion in the guide wire (seventh embodiment) of the present invention.
  • This embodiment is the same as the first embodiment except that the configuration of the reshapable part is different.
  • the reshapable part 3 further includes a third material part 34 disposed between the first material part 31 and the second material part 32 and joined to each material part. is doing.
  • the bonding surface 33 includes a bonding surface 33 h between the first material portion 31 and the second material portion 32, a bonding surface 33 i between the second material portion 32 and the third material portion 34, and a first surface.
  • the cross-sectional shape of the first material part 31, the cross-sectional shape of the second material part 32, and the cross-sectional shape of the third material part 34 each form a fan shape.
  • the third material portion 34 is composed of a third material different from the first material and the second material, and the material is not particularly limited, and, for example, ⁇ -Ti can be used.
  • ⁇ -Ti is a material with relatively high biocompatibility, like stainless steel and Ni-Ti alloys.
  • the reshape part 3 having the above-described configuration, when the reshape part 3 is bent, the ease of bending differs depending on the bending direction.
  • the configuration of the present embodiment is effective when it is desired to obtain such physical properties in the reshape unit 3.
  • FIG. 10 is a cross-sectional view showing a reshapable portion in the guide wire (eighth embodiment) of the present invention.
  • This embodiment is the same as the first embodiment except that the cross-sectional shape of the reshapable part is different.
  • the cross-sectional shape of the reshapable part 3 is an ellipse.
  • the joint surface 33 passes through the elliptical center O 3 in parallel with the minor axis direction.
  • Such a reshapable part 3 has relatively high bending rigidity.
  • bonding surface 33 passes through the center O 3 in this embodiment, but may be displaced from the center O 3 .
  • the oval shape can be formed by selecting a mold 9 having a cavity 93 that matches the shape.
  • FIG. 11 is a cross-sectional view showing a reshapable part in the guide wire (9th embodiment) of the present invention.
  • the joint surface 33 passes through an elliptical center O 3 in parallel with the major axis direction.
  • Such a reshape portion 3 has a relatively lower bending rigidity than the reshape portion in the eighth embodiment.
  • FIG. 12 is a cross-sectional view showing a reshapable portion of the guide wire (tenth embodiment) of the present invention.
  • This embodiment is the same as the eighth embodiment except that the cross-sectional shape of the reshapable part is different.
  • the cross-sectional shape of the reshapable part 3 is a rectangle. Then, the bonding surface 33, passes through the center O 3 of the rectangle parallel to the long side direction.
  • Such a reshape portion 3 has a relatively lower bending rigidity than the reshape portion in the eighth embodiment.
  • the bonding surface 33 in this embodiment through the center O 3, i.e., also the thickness t 1 of the first material portion 31, the thickness t 2 of the second material portion 32 is the same .
  • the present invention is not limited to this, and the bonding surface 33 may be displaced from the center O 3 , that is, the thickness t 1 and the thickness t 2 may be different.
  • the thickness t 1 and the thickness t 2 are constant along the width direction (the left-right direction in the drawing) of the reshapable portion 3, but are not limited to this, and may vary. Good.
  • the thickness t 1 and the thickness t 2 may be constant or may change along the longitudinal direction of the reshapable portion 3 (the depth direction in the drawing).
  • each part which comprises a guide wire can be substituted with the thing of the arbitrary structures which can exhibit the same function.
  • arbitrary components may be added.
  • the guide wire and the guide wire manufacturing method of the present invention may be a combination of any two or more configurations (features) of the above embodiments.
  • the first material of the first material and the second material is stainless steel
  • the second material is a Ni—Ti alloy, but is not limited thereto.
  • One material may be a Ni—Ti alloy
  • the second material may be stainless steel.
  • the first material of the first material and the second material is stainless steel, and the second material is a Ni—Ti alloy, but is not limited to this.
  • the first material may be ⁇ -Ti.
  • the guide wire of the present invention is a guide wire having a long shape and having one core wire having a reshape portion that can be shaped at a tip portion, and the reshape portion is made of at least a first material.
  • a first material portion and a second material portion made of a second material different from the first material and joined to the first material portion, the first material portion and the second material
  • the joint surface with the part is along the longitudinal direction of the core wire. Therefore, it is easy to shape the tip of the guide wire, and the torque transmission to the tip is excellent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Hematology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biomedical Technology (AREA)
  • Anesthesiology (AREA)
  • Pulmonology (AREA)
  • Biophysics (AREA)
  • Media Introduction/Drainage Providing Device (AREA)

Abstract

 ガイドワイヤは、長尺状をなし、先端部に形状付け可能なリシェイプ部を有する1本の芯線を備えている。このガイドワイヤでは、リシェイプ部は、少なくとも、第1の材料で構成された第1材料部と、第1の材料と異なる第2の材料で構成され、第1材料部に接合された第2材料部とを有し、第1材料部と第2材料部との接合面は、芯線の長手方向に沿っている。また、リシェイプ部の横断面形状は、円形または楕円形であり、その中心に対して、第1材料部と第2材料部との接合面がズレている。

Description

ガイドワイヤおよびガイドワイヤの製造方法
 本発明は、ガイドワイヤおよびガイドワイヤの製造方法に関する。
 ガイドワイヤは、例えばPTCA術(Percutaneous Transluminal Coronary Angioplasty:経皮的冠状動脈血管形成術)のような、外科的手術が困難な部位の治療、または人体への低侵襲を目的とした治療や、心臓血管造影などの検査に用いられるカテーテルを誘導するのに使用される。PTCA術に用いられるガイドワイヤは、ガイドワイヤの先端をバルーンカテーテルの先端より突出させた状態にて、バルーンカテーテルと共に目的部位である血管狭窄部付近まで挿入され、バルーンカテーテルの先端部を血管狭窄部付近まで誘導する。
 血管は、複雑に湾曲しており、バルーンカテーテルを血管に挿入する際に用いるガイドワイヤには、曲げに対する適度な柔軟性と復元性、基端部における操作を先端側に伝達するための押し込み性およびトルク伝達性(これらを総称して「操作性」という)、さらには引っ張り強さや耐キンク性(耐折れ曲がり性)等が要求される。それらの特性の内、適度な柔軟性と復元性を得るための構造として、ガイドワイヤの細い先端芯材の周りに曲げに対する柔軟性を有する二重金属コイルを備えたものや、ガイドワイヤの芯材にNi-Ti等の超弾性線を用いたものがある(例えば、特許文献1参照)。また、トルク伝達性を向上させるために、芯材の先端部に補強材を別途設けたりすることが知られている。
 また、PTCA術で用いられる場合、ガイドワイヤは、血管壁の穿通を避け、できる限り安全に使用されるように、芯材の先端部を細くしてプッシャビリティを下げることが行われているが、破損を避けられる十分な引っ張り強さを保つためには、横断面積は過度に減少させられるべきではない。さらに、PTCA術では、芯材の先端部に形状付けを行なうことがある。この形状付けを容易にするために、芯材の先端部を平板状にプレスすることが知られている。これにより、先端のプッシャビリティが下がり安全性も向上する。しかしながらトルク伝達性能が著しく低下してしまい、また前記補強材を別途設けた場合には、トルク伝達性が向上するが、このような形状付けを行なうのが困難となってしまう。
 このように、従来のガイドワイヤでは、安全なプッシャビリティと引っ張り強さを保ちながら、先端部での形状付けの容易性と先端部までのトルク伝達性の向上との併存を行うことが難しかった。
米国特許第7785274 B2
 本発明の目的は、ガイドワイヤの先端部での形状付けが容易であり、当該先端部までのトルク伝達性に優れたガイドワイヤ、および、かかるガイドワイヤを製造する方法を提供することにある。
 このような目的は、下記(1)~(13)の本発明により達成される。
 (1) 長尺状をなし、先端部に形状付け可能なリシェイプ部を有する1本の芯線を備えるガイドワイヤであって、
 前記リシェイプ部は、少なくとも、第1の材料で構成された第1材料部と、前記第1の材料と異なる第2の材料で構成され、前記第1材料部に接合された第2材料部とを有し、
 前記第1材料部と前記第2材料部との接合面は、前記芯線の長手方向に沿っていることを特徴とするガイドワイヤ。
 (2) 前記リシェイプ部の横断面形状は、円形または楕円形である上記(1)に記載のガイドワイヤ。
 (3) 前記接合面は、前記円形または前記楕円形の中心からズレている上記(2)に記載のガイドワイヤ。
 (4) 前記第1材料部および前記第2材料部の横断面形状は、それぞれ、扇形をなし、
 前記第1材料部の中心角と前記第2材料部の中心角とは、異なる上記(2)に記載のガイドワイヤ。
 (5) 前記リシェイプ部は、前記第1材料部および前記第2材料部のうちの一方の材料部を2つ、他方の材料部を1つ有し、2つの前記一方の材料部の間に1つの前記他方の材料部が配置されている上記(2)に記載のガイドワイヤ。
 (6) 前記芯線は、前記リシェイプ部の基端側に位置し、該リシェイプ部よりも太く、前記第1の材料または前記第2の材料で構成された本体部を有する上記(1)ないし(5)のいずれかに記載のガイドワイヤ。
 (7) 前記第1材料部および前記第2材料部のうち、前記本体部と同じ構成材料で構成されている方は、前記本体部と一体的に形成されたものである上記(6)に記載のガイドワイヤ。
 (8) 前記第1材料部および前記第2材料部のうち、前記本体部と同じ構成材料で構成されている方は、前記リシェイプ部の断面において、断面積比が大きいものである上記(7)に記載のガイドワイヤ。
 (9) 前記第1の材料および前記第2の材料のうちの一方は、ステンレス鋼であり、他方は、Ni-Ti系合金である上記(1)ないし(8)のいずれかに記載のガイドワイヤ。
 (10) 前記リシェイプ部は、前記第1の材料および前記第2の材料と異なる第3の材料で構成され、前記第1材料部と前記第2材料部との間で前記第1材料部と前記第2材料部とに接合された第3材料部を有する上記(1)ないし(9)のいずれかに記載のガイドワイヤ。
 (11) 前記第1の材料および前記第2の材料のうちの一方は、ステンレス鋼であり、他方は、Ni-Ti系合金であり、前記第3の材料は、β-Tiである上記(10)に記載のガイドワイヤ。
 (12) 長尺状をなし、先端部に形状付け可能なリシェイプ部を有する1本の芯線を備えるガイドワイヤを製造する方法であって、
 前記リシェイプ部は、少なくとも、第1の材料で構成された第1材料部と、前記第1の材料と異なる第2の材料で構成され、前記第1材料部に接合される第2材料部とを有するものであり、
 前記第1材料部と前記第2材料部との接合を行なう際、その接合面が前記芯線の長手方向に沿うように前記接合を行なうことを特徴とするガイドワイヤの製造方法。
 (13) 前記接合には、加圧および加熱のうちの少なくとも一方を用いる上記(12)に記載のガイドワイヤの製造方法。
 また、本発明のガイドワイヤでは、前記接合面は、前記円形または前記楕円形の中心を通るのが好ましい。
 また、本発明のガイドワイヤでは、前記第1材料部および前記第2材料部の横断面形状は、それぞれ、扇形をなし、
 前記第1材料部の中心角と前記第2材料部の中心角とは、同じであるのが好ましい。
 本発明によれば、リシェイプ部が異なる種類の材料で構成され、互いに接合された第1材料部と第2材料部とを有し、その接合面が芯線の長手方向に沿ったものとなっている。これにより、ガイドワイヤの先端部(リシェイプ部)での形状付けが容易であり、かつ、当該先端部までトルクを確実に伝達することができる、すなわち、トルク伝達性に優れる。
図1は、本発明のガイドワイヤの第1実施形態を示す縦断面図である。 図2は、図1に示すガイドワイヤが備える芯線(リシェイプ部)を製造する過程を示す斜視図である。 図3は、図1に示すガイドワイヤが備える芯線(リシェイプ部)を製造する過程を示す斜視図である。 図4は、本発明のガイドワイヤ(第2実施形態)が備える芯線(リシェイプ部)を製造する過程を示す斜視図である。 図5は、本発明のガイドワイヤ(第3実施形態)でのリシェイプ部を示す横断面図である。 図6は、本発明のガイドワイヤ(第4実施形態)でのリシェイプ部を示す横断面図である。 図7は、本発明のガイドワイヤ(第5実施形態)でのリシェイプ部を示す横断面図である。 図8は、本発明のガイドワイヤ(第6実施形態)でのリシェイプ部を示す横断面図である。 図9は、本発明のガイドワイヤ(第7実施形態)でのリシェイプ部を示す横断面図である。 図10は、本発明のガイドワイヤ(第8実施形態)でのリシェイプ部を示す横断面図である。 図11は、本発明のガイドワイヤ(第9実施形態)でのリシェイプ部を示す横断面図である。 図12は、本発明のガイドワイヤ(第10実施形態)でのリシェイプ部を示す横断面図である。
 以下、本発明のガイドワイヤおよびガイドワイヤの製造方法を添付図面に示す好適な実施形態に基づいて詳細に説明する。
 <第1実施形態>
  図1は、本発明のガイドワイヤの第1実施形態を示す縦断面図である。図2は、図1に示すガイドワイヤが備える芯線(リシェイプ部)を製造する過程を示す斜視図である。図3は、図1に示すガイドワイヤが備える芯線(リシェイプ部)を製造する過程を示す斜視図である。なお、以下では、説明の都合上、図1および図2中(図4についても同様)の右側を「基端」、左側を「先端」と言う。また、図1および図2中(図4についても同様)では、見易くするため、ガイドワイヤの長さ方向を短縮し、ガイドワイヤの太さ方向を誇張して模式的に図示しており、長さ方向と太さ方向の比率は実際とは大きく異なる。
 図1に示すガイドワイヤ1は、例えばPTCA術でカテーテル(内視鏡も含む)の内腔に挿入して用いられるカテーテル用ガイドワイヤである。ガイドワイヤ1の全長は、特に限定されないが、200~5000mm程度であるのが好ましい。このガイドワイヤ1は、長尺状をなす1本の単線で構成された芯線(ワイヤ本体)2と、芯線2の先端部(先端側の部分)に設置された螺旋状のコイル5とを備えている。
 芯線2は、先端側に位置するリシェイプ部3と、リシェイプ部3の基端側に位置する本体部4とで構成されている。
 リシェイプ部3は、リシェイプ(形状付け)可能な部分であり、所望の形状に変形するように、例えば図1中の矢印方向に屈曲または湾曲させて用いることができる。一般に、ガイドワイヤでは、誘導するカテーテル等の先端部を血管形状に対応させたり、血管分岐を適正かつ円滑に選択、誘導したりするために、医師等がガイドワイヤの先端部を予め所望の形状に変形させて使用することがあり、このようにガイドワイヤの先端部を所望の形状に曲げることをリシェイプと言う。そして、リシェイプ部3を設けることにより、リシェイプを容易かつ確実に行うことができ、ガイドワイヤ1を生体内に挿入する際の操作性が格段に向上する。なお、ガイドワイヤ1の先端部には、当該先端部の好ましい曲げ方向を示すマーカが付されていてもよい。
 本体部4は、リシェイプ部3よりも太く長い部分である。本体部4は、外径が基端方向に向かって漸増するテーパ状をなすテーパ部41と、外径が一定の外径一定部42とを有している。
 リシェイプ部3と外径一定部42との間にテーパ部41が形成されていることにより、芯線2の剛性(曲げ剛性、ねじり剛性)を先端方向に向かって徐々に減少させることができ、その結果、ガイドワイヤ1は、先端部に良好な狭窄部の通過性および柔軟性を得て、血管等への追従性、安全性が向上すると共に、折れ曲がり等も防止することができる。なお、テーパ部41のテーパ角度(外径の減少率)は、芯線2の長手方向に沿って一定であっても、長手方向に沿って変化する部位があってもよい。例えば、テーパ角度が比較的大きい箇所と比較的小さい箇所とが複数回交互に繰り返して形成されているようなものでもよい。
 外径一定部42は、その外径がテーパ部41の最大外径と同じとなっており、比較的剛性が高い部分である。これにより、ガイドワイヤ1の先端方向への押し込み性が良好となる。なお、外径一定部42の基端面421は、丸みを帯びているのが好ましい。
 図1に示すように、芯線2のリシェイプ部3の外周には、当該リシェイプ部3を覆うようにコイル5が配置されている。このコイル5により、カテーテルの内壁や生体表面に対する芯線2の表面の接触面積が少なくなり、これにより、摩擦抵抗を低減することができ、その結果、ガイドワイヤ1の操作性がより向上する。
 コイル5の内側の中心部には、リシェイプ部3が挿通されており、当該リシェイプ部3は、コイル5の内面と非接触状態となっている。これにより、コイル5とリシェイプ部3との間に間隙11が形成され、血管に対するプッシャビリティを下げることが可能となる。
 コイル5は、素線51を、リシェイプ部3の周方向に沿って螺旋状に巻回してなるものである。この場合、1本の素線51を螺旋状に巻いたものであってもよいし、複数本の素線51を螺旋状に巻いたものであってもよい。
 本実施形態では、コイル5の隣接する素線51同士は、接触しており、いわゆる密巻きの状態となっている。これらの素線51同士は、外力が付与していない自然状態で互いに芯線2の軸方向に押し合う力(圧縮力)が生じている。なお、ガイドワイヤ1ではこれに限らず、コイル5の隣接する素線51同士が離間している、いわゆる疎巻きの箇所があってもよい。
 素線51の構成材料は、特に限定されず、金属材料、樹脂材料のいずれでもよい。金属材料の好ましい例としては、ステンレス鋼や、例えばAu、Pt等の貴金属、該貴金属を含む合金(例えばPt-Ni合金)のようなX線不透過材料が挙げられる。X線不透過材料を用いた場合、ガイドワイヤ1の先端部にX線造影性が得られ、X線透視下で先端部の位置を確認しつつ生体内に挿入することができ、好ましい。
 なお、コイル5は、2種以上の材料を組み合わせたものでもよい。例えば、コイル5の先端側の素線51を前記Pt-Ni合金のようなX線不透過材料で構成し、コイル5の基端側の素線51をステンレス鋼で構成することができる。この場合には、X線透視下で、コイル5の先端側に位置する部位(特に、リシェイプ部3を含む部位)を、それよりも基端側に位置する部位よりも強調することができ(視認し易くなり)、よって、ガイドワイヤ1の最先端部(リシェイプ部3が存在する部分)の位置をより鮮明に視認することができる。
 また、コイル5の素線51の線径は、コイル5の全長に渡って同一でもよいが、コイル5の先端側と基端側とで、素線51の線径が異なっていてもよい。例えば、コイル5の先端側においては、基端側に比べ素線51の線径が小さく(または大きく)なっていてもよい。これにより、コイル5の先端部におけるガイドワイヤ1の病変部の穿通性をより向上させることができる。
 また、コイル5の外径は、コイル5の全長に渡って同一でもよいが、コイル5の先端側と基端側とで、コイル5の外径が異なっていてもよい。例えば、コイル5の先端側においては、基端側に比べコイル5の外径が小さくなっていてもよい。これにより、コイル5の先端部におけるガイドワイヤ1の柔軟性をより向上させることができる。
 図1に示すように、コイル5は、芯線2に対し2箇所で固定されている。すなわち、コイル5の先端部が固定材料(固定部)52を介してリシェイプ部3の先端に固定され、コイル5の基端部が固定材料(固定部)53を介してテーパ部41の途中に固定されている。このように複数の箇所で固定することにより、ガイドワイヤ1の先端部(コイル5が存在する部位)の柔軟性を損なうのを防止しつつ、芯線2に対しコイル5を確実に固定することができる。
 特に、リシェイプ部3の先端側および基端側がそれぞれ固定材料52および53により固定されているため、リシェイプ部3をコイル5に対し確実に固定することができ、形状付けされたリシェイプ部3の形状を適正に保持することができる。
 固定材料52および53は、それぞれ、好ましくは半田(ろう材)で構成されている。その他、固定材料52および53は、接着剤であってもよい。また、コイル5の芯線2に対する固定方法は、前記のような固定材料によるものに限らず、例えば、溶接でもよい。
 なお、血管等の体腔の内壁の損傷を防止するために、固定材料52の先端面521は、丸みを帯びているのが好ましい。
 図1に示すように、芯線2の固定材料53よりも基端側の部分には、その全体(または一部)を覆う樹脂被覆層6が設けられている。この樹脂被覆層6は、種々の目的で形成することができるが、その一例として、ガイドワイヤ1の摩擦(摺動抵抗)を低減し、摺動性を向上させることによってガイドワイヤ1の操作性を向上させることがある。
 ガイドワイヤ1の摩擦(摺動抵抗)の低減を図るためには、樹脂被覆層6は、以下に述べるような摩擦を低減し得る材料で構成されているのが好ましい。これにより、ガイドワイヤ1とともに用いられるカテーテルの内壁との摩擦抵抗(摺動抵抗)が低減されて摺動性が向上し、カテーテル内でのガイドワイヤ1の操作性がより良好なものとなる。また、ガイドワイヤ1の摺動抵抗が低くなることで、ガイドワイヤ1をカテーテル内で移動および/または回転した際に、ガイドワイヤ1のキンク(折れ曲がり)やねじれを確実に防止することができる。
 このような摩擦を低減し得る材料としては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン、ポリ塩化ビニル、ポリエステル(PET、PBT等)、ポリアミド、ポリイミド、ポリウレタン、ポリスチレン、ポリカーボネート、シリコーン樹脂、フッ素系樹脂(PTFE、ETFE等)、またはこれらの複合材料が挙げられる。
 なお、樹脂被覆層6は、単層のものであってもよいし、2層以上の積層体(例えば、内側の層が外側の層に比べより柔軟な材料で構成されたもの)でもよい。
 さて、図1に示すように、ガイドワイヤ1では、リシェイプ部3は、異なる2種の材料でそれぞれ構成された第1材料部31と第2材料部32とで構成されている。このリシェイプ部3は、第1材料部31と第2材料部32とが接合され、その接合面(境界面)33が芯線2の長手方向(図1中の左右方向)に沿った細長い部分である。
 また、リシェイプ部3の外径は、テーパ部41の最小外径と同じとなっており、例えば、0.05mm以上、0.2mm以下であるのが好ましく、0.08mm以上、0.15mm以下であるのがより好ましい。リシェイプ部3の全長は、特に限定されず、例えば、2mm以上、100mm以下であるのが好ましく、5mm以上、20mm以下であるのがより好ましい。
 第1材料部31は、第1の材料で構成され、その材料としては、特に限定されず、例えば、ステンレス鋼(例えば、SUS304、SUS303、SUS316、SUS316L、SUS316J1、SUS316J1L、SUS405、SUS430、SUS434、SUS444、SUS429、SUS430F、SUS302等SUSの全品種)、ピアノ線などの各種金属材料が挙げられ、これらの中でもステンレス鋼が好ましい。
 第2材料部32は、第1の材料と異なる第2の材料で構成され、その材料としては、特に限定されず、例えば、生体内で超弾性を示す超弾性合金が挙げられる。この超弾性合金には、引張りによる応力-ひずみ曲線のいずれの形状も含み、As、Af、Ms、Mf等の変態点が顕著に測定できるものも、できないものも含み、応力により大きく変形(歪)し、応力の除去により元の形状にほぼ戻るものは全て含まれる。超弾性合金の好ましい組成としては、49~52原子%NiのNi-Ti合金等のNi-Ti系合金、38.5~41.5重量%ZnのCu-Zn合金、1~10重量%XのCu-Zn-X合金(Xは、Be、Si、Sn、Al、Gaのうちの少なくとも1種)、36~38原子%AlのNi-Al合金等が挙げられる。これらの中でも特に好ましいものは、上記のNi-Ti系合金である。なお、Ni-Ti系合金に代表される超弾性合金は、樹脂被覆層6との密着性にも優れている。
 また、本体部4も、第1材料部31の構成材料と同様の第1の材料で構成されている。本実施形態では、本体部4と第1材料部31とは、一体的に形成されている(図2参照)。これにより、芯線2(ガイドワイヤ1)の製造が容易となる。
 第1材料部31を構成するステンレス鋼は、超弾性合金に比べて強度および剛性が高い。これにより、第1材料部31は、リシェイプ部3の中で、芯線2の本体部4からのトルクやその他に押込力をガイドワイヤ1の先端まで伝達する機能を担っている。
 第2材料部32を構成するNi-Ti系合金は、柔軟性に富み、復元性があり、曲がり癖が付き難い。そして、リシェイプ部3では、この第2材料部32と、前記第1材料部31とが相まって、形状付けを容易に行なうことができ、その形状を確実に維持することができる。
 このように、ガイドワイヤ1では、その先端部での形状付けが容易であり、当該先端部までのトルク伝達性に優れたものとなっている。また、第2材料部32が設けられている分、ガイドワイヤ1は、リシェイプ部3に十分な柔軟性と曲げに対する復元性が得られ、複雑に湾曲・屈曲する血管等に対する追従性が向上し、優れた操作性が得られる。また、リシェイプ部3が湾曲・屈曲変形を繰り返しても、第2材料部32に備わる復元性により曲がり癖が付かないので、ガイドワイヤ1の使用中にリシェイプ部3に曲がり癖が付くことによる操作性の低下を防止することができる。
 図2(b)、図3(c)に示すように、リシェイプ部3の横断面形状は、円形であり、その中心Oを接合面33が通って(包含して)いる。従って、第1材料部31の横断面形状は、半円形をなす、すなわち、中心角θが180°の扇形をなす。第2材料部32の横断面形状も、第1材料部31の横断面形状と同様に、半円形をなす、すなわち、中心角θが180°の扇形をなす。
 このように本実施形態では、リシェイプ部3での第1材料部31と第2材料部32との占有率が同じとなっている。これにより、第1材料部31と第2材料部32との母材の接合界面が周方向に対象な位置に現れ、手技中のシェイピングが行い易いと言う利点がある。
 次に、第1材料部31と第2材料部32とを接合して芯線2(ガイドワイヤ1)を製造する方法について、図2、図3を参照しつつ説明する。
 図3に示すように、この製造方法では、型閉め(図3(b)参照)・型開き(図3(a)、(c)参照)可能な第1の型91と第2の型92とを備える金型9を用いる。
 第1の型91と第2の型92とは、型閉め状態でリシェイプ部3を成形するキャビティ93を有している。すなわち、第1の型91は半円柱状をなす空間911を有し、第2の型92も半円柱状をなす空間921を有し、型閉め状態でこれら空間911、921同士が連通して、リシェイプ部3を成形するキャビティ93を構成することができる。
 芯線2の製造では、まず、図2(a)に示すように、本体部4を有する母材2’を用意する。この母材2’のテーパ部41の先端には、成形後に第1材料部31となる、すなわち、第1材料部31を形成するための第1形成予定部(第1材料部形成予定部)31’が一体的に突出形成されている。第1形成予定部31’は、本実施形態では横断面形状が円形をなし、第1材料部31よりも細い部分となっている。
 また、母材2’の他に、成形後に第2材料部32となる、すなわち、第2材料部32を形成するための母材として、第2形成予定部(第2材料部形成予定部)32’も用意する。第2形成予定部32’は、本実施形態では横断面形状が円形をなし、第2材料部32よりも細い部材となっている。
 次に、図3(a)に示すように、型開き状態の第1の型91と第2の型92との間に、第1形成予定部31’と第2形成予定部32’とを配置する。第1形成予定部31’は、第1の型91の空間911に位置し、第2形成予定部32’は、第2の型92の空間921に位置している。
 次に、図3(b)に示すように、型閉めをしつつ、加圧および加熱のうちの少なくとも一方を施す。具体的には、摩擦圧接や、アプセット溶接、これらの組み合わせ等の接合方法を用いて、第1形成予定部31’と第2形成予定部32’を溶融し、これらの側面311、321同士を確実に接合する。
 次に、図3(c)に示すように、再度型開き状態とする。これにより、図2(b)、図3(c)に示すように、第1材料部31と第2材料部32とが接合し、その接合面33が芯線2の長手方向に沿ったリシェイプ部3を有する芯線2が得られる。そして、このリシェイプ部3は、前述したように、形状付けが容易であり、トルク伝達性に優れた部分となっている。
 <第2実施形態>
  図4は、本発明のガイドワイヤ(第2実施形態)が備える芯線(リシェイプ部)を製造する過程を示す斜視図である。
 以下、この図を参照して本発明のガイドワイヤおよびガイドワイヤの製造方法の第2実施形態について説明するが、前述した実施形態との相違点を中心に説明し、同様の事項はその説明を省略する。
 本実施形態は、芯線の製造過程が異なること以外は前記第1実施形態と同様である。
 図4に示すように、本実施形態では、芯線2が得られるまでは、第1形成予定部31’が母材2’と別体の母材となっている。
 このような構成では、図4(a)に示すように、まず、第1形成予定部31’と第2形成予定部32’とを接合して(矢印I)、次に、その接合体の端面を母材2’の先端面411に接合する(矢印II)。なお、矢印Iでの接合は、金型9を用いる。また、矢印IIの接合は、例えば、FSW(Friction Stir Welding)、摩擦圧接、レーザを用いたスポット溶接、アプセット溶接等の突き合わせ抵抗溶接等の溶接が用いられる。
 このような接合により、図4(b)に示す芯線2が得られる。
 <第3実施形態>
  図5は、本発明のガイドワイヤ(第3実施形態)でのリシェイプ部を示す横断面図である。
 以下、この図を参照して本発明のガイドワイヤおよびガイドワイヤの製造方法の第3実施形態について説明するが、前述した実施形態との相違点を中心に説明し、同様の事項はその説明を省略する。
 本実施形態は、リシェイプ部を構成する第1材料部と第2材料部との占有率が異なること以外は前記第1実施形態と同様である。
 図5に示すように、本実施形態では、第1材料部31の横断面形状と第2材料部32の横断面形状とは、中心角が互いに異なる扇形をなす。図示の構成では、第1材料部31の中心角θは、第2材料部32の中心角θよりも小さい。これにより、リシェイプ部3では、第1材料部31の占有率が第2材料部32の占有率よりも小さくなる。そして、この構成は、例えば、リシェイプ部3でのトルク性能を優先的に向上させたい場合に有効な構成となっている。
 なお、本実施形態の構成では、接合面33が2箇所(接合面33a、33b)存在することとなり、接合面33a、33bのいずれも中心Oを通り、かつ、芯線2の長手方向に沿っている。
 また、中心角θと中心角θとの大小関係は、本実施形態ではθ<θとなっているが、これに限定されず、θ>θとなっていてもよい。この場合、リシェイプ部3では、第1材料部31の占有率が第2材料部32の占有率よりも大きくなる。そして、この構成は、例えば、リシェイプ部3での形状保持性を優先的に高めたい場合に有効な構成となっている。
 <第4実施形態>
  図6は、本発明のガイドワイヤ(第4実施形態)でのリシェイプ部を示す横断面図である。
 以下、この図を参照して本発明のガイドワイヤおよびガイドワイヤの製造方法の第4実施形態について説明するが、前述した実施形態との相違点を中心に説明し、同様の事項はその説明を省略する。
 本実施形態は、リシェイプ部を構成する第1材料部と第2材料部との占有率が異なること以外は前記第1実施形態と同様である。
 図6に示すように、本実施形態では、接合面33は、リシェイプ部3の中心Oからズレている、すなわち、図中の右側に寄っている。これにより、第1材料部31の占有率が第2材料部32の占有率よりも小さくなり、よって、例えば、リシェイプ部3でのトルク性能が優先的に高まる。
 <第5実施形態>
  図7は、本発明のガイドワイヤ(第5実施形態)でのリシェイプ部を示す横断面図である。
 以下、この図を参照して本発明のガイドワイヤおよびガイドワイヤの製造方法の第5実施形態について説明するが、前述した実施形態との相違点を中心に説明し、同様の事項はその説明を省略する。
 本実施形態は、リシェイプ部を構成する第1材料部と第2材料部との占有率が異なること以外は前記第1実施形態と同様である。
 図7に示すように、本実施形態では、接合面33は、互いに平行な接合面33c、33dと、接合面33cと接合面33dと間で中心Oに接する湾曲した接合面33eとを含んだものとなっている。そして、接合面33c~33eのいずれも芯線2の長手方向に沿っている。これにより、第1材料部31の占有率が第2材料部32の占有率よりも小さくなり、よって、例えば、リシェイプ部3での柔軟性が優先的に高まる。また、できる限り微小の第1材料部31を設けたい場合に有効である。
 <第6実施形態>
  図8は、本発明のガイドワイヤ(第6実施形態)でのリシェイプ部を示す横断面図である。
 以下、この図を参照して本発明のガイドワイヤおよびガイドワイヤの製造方法の第6実施形態について説明するが、前述した実施形態との相違点を中心に説明し、同様の事項はその説明を省略する。
 本実施形態は、リシェイプ部を構成する第1材料部と第2材料部との配置が異なること以外は前記第1実施形態と同様である。
 図8に示すように、本実施形態では、リシェイプ部3は、2つの第1材料部31(第1材料部31aおよび31b)と、第1材料部31aと第1材料部31bとの間に配置された第2材料部32とで構成されている。この場合、接合面33としては、第1材料部31aと第2材料部32との間の接合面33fと、第1材料部31bと第2材料部32との間の接合面33gとがある。そして、接合面33f、33gは、いずれも中心Oからズレており、当該中心Oからの離間距離Lは同じである。これにより、例えば、リシェイプ部を図8中の右側に曲げた場合と、左側に曲げた場合とで曲げ易さが同じとなり、よって、リシェイプ時の操作性が向上する。
 なお、リシェイプ部3は、本実施形態では2つの第1材料部31とこれらの間の第2材料部32とで構成されているが、これに限定されず、2つの第2材料部32とこれらの間の第1材料部31とで構成されていてもよい。
 <第7実施形態>
  図9は、本発明のガイドワイヤ(第7実施形態)でのリシェイプ部を示す横断面図である。
 以下、この図を参照して本発明のガイドワイヤおよびガイドワイヤの製造方法の第7実施形態について説明するが、前述した実施形態との相違点を中心に説明し、同様の事項はその説明を省略する。
 本実施形態は、リシェイプ部の構成が異なること以外は前記第1実施形態と同様である。
 図9に示すように、本実施形態では、リシェイプ部3は、第1材料部31と第2材料部32との間に配置され、各材料部に接合された第3材料部34をさらに有している。このような構成では、接合面33には、第1材料部31と第2材料部32との接合面33hと、第2材料部32と第3材料部34との接合面33iと、第1材料部31と第3材料部34との接合面33jとがある。そして、接合面33h~33jは、いずれも中心Oを通っている。従って、第1材料部31の横断面形状と第2材料部32の横断面形状と第3材料部34の横断面形状とは、それぞれ、扇形をなす。第1材料部31の占有率(中心角θの部分)と、第2材料部32の占有率(中心角θの部分)と、第3材料部34の占有率(中心角θの部分)を変えることにより、それぞれの物性を優先したデバイス(ガイドワイヤ)の作製が可能となる。
 なお、第3材料部34は、第1の材料および第2の材料と異なる第3の材料で構成され、その材料としては、特に限定されず、例えば、β-Tiを用いることができる。β-Tiは、ステンレス鋼やNi-Ti系合金と同様に、生体適合性が比較的高い材料である。
 以上のような構成のリシェイプ部3では、当該リシェイプ部3を曲げ際、その曲げる方向によって曲げ易さが異なる。このような物性をリシェイプ部3に求めたい場合に、本実施形態の構成は有効である。
 <第8実施形態>
  図10は、本発明のガイドワイヤ(第8実施形態)でのリシェイプ部を示す横断面図である。
 以下、この図を参照して本発明のガイドワイヤおよびガイドワイヤの製造方法の第8実施形態について説明するが、前述した実施形態との相違点を中心に説明し、同様の事項はその説明を省略する。
 本実施形態は、リシェイプ部の横断面形状が異なること以外は前記第1実施形態と同様である。
 図10に示すように、本実施形態では、リシェイプ部3の横断面形状は、楕円形である。そして、接合面33は、短径方向と平行に楕円形の中心Oを通っている。このようなリシェイプ部3は、比較的曲げ剛性が高くなる。
 なお、接合面33は、本実施形態では中心Oを通っているが、中心Oからズレていてもよい。
 また、楕円形の形成は、その形状に合うようなキャビティ93を有する金型9を選択すれば可能となる。
 <第9実施形態>
  図11は、本発明のガイドワイヤ(第9実施形態)でのリシェイプ部を示す横断面図である。
 以下、この図を参照して本発明のガイドワイヤおよびガイドワイヤの製造方法の第9実施形態について説明するが、前述した実施形態との相違点を中心に説明し、同様の事項はその説明を省略する。
 本実施形態は、接合面の方向が異なること以外は前記第8実施形態と同様である。
 図11に示すように、本実施形態では、接合面33は、長径方向と平行に楕円形の中心Oを通っている。このようなリシェイプ部3は、比較的曲げ剛性が前記第8実施形態でのリシェイプ部よりも低下する。
 <第10実施形態>
  図12は、本発明のガイドワイヤ(第10実施形態)でのリシェイプ部を示す横断面図である。
 以下、この図を参照して本発明のガイドワイヤおよびガイドワイヤの製造方法の第10実施形態について説明するが、前述した実施形態との相違点を中心に説明し、同様の事項はその説明を省略する。
 本実施形態は、リシェイプ部の横断面形状が異なること以外は前記第8実施形態と同様である。
 図12に示すように、本実施形態では、リシェイプ部3の横断面形状は、長方形である。そして、接合面33は、長辺方向と平行に長方形の中心Oを通っている。このようなリシェイプ部3は、比較的曲げ剛性が前記第8実施形態でのリシェイプ部よりも低下する。
 なお、接合面33は、本実施形態では中心Oを通っている、すなわち、また、第1材料部31の厚さtと、第2材料部32の厚さtとが同じである。しかしながら、これに限定されず、接合面33は、中心Oからズレていてもよい、すなわち、厚さtと厚さtとが異なっていてもよい。
 また、厚さtと厚さtとは、本実施形態ではリシェイプ部3の幅方向(図中の左右方向)に沿って一定であるが、これに限定されず、変化していてもよい。
 また、厚さtと厚さtとは、リシェイプ部3の長手方向(図中の紙面奥行き方向)に沿って一定であってもよいし、変化していてもよい。
 以上、本発明のガイドワイヤおよびガイドワイヤの製造方法を図示の実施形態について説明したが、本発明は、これに限定されるものではない。また、ガイドワイヤを構成する各部は、同様の機能を発揮し得る任意の構成のものと置換することができる。また、任意の構成物が付加されていてもよい。
 また、本発明のガイドワイヤおよびガイドワイヤの製造方法は、前記各実施形態のうちの、任意の2以上の構成(特徴)を組み合わせたものであってもよい。
 また、前記各実施形態では、第1の材料および第2の材料のうち、第1の材料がステンレス鋼であり、第2の材料がNi-Ti系合金であるがこれに限定されず、第1の材料がNi-Ti系合金であり、第2の材料がステンレス鋼であってもよい。
 また、前記各実施形態では、第1の材料および第2の材料のうち、第1の材料がステンレス鋼であり、第2の材料がNi-Ti系合金であるがこれに限定されず、例えば、第1の材料がβ-Tiであってもよい。
 本発明のガイドワイヤは、長尺状をなし、先端部に形状付け可能なリシェイプ部を有する1本の芯線を備えるガイドワイヤであって、前記リシェイプ部は、少なくとも、第1の材料で構成された第1材料部と、前記第1の材料と異なる第2の材料で構成され、前記第1材料部に接合された第2材料部とを有し、前記第1材料部と前記第2材料部との接合面は、前記芯線の長手方向に沿っている。そのため、ガイドワイヤの先端部での形状付けが容易であり、当該先端部までのトルク伝達性に優れる。
 1      ガイドワイヤ
 11     間隙
 2      芯線(ワイヤ本体)
 2’     母材
 3      リシェイプ部
 31、31a、31b 第1材料部
 31’    第1形成予定部(第1材料部形成予定部)
 311    側面
 32     第2材料部
 32’    第2形成予定部(第2材料部形成予定部)
 321    側面
 33、33a、33b、33c、33d、33e、33f、33g、33h、33i、33j 接合面(境界面)
 34     第3材料部
 4      本体部
 41     テーパ部
 411    先端面
 42     外径一定部
 421    基端面
 5      コイル
 51     素線
 52、53  固定材料(固定部)
 521    先端面
 6      樹脂被覆層
 9      金型
 91     第1の型
 911    空間
 92     第2の型
 921    空間
 93     キャビティ
 L      離間距離
 O     中心
 t、t  厚さ
 θ、θ、θ 中心角

Claims (13)

  1.  長尺状をなし、先端部に形状付け可能なリシェイプ部を有する1本の芯線を備えるガイドワイヤであって、
     前記リシェイプ部は、少なくとも、第1の材料で構成された第1材料部と、前記第1の材料と異なる第2の材料で構成され、前記第1材料部に接合された第2材料部とを有し、
     前記第1材料部と前記第2材料部との接合面は、前記芯線の長手方向に沿っていることを特徴とするガイドワイヤ。
  2.  前記リシェイプ部の横断面形状は、円形または楕円形である請求項1に記載のガイドワイヤ。
  3.  前記接合面は、前記円形または前記楕円形の中心からズレている請求項2に記載のガイドワイヤ。
  4.  前記第1材料部および前記第2材料部の横断面形状は、それぞれ、扇形をなし、
     前記第1材料部の中心角と前記第2材料部の中心角とは、異なる請求項2に記載のガイドワイヤ。
  5.  前記リシェイプ部は、前記第1材料部および前記第2材料部のうちの一方の材料部を2つ、他方の材料部を1つ有し、2つの前記一方の材料部の間に1つの前記他方の材料部が配置されている請求項2に記載のガイドワイヤ。
  6.  前記芯線は、前記リシェイプ部の基端側に位置し、該リシェイプ部よりも太く、前記第1の材料または前記第2の材料で構成された本体部を有する請求項1ないし5のいずれか1項に記載のガイドワイヤ。
  7.  前記第1材料部および前記第2材料部のうち、前記本体部と同じ構成材料で構成されている方は、前記本体部と一体的に形成されたものである請求項6に記載のガイドワイヤ。
  8.  前記第1材料部および前記第2材料部のうち、前記本体部と同じ構成材料で構成されている方は、前記リシェイプ部の断面において、断面積比が大きいものである請求項7に記載のガイドワイヤ。
  9.  前記第1の材料および前記第2の材料のうちの一方は、ステンレス鋼であり、他方は、Ni-Ti系合金である請求項1ないし8のいずれか1項に記載のガイドワイヤ。
  10.  前記リシェイプ部は、前記第1の材料および前記第2の材料と異なる第3の材料で構成され、前記第1材料部と前記第2材料部との間で前記第1材料部と前記第2材料部とに接合された第3材料部を有する請求項1ないし9のいずれか1項に記載のガイドワイヤ。
  11.  前記第1の材料および前記第2の材料のうちの一方は、ステンレス鋼であり、他方は、Ni-Ti系合金であり、前記第3の材料は、β-Tiである請求項10に記載のガイドワイヤ。
  12.  長尺状をなし、先端部に形状付け可能なリシェイプ部を有する1本の芯線を備えるガイドワイヤを製造する方法であって、
     前記リシェイプ部は、少なくとも、第1の材料で構成された第1材料部と、前記第1の材料と異なる第2の材料で構成され、前記第1材料部に接合される第2材料部とを有するものであり、
     前記第1材料部と前記第2材料部との接合を行なう際、その接合面が前記芯線の長手方向に沿うように前記接合を行なうことを特徴とするガイドワイヤの製造方法。
  13.  前記接合には、加圧および加熱のうちの少なくとも一方を用いる請求項12に記載のガイドワイヤの製造方法。
PCT/JP2015/076513 2014-09-25 2015-09-17 ガイドワイヤおよびガイドワイヤの製造方法 WO2016047555A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016550153A JP6701082B2 (ja) 2014-09-25 2015-09-17 ガイドワイヤおよびガイドワイヤの製造方法
US15/363,363 US10130796B2 (en) 2014-09-25 2016-11-29 Guide wire and method for manufacturing a guide wire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014194940 2014-09-25
JP2014-194940 2014-09-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/363,363 Continuation US10130796B2 (en) 2014-09-25 2016-11-29 Guide wire and method for manufacturing a guide wire

Publications (1)

Publication Number Publication Date
WO2016047555A1 true WO2016047555A1 (ja) 2016-03-31

Family

ID=55581082

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/076513 WO2016047555A1 (ja) 2014-09-25 2015-09-17 ガイドワイヤおよびガイドワイヤの製造方法

Country Status (3)

Country Link
US (1) US10130796B2 (ja)
JP (1) JP6701082B2 (ja)
WO (1) WO2016047555A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020003501A1 (ja) * 2018-06-29 2020-01-02 朝日インテック株式会社 ガイドワイヤ
WO2020161832A1 (ja) * 2019-02-06 2020-08-13 朝日インテック株式会社 ガイドワイヤ

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006296893A (ja) * 2005-04-22 2006-11-02 Terumo Corp ガイドワイヤ
JP2014076132A (ja) * 2012-10-10 2014-05-01 Goodtec Co Ltd 医療用器具

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7722551B2 (en) * 2002-08-09 2010-05-25 Terumo Kabushiki Kaisha Guide wire
JP4116944B2 (ja) * 2002-08-09 2008-07-09 テルモ株式会社 ガイドワイヤ
CN100558423C (zh) 2003-12-18 2009-11-11 泰尔茂株式会社 导向线
JP2008245852A (ja) * 2007-03-29 2008-10-16 Terumo Corp ガイドワイヤ
JP2009233200A (ja) * 2008-03-27 2009-10-15 Terumo Corp ガイドワイヤ
WO2009119387A1 (ja) * 2008-03-28 2009-10-01 テルモ株式会社 ガイドワイヤおよびガイドワイヤの製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006296893A (ja) * 2005-04-22 2006-11-02 Terumo Corp ガイドワイヤ
JP2014076132A (ja) * 2012-10-10 2014-05-01 Goodtec Co Ltd 医療用器具

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020003501A1 (ja) * 2018-06-29 2020-01-02 朝日インテック株式会社 ガイドワイヤ
JPWO2020003501A1 (ja) * 2018-06-29 2021-06-10 朝日インテック株式会社 ガイドワイヤ
JP7021350B2 (ja) 2018-06-29 2022-02-16 朝日インテック株式会社 ガイドワイヤ
WO2020161832A1 (ja) * 2019-02-06 2020-08-13 朝日インテック株式会社 ガイドワイヤ
JPWO2020161832A1 (ja) * 2019-02-06 2021-11-25 朝日インテック株式会社 ガイドワイヤ
JP7183308B2 (ja) 2019-02-06 2022-12-05 朝日インテック株式会社 ガイドワイヤ

Also Published As

Publication number Publication date
US10130796B2 (en) 2018-11-20
JPWO2016047555A1 (ja) 2017-07-06
JP6701082B2 (ja) 2020-05-27
US20170072170A1 (en) 2017-03-16

Similar Documents

Publication Publication Date Title
JP5020630B2 (ja) ガイドワイヤ
WO2016047499A1 (ja) ガイドワイヤ
JP4203358B2 (ja) ガイドワイヤ
JP6082807B2 (ja) ガイドワイヤ
JP5770676B2 (ja) ガイドワイヤ
JP2008194185A (ja) ガイドワイヤ
JP2004230141A (ja) ガイドワイヤ
JP2008237253A (ja) ガイドワイヤ
JP6759069B2 (ja) ガイドワイヤ
WO2009119387A1 (ja) ガイドワイヤおよびガイドワイヤの製造方法
JP2018079246A (ja) ガイドワイヤ
JP6701082B2 (ja) ガイドワイヤおよびガイドワイヤの製造方法
JP5473677B2 (ja) ガイドワイヤ
JP4783343B2 (ja) ガイドワイヤ
JP6306994B2 (ja) ガイドワイヤおよびガイドワイヤの製造方法
JP5997370B2 (ja) ガイドワイヤ
JP5328835B2 (ja) ガイドワイヤの製造方法
JP3962652B2 (ja) ガイドワイヤ
WO2014162389A1 (ja) ガイドワイヤ
JP5019868B2 (ja) ガイドワイヤ
JP6709083B2 (ja) ガイドワイヤ
JP4376073B2 (ja) ガイドワイヤ
JP5135452B2 (ja) ガイドワイヤ
JP4783345B2 (ja) ガイドワイヤ
WO2014162391A1 (ja) ガイドワイヤ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15844138

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016550153

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15844138

Country of ref document: EP

Kind code of ref document: A1