WO2009119387A1 - ガイドワイヤおよびガイドワイヤの製造方法 - Google Patents

ガイドワイヤおよびガイドワイヤの製造方法 Download PDF

Info

Publication number
WO2009119387A1
WO2009119387A1 PCT/JP2009/055185 JP2009055185W WO2009119387A1 WO 2009119387 A1 WO2009119387 A1 WO 2009119387A1 JP 2009055185 W JP2009055185 W JP 2009055185W WO 2009119387 A1 WO2009119387 A1 WO 2009119387A1
Authority
WO
WIPO (PCT)
Prior art keywords
guide wire
flat plate
wire
covering member
plate portion
Prior art date
Application number
PCT/JP2009/055185
Other languages
English (en)
French (fr)
Inventor
英雄 佐藤
英紀 藤曲
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Publication of WO2009119387A1 publication Critical patent/WO2009119387A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/09Guide wires
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/09Guide wires
    • A61M2025/09058Basic structures of guide wires
    • A61M2025/09083Basic structures of guide wires having a coil around a core
    • A61M2025/09091Basic structures of guide wires having a coil around a core where a sheath surrounds the coil at the distal part
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/09Guide wires
    • A61M2025/09108Methods for making a guide wire
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/09Guide wires
    • A61M2025/09133Guide wires having specific material compositions or coatings; Materials with specific mechanical behaviours, e.g. stiffness, strength to transmit torque

Definitions

  • the present invention relates to a guide wire and a guide wire manufacturing method.
  • the guide wire introduces and guides catheters used for treatment of difficult surgical sites or treatment for the purpose of minimally invasive to the human body, angiographic examination and treatment in heart disease, etc. Is used.
  • the tip of the guide wire is projected from the tip of the balloon catheter under fluoroscopy, and the target site is the target site together with the balloon catheter.
  • Insert the coronary artery (coronary artery) just before the stenosis then pass the tip of the guide wire through the stenosis, then guide the balloon catheter balloon along the guide wire to the stenosis, and expand the balloon to stenosis A treatment that spreads the part and secures blood flow is performed.
  • the guide wire in order to insert a guide wire from the femoral artery by the Seldinger method and advance to the coronary artery via the aorta, aortic arch, coronary artery mouth, the guide wire has flexibility (followability) to follow the blood vessel, It is preferable that the pushability that the force of pushing the hand portion is effectively transmitted to the tip portion is excellent.
  • the guide wire may be shaped into a shape that matches the shape of the branch portion. This shaping is usually performed by a doctor or the like with a finger at the time of treatment, and is called reshaping.
  • the desired branch cannot be selected with the conventional pre-shaped angle-shaped or J-shaped distal shape, and the distal end of the guide wire is desired.
  • the shape is changed and reinserted. If the tip shape of the guide wire still does not match, the guide wire must be removed from the catheter, reshaped, and inserted.
  • a guide wire is known in which the wire body is made of a Ni—Ti alloy exhibiting superelasticity in order to obtain flexibility at the tip.
  • the tip portion of the wire body exhibits superelasticity, so that reshaping is difficult.
  • a guide wire capable of reshaping the tip has been developed as follows.
  • a guide wire having a configuration in which the tip portion of a core wire (wire body) made of a superelastic alloy is heat treated to lose (deteriorate) the superelasticity of the portion is disclosed (see, for example, Patent Document 1). ).
  • the shape when the tip portion is heat treated to lose superelasticity, the shape is easily attached at the time of reshaping, but when inserted into the living body, the shape may be removed and may be restored. This is because the shape memory effect tries to return to the original straight shape. That is, the transformation point rises due to heat treatment and does not exhibit superelasticity at room temperature, and it looks as if it has undergone plastic deformation, but this is apparent plastic deformation, which is inserted into the living body and the temperature This is because when the temperature rises to body temperature, it approaches the transformation point and returns to the original linear shape.
  • JP-A-5-168717 Japanese Patent Publication No. 5-508559
  • An object of the present invention is to provide a guide wire and a guide wire manufacturing method capable of obtaining excellent reshapability while ensuring sufficient flexibility at the tip.
  • the present invention provides: A wire body having a flat plate shape at the tip and having a flat plate portion made of a metal material; A covering member made of a metal material that covers the outer peripheral portion of the flat plate portion; The covering member is a guide wire attached to the flat plate portion by being deformed by press working.
  • the distal end portion of the guide wire can be deformed and maintained in a desired shape before use while ensuring sufficient flexibility, and the shape is practically maintained even during operation.
  • Excellent performance (reshape).
  • the distal end portion of the guide wire is mainly flexible by the flat plate portion.
  • the reshaping property when reshaping can be compensated mainly by the covering member, while ensuring the reshaping property, and as a result, the reshaping property is more excellent as a whole.
  • the covering member is attached to the flat plate portion by being deformed by press working, its shape (thickness, width, length) and the like can be easily set to a desired size.
  • tip part of a guide wire can be shape
  • the covering member is formed by deforming an annular or coiled base material.
  • the covering member can be securely attached to the flat plate portion, and thus the outer peripheral portion of the flat plate portion can be reliably covered with the covering member.
  • the covering member has a portion whose width and / or thickness has changed along the longitudinal direction of the wire body.
  • the ratio between the flat plate portion and the covering member in the cross-sectional area varies along the longitudinal direction of the wire body. In this case, a portion where the shape is surely maintained and a portion that is easily deformed are formed.
  • the metal material constituting the covering member is higher in plastic deformability than the metal material constituting the flat plate portion.
  • a portion having the characteristic of being easily plastically deformed as compared with the flat plate portion that is, a portion that reinforces the flexible flat plate portion is provided.
  • the covering member takes most of the plastic deformation and can be easily and reliably shaped into a desired shape, and the shape is maintained.
  • the metal material constituting the covering member has a higher rigidity than the metal material constituting the flat plate portion.
  • a portion having the characteristic of being easily plastically deformed as compared with the flat plate portion that is, a portion that reinforces the flexible flat plate portion is provided.
  • the covering member takes most of the plastic deformation and can be easily and reliably shaped into a desired shape, and the shape is maintained.
  • the metal material constituting the covering member is stainless steel, gold or platinum.
  • a portion having the characteristic of being easily plastically deformed as compared with the flat plate portion that is, a portion that reinforces the flexible flat plate portion is provided.
  • the covering member takes most of the plastic deformation and can be easily and reliably shaped into a desired shape, and the shape is maintained.
  • the flat plate portion has a portion whose width and / or thickness changes along the longitudinal direction of the wire body.
  • the ratio between the flat plate portion and the covering member in the cross-sectional area varies along the longitudinal direction of the wire body. In this case, a portion where the shape is surely maintained and a portion that is easily deformed are formed.
  • the flat plate portion has at least one curved or bent portion.
  • the flat plate portion can be finely shaped toward the tip direction.
  • the metal material constituting the flat plate portion is a superelastic alloy.
  • the super elastic alloy is rich in flexibility, has a resilience, and is difficult to bend. Therefore, the guide wire can be sufficiently flexible at the tip side by configuring the flat plate portion with the super elastic alloy. And reversibility with respect to bending, followability with respect to blood vessels that bend and bend in a complicated manner, etc., and better operability can be obtained.
  • the guide wire of the present invention preferably includes a coil installed so as to cover the tip of the wire body.
  • the inner peripheral portion of the coil is separated from the covering member.
  • the present invention provides: An insertion step of forming an annular shape or a coil shape made of a metal material, and inserting a tip portion of a core material, which is at least a tip portion made of a metal material, into a base material to be a covering member; The covering formed by pressing the core material in a state in which the tip portion is inserted into the base material, forming the flat plate portion by making the tip portion into a flat plate shape, and deforming the base material to the flat plate portion
  • a guide wire manufacturing method comprising: a mounting step of mounting a member.
  • the distal end portion of the guide wire can be deformed and maintained in a desired shape before use while ensuring sufficient flexibility, and the shape is practically maintained even during operation.
  • Excellent performance (reshape).
  • the distal end portion of the guide wire is mainly flexible by the flat plate portion.
  • the reshaping property when reshaping can be compensated mainly by the covering member, while ensuring the reshaping property, and as a result, the reshaping property is more excellent as a whole.
  • the covering member is attached to the flat plate portion by being deformed by press working, its shape (thickness, width, length) and the like can be easily set to a desired size.
  • tip part of a guide wire can be shape
  • the pressing it is preferable to perform the pressing while heating the portion where the tip of the core member is inserted into the base material.
  • the guide wire manufacturing method of the present invention it is preferable to change the width and / or thickness of the flat plate portion and the covering member by changing the degree of processing when the pressing is performed. .
  • the ratio between the flat plate portion and the covering member in the cross-sectional area varies along the longitudinal direction of the wire body. In this case, a portion where the shape is surely maintained and a portion that is easily deformed are formed.
  • the guide wire manufacturing method of the present invention preferably includes a shaping step of forming at least one curved or bent portion on the flat plate portion after the mounting step.
  • the flat plate portion can be shaped more finely in the tip direction.
  • FIG. 1 is a partial longitudinal sectional view showing a first embodiment of the guide wire of the present invention.
  • FIG. 2 is an enlarged longitudinal sectional view of the distal end portion of the guide wire shown in FIG.
  • FIG. 3 is an enlarged cross-sectional view of the distal end portion of the guide wire shown in FIG.
  • FIG. 4 is a view for explaining the guide wire manufacturing method shown in FIG. 1 step by step.
  • FIG. 5 is a diagram for step-by-step explanation of the guide wire manufacturing method shown in FIG.
  • FIG. 6 is a diagram for step-by-step explanation of the method for manufacturing the guide wire (second embodiment) of the present invention.
  • FIG. 7 is a view for step-by-step explanation of the method for manufacturing the guide wire (second embodiment) of the present invention.
  • FIG. 5 is a diagram for step-by-step explanation of the guide wire (second embodiment) of the present invention.
  • FIG. 8 is a longitudinal sectional side view of the reshapable portion of the guide wire (third embodiment) of the present invention.
  • FIG. 9 is a longitudinal sectional plan view of the reshapable portion of the guide wire (third embodiment) of the present invention.
  • FIG. 10 is a longitudinal sectional side view of the reshapable portion of the guide wire (fourth embodiment) of the present invention.
  • FIG. 11 is a longitudinal sectional plan view of a reshapable portion of the guide wire (fourth embodiment) of the present invention.
  • FIG. 12 is a side view of the reshapable portion of the guide wire (fifth embodiment) of the present invention.
  • FIG. 13 is a diagram for explaining the guide wire manufacturing method shown in FIG. 12 in order.
  • FIG. 1 is a partial longitudinal sectional view showing a first embodiment of the guide wire of the present invention
  • FIG. 2 is an enlarged longitudinal sectional view of the distal end portion of the guide wire shown in FIG. 1
  • FIG. 3 is a guide wire shown in FIG.
  • FIG. 4 and FIG. 5 are diagrams for explaining the guide wire manufacturing method shown in FIG. 1 step by step.
  • the right side in FIGS. 1, 2, 4 and 5 (also in FIGS. 6 to 13) is referred to as “base end”, and the left side is referred to as “tip”.
  • the upper side is referred to as “upper” or “upper”
  • the lower side is referred to as “lower” or “lower”.
  • a guide wire 1 shown in FIG. 1 is a guide wire for a catheter that is used by being inserted into the lumen of a catheter (including an endoscope), and includes a first wire 2 disposed on the distal end side, and a first wire 2.
  • a wire body 10 formed by joining the second wires 4 arranged on the proximal end side of the wire body, and a spiral coil 5 installed at the distal end portion (portion on the distal end side) of the wire body 10. .
  • the total length of the guide wire 1 is not particularly limited, but is preferably about 200 to 5000 mm.
  • the first wire 2 is composed of a flexible or elastic wire.
  • the first wire 2 has an outer diameter constant portion 21 whose outer diameter is substantially constant, and a first taper that is located on the distal side of the outer diameter constant portion 21 and whose outer diameter gradually decreases in the distal direction.
  • It has a second taper portion 23 which is located between the constant diameter portion 21 and the large diameter portion 24 and whose outer diameter gradually decreases in the distal direction.
  • the first taper portion 22 is formed between the reshape portion 3 and the constant outer diameter portion 21, and in particular, the reshape portion 3 is formed in the vicinity of the distal end side of the first taper portion 22, so that the first The rigidity (bending rigidity, torsional rigidity) of the wire 2 can be gradually decreased toward the distal end direction.
  • the guide wire 1 obtains good stenosis passage and flexibility at the distal end, The followability to the blood vessels and the safety are improved, and bending and the like can be prevented.
  • the outer diameter constant portion 21 and the large diameter portion 24 are formed via the second taper portion 23, so that the rigidity (bending rigidity, torsional rigidity) of the first wire 2 is achieved. ) Can be gradually decreased toward the tip.
  • the taper angle (the reduction rate of the outer diameter) of the first taper portion 22 (the same applies to the second taper portion 23) is constant along the longitudinal direction of the wire body 10, but may vary along the longitudinal direction. May be. For example, a portion in which a taper angle (an outer diameter reduction rate) and a relatively small portion are alternately formed a plurality of times may be used.
  • first taper portion 22 and the second taper portion 23 may have different taper shapes and taper angles.
  • outer diameter constant portion 21 and the large diameter portion 24 have their outer diameters constant along the wire longitudinal direction.
  • the outer diameter of the constant outer diameter portion 21 is substantially equal to the maximum outer diameter of the first taper portion 22 and is substantially equal to the minimum outer diameter of the second taper portion 23.
  • the outer diameter of the large diameter portion 24 is substantially the same as the maximum outer diameter of the second tapered portion 23.
  • the distal end of the second wire 4 is joined to the proximal end of the first wire 2 (the proximal end of the large diameter portion 24).
  • the second wire 4 is made of a flexible or elastic wire.
  • the outer diameter of the second wire 4 is almost constant in most of the portion.
  • the method for joining the first wire 2 and the second wire 4 is not particularly limited.
  • a method of joining by welding such as friction welding, laser welding, butt resistance welding such as upset welding, or a tubular joining member.
  • butt resistance welding is particularly preferable because relatively simple and high joint strength can be obtained.
  • the outer diameter of the first wire 2 and / or the second wire 4 changes before and after the joint (welded portion) 16. Specifically, the outer diameter of the first wire 2 near the joint 16 is gradually reduced toward the proximal direction, that is, the second wire 4, and the second wire 4 has an outer diameter near the joint 16. Gradually decreases toward the tip, that is, toward the first wire 2.
  • the first wire 2 and the second wire 4 have substantially the same outer diameter at the portion where they are joined to each other. Thereby, when joining the base end of the 1st wire 2 and the tip of the 2nd wire 4, the level difference by the outside diameter difference of both the wires 2 and 4 does not arise in the perimeter of those joined parts 16, but a continuous surface is formed. Can be configured.
  • the average outer diameter of the first wire 2 is smaller than the average outer diameter of the second wire 4.
  • the guide wire 1 is highly flexible on the first wire 2 on the distal end side and relatively high on the second wire 4 on the proximal end side. And excellent operability (pushability, torque transmission, etc.).
  • the constituent materials of the first wire 2 and the second wire 4 are not particularly limited, and for example, stainless steel (for example, SUS304, SUS303, SUS316, SUS316L, SUS316J1, SUS316J1L, SUS405, SUS430, SUS434, SUS444, SUS429, Various metal materials such as SUS430F, all types of SUS such as SUS302), piano wires, cobalt-based alloys, alloys showing pseudoelasticity (including superelastic alloys) can be used.
  • stainless steel for example, SUS304, SUS303, SUS316, SUS316L, SUS316J1, SUS316J1L, SUS405, SUS430, SUS434, SUS444, SUS429
  • Various metal materials such as SUS430F, all types of SUS such as SUS302), piano wires, cobalt-based alloys, alloys showing pseudoelasticity (including superelastic alloys) can be used.
  • the constituent material of the first wire 2 is preferably an alloy (including a superelastic alloy) exhibiting pseudoelasticity, more preferably a superelastic alloy.
  • the guide wire 1 is sufficiently flexible at the tip side by configuring the first wire 2 with the superelastic alloy. Performance and bendability, improved followability to complicatedly curved / bent blood vessels, etc., improved operability, and even if the first wire 2 repeatedly bends / bends, Since the bend crease is not attached due to the resilience of the 1 wire 2, it is possible to prevent the operability from being lowered due to the bend crease on the first wire 2 during use of the guide wire 1.
  • Pseudoelastic alloys include any shape of stress-strain curve due to tension, including those where the transformation point of As, Af, Ms, Mf, etc. can be remarkably measured, and those that cannot be measured. However, everything that returns to its original shape by removing stress is included.
  • the preferred composition of the superelastic alloy is a Ni—Ti alloy such as a Ni—Ti alloy of 49 to 52 atomic% Ni, a Cu—Zn alloy of 38.5 to 41.5 wt% Zn, 1 to 10 wt% X Cu—Zn—X alloy (X is at least one of Be, Si, Sn, Al, and Ga), Ni-Al alloy of 36 to 38 atomic% Al, and the like.
  • X is at least one of Be, Si, Sn, Al, and Ga
  • Ni-Al alloy of 36 to 38 atomic% Al, and the like.
  • the Ni—Ti alloy is particularly preferable.
  • a superelastic alloy typified by a Ni—Ti alloy is also excellent in the adhesion of a resin coating layer 8 described later.
  • the cobalt-based alloy has a high elastic modulus when used as a wire and has an appropriate elastic limit. For this reason, the wire comprised by the cobalt type alloy is excellent in torque transferability, and problems, such as buckling, do not arise very much.
  • Any cobalt-based alloy may be used as long as it contains Co as a constituent element, but it contains Co as a main component (Co-based alloy: Co content in the elements constituting the alloy) Is preferable, and a Co—Ni—Cr alloy is more preferably used. By using an alloy having such a composition, the above-described effects become more remarkable.
  • an alloy having such a composition has a high elastic modulus and can be cold-formed even as a high elastic limit, and by reducing the diameter while sufficiently preventing buckling from occurring due to the high elastic limit. And can have sufficient flexibility and rigidity to be inserted into a predetermined portion.
  • the above-mentioned stainless steel is preferable.
  • Stainless steel has higher strength and rigidity than the superelastic alloy, and therefore can impart excellent pushability and torque transmission to the guide wire 1.
  • the first wire 2 and the second wire 4 may be made of different materials, but may be made of the same or the same kind of metal material (the main metal material in the alloy is the same). In the latter case, the joint strength of the joint part (welded part) 16 becomes higher, and excellent torque transmission properties and the like are exhibited.
  • the first wire 2 and the second wire 4 are made of different materials
  • the first wire 2 is preferably made of the above-described superelastic alloy, and particularly made of a Ni—Ti alloy.
  • the second wire 4 is preferably made of the above-described stainless steel.
  • first wire 2 and the second wire 4 are joined.
  • first wire 2 and the second wire 4 may be composed of a single continuous wire body without a joint.
  • examples of the constituent material of the wire body include the same materials as described above, and stainless steel, cobalt-based alloys, and pseudoelastic alloys are particularly preferable.
  • the coil 5 is arranged on the outer periphery of the tip of the wire body 10 so as to cover the tip.
  • the installation of the coil 5 reduces the contact area of the surface of the wire body 10 with the inner wall of the catheter and the surface of the living body, thereby reducing the sliding resistance.
  • the operability of the guide wire 1 is further improved. improves.
  • a wire main body 10 is inserted through the central portion inside the coil 5.
  • the reshapable part 3, the first tapered part 22, and all or part of the constant outer diameter part 21 are covered with the coil 5.
  • the distal end portion (particularly, the region from the reshape portion 3 to the first tapered portion 22) of the wire body 10 is inserted in a non-contact state with the inner peripheral surface of the coil 5. As a result, a gap 50 is formed between the coil 5 and the tip of the wire body 10.
  • the coil 5 is formed by spirally forming a strand 54 having a circular cross section.
  • one strand 54 may be spirally wound, or a plurality of strands 54 may be spirally wound.
  • the constituent material of the strand 54 is not particularly limited, and may be either a metal material or a resin material.
  • the metal material include stainless steel and a radiopaque material such as a Pt—Ni alloy. In the latter case, X-ray contrast property is obtained at the distal end portion of the guide wire 1, and it can be inserted into the living body while confirming the position of the distal end portion under X-ray fluoroscopy, which is preferable.
  • the coil 5 may be a combination of two or more materials.
  • the strand 54 on the distal end side of the coil 5 can be made of an X-ray opaque material such as a Pt—Ni alloy, and the strand 54 on the proximal end side of the coil 5 can be made of stainless steel.
  • the part located on the distal end side of the coil 5 can be emphasized more easily than the part located closer to the proximal end side thereof, so that the guide wire
  • the position of the most advanced part 1 (the part where the reshape part 3 exists) can be visually recognized more clearly.
  • the wire diameter of the wire 54 of the coil 5 may be the same over the entire length of the coil 5, but the wire diameter of the wire 54 may be different between the distal end side and the proximal end side of the coil 5.
  • the wire diameter of the strand 54 may be smaller (or larger) on the distal end side of the coil 5 than on the proximal end side.
  • the outer diameter of the coil 5 may be the same over the entire length of the coil 5, but the outer diameter of the coil 5 may be different between the distal end side and the proximal end side of the coil 5.
  • the outer diameter of the coil 5 may be smaller on the distal end side of the coil 5 than on the proximal end side.
  • the adjacent strands 54 of the coil 5 are in contact with each other and are in a so-called dense winding state. These strands 54 generate a force (compression force) that pushes each other in the axial direction of the wire body 10 in a natural state.
  • the “natural state” refers to a state where no external force is applied.
  • the present invention is not limited to this, and there may be a place where the adjacent strands 54 of the coil 5 are separated from each other.
  • the coil 5 is fixed to the wire body 10 at three places (a plurality of places). That is, the distal end portion of the coil 5 is fixed to the distal end of the first wire 2 (the distal end of the reshape portion 3) by a fixing material (fixing portion) 51, and the proximal end portion of the coil 5 is first fixed by the fixing material (fixing portion) 53. It is fixed in the middle of the wire 2 (near the base end portion of the constant outer diameter portion 21), and the middle portion of the coil 5 is fixed to the first tapered portion 22 of the first wire 2 by a fixing material (fixing portion) 52. .
  • the respective portions of the coil 5 can be reliably fixed to the wire body 10 without impairing the flexibility of the distal end portion (the portion where the coil 5 is present) of the guide wire 1. .
  • the reshape portion 3 can be securely fixed to the coil 5, and the shaped reshape is formed.
  • the shape of the part 3 can be appropriately maintained.
  • the fixing materials 51, 52 and 53 are each preferably made of solder (brazing material).
  • the fixing materials 51, 52 and 53 are not limited to solder, and may be adhesives.
  • the method for fixing the coil 5 to the wire body 10 is not limited to the above-described fixing material, and for example, welding may be used.
  • the distal end surface of the fixing material 51 is preferably rounded (see FIG. 1).
  • the fixing material 52 is disposed on the first tapered portion 22, but is not limited to this, and any portion in the middle of the coil 5 may be used as long as it is on the proximal end side of the reshaped portion 3. It may be arranged.
  • the outer surface of the guide wire 1 is provided with a resin coating layer 8 covering the whole or a part thereof.
  • the resin coating layer 8 can be formed for various purposes. As an example, the operability of the guide wire 1 is reduced by reducing the friction (sliding resistance) of the guide wire 1 and improving the slidability. May be improved.
  • the resin coating layer 8 is preferably made of a material that can reduce friction as described below.
  • the frictional resistance (sliding resistance) with the inner wall of the catheter used together with the guide wire 1 is reduced, the slidability is improved, and the operability of the guide wire 1 in the catheter becomes better.
  • the sliding resistance of the guide wire 1 is lowered, when the guide wire 1 is moved and / or rotated in the catheter, kinks (bending) or twisting of the guide wire 1, Twist can be prevented more reliably.
  • materials that can reduce such friction include polyolefins such as polyethylene and polypropylene, polyvinyl chloride, polyesters (PET, PBT, etc.), polyamides, polyimides, polyurethanes, polystyrenes, polycarbonates, silicone resins, fluorine resins ( PTFE, ETFE, etc.) or a composite material thereof.
  • polyolefins such as polyethylene and polypropylene, polyvinyl chloride, polyesters (PET, PBT, etc.), polyamides, polyimides, polyurethanes, polystyrenes, polycarbonates, silicone resins, fluorine resins ( PTFE, ETFE, etc.) or a composite material thereof.
  • the resin coating layer 8 can be provided for the purpose of improving safety when the guide wire 1 is inserted into a blood vessel or the like.
  • the resin coating layer 8 is made of a flexible material (soft material, elastic material).
  • Examples of such flexible materials include polyolefins such as polyethylene and polypropylene, polyvinyl chloride, polyester (PET, PBT, etc.), polyamide, polyimide, polyurethane, polystyrene, silicone resin, polyurethane elastomer, polyester elastomer, polyamide
  • examples thereof include thermoplastic elastomers such as elastomers, various rubber materials such as latex rubber and silicone rubber, or composite materials in which two or more thereof are combined.
  • the resin coating layer 8 is not limited to being entirely composed of the same material, and the constituent material may be different in the middle of the guide wire 1 in the longitudinal direction.
  • the material of the portion covering the first wire 2 and the coil 5 of the resin coating layer 8 is made of the flexible material, and the material of the portion covering the second wire 4 of the resin coating layer 8 is the friction. The material can be reduced.
  • the vicinity of the joint 16 is covered with a coating layer 82 made of a material that can reduce friction such as silicone, which is different from the resin coating layer 8.
  • the resin coating layer 8 may be a single layer or a laminate of two or more layers (for example, an inner layer made of a material that is more flexible than an outer layer).
  • the portion of the resin coating layer 8 that covers the first wire 2 and the coil 5 can be a single layer
  • the material of the portion of the resin coating layer 8 that covers the second wire 4 can be a laminate of two or more layers.
  • the reverse may be sufficient. Also in this case, it is preferable to omit the resin coating layer 8 in the vicinity of the joint 16 as described above.
  • a hydrophilic material is coated on the outer surface of at least the tip of the guide wire 1.
  • the hydrophilic material is wetted to produce lubricity, the friction (sliding resistance) of the guide wire 1 is reduced, and the slidability is improved. Therefore, the operability of the guide wire 1 is improved.
  • hydrophilic materials include cellulose-based polymer materials, polyethylene oxide-based polymer materials, and maleic anhydride-based polymer materials (for example, maleic anhydride copolymers such as methyl vinyl ether-maleic anhydride copolymer).
  • Acrylamide polymer materials for example, polyacrylamide, block copolymer of polyglycidyl methacrylate-dimethylacrylamide (PGMA-DMAA)), water-soluble nylon, polyvinyl alcohol, polyvinylpyrrolidone and the like.
  • Such a hydrophilic material often exhibits lubricity by wetting (water absorption) and reduces frictional resistance (sliding resistance) with the inner wall of the catheter used together with the guide wire 1. Thereby, the slidability of the guide wire 1 is improved, and the operability of the guide wire 1 in the catheter becomes better.
  • the guide wire 1 (wire body 10) has the reshapable portion 3 at its tip (see FIG. 1).
  • the reshapable part 3 includes a flat plate part 25 having a flat plate shape formed at the foremost part of the wire body 10 (first wire 2), and a covering covering the outer peripheral part of the flat plate part 25. It is comprised with the member 6.
  • FIG. The reshape part 3 has a flat plate shape as a whole as described above, and can be used after being deformed (reshaped: shaped) into a desired shape.
  • a doctor or the like previously sets the distal end of the guide wire to a desired shape.
  • reshaping bending the tip of the guide wire into a desired shape.
  • reshape part 3 reshape can be performed easily and reliably, and the operativity at the time of inserting the guide wire 1 in a biological body improves markedly.
  • the shape of the reshaped portion 3 after reshaping may be any shape such as an L shape, a U shape (J shape), an S shape, or a three-dimensional shape.
  • the flat plate portion 25 is a part of the first wire 2 and is therefore a portion made of a superelastic alloy (metal material) typified by the Ni—Ti alloy described above. Thereby, the reshapable part 3 becomes flexible (elastic), and the reshapable part 3 can be easily deformed into a desired shape.
  • a superelastic alloy metal material typified by the Ni—Ti alloy described above.
  • the flat plate portion 25 has a constant thickness t 1 along the longitudinal direction of the wire body 10. As shown in FIG. 3, the width w 1 of the flat plate portion 25 is also constant along the longitudinal direction of the wire body 10.
  • the covering member 6 is a member that covers the entire outer periphery (the entire periphery) of the flat plate portion 25.
  • the covering member 6 is attached (crimped) to the flat plate portion 25 by deforming a base material 6 'described later by press working.
  • the covering member 6 is made of a metal material that has higher rigidity (plastic deformability) than the material constituting the flat plate portion 25, that is, is easily plastically deformed.
  • the metal material is not particularly limited, and for example, a Ni-based alloy such as a Ni—Cr alloy or a high-rigidity material having higher rigidity than a superelastic alloy such as stainless steel can be used. In addition, gold or platinum can also be used. Such a material is also preferable because it is more easily plastically deformed than the superelastic alloy constituting the flat plate portion 25. It is excellent in terms of the bondability between the Ni-base alloy covering member 6 and the Ni-Ti alloy flat plate portion 25. If necessary, spot welding or laser welding can be used before or after pressing to improve the bondability. Forming nuggets does not produce fragile intermetallic compounds.
  • the reshaped portion 3 has a characteristic that is more easily plastically deformed than the flat plate portion 25 that is the core portion, that is, a portion that reinforces the flexible flat plate portion 25. It will be equipped with. Thereby, when the reshaped part 3 is reshaped, the covering member 6 takes most of the plastic deformation and can be easily and reliably shaped into a desired shape, and the shape is maintained.
  • the reshape part 3 can mainly compensate the reshape property at the time of reshape with the covering member 6 while ensuring sufficient flexibility mainly by the flat plate part 25, and as a result, the excellent reshape property as a whole. (Reshape property is improved (high shape property)). Further, the reshaped portion 3 which has been reshaped maintains the shape as reshaped even when the temperature rises to about body temperature as well as normal temperature.
  • the degree of plastic deformation of the covering member 6 at the time of reshaping can be appropriately adjusted by, for example, selecting the constituent material, shape, dimensions (width w 2 , thickness t 2 , length) of the covering member 6. .
  • the thickness t 2 of the covering member 6 is constant along the longitudinal direction of the wire main body 10, similarly to the flat plate portion 25.
  • the covering member 6 has a width w 2 that is constant along the longitudinal direction of the wire body 10, as with the flat plate portion 25.
  • the ease of shaping is almost the same in any part in the longitudinal direction.
  • the reshapable part 3 (guide wire 1) having such a configuration can be manufactured by the method described below (guide wire manufacturing method).
  • the press machine 30 has a bed 301 positioned below and a slide 302 positioned above the bed 301.
  • the bed 301 and the slide 302 are relatively movable in the vertical direction, and can approach and separate from each other.
  • the upper surface 301a of the bed 301 and the lower surface 302a of the slide 302 are respectively flat surfaces (horizontal surfaces).
  • a heater 301 is built in the bed 301 (similar to the slide 302). Thereby, when the heater 303 generates heat, the object to be processed can be heated.
  • the base material 6 ′ is an annular (ring-shaped) member. This base material 6 ′ is pressed by the press machine 30. For this reason, the thickness of the wall portion of the base material 6 ′ is larger than the thickness t 2 of the covering member 6, and the total length of the base material 6 ′ is shorter than the total length of the covering member 6.
  • the core material 10 ′ is a linear body obtained by joining the first wire 2 and the second wire 4, but is a portion on the tip side of the first taper portion 22 of the first wire (the flat plate portion 25 after press working).
  • the portion (hereinafter, this portion is referred to as “flat plate portion forming portion 25 ′”) has a circular cross-sectional shape like the other portions.
  • the length of the flat plate portion molding portion 25 ' is substantially the same as that of the base material 6'. Further, the outer diameter of the flat plate portion molding portion 25 'is substantially equal to or slightly smaller than the inner diameter of the base material 6'.
  • the bed 301 and the slide 302 are moved relative to each other from the state shown in FIG. 5C to bring them closer to each other (see FIG. 5D).
  • press working can be performed, and the flat plate portion molding portion 25 ′ is deformed (molded) into a flat plate shape, is hardened by work, and the superelastic characteristics are lowered, and the flat plate portion 25 is formed.
  • the base material 6 ′ is also deformed into a flat plate shape like the flat plate forming portion 25 ′.
  • the wire main body 10 which has the reshape part 3 in which the coating
  • each of the heaters 303 may be actuated when pressing is performed, and the base material 6 'inserted into the base material 6' in the insertion step may be heated.
  • the temperature heating temperature
  • the base material 6 ′ used may have a single-layer wall or may be composed of a laminate of two or more layers.
  • FIG. 6 and FIG. 7 are diagrams for explaining the guide wire (second embodiment) manufacturing method of the present invention step by step.
  • the reshapable part 3A in the present embodiment has a covering member 6A having a coil shape.
  • the reshapable portion 3A can make up for the reshapability when reshaped mainly by the covering member 6A while securing sufficient flexibility mainly by the flat plate portion 25.
  • the reshapable portion 3A has improved reshapability as a whole, and has excellent reshapability (high reshapability).
  • the covering member 6A has a coil shape, even if the outer diameter of the flat plate portion molding portion 25 ′ varies (even if there is a portion whose outer diameter changes along the longitudinal direction), the coiled inner diameter is reduced. By making it a little smaller, there is an advantage that the pressing process can be performed in a state where the base material 6A ′ and the flat plate portion molding portion 25 ′ are always in close contact with each other.
  • the reshape part 3A having such a configuration can be manufactured by the method described below (guide wire manufacturing method).
  • a base material 6A ′ that becomes the covering member 6A and a core material 10 ′ that becomes the wire body 10 are prepared.
  • the core material 10 ′ is the same as that described in the first embodiment.
  • the base material 6A ′ is a coil-shaped member.
  • the base material 6A ′ is pressed by the press machine 30. Therefore, the base material 6A 'thickness of the wire 62 forming the (outer diameter) is larger than the thickness t 2 of the cover member 6A, the base material 6A' total length of shorter than the total length of the cover member 6A
  • the minimum inner diameter of the base material 6 ′ is substantially equal to or slightly larger than the outer diameter of the flat plate portion molded portion 25 ′.
  • the strand 62 has a circular cross-sectional shape.
  • the wire main body 10 having the reshape portion 3A in which the covering member 6A is mounted on the flat plate portion 25, that is, the reshape portion described above, is obtained by releasing the mold.
  • coated member 6A has entered the flat plate part 25.
  • press working may be performed while operating each heater 303.
  • FIG. 8 is a longitudinal sectional side view of the reshapable portion of the guide wire (third embodiment) of the present invention
  • FIG. 9 is a longitudinal sectional plan view of the reshapable portion of the guide wire (third embodiment) of the present invention.
  • This embodiment is the same as the first embodiment except that the shapes of the covering member and the flat plate portion are different.
  • the flat plate portion 25B has a thickness t 1 and a width w 1 that change along the longitudinal direction of the wire body. Also, the thickness t 2 and the width w 2 of the covering member 6 ⁇ / b > B change along the longitudinal direction of the wire body 10. However, the thickness t 2 in plan view is constant along the longitudinal direction of the wire body 10.
  • the thickness t 1 of the flat plate portion 25B is gradually decreased along the distal direction. Width w 1 of the flat plate portion 25B is gradually increased toward the distal end.
  • the thickness t 2 of the cover member 6B is contrary to the thickness t 1 of the flat plate portion 25B, gradually increases toward the distal end. Width w 2 of the cover member 6B, corresponding to the width w 1 of the flat portion 25B, gradually increases just as along the distal direction.
  • the ratio of the flat plate portion 25B and the covering member 6B in the cross-sectional area differs along the longitudinal direction of the wire body 10.
  • the portion 391 occupies a larger proportion of the covering member 6B than the portion 392, and the portion 392 is more flat than the portion 391. Is a large percentage.
  • the shape of the portion 391 is more reliably maintained than that of the portion 392, and the portion 392 is more easily deformed than the portion 391.
  • the structure of the reshapable portion 3B is effective.
  • the press machine 30 is usually configured to be able to change the degree of processing by adjusting the pressure.
  • the thickness t 1 and width w 1 of the flat plate portion 25B and the covering member 6B are selected by appropriately selecting the shapes of the flat plate portion forming portion 25 ′ and the base material 6 ′ and changing the degree of processing when performing the press working. Thickness t 2 and width w 2 can be changed, and the structure of the reshapable portion 3B is obtained.
  • the flat plate portion 25B has a thickness t 1 and a width w 1 that change along the longitudinal direction of the wire body, but is not limited to this.
  • the thickness t 1 and the width w 1 Only one of 1 may be changed.
  • the covering member 6B also has a thickness t 2 and a width w 2 that change along the longitudinal direction of the wire body 10 in the illustrated configuration, but is not limited thereto. Only one of t 2 and width w 2 may be changed.
  • FIG. 10 is a longitudinal sectional side view of the reshapable portion of the guide wire (fourth embodiment) of the present invention
  • FIG. 11 is a longitudinal sectional plan view of the reshapable portion of the guidewire (fourth embodiment) of the present invention.
  • This embodiment is the same as the third embodiment except that the shapes of the covering member and the flat plate portion are different.
  • the reshapable part 3 ⁇ / b> C of this embodiment can be divided into a first part 381 and a second part 382.
  • the flat plate portion 25 ⁇ / b> C has portions where the thickness t 1 and the width w 1 change along the longitudinal direction of the wire body 10, and the first portion 381 and the second portion 382 have the first portion 381. However, the thickness t 1 is smaller than the second portion 382, and the width w 1 is larger.
  • the covering member 6C also has a portion in which the thickness t 2 and the width w 2 are changed along the longitudinal direction of the wire body 10, and the first portion 381 and the second portion 382 have a first portion. It has a larger width w 2 than the second portion 382 toward the site 381.
  • the first part 381 has a smaller thickness t 2 than the second part 382 in a side view (see FIG. 10), and the first part 381 has a second part in a plan view. the thickness t 2 is greater than 382 (see FIG. 11).
  • the reshaped portion 3C having such a shape can be easily formed by so-called multi-stage pressing in which the degree of processing at the time of pressing is changed.
  • FIG. 12 is a side view of the reshapable portion of the guide wire (fifth embodiment) according to the present invention
  • FIG. 13 is a diagram for explaining the guide wire manufacturing method shown in FIG. 12 step by step.
  • This embodiment is the same as the first embodiment except that the shape of the reshapable part is different.
  • the reshapable portion 3D of the present embodiment has a plurality of bent portions that bend in opposite directions along the longitudinal direction.
  • the reshapable part 3D has a total of five bent parts 31, 32, 33, 34, and 35 from the distal end side.
  • the bent parts 31, 33, and 35 are illustrated in FIG. 12 is bent so as to protrude downward, and the bent portions 32 and 34 are bent so as to protrude downward in FIG. 12, so that the overall shape of the reshapable portion 3D is a so-called zigzag shape. ing.
  • the bent portions 31 to 35 of the reshape portion 3D when the intervals between adjacent bent portions are a, b, c, and d (see FIG. 12) (see FIG. 12), in the configuration shown in FIG. d is substantially equal in length. That is, the bent portions 31 to 35 are formed at an equal pitch along the longitudinal direction of the reshapable portion 3D.
  • the intervals (a, b, c, and d) between the adjacent bent portions may all be different, or some of them may be different from others.
  • the distal end side portion can be shaped into a more complicated shape or a fine shape (for example, a shape that is more sharply curved or bent).
  • the plurality of bent portions 31 to 35 can be formed by a press machine 30D as shown in FIG. 13 after the mounting step (shape forming step).
  • the press machine 30D includes a bed 301 having an upper surface 301b that has a shape corresponding to the shape of the reshapable portion 3D, and a slide 302 having a lower surface 302b that has the same shape as the upper surface 301b.
  • the plurality of bent portions 31 to 35 are obtained by compressing the reshape portion 3 (see FIG. 13A) formed into a plate shape as described in the first embodiment with the press machine 30D (FIG. 13B). )), And is molded by releasing the mold (see FIG. 13C). Thereby, the reshape part 3D can be obtained.
  • each of the bent portions 31 to 35 may be curved.
  • the guide wire and the guide wire manufacturing method of the present invention have been described with respect to the illustrated embodiment.
  • the present invention is not limited to this, and each part constituting the guide wire exhibits the same function. It can be replaced with any configuration obtained.
  • arbitrary components may be added.
  • an optional step may be added.
  • guide wire and the guide wire manufacturing method of the present invention may be a combination of any two or more configurations or features of the above embodiments.
  • the guide wire of the present invention comprises a wire body having a flat plate portion formed of a metal material at a tip end portion, and a covering member formed of a metal material that covers an outer peripheral portion of the flat plate portion, The covering member is attached to the flat plate portion by being deformed by press working. Therefore, excellent reshapability can be obtained while ensuring sufficient flexibility at the distal end portion of the guide wire. Therefore, the guide wire of the present invention has industrial applicability.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Pulmonology (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Media Introduction/Drainage Providing Device (AREA)

Abstract

 ガイドワイヤは、先端部に平板状をなし、金属材料で構成された平板部を有するワイヤ本体と、平板部の外周部を覆う、金属材料で構成された被覆部材とを備え、被覆部材は、プレス加工によって変形することにより平板部に装着されたものである。特に、平板部が超弾性合金で構成され、被覆部材が超弾性合金よりも塑性変形性が高い金属材料で構成されている場合、ガイドワイヤの先端部は、主に平板部によって十分な柔軟性を確実に確保しつつ、リシェイプした際のリシェイプ性を主に被覆部材によって補うことができ、その結果、全体としてより優れたリシェイプ性を有するものとなる。

Description

ガイドワイヤおよびガイドワイヤの製造方法
 本発明は、ガイドワイヤおよびガイドワイヤの製造方法に関する。
 ガイドワイヤは、外科的手術が困難な部位の治療、または人体への低侵襲を目的とした治療や、心臓疾患における血管造影の検査、治療などに用いられるカテーテルを目的部位へ導入、誘導するのに使用されている。
 例えばPCI(Percutaneous Coronary Intervention:経皮的冠状動脈インターベンション)を行なう際には、X線透視下で、ガイドワイヤの先端をバルーンカテーテルの先端より突出させた状態で、バルーンカテーテルと共に目的部位である冠状動脈(冠動脈)の狭窄部の手前まで挿入し、次いでガイドワイヤの先端を狭窄部を通過させ、その後バルーンカテーテルのバルーンをガイドワイヤに沿わせつつ狭窄部へ誘導し、バルーンを拡張して狭窄部を押し広げ、血流を確保するという治療を行う。
 例えばセルジンガー法によりガイドワイヤを大腿動脈から挿入し、大動脈、大動脈弓、冠動脈口を経て冠動脈へと進めるためには、ガイドワイヤには、血管に追従するための柔軟性(追従性)とともに、手元部分の押し込みの力が先端部に有効に伝わる押し込み性(プッシャビリティ)が優れていることが好ましい。
 また、ガイドワイヤを冠動脈等の分岐部のうち適正な分枝を選択し、進めるためには、ガイドワイヤの先端部分を分岐部の形状に合わせた形状に形状付けをすることがある。この形状付けは、通常、医師等が施術時に手指によって行うものであり、リシェイプと呼ばれている。
 特に、ガイドワイヤの先端を末梢側の冠動脈に挿入する場合には、従来の予備成型されたアングル型やJ型の先端形状では所望の分枝を選択することができず、ガイドワイヤ先端を所望の形状に変更させて再挿入することが多々ある。それでもガイドワイヤの先端形状が合わない場合は、一旦カテーテルからガイドワイヤを抜去し、再度形状付けをして挿入しなければならない。
 ところで、ガイドワイヤは、先端部の柔軟性を得るために、ワイヤ本体を超弾性を示すNi-Ti系合金で構成したものが知られている。しかしながら、この場合には、ワイヤ本体の先端部が超弾性を示すので、リシェイプが困難である。そこで、以下のような、先端部をリシェイプすることが可能なガイドワイヤが開発されている。
 超弾性合金で構成された芯線(ワイヤ本体)の先端部に熱処理を施して当該部分の超弾性を失わせた(劣化させた)構成のガイドワイヤが開示されている(例えば、特許文献1参照)。
 しかしながら、先端部に熱処理を施して超弾性を失わせた場合、リシェイプに際し容易に形状は付くが、生体内に挿入するとその形状が取れて元に戻ってしまうことがある。これは、形状記憶効果により、元の真直ぐな形状に戻ろうとするからである。すなわち、熱処理によって変態点が上昇し、室温で超弾性を発現せずに、あたかも塑性変形したかのように形状が付くが、これは見かけ上の塑性変形であって、生体内に挿入され温度が体温まで上昇すると、変態点に近づいて元の直線状に戻ってしまうからである。
 また、芯線(ワイヤ本体)の先端部に強加工を施して当該部分の超弾性を失わせた構成のガイドワイヤが開示されている(例えば、特許文献2参照)。
 しかしながら、強加工によって超弾性を失わせた場合でも、形状が付き難いことが多く、そればかりか、加工部分が必要以上に硬くなってしまい、ガイドワイヤの先端部の柔軟性が低下するという問題がある。柔軟性を向上するために、平板状部分(リシェイプ部)をより薄くすることも考えられるが、この場合には強度が保てない。ガイドワイヤ先端は、回転させながら狭窄部を進んだり、折れ曲がった状態で引っ張られたりすることがあるので、一定以上の強度(例えば引張強度)が必要とされ、よって、平板状部分を薄くするのにも限度があり、結局、柔軟性と強度とを両立することができない。
特開平5-168717号公報 特表平5-508559号公報
 本発明の目的は、先端部において、十分な柔軟性を確保しつつ、優れたリシェイプ性を得ることができるガイドワイヤおよびガイドワイヤの製造方法を提供することにある。
 上記目的を達成するために、本発明は、
 先端部に平板状をなし、金属材料で構成された平板部を有するワイヤ本体と、
 前記平板部の外周部を覆う、金属材料で構成された被覆部材とを備え、
 前記被覆部材は、プレス加工によって変形することにより前記平板部に装着されたものであることを特徴とするガイドワイヤである。
 このような本発明によれば、ガイドワイヤの先端部において、十分な柔軟性を確保しつつ、使用前に所望な形状に変形維持することができ、その形状を操作時でも実用上保持される性能(リシェイプ性)に優れる。特に、平板部が超弾性合金で構成され、被覆部材が超弾性合金よりも塑性変形性が高い金属材料で構成されている場合、ガイドワイヤの先端部は、主に平板部によって十分な柔軟性を確実に確保しつつ、リシェイプした際のリシェイプ性を主に被覆部材によって補うことができ、その結果、全体としてより優れたリシェイプ性を有するものとなる。
 また、被覆部材は、プレス加工によって変形することにより平板部に装着されているので、その形状(厚さ、幅、長さ)等を所望の大きさに容易に設定することができる。これにより、ガイドワイヤの先端部を複雑な形状、微細な形状に形状付けすることができ、よって、優れたリシェイプ性を有するガイドワイヤを得る。
 また、本発明のガイドワイヤでは、前記被覆部材は、環状またはコイル状をなす母材を変形してなるものであるのが好ましい。
 これにより、被覆部材を平板部に確実に装着することができ、よって、当該被覆部材で平板部の外周部を確実に覆うことができる。
 また、本発明のガイドワイヤでは、前記被覆部材は、その幅および/または厚さが前記ワイヤ本体の長手方向に沿って変化した部分を有するのが好ましい。
 これにより、横断面積における平板部と被覆部材との比率がワイヤ本体の長手方向に沿って異なる。この場合、形状維持が確実となる部分と、変形し易い部分とが形成されたものとなる。
 また、本発明のガイドワイヤでは、前記被覆部材を構成する金属材料は、前記平板部を構成する金属材料よりも塑性変形性が高いものであるのが好ましい。
 これにより、平板部に比べて塑性変形し易い特性を有する部分、すなわち、柔軟な平板部を補強する部分を備えたものとなる。これにより、平板部をリシェイプした際に、被覆部材が塑性変形の大部分を担い、容易かつ確実に所望の形状に形状付けすることができるとともに、その形状が維持される。
 また、本発明のガイドワイヤでは、前記被覆部材を構成する金属材料は、前記平板部を構成する金属材料よりも剛性が大きいものであるのが好ましい。
 これにより、平板部に比べて塑性変形し易い特性を有する部分、すなわち、柔軟な平板部を補強する部分を備えたものとなる。これにより、平板部をリシェイプした際に、被覆部材が塑性変形の大部分を担い、容易かつ確実に所望の形状に形状付けすることができるとともに、その形状が維持される。
 また、本発明のガイドワイヤでは、前記被覆部材を構成する金属材料は、ステンレス鋼、金または白金であるのが好ましい。
 これにより、平板部に比べて塑性変形し易い特性を有する部分、すなわち、柔軟な平板部を補強する部分を備えたものとなる。これにより、平板部をリシェイプした際に、被覆部材が塑性変形の大部分を担い、容易かつ確実に所望の形状に形状付けすることができるとともに、その形状が維持される。
 また、本発明のガイドワイヤでは、前記平板部は、その幅および/または厚さが前記ワイヤ本体の長手方向に沿って変化した部分を有するのが好ましい。
 これにより、横断面積における平板部と被覆部材との比率がワイヤ本体の長手方向に沿って異なる。この場合、形状維持が確実となる部分と、変形し易い部分とが形成されたものとなる。
 また、本発明のガイドワイヤでは、前記平板部は、少なくとも1つの湾曲または屈曲した部分を有するのが好ましい。
 これにより、例えば、平板部をその先端方向に向かってより微細な形状付けをすることが可能となる。
 また、本発明のガイドワイヤでは、前記平板部を構成する金属材料は、超弾性合金であるのが好ましい。
 これにより、超弾性合金は、柔軟性に富み、復元性があり、曲がり癖が付き難いので、平板部を超弾性合金で構成することにより、ガイドワイヤは、その先端側の部分に十分な柔軟性と曲げに対する復元性が得られ、複雑に湾曲・屈曲する血管等に対する追従性が向上し、より優れた操作性が得られる。
 また、本発明のガイドワイヤでは、前記ワイヤ本体の先端部を覆うように設置されたコイルを備えるのが好ましい。
 これにより、カテーテルの内壁や生体表面に対するワイヤ本体の表面の接触面積が少なくなり、よって、摺動抵抗を低減することができ、その結果、ガイドワイヤの操作性がより向上する。
 また、本発明のガイドワイヤでは、前記コイルの内周部は、前記被覆部材から離間しているのが好ましい。
 これにより、コイルと被覆部材との間に間隙が形成され、よって、平板部がリシェイプし易い(変形し易い)もとなる。
 また、上記目的を達成するために、本発明は、
 金属材料で構成された環状またはコイル状をなし、被覆部材となる母材の内部に、少なくとも先端部が金属材料で構成され、ワイヤ本体となる芯材の先端部を挿入する挿入工程と、
 前記芯材の先端部を前記母材に挿入した状態でこれらをプレス加工し、前記先端部を平板状にして平板部を形成するとともに、該平板部に前記母材が変形してなる前記被覆部材を装着する装着工程とを有することを特徴とするガイドワイヤの製造方法である。
 このような本発明によれば、ガイドワイヤの先端部において、十分な柔軟性を確保しつつ、使用前に所望な形状に変形維持することができ、その形状を操作時でも実用上保持される性能(リシェイプ性)に優れる。特に、平板部が超弾性合金で構成され、被覆部材が超弾性合金よりも塑性変形性が高い金属材料で構成されている場合、ガイドワイヤの先端部は、主に平板部によって十分な柔軟性を確実に確保しつつ、リシェイプした際のリシェイプ性を主に被覆部材によって補うことができ、その結果、全体としてより優れたリシェイプ性を有するものとなる。
 また、被覆部材は、プレス加工によって変形することにより平板部に装着されているので、その形状(厚さ、幅、長さ)等を所望の大きさに容易に設定することができる。これにより、ガイドワイヤの先端部を複雑な形状、微細な形状に形状付けすることができ、よって、優れたリシェイプ性を有するガイドワイヤを得る。
 また、本発明のガイドワイヤの製造方法では、前記芯材の先端部を前記母材に挿入した部分を加熱しつつ前記プレス加工を行うのが好ましい。
 これにより、焼きなましと同様の効果を得、よって、全体としての硬さが好適に調整されたリシェイプ可能なガイドワイヤが得られる。
 また、本発明のガイドワイヤの製造方法では、前記プレス加工を行う際に、その加工度を変更することにより、前記平板部と前記被覆部材との幅および/または厚さを変化させるのが好ましい。
 これにより、横断面積における平板部と被覆部材との比率がワイヤ本体の長手方向に沿って異なる。この場合、形状維持が確実となる部分と、変形し易い部分とが形成されたものとなる。
 また、本発明のガイドワイヤの製造方法では、前記装着工程の後に、前記平板部に少なくとも1つの湾曲または屈曲した部分を形成する形状付け工程を有するのが好ましい。
 これにより、例えば、平板部をその先端方向に向かってより微細な形状付けをすることが可能なものとなる。
図1は、本発明のガイドワイヤの第1実施形態を示す部分縦断面図である。 図2は、図1に示すガイドワイヤの先端部の拡大縦断面図である。 図3は、図1に示すガイドワイヤの先端部の拡大横断面図である。 図4は、図1に示すガイドワイヤの製造方法を順を追って説明するための図である。 図5は、図1に示すガイドワイヤの製造方法を順を追って説明するための図である。 図6は、本発明のガイドワイヤ(第2実施形態)の製造方法を順を追って説明するための図である。 図7は、本発明のガイドワイヤ(第2実施形態)の製造方法を順を追って説明するための図である。 図8は、本発明のガイドワイヤ(第3実施形態)のリシェイプ部の縦断面側面図である。 図9は、本発明のガイドワイヤ(第3実施形態)のリシェイプ部の縦断面平面図である。 図10は、本発明のガイドワイヤ(第4実施形態)のリシェイプ部の縦断面側面図である。 図11は、本発明のガイドワイヤ(第4実施形態)のリシェイプ部の縦断面平面図である。 図12は、本発明のガイドワイヤ(第5実施形態)のリシェイプ部の側面図である。 図13は、図12に示すガイドワイヤの製造方法を順を追って説明するための図である。
 以下、本発明のガイドワイヤおよびガイドワイヤの製造方法を添付図面に示す好適な実施形態に基づいて詳細に説明する。
 <第1実施形態>
  図1は、本発明のガイドワイヤの第1実施形態を示す部分縦断面図、図2は、図1に示すガイドワイヤの先端部の拡大縦断面図、図3は、図1に示すガイドワイヤの先端部の拡大横断面図、図4および図5は、それぞれ、図1に示すガイドワイヤの製造方法を順を追って説明するための図である。なお、以下では、説明の都合上、図1、図2、図4および図5中(図6~図13も同様)の右側を「基端」、左側を「先端」と言う。また、図5中(図7、図13も同様)の上側を「上」または「上方」、下側を「下」または「下方」と言う。
 図1に示すガイドワイヤ1は、カテーテル(内視鏡も含む)の内腔に挿入して用いられるカテーテル用ガイドワイヤであって、先端側に配置された第1ワイヤ2と、第1ワイヤ2の基端側に配置された第2ワイヤ4とを接合してなるワイヤ本体10と、ワイヤ本体10の先端部(先端側の部分)に設置された螺旋状のコイル5とを有している。ガイドワイヤ1の全長は、特に限定されないが、200~5000mm程度であるのが好ましい。
 第1ワイヤ2は、柔軟性または弾性を有する線材で構成されている。本実施形態では、第1ワイヤ2は、外径がほぼ一定である外径一定部21と、外径一定部21より先端側に位置し、先端方向に向かって外径が漸減する第1テーパ部22と、第1テーパ部22より先端側に位置するリシェイプ部3と、外径一定部21より基端側に位置し、外径一定部21より外径が大きい大径部24と、外径一定部21と大径部24との間に位置し、先端方向に向かって外径が漸減する第2テーパ部23とを有している。これらは、第1ワイヤ2の先端側から、リシェイプ部3、第1テーパ部22、外径一定部21、第2テーパ部23および大径部24の順に配置されている。
 リシェイプ部3と外径一定部21との間に第1テーパ部22が形成されていること、特に、第1テーパ部22の先端側近傍にリシェイプ部3が形成されていることにより、第1ワイヤ2の剛性(曲げ剛性、ねじり剛性)を先端方向に向かって徐々に減少させることができ、その結果、ガイドワイヤ1は、先端部に良好な狭窄部の通過性および柔軟性を得て、血管等への追従性、安全性が向上すると共に、折れ曲がり等も防止することができる。
 また、第1テーパ部22と同様に、第2テーパ部23を介して外径一定部21と大径部24とが形成されていることにより、第1ワイヤ2の剛性(曲げ剛性、ねじり剛性)を先端方向に向かって徐々に減少させることができる。
 なお、第1テーパ部22(第2テーパ部23も同様)のテーパ角度(外径の減少率)は、ワイヤ本体10の長手方向に沿って一定でも、長手方向に沿って変化する部位があってもよい。例えば、テーパ角度(外径の減少率)が比較的大きい箇所と比較的小さい箇所とが複数回交互に繰り返して形成されているようなものでもよい。
 また、第1テーパ部22と第2テーパ部23とで、テーパの形状やテーパ角度が異なっていてもよい。
 また、外径一定部21および大径部24は、それぞれ、その外径がワイヤ長手方向に沿って一定となっている。外径一定部21の外径は、第1テーパ部22の最大外径とほぼ同等であり、また第2テーパ部23の最小外径とほぼ同等である。大径部24の外径は、第2テーパ部23の最大外径とほぼ同等である。
 第1ワイヤ2の基端(大径部24の基端)には、第2ワイヤ4の先端が接合されている。第2ワイヤ4は、柔軟性または弾性を有する線材で構成されている。この第2ワイヤ4は、そのほとんどの部分で、外径がほぼ一定となっている。
 第1ワイヤ2と第2ワイヤ4との接合方法としては、特に限定されず、例えば、摩擦圧接、レーザを用いた溶接、アプセット溶接等の突き合わせ抵抗溶接などの溶接や管状接合部材により接合する方法が挙げられるが、比較的簡単で高い接合強度が得られることから、突き合わせ抵抗溶接が特に好ましい。
 本実施形態では、接合部(溶接部)16の前後において、第1ワイヤ2および/または第2ワイヤ4の外径が変化している。具体的には、第1ワイヤ2は、接合部16付近の外径が基端方向、すなわち、第2ワイヤ4に向かって漸減しており、第2ワイヤ4は、接合部16付近の外径が先端方向、すなわち、第1ワイヤ2に向かって漸減している。第1ワイヤ2と第2ワイヤ4とは、互いに接合される部分の外径がほぼ同等となっている。これにより、第1ワイヤ2の基端と第2ワイヤ4の先端とを接合した際、それらの接合部16の外周に両ワイヤ2、4の外径差による段差が生じず、連続した面を構成することができる。
 第1ワイヤ2の平均外径は、第2ワイヤ4の平均外径より小さい。これにより、ガイドワイヤ1は、その先端側である第1ワイヤ2上では柔軟性に富み、基端側である第2ワイヤ4上では比較的剛性が高いものとなるので、先端部の柔軟性と優れた操作性(押し込み性、トルク伝達性等)とを両立することができる。
 第1ワイヤ2および第2ワイヤ4の構成材料は、特に限定されず、それぞれ、例えば、ステンレス鋼(例えば、SUS304、SUS303、SUS316、SUS316L、SUS316J1、SUS316J1L、SUS405、SUS430、SUS434、SUS444、SUS429、SUS430F、SUS302等SUSの全品種)、ピアノ線、コバルト系合金、擬弾性を示す合金(超弾性合金を含む)などの各種金属材料を使用することができる。
 第1ワイヤ2の構成材料としては、擬弾性を示す合金(超弾性合金を含む)が好ましく、より好ましくは超弾性合金である。
 超弾性合金は、柔軟性に富み、復元性があり、曲がり癖が付き難いので、第1ワイヤ2を超弾性合金で構成することにより、ガイドワイヤ1は、その先端側の部分に十分な柔軟性と曲げに対する復元性が得られ、複雑に湾曲・屈曲する血管等に対する追従性が向上し、より優れた操作性が得られるとともに、第1ワイヤ2が湾曲・屈曲変形を繰り返しても、第1ワイヤ2に備わる復元性により曲がり癖が付かないので、ガイドワイヤ1の使用中に第1ワイヤ2に曲がり癖が付くことによる操作性の低下を防止することができる。
 擬弾性合金には、引張りによる応力-ひずみ曲線のいずれの形状も含み、As、Af、Ms、Mf等の変態点が顕著に測定できるものも、できないものも含み、応力により大きく変形(歪)し、応力の除去により元の形状にほぼ戻るものは全て含まれる。
 超弾性合金の好ましい組成としては、49~52原子%NiのNi-Ti合金等のNi-Ti系合金、38.5~41.5重量%ZnのCu-Zn合金、1~10重量%XのCu-Zn-X合金(Xは、Be、Si、Sn、Al、Gaのうちの少なくとも1種)、36~38原子%AlのNi-Al合金等が挙げられる。このなかでも特に好ましいものは、上記のNi-Ti系合金である。なお、Ni-Ti系合金に代表される超弾性合金は、後述する樹脂被覆層8の密着性にも優れている。
 コバルト系合金は、ワイヤとしたときの弾性率が高く、かつ適度な弾性限度を有している。このため、コバルト系合金で構成されたワイヤは、トルク伝達性に優れ、座屈等の問題が極めて生じ難い。コバルト系合金としては、構成元素としてCoを含むものであれば、いかなるものを用いてもよいが、Coを主成分として含むもの(Co基合金:合金を構成する元素中で、Coの含有率が重量比で最も多い合金)が好ましく、Co-Ni-Cr系合金を用いるのがより好ましい。このような組成の合金を用いることにより、前述した効果がさらに顕著なものとなる。また、このような組成の合金は、弾性係数が高く、かつ高弾性限度としても冷間成形可能で、高弾性限度であることにより、座屈の発生を十分に防止しつつ、小径化することができ、所定部位に挿入するのに十分な柔軟性と剛性を備えるものとすることができる。
 第2ワイヤ4の構成材料としては、前述したステンレス鋼が好ましい。ステンレス鋼は、前記超弾性合金に比べて強度および剛性が高く、そのため、ガイドワイヤ1に優れた押し込み性およびトルク伝達性を付与することができる。
 第1ワイヤ2と第2ワイヤ4とは、異なる材料で構成されていてもよいが、同一または同種(合金において主とする金属材料が等しい)の金属材料で構成されていてもよい。後者の場合、接合部(溶接部)16の接合強度がより高くなり、優れたトルク伝達性等を発揮する。
 第1ワイヤ2と第2ワイヤ4とを異なる材料で構成する場合、第1ワイヤ2は、前述した超弾性合金で構成されているのが好ましく、特にNi-Ti系合金で構成されているのが好ましく、第2ワイヤ4は、前述したステンレス鋼で構成されているのが好ましい。
 なお、上記では、第1ワイヤ2と第2ワイヤ4を接合した態様にて説明したが、接合部のない連続した一本のワイヤ本体で構成されたものであってもよい。その場合のワイヤ本体の構成材料は、前述したのと同様の材料が挙げられ、特にステンレス鋼、コバルト系合金、擬弾性合金が好ましい。
 ワイヤ本体10の先端部外周には、当該先端部を覆うようにコイル5が配置されている。このコイル5の設置により、カテーテルの内壁や生体表面に対するワイヤ本体10の表面の接触面積が少なくなり、これにより、摺動抵抗を低減することができ、その結果、ガイドワイヤ1の操作性がより向上する。
 図1に示すように、コイル5の内側の中心部に、ワイヤ本体10が挿通されている。本実施形態の場合、リシェイプ部3と、第1テーパ部22と、外径一定部21の全部または一部とが、コイル5で覆われている。
 また、ワイヤ本体10の先端部(特に、リシェイプ部3から第1テーパ部22までの領域)は、コイル5の内周面と非接触状態で挿通されている。これにより、コイル5とワイヤ本体10の先端部との間に間隙50が形成されることとなる。
 コイル5は、横断面形状が円形の素線54を螺旋状に形成してなるものである。この場合、1本の素線54を螺旋状に巻いたものでも、複数本の素線54を螺旋状に巻いたものでもよい。
 素線54の構成材料は、特に限定されず、金属材料、樹脂材料のいずれでもよい。金属材料の好ましい例としては、ステンレス鋼や、例えばPt-Ni合金のようなX線不透過材料が挙げられる。後者の場合、ガイドワイヤ1の先端部にX線造影性が得られ、X線透視下で先端部の位置を確認しつつ生体内に挿入することができ、好ましい。
 なお、コイル5は、2種以上の材料を組み合わせたものでもよい。例えば、コイル5の先端側の素線54をPt-Ni合金のようなX線不透過材料で構成し、コイル5の基端側の素線54をステンレス鋼で構成することができる。この場合には、X線透視下で、コイル5の先端側に位置する部位を、それよりも基端側に位置する部位よりも強調することができ(視認し易くなり)、よって、ガイドワイヤ1の最先端部(リシェイプ部3が存在する部分)の位置をより鮮明に視認することができる。
 また、コイル5の素線54の線径は、コイル5の全長に渡って同一でもよいが、コイル5の先端側と基端側とで、素線54の線径が異なっていてもよい。例えば、コイル5の先端側においては、基端側に比べ素線54の線径が小さく(または大きく)なっていてもよい。これにより、コイル5の先端部におけるガイドワイヤ1の柔軟性をより向上させることができる。
 また、コイル5の外径は、コイル5の全長に渡って同一でもよいが、コイル5の先端側と基端側とで、コイル5の外径が異なっていてもよい。例えば、コイル5の先端側においては、基端側に比べコイル5の外径が小さくなっていてもよい。これにより、コイル5の先端部におけるガイドワイヤ1の柔軟性をより向上させることができる。
 本実施形態では、コイル5の隣接する素線54同士は、接触しており、いわゆる密巻きの状態となっている。これらの素線54同士は、自然状態で互いにワイヤ本体10の軸方向に押し合う力(圧縮力)が生じている。ここで、「自然状態」とは、外力が付与していない状態を言う。ただし、本発明ではこれに限らず、コイル5の隣接する素線54同士が離間している箇所があってもよい。
 図1に示すように、コイル5は、ワイヤ本体10に対し3箇所(複数箇所)で固定されている。すなわち、コイル5の先端部が固定材料(固定部)51により第1ワイヤ2の先端(リシェイプ部3の先端)と固定され、コイル5の基端部が固定材料(固定部)53により第1ワイヤ2の途中(外径一定部21の基端部近傍)に固定され、コイル5の途中の部位が固定材料(固定部)52により第1ワイヤ2の第1テーパ部22に固定されている。このような箇所で固定することにより、ガイドワイヤ1の先端部(コイル5が存在する部位)の柔軟性を損なうことなく、ワイヤ本体10に対しコイル5の各部をそれぞれ確実に固定することができる。
 特に、リシェイプ部3の先端側(先端部)および基端側がそれぞれ固定材料51および52により固定されているため、リシェイプ部3をコイル5に対し確実に固定することができ、形状付けされたリシェイプ部3の形状を適正に保持することができる。
 固定材料51、52および53は、それぞれ、好ましくは半田(ろう材)で構成されている。なお、固定材料51、52および53は、半田に限らず、接着剤でもよい。また、コイル5のワイヤ本体10に対する固定方法は、前記のような固定材料によるものに限らず、例えば、溶接でもよい。また、血管等の体腔の内壁の損傷を防止するために、固定材料51の先端面は、丸みを帯びているのが好ましい(図1参照)。
 また、図示の構成では、固定材料52は、第1テーパ部22上に配置されているが、これに限定されず、リシェイプ部3の基端側であれば、コイル5の途中のいかなる部位に配置されていてもよい。
 図1に示すように、ガイドワイヤ1の外表面には、その全体または一部を覆う樹脂被覆層8が設けられている。この樹脂被覆層8は、種々の目的で形成することができるが、その一例として、ガイドワイヤ1の摩擦(摺動抵抗)を低減し、摺動性を向上させることによってガイドワイヤ1の操作性を向上させることがある。
 ガイドワイヤ1の摩擦(摺動抵抗)の低減を図るためには、樹脂被覆層8は、以下に述べるような摩擦を低減し得る材料で構成されているのが好ましい。これにより、ガイドワイヤ1とともに用いられるカテーテルの内壁との摩擦抵抗(摺動抵抗)が低減されて摺動性が向上し、カテーテル内でのガイドワイヤ1の操作性がより良好なものとなる。また、ガイドワイヤ1の摺動抵抗が低くなることで、ガイドワイヤ1をカテーテル内で移動および/または回転した際に、ガイドワイヤ1のキンク(折れ曲がり)やねじれ、特に接合部16付近におけるキンクやねじれをより確実に防止することができる。
 このような摩擦を低減し得る材料としては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン、ポリ塩化ビニル、ポリエステル(PET、PBT等)、ポリアミド、ポリイミド、ポリウレタン、ポリスチレン、ポリカーボネート、シリコーン樹脂、フッ素系樹脂(PTFE、ETFE等)、またはこれらの複合材料が挙げられる。
 また、樹脂被覆層8は、ガイドワイヤ1を血管等に挿入する際の安全性の向上を目的として設けることもできる。この目的のためには、樹脂被覆層8は柔軟性に富む材料(軟質材料、弾性材料)で構成されているのが好ましい。
 このような柔軟性に富む材料としては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン、ポリ塩化ビニル、ポリエステル(PET、PBT等)、ポリアミド、ポリイミド、ポリウレタン、ポリスチレン、シリコーン樹脂、ポリウレタンエラストマー、ポリエステルエラストマー、ポリアミドエラストマー等の熱可塑性エラストマー、ラテックスゴム、シリコーンゴム等の各種ゴム材料、またはこれらのうちに2以上を組み合わせた複合材料が挙げられる。
 なお、樹脂被覆層8は、その全体が同一の材料で構成されている場合に限らず、ガイドワイヤ1の長手方向の途中でその構成材料が異なっていてもよい。例えば、樹脂被覆層8の第1ワイヤ2およびコイル5を被覆する部分の材料を前記柔軟性に富む材料で構成し、樹脂被覆層8の第2ワイヤ4を被覆する部分の材料を前記摩擦を低減し得る材料で構成することができる。この場合、図1に示すように、接合部16付近は、樹脂被覆層8とは異なる、シリコーン等の摩擦を低減し得る材料で構成される被覆層82にて覆われる。
 また、樹脂被覆層8は、単層のものであってもよいし、2層以上の積層体(例えば、内側の層が外側の層に比べより柔軟な材料で構成されたもの)でもよい。例えば、樹脂被覆層8の第1ワイヤ2およびコイル5を被覆する部分を単層とし、樹脂被覆層8の第2ワイヤ4を被覆する部分の材料を2層以上の積層体とすることができる。また、その逆であってもよい。この場合も、前記と同様に、接合部16付近では、樹脂被覆層8を省略するのが好ましい。
 また、ガイドワイヤ1の少なくとも先端部の外面には、親水性材料がコーティングされているのが好ましい。これにより、親水性材料が湿潤して潤滑性を生じ、ガイドワイヤ1の摩擦(摺動抵抗)が低減し、摺動性が向上する。従って、ガイドワイヤ1の操作性が向上する。
 親水性材料としては、例えば、セルロース系高分子物質、ポリエチレンオキサイド系高分子物質、無水マレイン酸系高分子物質(例えば、メチルビニルエーテル-無水マレイン酸共重合体のような無水マレイン酸共重合体)、アクリルアミド系高分子物質(例えば、ポリアクリルアミド、ポリグリシジルメタクリレート-ジメチルアクリルアミド(PGMA-DMAA)のブロック共重合体)、水溶性ナイロン、ポリビニルアルコール、ポリビニルピロリドン等が挙げられる。
 このような親水性材料は、多くの場合、湿潤(吸水)により潤滑性を発揮し、ガイドワイヤ1とともに用いられるカテーテルの内壁との摩擦抵抗(摺動抵抗)を低減する。これにより、ガイドワイヤ1の摺動性が向上し、カテーテル内でのガイドワイヤ1の操作性がより良好なものとなる。
 さて、前述したように、ガイドワイヤ1(ワイヤ本体10)は、その先端部にリシェイプ部3を有している(図1参照)。
 図2、図3に示すように、リシェイプ部3は、ワイヤ本体10(第1ワイヤ2)の最先端部に形成された平板状をなす平板部25と、平板部25の外周部を覆う被覆部材6とで構成されている。リシェイプ部3は、このように全体的に平板状をなしており、所望の形状に変形(リシェイプ:形状付け)させて用いることができるものである。一般に、ガイドワイヤでは、誘導するカテーテル等の先端部を血管形状に対応させたり、血管分岐を適正かつ円滑に選択、誘導したりするために、医師等がガイドワイヤの先端部を予め所望の形状に変形させて使用することがあり、このようにガイドワイヤの先端部を所望の形状に曲げることをリシェイプと言う。そして、リシェイプ部3を設けることにより、リシェイプを容易かつ確実に行うことができ、ガイドワイヤ1を生体内に挿入する際の操作性が格段に向上する。なお、リシェイプ部3のリシェイプ後の形状は、L字状、U字状(J字状)、S字状、3次元形状等いかなる形状であってもよい。
 平板部25は、第1ワイヤ2の一部であり、このため前述したNi-Ti系合金に代表される超弾性合金(金属材料)で構成された部位である。これにより、リシェイプ部3が柔軟性(弾性)を帯び、当該リシェイプ部3を所望の形状に容易に変形することができる。
 図2に示すように、平板部25は、その厚さtがワイヤ本体10の長手方向に沿って一定となっている。また、図3に示すように、平板部25の幅wもワイヤ本体10の長手方向に沿って一定となっている。
 被覆部材6は、平板部25の外周部の全体(全周)を覆う部材である。この被覆部材6は、後述する母材6’をプレス加工によって変形することにより、平板部25に装着されて(圧着されて)いる。
 被覆部材6は、平板部25を構成する材料よりも剛性(塑性変形性)が大きい、すなわち、塑性変形し易い金属材料で構成されている。この金属材料としては、特に限定されないが、例えば、Ni-Cr合金等のNi基合金や、ステンレス鋼のような、超弾性合金よりも剛性が大きい高剛性材料を用いることができる。また、この他、金または白金も用いることができる。このような材料も、平板部25を構成する超弾性合金よりも塑性変形し易いため好ましい。Ni基合金の被覆部材6とNi-Ti系合金の平板部25の接合性の面から優れており、必要に応じて接合性向上のためにプレス加工前または後に、スポット溶接やレーザ溶接にてナゲットを形成しても、脆弱な金属間化合物を生成しない。
 このような被覆部材6が設置されていることにより、リシェイプ部3は、その芯部となる平板部25に比べて塑性変形し易い特性を有する部分、すなわち、柔軟な平板部25を補強する部分を備えたものとなる。これにより、リシェイプ部3をリシェイプした際に、被覆部材6が塑性変形の大部分を担い、容易かつ確実に所望の形状に形状付けすることができるとともに、その形状が維持される。このように、リシェイプ部3は、主に平板部25によって十分な柔軟性を確保しつつ、リシェイプした際のリシェイプ性を主に被覆部材6によって補うことができ、結果、全体として優れたリシェイプ性を有する(リシェイプ性が向上した(高リシェイプ性))ものとなる。また、リシェイプされたリシェイプ部3は、常温は勿論のこと、その温度が体温程度に上昇しても、リシェイプされたままの形状を維持する。
 なお、リシェイプに際しての被覆部材6の塑性変形の程度は、例えば、被覆部材6の構成材料、形状、寸法(幅w、厚さt、長さ)等の選択により適宜調整することができる。
 また、図2に示すように、被覆部材6は、平板部25と同様に、その厚さtがワイヤ本体10の長手方向に沿って一定となっている。また、図3に示すように、被覆部材6は、平板部25と同様に、その幅wもワイヤ本体10の長手方向に沿って一定となっている。リシェイプ部3では、被覆部材6および平板部25がこのような形状をなしていることにより、その長手方向のいずれの部位においても、その形状付けのし易さがほぼ同等となる。
 このような構成のリシェイプ部3(ガイドワイヤ1)は、以下に記載する方法(ガイドワイヤの製造方法)によって製造することができる。
 まず、この製造方法を説明する前に、当該製造方法で用いるプレス機械30について説明する。
 図5に示すように、プレス機械30は、下方に位置するベッド301と、ベッド301よりも上方に位置するスライド302とを有している。ベッド301とスライド302とは、相対的に鉛直方向に移動可能であり、互いに接近・離間することができる。ベッド301の上面301aとスライド302の下面302aとは、それぞれ、平坦な面(水平な面)となっている。ベッド301の上面301aとスライド302の下面302aとの間で加工対象物(母材)をプレスすることにより、当該加工対象物に対してプレス加工を施すことができる。
 また、ベッド301(スライド302も同様)には、ヒータ303が内蔵されている。これにより、ヒータ303が発熱した際に、加工対象物を加熱することができる。
 次に、ガイドワイヤ1の製造方法について説明する。
 [1]準備工程
 まず、図4(a)示すように、被覆部材6となる母材6’と、ワイヤ本体10となる芯材10’とを用意する。
 母材6’は、円環状(リング状)をなす部材である。この母材6’は、プレス機械30によってプレス加工される。このため、母材6’の壁部の厚さは、被覆部材6の厚さtよりも大きく、母材6’の全長は、被覆部材6の全長よりも短い。
 芯材10’は、第1ワイヤ2と第2ワイヤ4とを接合した線状体であるが、第1ワイヤの第1テーパ部22よりも先端側の部分(プレス加工後に平板部25となる部分(以下この部分を「平板部成形部25’」と言う))が、その他の部分と同様に横断面形状が円形をなすものである。この平板部成形部25’の長さは、母材6’とほぼ同等の長さとなっている。また、平板部成形部25’の外径も母材6’の内径とほぼ同等またはそれよりも若干小さくなっている。
 [2]挿入工程
 図4(b)に示すように、母材6’の内部(中空部)に、芯材10’の平板部成形部25’(先端部)を挿入する。この挿入は、平板部成形部25’の先端面251が母材6’の先端面61と芯材10’の長手方向に関しほぼ同じ位置となるまで行われる。
 [3]装着工程
 次に、図5(c)に示すように、前記挿入工程で母材6’に平板部成形部25’を挿入したものを、 互いに十分離間しているベッド301とスライド302と間に配置する(固定する)。
 次に、図5(c)に示す状態からベッド301とスライド302とを相対的に移動させて、これらを互いに接近させる(図5(d)参照)。これにより、プレス加工を施すことができ、平板部成形部25’が平板状に変形し(成形され)、加工硬化して超弾性の特性が低下し、平板部25が形成される。また、平板部成形部25’と同様に母材6’も平板状に変形する。
 そして、図5(e)に示すように、離型することにより、平板部25に被覆部材6が装着された、すなわち、前述したリシェイプが可能なリシェイプ部3を有するワイヤ本体10を得る。
 また、プレス加工を施すときに各ヒータ303を作動させて、前記挿入工程で母材6’に平板部成形部25’を挿入したものを加熱してもよい。このときの温度(加熱温度)を適宜設定することにより、焼きなましと同様の効果を得、よって、全体としての硬さが好適に調整されたリシェイプ部3が得られる。
 また、用いられる母材6’は、その壁部が単層のものであってもよいし、2層以上の積層体で構成されたものであってもよい。
 <第2実施形態>
  図6および図7は、それぞれ、本発明のガイドワイヤ(第2実施形態)の製造方法を順を追って説明するための図である。
 以下、これらの図を参照して本発明のガイドワイヤおよびガイドワイヤの製造方法の第2実施形態について説明するが、前述した実施形態との相違点を中心に説明し、同様の事項はその説明を省略する。
 本実施形態は、被覆部材の形状が異なること以外は前記第1実施形態と同様である。
 図7(e)に示すように、本実施形態でのリシェイプ部3Aは、コイル状をなす被覆部材6Aを有するものである。このリシェイプ部3Aは、主に平板部25によって十分な柔軟性を確保しつつ、リシェイプした際のリシェイプ性を主に被覆部材6Aによって補うことができる。そして、その結果、リシェイプ部3Aは、全体としてリシェイプ性が向上し、優れたリシェイプ性を有する(高リシェイプ性)ものとなる。また、特に被覆部材6Aがコイル状をなすことにより、平板部成形部25’の外径がバラついても(長手方向に沿って外径が変化した部分があっても)、コイル状の内径を少し小さめにすることにより、母材6A’と平板部成形部25’とが常に密着した状態でプレス工程を施すことができると言う利点がある。
 このような構成のリシェイプ部3Aは、以下に記載する方法(ガイドワイヤの製造方法)によって製造することができる。
 [1]準備工程
 まず、図6(a)示すように、被覆部材6Aとなる母材6A’と、ワイヤ本体10となる芯材10’とを用意する。芯材10’は、前記第1実施形態で記載したものと同様のものである。
 母材6A’は、コイル状をなす部材である。この母材6A’は、プレス機械30によってプレス加工される。このため、母材6A’を形成する素線62の太さ(外径)は、被覆部材6Aの厚さtよりも大きく、母材6A’の全長は、被覆部材6Aの全長よりも短く、母材6’の最小内径は、平板部成形部25’の外径もほぼ同等またはそれよりも若干大きくなっている。また、この素線62の横断面形状は、円形である。
 [2]挿入工程
 次に、前記第1実施形態で記載した挿入工程と同様に、図6(b)に示すように、母材6A’の内部に芯材10’の平板部成形部25’(先端部)を、これらの先端面同士が芯材10’の長手方向に関しほぼ同じ位置となるまで挿入する。
 [3]装着工程
 次に、前記挿入工程で母材6A’に平板部成形部25’を挿入したものを、 互いに十分離間しているベッド301とスライド302と間に配置し(図7(c)参照)、この状態でプレス加工を施す(図7(d)参照)。これにより、平板部成形部25’が平板状に変形し、この平板部成形部25’と同様に母材6A’も平板状に変形する。
 そして、図7(e)に示すように、離型することにより、平板部25に被覆部材6Aが装着された、すなわち、前述したリシェイプが可能なリシェイプ部3Aを有するワイヤ本体10を得る。また、リシェイプ部3Aでは、被覆部材6Aを構成する素線62が平板部25に食い込んだ状態となっている。これにより、被覆部材6Aが平板部25により確実に装着され、被覆部材6Aが平板部25から不本意に離脱するのを確実に防止することができる。
 また、本装着工程では、前記第1実施形態と同様に、各ヒータ303を作動させつつプレス加工を行ってもよい。
 <第3実施形態>
  図8は、本発明のガイドワイヤ(第3実施形態)のリシェイプ部の縦断面側面図、図9は、本発明のガイドワイヤ(第3実施形態)のリシェイプ部の縦断面平面図である。
 以下、これらの図を参照して本発明のガイドワイヤおよびガイドワイヤの製造方法の第3実施形態について説明するが、前述した実施形態との相違点を中心に説明し、同様の事項はその説明を省略する。
 本実施形態は、被覆部材および平板部のそれぞれの形状が異なること以外は前記第1実施形態と同様である。
 図8、図9に示すように、本実施形態のリシェイプ部3Bでは、平板部25Bは、その厚さtおよび幅wがそれぞれワイヤ本体の長手方向に沿って変化している。また、被覆部材6Bも、その厚さtおよび幅wがそれぞれワイヤ本体10の長手方向に沿って変化している。但し、平面視における厚さtは、ワイヤ本体10の長手方向に沿って一定となっている。
 具体的には、平板部25Bの厚さtは、先端方向に向かって漸減している。平板部25Bの幅wは、先端方向に向かって漸増している。また、被覆部材6Bの厚さtは、平板部25Bの厚さtとは逆に、先端方向に向かって漸増している。被覆部材6Bの幅wは、平板部25Bの幅wに対応して、同じように先端方向に向かって漸増している。
 このような構成のリシェイプ部3Bでは、その横断面積における平板部25Bと被覆部材6Bとの比率がワイヤ本体10の長手方向に沿って異なる。例えば、図8中のリシェイプ部3Bの部分391と部分392とを比較すると、部分391の方が部分392よりも被覆部材6Bが占める割合が多く、部分392の方が部分391よりも平板部25Bが占める割合が多い。この場合、部分391の方が部分392よりも形状維持が確実となり、部分392の方が部分391よりも変形し易くなっている。このような構成にしたい場合に、リシェイプ部3Bの構造は有効である。
 プレス機械30は、通常、加圧力を調整することにより、その加工度を変更することができよう構成されている。平板部成形部25’および母材6’の形状をそれぞれ適宜選択し、プレス加工を行う際の加工度を変更することにより、平板部25Bの厚さtおよび幅wと、被覆部材6Bの厚さtおよび幅wとを変化させることができ、リシェイプ部3Bの構造を得る。
 なお、平板部25Bは、その厚さtおよび幅wがそれぞれワイヤ本体の長手方向に沿って変化したものとなっているが、これに限定されず、例えば、厚さtおよび幅wのうちの一方のみが変化したものであってもよい。
 また、被覆部材6Bも、図示の構成ではその厚さtおよび幅wがそれぞれワイヤ本体10の長手方向に沿って変化したものとなっているが、これに限定されず、例えば、厚さtおよび幅wのうちの一方のみが変化したものであってもよい。
 <第4実施形態>
  図10は、本発明のガイドワイヤ(第4実施形態)のリシェイプ部の縦断面側面図、図11は、本発明のガイドワイヤ(第4実施形態)のリシェイプ部の縦断面平面図である。
 以下、これらの図を参照して本発明のガイドワイヤおよびガイドワイヤの製造方法の第4実施形態について説明するが、前述した実施形態との相違点を中心に説明し、同様の事項はその説明を省略する。
 本実施形態は、被覆部材および平板部のそれぞれの形状が異なること以外は前記第3実施形態と同様である。
 図10、図11に示すように、本実施形態のリシェイプ部3Cは、第1部位381と第2部位382とに分けることができるものである。
 平板部25Cは、厚さtおよび幅wがそれぞれワイヤ本体10の長手方向に沿って変化した部分を有しており、第1部位381と第2部位382とでは、第1部位381の方が第2部位382よりも厚さtが小さく、幅wが大きい。
 また、被覆部材6Cも、その厚さtおよび幅wがそれぞれワイヤ本体10の長手方向に沿って変化した部分を有しており、第1部位381と第2部位382とでは、第1部位381の方が第2部位382よりも幅wが大きい。厚さtの大小関係ついては、側面視では第1部位381の方が第2部位382よりも厚さtが小さく(図10参照)、平面視では第1部位381の方が第2部位382よりも厚さtが大きい(図11参照)。
 このような構成により、被覆部材6Cの構成材料が平板部25Cの構成材料よりも剛性が大きい場合、第1部位381の柔軟性を保ちつつ、リシェイプ性を向上させると言う利点がある。
 また、このような形状のリシェイプ部3Cは、プレス加工を行う際の加工度を変更した、いわゆる多段プレスによって容易に成形することができる。
 <第5実施形態>
  図12は、本発明のガイドワイヤ(第5実施形態)のリシェイプ部の側面図、図13は、図12に示すガイドワイヤの製造方法を順を追って説明するための図である。
 以下、これらの図を参照して本発明のガイドワイヤおよびガイドワイヤの製造方法の第5実施形態について説明するが、前述した実施形態との相違点を中心に説明し、同様の事項はその説明を省略する。
 本実施形態は、リシェイプ部の形状が異なること以外は前記第1実施形態と同様である。
 図12に示すように、本実施形態のリシェイプ部3Dは、その長手方向に沿って、互いに反対方向に屈曲する複数の屈曲部を有している。本実施形態では、リシェイプ部3Dは、先端側から屈曲部31、32、33、34および35の合計5個の屈曲部を有しており、このうち、屈曲部31、33および35は、図12中下方に向かって突出するように屈曲し、屈曲部32および34は、図12中下方に向かって突出するように屈曲し、これにより、リシェイプ部3Dの全体形状は、いわゆるジグザグ状をなしている。
 リシェイプ部3Dの各屈曲部31~35において、隣接する屈曲部同士の間隔をそれぞれa、b、cおよびdとしたとき(図12参照)、図12に示す構成では、a、b、cおよびdは、ほぼ等しい長さとなっている。すなわち、屈曲部31~35は、リシェイプ部3Dの長手方向に沿って、等ピッチで形成されている。しかしながら、本発明では、隣接する屈曲部同士の間隔(a、b、cおよびd)は、全て異なっていてもよく、その一部が他と異なっていてもよい。
 例えば、隣接する屈曲部同士の間隔が先端方向に向かって減少している部分を有する場合が挙げられる。すなわち、前記a、b、cおよびdが、a≦b≦c≦d(ただし、a=b=c=dの場合を除く)の関係を満足するものである。このような構成とすることにより、リシェイプ部3Dをその先端方向に向かってより微細な形状付けをすることが可能となり、好ましい。換言すれば、リシェイプ部3Dの基端部側に比べて先端部側の部位をより複雑な形状、微細な形状(例えば、より急峻に湾曲または屈曲させた形状)に形状付けすることができる。
 なお、複数の屈曲部31~35は、前記装着工程の後に、図13に示すようなプレス機械30Dにより成形することができる(形状付け工程)。プレス機械30Dは、リシェイプ部3Dの形状に対応するような形状をなす上面301bを有するベッド301と、上面301bと同様の形状をなす下面302bを有するスライド302とを有している。
 複数の屈曲部31~35は、前記第1実施形態で記載したような板状に成形したリシェイプ部3(図13(a)参照)を、プレス機械30Dにて圧縮して(図13(b)参照)、離型することにより成形される(図13(c)参照)。これにより、リシェイプ部3Dを得ることができる。
 なお、屈曲部の形成数は、図示の構成では5つであるが、これに限定されず、例えば、1つ、2つ、3つ、4つまたは6つ以上であってもよい。
 また、屈曲部31~35は、それぞれ、湾曲していてもよい。
 以上、本発明のガイドワイヤおよびガイドワイヤの製造方法を図示の実施形態について説明したが、本発明は、これに限定されるものではなく、ガイドワイヤを構成する各部は、同様の機能を発揮し得る任意の構成のものと置換することができる。また、任意の構成物が付加されていてもよい。また、ガイドワイヤの製造方法では、任意の工程が付加されていてもよい。
 また、本発明のガイドワイヤおよびガイドワイヤの製造方法は、前記各実施形態のうちの、任意の2以上の構成または特徴を組み合わせたものであってもよい。
 本発明のガイドワイヤは、先端部に平板状をなし、金属材料で構成された平板部を有するワイヤ本体と、前記平板部の外周部を覆う、金属材料で構成された被覆部材とを備え、前記被覆部材は、プレス加工によって変形することにより前記平板部に装着されたものである。そのため、ガイドワイヤの先端部において、十分な柔軟性を確保しつつ、優れたリシェイプ性を得ることができる。従って、本発明のガイドワイヤは、産業上の利用可能性を有する。

Claims (6)

  1.  先端部に平板状をなし、金属材料で構成された平板部を有するワイヤ本体と、
     前記平板部の外周部を覆う、金属材料で構成された被覆部材とを備え、
     前記被覆部材は、プレス加工によって変形することにより前記平板部に装着されたものであることを特徴とするガイドワイヤ。
  2.  前記被覆部材は、環状またはコイル状をなす母材を変形してなるものである請求項1に記載のガイドワイヤ。
  3.  前記被覆部材は、その幅および/または厚さが前記ワイヤ本体の長手方向に沿って変化した部分を有する請求項1に記載のガイドワイヤ。
  4.  前記被覆部材を構成する金属材料は、前記平板部を構成する金属材料よりも塑性変形性が高いものである請求項1に記載のガイドワイヤ。
  5.  金属材料で構成された環状またはコイル状をなし、被覆部材となる母材の内部に、少なくとも先端部が金属材料で構成され、ワイヤ本体となる芯材の先端部を挿入する挿入工程と、
     前記芯材の先端部を前記母材に挿入した状態でこれらをプレス加工し、前記先端部を平板状にして平板部を形成するとともに、該平板部に前記母材が変形してなる前記被覆部材を装着する装着工程とを有することを特徴とするガイドワイヤの製造方法。
  6.  前記芯材の先端部を前記母材に挿入した部分を加熱しつつ前記プレス加工を行う請求項5に記載のガイドワイヤの製造方法。
PCT/JP2009/055185 2008-03-28 2009-03-17 ガイドワイヤおよびガイドワイヤの製造方法 WO2009119387A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-088632 2008-03-28
JP2008088632 2008-03-28

Publications (1)

Publication Number Publication Date
WO2009119387A1 true WO2009119387A1 (ja) 2009-10-01

Family

ID=41113584

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/055185 WO2009119387A1 (ja) 2008-03-28 2009-03-17 ガイドワイヤおよびガイドワイヤの製造方法

Country Status (1)

Country Link
WO (1) WO2009119387A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011147572A (ja) * 2010-01-21 2011-08-04 Asahi Intecc Co Ltd 医療用ガイドワイヤ
JP2011147573A (ja) * 2010-01-21 2011-08-04 Asahi Intecc Co Ltd 医療用ガイドワイヤ
WO2013111404A1 (ja) * 2012-01-26 2013-08-01 テルモ株式会社 ガイドワイヤ
JP2015173839A (ja) * 2014-03-14 2015-10-05 テルモ株式会社 ガイドワイヤ
JP2016067385A (ja) * 2014-09-26 2016-05-09 テルモ株式会社 ガイドワイヤおよびガイドワイヤの製造方法
JP5948535B1 (ja) * 2015-05-29 2016-07-06 株式会社エフエムディ 医療用ガイドワイヤ
JPWO2016047555A1 (ja) * 2014-09-25 2017-07-06 テルモ株式会社 ガイドワイヤおよびガイドワイヤの製造方法
CN112312955A (zh) * 2018-06-29 2021-02-02 朝日英达科株式会社 导丝
CN112312954A (zh) * 2018-06-29 2021-02-02 朝日英达科株式会社 导丝

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1043304A (ja) * 1996-08-02 1998-02-17 Asahi Intec Kk 医療用ガイドワイヤとその成形方法
JP2001519215A (ja) * 1997-10-16 2001-10-23 ボストン サイエンティフィック リミテッド ガイドワイヤの先端
JP2002205164A (ja) * 1998-04-13 2002-07-23 Sanmei:Kk 形状記憶/超弾性物品およびその製造方法
JP2002534167A (ja) * 1998-12-30 2002-10-15 アドヴァンスト カーディオヴァスキュラー システムズ インコーポレーテッド 蒸着ガイドワイヤ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1043304A (ja) * 1996-08-02 1998-02-17 Asahi Intec Kk 医療用ガイドワイヤとその成形方法
JP2001519215A (ja) * 1997-10-16 2001-10-23 ボストン サイエンティフィック リミテッド ガイドワイヤの先端
JP2002205164A (ja) * 1998-04-13 2002-07-23 Sanmei:Kk 形状記憶/超弾性物品およびその製造方法
JP2002534167A (ja) * 1998-12-30 2002-10-15 アドヴァンスト カーディオヴァスキュラー システムズ インコーポレーテッド 蒸着ガイドワイヤ

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011147572A (ja) * 2010-01-21 2011-08-04 Asahi Intecc Co Ltd 医療用ガイドワイヤ
JP2011147573A (ja) * 2010-01-21 2011-08-04 Asahi Intecc Co Ltd 医療用ガイドワイヤ
US8622933B2 (en) 2010-01-21 2014-01-07 Asahi Intecc Co., Ltd. Medical guidewire
WO2013111404A1 (ja) * 2012-01-26 2013-08-01 テルモ株式会社 ガイドワイヤ
JPWO2013111404A1 (ja) * 2012-01-26 2015-05-11 テルモ株式会社 ガイドワイヤ
JP2015173839A (ja) * 2014-03-14 2015-10-05 テルモ株式会社 ガイドワイヤ
JPWO2016047555A1 (ja) * 2014-09-25 2017-07-06 テルモ株式会社 ガイドワイヤおよびガイドワイヤの製造方法
JP2016067385A (ja) * 2014-09-26 2016-05-09 テルモ株式会社 ガイドワイヤおよびガイドワイヤの製造方法
JP5948535B1 (ja) * 2015-05-29 2016-07-06 株式会社エフエムディ 医療用ガイドワイヤ
CN112312955A (zh) * 2018-06-29 2021-02-02 朝日英达科株式会社 导丝
CN112312954A (zh) * 2018-06-29 2021-02-02 朝日英达科株式会社 导丝
EP3815734A4 (en) * 2018-06-29 2022-01-26 Asahi Intecc Co., Ltd. GUIDEWIRE

Similar Documents

Publication Publication Date Title
JP5020630B2 (ja) ガイドワイヤ
JP2008237253A (ja) ガイドワイヤ
WO2009119387A1 (ja) ガイドワイヤおよびガイドワイヤの製造方法
JP4203358B2 (ja) ガイドワイヤ
JP4138583B2 (ja) ガイドワイヤ
JP2008245852A (ja) ガイドワイヤ
JP6759069B2 (ja) ガイドワイヤ
JP2018079246A (ja) ガイドワイヤ
JP5473677B2 (ja) ガイドワイヤ
JP4783343B2 (ja) ガイドワイヤ
JP4376048B2 (ja) ガイドワイヤ
WO2016047555A1 (ja) ガイドワイヤおよびガイドワイヤの製造方法
JP4405252B2 (ja) 医療用ワイヤ
JP4447597B2 (ja) ガイドワイヤ
JP5997370B2 (ja) ガイドワイヤ
JP5328835B2 (ja) ガイドワイヤの製造方法
JP6306994B2 (ja) ガイドワイヤおよびガイドワイヤの製造方法
JP3962652B2 (ja) ガイドワイヤ
JP4138467B2 (ja) ガイドワイヤ
WO2014162389A1 (ja) ガイドワイヤ
JP4455808B2 (ja) ガイドワイヤ
JP6709083B2 (ja) ガイドワイヤ
JP4376073B2 (ja) ガイドワイヤ
JP6347632B2 (ja) ガイドワイヤ
JP2005211511A (ja) ガイドワイヤ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09726393

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 09726393

Country of ref document: EP

Kind code of ref document: A1